WO2002052029A1 - Process for producing recombinant protein and fused protein - Google Patents

Process for producing recombinant protein and fused protein Download PDF

Info

Publication number
WO2002052029A1
WO2002052029A1 PCT/JP2001/011438 JP0111438W WO02052029A1 WO 2002052029 A1 WO2002052029 A1 WO 2002052029A1 JP 0111438 W JP0111438 W JP 0111438W WO 02052029 A1 WO02052029 A1 WO 02052029A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
fusion protein
target protein
producing
target
Prior art date
Application number
PCT/JP2001/011438
Other languages
French (fr)
Japanese (ja)
Other versions
WO2002052029A9 (en
Inventor
Masahiro Furutani
Junichi Hata
Akiko Togi
Original Assignee
Sekisui Chemical Co., Ltd.
Marine Biotechnology Institute Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd., Marine Biotechnology Institute Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to US10/451,883 priority Critical patent/US7276355B2/en
Priority to JP2002553508A priority patent/JP4038555B2/en
Priority to KR1020037008657A priority patent/KR100892889B1/en
Priority to AU2002217505A priority patent/AU2002217505B2/en
Priority to AT01272326T priority patent/ATE463580T1/en
Priority to EP01272326A priority patent/EP1354959B1/en
Priority to CA002432716A priority patent/CA2432716A1/en
Priority to DE60141769T priority patent/DE60141769D1/en
Publication of WO2002052029A1 publication Critical patent/WO2002052029A1/en
Publication of WO2002052029A9 publication Critical patent/WO2002052029A9/en
Priority to US11/837,795 priority patent/US7608424B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/35Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones

Definitions

  • the present invention relates to a method for producing a recombinant protein and a fusion protein.
  • the present invention enables the production of a protein that has been difficult to synthesize as an active protein in the expression of a recombinant protein in a host system or in the expression of a protein in a cell-free translation system.
  • the present invention relates to a novel protein production method and a fusion protein for realizing protein synthesis and purification. Background art
  • the solution can be, for example, daltathione-S-transferase (GST) (Smith, DB, eta 1.., 1988, Gene 6.7, 31.40) , Thioredoxin (LaVallie, ER etal., 1993, Bio / echechnology 11, 187-18), maltose-binding protein (Guan, C., eta1., Gene 67, 21-1-30), etc., but a method of expressing it as a fusion protein has been used, but the formation of inclusion bodies was rarely eliminated with high efficiency.
  • GST daltathione-S-transferase
  • Thioredoxin LaVallie, ER etal., 1993, Bio / echechnology 11, 187-18
  • maltose-binding protein Guan, C., eta1., Gene 67, 21-1-30
  • a method of co-expressing a target protein with a molecular chaperone which is a group of proteins that support the protein folding reaction, to increase the expression level of the target protein in a soluble fraction (Nishiharaeta 1.1998, Apply) Environ. Microbiol., 6 4, 16 9 4-16 9 9), but the current situation is that the amount of active protein has not been increased dramatically.
  • the present invention provides a method for reliably transforming a target protein into a fusion protein with a shanin nin subunit, that is, about 60 kDa molecular chaperone, heat shock protein 60 kDa, or a thermosome.
  • a shanin nin subunit that is, about 60 kDa molecular chaperone, heat shock protein 60 kDa, or a thermosome.
  • the present invention transcribes and translates a gene containing a gene encoding a spermulin ninsubunit and a gene encoding a target protein, and links the target protein to the sharonin subunit via a peptide bond.
  • a method for producing a protein comprising synthesizing a fusion protein.
  • the fusion protein is composed of 1 to 20 linked mouth ninsubunits linked to each other, the N-terminal of the linked mouth ninth subunit, the C-terminus of the linked mouth ninsubut, or It preferably comprises a target protein linked via a peptide bond to the junction between the oral nin subunits.
  • the gene containing the gene encoding the ninja ninsubunit and the gene containing the gene encoding the target protein are used in two different plasmids capable of coexisting and replicating in the same host. May be introduced and co-expressed in the same host, or may encode only the gene encoding the Shanin subunit and the gene containing the gene encoding the target protein, and encode only the Shanin mouth
  • the gene may be introduced into two different plasmids capable of coexisting and replicating in the same host, and co-expressed in the same host.
  • the above-mentioned fusion protein is preferably one in which the target protein is stored inside the Shako Nin ring in a state of being linked to the Shako Nin subunit via a peptide bond.
  • the chaperonin ring may form a two-layer structure non-covalently associated via a ring surface, or a non-covalently linked fibrous structure via a ring surface or a side surface thereof. May be formed.
  • a step of providing a cleavage sequence for a limited-degradable protease at the junction between the ninth subunit and the target protein, and cleaving the target protein from the fusion protein using the limited-degradable protease may be.
  • a method may be provided in which a methionine residue is provided at the junction between the ninnin subunit and the target protein, and the target protein is cleaved from the fusion protein by CNBr.
  • bacteria in the present invention, bacteria, archaea, eukaryotes, and the like can be mentioned as organisms from which Shanin ninth is derived.
  • the fusion protein may be synthesized in any host of bacteria, yeast, animal cells, plant cells, insect cells, animal individuals, plant individuals, or insect individuals, or a cell-free translation system. May be used to synthesize the fusion protein.
  • the gene encoding the target protein is preferably a partial gene encoding an amino acid sequence of 6 or more residues of mammalian-derived cDNA or mammalian-derived cDNA.
  • the target protein may be a heavy chain of a mammal-derived antibody, a light chain of a mammal-derived antibody, or a full-length FV region single-chain antibody of a mammal-derived antibody, or six or more residues thereof.
  • Partial proteins viral antigens, seven-transmembrane receptor proteins, and site proteins.
  • a fusion protein consisting of a spore opening ninsubunit and a target protein, wherein the target protein is linked to the sway opening subunit via a peptide bond, and a
  • a fusion protein stored inside is obtained.
  • the obtained fusion protein is also one of the present invention.
  • the shaved mouth ring may form a two-layer structure non-covalently associated via a ring surface, or a fibrous non-covalently connected ring surface or a side surface thereof.
  • a structure may be formed.
  • FIG. 1 is a diagram schematically showing the three-dimensional structure of Escherichia coli Shaguchinin (GroEL).
  • Fig. 2 is a diagram showing an example of the design of a fusion protein consisting of archaeonin derived from archaea having 8 subunits and a target protein.
  • FIG. 5 is a diagram showing the results of observation of a TCP 3 linked product by a transmission electron microscope.
  • FIG. 6 is a diagram showing the results of Western blotting in Example 5 c
  • FIG. 7 is a diagram showing the results of Western plotting in Example 7 c
  • FIG. 9 is a diagram showing the results of SDS-PAGE performed on the soluble fraction of Escherichia coli expressing the Escherichia coli Shaguchinin GroEL conjugate in Example 8. Detailed Disclosure of the Invention
  • the target protein and the gene encoding the target protein are used by using a gene containing the gene encoding the target protein and the gene containing the gene encoding the target protein (hereinafter, also referred to as a gene encoding the fusion protein).
  • a gene encoding the fusion protein produced by using a gene containing the gene encoding the target protein and the gene containing the gene encoding the target protein (hereinafter, also referred to as a gene encoding the fusion protein).
  • molecular chaperones When the cell is subjected to stress such as heat shock, it exerts support on protein folding in the presence or absence of ATP, an energy substance, and contributes to structural stability. In general, the expression of a group of proteins called molecular chaperones is induced.
  • molecular chaperones those whose subunits have a molecular weight of about 6 kDa are bacteria, archaea, and eukaryotes. It is present in all living organisms and has functions of supporting protein folding and preventing degeneration.
  • Shanin is composed of 14 to 18 subunits and has a three-dimensional structure consisting of two layers of rings (hereinafter, the ring is referred to as the Shanin ring). It has a cavity (cavity) with a height of 5 nm and a height of 14.5 nm (see Fig. 1).
  • the cavities of the further Ninring have enough space for one 60 kDa spherical protein.
  • This protein has the function of temporarily storing folding intermediates and denatured proteins of various proteins in this cavity. When a quality fold is formed, it releases the stored protein from the cavity, coupled with ATP degradation.
  • Bacterial and archaeal shadinin can be easily mass-produced in the cytoplasmic soluble fraction of E. coli while maintaining the ring structure. This suggests that various Shanins of different origins also self-assemble in Escherichia coli and take a two-layered ring structure of 14 to 18 mer.
  • the N-terminal and C-terminal of Shahkonin's subunit are both located on the cavity side, resulting in a highly flexible structure.
  • at least the 20-amino acid at the C-terminus shows a highly flexible structure (George et al., 2000, Cell, 100, p. 561-573).
  • the chaperone used in the present invention is not particularly limited, and any of bacteria, archaebacteria, and eukaryotes can be used.
  • not only wild-type but also amino acid mutants can be used as long as the ability of self-assembly of Shahkonin to the ring structure is maintained. For example, when a mutant having a reduced association power of each subunit of Shaguchinin is used, it is easier to recover the stored target protein.
  • the protein of interest in the present invention is not particularly limited, and all disease-related gene products derived from higher animals such as humans and mice and a group of enzymes effective for chemical processes can be the protein of interest.
  • hepatitis B virus Proteins viral antigens
  • viral antigens such as coat proteins, core proteins, proteases, reverse transcriptase, integrase, etc., encoded by pathogenic virus genomes such as hepatitis C virus, HIV, and influenza
  • Chain light chain of mammal-derived antibody, full length of FV region single-chain antibody (sc FV) of mammal-derived antibody, or partial protein of 6 or more residues thereof, Fab, (Fab) 2, and Therapeutic antibody that is a complete antibody type; diagnostic antibody; seven-transmembrane receptor (G protein-coupled receptor); platelet growth factor, blood stem cell growth factor, hepatocyte growth factor, transformin Growth factors, nerve growth.
  • G protein-coupled receptor seven-transmembrane receptor
  • Nutrition factors such as insulin-like growth factor; tumor death factors, interferon, interleukin, erythropoietin, granulocyte colony stimulating factor, macrophage ⁇ colony stimulating factor, Site power-ins such as albumin and human growth hormone I can do it.
  • Shachinin differs depending on the organism and tissue. In the case of bacteria, mitochondria and chloroplasts, the number of subunits constituting the spheronin ring is 7, whereas in the case of eukaryotic cytoplasm and archaea, the number of subunits is large. Is 8-9.
  • the ratio of the number of the shark nin subunit to the target protein in the fusion protein it is preferable to select the ratio of the number of the shark nin subunit to the target protein in the fusion protein according to the origin of the shark nin used.
  • the ratio of the number of syrup mouth subunits to the number of target proteins can range from 1: 1 to 12: 1, but is preferably 1: 1 to 9: 1. is there. If the number of spore nin subunits per one target protein exceeds 9, it becomes difficult to form spheronin rings.
  • the number of porcine nin subunits is 1: 1 or 7: 1 due to the lack of formation of the ring structure of the porcine nin.
  • the number of target proteins is 1: 1 or 7: 1 due to the lack of formation of the ring structure of the porcine nin.
  • archaeal shanin which comprises eight subunits to form the shanin ring, it is difficult to form a shaunyun ring structure.
  • Ninsubunit number: Target Protein number is preferably 1: 1, 2: 1, 4: 1 or 8: 1. However, depending on the shape and molecular weight of the target protein, a number ratio other than the above may be appropriate.
  • Escherichia coli-derived protein when Escherichia coli-derived protein is used, even if it is a fusion protein in which the ratio of the number of protein subunits to the number of target proteins is 3: 1, two or three molecules of these proteins associate with each other.
  • a ring structure may be formed.
  • the number of sshaguchi nin subunits and the number of target proteins are 2: 1.
  • the protein four expressed fusion proteins assemble to form a shaking ring.
  • Number of Shain nin subunits In a fusion protein with a target protein number of 4: 1, two expressed fusion proteins are assembled to form Shain nin rings.
  • the above purpose In order to avoid the risk that the protein is exposed to the host cytoplasm, it is preferable that there are two or more capronin subunits per target protein.
  • Shapaguchinin not only provides a space separated from the external environment for the target protein, but also has a protein folding function, so that the target protein can be normally folded and its structure is stable. It can also be converted.
  • the protein folding reaction of chaperonin is performed with a single polypeptide, the substrate protein:
  • a fusion protein such that one target protein is stored in sharonin ring or shanin.
  • the target protein it can be folded normally even if two or more molecules are stored.
  • the linking pattern between the scharinin subunit and the target protein includes the N-terminal, C-terminal, or scherfet of the spheronin subunit so that the target protein fits within the cavity of the scharinin. ⁇ It is preferable to arrange the target protein at the junction between the oral nin subunits. At this time, it is preferable that the chaperonin subunit forms a linked body in which 1 to 20 subunits are linked.
  • FIG. 2 shows an example of a fusion protein design using archaeal chaperonin, which has eight submits.
  • the target protein expressed as a fusion protein is stored inside the cavity of the Sharp Nin Ring, it is protected from the in vivo environment and is less likely to be digested by the protease.
  • the scallop nin ring further associates to form a non-covalently associated two-layer structure via the ring face.
  • the target protein has the property of inhibiting important natural mechanisms for the host, since the target protein is separated from the in-vivo environment by Shaun-Yunning, it may interfere with the host's physiological mechanism. No effect is exhibited.
  • a large number of protein folding intermediates which are observed when expression is induced by a strong promoter, do not associate with each other. Therefore, expression using a host and inclusion body formation seen in a cell-free translation system can be suppressed.
  • shadinin is synthesized into a soluble fraction such as host cytoplasm or body fluid, even if the protein stored inside the shrinin ring is a membrane-bound or transmembrane protein, it is transferred to the membrane. It does not disrupt the host's membrane structure and does not exhibit host toxicity.
  • any protein is stored in the same chaperoning ring, it can be purified as a fusion protein under the same purification conditions.
  • the target protein is toxic to the host, storage in the shaved mouth ring is promoted, and high expression of the target protein can be achieved. Even if the fusion protein forms a fibrous structure, it is dissociated for each two-layered ring structure by diluting and reducing the protein concentration, so that the target protein can be recovered.
  • a gene encoding a fusion protein is prepared using a general genetic engineering technique such as a method using a restriction enzyme or a method using PCR, and an expression vector into which the gene has been introduced is used.
  • the fusion protein can be synthesized in the host.
  • a mammalian-derived cDNA or a partial gene encoding an amino acid sequence of 6 or more residues thereof is suitably used.
  • the host is not particularly limited.
  • bacteria such as Escherichia coli, other prokaryotic cells, yeast, insect cells, animal cells such as mammalian cultured cells, plant cells such as plant cultured cells, animal individuals, and plant individuals And insect individuals.
  • culture Bacteria or yeast is preferred in terms of low cost, short culture days, simple culturing operation, and the like.
  • a cell-free translation system using bacteria, eukaryotic extracts, etc. Spirin, AS, 1991, Science 11, 26561-6266: F alcone, D. eta 1.
