WO2002056516A1 - Communication device and communication system using it - Google Patents

Communication device and communication system using it Download PDF

Info

Publication number
WO2002056516A1
WO2002056516A1 PCT/JP2001/000065 JP0100065W WO02056516A1 WO 2002056516 A1 WO2002056516 A1 WO 2002056516A1 JP 0100065 W JP0100065 W JP 0100065W WO 02056516 A1 WO02056516 A1 WO 02056516A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
amplification factor
communication device
value
compressor
Prior art date
Application number
PCT/JP2001/000065
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Ichinose
Setsuo Arita
Izumi Yamada
Takuya Sugawara
Fumiyasu Okido
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2001/000065 priority Critical patent/WO2002056516A1/en
Priority to JP2002557054A priority patent/JP3800176B2/en
Publication of WO2002056516A1 publication Critical patent/WO2002056516A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G7/00Volume compression or expansion in amplifiers
    • H03G7/007Volume compression or expansion in amplifiers of digital or coded signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only

Definitions

  • the present invention relates to a communication device that performs communication using a multicarrier modulation method such as an orthogonal frequency division multiplexing method and a communication system using the same.
  • a multicarrier modulation method such as an orthogonal frequency division multiplexing method
  • a method of transmitting data by modulating the amplitude, phase or frequency of one carrier is called a single carrier modulation method.
  • a method of combining a plurality of carriers whose amplitudes or phases are modulated into a transmission signal is called a multi-carrier modulation system.
  • the multicarrier modulation method has the characteristic that the transmission time is several times longer than that of the carrier, and is less susceptible to the reflected waves generated in the communication channel.
  • OFDM orthogonal frequency division multiplexing
  • the transmission signal has a relatively high peak amplitude with respect to the effective value of the amplitude of the transmission signal.
  • peak power / average power is referred to as peak 'ratio
  • a communication device has a regulation value for transmission output. If the peak ratio is high, the average power cannot be increased.
  • the transmission characteristics of a communication device are determined by the signal-to-noise ratio (SZN) of the transmission path including the communication device. Is difficult, and as a result, transmission errors increase.
  • SZN signal-to-noise ratio
  • the peak ratio is high, an amplifier having a large maximum power must be used as a transmission amplifier, which increases the cost of the transmission amplifier.
  • the dynamic range of a digital processing circuit used for signal processing for transmission and reception must be increased.
  • An object of the present invention is to provide a communication device capable of reducing a peak ratio without lowering a transmission speed when performing communication using a multicarrier modulation method, and a communication system using the same.
  • a feature of the present invention that achieves the above object is that a modulated signal obtained by synthesizing a plurality of carriers modulated by transmission data is input, and a first amplification factor for a signal that is equal to or less than a preset threshold is obtained.
  • FIG. 1 is a configuration diagram of a communication system according to a preferred embodiment of the present invention
  • FIG. 2 is a characteristic diagram of amplification factors set in a compressor 104 and an expander 144
  • FIG. Fig. 4 shows the input signal (source signal) and output signal (compressed signal) of the compressor 104, and the peak ratio between the source signal and the compressed signal.
  • Fig. 4 shows the case without expansion and the case with expansion.
  • FIG. 5 is a diagram showing the relationship between the input amplitude and the frequency of appearance
  • FIG. 6 is a diagram showing the relationship between the input amplitude and the cumulative frequency in the communication system according to another embodiment of the present invention.
  • Configuration ⁇ Best mode for applying the invention
  • FIG. 1 shows a configuration of a communication system according to a preferred embodiment of the present invention.
  • a plurality of communication devices la, lb, 1 c... are connected via a power line 2 and each communication device 1 a, 1 b, 1 c. Transmit and receive data to and from each other by superimposing signals on power line 2.
  • the communication device of the present embodiment is a power line carrier device that transmits and receives data by power line carrier.
  • Communication device 1a, lb, lc ... have the same device configuration, and the operation is the same.
  • a case where data is transmitted from the communication device 1a to the communication device 1b will be described.
  • transmission data to be transmitted to the communication device 1b is input to the OFDM modulator 10 of the communication device 1a.
  • the input transmission data is input to the mapping 101, and the mapping 101 converts the input transmission data from the 0, 1 pattern to a complex number data.
  • This complex number data becomes the amplitude data of each carrier.
  • the obtained complex number data is input to an inverse fast Fourier transformer (IFFT) 102 and is subjected to inverse high-speed Fourier transform to generate a modulated signal in the time domain.
  • IFFT inverse fast Fourier transformer
  • a complex signal obtained by inverse fast Fourier transform by IFFT 102 is input to quadrature modulator 103.
  • the quadrature modulator 103 converts the input complex number signal into a real number signal and outputs it. Conventionally, the signal obtained by the quadrature modulator 103 was converted into an analog signal, and then transmitted by being multiplexed on the power line 2.In this embodiment, the signal is converted before being converted into an analog signal. Perform compression.
  • the real number signal output from the quadrature modulation 103 is input to a compressor 104.
  • the compressor 104 amplifies (compresses) the input signal at a preset amplification factor.
  • the second (a) shows the amplification factor in the compressor 104, that is, the amplitude of the input signal (hereinafter referred to as input amplitude) and the amplitude of the output signal corresponding thereto (hereinafter referred to as output amplitude).
  • the compressor 104 sets the amplification factor to 1 when the input amplitude is in the range of 0 to 0.03, and increases the amplification factor when the input amplitude is in the range of 0.03 or more. 1 8 (0.125).
  • Fig. 3 (b) shows the signal after compression when the signal shown in Fig. 3 (a) is input to the compressor 104.
  • the input signal (called the source signal) of the compressor 104 is superimposed by multiple carriers as shown in Fig. 3 (a).
  • the waveform has a point with a large amplitude due to a pulse-like amplitude change.
  • the amplitude of 0.03 or more is greatly compressed, and the peak that protrudes becomes Disappears.
  • the peak power can be reduced by compressing the amplitude to 1/8 in the range equal to or more than the threshold value of 0.03, that is, compressing a large amplitude. Since the amplitude below the threshold of 0.03 is not compressed with the amplification factor set to 1, the average power hardly decreases. Therefore, the peak ratio, which is the ratio between the peak power and the average power, is greatly reduced.
  • Figure 3 (c) shows the results obtained by simulation of the relationship between the peak ratio of the source signal, the peak ratio of the compressed signal, and the number of trials when random data is given as the transmission data.
  • the peak ratio of the source signal is close to 20 at the maximum, while the peak ratio of the compressed signal is reduced to 5 or less.
  • the maximum value of the peak ratio can be reduced to about one-fourth as compared with the case where no signal compression is performed. It can be reduced to about a quarter.
  • the transmission power can be increased up to four times.
  • the signal output from the compressor 104 is input to a digital / analog converter (D / A) 105, and the D / A 105 converts the input signal from a digital signal to an analog signal. Output.
  • the signal output from DZA 105 is used as an OFDM modulated signal output from OFDM modulator 10. Input to the amplifier.
  • the amplifier 11 amplifies the input OFDM modulated signal at a preset amplification factor, and the OFDM modulated signal amplified by the amplifier 11 is input to the coupler 12.
  • the combiner 12 multiplexes the input OFDM modulated signal onto the power line 2.