  • the fusion protein of the present invention can also be synthesized as a soluble protein by the method of 1991, Mo 1. Cell. Biol. 11, 1, 566-26664).
  • the expression plasmid in Escherichia coli and the like, when the expression plasmid exceeds 10 kbp, the copy number decreases, and as a result, the synthesis amount of the target protein may decrease.
  • the expression plasmid in the case of producing a fusion protein in which eight Siaguchi ninth subunits are linked, the expression plasmid is 15 kbp or more.
  • the gene encoding the fusion protein is introduced into each of two different plasmids that can coexist and replicate in the same host, and expressed by co-expression in the same host.
  • the gene encoding the fusion protein and the gene encoding only the ninja ninsubunit are introduced into two different plasmids which can coexist and replicate in the same host. Alternatively, they may be co-expressed in the same host.
  • a gene encoding a fusion protein and a gene encoding only a ninnin subunit are introduced into two types of binders having different drug resistance and replication regions, respectively, and are shared in the presence of two types of drugs. The expression can control the structure of Shanin.
  • a vector containing only one or two to four Siaguchi nin subunits is used.
  • this method is effective for increasing the expression level, since the enlargement of the plasmid may lead to a decrease in the copy number of the plasmid and the expression level may decrease.
  • the fusion protein gene of the present invention may be introduced into the host chromosome to express the fusion protein without being introduced into the host organism using a vector such as a plasmid.
  • a vector such as a plasmid.
  • expression of a promoter, a ribosome binding site, a target gene, a terminator, a drug resistance gene, etc. is performed using a site-specific recombination function of lampada integrase in a host that expresses lampada integrase. It is possible to introduce the unit gene into the chromosome (Olson, P. eta 1., 1998, ⁇ rotein ⁇ ⁇ ⁇ r. Purif. 14, 160-166).
  • yeast for example, by homologous recombination using the downstream and upstream sequences of alcohol dextrogenase (AOX) of a methanol-assimilating yeast, the expression unit gene of the target protein including the AOX promoter sequence and the terminator 1 can be obtained.
  • AOX alcohol dextrogenase
  • the expression level can be increased by introducing a plurality of linked expression unit genes into a chromosome.
  • the expression of a fusion protein having a large molecular weight as in the present invention is stabilized without a decrease in copy number as the size increases, as in the case of using a plasmid. It is possible to do.
  • the transcribed mRNA is degraded by a specific ribonuclease, and the translated fusion protein is degraded by a protease. May be cut off in two stages.
  • E. coli is used as a host
  • mRNA degradation can be suppressed by using a host deficient in the RNase E gene, a ribonuclease involved in mRNA degradation (G runberg-Manago). , M., 1999, Annu.Rev.Gev., 33, 193-227).
  • the protein After recovering the precipitated protein, the protein is dissolved in an appropriate buffer, and the fraction containing the fusion protein is recovered by hydrophobic chromatography or ion exchange chromatography. After concentrating the recovered fusion protein solution by ultrafiltration, the obtained concentrated solution is treated with about 5 to 50 mM of magnesium chloride and about 50 to 300 mM of sodium chloride or chloride medium.
  • the fusion protein can be purified by performing gel filtration using the contained buffer as a developing solution and collecting the peak immediately after the exclusion limit.
  • the fusion protein When a tag comprising 6 to 10 histidines is linked to the N-terminal or C-terminal of the fusion protein, the fusion protein can be easily and efficiently recovered using a metal chelate column such as nickel. It can be carried out.
  • the antibody can be purified quickly and easily by immunoprecipitation or affinity mouth chromatography using an antibody against scharinin or scharonin subunit used.
  • the morphology of the fusion protein can be observed with a transmission electron microscope, and when the target protein is stored inside the chaperonin ring, the outer diameter is 1 It is possible to observe a ring structure peculiar to Shanin's mouth of about 4 to 16 nm.
  • the association between subunits is stabilized by magnesium ions and ATP. Therefore, when the ring structure of the fusion protein is unstable, it is possible to efficiently recover the fusion protein having the ring structure by allowing magnesium and ATP to be present in the purification process. Meanwhile, get When only the target protein is separated from the obtained fusion protein, the fraction of the fusion protein collected as described above is treated with EDTA (ethylenediaminetetraacetic acid), and then treated with a buffer containing no magnesium or ATP. Dialysis is performed to remove magnesium and ATP. As a result, the interaction between the lip mouth subunits is released, and the tertiary structure of the lip mouth is muddy, exposing the target protein.
  • EDTA ethylenediaminetetraacetic acid
  • the cleavage sequences of limited proteases such as thrombin, enterokinase, and activated blood coagulation factor 1 ° C are linked to the junction between the ninja ninsubunit and the target protein, and to the ninja subnin subunit.
  • limited proteases such as thrombin, enterokinase, and activated blood coagulation factor 1 ° C are linked to the junction between the ninja ninsubunit and the target protein, and to the ninja subnin subunit.
  • high-purity target protein After dialysis, high-purity target protein can be easily recovered by subjecting it to ion exchange chromatography, hydrophobic chromatography, or affinity chromatography using an antibody.
  • the target protein does not have a methionine residue
  • the target protein is easily cut out from the spheroid by CNB r by allowing the methionine residue to be present at the junction between the chaperonin subunit and the target protein, Can be released.
  • the fusion protein does not necessarily need to be purified uniformly.After subjecting the crudely purified sample to EDTA treatment, protease is allowed to act, and the purification procedure is performed according to the target protein. Good. If methionine is not present in the target protein and methionine is present between the chaperonin sap unit and the target protein, the cinnamon ninsubette and the target protein are converted to C N
  • the target protein When the target protein is a membrane-bound protein or a transmembrane protein, the target protein may be insolubilized by separating the target protein from the ninnin unit, but in this case, only the insoluble material is removed. After recovery by centrifugation, if a non-ionic surfactant with a hydrophobic alkyl chain length of about octyl (8 carbon atoms) to dodecyl (12 carbon atoms) is used, the micelle diameter will be almost It is easy to solubilize according to its thickness. Examples of such a nonionic surfactant include ⁇ -otatildanorecoside, Triton X-100, Nonidet P-40, Tween 20, and the like.
  • the present invention expression of toxicity of a target protein to a host, degradation by a protease, and formation of an inclusion body are ensured by assembling the target protein as a fusion protein with a porcine nin in the cavity of the spheronin ring. By solving this problem, it can be expressed in large amounts as a soluble protein. Further, purification can be performed efficiently.
  • the Shanin nin iS subunit (TCP) 3 gene shown in SEQ ID NO: 1 was cloned by PCR (Po1 ym erase chain reaction) using Thermococcus KS-1 strain genome as type III.
  • An expression vector with a 7 promoter into which a gene fragment in which the TCP ⁇ gene is linked one, two, three and four times in one direction! ) We constructed ETD (TCP J3) ⁇ ( ⁇ is 1 to 4) (Fig. 3).
  • Each expression vector was introduced into Escherichia coli BL21 (DE3) strain, and XY.
  • the cell extract was subjected to heat treatment at 75 ° C for 30 minutes at a protein concentration of 5 mgZmL to denature and precipitate most of the E. coli-derived proteins.
  • the supernatant was recovered by centrifugation and applied to a nickel chelate Sepharose column. 1 After thoroughly washing the column with 50 mM Na-phosphate buffer (pH 7.0) containing OmM imidazole, transfer to nickel-chelated sepharose with the same buffer containing 500 mM imidazole. The adsorbed fraction was eluted. As a result of confirming the eluted fraction by SDS-PAGE, it was found that TCP i3 dimer and TCP tetramer were recovered.
  • the obtained fraction was dialyzed against 2 5mM T ris- HC 1 buffer containing 5mM Mg C 1 2 (p H 7. 5), the internal dialysate T SKg el S uper Q- 5 PW column Separation was performed by anion exchange chromatography using a Toso (manufactured by Toso), and the TCP ⁇ dimer and TC TC ⁇ tetramer were uniformly purified.
  • HBs antigen hepatitis B virus surface antigen (HBs antigen) gene shown in SEQ ID NO: 2
  • a SpeI site was set at the 5 'end and an HpaI site was set at the 3' end by PCR.
  • An expression vector pETDH (TCP J3) 4 ⁇ HBs was constructed. After transforming the BL21 (DE3) strain with this vector, a fusion protein was synthesized under the same conditions as in Example 1.
  • HBs antigen is expressed in the soluble fraction of Escherichia coli as a fusion protein with the TCP] 34-mer.
  • the soluble fraction and the precipitated fraction of Escherichia coli were negative by the same Western plotting. (Purification of recombinant HB s antigen)
  • the fusion protein was recovered by nickel chelate column after removal of the imidazole by dialysis, ⁇ by TSKg el S uper Q- 5 PW column Ru using the eluent containing 5 mM Mg C 1 2 -
  • 34mer and the HBs antigen was purified by on-exchange chromatography. Also, The presence of HBs antigen was confirmed by Western plotting using an anti-HBs antigen polyclonal antibody. Observation of the obtained fusion protein with a transmission electron microscope revealed that it had formed a ring structure unique to Shadinin. This suggested that two molecules of the fusion protein were assembled to form a ring structure.
  • the collected fraction was incubated in the presence of ImM EDTA-2 Na (ethylenediaminetetraacetate), treated with PreScissionprotease (Amersham-Pharmacia Biotech) at 4 ° C. In—incubated day and night. The resulting insolubles were recovered by centrifugation and then dissolved in 1.0%; 3-octyldarcoside.
  • the HB s antigen in the obtained lysate was detected by an EIA kit for measurement of HB s antigen, "Enzygnost-1 HB s Ag monoc 1 onal" (manufactured by Hoechst-Bering GmbH).
  • HBsAg can be expressed in large amounts by forming and storing the HBsAg inside the cavity.However, with the fusion protein alone, it is difficult to form a ring structure due to steric hindrance. It is considered that the expression was suppressed. According to the expression method of this example, it was estimated that about 70 mg of HBs antigen was expressed in the soluble fraction per 1 L of E. coli culture solution. The expression level of the expression method of this example was higher than that of the fusion protein synthesis of TCP tetramer and HBs antigen (Example 3).
  • HCV c antigen hepatitis C virus core antigen gene shown in SEQ ID NO: 3
  • a SpeI site was set at the 5 'end and an HpaI site was set at the 3' end by PCR.
  • TCP p ETDH
  • TCP beta 4 expression vectors for the synthesis of a fusion protein with dimer and HCV c antigen ⁇ ETDH (TCP) 3) 4-HCV c was constructed. After transforming the BL21 (DE3) strain with this vector, a fusion protein was synthesized under the same conditions as in Example 1. After separating the soluble fraction of the E.
  • HCVc antigen was expressed in the soluble fraction of Escherichia coli as a fusion protein with the TCP tetramer.
  • the precipitated fraction of Escherichia coli was positive by the same Western plotting, but the soluble fraction was negative.
  • the fusion protein was purified using a nickel chelate column and a TSKgel Super Q_5 PW column in the same manner as in Example 3.
  • the collected fraction was incubated in the presence of ImM EDTA-2Na, and then dialyzed against a 50 mM K-phosphate buffer (pH 7.0). During dialysis, Prescissionprotease (Amersham 'Pharmacia' Biotech) was allowed to act on it overnight, followed by incubating overnight at 4 ° C. Thereafter, the reaction solution was fractionated by a T SKgel Super Q-5 PW column.
  • HCV c antigen-positive fraction Analysis of the detected HCV c antigen-positive fraction by SDS-PAGE revealed that almost uniform HCV c antigen of approximately 22 kDa was purified. From the above, it was found that the recombinant HCV c antigen can be excised from Shanin by a limited protease. Further, it was estimated that about 80 mg of HCV c antigen was expressed in the soluble fraction per 1 L of E. coli culture by the expression method of this example. [Example 6]
  • the DNA was transferred to a blotting membrane and subjected to Western plotting using an anti-6HIs monoclonal antibody, an antibody that recognizes six histidine residues.
  • a positive band corresponding to the size (about 265 KDa) was detected in the E. coli extract in which the fusion protein was synthesized, while the E. coli extract in which only the monomer was expressed was negative.
  • Hsc FV was expressed in the soluble fraction of Escherichia coli as a fusion protein with the TCP ⁇ tetramer.
  • the precipitated fraction of E. coli was positive by the same Western plotting, but the soluble fraction was negative.
  • Hsc FV Hsc FV alone are expressed as inclusion bodies. However, it was found that it can be expressed in the soluble fraction as a fusion protein with the Shaman nin subunit tetramer. Also, it was estimated that about 75 mg of Hsc FV was expressed in the soluble fraction per 1 L of E. coli culture by the expression method of this example.
  • the Escherichia coli Shaguchinin GroEL gene shown in SEQ ID NO: 6 was cloned by PCR using the Escherichia coli K12 strain genomic as type III.
  • An expression vector pT r (Gro E) n (n is an expression vector having a trc promoter into which a gene fragment in which the Gro EL gene is linked in one direction 1, 2, 3, 4, 5, 6, and 7 times is inserted. 1 to 7) (Fig. 8).
  • Each expression vector was introduced into Escherichia coli BL 21 (DE 3) strain, and 2XY.T.
  • a NheI site was provided at the 5 ′ end and an XhoI site was provided at the 3 ′ end by PCR, and NheI and An expression vector for synthesizing a fusion protein of a GrO EL 7-fold conjugate and INF by introducing it into pTr (GroE) 7 that has been treated with XhoI: pTr (GroE ) 7 ⁇ INF was constructed. After transforming this expression vector into Escherichia coli strain BL21 (DE3), a fusion protein was synthesized under the same conditions as in Example 8.
  • IFN was expressed as a soluble protein when expressed as a fusion protein with the Escherichia coli Gro EL seven-fold conjugate. Salting out of E. coli extract containing pT r (Gro E) 7 'I NF, anion exchange chromatography using DEAE-Sepharose and TSKge 1 Super Q-5 PW columns, and Superose 6 (Amersham) ⁇ The fusion protein was purified by gel filtration using Pharmacia (Biotech). As a result of observing the obtained purified sample with a transmission electron microscope, a ring structure peculiar to Shaguchinin was observed. From the above, it is considered that INF was expressed in the soluble fraction by being stored for each molecule inside the cavities of the Gro EL.
  • a NheI site was set at the 5 'end and a XhoI site at the 3' end by PCR, and NheI and XhoI
  • An expression vector pTr (GroE) 7 which is introduced into the treated pTr (GroE) 7 and synthesizes a fusion protein of 7HT-linked GroEL and 5HT1A.
  • ⁇ 5HT1A was constructed. After transforming this vector into Escherichia coli BL21 (DE3), a fusion protein was synthesized under the same conditions as in Example 8.
  • 5HT1A cannot be expressed alone in Escherichia coli, but can be expressed as a soluble protein by expressing it as a fusion protein with the GroEL seven-fold conjugate.
  • p T r (G ro E) 7 ⁇ Salt extraction Anion exchange chromatography using DEAE-Sepharose and TSK ge 1 Super Q-5 PW "columns, and S
  • the fusion protein was purified by gel filtration using uperose 6 (Amersham 'Pharmacia' Biotech), and the resulting purified sample was observed with a transmission electron microscope, revealing a ring structure unique to Sharpinin. Based on the above, it is considered that 5HT 1A was synthesized into a soluble fraction by being stored in a molecule of the Gro EL for each molecule.
  • HBs antigen was excised from the purified fusion protein using PreScissionprotease in the same manner as in Example 3, and then the insoluble HBs antigen was solubilized by octyldarcoside by centrifugation. After subjecting this sample to SDS-PAGE and performing Western plotting with an anti-HBs antigen polyclonal antibody, a band of about 25 KDa corresponding to the molecular weight of the HBs antigen was detected.
  • the method for producing a protein and the fusion protein of the present invention have the above-mentioned constitutions, they are useful for increasing the amount of synthesis of a protein that is difficult to express in large amounts and a recombinant protein that is difficult to express in a soluble fraction. It is.