  • the OFDM modulated signal superimposed on the power line 2 is received by the communication device 1b.
  • the coupler 12 of the communication device 1b recognizes and takes in the signal output to the communication device 1b among the signals superimposed on the power line 2.
  • address information assigned in advance to the communication device of the transmission destination is added to the signal superimposed on the power line 2, and the coupler 12 recognizes a signal to be taken in based on the address information.
  • the signal captured by the coupler 12 is input to a BPS (bandpass filter) 13, and the BPS 13 outputs only a signal within a preset frequency range. This BPS 13 removes noise.
  • the signal output from BPS 13 is input to OFDM demodulator 14.
  • the signal input to OFDM demodulator 14 is input to analog-to-digital converter (AZD) 14 1, and A / D 14 1 converts the input signal from analog signal to digital signal and outputs I do.
  • the signal output from A / D 141 is input to decompressor 142, and decompressor 142 amplifies (decompresses) the signal with an amplification factor that is the inverse conversion of compressor 104.
  • FIG. 2 (b) shows the amplification factor in the expander 142, that is, the input amplitude and the output amplitude corresponding thereto. As shown in Fig.
  • the decompressor 1442 sets the amplification factor to 1 when the input amplitude is in the range of 0 to 0.03, and increases the amplification factor when the input amplitude is 0.03 or more.
  • the rate is set to 8 which is the reciprocal of the amplification rate in the compressor 104. That is, the gain is also changed in the decompressor 144 with the input amplitude of 0.03 as the threshold. Moreover, an increase in the input amplitude above the threshold value 0.03 Since the width ratio is the reciprocal of the amplification factor of the compressor 104, the same signal as the input signal (source signal) of the compressor 104 is obtained as the output signal of the decompressor 142.
  • FIG. 4 (a) shows the signal point arrangement error when no decompression is performed
  • FIG. 4 (b) shows the signal point arrangement error when the decompression is performed as in the present embodiment.
  • the signal point arrangement error when the extension in FIG. 4 (b) is performed is much smaller than when the extension in FIG. 4 (a) is not performed.
  • the signal output from the decompressor 144 is input to the quadrature demodulator 144, and the quadrature demodulator 144 converts the input signal from a real signal to a complex signal.
  • the obtained complex signal is input to a Fast Fourier Transformer (FFT) 144, and is subjected to Fast Fourier Transform to generate a signal in the frequency domain.
  • FFT Fast Fourier Transformer
  • the signal obtained by the FFT 144 is input to the demapping 144, and the demapping 144 converts the input signal from complex data to 0, 1 pattern data. This data is the received data. In this way, the evening transmission from the communication device 1a to the communication device 1b is performed.
  • a method of determining a threshold value in the compressor 104 will be described.
  • the threshold value is reduced, the peak power decreases, but the average power also decreases. Accordingly, if the threshold value is too low, the effect of reducing the peak ratio decreases.
  • the threshold value is set to 0, the peak power is reduced because the entire signal is compressed, but the peak ratio does not change. Since the frequency of the large amplitude is small in the OFDM modulation signal, only the large amplitude is compressed. It is preferable to set a threshold value so that Fig. 5 (a) shows the result of counting the amplitude frequency 100 times for 256 FDD modulated signals in one period, and Fig.
  • the threshold value is preferably about twice the amplitude of the average power.
  • the amplification factor in the compressor 104 will be described.
  • the peak ratio can be reduced as the amplification factor for the amplitude exceeding the threshold is smaller.
  • the compressor 104 of the present embodiment described above will be described using mathematical expressions. Assuming that the input signal of the compressor 104 is x, the output signal is y, and the threshold value is s, the relationship between the input signal X and the output signal y in the compressor 104 is (Equation 1).
  • Equation 1 y
  • G1 and G2 are amplification factors, and the amplification factor G1> the amplification factor G2.
  • Equation 1 when the input signal X exceeds the threshold value s, the portion exceeding the threshold value s is amplified with the amplification factor G2, but is amplified more than the amplification factor G1 corresponding to the portion below the threshold value s. Since the rate G 2 is small, the part exceeding the threshold s is compressed more than the part below the threshold s. As a result, the peak power can be reliably reduced, and the reduction in the average power is small, so that the peak ratio is reduced. Note that if all input amplitudes are amplified with an amplification factor of 1 or less (constant), the output peak power can be reduced, but the average power also decreases at the same rate, so the peak ratio cannot be reduced.
  • the threshold value of the decompressor 144 is set to s X G 1, and the amplification factor exceeding the threshold value may be set to the reciprocal of G 2.
  • FIG. 2 (c) shows another example of the amplification factor in the compressor 104. As shown in the figure, the same effect can be obtained by changing the amplification factor continuously as G3 if the amplification factor is lower than G1 for the input amplitude smaller than the threshold value.
  • the peak ratio of the FDM modulated signal increases due to the combination of carriers. However, depending on the combination of the amplitude and phase of each carrier, the peak ratio may be small. In such a case, no compression is required, and thus no compression is performed. Then, the transmission signal is transmitted with information on whether the signal is compressed or not, and the reception side inputs the compressed signal to the decompressor 142 according to the information, and after decompression, ⁇ FDM demodulation I do. If the signal is an uncompressed received signal, FDM demodulation is performed without passing through the expander 144. Compressed message Even if the signal is expanded, some distortion remains, so if compression is not required as in the present embodiment, decompression is used to avoid unnecessary compression and suppress distortion. Can be. Thereby, communication reliability can be further improved.
  • FIG. 6 shows the configurations of the OFDM modulator 10 'and the FDM demodulator 14' of the present embodiment.
  • the OFDM modulator 10 ′ of the present embodiment includes two compressions 1104 a and 104 b, and the compressors 104 a and 104 b have A quadrature modulator 103 is provided at the subsequent stage.
  • the complex signal output from the IFFT 102 is divided into a real signal and an imaginary signal, and the real signal is input to the compressor 104a, and the imaginary signal is input to the compressor 104b.
  • the compressors 104a and 104b compress the real number signal and the imaginary number signal in the same manner as in the first embodiment.
  • the real number signal and the imaginary number signal compressed by the compressors 104a and 104b are input to the quadrature modulator 103.
  • the quadrature modulator 103 receives the input complex number signal (real number signal and imaginary number). Signal) into a real number signal.
  • the compressor is not performed on the real number signal. There is no signal distortion.
  • the complex signal obtained by the quadrature demodulator 143 is divided into a real signal and an imaginary signal, and the decompressors 14 2 a and 14 2 Entered in b.
  • the amplification factor of the decompressor 142a is set to perform the inverse conversion of the compressor 104a
  • the amplification factor of the decompressor 142b is set to perform the inverse conversion of the compressor 104b. ing.
  • a complex signal is divided into a real signal and an imaginary signal, and a signal having a small peak ratio is not compressed, signal distortion can be reduced, and communication reliability can be further improved. Can be improved.
  • the present invention is applicable to communication methods other than power line carrier.
  • the multi-carrier modulation method as an example of the multi-carrier modulation method,
  • the present invention is also applicable to a multi-carrier modulation system other than the OFDM system.
  • the present invention can be applied to a communication system that performs communication using a multicarrier modulation scheme such as the OFDM scheme. With this application, the peak ratio can be reduced without lowering the communication speed.

Landscapes

  • Transmitters (AREA)

Abstract

A communication device comprises a compressor for receiving a modulation signal, obtained by combining a plurality of carriers modulated with transmitted data, and amplifying the modulation signal with a first amplification factor for a signal lower than a preset threshold level and a second amplification factor for a signal exceeding a threshold level lower than that for the first amplification factor. Since a signal exceeding the threshold level is compressed more than a signal lower than the threshold level by setting the amplification factor for the signal exceeding the threshold level to a value lower than the amplification factor for the signal lower than the threshold level, the peak power of the modulation signal is lowered. Furthermore, the peak ratio is reduced because lowering of the average power is limited as compared with lowering of the peak power.

Description

明 細 書  Specification
通信装置及びそれを用いた通信 技術分野  Communication device and communication technology using the same
本発明は、 直交周波数分割多重方式のようなマルチキヤリァ変調方式 により通信を行う通信装置及びそれを用いた通信システムに関する。 背景技術  The present invention relates to a communication device that performs communication using a multicarrier modulation method such as an orthogonal frequency division multiplexing method and a communication system using the same. Background art
搬送波 (キャリア) を用いた通信技術において、 1つのキャリアの振 幅, 位相或いは周波数を変調することによりデ一タを送信する方式をシ ングルキャリア変調方式と呼ぶ。 これに対して、 振幅或いは位相が変調 された複数のキヤリァを合成して送信信号とする方式をマルチキヤリァ 変調方式と呼ぶ。 伝送速度が同じ場合、 マルチキャリア変調方式の方が キャリア数倍送信時間を長くできるため、 通信路で発生する反射波の影 響を受けにくいという特徴がある。  In communication technology using a carrier wave (carrier), a method of transmitting data by modulating the amplitude, phase or frequency of one carrier is called a single carrier modulation method. On the other hand, a method of combining a plurality of carriers whose amplitudes or phases are modulated into a transmission signal is called a multi-carrier modulation system. When the transmission speed is the same, the multicarrier modulation method has the characteristic that the transmission time is several times longer than that of the carrier, and is less susceptible to the reflected waves generated in the communication channel.
直交周波数分割多重 (以下、 O F DMという) 方式は、 マルチキヤリ ァ変誡方式の一つであり、 キャリアの周波数間隔を最小にできるので周 波数利用効率が高い。 このため、 電力線搬送, デジタルテレビ放送, 無 線及び電話回線を用いる X D S L (Digital Subscriber Line) の変調 方式として採用されている。  The orthogonal frequency division multiplexing (hereinafter referred to as OFDM) method is one of the multi-carrier schemes, and has a high frequency utilization efficiency because the carrier frequency interval can be minimized. For this reason, it has been adopted as an XDSL (Digital Subscriber Line) modulation method using power line carrier, digital television broadcasting, radio and telephone lines.
この 0 F DM方式に限らずマルチキヤリァ変調方式では、 複数のキヤ リアを合成して送信信号とするため、 送信信号の振幅の実効値に対して 比較的高いピーク振幅を持つ。 つまり、 ピーク電力と平均竈力との比 (以 下、 ピーク電力/平均電力をピーク'比と呼ぶ) が高い。 一般に、 通信装 置には送信出力に規制値があるため、 マルチキヤリァ変調方式のように ピーク比が高いと、 平均電力を大きくすることができない。 通信装置の 伝送特性は通信装置を含めた伝送路の信号雑音比 (S Z N ) によって決 まるが、 前述の通り、 マルチキャリア変調方式では平均電力を大きくす ることができないために S Z Nを高くすることが難しく、 その結果、 伝 送誤りが増加してしまう。 また、 ピーク比が高いことにより、 送信アン プとして最大電力の大きなアンプを使用しなければならず、 送信アンプ のコス トが高くなる。 更に、 送受信の信号処理に用いられるデジタル処 理回路のダイナミックレンジを大きくしなければならない。 In the multi-carrier modulation method as well as the 0 FDM method, since a plurality of carriers are combined into a transmission signal, the transmission signal has a relatively high peak amplitude with respect to the effective value of the amplitude of the transmission signal. In other words, the ratio of peak power to average firing power (hereinafter, peak power / average power is referred to as peak 'ratio) is high. In general, a communication device has a regulation value for transmission output. If the peak ratio is high, the average power cannot be increased. The transmission characteristics of a communication device are determined by the signal-to-noise ratio (SZN) of the transmission path including the communication device. Is difficult, and as a result, transmission errors increase. In addition, since the peak ratio is high, an amplifier having a large maximum power must be used as a transmission amplifier, which increases the cost of the transmission amplifier. Furthermore, the dynamic range of a digital processing circuit used for signal processing for transmission and reception must be increased.
ピーク比を低減するための従来技術としては、 特開平 8-97797号公報, 特開平 10- 1 7841 1 号公報及び特開平 1 1 -163826号公報等があるが、 これ らの従来技術では、 伝送データの配列により発生するピーク電力を低減 するための配列変換用の複雑な演算が必要であったり、 データ配列を制 限するための冗長ビッ トを付加することにより実効的な伝送速度が低下 するという問題がある。 発明の開示  Conventional techniques for reducing the peak ratio include JP-A-8-97797, JP-A-10-178411, JP-A-11-163826, and the like. A complicated operation for array conversion is required to reduce the peak power generated by the array of transmission data, and the effective transmission speed is reduced by adding redundant bits to restrict the data array. There is a problem of doing. Disclosure of the invention
本発明の目的は、 マルチキャリア変調方式を用いて通信を行う際に、 伝送速度を低下させることなく ピーク比を低減可能な通信 置及びそれ を用いた通信システムを提供することにある。  An object of the present invention is to provide a communication device capable of reducing a peak ratio without lowering a transmission speed when performing communication using a multicarrier modulation method, and a communication system using the same.
上記目的を達成する本発明の特徴は、 送信デ一夕により変調された複 数の搬送波を合成して得られた変調信号を入力し、 予め設定された閾値 以下の信号に対する第 1増幅率と、 前記第 1増幅率よりも小さな値が設 定された前記閾値を超える信号に対する第 2増幅率とによって前記変調 信号を増幅する圧縮器と、 前記圧縮器の出力信号に基づいて得られた送 信信号を送信する送信手段とを備えたことにある。 闞値を超える信号の増幅率を閾値以下の信号の増幅率よりも小さな値 とすることによって、 閾値を超える信号が閾値以下の信号に比べて圧縮 されるため、 変調信号のピーク電力が低下し、 かつ平均電力の低下はピ ーク電力の低下よりも小さく押さえられるため、 ピーク比は低減される。 また、 従来技術のようにデータ配列を制限するための冗長ビッ トを付加 する必要がないため、 伝送速度を低下させることがない。 図面の簡単な説明 A feature of the present invention that achieves the above object is that a modulated signal obtained by synthesizing a plurality of carriers modulated by transmission data is input, and a first amplification factor for a signal that is equal to or less than a preset threshold is obtained. A compressor that amplifies the modulated signal with a second amplification factor for a signal that exceeds the threshold and has a value smaller than the first amplification factor, and a transmission obtained based on an output signal of the compressor. Transmission means for transmitting a communication signal. 闞 By making the amplification factor of the signal exceeding the threshold smaller than the amplification factor of the signal below the threshold, the signal above the threshold is compressed as compared to the signal below the threshold, and the peak power of the modulated signal decreases. In addition, since the decrease in the average power is suppressed to be smaller than the decrease in the peak power, the peak ratio is reduced. Further, since there is no need to add a redundant bit for restricting the data arrangement unlike the related art, the transmission speed is not reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の好適な一実施例である通信システムの構成図、 第 2図は、 圧縮器 1 0 4及び伸長器 1 4 2に設定された増幅率の特性図、 第 3図は、 圧縮器 1 0 4の入力信号 (源信号)、 出力信号 (圧縮信号) 及び源信号と圧縮信号のピーク比を示す図、 第 4図は、 伸長を行わない 場合と伸長を行った場合における信号点配置誤差を示す図、 第 5図は、 入力振幅と出現頻度との関係及び入力振幅と累積頻度との関係を示す図 第 6図は、 本発明の他の実施例である通信システムの構成囪である。 発明を奐施するための最良の形態  FIG. 1 is a configuration diagram of a communication system according to a preferred embodiment of the present invention, FIG. 2 is a characteristic diagram of amplification factors set in a compressor 104 and an expander 144, FIG. Fig. 4 shows the input signal (source signal) and output signal (compressed signal) of the compressor 104, and the peak ratio between the source signal and the compressed signal. Fig. 4 shows the case without expansion and the case with expansion. FIG. 5 is a diagram showing the relationship between the input amplitude and the frequency of appearance, and FIG. 6 is a diagram showing the relationship between the input amplitude and the cumulative frequency in the communication system according to another embodiment of the present invention. Configuration 囪. Best mode for applying the invention