Abstract

It is intended to provide an expression system of a recombinant protein and a cell-free translation system with the use of a host wherein a target protein is surely incorporated into the stereo structure of chaperonin as a fused protein with a chaperonin subunit (namely, a molecular chaperonin of about 60 kDa, heat shock protein of 60 kDa or thermosome) to thereby inhibit the expression of toxicity of the target protein in the host, the formation of an enclosed matter, and digestion with a protease, thereby universally expressing any protein as a soluble protein. Namely, a process for producing a protein characterized by transcribing and translating a gene containing a gene encoding a chaperonin subunit and a gene encoding a target protein to thereby synthesize a fused protein in which the target protein is linked to the chaperonin subunit via a peptide bond.

Description

明細書  Specification
組み換え蛋白質の生産方法及び融合蛋白質 技術分野  TECHNICAL FIELD The present invention relates to a method for producing a recombinant protein and a fusion protein.
本発明は、 宿主系での組み換え蛋白質発現、 又は、 無細胞翻訳系での蛋白質発 現において、 活性型蛋白質として合成することが困難であった蛋白質の生産を可 能とし、 また、 効率的な蛋白質の合成及び精製を実現する新規な蛋白質の生産方 法及び融合蛋白質に関する。 背景技術  The present invention enables the production of a protein that has been difficult to synthesize as an active protein in the expression of a recombinant protein in a host system or in the expression of a protein in a cell-free translation system. The present invention relates to a novel protein production method and a fusion protein for realizing protein synthesis and purification. Background art
これまでに、 バクテリア、 酵母、 昆虫、 動植物細胞、 トランスジエニック動 - 植物等の多くの宿主での組み換え蛋白質発現系及び無細胞翻訳系が確立されて来 た。 中でも哺乳動物の培養細胞 よる組み換え蛋白質生産は適当な翻訳後修飾が 施されることから治療薬製造の標準システムとなりつつある。 しかしながら、 微 生物を宿主とする系よりも蛋白質の合成レベルが低く、 より大きな培養槽を必要 とし、 新薬を手がけるバイオテクノロジー産業では今後、 製造設備が不足すると 考えらている (G a r b e r , K. , 200 1 , N a t . B i o t e c h. 1 9, To date, recombinant protein expression systems and cell-free translation systems have been established in many hosts such as bacteria, yeast, insects, animal and plant cells, and transgenic animals and plants. In particular, recombinant protein production by mammalian cultured cells is becoming a standard system for the production of therapeutic drugs because of appropriate post-translational modifications. However, the biotechnology industry, which has a lower level of protein synthesis and requires larger culture tanks than microbial host systems, and handles new drugs, is expected to lack production facilities in the future (Garber, K. , 2001, N at. Biotec h. 19,
1 8 4— 1 8 5) 。 近年、 生産効率の向上が図られているトランスジエニック動 •植物を用いる蛋白質生産技術も、 全幅の信頼を得るには至っていない (G a r b e r, K. , 20 0 1 , N a t . B i o t e c h. 1 9, 1 84— 1 8 5) 。 一方、 これまでに開発された上記の組み換え蛋白質発現系において活性型蛋白 質を大量に得ることが困難な場合が多々ある。 上記目的蛋白質が宿主に対するな んらかの毒性を有する場合、 その蛋白質の合成は抑制され発現量が低下する。 ま た、 目的蛋白質が可溶性蛋白質として発現しても宿主プロテアーゼによって分解 されてしまい生産量が極めて少なくなる場合もあった。 更に、 目的蛋白質が発現 しても折り畳みがうまくいかず、 封入体を形成してしまう場合もある。 この場合、 可溶化して再折り畳みを行っても最終的に得られる活性型蛋白質の量は極めて少 なくなってしまう。 特に、 無細胞翻訳系を用いた場合、 封入体は形成しやすくな る。 封入体が生成する場合、 その解決手段として、 例えば、 ダルタチオン一 S—ト ランスフェラーゼ (G S T) (Sm i t h, D. B. , e t a 1 . , 1 9 8 8, G e n e 6 7, 3 1— 4 0) やチォレドキシン (L a V a l l i e , E. R. e t a l . , 1 9 9 3 , B i o /Ύ e c h n o l o g y 1 1, 1 8 7— 1 9 3) 、 マルトース結合蛋白質 (G u a n, C. , e t a 1 . , G e n e 6 7, 2 1 - 3 0) 等との融合蛋白質として発現させる方法等が用いられるが、 封入体 形成が高効率で解消される場合は少なかった。 また、 目的蛋白質を蛋白質の折り 畳み反応を支援する蛋白質群である分子シャペロンと共発現させ、 目的蛋白質の 可溶性画分への発現量を増大させる方法 (N i s h i h a r a e t a 1 . 1 9 9 8 , Ap p l y . E n v i r o n . M i c r o b i o l . , 6 4, 1 6 9 4 - 1 6 9 9) もあるが、 活性型蛋白質の量を飛躍的に増加させるには至っていな いのが現状であった。 1 8 4—1 8 5). In recent years, protein production technology using transgenic animals and plants, whose production efficiency has been improved, has not yet gained the full range of reliability (Garber, K., 201, N at. Biotec. 1 9, 1 84—1 8 5). On the other hand, it is often difficult to obtain a large amount of active protein in the above-mentioned recombinant protein expression system developed so far. If the target protein has any toxicity to the host, the synthesis of the protein is suppressed and the expression level is reduced. In addition, even when the target protein is expressed as a soluble protein, it may be degraded by the host protease, resulting in extremely low production. Furthermore, even when the target protein is expressed, folding may not be successful, and an inclusion body may be formed. In this case, even if the protein is solubilized and refolded, the amount of the active protein finally obtained is extremely small. In particular, when a cell-free translation system is used, inclusion bodies are easily formed. If inclusion bodies are formed, the solution can be, for example, daltathione-S-transferase (GST) (Smith, DB, eta 1.., 1988, Gene 6.7, 31.40) , Thioredoxin (LaVallie, ER etal., 1993, Bio / echechnology 11, 187-18), maltose-binding protein (Guan, C., eta1., Gene 67, 21-1-30), etc., but a method of expressing it as a fusion protein has been used, but the formation of inclusion bodies was rarely eliminated with high efficiency. In addition, a method of co-expressing a target protein with a molecular chaperone, which is a group of proteins that support the protein folding reaction, to increase the expression level of the target protein in a soluble fraction (Nishiharaeta 1.1998, Apply) Environ. Microbiol., 6 4, 16 9 4-16 9 9), but the current situation is that the amount of active protein has not been increased dramatically.
また、 宿主のプロテアーゼによる目的蛋白質の分解に対する解決法として、 例 えば、 大腸菌では、 l o n、 omp Tのようなプロテアーゼ構造遺伝子の一部を 欠損させた宿主 (P h i l l i p s e t a l . 1 9 8 4, J . B a c t e r i o l . 1 5 9, 2 8 3— 2 8 7) を用いる方法が考案されているが、 プロテア ーゼによる分解の影響を回避できる場合は少なく、 また、 宿主のプロテアーゼを 全て欠損させると他の弊害が起こるため、 根本的に解決することはできなかった。 以上のように、 従来の蛋白質発現技術には、 宿主に対する毒性、 宿主プロテア ーゼによる分解及び封入体形成といった大きな問題点があつたため、 発現させよ うとする蛋白質の種類によって発現量が著しく異なってしまい、 各蛋白質ごとに 発現条件を試行錯誤で検討する必要があった。 このため、 以上の問題点を根本的 に解決する技術の開発が望まれていた。 発明の要約  As a solution to the degradation of the target protein by the host protease, for example, in E. coli, a host (Phillipsetal. A method using B acteriol. 159, 283-287) has been devised, but it is rarely possible to avoid the effects of protease-induced degradation. The problem could not be solved fundamentally. As described above, conventional protein expression techniques have major problems such as toxicity to the host, degradation by host protease, and inclusion body formation.The amount of expression differs significantly depending on the type of protein to be expressed. Consequently, it was necessary to examine the expression conditions for each protein by trial and error. For this reason, there has been a demand for the development of technology that fundamentally solves the above problems. Summary of the Invention
本発明は、 上記に鑑み、 目的蛋白質をシャぺ口ニンサブユニット、 即ち、 約 6 O k D a分子シャペロン、 ヒートショックプロテイン 6 0 kD a、 又は、 サーモ ゾームとの融合蛋白質として確実にシャぺ口ニンの立体構造内部に納めることに より、 目的蛋白質の宿主への毒性発現、 封入体形成、 及び、 プロテアーゼによる 分解を抑制し、 いかなる蛋白質をも可溶性蛋白質として万能的に大量発現させる ことができる宿主を用いた組み換え蛋白質の発現系及び無細胞翻訳系を提供する ことを目的とする。 In view of the above, the present invention provides a method for reliably transforming a target protein into a fusion protein with a shanin nin subunit, that is, about 60 kDa molecular chaperone, heat shock protein 60 kDa, or a thermosome. By putting the protein into the three-dimensional structure of the mouth nin, the expression of the target protein's toxicity to the host, the formation of inclusion bodies, and the protease It is an object of the present invention to provide a recombinant protein expression system and a cell-free translation system using a host capable of suppressing degradation and capable of universally expressing any protein as a soluble protein in large amounts.
本発明は、 シャぺ口ニンサブュニットをコードする遺伝子及び目的蛋白質をコ ードする遺伝子を含有する遺伝子を転写 '翻訳して、 上記目的蛋白質が上記シャ ぺロニンサブュニットとペプチド結合を介して連結している融合蛋白質を合成す ることを特徴とする蛋白質の生産方法である。  The present invention transcribes and translates a gene containing a gene encoding a spermulin ninsubunit and a gene encoding a target protein, and links the target protein to the sharonin subunit via a peptide bond. A method for producing a protein, comprising synthesizing a fusion protein.
上記融合蛋白質は、 互いに連結した 1〜2 0個のシャぺ口ニンサブュニットと、 連結したシャぺ口ニンサブュ-ットの N末端、 連結したシャぺ口ニンサブュ-ッ トの C末端、 又は、 シャぺ口ニンサブユニット同士の連結部にペプチド結合を介 して連結されている目的蛋白質とからなることが好ましい。  The fusion protein is composed of 1 to 20 linked mouth ninsubunits linked to each other, the N-terminal of the linked mouth ninth subunit, the C-terminus of the linked mouth ninsubut, or It preferably comprises a target protein linked via a peptide bond to the junction between the oral nin subunits.
本発明においては、 シャぺ口ニンサブュニットをコードする遺伝子及び目的蛋 白質をコードする遺伝子を含有する遺伝子を、 同一の宿主内で共存■複製するこ とが可能な 2種の異なるプラスミ ドのそれぞれに導入し、 同一の宿主内で共発現 させてもよく、 又は、 シャぺ口ニンサブユニットをコードする遺伝子及ぴ目的蛋 白質をコードする遺伝子を含有する遺伝子と、 シャぺ口ニンのみをコードする遺 伝子とをそれぞれ、 同一の宿主内で共存 ·複製することが可能な 2種の異なるプ ラスミ ドに導入し、 同一の宿主内で共発現させてもよい。  In the present invention, the gene containing the gene encoding the ninja ninsubunit and the gene containing the gene encoding the target protein are used in two different plasmids capable of coexisting and replicating in the same host. May be introduced and co-expressed in the same host, or may encode only the gene encoding the Shanin subunit and the gene containing the gene encoding the target protein, and encode only the Shanin mouth The gene may be introduced into two different plasmids capable of coexisting and replicating in the same host, and co-expressed in the same host.
上記融合蛋白質は、 目的蛋白質が、 シャぺ口ニンサブユニットとペプチド結合 を介して連結した状態で、 シャぺ口ニンリングの内部に格納されているものであ ることが好ましい。  The above-mentioned fusion protein is preferably one in which the target protein is stored inside the Shako Nin ring in a state of being linked to the Shako Nin subunit via a peptide bond.
上記シャぺロニンリングは、 リング面を介して非共有結合的に会合した 2層構 造を形成していてもよく、 又は、 リング面又はその側面を介して非共有結合的に 連結した繊維状構造を形成していてもよい。  The chaperonin ring may form a two-layer structure non-covalently associated via a ring surface, or a non-covalently linked fibrous structure via a ring surface or a side surface thereof. May be formed.
本発明においては、 シャぺ口ニンサブユニットと目的蛋白質との連結部に限定 分解型プロテァーゼの切断配列を設け、 上記目的蛋 質を上記限定分解型プ口テ ァーゼにより融合蛋白質から切り出す工程を有していてもよい。 この際、 シャぺ 口ニンサブユニット同士の連結部にも限定分解型プロテァーゼの切断配列を設け ることが好ましい。 本発明においては、 シャぺ口ニンサブュニットと目的蛋白質との連結部にメチ ォニン残基を設け、 上記目的蛋白質を C N B rにより融合蛋白質から切り出すェ 程を有していてもよい。 In the present invention, there is provided a step of providing a cleavage sequence for a limited-degradable protease at the junction between the ninth subunit and the target protein, and cleaving the target protein from the fusion protein using the limited-degradable protease. It may be. At this time, it is preferable to provide a cleavage sequence for the limited-degradation type protease also at the junction between the shark mouth nin subunits. In the present invention, a method may be provided in which a methionine residue is provided at the junction between the ninnin subunit and the target protein, and the target protein is cleaved from the fusion protein by CNBr.
本発明において、 シャぺ口ニンの由来生物としては、 バクテリア、 古細菌又は 真核生物等が挙げられる。  In the present invention, bacteria, archaea, eukaryotes, and the like can be mentioned as organisms from which Shanin ninth is derived.
本発明においては、 融合蛋白質を、 バクテリア、 酵母、 動物細胞、 植物細胞、 昆虫細胞、 動物個体、 植物個体、 又は、 昆虫個体のいずれかの宿主に合成させて もよく、 又は、 無細胞翻訳系で融合蛋白質を合成してもよい。  In the present invention, the fusion protein may be synthesized in any host of bacteria, yeast, animal cells, plant cells, insect cells, animal individuals, plant individuals, or insect individuals, or a cell-free translation system. May be used to synthesize the fusion protein.
本発明において、 目的蛋白質をコードする遺伝子は、 哺乳動物由来の c D NA 又は哺乳動物由来の c D N Aの 6残基以上のアミノ酸配列をコードする部分遺伝 子であることが好ましい。  In the present invention, the gene encoding the target protein is preferably a partial gene encoding an amino acid sequence of 6 or more residues of mammalian-derived cDNA or mammalian-derived cDNA.
本発明において、 目的蛋白質としては、 哺乳動物由来抗体の重鎖、 哺乳動物由 来抗体の軽鎖、 若しくは、 哺乳動物由来抗体の F V領域単鎖抗体の全長、 又は、 それらの 6残基以上の部分蛋白質; ウィルス抗原、 7回膜貫通型受容体蛋白質、 又は、 サイ ト力イン類等が挙げられる。  In the present invention, the target protein may be a heavy chain of a mammal-derived antibody, a light chain of a mammal-derived antibody, or a full-length FV region single-chain antibody of a mammal-derived antibody, or six or more residues thereof. Partial proteins: viral antigens, seven-transmembrane receptor proteins, and site proteins.
本発明によれば、 シャぺ口ニンサブュニットと目的蛋白質とからなる融合蛋白 質であって、 上記目的蛋白質が、 上記シャぺ口-ンサブユニットとペプチド結合 を介して連結した状態で、 シャぺロニンリングの内部に格納されている融合蛋白 質が得られる。 得られた融合蛋白質もまた、 本発明の 1つである。  According to the present invention, there is provided a fusion protein consisting of a spore opening ninsubunit and a target protein, wherein the target protein is linked to the sway opening subunit via a peptide bond, and a Thus, a fusion protein stored inside is obtained. The obtained fusion protein is also one of the present invention.
上記シャぺ口ニンリングは、 リング面を介して非共有結合的に会合した 2層構 造を形成していてもよく、 又は、 リング面又はその側面を介して非共有結合的に 連結した繊維状構造を形成していてもよい。 図面の簡単な説明  The shaved mouth ring may form a two-layer structure non-covalently associated via a ring surface, or a fibrous non-covalently connected ring surface or a side surface thereof. A structure may be formed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 大腸菌シャぺ口ニン (G r o E L ) の立体構造を模式的に示す図であ る。  FIG. 1 is a diagram schematically showing the three-dimensional structure of Escherichia coli Shaguchinin (GroEL).
図 2は、 サブユニット構成数 8個の古細菌由来のシャぺ口ニンと目的蛋白質と からなる融合蛋白質の設計例を示す図である  Fig. 2 is a diagram showing an example of the design of a fusion protein consisting of archaeonin derived from archaea having 8 subunits and a target protein.
図 3は、 発現ベクター p E T D ( T C P i3 ) n ( n = l〜4 ) の制限酵素地図 を示す図である。 Figure 3 shows the restriction map of the expression vector pETD (TCPi3) n (n = 1 to 4). FIG.
図 4は、 (TCP jS) n (n= l〜4) と、 T C P 4量体と目的蛋白質との 融合蛋白質に対して行った S D S一 PAGEの結果を示す図である。  FIG. 4 is a diagram showing the results of SDS-PAGE performed on (TCP jS) n (n = l to 4) and a fusion protein of a TCP tetramer and a target protein.
図 5は、 T C P ]3連結体の透過型電子顕微鏡による観察結果を示す図である。 図 6は、 実施例 5におけるウェスターンブロッテイングの結果を示す図である c 図 7は、 実施例 7におけるウェスターンプロッティングの結果を示す図である c 図 8は、 発現ベクター p T r (G r o E) n (n= l〜7) の制限酵素地図を 示す図である。 FIG. 5 is a diagram showing the results of observation of a TCP 3 linked product by a transmission electron microscope. FIG. 6 is a diagram showing the results of Western blotting in Example 5 c FIG. 7 is a diagram showing the results of Western plotting in Example 7 c FIG. 8 is a diagram showing the expression vector p T r ( It is a figure which shows the restriction map of GroE) n (n = l-7).
図 9は、 実施例 8において、 大腸菌シャぺ口ニン G r o E L連結体を発現させ た大腸菌の可溶画分に対して行った SD S— PAGEの結果を示す図である。 発明の詳細な開示  FIG. 9 is a diagram showing the results of SDS-PAGE performed on the soluble fraction of Escherichia coli expressing the Escherichia coli Shaguchinin GroEL conjugate in Example 8. Detailed Disclosure of the Invention
以下に本発明を詳述する。  Hereinafter, the present invention will be described in detail.
本発明においては、 シャぺ口ニンサブュニットをコードする遺伝子及び目的蛋 白質をコードする遺伝子を含有する遺伝子 (以下、 融合蛋白質をコードする遺伝 子ともいう) を用いて、 目的蛋白質とシャぺ口ニンサブユニットとからなる融合 蛋白質を生産する。  In the present invention, the target protein and the gene encoding the target protein are used by using a gene containing the gene encoding the target protein and the gene containing the gene encoding the target protein (hereinafter, also referred to as a gene encoding the fusion protein). Produces a fusion protein consisting of units.
上記シャぺ口ニンとは、 細胞に熱ショック等のストレスを与えると、 エネルギ 一物質である AT Pの存在下又は非存在下で蛋白質の折り畳みを支援したり、 構 造安定化に貢献したりする一般に分子シャペロンと呼ばれる蛋白質群の発現が誘 導されるが、 このような分子シャペロンの中でも、 サブユニットの分子量が約 6 O kD aのものをいい、 バクテリア、 古細菌、 及び、 真核生物の全ての生物に存 在し、 蛋白質の折り畳み支援や変性防御の機能を有している。  When the cell is subjected to stress such as heat shock, it exerts support on protein folding in the presence or absence of ATP, an energy substance, and contributes to structural stability. In general, the expression of a group of proteins called molecular chaperones is induced. Among these molecular chaperones, those whose subunits have a molecular weight of about 6 kDa are bacteria, archaea, and eukaryotes. It is present in all living organisms and has functions of supporting protein folding and preventing degeneration.