以下、 図面を用いて本発明の実施例を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施例 1 )  (Example 1)
第 1図は、 本発明の好適な一実施例である通信システムの構成を示す。 第 1図に示すように、 本実施例の通信システムでは、 複 の通信装置 l a , l b , 1 c…が電力線 2を介して接続されており、 各通信装置 1 a , 1 b, 1 c…は電力線 2に信号を畳重することによって互いにデ 一夕を送受信する。 つまり、 本実施例の通信装置は、 電力線搬送によつ てデータを送受信する電力線搬送装置である。 なお、 通信装置 1 a, l b , l c…は、 同じ装置構成となっており、 その動作も同様である。 以下、 通信装置 1 aから通信装置 1 bにデータを送信する場合につい て説明する。 まず、 通信装置 1 bへ送信する送信データが、 通信装置 1 aの O F DM変調器 1 0に入力される。 O F DM変調器 1 0において、 入力された送信デ一タはマッピング 1 0 1に入力され、 マッピング 101 は入力された送信データを 0, 1パターンから複素数デ一夕に変換する。 この複素数データが、 各キャリアの振幅データとなる。 得られた複素数 データは、 逆高速フーリエ変換器 ( I F F T) 1 0 2に入力され、 逆高 速フーリェ変換されることによって時間領域での変調信号が生成される, なお、 本実施例では、 振幅及び周波数の異なる複数のキャリアを合成す るため、 逆窩速フーリエ変換を採用している。 I F F T 1 0 2による逆 高速フ一リェ変換によって得られた複素数信号は、 直交変調器 1 0 3に 入力される。 直交変調器 1 0 3は、 入力された複素数信号を実数信号に 変換して出力する。 従来は、 この直交変調器 1 0 3で得られた信号をァ ナログ信号に変換した後、 電力線 2に畳重して送信していたが、 本実施 例ではアナログ信号に変換する前に信号の圧縮を行う。 FIG. 1 shows a configuration of a communication system according to a preferred embodiment of the present invention. As shown in FIG. 1, in the communication system of the present embodiment, a plurality of communication devices la, lb, 1 c... Are connected via a power line 2 and each communication device 1 a, 1 b, 1 c. Transmit and receive data to and from each other by superimposing signals on power line 2. That is, the communication device of the present embodiment is a power line carrier device that transmits and receives data by power line carrier. Communication device 1a, lb, lc ... have the same device configuration, and the operation is the same. Hereinafter, a case where data is transmitted from the communication device 1a to the communication device 1b will be described. First, transmission data to be transmitted to the communication device 1b is input to the OFDM modulator 10 of the communication device 1a. In the OFDM modulator 10, the input transmission data is input to the mapping 101, and the mapping 101 converts the input transmission data from the 0, 1 pattern to a complex number data. This complex number data becomes the amplitude data of each carrier. The obtained complex number data is input to an inverse fast Fourier transformer (IFFT) 102 and is subjected to inverse high-speed Fourier transform to generate a modulated signal in the time domain. In order to combine multiple carriers with different frequencies, a reverse fog velocity Fourier transform is adopted. A complex signal obtained by inverse fast Fourier transform by IFFT 102 is input to quadrature modulator 103. The quadrature modulator 103 converts the input complex number signal into a real number signal and outputs it. Conventionally, the signal obtained by the quadrature modulator 103 was converted into an analog signal, and then transmitted by being multiplexed on the power line 2.In this embodiment, the signal is converted before being converted into an analog signal. Perform compression.
直交変調 1 0 3から出力された実数信号は圧縮器 1 04に入力され. 圧縮器 1 0 4は入力された信号を予め設定された増幅率で増幅 (圧縮) する。 第 2 ( a) は、 圧縮器 1 0 4における増幅率、 すなわち入力信 号の振幅 (以下、 入力振幅と呼ぶ) とそれに対する出力信 の振幅 (以 下、 出力振幅と呼ぶ) とを示す。 第 2図 ( a ) に示すように、 圧縮器 1 0 4は、 入力振幅が 0から 0. 0 3の範囲では増幅率を 1 とし、 入力 振幅が 0. 0 3以上の範囲では増幅率を 1 8 (0. 1 2 5 ) としている。 つまり、 入力振幅 0.0 3 を閾値として増幅率を変化させている。 なお、 この閾値及び増幅率の決定方法については後述する。 第 3図 ( a) に示す信号が圧縮器 1 0 4に入力された場合の圧縮後の 信号を第 3図 ( b) に示す。 O F DM変調方式のようなマルチキャリア 変調方式を用いた場合、 複数のキャリアの重ね合わせによって、 圧縮器 1 0 4の入力信号 (源信号と呼ぶ) は第 3図 ( a) に示されるようにパ ルス状の振幅変化により振幅の大きな点が存在する波形となる。 この第 3図 ( a) に示す源信号を圧縮器 1 0 4にて圧縮すると、 第 3図 ( b) に示すように、 0. 0 3以上の振幅が大幅に圧縮されて突出したピーク がなくなる。 本実施例の圧縮器 1 0 4では、 前述の通り、 閾値である 0. 0 3 以上の範囲で振幅を 1 / 8に圧縮する、 すなわち大きな振幅を 圧縮することでピーク電力を低減でき、 また閾値 0.0 3 以下の振幅は 増幅率を 1 として圧縮しないので平均電力はほとんど減少しない。 従つ て、 ピーク電力と平均電力との比であるピーク比が大幅に低減される。 第 3図 ( c ) は送信デ一夕としてランダムデータを与えた場合の源信号 のピーク比及び圧縮信号のピーク比と試行回数との関係をシミュレ一シ ヨンによって求めた結果を示す。 図に示されるように、 源信号のピーク 比は最大で 2 0近くあるのに対して、 圧縮信号のピーク比は 5以下に低 減されている。 このように本実施例によれば、 信号圧縮を行わない場合 と比較してピーク比の最大値を約 4分の 1まで低減することができ、 そ れにより後述するアンプの最大電力を従来の約 4分の 1 に低減すること ができる。 逆に、 従来と同一のアンプを用いた場合には送信電力を 4倍 まで大きくできる。 The real number signal output from the quadrature modulation 103 is input to a compressor 104. The compressor 104 amplifies (compresses) the input signal at a preset amplification factor. The second (a) shows the amplification factor in the compressor 104, that is, the amplitude of the input signal (hereinafter referred to as input amplitude) and the amplitude of the output signal corresponding thereto (hereinafter referred to as output amplitude). As shown in Fig. 2 (a), the compressor 104 sets the amplification factor to 1 when the input amplitude is in the range of 0 to 0.03, and increases the amplification factor when the input amplitude is in the range of 0.03 or more. 1 8 (0.125). That is, the amplification factor is changed with the input amplitude 0.0 3 as the threshold value. The method of determining the threshold and the amplification factor will be described later. Fig. 3 (b) shows the signal after compression when the signal shown in Fig. 3 (a) is input to the compressor 104. When a multi-carrier modulation scheme such as OFDM modulation is used, the input signal (called the source signal) of the compressor 104 is superimposed by multiple carriers as shown in Fig. 3 (a). The waveform has a point with a large amplitude due to a pulse-like amplitude change. When the source signal shown in Fig. 3 (a) is compressed by the compressor 104, as shown in Fig. 3 (b), the amplitude of 0.03 or more is greatly compressed, and the peak that protrudes becomes Disappears. As described above, in the compressor 104 of the present embodiment, the peak power can be reduced by compressing the amplitude to 1/8 in the range equal to or more than the threshold value of 0.03, that is, compressing a large amplitude. Since the amplitude below the threshold of 0.03 is not compressed with the amplification factor set to 1, the average power hardly decreases. Therefore, the peak ratio, which is the ratio between the peak power and the average power, is greatly reduced. Figure 3 (c) shows the results obtained by simulation of the relationship between the peak ratio of the source signal, the peak ratio of the compressed signal, and the number of trials when random data is given as the transmission data. As shown in the figure, the peak ratio of the source signal is close to 20 at the maximum, while the peak ratio of the compressed signal is reduced to 5 or less. As described above, according to the present embodiment, the maximum value of the peak ratio can be reduced to about one-fourth as compared with the case where no signal compression is performed. It can be reduced to about a quarter. Conversely, if the same amplifier is used, the transmission power can be increased up to four times.
圧縮器 1 0 4から出力された信号は、 デジタル/アナログ変換器 (D / A) 1 0 5に入力され、 D/A 1 0 5は入力された信号をデジタル信 号からアナログ信号に変換して出力する。 DZA 1 0 5から出力された 信号が、 O F DM変調器 1 0から出力される O F DM変調信号としてァ ンプ 1 1に入力される。 アンプ 1 1は入力された O F DM変調信号を予 め設定された増幅率にて増幅し、 アンプ 1 1 によって増幅された OFDM 変調信号は結合器 1 2に入力される。 結合器 1 2は、 入力された OFDM 変調信号を電力線 2に畳重する。 The signal output from the compressor 104 is input to a digital / analog converter (D / A) 105, and the D / A 105 converts the input signal from a digital signal to an analog signal. Output. The signal output from DZA 105 is used as an OFDM modulated signal output from OFDM modulator 10. Input to the amplifier. The amplifier 11 amplifies the input OFDM modulated signal at a preset amplification factor, and the OFDM modulated signal amplified by the amplifier 11 is input to the coupler 12. The combiner 12 multiplexes the input OFDM modulated signal onto the power line 2.
電力線 2に畳重された O F DM変調信号は、 通信装置 1 bにて受信さ れる。 通信装置 1 bの結合器 1 2は、 電力線 2に畳重された信号のうち、 通信装置 1 bに対して出力された信号を認識して取り込む。 なお、 電力 線 2に畳重される信号には予め送信先の通信装置に割り当てられたアド レス情報が付加されており、 結合器 1 2はそのァドレス情報に基づいて 取り込むべき信号を認識する。 結合器 1 2によって取り込まれた信号は B P S (バンドパスフィル夕) 1 3に入力され、 B P S 1 3では予め設 定された周波数範囲の信号だけを出力する。 この B P S 1 3によりノィ ズが除去される。 B P S 1 3から出力された信号は、 O F DM復調器 1 4に入力される。  The OFDM modulated signal superimposed on the power line 2 is received by the communication device 1b. The coupler 12 of the communication device 1b recognizes and takes in the signal output to the communication device 1b among the signals superimposed on the power line 2. Note that address information assigned in advance to the communication device of the transmission destination is added to the signal superimposed on the power line 2, and the coupler 12 recognizes a signal to be taken in based on the address information. The signal captured by the coupler 12 is input to a BPS (bandpass filter) 13, and the BPS 13 outputs only a signal within a preset frequency range. This BPS 13 removes noise. The signal output from BPS 13 is input to OFDM demodulator 14.
O F DM復調器 1 4に入力された信号はアナログ デジタル変換器 (AZD) 1 4 1に入力され、 A/D 1 4 1は入力された信号をアナ口 グ信号からデジタル信号に変換して出力する。 A/D 1 4 1から出力さ れた信号は伸長器 1 4 2に入力され、 伸長器 1 4 2は圧縮器 1 0 4の逆 変換となるような増幅率により信号を増幅 (伸長) する。 第 2図 ( b) は、 伸長器 1 4 2における増幅率、 すなわち入力振幅とそれに対する出 力振幅とを示す。 第 2図 (b) に示すように、 伸長器 1 4 2は、 入力振 幅が 0から 0. 0 3 の範囲では増幅率を 1 とし、 入力振幅が 0. 0 3 以 上の範囲では増幅率を圧縮器 1 0 4における増幅率の逆数である 8 とし ている。 つまり、 伸長器 1 4 2でも入力振幅 0.0 3 を閾値として増幅 率を変化させている。 しかも、 閾値 0. 0 3 以上の入力振幅に対する増 幅率は、 圧縮器 1 0 4の増幅率の逆数としているので、 圧縮器 1 0 4の 入力信号 (源信号) と同じ信号が伸長器 1 4 2の出力信号として得られ る。 The signal input to OFDM demodulator 14 is input to analog-to-digital converter (AZD) 14 1, and A / D 14 1 converts the input signal from analog signal to digital signal and outputs I do. The signal output from A / D 141 is input to decompressor 142, and decompressor 142 amplifies (decompresses) the signal with an amplification factor that is the inverse conversion of compressor 104. . FIG. 2 (b) shows the amplification factor in the expander 142, that is, the input amplitude and the output amplitude corresponding thereto. As shown in Fig. 2 (b), the decompressor 1442 sets the amplification factor to 1 when the input amplitude is in the range of 0 to 0.03, and increases the amplification factor when the input amplitude is 0.03 or more. The rate is set to 8 which is the reciprocal of the amplification rate in the compressor 104. That is, the gain is also changed in the decompressor 144 with the input amplitude of 0.03 as the threshold. Moreover, an increase in the input amplitude above the threshold value 0.03 Since the width ratio is the reciprocal of the amplification factor of the compressor 104, the same signal as the input signal (source signal) of the compressor 104 is obtained as the output signal of the decompressor 142.
第 4図 ( a ) は、 伸長を行わなかった場合の信号点配置誤差を示し、 第 4図 (b ) は、 本実施例のように伸長を行った場合の信号点配置誤差 を示す。 図に示されるように、 第 4図 ( a ) の伸長を行わない場合に比 ベて、 第 4図 (b ) の伸長を行った場合の信号点配置誤差は非常に小さ くなつている。 このように、 圧縮して送信した信号に対して 0 F D M復 調する前に伸長を行うことで送信信号の歪みを除去することができ、 正 しく復調することが可能となる。  FIG. 4 (a) shows the signal point arrangement error when no decompression is performed, and FIG. 4 (b) shows the signal point arrangement error when the decompression is performed as in the present embodiment. As shown in the figure, the signal point arrangement error when the extension in FIG. 4 (b) is performed is much smaller than when the extension in FIG. 4 (a) is not performed. As described above, by performing expansion before performing 0 FDM demodulation on a signal transmitted after compression, distortion of the transmission signal can be removed, and demodulation can be performed correctly.
伸長器 1 4 2から出力された信号は直交復調器 1 4 3に入力され、 直 交復調器 1 4 3は入力された信号を実数信号から複素数信号に変換する, 直交復調器 1 4 3によって得られた複素数信号は、 高速フーリエ変換器 ( F F T ) 1 4 4に入力され、 高速フーリエ変換されることによって周 波数領域の信号が生成される。 F F T 1 4 4により得られた信号はデマ ッピング 1 4 5に入力され、 デマッピング 1 4 5は入力された信号を複 素数デ一夕から 0, 1パターンのデータに変換する。 このデータが受信 データである。 このようにして、 通信装置 1 aから通信装 1 bへのデ —夕の送信が行われる。  The signal output from the decompressor 144 is input to the quadrature demodulator 144, and the quadrature demodulator 144 converts the input signal from a real signal to a complex signal. The obtained complex signal is input to a Fast Fourier Transformer (FFT) 144, and is subjected to Fast Fourier Transform to generate a signal in the frequency domain. The signal obtained by the FFT 144 is input to the demapping 144, and the demapping 144 converts the input signal from complex data to 0, 1 pattern data. This data is the received data. In this way, the evening transmission from the communication device 1a to the communication device 1b is performed.
ここで、 圧縮器 1 0 4における閾値の決定方法について説明する。 閾 値を小さくするほどピ一ク電力は小さくなるが、 それに伴い平均電力も 低下するため、 閾値を小さく しすぎるとピ一ク比の低減効桌が小さくな る。 例えば極端な例として、 閾値を 0とする場合には、 信号全体が圧縮 されるためにピーク電力は小さくなるがピーク比は変わらない。 OFDM変 調信号では大きな振幅の頻度は少ないので、 その大きな振幅のみを圧縮 するように閾値を設定するとよい。 第 5図 ( a ) は、 1周期 2 5 6個の 0 F D M変調信号に対して振幅度数を 1 0 0回計数した結果を示し、 第 5図 ( b ) は入力振幅とその累積頻度との関係を示す。 この計数結果に おいて、 平均電力換算の振幅は 0 . 0 2であり、 0 . 0 2以下の累積頻度 は約 0 . Ί である。 また、 振幅 0 . 0 4では累積頻度が 0 . 9 5となって いる。 O F D M変調信号の瞬時電力分布はカイ 2乗分布となることが知 られており、 第 5図の結果はそれと一致している。 従って、 閾値を平均 振幅 0 . 0 2以下に設定すると、 平均電力が低下し、 圧縮する信号の度 数も増えるので好ましくない。 一方、 閾値を平均振幅の 3倍以上に設定 すると、 圧縮する信号の度数が少なくなりすぎ、 ピーク電力の低減効果 が小さくなるので好ましくない。 よって、 閾値は平均電力換算振幅の 1 〜 3倍の範囲内で設定するのが望ましい。 更に、 送信信号の歪みを小さ くする、 すなわち圧縮する信号の頻度を最小限にすることを考慮すれば、 閾値は平均電力の振幅の 2倍程度が良い。 Here, a method of determining a threshold value in the compressor 104 will be described. As the threshold value is reduced, the peak power decreases, but the average power also decreases. Accordingly, if the threshold value is too low, the effect of reducing the peak ratio decreases. For example, as an extreme example, when the threshold value is set to 0, the peak power is reduced because the entire signal is compressed, but the peak ratio does not change. Since the frequency of the large amplitude is small in the OFDM modulation signal, only the large amplitude is compressed. It is preferable to set a threshold value so that Fig. 5 (a) shows the result of counting the amplitude frequency 100 times for 256 FDD modulated signals in one period, and Fig. 5 (b) shows the result of the input amplitude and its cumulative frequency. Show the relationship. In this counting result, the amplitude in terms of the average power is 0.02, and the cumulative frequency below 0.02 is about 0.0 0. In addition, the cumulative frequency is 0.95 when the amplitude is 0.04. It is known that the instantaneous power distribution of an OFDM modulated signal is a chi-square distribution, and the results in Fig. 5 agree with it. Therefore, setting the threshold to an average amplitude of 0.02 or less is not preferable because the average power decreases and the frequency of the signal to be compressed increases. On the other hand, setting the threshold to three times or more the average amplitude is not preferable because the frequency of the signal to be compressed becomes too small and the effect of reducing the peak power is reduced. Therefore, it is desirable to set the threshold value within the range of 1 to 3 times the average power conversion amplitude. Further, in consideration of minimizing the distortion of the transmission signal, that is, minimizing the frequency of the signal to be compressed, the threshold value is preferably about twice the amplitude of the average power.
次に、 圧縮器 1 0 4における増幅率について説明する。 閾値を越える 振幅に対する増幅率が小さいほどピーク比を低減できる。 しかし、 小さ く しすぎるとデジタル値での量子化誤差が増えてしまう。 従って、 閾値 以下の増幅率に対して 1 Z 1 0程度を閾値以上の増幅率の下限とすると よい。  Next, the amplification factor in the compressor 104 will be described. The peak ratio can be reduced as the amplification factor for the amplitude exceeding the threshold is smaller. However, if it is set too small, the quantization error in digital values will increase. Therefore, it is preferable to set about 1Z10 as the lower limit of the amplification factor equal to or higher than the threshold value with respect to the amplification factor equal to or lower than the threshold value.
以上説明した本実施例の圧縮器 1 0 4について、 数式を用いて説明す る。 圧縮器 1 0 4の入力信号を x, 出力信号を y, 閾値を s とすると、 圧縮器 1 0 4における入力信号 X及び出力信号 yの関係は (数 1 ) とな る。  The compressor 104 of the present embodiment described above will be described using mathematical expressions. Assuming that the input signal of the compressor 104 is x, the output signal is y, and the threshold value is s, the relationship between the input signal X and the output signal y in the compressor 104 is (Equation 1).