シャぺ口ニンは 14〜 18個のサブュニットからなり、 2層のリングからなる 立体構造 (以下、 リングをシャぺ口ニンリングという) を有し、 例えば、 大腸菌 のシャぺ口ニンは、 内径 4. 5 nm 高さ 14. 5 nmの空洞 (キヤビティ) を 有する (図 1参照) 。 一層のシャぺ口ニンリングのキヤビティは 60 kD aの球 状蛋白質一つが充分に納まる空間を有する。 シャぺ口ニンは、 このキヤビティに 様々な蛋白質の折り畳み中間体や変性蛋白質を一時的に納める機能を有し、 蛋白 質の折り畳み構造が形成されると、 AT Pの分解と共役して、 納めていた蛋白質 をキヤビティから放出する。 バクテリア、 古細菌由来のシャぺ口ニンは、 リング 構造を保った状態で大腸菌の細胞質可溶性画分に容易に大量生産させることが可 能である。 このことは、 由来の異なる種々のシャぺ口ニンが大腸菌でも自己集合 し、 14〜 1 8量体からなる 2層のリング構造をとり うることを示している。 Shanin is composed of 14 to 18 subunits and has a three-dimensional structure consisting of two layers of rings (hereinafter, the ring is referred to as the Shanin ring). It has a cavity (cavity) with a height of 5 nm and a height of 14.5 nm (see Fig. 1). The cavities of the further Ninring have enough space for one 60 kDa spherical protein. This protein has the function of temporarily storing folding intermediates and denatured proteins of various proteins in this cavity. When a quality fold is formed, it releases the stored protein from the cavity, coupled with ATP degradation. Bacterial and archaeal shadinin can be easily mass-produced in the cytoplasmic soluble fraction of E. coli while maintaining the ring structure. This suggests that various Shanins of different origins also self-assemble in Escherichia coli and take a two-layered ring structure of 14 to 18 mer.
X線結晶構造解析によって明らかにされたシャぺ口ニンの立体構造によれば、 シャぺ口ニンサブユニットの N末端及び C末端はともにキヤビティ側に位置し、 フレキシビリティの高い構造となっている。 特に C末端の少なくとも 20ァミノ 酸はフレキシビリティの高い構造を示す (G e o r g eら、 2000、 C e l l、 1 00、 P. 5 6 1— 5 7 3) 。  According to the three-dimensional structure of Shahkonin, which was revealed by X-ray crystal structure analysis, the N-terminal and C-terminal of Shahkonin's subunit are both located on the cavity side, resulting in a highly flexible structure. . In particular, at least the 20-amino acid at the C-terminus shows a highly flexible structure (George et al., 2000, Cell, 100, p. 561-573).
本発明で用いられるシャぺロェンとしては特に限定されず、 バクテリア、 古細 菌、 及び、 真核生物のいずれの由来のものでも使用可能である。 また、 本発明で は、 シャぺ口ニンのリング構造への自己集合能が維持されていれば、 野生型のみ ならずアミノ酸変異体を使用することも可能である。 例えば、 シャぺ口ニンの各 サブユニッ トの会合力が弱められた変異体を用いた場合、 格納された目的蛋白質 の回収はより容易となる。  The chaperone used in the present invention is not particularly limited, and any of bacteria, archaebacteria, and eukaryotes can be used. In addition, in the present invention, not only wild-type but also amino acid mutants can be used as long as the ability of self-assembly of Shahkonin to the ring structure is maintained. For example, when a mutant having a reduced association power of each subunit of Shaguchinin is used, it is easier to recover the stored target protein.
本発明における目的蛋白質としては特に限定されず、 ヒ ト、 マウス等の高等動 物由来の疾病関連遺伝子産物や化学プロセスに有効な酵素群の全てが目的蛋白質 となりえるが、 例えば、 B型肝炎ウィルス、 C型肝炎ウィルス、 H I V、 インフ ルェンザ等の病原性ウィルスゲノムにコードされる、 外被蛋白質、 コア蛋白質、 プロテアーゼ、 逆転写酵素、 インテグラーゼ等の蛋白質 (ウィルス抗原) ;哺乳 動物由来抗体の重鎖、 哺乳動物由来抗体の軽鎖、 哺乳動物由来抗体の F V領域単 鎖抗体 (s c F V) の全長、 又は、 それらの 6残基以上の部分蛋白質、 F a b、 (F a b) 2、 及び、 完全抗体型である治療■診断用抗体; 7回膜貫通型受容体 (G蛋白質共役型受容体) ;血小板増殖因子、 血液幹細胞成長因子、 肝細胞成長 因子、 トランスフォーミング成長因子、 神経成長 .栄養因子、 線維芽細胞成長因 子、 インスリン様成長因子等の成長因子;腫瘍壌死因子、 インターフェロン、 ィ ンターロイキン、 エリスロポエチン、 顆粒球コロニー刺激因子、 マクロファージ ■ コロニー刺激因子、 アルブミン、 ヒト成長ホルモン等のサイト力イン類等が挙 げられる。 The protein of interest in the present invention is not particularly limited, and all disease-related gene products derived from higher animals such as humans and mice and a group of enzymes effective for chemical processes can be the protein of interest. For example, hepatitis B virus Proteins (viral antigens), such as coat proteins, core proteins, proteases, reverse transcriptase, integrase, etc., encoded by pathogenic virus genomes such as hepatitis C virus, HIV, and influenza; Chain, light chain of mammal-derived antibody, full length of FV region single-chain antibody (sc FV) of mammal-derived antibody, or partial protein of 6 or more residues thereof, Fab, (Fab) 2, and Therapeutic antibody that is a complete antibody type; diagnostic antibody; seven-transmembrane receptor (G protein-coupled receptor); platelet growth factor, blood stem cell growth factor, hepatocyte growth factor, transformin Growth factors, nerve growth. Nutrition factors, fibroblast growth factors, growth factors such as insulin-like growth factor; tumor death factors, interferon, interleukin, erythropoietin, granulocyte colony stimulating factor, macrophage ■ colony stimulating factor, Site power-ins such as albumin and human growth hormone I can do it.
シャぺ口ニンの構造は由来生物、 組織によって異なる。 バクテリア、 ミ トコン ドリア及び葉緑体のシャぺ口ニンの場合、 シャぺロニンリングを構成するサブュ ニットの数は 7個であるのに対し、 真核生物の細胞質及び古細菌シャぺ口ニンの 場合は 8 ~ 9個である。  The structure of Shachinin differs depending on the organism and tissue. In the case of bacteria, mitochondria and chloroplasts, the number of subunits constituting the spheronin ring is 7, whereas in the case of eukaryotic cytoplasm and archaea, the number of subunits is large. Is 8-9.
本発明では、 使用するシャぺ口ニンの由来により、 融合蛋白質におけるシャぺ 口ニンサブュニットと目的蛋白質の数の比を選択することが好ましい。 シャぺ口 ユンサブユニッ ト数と目的蛋白質数との比 (シャぺロニンサブユニット数: 目的 蛋白質数) は 1 : 1〜 1 2 : 1までとりうるが、 好ましくは 1 : 1〜 9 : 1であ る。 上記目的蛋白質 1個に対するシャぺ口ニンサブユニットの数が 9を超えると シャぺロニンリングの形成が困難となる。  In the present invention, it is preferable to select the ratio of the number of the shark nin subunit to the target protein in the fusion protein according to the origin of the shark nin used. The ratio of the number of syrup mouth subunits to the number of target proteins (the number of chaperonin subunits: the number of target proteins) can range from 1: 1 to 12: 1, but is preferably 1: 1 to 9: 1. is there. If the number of spore nin subunits per one target protein exceeds 9, it becomes difficult to form spheronin rings.
具体的には、 バクテリア由来のシャぺ口ニンを用いる場合には、 シャぺ口ニン のリング構造の形成のしゃすさからシャぺ口ニンサブュニット数: 目的蛋白質数 が 1 : 1又は 7 : 1である融合蛋白質が好ましく、 シャぺ口ニンリングを構成す るサブユエット数が 8個である古細菌由来のシャぺ口ニンを用いる場合には、 シ ャぺロユンのリング構造の形成のしゃすさからシャぺ口ニンサブュニット数: 目 的蛋白質数が 1 : 1、 2 : 1、 4 : 1又は 8 : 1のものが好ましい。 伹し、 目的 蛋白質の形状や分子量によっては上記以外の数比も適する場合もある。 例えば、 大腸菌由来のシャぺ口ニンを用いる場合、 シャぺ口ニンサブュ-ット数と目的蛋 白質数の比率が 3 : 1である融合蛋白質であっても、 これらが 2又は 3分子会合 してリング構造を形成しうる。  Specifically, in the case of using bacterial-derived porcine nin, the number of porcine nin subunits: the number of target proteins is 1: 1 or 7: 1 due to the lack of formation of the ring structure of the porcine nin. When a fusion protein is preferred, and archaeal shanin, which comprises eight subunits to form the shanin ring, is used, it is difficult to form a shaunyun ring structure. Ninsubunit number: Target Protein number is preferably 1: 1, 2: 1, 4: 1 or 8: 1. However, depending on the shape and molecular weight of the target protein, a number ratio other than the above may be appropriate. For example, when Escherichia coli-derived protein is used, even if it is a fusion protein in which the ratio of the number of protein subunits to the number of target proteins is 3: 1, two or three molecules of these proteins associate with each other. A ring structure may be formed.
例えば、 シャぺ口ニンリングを構成するサブユニット数が 8個である古細菌由 来のシャぺ口ェンを用いた場合、 シャぺ口ニンサブユニット数: 目的蛋白質数が 2 : 1である融合蛋白質は、 発現した融合蛋白質が 4つ集まってシャぺ口-ンリ ングを形成する。 シャぺ口ニンサブユニット数: 目的蛋白質数が 4 : 1である融 合蛋白質では、 発現した融合蛋白質が 2つ集まってシャぺ口ニンリングを形成す る。  For example, when an archaea-derived scherichia coli having eight subunits constituting a sshaguchi nin ring is used, the number of sshaguchi nin subunits and the number of target proteins are 2: 1. As for the protein, four expressed fusion proteins assemble to form a shaking ring. Number of Shain nin subunits: In a fusion protein with a target protein number of 4: 1, two expressed fusion proteins are assembled to form Shain nin rings.
よって、 シャぺ口ニンサブュ-ットの比率が高くなればなるほど、 シャぺロニ ンのキヤビティ内に格納可能な目的蛋白質の分子サイズは大きくなる。 上記目的 蛋白質が宿主細胞質にさらされる危険性を避けるため、 目的蛋白質 1個に対しシ ャぺロニンサブュニットが 2個以上であることが好ましい。 Therefore, the higher the ratio of the spore mouth ninth submit, the larger the molecular size of the target protein that can be stored in the spheronin cavity. The above purpose In order to avoid the risk that the protein is exposed to the host cytoplasm, it is preferable that there are two or more capronin subunits per target protein.
そもそも、 シャぺ口ニンは、 目的蛋白質に対して単に外部環境から仕切られた スペースを提供するだけでなく、 蛋白質折り畳み機能を有するため、 目的蛋白質 の折り畳みを正常に行い、 かつ、 その構造を安定化することもできる。 通常シャ ぺロニンの蛋白質折り畳み反応は基質蛋白質であるシングルポリべプチドと 1 : In the first place, Shapaguchinin not only provides a space separated from the external environment for the target protein, but also has a protein folding function, so that the target protein can be normally folded and its structure is stable. It can also be converted. Normally, the protein folding reaction of chaperonin is performed with a single polypeptide, the substrate protein:
1で起こるため、 本発明においてシャぺ口ニンによる折り畳み機能を発現させる には、 シャぺロニンリング又はシャぺ口ニンに 1個の目的蛋白質が格納されるよ う融合蛋白質を設計することが好ましい。 しかしながら、 目的蛋白質の分子量に よっては 2分子以上格納させても正常に折り畳まれうる。 In order to express the function of folding by shanin in the present invention, it is preferable to design a fusion protein such that one target protein is stored in sharonin ring or shanin. However, depending on the molecular weight of the target protein, it can be folded normally even if two or more molecules are stored.
上記融合蛋白質におけるシャぺ口ニンサブュニットと目的蛋白質との連結パタ ーンとしては、 目的蛋白質がシャぺ口ニンのキヤビティ内に納まるように、 シャ ぺロニンサブユニットの N末端、 C末端、 又は、 シャぺ口ニンサブユニット同士 の連結部に、 目的蛋白質を配置することが好ましい。 このとき、 シャぺロニンサ プユニットは、 サブユニットが 1〜2 0個連結した連結体を構成していることが 好ましい。  In the fusion protein, the linking pattern between the scharinin subunit and the target protein includes the N-terminal, C-terminal, or scherfet of the spheronin subunit so that the target protein fits within the cavity of the scharinin.ぺ It is preferable to arrange the target protein at the junction between the oral nin subunits. At this time, it is preferable that the chaperonin subunit forms a linked body in which 1 to 20 subunits are linked.
また、 目的蛋白質の宿主に対する毒性が極めて高いか、 又は、 宿主プロテア一 ゼによる消化を極めて受けやす 、場合は、 目的蛋白質を複数のシャぺ口ニンサブ ュニットの連結間に配置することが好ましい。 図 2にサブュ-ット構成数が 8個 である古細菌由来のシャぺロニンを用いた場合の融合蛋白質の設計例を掲げる。 本発明によれば、 融合蛋白質として発現した目的蛋白質はシャぺ口ニンリング のキヤビティの内部に格納されているので、 生体内環境から保護され、 プロテア ーゼによる消化を受けにくくなる。 シャぺ口ニンリングは更に会合し、 リング面 を介して非共有結合的に会合した 2層構造を形成することが好ましい。  When the target protein has extremely high toxicity to the host or is extremely susceptible to digestion by the host protease, it is preferable to arrange the target protein between the junctions of a plurality of spore nin subunits. Figure 2 shows an example of a fusion protein design using archaeal chaperonin, which has eight submits. According to the present invention, since the target protein expressed as a fusion protein is stored inside the cavity of the Sharp Nin Ring, it is protected from the in vivo environment and is less likely to be digested by the protease. It is preferable that the scallop nin ring further associates to form a non-covalently associated two-layer structure via the ring face.
また、 目的蛋白質が宿主にと ·つて重要な自然機構を阻害する性質を有するもの であっても、 目的蛋白質はシャぺ口ユンリングにより生体内環境から隔てられて いるので、 宿主の生理機構に対する阻害作用を発現することがない。 また、 強力 なプロモーターによって発現が誘導されたときにみられるような蛋白質の折り畳 み中間体同士が多数会合することはなく、 個々にシャぺ口-ンリングのキヤビテ ィ内に固定されるため、 宿主を用いた発現及び無細胞翻訳系に見られる封入体形 成も抑制することができる。 シャぺ口ニンは宿主の細胞質又は体液等の可溶性画 分へ合成されるため、 シャぺ口ニンリングの内部に格納された蛋白質が膜結合性 又は膜貫通性の蛋白質であっても膜へ移行し宿主の膜構造を破壌することはなく、 宿主に対する毒性を発現しない。 また、 いかなる蛋白質も同一のシャぺロニンリ ング内に格納すれば、 同一の精製条件で融合蛋白質として精製することが可能で ある。 In addition, even if the target protein has the property of inhibiting important natural mechanisms for the host, since the target protein is separated from the in-vivo environment by Shaun-Yunning, it may interfere with the host's physiological mechanism. No effect is exhibited. In addition, a large number of protein folding intermediates, which are observed when expression is induced by a strong promoter, do not associate with each other. Therefore, expression using a host and inclusion body formation seen in a cell-free translation system can be suppressed. Since shadinin is synthesized into a soluble fraction such as host cytoplasm or body fluid, even if the protein stored inside the shrinin ring is a membrane-bound or transmembrane protein, it is transferred to the membrane. It does not disrupt the host's membrane structure and does not exhibit host toxicity. In addition, if any protein is stored in the same chaperoning ring, it can be purified as a fusion protein under the same purification conditions.
シャぺ口ニンが 1 ing/mL以上の高濃度で存在する場合、 Mg—AT Pの存 在下では、 2層のシャぺロニンリングが更にリング面を介して可逆的に結合し、 繊維状構造を形成する場合がある (T r e n t, J. D. , e t a l . , 1 9 97, P r o c. Na t l . Ac a d. S c i . U. S. A. 94, 5383 - 5388 : F u r u t a n i , M. e t a 1. , 1 998, J . B i o l . C h em. 273, 2839 9 _ 28407 ) 。 本発明の融合蛋白質は生体内にお いて高濃度に舍成されるため、 リング面又はその側面を介して非共有結合的に連 結した繊維状構造を形成することがあり、 このことにより、 目的蛋白質が宿主に 対して毒性を有していてもシャぺ口ニンリング内への格納が促進され、 目的蛋白 質の高度発現を達成しうる。 上記融合蛋白質が繊維状構造を形成していても、 希 釈して蛋白質濃度を下げることによって 2層リング構造ごとに解離するので、 目 的蛋白質を回収することができる。  When Shanin is present at a high concentration of 1 ing / mL or more, in the presence of Mg-ATP, the two layers of Sharonin rings are further reversibly bonded via the ring surface to form a fibrous structure. USA, 94, 5383-5388: Furutani, M. eta 1., 1 998 (Trent, JD, etal., 1997, Proc. , J. Biol. Chem. 273, 2839 9_28407). Since the fusion protein of the present invention is formed at a high concentration in a living body, it may form a non-covalently linked fibrous structure via a ring surface or a side surface thereof. Even if the target protein is toxic to the host, storage in the shaved mouth ring is promoted, and high expression of the target protein can be achieved. Even if the fusion protein forms a fibrous structure, it is dissociated for each two-layered ring structure by diluting and reducing the protein concentration, so that the target protein can be recovered.
本発明の蛋白質の生産方法では、 制限酵素を用いる方法、 PCRによる方法等 の通常の遺伝子工学的手法を用いて、 融合蛋白質をコードする遺伝子を作製し、 これを導入した発現ベクターを用いて、 宿主内で融合蛋白質を合成することがで きる。  In the method for producing the protein of the present invention, a gene encoding a fusion protein is prepared using a general genetic engineering technique such as a method using a restriction enzyme or a method using PCR, and an expression vector into which the gene has been introduced is used. The fusion protein can be synthesized in the host.
上記融合蛋白質をコードする遺伝子を作製する際に用いる目的蛋白質をコード する遺伝子としては、 哺乳動物由来の c DN A又はその 6残基以上のアミノ酸配 列をコードする部分遺伝子が好適に用いられる。  As the gene encoding the target protein used when producing the gene encoding the fusion protein, a mammalian-derived cDNA or a partial gene encoding an amino acid sequence of 6 or more residues thereof is suitably used.
上記宿主としては特に限定されず、 例えば、 大腸菌等のバクテリア、 その他の 原核細胞、 酵母、 昆虫細胞、 哺乳動物の培養細胞等の動物細胞、 植物の培養細胞 等の植物細胞、 動物個体、 植物個体、 昆虫個体等が挙げられる。 なかでも、 培養 コストが安価である点、 培養日数が短い点、 培養操作が簡便な点等から、 バクテ リア又は酵母が好ましい。 また、 バクテリア、 真核生物抽出液等を用いた無細胞 翻訳系 (S p i r i n, A. S. , 1 9 9 1, S c i e n c e 1 1 , 26 5 6 一 2 6 64 : F a l c o n e , D. e t a 1. , 1 9 9 1 , Mo 1. C e l l . B i o l . 1 1, 2 6 5 6— 2 6 64) により、 本発明の融合蛋白質を可溶性蛋 白質として合成することも可能である。 The host is not particularly limited. For example, bacteria such as Escherichia coli, other prokaryotic cells, yeast, insect cells, animal cells such as mammalian cultured cells, plant cells such as plant cultured cells, animal individuals, and plant individuals And insect individuals. Above all, culture Bacteria or yeast is preferred in terms of low cost, short culture days, simple culturing operation, and the like. In addition, a cell-free translation system using bacteria, eukaryotic extracts, etc. (Spirin, AS, 1991, Science 11, 26561-6266: F alcone, D. eta 1., The fusion protein of the present invention can also be synthesized as a soluble protein by the method of 1991, Mo 1. Cell. Biol. 11, 1, 566-26664).
—般的に、 大腸菌等では発現プラスミ ドは 1 0 k b p以上になるとコピー数が 減少し、 結果的に目的蛋白質の合成量が低下することがある。 例えば、 シャぺ口 ニンサブュ-ットが 8個連結した融合蛋白質を生産する場合、 発現プラスミ ドは 1 5 k b p以上になる。 これに対して、 融合蛋白質をコードする遺伝子を、 同一 の宿主内で共存 ·複製することが可能な 2種の異なるプラスミ ドのそれぞれに導 入し、 同一の宿主内で共発現させることにより発現量の低下を防ぐことができる c 例えば、 同一の融合蛋白質を産する同一遺伝子を、 異なる複製領域及び薬剤耐性 遺伝子を有する 2種類のベクターに導入し、 これら 2種類のベクターで 2種の薬 剤の存在下で大腸菌等を形質転換し、 融合蛋白質の合成を行うことで、 高発現を もたらすことが可能である。 In general, in Escherichia coli and the like, when the expression plasmid exceeds 10 kbp, the copy number decreases, and as a result, the synthesis amount of the target protein may decrease. For example, in the case of producing a fusion protein in which eight Siaguchi ninth subunits are linked, the expression plasmid is 15 kbp or more. In contrast, the gene encoding the fusion protein is introduced into each of two different plasmids that can coexist and replicate in the same host, and expressed by co-expression in the same host. c for example it is possible to prevent a decrease in the amount, the same gene that yield the same fusion protein, is introduced into two vectors having different replication regions and drug resistance genes, two drug agents in these two vectors By transforming Escherichia coli or the like in the presence of E. coli and synthesizing a fusion protein, high expression can be obtained.
また、 本発明では、 融合蛋白質をコードする遺伝子と、 シャぺ口ニンサブュニ ットのみをコードする遺伝子とをそれぞれ、 同一の宿主内で共存 ·複製すること が可能な 2種の異なるプラスミドに導入し、 同一の宿主内で共発現させてもよい。 例えば、 融合蛋白質をコードする遺伝子とシャぺ口ニンサブユエットのみをコー ドする遺伝子とをそれぞれ、 異なる薬剤耐性及び複製領域を有する 2種類のベタ ターに導入して、 2種類の薬剤の存在下で共発現することにより、 シャぺ口ニン の構造を制御することができる。 例えば、 シャぺ口ニンサブユニットと目的蛋白 質の数比が 4 : 1である融合蛋白質を生産する場合において、 シャぺ口ニンサブ ュニットが 1個又は 2〜 4個連結した遺伝子のみを含むベクターを導入して共発 現させることにより、 シャぺロェンサブユニットと目的蛋白質の数比が 8 : 1の シャぺ口ニンリングを形成することが可能である。 上述のように、 プラスミ ドの 巨大化はプラスミ ドのコピー数の減少につながり発現量が低下することがあるた め、 この方法は、 発現量増加に有効である。 本発明の融合蛋白質遺伝子はプラスミド等のベクターで宿主生物に導入しなく とも、 宿主の染色体上に導入して、 融合蛋白質を発現させても良い。 例えば大腸 菌では、 ランパダインテグラーゼを発現する宿主にランパダインテグラ一ゼの部 位特異的組み換え機能を利用してプロモーター、 リボゾーム結合部位、 目的遺伝 子、 ターミネータ一及び薬剤耐性遺伝子等から成る発現ユニット遺伝子を染色体 に導入することが可能である (O l s o n, P. e t a 1. , 1 9 98, Ρ r o t e i n Ε χ ρ r . P u r i f . 14, 1 60— 1 66) 。 酵母では、 例え ばメタノール資化性酵母のアルコールデキドロゲナーゼ (AOX) の下流と上流 配列を利用して相同組み換えにより、 AOXプロモータ一配列及びタ一ミネータ 一を含む目的蛋白質の発現ュニット遺伝子を宿主染色体上に組み込む方法がある (S c o r e r , C. A. e t a 1. , 1 994, B i o/T e c h n o 1 o g y 1 2, 1 81— 1 84) 。 いずれの場合も発現ユニット遺伝子を複数連結 したものを染色体に導入することで発現量を増加させることが可能である。 染色 体上への遺伝子組み込みによる蛋白質発現では、 プラスミドを用いる場合のよう にそのサイズの増大に応じてコピー数が低下することなく、 本発明のような分子 量の大きい融合蛋白質の発現を安定化させることが可能である。 Further, in the present invention, the gene encoding the fusion protein and the gene encoding only the ninja ninsubunit are introduced into two different plasmids which can coexist and replicate in the same host. Alternatively, they may be co-expressed in the same host. For example, a gene encoding a fusion protein and a gene encoding only a ninnin subunit are introduced into two types of binders having different drug resistance and replication regions, respectively, and are shared in the presence of two types of drugs. The expression can control the structure of Shanin. For example, in the case of producing a fusion protein in which the ratio of the number of Siaguchi nin subunits to the target protein is 4: 1, a vector containing only one or two to four Siaguchi nin subunits is used. By introducing and co-expressing it, it is possible to form a Shaw Nin ring with a 8: 1 ratio between the Scharoen subunit and the target protein. As described above, this method is effective for increasing the expression level, since the enlargement of the plasmid may lead to a decrease in the copy number of the plasmid and the expression level may decrease. The fusion protein gene of the present invention may be introduced into the host chromosome to express the fusion protein without being introduced into the host organism using a vector such as a plasmid. For example, in E. coli, expression of a promoter, a ribosome binding site, a target gene, a terminator, a drug resistance gene, etc. is performed using a site-specific recombination function of lampada integrase in a host that expresses lampada integrase. It is possible to introduce the unit gene into the chromosome (Olson, P. eta 1., 1998, Ρ rotein χ ρ ρ r. Purif. 14, 160-166). In yeast, for example, by homologous recombination using the downstream and upstream sequences of alcohol dextrogenase (AOX) of a methanol-assimilating yeast, the expression unit gene of the target protein including the AOX promoter sequence and the terminator 1 can be obtained. There is a method for integration on the host chromosome (S corer, CA eta 1., 1994, Bio / Techno 1 ogy 12, 2, 181-184). In any case, the expression level can be increased by introducing a plurality of linked expression unit genes into a chromosome. In the expression of a protein by integration of a gene into a chromosome, the expression of a fusion protein having a large molecular weight as in the present invention is stabilized without a decrease in copy number as the size increases, as in the case of using a plasmid. It is possible to do.
本発明で生産される融合蛋白質は、 その分子量が約 650〜600 kD aと巨 大であるため、 転写された m R N Aが特定のリボヌクレアーゼにより分解され、 更に、 翻訳された融合蛋白質がプロテアーゼにより分解されるという 2段階の切 断を受けることがある。 例えば、 大腸菌を宿主として用いる場合は、 mRNAの 分解に関与するリボヌクレアーゼである RN a s e E遺伝子を欠損させた宿主を 用いることにより、 mRNAの分解を抑制することが可能である (G r u n b e r g— M a n a g o , M. , 1 999, A n n u . R e v. G e n. , 33, 1 93 - 227) 。 翻訳後、 プロテーゼによる分解を抑制するには、 1 5〜25°C の低温で発現させる方法; l o n、 ompT (P h i l l i p s e t a 1. , 1 984, J . B a c t e r i o l . , 1 5 9, 283 -287) 、 C l p、 H s l VU (Ka n emo r i , M. e t a 1. , 1 997, J . B a c t e r i o l . , 1 79, 721 9) のようなプロテアーゼの構造遺伝子を欠損させ た大腸菌を宿主として用いる方法等を用いることができる。 上記の各種宿主内で融合蛋白質を合成させた後、 細胞を回収し破砕し、 上清を 回収する。 シャぺ口ェンは分子量が約 8 4 0〜9 6 O K D aの巨大蛋白質である ため、 4 0 %飽和程度の硫安塩析によって沈殿させることができる。 沈殿した蛋 白質を回収した後、 適当な緩衝液に溶解し、 疎水クロマトグラフィーやイオン交 換クロマトグラフィーによって融合蛋白質の存在する画分を回収する。 回収した 融合蛋白質溶液を限外ろ過によって濃縮した後、 得られた濃縮液に対して、 5〜 5 O mM程度の塩化マグネシウム及び 5 0〜3 0 0 mM程度の塩化ナトリゥム又 は塩化力リゥムを含有する緩衝液を展開液としてゲルろ過を行い、 排除限界直後 のピークを回収することによって融合蛋白質を精製することができる。 Since the fusion protein produced in the present invention has a huge molecular weight of about 650 to 600 kDa, the transcribed mRNA is degraded by a specific ribonuclease, and the translated fusion protein is degraded by a protease. May be cut off in two stages. For example, when E. coli is used as a host, mRNA degradation can be suppressed by using a host deficient in the RNase E gene, a ribonuclease involved in mRNA degradation (G runberg-Manago). , M., 1999, Annu.Rev.Gev., 33, 193-227). To suppress degradation by the prosthesis after translation, expression at a low temperature of 15 to 25 ° C; lon, ompT (Phillipseta 1., 19984, J. B acteriol., 1559, 283-287) ), Clp, Hsl VU (Kanemori, M. eta 1., 1997, J. B acteriol., 179, 721 9). The method used or the like can be used. After synthesizing the fusion protein in the various hosts described above, the cells are collected, disrupted, and the supernatant is collected. Since Schwaen is a giant protein with a molecular weight of about 840-96 OKDa, it can be precipitated by ammonium sulfate salting out at about 40% saturation. After recovering the precipitated protein, the protein is dissolved in an appropriate buffer, and the fraction containing the fusion protein is recovered by hydrophobic chromatography or ion exchange chromatography. After concentrating the recovered fusion protein solution by ultrafiltration, the obtained concentrated solution is treated with about 5 to 50 mM of magnesium chloride and about 50 to 300 mM of sodium chloride or chloride medium. The fusion protein can be purified by performing gel filtration using the contained buffer as a developing solution and collecting the peak immediately after the exclusion limit.
上記融合蛋白質の N末端又は C末端に 6〜1 0個のヒスチジンが並んだタツグ を連結させた場合には、 ニッケル等の金属キレートカラムを用いて、 簡便かつ効 率的に融合蛋白質の回収を行うことができる。 また、 用いるシャぺ口ニン又はシ ャぺロニンサブュニットに対する抗体を用いて、 免疫沈降又はァフィ二テイク口 マトグラフィ一によつても迅速■簡便に精製することが可能である。 しかしなが ら、 リング構造を形成した融合蛋白質のみを回収するためには、 これらにイオン 交換クロマトグラフィー、 ゲル濾過を組み合わせることが好ましい。  When a tag comprising 6 to 10 histidines is linked to the N-terminal or C-terminal of the fusion protein, the fusion protein can be easily and efficiently recovered using a metal chelate column such as nickel. It can be carried out. In addition, the antibody can be purified quickly and easily by immunoprecipitation or affinity mouth chromatography using an antibody against scharinin or scharonin subunit used. However, in order to recover only the fusion protein having a ring structure, it is preferable to combine them with ion exchange chromatography and gel filtration.
上記シャぺ口ニンが耐熱性のものである場合、 大腸菌の抽出液を 6 0〜8 0 °C で熱処理することによって大部分の大腸菌由来蛋白質を沈殿させることができ、 融合蛋白質の精製をより簡略化させることができる。 この際、 目的蛋白質自身は 耐熱性のものでなくとも、 シャぺ口ニンの空洞内部に保持されているので、 変性 することはない。  When the Shanin is heat-resistant, most of the E. coli-derived proteins can be precipitated by heat-treating the E. coli extract at 60 to 80 ° C. It can be simplified. In this case, even if the target protein itself is not heat-resistant, it is not denatured because it is retained inside the cavity of Shanin.
上記のいずれの方法で精製する場合であっても、 融合蛋白質の形態を透過型電 子顕微鏡によって観察することができ、 目的蛋白質がシャぺロニンリングの内部 に格納されている場合は、 外径 1 4〜1 6 n m程度のシャぺ口ニン特有のリング 構造を観察することができる。  Regardless of the purification method using any of the above methods, the morphology of the fusion protein can be observed with a transmission electron microscope, and when the target protein is stored inside the chaperonin ring, the outer diameter is 1 It is possible to observe a ring structure peculiar to Shanin's mouth of about 4 to 16 nm.
多くのシャぺロェンでは、 サブユニット間の会合は、 マグネシウムイオン及び A T Pによって安定化されている。 従って、 融合蛋白質のリング構造が不安定な 場合は、 精製の過程でマグネシウム及び A T Pを存在させておくことにより、 リ ング構造を形成した融合蛋白質を効率的に回収することが可能である。 一方、 得 られた融合蛋白質から目的蛋白質のみを分離する場合には、 上記のようにして回 収した融合蛋白質の画分を、 E D T A (エチレンジァミン四酢酸) 処理した後、 マグネシウム及び A T Pが入っていない緩衝液に対して透析を行いマグネシウム 及び A T Pを取.り除く。 これによつて、 シャぺ口ニンサブユエット間の相互作用 は解除されシャぺ口ニンの立体構造は壌れ、 目的蛋白質が露出する。 In many Chapelön, the association between subunits is stabilized by magnesium ions and ATP. Therefore, when the ring structure of the fusion protein is unstable, it is possible to efficiently recover the fusion protein having the ring structure by allowing magnesium and ATP to be present in the purification process. Meanwhile, get When only the target protein is separated from the obtained fusion protein, the fraction of the fusion protein collected as described above is treated with EDTA (ethylenediaminetetraacetic acid), and then treated with a buffer containing no magnesium or ATP. Dialysis is performed to remove magnesium and ATP. As a result, the interaction between the lip mouth subunits is released, and the tertiary structure of the lip mouth is muddy, exposing the target protein.
また、 トロンビン、 ェンテロカイネース、 活性型血液凝固第 1◦因子等の限定 分解型プロテアーゼの切断配列を、 シャぺ口ニンサブュニットと目的蛋白質との 連結部、 更にシャぺ口ニンサブユニット同士の連結部にも配置することで、 これ らの限定分解型プロテアーゼにより融合蛋白質から目的蛋白質を切り出すことが 可能となる。 この場合は、 上記のようにして回収した融合蛋白質の画分を透析す る際に、 透析内液にトロンビン等の限定分解型プロテアーゼを作用させることに より、 目的蛋白質とシャぺ口ニンサブユニットとを切り離すことができる。 なお、 本発明の融合蛋白質を目的に応じてそのまま用いる場合は、 プロテアーゼ等の切 断配列を介在させなくともよい。  In addition, the cleavage sequences of limited proteases such as thrombin, enterokinase, and activated blood coagulation factor 1 ° C are linked to the junction between the ninja ninsubunit and the target protein, and to the ninja subnin subunit. By arranging them at the site, it becomes possible to cut out the target protein from the fusion protein using these limited-degradation-type proteases. In this case, when the fraction of the fusion protein collected as described above is dialyzed, the target protein and the saccharin nin subunit are treated by allowing a limited degradation protease such as thrombin to act on the inner dialysis solution. And can be separated. When the fusion protein of the present invention is used as it is according to the purpose, it is not necessary to intervene a cleavage sequence such as a protease.
透析後、 イオン交換クロマトグラフィーや疎水クロマトグラフィー又は抗体を 用いるァフィニィテイクロマトグラフィ一に供することによって、 容易に高純度 の目的蛋白質を回収することが可能である。  After dialysis, high-purity target protein can be easily recovered by subjecting it to ion exchange chromatography, hydrophobic chromatography, or affinity chromatography using an antibody.
上記目的蛋白質にメチォェン残基が存在しない場合には、 シャぺロニンサブュ ニットと目的蛋白質との連結部にメチォニン残基を存在させることにより、 C N B rによって容易に目的蛋白質をシャぺ口ニンから切り出し、 遊離させることが できる。  When the target protein does not have a methionine residue, the target protein is easily cut out from the spheroid by CNB r by allowing the methionine residue to be present at the junction between the chaperonin subunit and the target protein, Can be released.
上記目的蛋白質の回収のみが目的である場合は、 融合蛋白質は必ずしも均一に 精製する必要はなく、 粗精製サンプルに E D T A処理を施した後、 プロテアーゼ を作用させ、 目的蛋白質に応じた精製操作を施せば良い。 上記目的蛋白質にメチ ォニンが存在しないであって、 シャぺロニンサプユニットと目的蛋白質の間にメ チォニンを存在させた場合は、 シャぺ口ニンサブュエツトと目的蛋白質とを C N If the only purpose is to recover the target protein, the fusion protein does not necessarily need to be purified uniformly.After subjecting the crudely purified sample to EDTA treatment, protease is allowed to act, and the purification procedure is performed according to the target protein. Good. If methionine is not present in the target protein and methionine is present between the chaperonin sap unit and the target protein, the cinnamon ninsubette and the target protein are converted to C N
B rによって切断することができるので、 融合蛋白質を E D T A処理及び透析す るという操作は必要ない。 Since it can be cleaved by Br, the steps of EDTA treatment and dialysis of the fusion protein are not required.
上述のようにして融合蛋白質を合成することにより、 宿主細胞質可溶性画分に 融合蛋白質を産出させ、 そこから目的蛋白質のみを取り出す組み換え目的蛋白質 の生産方法もまた、 本発明の 1つである。 By synthesizing the fusion protein as described above, the soluble fraction in the host cytoplasm A method for producing a recombinant target protein, which produces a fusion protein and extracts only the target protein therefrom, is also one of the present invention.
上記目的蛋白質が膜結合性蛋白質又は膜貫通性蛋白質である場合には、 目的蛋 白質とシャぺ口ニンサブュニットとを切り離すことによって目的蛋白質が不溶化 することもあるが、 この場合は、 不溶化物のみを遠心分離によって回収した後、 疎水性アルキル鎖がォクチル (炭素数 8) からドデシル (炭素数 1 2) 程度の長 さである非ィォン性界面活性剤等を用いると、 ミセルの直径がほぼ生体膜の厚さ に相応し、 可溶化しやすい。 このような非イオン性界面活性剤としては、 例えば、 β一オタチルダノレコシド、 T r i t o n X- 100, No n i d e t P - 4 0、 Tw e e n 20等が挙げられる。  When the target protein is a membrane-bound protein or a transmembrane protein, the target protein may be insolubilized by separating the target protein from the ninnin unit, but in this case, only the insoluble material is removed. After recovery by centrifugation, if a non-ionic surfactant with a hydrophobic alkyl chain length of about octyl (8 carbon atoms) to dodecyl (12 carbon atoms) is used, the micelle diameter will be almost It is easy to solubilize according to its thickness. Examples of such a nonionic surfactant include β-otatildanorecoside, Triton X-100, Nonidet P-40, Tween 20, and the like.
本発明によれば、 目的蛋白質をシャぺ口ニンとの融合蛋白質として確実にシャ ぺロニンリングのキヤビティ内部に納めることにより、 目的蛋白質の宿主への毒 性の発現、 プロテアーゼによる分解及び封入体の形成の問題を解決し、 可溶性蛋 白質として大量発現させることができる。 また、 効率的に精製を行うことができ る。 発明を実施するための最良の形態  According to the present invention, expression of toxicity of a target protein to a host, degradation by a protease, and formation of an inclusion body are ensured by assembling the target protein as a fusion protein with a porcine nin in the cavity of the spheronin ring. By solving this problem, it can be expressed in large amounts as a soluble protein. Further, purification can be performed efficiently. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.
[実施例 1 ] [Example 1]
(Th e rmo c o c c u s KS— 1株シャぺ口-ン j3サブュ-ット連結体の 合成)  (ThermococcusKS KS—synthesis of 1 strain spliced j3 submit conjugate)
配列 1に示されたシャぺ口ニン iSサブユニット (TCP ]3) 遺伝子を Th e r mo c o c c u s K S— 1株ゲノムを铸型とする P C R (P o 1 ym e r a s e c h a i n r e a c t i o n) によってクローニングした。 TCP β遺伝 子が一方向に 1、 2、 3及び 4回連結した遺伝子断片が揷入された Τ 7プロモー ターを有する発現ベクター!) ETD (TCP J3) η (ηは 1〜4) を構築した ( 図 3) 。 各発現ベクターを大腸菌 B L 21 (DE 3) 株に導入し、 カルべニシリ ン (1 0 0 μ g/mL) を含む 2 XY. Τ. 培地 (パクトトリプトン 1 6 g、 酵 母エキス 1 0 g、 N a C 1 5 g /L) で 30°Cで 24時間培養し、 シャぺ口ニン サブユニット連結体を発現させた。 培養終了後、 回収した細胞を超音波で破砕 し、 遠心分離で上清を回収後、 SD S— PAGEによって分析を行った (図 4) 。 SD S— PAGEの結果から、 (TC P ]3) n (nは 1〜4) が細胞質の可溶性 画分に大量発現していることが確認できた。 The Shanin nin iS subunit (TCP) 3 gene shown in SEQ ID NO: 1 was cloned by PCR (Po1 ym erase chain reaction) using Thermococcus KS-1 strain genome as type III. An expression vector with a 7 promoter into which a gene fragment in which the TCP β gene is linked one, two, three and four times in one direction! ) We constructed ETD (TCP J3) η (η is 1 to 4) (Fig. 3). Each expression vector was introduced into Escherichia coli BL21 (DE3) strain, and XY. Medium (16 g of pactotryptone, 10 g of yeast extract, 15 g of NaC at 15 g / L) at 30 ° C for 24 hours Then, a conjugate of the Shahkou nin subunit was expressed. After completion of the culture, the collected cells were disrupted by sonication, the supernatant was recovered by centrifugation, and analyzed by SDS-PAGE (Fig. 4). From the results of SDS-PAGE, it was confirmed that (TCP) 3) n (n is 1 to 4) was overexpressed in the soluble fraction of the cytoplasm.
[実施例 2] [Example 2]
(T C P ^連結体の透過型電子顕微鏡による観察)  (Observation of T CP ^ linked body by transmission electron microscope)
p ETD (TC P β) 2及び p ETD (TC P j3) 4を M 1 u Iで切断後、 セ ルフライゲーションさせることによって、 TC P /3 2量体及び TC P β 4量体の C末端に 6残基のヒスチジンが付加された組み換え蛋白質を合成するための発現 ベクター p ETDH (TC P jS) 2及び p ETDH (TC P /3) 4を得た (図 3 参照) 。 本ベクターで B L 2 1 (DE 3) 株を形質転換した後、 実施例 1と同様 の条件でシャぺ口ニン j3サブュュット連結体を発現させた大腸菌抽出液を得た。 菌体抽出液を 5 m gZmLの蛋白質濃度で 7 5°Cで 3 0分間加熱処理を行い、 大 腸菌由来蛋白質の大部分を変性沈殿させた。 遠心分離によって上清を回収し、 二 ッケルキレートセファロースカラムにアプライした。 1 OmMィミダゾールを含 有する 5 0mM N a—リン酸緩衝液 (pH 7. 0) で充分にカラムを洗浄した 後、 5 0 0 mMィミダゾールを含有する同緩衝液で二ッケルキレートセファロー スに吸着した画分を溶出した。 溶出画分を SD S— PAGEで確認した結果、 T C P i3 2量体及び TC P 4量体が回収されていることがわかった。 得られた画 分を 5mM Mg C 1 2を含む 2 5mM T r i s— H C 1緩衝液 ( p H 7. 5 ) に対して透析した後、 透析内液を T SKg e l S u p e r Q- 5 PWカラム (トーソ一社製) によるァニオン交換クロマトグラフィーによって分離し、 TC P β 2量体及び T C Ρ β 4量体をそれぞれ均一に精製した。 Cleavage of pETD (TCPβ) 2 and pETD (TCPj3) 4 with M1uI followed by self-ligation yields the C-terminal of TCP / 3 dimer and TCPβ tetramer. Thus, expression vectors p ETDH (TC P jS) 2 and p ETDH (TC P / 3) 4 for synthesizing a recombinant protein having 6 residues of histidine added thereto were obtained (see FIG. 3). After transforming the BL21 (DE3) strain with this vector, an Escherichia coli extract in which a Shapachinin j3 submit conjugate was expressed was obtained under the same conditions as in Example 1. The cell extract was subjected to heat treatment at 75 ° C for 30 minutes at a protein concentration of 5 mgZmL to denature and precipitate most of the E. coli-derived proteins. The supernatant was recovered by centrifugation and applied to a nickel chelate Sepharose column. 1 After thoroughly washing the column with 50 mM Na-phosphate buffer (pH 7.0) containing OmM imidazole, transfer to nickel-chelated sepharose with the same buffer containing 500 mM imidazole. The adsorbed fraction was eluted. As a result of confirming the eluted fraction by SDS-PAGE, it was found that TCP i3 dimer and TCP tetramer were recovered. The obtained fraction was dialyzed against 2 5mM T ris- HC 1 buffer containing 5mM Mg C 1 2 (p H 7. 5), the internal dialysate T SKg el S uper Q- 5 PW column Separation was performed by anion exchange chromatography using a Toso (manufactured by Toso), and the TCPβ dimer and TC TCβ tetramer were uniformly purified.