y  y
(数 1 ) y
Figure imgf000010_0001
ここで、 G 1及び G 2は増幅率であり、 増幅率 G 1 >増幅率 G 2であ る。
(Equation 1) y
Figure imgf000010_0001
Here, G1 and G2 are amplification factors, and the amplification factor G1> the amplification factor G2.
(数 1 ) に示すように、 入力信号 Xが閾値 s を超える場合は、 閾値 s を越える部分を増幅率 G 2で増幅するが、 閾値 s以下の部分に対応する 増幅率 G 1よりも増幅率 G 2は小さいため、 閾値 s を超える部分は閾値 s以下の部分よりも圧縮される。 これにより、 ピーク電力を確実に低減 することができ、 かつ平均電力の低下は小さいため、 ピーク比が低減さ れる。 なお、 全ての入力振幅を 1以下の増幅率 (一定) で増幅すれば、 出力のピーク電力は低減できるが、 平均電力も同一比率で低下するため、 ピーク比は低減できない。 つまり、 本実施例のように振幅の比較的大き な部分のみを圧縮しなければピーク比を抑制することはできない。 なお、 伸長器 1 4 2における閾値は s X G 1 とし、 閾値を越える部分の増幅率 は G 2の逆数にすれば良い。 第 2図 ( c ) は、 圧縮器 1 0 4における増 幅率の他の一例を示している。 図示するように、 閾値よりも小さな入力 振幅に対して G 1より低い増幅率であれば増幅率を G 3のように連続的 に変化させても同様の効果が得られる。  As shown in (Equation 1), when the input signal X exceeds the threshold value s, the portion exceeding the threshold value s is amplified with the amplification factor G2, but is amplified more than the amplification factor G1 corresponding to the portion below the threshold value s. Since the rate G 2 is small, the part exceeding the threshold s is compressed more than the part below the threshold s. As a result, the peak power can be reliably reduced, and the reduction in the average power is small, so that the peak ratio is reduced. Note that if all input amplitudes are amplified with an amplification factor of 1 or less (constant), the output peak power can be reduced, but the average power also decreases at the same rate, so the peak ratio cannot be reduced. That is, the peak ratio cannot be suppressed unless only a portion having a relatively large amplitude is compressed as in the present embodiment. The threshold value of the decompressor 144 is set to s X G 1, and the amplification factor exceeding the threshold value may be set to the reciprocal of G 2. FIG. 2 (c) shows another example of the amplification factor in the compressor 104. As shown in the figure, the same effect can be obtained by changing the amplification factor continuously as G3 if the amplification factor is lower than G1 for the input amplitude smaller than the threshold value.
(実施例 2 )  (Example 2)
次に、 本発明の他の実施例である通信システムについて実施例 1 と異 なる点を説明する。 上述したように〇 F D M変調信号はキャリアの合成 によりピーク比が高くなる。 しかし、 各キャリアの振幅、 位相の組合せ によってはピーク比が小さい場合もあり、 その場合には圧縮が不要であ るので圧縮を行わない。 そして、 送信信号に信号を圧縮したか否かの情 報を付加して送信し、 受信側ではその情報に従って、 圧縮した信号であ れば伸長器 1 4 2に入力し、 伸長後に〇 F D M復調する。 非圧縮の受信 信号であれば、 伸長器 1 4 2を介さずに〇 F D M復調する。 圧縮した信 号を伸長しても多少の歪みは残ってしまうため、 本実施例のように圧縮 が不要な場合には非圧縮とすることで、 不必要な圧縮を避け、 歪みの発 生を抑制することができる。 それにより、 通信の信頼性を更に向上させ ることができる。 Next, a difference of the communication system according to another embodiment of the present invention from the first embodiment will be described. As described above, the peak ratio of the FDM modulated signal increases due to the combination of carriers. However, depending on the combination of the amplitude and phase of each carrier, the peak ratio may be small. In such a case, no compression is required, and thus no compression is performed. Then, the transmission signal is transmitted with information on whether the signal is compressed or not, and the reception side inputs the compressed signal to the decompressor 142 according to the information, and after decompression, 〇 FDM demodulation I do. If the signal is an uncompressed received signal, FDM demodulation is performed without passing through the expander 144. Compressed message Even if the signal is expanded, some distortion remains, so if compression is not required as in the present embodiment, decompression is used to avoid unnecessary compression and suppress distortion. Can be. Thereby, communication reliability can be further improved.
(実施例 3 )  (Example 3)
続いて、 本発明の他の実施例である通信システムについて、 実施例 1 と異なる点を第 6図を用いて説明する。 第 6図は、 本実施例の O F DM 変調器 1 0 ' 及び〇 F DM復調器 1 4 ' の構成を示している。 図示する ように、 本実施例の O F DM変調器 1 0 ' は、 2つの圧縮^ 1 0 4 a , 1 0 4 bを備えており、 また、 圧縮器 1 0 4 a, 1 0 4 bの後段に直交 変調器 1 0 3が設けられている。 I F F T 1 0 2から出力された複素数 信号は、 実数信号及び虚数信号に分けられて、 実数信号が圧縮器 104a に入力され、 虚数信号が圧縮器 1 04 bに入力される。 圧縮器 1 0 4 a, 1 0 4 bはそれぞれ実数信号及び虚数信号に対して実施例 1 と同様に圧 縮を行う。 圧縮器 1 0 4 a, 1 0 4 bにて圧縮された実数信号及び虚数 信号は、 直交変調器 1 0 3に入力され、 直交変調器 1 0 3は入力された 複素数信号 (実数信号及び虚数信号) を実数信号に変換する。 このよう に、 圧縮器を実数信号及び虚数信号それぞれに対して設けることにより、 例えば、 実数信号のピーク電力が閾値よりも小さく、 ピーク比も小さい 場合には、 実数信号について圧縮が行われないため、 信号の歪みが生じ ない。 一方、 受信側となる〇 F DM復調器 1 4 ' では、 直交復調器 143 によって得られた複素数信号が実数信号及び虚数信号に分けられて、 そ れぞれ伸長器 1 4 2 a, 1 4 2 bに入力される。 伸長器 1 4 2 aの増幅 率は圧縮器 1 0 4 aの逆変換を行うように設定されており、 伸長器 142b の増幅率は圧縮器 1 0 4 bの逆変換を行うように設定されている。 本実施例によれば、 複素数信号を実数信号及び虚数信号に分けてピー ク比の小さな信号については圧縮を行わないため、 信号の歪みを低減す ることが可能となり、 通信の信頼性を更に向上させることができる。 以上説明した各実施例では、 電力線搬送によってデータ送受信を行う 場合について説明したが、 本発明は電力線搬送以外の通信方法にも適用 可能である。 また、 各実施例では、 マルチキャリア変調方式の例としてNext, a communication system according to another embodiment of the present invention will be described with reference to FIG. 6 while referring to differences from the first embodiment. FIG. 6 shows the configurations of the OFDM modulator 10 'and the FDM demodulator 14' of the present embodiment. As shown in the figure, the OFDM modulator 10 ′ of the present embodiment includes two compressions 1104 a and 104 b, and the compressors 104 a and 104 b have A quadrature modulator 103 is provided at the subsequent stage. The complex signal output from the IFFT 102 is divided into a real signal and an imaginary signal, and the real signal is input to the compressor 104a, and the imaginary signal is input to the compressor 104b. The compressors 104a and 104b compress the real number signal and the imaginary number signal in the same manner as in the first embodiment. The real number signal and the imaginary number signal compressed by the compressors 104a and 104b are input to the quadrature modulator 103. The quadrature modulator 103 receives the input complex number signal (real number signal and imaginary number). Signal) into a real number signal. Thus, by providing a compressor for each of the real number signal and the imaginary number signal, for example, when the peak power of the real number signal is smaller than the threshold and the peak ratio is also small, the compression is not performed on the real number signal. There is no signal distortion. On the other hand, in the 〇 FDM demodulator 14 ′ on the receiving side, the complex signal obtained by the quadrature demodulator 143 is divided into a real signal and an imaginary signal, and the decompressors 14 2 a and 14 2 Entered in b. The amplification factor of the decompressor 142a is set to perform the inverse conversion of the compressor 104a, and the amplification factor of the decompressor 142b is set to perform the inverse conversion of the compressor 104b. ing. According to the present embodiment, since a complex signal is divided into a real signal and an imaginary signal, and a signal having a small peak ratio is not compressed, signal distortion can be reduced, and communication reliability can be further improved. Can be improved. In each of the embodiments described above, the case where data transmission / reception is performed by power line carrier has been described. However, the present invention is applicable to communication methods other than power line carrier. Also, in each embodiment, as an example of the multi-carrier modulation method,
O F D M方式について説明したが、 本発明は O F D M方式以外のマルチ キヤリァ変調方式にも適用可能である。 産業上の利用可能性 Although the OFDM system has been described, the present invention is also applicable to a multi-carrier modulation system other than the OFDM system. Industrial applicability
本発明は、 O F D M方式のようなマルチキャリア変調方式により通信 を行う通信システムに適用できる。 この適用により、 通信速度を低下さ せることなく、 ピーク比を低減することができる。  INDUSTRIAL APPLICABILITY The present invention can be applied to a communication system that performs communication using a multicarrier modulation scheme such as the OFDM scheme. With this application, the peak ratio can be reduced without lowering the communication speed.