それぞれの精製標品に対して、 0. 2%酢酸ゥラニルによるネガティブ染色を施 し、 透過型電子顕微鏡によって形態を観察した結果、 図 5に示すようにともに直 径約 1 5 nmのシャぺ口ニン特有のリング構造を形成していた。 この結果から、 TC P βはサブュニット間を連結させても各分子が集合し、 シャぺ口ニン特有の リング構造を形成することがわかった。 TC P 2量体は 4分子集合して 1個の リングを形成し、 TCP 34量体は 2分子集合してリング 1個を形成するものと 考えられる。 Each purified sample was negatively stained with 0.2% peranyl acetate, and the morphology was observed with a transmission electron microscope. A ring structure unique to nin was formed. from this result, It was found that even if TPPβ was connected between the subunits, each molecule was aggregated to form a ring structure unique to Shadinin. It is considered that four molecules of TCP dimer assemble to form one ring, and that of TCP 34-mer as two molecules to form one ring.
[実施例 3] [Example 3]
(T C P i34量体と HB s抗原との融合蛋白質の合成)  (Synthesis of fusion protein of TCP i34mer and HBs antigen)
配列 2に示された B型肝炎ウィルス表面抗原 (HB s抗原) 遺伝子に対して、 P C Rによって、 5 ' 末端に S p e Iサイトを、 3 ' 末端に H p a Iサイトを設 け、 S p e I及び Hp a I処理が施された; p ETDH (TCP ) 4に導入し、 TCP |34量体と C末端に 6残基のヒスチジンが導入された HB s抗原との融合 蛋白質を合成するための発現ベクター p ETDH (TCP J3) 4 · HB sを構築 した。 本ベクターで BL 21 (DE 3) 株を形質転換した後、 実施例 1と同様の 条件で融合蛋白質を合成させた。 大腸菌破砕物の可溶性画分を SDS— PAGE によって分離後、 クマシ一プリラントブルー染色によって分析した結果、 融合蛋 白質に相当するサイズのバンドが検出された (図 4) 。 また、 SDS— PAGE 後、 ブロッテイングメンブランに転写し、 抗 HB s抗原ポリクローナル抗体を用 いてウェスターンプロッティングを行った結果、 T C P ;34量体のみを発現させ た大腸菌抽出液では陰性であつたが、 融合蛋白質を合成させた大腸菌の抽出液で のみ、 そのサイズ (約 260KD a) に相当する陽性バンドが検出された。 この ことから HB s抗原が TCP ]34量体との融合蛋白質として大腸菌の可溶性画分 に発現することがわかった。 HB s抗原単独での発現実験では、 大腸菌の可溶性 画分も沈殿画分も同様のウェスターンプロッティングで陰性であった。 (組み換え HB s抗原の精製)  For the hepatitis B virus surface antigen (HBs antigen) gene shown in SEQ ID NO: 2, a SpeI site was set at the 5 'end and an HpaI site was set at the 3' end by PCR. And HpaI treated; to synthesize a fusion protein of pETDH (TCP) 4 and a fusion protein of TCP | 34-mer and HBs antigen with 6-residue histidine at the C-terminus. An expression vector pETDH (TCP J3) 4 · HBs was constructed. After transforming the BL21 (DE3) strain with this vector, a fusion protein was synthesized under the same conditions as in Example 1. After separating the soluble fraction of Escherichia coli by SDS-PAGE and analyzing by Coomassie propriant blue staining, a band corresponding to the size of the fusion protein was detected (Fig. 4). After SDS-PAGE, the DNA was transferred to a blotting membrane and subjected to Western plotting using an anti-HBs antigen polyclonal antibody. As a result, an E. coli extract expressing only TCP; 34-mer was negative. However, a positive band corresponding to the size (about 260 KDa) was detected only in the extract of E. coli in which the fusion protein was synthesized. This indicates that the HBs antigen is expressed in the soluble fraction of Escherichia coli as a fusion protein with the TCP] 34-mer. In the expression experiment using the HBs antigen alone, the soluble fraction and the precipitated fraction of Escherichia coli were negative by the same Western plotting. (Purification of recombinant HB s antigen)
実施例 2と同様にして、 ニッケルキレートカラムによって融合蛋白質を回収し、 透析によってイミダゾールを除いた後、 5mM Mg C 1 2を含む展開液を用い る TSKg e l S u p e r Q— 5 PWカラムによるァ-オン交換クロマトグラ フィ一によつて、 TCP |34量体と HB s抗原との融合蛋白質を精製した。 また、 抗 HB s抗原ポリクローナル抗体を用いたウェスターンプロッティングによって HB s抗原が存在することを確認した。 得られた融合蛋白質を透過型電子顕微鏡 によって観察した結果、 シャぺ口ニン特有のリング構造を形成していた。 このこ とから融合蛋白質が 2分子集合してリング構造を形成するものと考えられた。 回 収された画分を ImM EDTA- 2 N a (エチレンジァミン四酢酸■ニナトリ ゥム) 存在下でインキュベーションした後、 P r e S c i s s i o n p r o t e a s e (アマシャム ·フアルマシア ·バイオテック社製) を作用させ、 4°Cで —昼夜インキュベーションした。 生成した不溶物を遠心分離によって回収後、 1. 0% ;3—ォクチルダルコシドに溶解した。 得られた可溶化物中の HB s抗原を H B s抗原測定用 E I Aキット 「ェンザィグノスト一 HB s Ag m o n o c 1 o n a l」 (へキスト -ベーリングダイァグノスティック社製) によって検出した。 また、 ウェスターンブロッティンッグによって分析した結果約 25 k D aの HB s抗原に相当する分子量のバンドが特異的に検出された。 以上のことから組み換 え HB s抗原はシャぺ口ニンから限定分解型プロテアーゼによって切り出しが可 能であることがわかった。 また、 本実施例の発現法によって大腸菌培養液 1 L当 たり約 40mgの HB s抗原が可溶性画分に発現していることが推定できた。 In the same manner as in Example 2, the fusion protein was recovered by nickel chelate column after removal of the imidazole by dialysis, § by TSKg el S uper Q- 5 PW column Ru using the eluent containing 5 mM Mg C 1 2 - The fusion protein of the TCP | 34mer and the HBs antigen was purified by on-exchange chromatography. Also, The presence of HBs antigen was confirmed by Western plotting using an anti-HBs antigen polyclonal antibody. Observation of the obtained fusion protein with a transmission electron microscope revealed that it had formed a ring structure unique to Shadinin. This suggested that two molecules of the fusion protein were assembled to form a ring structure. The collected fraction was incubated in the presence of ImM EDTA-2 Na (ethylenediaminetetraacetate), treated with PreScissionprotease (Amersham-Pharmacia Biotech) at 4 ° C. In—incubated day and night. The resulting insolubles were recovered by centrifugation and then dissolved in 1.0%; 3-octyldarcoside. The HB s antigen in the obtained lysate was detected by an EIA kit for measurement of HB s antigen, "Enzygnost-1 HB s Ag monoc 1 onal" (manufactured by Hoechst-Bering GmbH). Further, as a result of analysis by Western blotting, a band having a molecular weight corresponding to HBs antigen of about 25 kDa was specifically detected. From the above, it was found that the recombinant HBsAg could be excised from Shanin by limited protease. Further, it was estimated that about 40 mg of HBsAg was expressed in the soluble fraction per 1 L of E. coli culture by the expression method of this example.
[実施例 4] [Example 4]
(シャぺロニン サブュニット数と HB s抗原数との比が 2 : 1の融合蛋白質と シャぺ口ニン J3サブユニット 2回連結体の共発現)  (Co-expression of a fusion protein with a 2: 1 ratio of the number of shaperonin subunits to the number of HB s antigens and the double linking of the shadinin J3 subunit)
実施例 2で作製された p ETDH (TC PN /3) 2 (アンピシリン耐性) より B g 1 I I及ぴ No t Iによる切断によって T 7プロモーターを含む (TCPN β ) 2の発現ユニットを回収した。 これを p AC YC 1 84プラスミド (日本ジ ーン社) へクローン化し、 pATH (TCPNi3) 2 (クロラムフエ-コール耐 性) を構築した。 p ETDH (T C PN j3) 2と pATH (TCPN]3) 2で大 腸菌を、 アンピシリン (100 μ g/mL) 及びクロラムフエ二コール (1 5 μ g/mL) 含む LB寒天培地にて形質転換し、 生育してきた 1 0コロニーを 2X YT液体培地 (バタ トトリプトン 16 g、 酵母エキス 10 g、 Na C 1 5 g/L ) に接種し、 アンピシリン (100 /x gZmL) 及ぴクロラムフエ-コール (3 4 μ g/mL) の存在下 3 0°Cで培養し一昼夜培養した。 An expression unit of (TCPNβ) 2 containing a T7 promoter was recovered from BET1 (TC PN / 3) 2 (ampicillin resistance) prepared in Example 2 by cleavage with Bg1II and NotI. This was cloned into pACYC184 plasmid (Nippon Gene) to construct pATH (TCPNi3) 2 (chloramphenecol resistant). Transform E. coli with p ETDH (TC PN j3) 2 and pATH (TCPN) 3 on LB agar medium containing ampicillin (100 μg / mL) and chloramphenicol (15 μg / mL) The grown 10 colonies were inoculated into 2X YT liquid medium (16 g of batatotryptone, 10 g of yeast extract, and 15 g / L of NaC), and ampicillin (100 / x gZmL) and chloramfeucol (3 (4 μg / mL) at 30 ° C and overnight.
得られた菌体から SDS— PAGEによつて蛋白質発現の確認を行つた結果、 約 145 kD aの融合蛋白質と約 1 20 kD aのシャぺ口ニン βサブュニットの 2量体が発現していることが確認できた。 また、 抗 HB s抗原ポリクロ ナル抗 体を用いるウェスターンブロッティングによって 145 KD a相当のパンドのみ が検出された。 大腸菌抽出液から、 実施例 2と同様にエッケルキレートカラムに よって融合蛋白質が含まれる画分を回収した。 更に透析によってイミダゾールを 除いた後、 TSKg e l S u p e r Q— 5 PWカラムによるァ-オン交換ク口 マトグラフィーを行い、 融合蛋白質が含まれる画分の精製を行った。 得られた蛋 白質を透過型電子顕微鏡によって観察した結果、 シャぺ口ニン特有のリング構造 を形成していた。 また、 コントロールとしてシャぺ口-ン ;3サブユニット数と H B s抗原数との比が 2 : 1の融合蛋白質のみを発現させた場合、 SDS— PAG Eとウェスターンプロッティングの結果から、 共発現法よりもはるかに発現量は 少ないと判断できた。 以上のことから、 シャぺロェン ;3サブユニット数と HB s 抗原数との比が 2 : 1の融合蛋白質とシャぺ口ニン ;3サブユニット 2回連結体は 互いに集合することによってリング構造を形成し、 HB s抗原をキヤビティ内部 に格納することによって HB s抗原を大量発現させることができるが、 融合蛋白 質のみでは立体障害によってリング構造の形成は難しく HB s抗原の大腸菌に対 する毒性が生じ、 発現に抑制がかかったと考えられる。 本実施例の発現法によつ て大腸菌培養液 1 L当たり約 7 Omgの HB s抗原が可溶性画分に発現している と推定できた。 本実施例の発現法のほうが、 TC P 4量体と HB s抗原との融 合蛋白質の合成 (実施例 3) よりも発現量は向上した。  As a result of confirming protein expression from the obtained cells by SDS-PAGE, a dimer of about 145 kDa fusion protein and about 120 kDa shadinin β-subunit was expressed. That was confirmed. In addition, Western blotting using an anti-HBs antigen polyclonal antibody detected only a band equivalent to 145 KDa. A fraction containing the fusion protein was collected from the E. coli extract using an Eckerl chelate column as in Example 2. Further, after removing imidazole by dialysis, an aion exchange chromatography using a TSKgel SuperQ-5 PW column was performed to purify a fraction containing the fusion protein. Observation of the obtained protein with a transmission electron microscope revealed that it had formed a ring structure unique to shahkonin. As a control, when only the fusion protein in which the ratio of the number of subunits to the number of 3 subunits to the number of HBs antigens was 2: 1 was expressed, the SDS-PAGE and Western plotting results It was determined that the expression level was much lower than in the expression method. From the above, the fusion protein with a ratio of 2: 1 between the number of subunits and the number of HB s antigens and the double-linkage of subunits with 3 subunits form a ring structure by assembling each other. HBsAg can be expressed in large amounts by forming and storing the HBsAg inside the cavity.However, with the fusion protein alone, it is difficult to form a ring structure due to steric hindrance. It is considered that the expression was suppressed. According to the expression method of this example, it was estimated that about 70 mg of HBs antigen was expressed in the soluble fraction per 1 L of E. coli culture solution. The expression level of the expression method of this example was higher than that of the fusion protein synthesis of TCP tetramer and HBs antigen (Example 3).
[実施例 5] [Example 5]
(T C Ρ ]34量体と HCVコア抗原との融合蛋白質の合成)  (Synthesis of fusion protein of T C Ρ] 34-mer and HCV core antigen)
配列 3に示された C型肝炎ウィルスコア抗原 (HCV c抗原) 遺伝子に対して、 P CRによって、 5 ' 末端に S p e Iサイトを、 3 ' 末端に Hp a Iサイトを設 け、 S p e I及び Hp a I処理が施された p ETDH (TCP ) 4に導入し、 TCP β 4量体と HCV c抗原との融合蛋白質を合成するための発現ベクター Ρ ETDH (TC P ]3) 4 - HCV cを構築した。 本ベクターで B L 21 (D E 3 ) 株を形質転換した後、 実施例 1と同様の条件で融合蛋白質を合成させた。 大腸 菌破砕物の可溶性画分を SDS— PAGEによつて分離後、 クマシ一プリラント ブルー染色によって分析した結果、 融合蛋白質に相当するサイズのバンドが検出 された (図 4) 。 また、 SDS— PAGE後、 プロッティングメンプランに転写 し、 抗 HCV c抗原モノクローナル抗体を用いてウェスターンプロッティングを 行った結果、 T C P 4量体のみを発現させた大腸菌抽出液では陰性であつたが、 融合蛋白質を合成させた大腸菌の抽出液ではそのサイズ (約 26 OKD a) に相 当する陽性パンドが検出された (図 6) 。 このことから HCVc抗原が TCP 4量体との融合蛋白質として大腸菌可溶性画分に発現することがわかった。 HC V c抗原単独での発現実験をコントロールとして行った結果、 大腸菌の沈殿画分 では同様のウェスターンプロッティングで陽性であつたが、 可溶性画分では陰性 であった。 このことから HCVc抗原は単独では全てが封入体として発現するが、 シャぺ口-ン サブュニット 4量体との融合蛋白質として可溶性画分に発現させ ることができることがわかった。 実施例 3と同様にニッケルキレートカラム及び TSKg e l S u p e r Q_ 5 PWカラムによって融合蛋白質を精製した。 得 られた融合蛋白質を透過型電子顕微鏡によって観察した結果、 シャぺ口ニン特有 のリング構造を形成していた。 このことから融合蛋白質が 2分子集合してリング 構造を形成するものと考えられた。 回収された画分を ImM EDTA- 2N a 存在下でインキュベーションした後、 50mM K—リン酸緩衝液 (p H7. 0 ) に対して透析を行った。 透析内 ί夜に P r e s c i s s i o n p r o t e a s e (アマシャム 'フアルマシア 'バイオテック社製) を作用させ、 4°Cで一昼夜 ィンキュベーションした。 その後、 反応液を T SKg e l S u p e r Q- 5 P Wカラムによって分画した。 各画分の蛋白質を 96穴マイクロタイタープレート にコートした後、 牛血清アルブミンでブロッキングを施し、 PB S— T緩衝液 ( 10 mM N a—リン酸緩衝液 p H 7. 5、 0. 8 %塩化ナトリウム、 0. 05 %Twe e n 20) で 3回洗浄した。 次に、 P B S— T緩衝液で希釈したヒ ト陽 性血清又はヒ ト陰性血清を加え反応させた。 PB S— T緩衝液で洗浄後、 ペルォ キシダーゼ標識ヒト I gG抗体を作用させた。 反応終了後、 PB S— T 衝液で 4回洗浄し、 フ 二ルジァミン及び過酸化水素を含む基質発色液を加え反応させ た。 4 N硫酸添加によって反応を止めた後、 4 9 0 nmにおける吸収を測定した。 検出された H C V c抗原陽性画分を SD S— PAGEによって分析した結果、 ほ ぼ均一な約 2 2 k D aの HCV c抗原が精製されたことがわかった。 以上のこと から組み換え HCV c抗原はシャぺ口ニンから限定分解型プロテアーゼによって 切り出しが可能であることがわかった。 また、 本実施例の発現法によって大腸菌 培養液 1 L当たり約 8 0m gの HCV c抗原が可溶性画分に発現していることが 推定できた。 [実施例 6 ] For the hepatitis C virus core antigen (HCV c antigen) gene shown in SEQ ID NO: 3, a SpeI site was set at the 5 'end and an HpaI site was set at the 3' end by PCR. introduced into p ETDH (TCP) 4 that I and Hp a I-processed, TCP beta 4 expression vectors for the synthesis of a fusion protein with dimer and HCV c antigen Ρ ETDH (TCP) 3) 4-HCV c was constructed. After transforming the BL21 (DE3) strain with this vector, a fusion protein was synthesized under the same conditions as in Example 1. After separating the soluble fraction of the E. coli crushed product by SDS-PAGE and analyzing it by Coomassie-Prirant blue staining, a band corresponding to the fusion protein was detected (Fig. 4). After SDS-PAGE, the DNA was transcribed into a plotting membrane plan and subjected to Western plotting using an anti-HCV c antigen monoclonal antibody. As a result, an E. coli extract expressing only the TCP tetramer was negative. However, in the E. coli extract from which the fusion protein was synthesized, a positive band corresponding to its size (about 26 OKD a) was detected (Fig. 6). This indicated that the HCVc antigen was expressed in the soluble fraction of Escherichia coli as a fusion protein with the TCP tetramer. As a result of performing an expression experiment using HC Vc antigen alone as a control, the precipitated fraction of Escherichia coli was positive by the same Western plotting, but the soluble fraction was negative. This indicates that the HCVc antigen alone is all expressed as an inclusion body, but can be expressed in the soluble fraction as a fusion protein with the Sharp mouth subunit tetramer. The fusion protein was purified using a nickel chelate column and a TSKgel Super Q_5 PW column in the same manner as in Example 3. Observation of the obtained fusion protein with a transmission electron microscope revealed that it had formed a ring structure unique to Shaguchinin. This suggests that two molecules of the fusion protein aggregate to form a ring structure. The collected fraction was incubated in the presence of ImM EDTA-2Na, and then dialyzed against a 50 mM K-phosphate buffer (pH 7.0). During dialysis, Prescissionprotease (Amersham 'Pharmacia' Biotech) was allowed to act on it overnight, followed by incubating overnight at 4 ° C. Thereafter, the reaction solution was fractionated by a T SKgel Super Q-5 PW column. After coating the protein of each fraction on a 96-well microtiter plate, blocking was performed with bovine serum albumin, and PBS-T buffer (10 mM Na-phosphate buffer pH 7.5, 0.8% Washed three times with sodium chloride, 0.05% Tween 20). Next, human positive serum or human negative serum diluted with PBS-T buffer was added and reacted. After washing with PBS-T buffer, a peroxidase-labeled human IgG antibody was allowed to act. After the reaction is complete, use PBS-T After washing four times, a substrate color developing solution containing furdiamine and hydrogen peroxide was added and reacted. After stopping the reaction by adding 4 N sulfuric acid, the absorption at 490 nm was measured. Analysis of the detected HCV c antigen-positive fraction by SDS-PAGE revealed that almost uniform HCV c antigen of approximately 22 kDa was purified. From the above, it was found that the recombinant HCV c antigen can be excised from Shanin by a limited protease. Further, it was estimated that about 80 mg of HCV c antigen was expressed in the soluble fraction per 1 L of E. coli culture by the expression method of this example. [Example 6]
(T C P β 4量体と抗リゾチーム s c F V抗体との融合蛋白質の合成) 配列 4に示されたマウス由来抗-ヮトリリゾチーム単鎖抗体 (抗 HE L— s i n g l e c h a i n F v抗体: H s c F V) 遺伝子に対して、 P C Rによつ て、 5 ' 末端に S p e Iサイトを、 3 ' 末端に H p a Iサイトを設け、 S p e I 及び Hp a I処理が施された p ETDH (T C P ]3 ) 4に導入し、 T C P |3 4量 体と H s c FVとの融合蛋白質を合成するための発現ベクター p ETDH (T C P j3 ) 4 ■ H s c F Vを構築した。 本ベクターで B L 2 1 (D E 3) 株を形質転 換した後、 実施例 1と同様の条件で融合蛋白質を合成させた。 大腸菌破砕物の可 溶性画分を S D S— PAGEによつて分離後、 クマシーブリラントブルー染色に よって分析した結果、 融合蛋白質に相当するサイズのバンドが検出された。 また、 SD S— PAGE後、 ブロッテイングメンブランに転写し、 6残基のヒスチジン 残基を認識する抗体である抗 6 H I sモノクローナル抗体を用いてウェスターン プロッティングを行った結果、 T C P ]3 4量体のみを発現させた大腸菌抽出液で は陰性であつたが、 融合蛋白質を合成させた大腸菌の抽出液ではそのサイズ (約 2 6 5 KD a ) に相当する陽性バンドが検出された。 このことから H s c FVが TC P ^ 4量体との融合蛋白質として大腸菌可溶性画分に発現することがわかつ た。 H s c FV単独での発現実験をコントロールとして行った結果、 大腸菌の沈 殿画分では同様のウェスターンプロッティングで陽性であつたが、 可溶性画分で は陰性であった。 このことから H s c FVは単独では全てが封入体として発現す るが、 シャぺ口ニン サブュニット 4量体との融合蛋白質として可溶性画分に発 現させることができることがわかった。 また、 本実施例の発現法によって大腸菌 培養液 1 L当たり約 7 5 m gの H s c F Vが可溶性画分に発現していることが推 定できた。 (Synthesis of fusion protein between TCP β tetramer and anti-lysozyme sc FV antibody) For the mouse-derived anti- ヮ trilysozyme single chain antibody (anti-HEL-singlechain Fv antibody: Hsc FV) gene shown in SEQ ID NO: 4 Then, by PCR, a SpeI site was provided at the 5 'end and an HpaI site was provided at the 3' end, and pETDH (TCP] 3) 4 treated with SpeI and HpaI was used. Then, an expression vector p ETDH (TCP j3) 4 ■ H sc FV for synthesizing a fusion protein of the TCP | 34 tetramer and H sc FV was constructed. After transforming the BL21 (DE3) strain with this vector, a fusion protein was synthesized under the same conditions as in Example 1. The soluble fraction of the disrupted E. coli was separated by SDS-PAGE and analyzed by Coomassie Brilliant Blue staining. As a result, a band having a size corresponding to the fusion protein was detected. After SDS-PAGE, the DNA was transferred to a blotting membrane and subjected to Western plotting using an anti-6HIs monoclonal antibody, an antibody that recognizes six histidine residues. A positive band corresponding to the size (about 265 KDa) was detected in the E. coli extract in which the fusion protein was synthesized, while the E. coli extract in which only the monomer was expressed was negative. This indicated that Hsc FV was expressed in the soluble fraction of Escherichia coli as a fusion protein with the TCP ^ tetramer. As a result of an expression experiment using Hsc FV alone as a control, the precipitated fraction of E. coli was positive by the same Western plotting, but the soluble fraction was negative. From this, all of Hsc FV alone are expressed as inclusion bodies. However, it was found that it can be expressed in the soluble fraction as a fusion protein with the Shaman nin subunit tetramer. Also, it was estimated that about 75 mg of Hsc FV was expressed in the soluble fraction per 1 L of E. coli culture by the expression method of this example.