Claims

請 求 の 範 囲 The scope of the claims
1 .送信データにより変調された複数の搬送波を合成して得られた変調 信号を入力し、 予め設定された閾値以下の信号に対する第 1増幅率と、 前記第 1増幅率よりも小さな値が設定された前記閾値を超える信号に対 する第 2増幅率とによって前記変調信号を増幅する圧縮器と、 前記圧縮 器の出力信号に基づいて得られた送信信号を送信する送信手段とを備え たことを特徴とする通信装置。  1.A modulated signal obtained by combining a plurality of carriers modulated by transmission data is input, and a first amplification factor for a signal equal to or less than a preset threshold value and a value smaller than the first amplification factor are set. A compressor for amplifying the modulated signal with a second amplification factor for a signal exceeding the threshold value, and a transmitting unit for transmitting a transmission signal obtained based on an output signal of the compressor. A communication device characterized by the above-mentioned.
2 .前記閾値は、 前記変調信号の振幅の平均値に対して 1 〜 3倍の範囲 内の値が設定されることを特徴とする請求項 1記載の通信装置。  2. The communication device according to claim 1, wherein the threshold value is set to a value within a range of 1 to 3 times an average value of the amplitude of the modulation signal.
3 .前記第 1増幅率は、 前記第 2増幅率の 1 0倍以下の値であることを 特徴とする請求項 1記載の通信装置。  3. The communication device according to claim 1, wherein the first amplification factor is a value equal to or less than 10 times the second amplification factor.
4 .前記変調信号は、 直交周波数多重分割方式によつて得られた変調信 号であることを特徴とする請求項 1記載の通信装置。  4. The communication device according to claim 1, wherein the modulation signal is a modulation signal obtained by an orthogonal frequency division multiplexing scheme.
5 .送信データにより変調された複数の搬送波を合成して得られた変調 信号を入力し、 予め設定された閾値以下の信号に対する第 1増幅率と、 前記第 1増幅率よりも小さな値が設定された前記閾値を超える信号に対 する第 2増幅率とによって前記変調信号を増幅する圧縮器、 及び前記圧 縮器の出力信号に基づいて得られた送信信号を送信する送信手段を有す る第 1通信装置と、  5.Input a modulated signal obtained by combining a plurality of carriers modulated by transmission data, and set a first amplification factor for a signal below a preset threshold value and a value smaller than the first amplification factor. A compressor that amplifies the modulated signal with a second amplification factor for a signal exceeding the threshold value, and a transmitting unit that transmits a transmission signal obtained based on an output signal of the compressor. A first communication device;
前記送信手段によって送信された送信信号を受信する受信手段、 及び 前記圧縮器における前記変調信号の増幅とは逆変換となるように前記受 信手段にて受信'した信号を増幅する伸長器を有する第 2通信装置と、 を備えたことを特徴とする通信システム。  A receiving unit that receives the transmission signal transmitted by the transmitting unit; and an expander that amplifies the signal received by the receiving unit so as to perform a reverse conversion to the amplification of the modulation signal in the compressor. A communication system, comprising: a second communication device.
6 .前記伸長器は、 前記閾値に前記第 1増幅率をかけた値以下の信号に 対して前記第 1増幅率の逆数にて増幅を行い、 前記閾値に前記第 1増幅 率をかけた値を超える信号に対して前記第 2増幅率の逆数にて増幅を行 うことを特徴とする請求項 5記載の通信システム。 6. The expander amplifies a signal equal to or less than a value obtained by multiplying the threshold by the first amplification by an inverse of the first amplification, and sets the threshold to the first amplification. 6. The communication system according to claim 5, wherein amplification is performed on a signal exceeding the value obtained by multiplying the signal by a reciprocal of the second amplification factor.
7 .前記閾値は、 前記変調信号の振幅の平均値に対して 1 〜 3倍の範囲 内の値が設定されることを特徴とする請求項 5記載の通信システム。 7. The communication system according to claim 5, wherein the threshold value is set to a value within a range of 1 to 3 times an average value of the amplitude of the modulation signal.
8 .前記第 1増幅率は、 前記第 2増幅率.の 1 0倍以下の値であることを 特徴とする請求項 5記載の通信システム。 8. The communication system according to claim 5, wherein the first amplification factor is a value equal to or less than 10 times the second amplification factor.
9 .前記変調信号は、 直交周波数多重分割方式によって得られた変調信 号であることを特徴とする請求項 5記載の通信装置。  9. The communication device according to claim 5, wherein the modulated signal is a modulated signal obtained by an orthogonal frequency division multiplexing scheme.
1 0 .前記送信手段は、 電力線に送信信号を畳重することによって送信 信号を送信し、 前記受信手段は、 前記電力線に畳重された送信信号を受 信することを特徴とする請求項 5記載の通信システム。  10. The transmission unit transmits a transmission signal by superimposing a transmission signal on a power line, and the reception unit receives the transmission signal superimposed on the power line. A communication system as described.
PCT/JP2001/000065 2001-01-10 2001-01-10 Communication device and communication system using it WO2002056516A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/000065 WO2002056516A1 (en) 2001-01-10 2001-01-10 Communication device and communication system using it
JP2002557054A JP3800176B2 (en) 2001-01-10 2001-01-10 Communication apparatus and communication system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/000065 WO2002056516A1 (en) 2001-01-10 2001-01-10 Communication device and communication system using it

Publications (1)

Publication Number Publication Date
WO2002056516A1 true WO2002056516A1 (en) 2002-07-18

Family

ID=11736895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000065 WO2002056516A1 (en) 2001-01-10 2001-01-10 Communication device and communication system using it

Country Status (2)

Country Link
JP (1) JP3800176B2 (en)
WO (1) WO2002056516A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509579A (en) * 2003-10-23 2007-04-12 ハリス コーポレイション System and method for reducing peak-to-average power ratio for multi-carrier communication systems
JP2007311988A (en) * 2006-05-17 2007-11-29 Softbank Bb Corp Peak power reduction system and method therefor
JP2013175876A (en) * 2012-02-24 2013-09-05 Icom Inc Communication device and communication method
JP2013201733A (en) * 2012-03-26 2013-10-03 Icom Inc Communication apparatus and communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139679A (en) * 1995-11-16 1997-05-27 N T T Ido Tsushinmo Kk Peak power reduction circuit
EP0917326A1 (en) * 1997-11-14 1999-05-19 Itis Reduction of the peak to average power ration in multicarrier systems
EP0940911A1 (en) * 1998-03-05 1999-09-08 Lucent Technologies Inc. Method and apparatus for tailored distortion of a signal prior to amplification
JP2000077953A (en) * 1998-08-31 2000-03-14 Kokusai Electric Co Ltd High frequency amplifier and feed forward distortion compensating amplifier
JP2000115123A (en) * 1998-08-07 2000-04-21 Nippon Telegr & Teleph Corp <Ntt> Distortion compensation circuit for ofdm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139679A (en) * 1995-11-16 1997-05-27 N T T Ido Tsushinmo Kk Peak power reduction circuit
EP0917326A1 (en) * 1997-11-14 1999-05-19 Itis Reduction of the peak to average power ration in multicarrier systems
EP0940911A1 (en) * 1998-03-05 1999-09-08 Lucent Technologies Inc. Method and apparatus for tailored distortion of a signal prior to amplification
JP2000115123A (en) * 1998-08-07 2000-04-21 Nippon Telegr & Teleph Corp <Ntt> Distortion compensation circuit for ofdm
JP2000077953A (en) * 1998-08-31 2000-03-14 Kokusai Electric Co Ltd High frequency amplifier and feed forward distortion compensating amplifier

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509579A (en) * 2003-10-23 2007-04-12 ハリス コーポレイション System and method for reducing peak-to-average power ratio for multi-carrier communication systems
US7639747B2 (en) 2003-10-23 2009-12-29 Harris Corporation System and method for reducing peak-to-average power ratio for multi-carrier communication systems
US7822136B2 (en) 2003-10-23 2010-10-26 Harris Corporation System and method for reducing peak-to-average power ratio for multi-carrier communication systems
US8135081B2 (en) 2003-10-23 2012-03-13 Harris Corporation System and method for reducing peak-to-average power ratio for multi-carrier communication systems
US8442137B2 (en) 2003-10-23 2013-05-14 Harris Corporation System and method for reducing peak-to-average power ratio for multi-carrier communication systems
JP2007311988A (en) * 2006-05-17 2007-11-29 Softbank Bb Corp Peak power reduction system and method therefor
JP4629611B2 (en) * 2006-05-17 2011-02-09 ソフトバンクBb株式会社 Peak power reduction system and method
JP2013175876A (en) * 2012-02-24 2013-09-05 Icom Inc Communication device and communication method
US8995566B2 (en) 2012-02-24 2015-03-31 Icom Incorporated Communication apparatus and communication method
JP2013201733A (en) * 2012-03-26 2013-10-03 Icom Inc Communication apparatus and communication method

Also Published As

Publication number Publication date
JP3800176B2 (en) 2006-07-26
JPWO2002056516A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US7733976B2 (en) Computational circuits and methods for processing modulated signals having non-constant envelopes
JP3957323B2 (en) Filter for multi-carrier communication system and peak power control method
US5696794A (en) Method and apparatus for conditioning digitally modulated signals using channel symbol adjustment
EP0836303A2 (en) Reduction of peak to average power ratio in MCM systems
JP4968331B2 (en) Peak suppression method
KR20160107239A (en) Combined amplitude-time modulation and phase modulation
US20060126748A1 (en) Method for reducing peak-to-average power ratio of multi-carrier modulation
JP4978942B2 (en) Wireless communication system
JP2004104162A (en) Amplitude limit apparatus
US8010063B2 (en) Signal enhancement in RF transmitters employing non-linear filtering
US7864874B2 (en) OFDM communications system employing crest factor reduction with ISI control
KR100705443B1 (en) A digital clipping method for transmitter of orthogonal frequency division multiple access system
JP2007528624A (en) Transmitter
JP2002044054A (en) Combination carrier transmission circuit with limiter circuit
JP3800176B2 (en) Communication apparatus and communication system using the same
JPH0918536A (en) Modulation amplification system
JPH11275044A (en) Ofdm signal transmitter
JPH11289312A (en) Multicarrier radio communication device
JP2003249910A (en) Signal receiving method, communication method and communication equipment
JP7035913B2 (en) Peak suppression circuit, peak suppression method, and transmitter
KR101084550B1 (en) PAPR reducing method, PAPR reducing apparatus, transmitter, and receiver
JP3087627B2 (en) Demodulator
CN111435929B (en) Peak clipping processing method and device based on RAPP curve compression and OFDM transmitter
CN107426127B (en) Peak-to-average power ratio adjusting method and terminal
CN107046406B (en) Outphasing amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002557054

Country of ref document: JP

122 Ep: pct application non-entry in european phase