[実施例 7] [Example 7]
(T C P β 4量体とヒ ト由来抗体重鎖定常領域との融合蛋白質の合成) 配列 5に示されたヒ ト由来抗体重鎖定常領域 (Ab HC) 遺伝子に対して、 P C Rによって、 5 ' 末端に S p e Iサイトを、 3 ' 末端に Hp a Iサイ トを設け、 S p e I及び Hp a I処理が施された p ETDH (T C P ]3 ) 4に導入し、 T C P β 4量体と A b HCとの融合蛋白質を合成するための発現ベクター p ETDH (T C P β) 4 ■ Ab HCを構築した。 本ベクターで B L 2 1 (DE 3) 株を形 質転換した後、 実施例 1と同様の条件で融合蛋白質を合成させた。 大腸菌破碎物 の可溶性画分を SD S— PAGEによって分離後、 クマシ一プリラントブルー染 色によって分析した結果、 融合蛋白質に相当するサイズのバンドが検出された ( 図 4) 。 また、 SD S— PAGE後、 プロッティングメンブランに転写し、 ヒ ト 由来抗体の F c領域を認識する抗体である抗ヒ ト I g G_ F c抗体を用いてゥェ スターンプロッティングを行った結果、 TC P 4量体のみを発現させた大腸菌 抽出液では陰性であつたが、 融合蛋白質を合成させた大腸菌の抽出液ではそのサ ィズ (約 2 7 0 KD a ) に相当する陽性バンドが検出された (図 7) 。 このこと から A b HCが TC P <3 4量体との融合蛋白質として大腸菌可溶性画分に発現す ることがわかった。 A b HC単独での発現実験をコントロールとして行った結果、 大腸菌の可溶性画分及ぴ沈殿画分の両方で、 同様のウェスターンプロッティング で陰性であった。 このことから A b H C単独では大腸菌ではほとんど発現しない 、 シャぺ口ニン サブユニット 4量体との融合蛋白質として可溶性画分に発現 させることができることがわかった。 また、 本実施例の発現法によって大腸菌培 養液 1 L当たり約 7 5m gの A b HCが可溶性画分に発現していることが推定で きた。 [実施例 8 ] (Synthesis of fusion protein of TCP β tetramer and human-derived antibody heavy chain constant region) The human-derived antibody heavy chain constant region (AbHC) An SpeI site at the end and an HpaI site at the 3 'end were introduced into pETDH (TCP) 3) 4 treated with SpeI and HpaI, and a TCP β tetramer was introduced. An expression vector pETDH (TCPβ) 4 4AbHC for synthesizing a fusion protein with AbHC was constructed. After transforming the BL21 (DE3) strain with this vector, a fusion protein was synthesized under the same conditions as in Example 1. After separating the soluble fraction of Escherichia coli by SDS-PAGE and analyzing by Coomassie propriant blue staining, a band corresponding to the fusion protein was detected (Fig. 4). In addition, after SDS-PAGE, the results were transferred to a plotting membrane and subjected to pattern plotting using an anti-human IgG_Fc antibody, which is an antibody that recognizes the Fc region of a human-derived antibody. However, a positive band corresponding to the size (about 270 KDa) was found in the E. coli extract in which only the TCP tetramer was expressed, while the E. coli extract in which the fusion protein was synthesized had a negative value. Detected (Figure 7). This indicated that Ab HC was expressed in the soluble fraction of Escherichia coli as a fusion protein with TCP <34 tetramer. As a result of performing an expression experiment using Ab HC alone as a control, both the soluble fraction and the precipitated fraction of E. coli were negative in the same Western plotting. From this, it was found that Ab HC alone was hardly expressed in Escherichia coli, but could be expressed in the soluble fraction as a fusion protein with the Shadin nin subunit tetramer. In addition, it was estimated that about 75 mg of AbHC was expressed in the soluble fraction per liter of the E. coli culture solution by the expression method of this example. [Example 8]
(大腸菌シャぺ口ニン G r o E L連結体の発現)  (Expression of Escherichia coli Shanin N-GroEL conjugate)
配列 6に示された大腸菌シャぺ口ニン G r o EL遺伝子を、 大腸菌 K 1 2株ゲ ノムを铸型とする P CRによってクローユングした。 Gr o EL遺伝子が一方向 に 1、 2、 3、 4、 5、 6及ぴ 7回連結した遺伝子断片が挿入された t r cプロ モーターを有する発現ベクター p T r (Gr o E) n (nは 1〜7) を構築した (図 8) 。 各発現ベクターを大腸菌 B L 21 (DE 3) 株に導入し、 カルべニシ リン (100 g/mL) を含む 2XY. T. 培地 (バタ トトリプトン 16 g、 酵母エキス 10 g、 N a C 1 5 g/L) で 25 °Cで 24時間培養し、 シャぺ口- ンサブユニット連結体を発現させた。 培養終了後、 細胞を回収し超音波で破碎し た。 遠心分離で上清を回収後、 SD S— PAGEによって分析した結果、 (G r o E) n (nは 1〜7) が可溶性画分に大量発現していることが確認できた ( 図 9) 。 組み換え (G r o E) 7を、 回収した大腸菌抽出液から D E A E—セフ ァロース、 TSKg e l S u p e r Q— 5 PW及ぴゲル濾過によって精製した。 得られた精製標品を透過型電子顕微鏡によって観察した結果、 シャぺ口ニン特有 のリング構造が観察された。 このことから、 大腸菌シャぺ口ニン G r o E Lは全 てのサブユエットを連結しても 7回回転対称構造は維持されることがわかった。  The Escherichia coli Shaguchinin GroEL gene shown in SEQ ID NO: 6 was cloned by PCR using the Escherichia coli K12 strain genomic as type III. An expression vector pT r (Gro E) n (n is an expression vector having a trc promoter into which a gene fragment in which the Gro EL gene is linked in one direction 1, 2, 3, 4, 5, 6, and 7 times is inserted. 1 to 7) (Fig. 8). Each expression vector was introduced into Escherichia coli BL 21 (DE 3) strain, and 2XY.T. medium containing carbenicillin (100 g / mL) (batat tryptone 16 g, yeast extract 10 g, NaC 15 g) / L) at 25 ° C for 24 hours to express a lipase-subunit conjugate. After completion of the culture, the cells were collected and disrupted by ultrasonication. After collecting the supernatant by centrifugation and analyzing by SDS-PAGE, it was confirmed that (GroE) n (n is 1 to 7) was overexpressed in the soluble fraction (Figure 9). . Recombinant (GroE) 7 was purified from the recovered E. coli extract by DEAE-Sepharose, TSKgelSuperQ-5PW and gel filtration. As a result of observing the obtained purified sample with a transmission electron microscope, a ring structure peculiar to Shaguchinin was observed. From this, it was found that the Escherichia coli Shaguchinin GroEL maintains the 7-fold rotationally symmetric structure even when all the subunits are connected.
[実施例 9 ] [Example 9]
(大腸菌シャぺ口ニン G r o E L 7回連結体とヒ トインターフェロンとの融合蛋 白質の合成)  (Synthesis of fusion protein of Escherichia coli Shanin N Gro 7 times conjugate and human interferon)
配列 7に示されたヒトインターフェロン α 2 b ( I NF) 遺伝子に対して、 P CRによって、 5 ' 末端に Nh e Iサイトを、 3 ' 末端に Xh o Iサイトを設け、 Nh e I及ぴ Xh o I処理が施された p T r (G r o E) 7に導入し、 Gr o E L 7回連結体と I NFとの融合蛋白質を合成するための発現ベクター: p T r (G r o E) 7 · I NFを構築した。 本発現ベクターを大腸菌 BL 21 (DE 3) 株 に形質転換した後、 実施例 8と同様の条件で融合蛋白質の合成を行った。 コント ロールとして p T r (G r o E) 7を用いた発現及ぴ I N F単独の発現も行った。 各大腸菌抽出液の上清と沈澱画分とを SDS— PAGEによつて分離した後、 ブ 口ッティングメンブランに転写し、 抗 I NFポリクローナル抗体を用いてウェス ターンブロッテイングを行った。 その結果、 pT r (G r oE) Ί · I NF保持 の大腸菌抽出液サンプルのみが可溶性画分に融合蛋白質の分子量 (250〜26 O D a) に相当する位置に強くバンドが検出された。 I NF単独での発現では 大部分が不溶性画分に生産されていることがわかった。 以上のことから、 I NF は大腸菌 G r o EL 7回連結体との融合蛋白質として発現させることで、 可溶性 蛋白質として発現することがわかった。 pT r (G r o E) 7 ' I NFが含まれ る大腸菌抽出液から塩析、 DEAE—セファロース及び T SK g e 1 S u p e r Q— 5 PWカラムによるァニオン交換クロマトグラフィー、 並びに、 S u p e r o s e 6 (アマシャム■フアルマシア 'バイオテック社製) によるゲルろ過に よって、 融合蛋白質を精製した。 得られた精製標品を透過型電子顕微鏡によって 観察した結果、 シャぺ口ニン特有のリング構造が観察された。 以上のことから、 I NFは G r o ELのキヤビティ内部に 1分子ごとに格納されることによって可 溶性画分に発現したと考えられる。 For the human interferon α2b (INF) gene shown in SEQ ID NO: 7, a NheI site was provided at the 5 ′ end and an XhoI site was provided at the 3 ′ end by PCR, and NheI and An expression vector for synthesizing a fusion protein of a GrO EL 7-fold conjugate and INF by introducing it into pTr (GroE) 7 that has been treated with XhoI: pTr (GroE ) 7 · INF was constructed. After transforming this expression vector into Escherichia coli strain BL21 (DE3), a fusion protein was synthesized under the same conditions as in Example 8. Expression using pTr (GroE) 7 as a control and expression of INF alone were also performed. After separating the supernatant and precipitate fraction of each E. coli extract by SDS-PAGE, The DNA was transferred to a mouth setting membrane and subjected to Western blotting using an anti-INF polyclonal antibody. As a result, only the E. coli extract sample having pT r (G ro E) Ί · I NF showed a strong band in the soluble fraction at a position corresponding to the molecular weight of the fusion protein (250 to 26 OD a). It was found that most of the expression of INF alone was produced in the insoluble fraction. From the above, it was found that IFN was expressed as a soluble protein when expressed as a fusion protein with the Escherichia coli Gro EL seven-fold conjugate. Salting out of E. coli extract containing pT r (Gro E) 7 'I NF, anion exchange chromatography using DEAE-Sepharose and TSKge 1 Super Q-5 PW columns, and Superose 6 (Amersham) ■ The fusion protein was purified by gel filtration using Pharmacia (Biotech). As a result of observing the obtained purified sample with a transmission electron microscope, a ring structure peculiar to Shaguchinin was observed. From the above, it is considered that INF was expressed in the soluble fraction by being stored for each molecule inside the cavities of the Gro EL.
[実施例 1 0] [Example 10]
(大腸菌シャぺ口ニン G r o E L 7回連結体とセロトニンレセプターとの融合蛋 白質の合成) ·  (Synthesis of fusion protein of Escherichia coli Shanin N Gro 7 times conjugate and serotonin receptor)
配列 8に示されたヒトセロトニンレセプター (5HT 1A) 遺伝子に対して、 PCRによって、 5, 末端に Nh e Iサイトを、 3, 末端に X h o Iサイトを設 け、 Nh e I及び Xh o I処理が施された p T r (G r o E) 7に導入し、 G r o E L 7回連結体と 5 HT 1 Aとの融合蛋白質を合成するための発現ベクター p T r (G r o E) 7 ■ 5 HT 1 Aを構築した。 本ベクターを大腸菌 B L 21 (D E 3) 株に形質転換した後、 実施例 8と同様の条件で融合蛋白質の合成を行った。 コントロールとして pT r (G r o E) 7を用いた発現及び 5 H T 1 A単独の発 現も行った。 各大腸菌抽出液の上清と沈澱画分とを SDS— PAGEによって分 離した後、 ブロッテイングメンブランに転写し、 抗 5HT 1 Aポリクローナル抗 体を用いてウェスターンブロッテイングを行った。 その結果、 T r (Gr o E ) 7 ■ 5 HT 1 Aを保有する大腸菌の抽出液サンプルのみから、 可溶性画分に融 合蛋白質の分子量 (約 280KD a) に相当する位置に強くバンドが検出された。 5 HT 1 A単独での発現では可溶性画分にも不溶性画分にも相当サイズのバンド は検出されなかった。 以上のことから、 5 HT 1 Aは単独では大腸菌で発現する ことはできないが、 G r o E L 7回連結体との融合蛋白質として発現させること で、 可溶性蛋白質として発現することがわかった。 p T r (G r o E) 7 ■ 5 H T 1 Aを保有する大腸菌の抽出液から、 塩析、 DEAE—セファロース及び T S K g e 1 S u p e r Q- 5 PW"カラムによるァニオン交換クロマトグラフィー、 並びに、 S u p e r o s e 6 (アマシャム 'フアルマシア 'バイオテック社製) によるゲルろ過によって、 融合蛋白質を精製した。 得られた精製標品を透過型電 子顕微鏡によって観察した結果、 シャぺ口ニン特有のリング構造が観察された。 以上のことから、 5HT 1 Aは G r o E Lのキヤビティ内部に 1分子ごとに格納 されることによって可溶性画分に合成されたと考えられる。 For the human serotonin receptor (5HT1A) gene shown in SEQ ID NO: 8, a NheI site was set at the 5 'end and a XhoI site at the 3' end by PCR, and NheI and XhoI An expression vector pTr (GroE) 7 which is introduced into the treated pTr (GroE) 7 and synthesizes a fusion protein of 7HT-linked GroEL and 5HT1A. ■ 5HT1A was constructed. After transforming this vector into Escherichia coli BL21 (DE3), a fusion protein was synthesized under the same conditions as in Example 8. As a control, expression using pT r (GroE) 7 and expression of 5HT 1A alone were also performed. After separating the supernatant and the precipitated fraction of each E. coli extract by SDS-PAGE, they were transferred to a blotting membrane, and subjected to Western blotting using an anti-5HT1A polyclonal antibody. As a result, a soluble fraction was obtained from only the E. coli extract sample containing T r (Gro E) 7 ■ 5HT1A. A strong band was detected at a position corresponding to the molecular weight of the synthesized protein (about 280 kDa). No significant size band was detected in the soluble or insoluble fractions in the expression of 5HT1A alone. From the above, it was found that 5HT1A cannot be expressed alone in Escherichia coli, but can be expressed as a soluble protein by expressing it as a fusion protein with the GroEL seven-fold conjugate. p T r (G ro E) 7 ■ Salt extraction, Anion exchange chromatography using DEAE-Sepharose and TSK ge 1 Super Q-5 PW "columns, and S The fusion protein was purified by gel filtration using uperose 6 (Amersham 'Pharmacia' Biotech), and the resulting purified sample was observed with a transmission electron microscope, revealing a ring structure unique to Sharpinin. Based on the above, it is considered that 5HT 1A was synthesized into a soluble fraction by being stored in a molecule of the Gro EL for each molecule.
[実施例 1 1 ] [Example 11]
(無細胞翻訳系による (TCP ) 4と HB s抗原との融合蛋白質の合成) 無細胞翻訳のために、 TCP 34回連結体と HB s抗原との融合蛋白質をコー ドする遺伝子を含有する発現ベクター p I V (TC P |3) 4 ' HB sを構築した。 反応は、 通常無細胞翻訳系を構成する RNAポリメラーゼ、 リボゾーム、 ァミノ 酸、 ヌクレオチド、 アミノアシル t RN A合成酵素等を含む反応液に p I V (T CP β) 4 · HB sを添加し、 一定温度でインキュベーションすることにより行 つた。 反応終了後、 反応液からニッケルキレートクロマトグラフィー及び T s k g e l S u p e r Q- 5 PWカラムによって単一蛋白質にまで精製した。 精 製された融合蛋白質を透過型電子顕微鏡で観察した結果、 シャぺ口ニン特有のリ ング構造が見られた。 精製された融合蛋白質より、 実施例 3と同様に、 P r e S c i s s i o n p r o t e a s eで、 HB s抗原を切り出した後、 遠心分離に よって不溶性 HB s抗原を ーォクチルダルコシドによって可溶化させた。 本サ ンプルを SDS— PAGEに供した後、 抗 HB s抗原ポリクローナル抗体による ウェスターンプロッティングを行うと、 HB s抗原の分子量に相当する約 25 K D aのバンドが検出された。 HB s抗原単独で発現させた場合は、 同様に不溶性 画分に HB s抗原は蓄積したが、 一才クチルダルコシドによる可溶化は困難で あった。 以上のように、 (TCP j3) 4との融合蛋白質を用いる HB s抗原の合 成は無細胞翻訳系においても有効であった。 [実施例 1 2 ] (Synthesis of fusion protein between (TCP) 4 and HBs antigen by cell-free translation system) For cell-free translation, expression containing a gene encoding a fusion protein between TCP 34-fold conjugate and HBs antigen The vector pIV (TCP | 3) 4'HBs was constructed. The reaction is usually carried out by adding pIV (TCPβ) 4HBS to a reaction solution containing RNA polymerase, ribosomes, amino acids, nucleotides, aminoacyl-tRNA synthetase, etc. This was performed by incubating with. After completion of the reaction, the reaction solution was purified to a single protein by nickel chelate chromatography and a Tskgel Super Q-5 PW column. Observation of the purified fusion protein with a transmission electron microscope revealed a ring structure unique to Shahkonin. The HBs antigen was excised from the purified fusion protein using PreScissionprotease in the same manner as in Example 3, and then the insoluble HBs antigen was solubilized by octyldarcoside by centrifugation. After subjecting this sample to SDS-PAGE and performing Western plotting with an anti-HBs antigen polyclonal antibody, a band of about 25 KDa corresponding to the molecular weight of the HBs antigen was detected. Similarly insoluble when expressed with HBsAg alone Although HBs antigen accumulated in the fraction, it was difficult to solubilize it with one-year-old octyldarcoside. As described above, the synthesis of HBs antigen using a fusion protein with (TCP j3) 4 was also effective in a cell-free translation system. [Example 12]
(無細胞翻訳系による (G r o E) 7と 5 HT 1 Aとの融合蛋白質の合成) 実施例 1 1と同様の方法で、 G r o E L 7回連結体と 5 H T 1 Aとの融合蛋白 質の無細胞合成を行った。 コントロールとして 5 HT 1 A単独の合成も行った。 反応終了後、 抗 5HT 1 Aポリクローナル抗体を用いるウェスターンプロッティ ングを行った結果、 融合蛋白質では、 可溶性画分に融合蛋白質の分子量 (約 28 0 KD a ) に相当するサイズのバンドが検出された。 実施例 1 1と同様の方法で 融合蛋白質を精製した後、 透過型電子顕微鏡によって観察した結果、 シャぺロニ ン特有のリング構造が見られた。 5 HT 1 A単独の合成では、 不溶性画分にのみ 検出された。 以上のことから、 5 HT 1 A単独では無細胞翻訳系では不溶性蛋白 質として発現されるが、 一分子ごとに G r o EL 7回連結体との融合蛋白質とし て発現させると、 融合蛋白質は無細胞翻訳系においても可溶性蛋白質として合成 されることがわかった。 産業上の利用の可能性  (Synthesis of fusion protein of (G ro E) 7 and 5 HT 1 A by cell-free translation system) In the same manner as in Example 11, a fusion protein of a G ro EL 7-fold conjugate and 5 HT 1 A Quality cell-free synthesis was performed. As a control, 5HT1A alone was also synthesized. After completion of the reaction, Western blotting was performed using an anti-5HT1A polyclonal antibody.As a result, a band corresponding to the molecular weight of the fusion protein (about 280 KDa) was detected in the soluble fraction of the fusion protein. . After purifying the fusion protein in the same manner as in Example 11, observation with a transmission electron microscope revealed a ring structure unique to chaperonin. In the synthesis of 5HT1A alone, it was detected only in the insoluble fraction. Based on the above, 5HT1A alone is expressed as an insoluble protein in a cell-free translation system, but when expressed as a fusion protein with the Gro EL 7-fold conjugate per molecule, the fusion protein is absent. The protein was also synthesized as a soluble protein in the cell translation system. Industrial applicability
本発明の蛋白質の生産方法及び融合蛋白質は、 上述の構成よりなるので、 大量 発現が困難な蛋白質、 及び、 可溶性画分への発現が困難であった組み換え蛋白質 の合成量を増加させるのに有用である。  Since the method for producing a protein and the fusion protein of the present invention have the above-mentioned constitutions, they are useful for increasing the amount of synthesis of a protein that is difficult to express in large amounts and a recombinant protein that is difficult to express in a soluble fraction. It is.

Claims

請求の範囲 The scope of the claims
1 . シャぺ口ニンサブュニットをコードする遺伝子及び目的蛋白質をコードする 遺伝子を含有する遺伝子を転写 ·翻訳して、 前記目的蛋白質が前記シャぺ口ニン サブュ-ットとペプチド結合を介して連結している融合蛋白質を合成することを 特徴とする蛋白質の生産方法。 1. Transcribe and translate the gene containing the gene encoding the Siaguchi ninsubunit and the gene encoding the protein of interest, and the target protein is linked to the Siaguchi ninsubunit via a peptide bond. A method for producing a protein, comprising synthesizing a fusion protein.
2 . 融合蛋白質は、 互いに連結した 1〜2 0個のシャぺ口ニンサブユニットと、 連結したシャぺ口-ンサプュニットの N末端、 連結したシャぺ口ニンサブュニッ トの C末端、 又は、 シャぺ口ニンサブユニット同士の連結部にペプチド結合を介 して連結されている目的蛋白質とからなることを特徴とする請求の範囲第 1項記 載の蛋白質の生産方法。 2. The fusion protein is composed of 1 to 20 linked Siaguchi nin subunits, the N-terminus of the linked Siaguchi sapunit, the C terminus of the linked Siaguchi ninsubunit, or the Sshaguchi. 2. The method for producing a protein according to claim 1, comprising a target protein linked via a peptide bond to a link between the nin subunits.
3 . シャぺ口ニンサブュニットをコードする遺伝子及び目的蛋白質をコードする 遺伝子を含有する遺伝子を、 同一の宿主内で共存 ·複製することが可能な 2種の 異なるプラスミ ドのそれぞれに導入し、 同一の宿主内で共発現させることを特徴 とする請求の範囲第 1又は 2項記載の蛋白質の生産方法。 3. A gene containing the gene encoding the ninja ninsubunit and the gene encoding the target protein are introduced into each of two different plasmids that can coexist and replicate in the same host, and 3. The method for producing a protein according to claim 1, wherein the protein is co-expressed in a host.
4 . シャぺ口ニンサブュニットをコ一ドする遺伝子及び目的蛋白質をコードする 遺伝子を含有する遺伝子と、 シャぺ口ニンのみをコードする遺伝子とをそれぞれ、 同一の宿主内で共存 ·複製することが可能な 2種の異なるプラスミドに導入し、 同一の宿主内で共発現させることを特徴とする請求の範囲第 1又は 2項記載の蛋 白質の生産方法。 4. It is possible to coexist and replicate in the same host, a gene containing a gene encoding a spore mouth nin subunit and a gene containing a gene encoding a target protein, and a gene coding only a sham mouth nin. 3. The method for producing a protein according to claim 1, wherein the protein is introduced into two different plasmids and co-expressed in the same host.
5 . 融合蛋白質は、 目的蛋白質が、 シャぺ口ニンサブユニットとペプチド結合を 介して連結した状態で、 シャぺロニンリングの内部に格納されているものである ことを特徴とする請求の範囲第 1、 2、 3又は 4項記載の蛋白質の生産方法。 5. The fusion protein according to claim 1, wherein the target protein is stored in a chaperonin ring in a state where the target protein is linked via a peptide bond to a gamma nin subunit. 5. The method for producing a protein according to claim 2, 3, 3 or 4.
6 . シャぺ口ニンリングは、 リング面を介して非共有結合的に会合した 2層構造 を形成していることを特徴とする請求の範囲第 5項記載の蛋白質の生産方法。 6. Sharp Nin Ring is a non-covalently associated two-layer structure via the ring face 6. The method for producing a protein according to claim 5, wherein the protein is formed.
7 . シャぺ口ニンリングは、 リング面又はその側面を介して非共有結合的に連結 した繊維状構造を形成していることを特徴とする請求の範囲第 5項記載の蛋白質 の生産方法。 7. The method for producing a protein according to claim 5, wherein the scallop nin ring forms a fibrous structure which is non-covalently linked via a ring surface or a side surface thereof.
8 . シャぺ口ニンサブュニットと目的蛋白質との連結部に限定分解型プロテア一 ゼの切断配列を設け、 前記目的蛋白質を前記限定分解型プロテアーゼにより融合 蛋白質から切り出す工程を有することを特徴とする請求の範囲第 1、 2、 3、 4、 5、 6又は 7項記載の蛋白質の生産方法。 8. A step of providing a cleavage sequence for a limited-degraded protease at the junction between the lip mouth protein and the target protein, and cleaving the target protein from the fusion protein with the limited-degraded protease. 8. The method for producing a protein according to the first, second, third, fourth, fifth, sixth or seventh range.
9 . シャぺ口ニンサブュニット同士の連結部に限定分解型プロテアーゼの切断配 列を設けることを特徴とする請求の範囲第 8項記載の蛋白質の生産方法。 9. The method for producing a protein according to claim 8, wherein a cleavage sequence for a limited-degradation type protease is provided at a connecting portion between the ninth ninsubunits.
1 0 . シャぺ口ニンサブユニットと目的蛋白質との連結部にメチォニン残基を設 け、 前記目的蛋白質を C N B rにより融合蛋白質から切り出す工程を有すること を特徴とする請求の範囲第 1、 2、 3、 4、 5、 6又は 7項記載の蛋白質の生産 方法。 10. The method according to claim 1, further comprising the step of: providing a methionine residue at a junction between the ninth subunit and the target protein, and cleaving the target protein from the fusion protein with CNBr. 8. The method for producing a protein according to claim 3, 3, 4, 5, 6, or 7.
1 1 . シャぺ口ニンの由来生物は、 バクテリア、 古細菌又は真核生物であること を特徴とする請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9又は 1 0項記載 の蛋白質の生産方法。 11. The claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 1 characterized in that the organism from which Shanin is derived is a bacterium, archaea or eukaryote. The method for producing a protein according to claim 0.
1 2 . 融合蛋白質を、 バクテリア、 酵母、 動物細胞、 植物細胞、 昆虫細胞、 動物 個体、 植物個体、 又は、 昆虫個体のいずれかの宿主に合成させることを特徴とす る請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0又は 1 1項記載の蛋 白質の生産方法。 12. The claim 1, characterized in that the fusion protein is synthesized by a host of any of a bacterium, a yeast, an animal cell, a plant cell, an insect cell, an animal individual, a plant individual, or an insect individual. 2. The method for producing a protein according to 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11.
1 3 . 無細胞翻訳系で融合蛋白質を合成することを特徴とする請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0又は 1 1項記載の蛋白質の生産方法。 13. The first claim, wherein the fusion protein is synthesized in a cell-free translation system. 2. The method for producing a protein according to 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11.
14. 目的蛋白質をコードする遺伝子は、 哺乳動物由来の c DNA又は哺乳動物 由来の c DNAの 6残基以上のァミノ酸配列をコードする部分遺伝子であること を特徴とする請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 1 2又は 1 3項記載の蛋白質の生産方法。 14. The gene encoding the target protein, wherein the mammal-derived cDNA or a partial gene encoding an amino acid sequence of 6 or more residues of the mammalian-derived cDNA, 2. The method for producing a protein according to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12 or 13.
1 5. 目的蛋白質は、 哺乳動物由来抗体の重鎖、 哺乳動物由来抗体の軽鎖、 若し くは、 哺乳動物由来抗体の F V領域単鎖抗体の全長、 又は、 それらの 6残基以上 の部分蛋白質であることを特徴とする請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3又は 1 4項記載の蛋白質の生産方法。 1 5. The target protein is the heavy chain of a mammal-derived antibody, the light chain of a mammal-derived antibody, or the full-length FV region single-chain antibody of a mammal-derived antibody, or at least six residues thereof. The protein according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, or 14, wherein the protein is a partial protein. Production method.
1 6. 目的蛋白質は、 ウィルス抗原、 7回膜貫通型受容体蛋白質、 又は、 サイト 力イン類であることを特徴とする請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2又は 1 3項記載の蛋白質の生産方法。 1 6. The target protein is a viral antigen, a seven-transmembrane receptor protein, or a cytokinin, wherein the first, second, third, fourth, fifth, sixth, seventh, and seventh claim 8. The method for producing a protein according to 8, 9, 10, 11, 12, or 13.
1 7. シャぺ口ニンサブュニットと目的蛋白質とからなる融合蛋白質であって、 前記目的蛋白質が、 前記シャぺロニンサブュニットとぺプチド結合を介して連結 した状態で、 シャぺ口ニンリングの内部に格納されているものであることを特徴 とする融合蛋白質。 1 7. A fusion protein consisting of a Shanin ninsubunit and a target protein, wherein the target protein is connected to the Sharonin subunit via a peptide bond, and A fusion protein characterized by being stored.
1 8. シャぺ口ニンリングは、 リング面を介して非共有結合的に会合した 2層構 造を形成していることを特徴とする請求の範囲第 1 7項記載の融合蛋白質。 18. The fusion protein according to claim 17, wherein the ninth ring has a two-layer structure non-covalently associated via a ring surface.
1 9. シャぺ口ニンリングは、 リング面又はその側面を介して非共有結合的に連 結した繊維状構造を形成していることを特徴とする請求の範囲第 1 7項記載の融 合蛋白質。 19. The fusion protein according to claim 17, wherein the mouth opening ring forms a fibrous structure linked non-covalently via the ring surface or the side surface thereof. .
PCT/JP2001/011438 2000-12-26 2001-12-26 Process for producing recombinant protein and fused protein WO2002052029A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/451,883 US7276355B2 (en) 2000-12-26 2001-12-26 Process for production of a recombinant protein and a fusion protein
JP2002553508A JP4038555B2 (en) 2000-12-26 2001-12-26 Recombinant protein production method and fusion protein
KR1020037008657A KR100892889B1 (en) 2000-12-26 2001-12-26 Process for producing recombinant protein and fused protein
AU2002217505A AU2002217505B2 (en) 2000-12-26 2001-12-26 Process for producing recombinant protein and fused protein
AT01272326T ATE463580T1 (en) 2000-12-26 2001-12-26 METHOD FOR PRODUCING RECOMBINANT PROTEIN AND FUSION PROTEIN
EP01272326A EP1354959B1 (en) 2000-12-26 2001-12-26 Process for producing recombinant protein and fused protein
CA002432716A CA2432716A1 (en) 2000-12-26 2001-12-26 Process for producing recombinant protein and fused protein
DE60141769T DE60141769D1 (en) 2000-12-26 2001-12-26 METHOD FOR PRODUCING RECOMBINANT PROTEIN AND FUSION PROTEIN
US11/837,795 US7608424B2 (en) 2000-12-26 2007-08-13 Process for production of a recombinant protein and a fusion protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-395740 2000-12-26
JP2000395740 2000-12-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10451883 A-371-Of-International 2001-12-26
US11/837,795 Division US7608424B2 (en) 2000-12-26 2007-08-13 Process for production of a recombinant protein and a fusion protein

Publications (2)

Publication Number Publication Date
WO2002052029A1 true WO2002052029A1 (en) 2002-07-04
WO2002052029A9 WO2002052029A9 (en) 2003-04-24

Family

ID=18861149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011438 WO2002052029A1 (en) 2000-12-26 2001-12-26 Process for producing recombinant protein and fused protein

Country Status (9)

Country Link
US (2) US7276355B2 (en)
EP (1) EP1354959B1 (en)
JP (1) JP4038555B2 (en)
KR (1) KR100892889B1 (en)
AT (1) ATE463580T1 (en)
AU (1) AU2002217505B2 (en)
CA (1) CA2432716A1 (en)
DE (1) DE60141769D1 (en)
WO (1) WO2002052029A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004092221A1 (en) * 2003-04-18 2004-10-28 Sekisui Chemical Co. Ltd. Immunogen, composition for immunological use and process for producing antibody using the same
WO2004097018A1 (en) * 2003-04-28 2004-11-11 Sekisui Chemical Co.,Ltd. Process for producing recombinant antibody
WO2004096860A1 (en) * 2003-04-28 2004-11-11 Sekisui Chemical Co., Ltd. Method of producing target protein, fused protein and gene thereof, partial sequence protein of intein and gene thereof, expression vector and transformant
WO2004096859A1 (en) * 2003-04-28 2004-11-11 Sekisui Chemical Co., Ltd. Chaperonine-target protein complex, method of producing the same, method of stabilizing target protein, method of immobilizing target protein, method of analyzing the structure of target protein, sustained-release preparation and method of producing antibody against target protein
JP2010246522A (en) * 2009-03-27 2010-11-04 Sekisui Chem Co Ltd Fusion protein and gene
JP2012120507A (en) * 2010-12-10 2012-06-28 Sekisui Chem Co Ltd Recombinant eukaryotic cell, and intracellular signaling inhibition method
US8349807B2 (en) 2004-10-15 2013-01-08 Joe Chiba Method of immunizing animal, composition for immunization, method for producing antibody, method for producing hybridoma and method for producing monoclonal antibody

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838957B2 (en) * 2001-05-02 2011-12-14 独立行政法人理化学研究所 Protein production method using cell-free protein synthesis system
JP4359707B2 (en) 2002-05-22 2009-11-04 独立行政法人理化学研究所 Protein production method by cell-free protein synthesis system using thioredoxin fusion protein expression vector
JP4441170B2 (en) 2002-11-28 2010-03-31 独立行政法人理化学研究所 Escherichia coli cell extract having mutation in S12 ribosomal protein and cell-free protein production method using the same
JP2005161694A (en) * 2003-12-03 2005-06-23 Fuji Photo Film Co Ltd Exposure device
KR100484653B1 (en) 2004-05-06 2005-04-20 주식회사 대웅 Preparation method for the production of active and soluble proteins in prokaryotes and polycistronic vectors therefor
JP4868731B2 (en) 2004-11-17 2012-02-01 独立行政法人理化学研究所 Cell-free protein synthesis system derived from cultured mammalian cells
JP4787488B2 (en) 2004-11-19 2011-10-05 独立行政法人理化学研究所 Cell-free protein synthesis method using linear template DNA and cell extract therefor
EP2213747B1 (en) 2007-11-05 2021-06-30 Riken Method for producing membrane protein
US20100137563A1 (en) 2008-12-03 2010-06-03 Northwestern University Cysteine Protease Autoprocessing of Fusion Proteins
US8067201B2 (en) * 2009-04-17 2011-11-29 Bristol-Myers Squibb Company Methods for protein refolding
AR086250A1 (en) 2011-05-05 2013-11-27 Hoffmann La Roche FUSION POLIPEPTIDE PRESENTING A SEQUENCE OF AMINO ACIDS AND USING THE SAME
JP6722951B2 (en) 2015-07-31 2020-07-15 国立研究開発法人理化学研究所 Method for producing membrane protein and use thereof
KR102185312B1 (en) * 2017-10-25 2020-12-02 재단법인 지능형 바이오 시스템 설계 및 합성 연구단 A composition for solubilization of target proteins and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066756A1 (en) * 1999-05-04 2000-11-09 Timo Korpela Microbial protein expression system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993013200A1 (en) * 1991-12-20 1993-07-08 Novo Nordisk A/S A process for the preparation of lipase
GB9913437D0 (en) * 1999-06-09 1999-08-11 Medical Res Council Fusion proteins
WO2001083804A2 (en) * 2000-05-03 2001-11-08 Expressive Constructs, Inc. A method for improving recombinant protein stability and solubility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066756A1 (en) * 1999-05-04 2000-11-09 Timo Korpela Microbial protein expression system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUENAS, M. ET AL.: "Intra- and extracellular expression of an scFv antibody fragment in E. coli: effect of bacterial strains and pathway engineering using GroES/L chaperonins", BIOTECHNIQUES, vol. 16, no. 3, March 1994 (1994-03-01), pages 476 - 477, 480 - 483, XP000864548 *
FURUTANI, M. ET AL., J. BIOL. CHEM., vol. 273, 1998, pages 28399 - 28407
KAZUYO NISHIHARA ET AL.: "Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in escherichia coli", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 64, no. 5, May 1998 (1998-05-01), pages 1694, 1699, XP002135426 *
TRENT, J. D. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 94, 1997, pages 5383 - 5388

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1621555A1 (en) * 2003-04-18 2006-02-01 Chiba, Joe Immunogen, composition for immunological use, and method of producing antibody using the same
EP1621555A4 (en) * 2003-04-18 2006-08-02 Sekisui Chemical Co Ltd Immunogen, composition for immunological use, and method of producing antibody using the same
JPWO2004092221A1 (en) * 2003-04-18 2006-07-06 積水化学工業株式会社 Immunogen and immunizing composition, and method for producing antibody using them
WO2004092221A1 (en) * 2003-04-18 2004-10-28 Sekisui Chemical Co. Ltd. Immunogen, composition for immunological use and process for producing antibody using the same
WO2004096859A1 (en) * 2003-04-28 2004-11-11 Sekisui Chemical Co., Ltd. Chaperonine-target protein complex, method of producing the same, method of stabilizing target protein, method of immobilizing target protein, method of analyzing the structure of target protein, sustained-release preparation and method of producing antibody against target protein
EP1621556A1 (en) * 2003-04-28 2006-02-01 Sekisui Chemical Co., Ltd. Method of producing target protein, fused protein and gene thereof, partial sequence protein of intein and gene thereof, expression vector and transformant
WO2004096860A1 (en) * 2003-04-28 2004-11-11 Sekisui Chemical Co., Ltd. Method of producing target protein, fused protein and gene thereof, partial sequence protein of intein and gene thereof, expression vector and transformant
WO2004097018A1 (en) * 2003-04-28 2004-11-11 Sekisui Chemical Co.,Ltd. Process for producing recombinant antibody
EP1621556A4 (en) * 2003-04-28 2006-08-23 Sekisui Chemical Co Ltd Method of producing target protein, fused protein and gene thereof, partial sequence protein of intein and gene thereof, expression vector and transformant
AU2004234282B2 (en) * 2003-04-28 2008-02-07 Sekisui Chemical Co., Ltd. Chaperonine-target protein complex, method of producing the same, method of stabilizing target protein, method of immobilizing target protein, method of analyzing the structure of target protein, sustained-release preparation and method of producing antibody against target protein
US8349807B2 (en) 2004-10-15 2013-01-08 Joe Chiba Method of immunizing animal, composition for immunization, method for producing antibody, method for producing hybridoma and method for producing monoclonal antibody
US8901099B2 (en) 2004-10-15 2014-12-02 Sekisui Chemical Co., Ltd. Method for immunizing animal, composition for immunization, method for producing antibody, method for producing hybridoma, and method for producing monoclonal antibody
JP2010246522A (en) * 2009-03-27 2010-11-04 Sekisui Chem Co Ltd Fusion protein and gene
JP2012120507A (en) * 2010-12-10 2012-06-28 Sekisui Chem Co Ltd Recombinant eukaryotic cell, and intracellular signaling inhibition method

Also Published As

Publication number Publication date
CA2432716A1 (en) 2002-07-04
US7276355B2 (en) 2007-10-02
KR20030065574A (en) 2003-08-06
US20080081361A1 (en) 2008-04-03
AU2002217505B2 (en) 2006-03-02
EP1354959A1 (en) 2003-10-22
JPWO2002052029A1 (en) 2004-04-30
EP1354959B1 (en) 2010-04-07
US7608424B2 (en) 2009-10-27
JP4038555B2 (en) 2008-01-30
US20040146969A1 (en) 2004-07-29
WO2002052029A9 (en) 2003-04-24
ATE463580T1 (en) 2010-04-15
EP1354959A4 (en) 2004-09-15
KR100892889B1 (en) 2009-04-15
DE60141769D1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
US7608424B2 (en) Process for production of a recombinant protein and a fusion protein
Wingfield Overview of the purification of recombinant proteins
JP2686090B2 (en) Novel fusion protein and purification method thereof
JPH06500006A (en) Ubiquitin-specific protease
EP3506945A1 (en) Production of seleno-biologics in genomically recoded organisms
Wingfield Overview of the purification of recombinant proteins produced in Escherichia coli
AU3665899A (en) Methods for transducing fusion molecules
Zhang et al. Fusion partners as a tool for the expression of difficult proteins in mammalian cells
WO2004096859A1 (en) Chaperonine-target protein complex, method of producing the same, method of stabilizing target protein, method of immobilizing target protein, method of analyzing the structure of target protein, sustained-release preparation and method of producing antibody against target protein
JP2004024095A (en) Method for producing protein, fused protein and protein
JP4108000B2 (en) Method for producing protein
EP1621556A1 (en) Method of producing target protein, fused protein and gene thereof, partial sequence protein of intein and gene thereof, expression vector and transformant
JPWO2004031243A1 (en) Protein polymer and method for producing the same
JP2004321141A (en) Method for producing fusion protein and recombinant protein
JP2005269936A (en) Method for producing protein
US9290559B2 (en) Membrane protein expression vector comprising major envelope protein P9 of systovirus PHI12 as a fusion partner and method for producing membrane protein using the same
JP2005269935A (en) Method for producing protein
JP2004081199A (en) Method for producing recombinant antibody
JP4047763B2 (en) Intermolecular interaction analysis method
JP2003334073A (en) Method for producing protein
JP2010246522A (en) Fusion protein and gene
KR20210079235A (en) Method for enhancing soluble expression of target proteins by using fusion protein of whep domain
CN117229381A (en) Recombinant ginseng hypoglycemic peptide and preparation method and application thereof
JP2006111572A (en) Chaperonin-protein conjugate and method for producing the same, and method for producing the aimed protein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
COP Corrected version of pamphlet

Free format text: PAGES 4/7 AND 5/7, DRAWINGS, ADDED

WWE Wipo information: entry into national phase

Ref document number: 2002553508

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2432716

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037008657

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002217505

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2001272326

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037008657

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10451883

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001272326

Country of ref document: EP