WO2002042625A1 - Exhaust emission control device of internal combustion engine and control device for car - Google Patents

Exhaust emission control device of internal combustion engine and control device for car Download PDF

Info

Publication number
WO2002042625A1
WO2002042625A1 PCT/JP2000/008352 JP0008352W WO0242625A1 WO 2002042625 A1 WO2002042625 A1 WO 2002042625A1 JP 0008352 W JP0008352 W JP 0008352W WO 0242625 A1 WO0242625 A1 WO 0242625A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
adsorbent
exhaust gas
catalyst
output
Prior art date
Application number
PCT/JP2000/008352
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Manaka
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/008352 priority Critical patent/WO2002042625A1/en
Priority to JP2002544529A priority patent/JPWO2002042625A1/en
Publication of WO2002042625A1 publication Critical patent/WO2002042625A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device for an internal combustion engine and a control device for a vehicle using the internal combustion engine as a drive source, and more particularly to an exhaust gas purification device for a gasoline engine equipped with an exhaust gas purification device using an exhaust gas treatment catalyst and this internal combustion engine. It relates to a control device for a vehicle driven by an engine. Background art
  • the three-way catalyst effectively acts on and purifies the exhaust gas generated by burning near the theoretical air-fuel ratio called a window.
  • the purification process had not been completed until the temperature of the three-way catalyst reached an activity (light exhaust gas can be purified) (light-off temperature, about 300 ° C).
  • a method of maintaining the three-way catalyst at a temperature higher than the activation temperature by using a battery as a power source is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-2808028. It is disclosed in Japanese Patent Application Publication No. 104448.
  • the three-way catalyst It is necessary to consume and heat the battery until it is activated, and it is difficult to prevent unburned hydrocarbons from being released into the atmosphere before activation.
  • HC HC adsorption catalysts that desorb adsorbed unburned hydrocarbons
  • the amount of HC in the exhaust gas is large, and the HC adsorbent reaches the limit of the adsorption capacity before the three-way catalyst is activated, and HC is released to the atmosphere as it is. There is a possibility.
  • the two-stage HC trap catalyst system is used for the zero emission technology (20005238) of the gasoline engine of the Japan Society of Automotive Engineers of Japan.
  • This HC trap catalyst is a composite of the exhaust treatment function and the HC adsorbent.
  • This system has a two-stage configuration (the HC trap and three-way catalyst hybrid structure are two-stage in the series) in order to increase the efficiency of purification.
  • this system is also complicated and expensive, and the HC adsorbent may reach its adsorption capacity before the three-way catalyst is activated, and HC may be released to the atmosphere as it is. There is also.
  • Japanese Patent Application Laid-Open No. 5-149131 discloses that an exhaust pipe is provided with an HC adsorbent, a three-way catalyst, and a heat exchanger, and uses heat of exhaust gas.
  • the temperature control for desorption of HC is proposed. Since this method uses a heat exchanger, the structure of the exhaust pipe is complicated and expensive, and no consideration is given to the adsorption capacity of the HC adsorbent during start-up operation.
  • An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that has a simple structure of an exhaust treatment apparatus and that can efficiently purify HC in consideration of the adsorption capacity of an HC adsorbent, in view of the above-mentioned problems of the prior art.
  • An object of the present invention is to provide an apparatus and a purification method.
  • a feature of the present invention is that an adsorbent and a catalyst for exhaust gas treatment are provided in an exhaust gas flow path of an engine and are contained in exhaust gas.
  • the adsorbent includes an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons.
  • a separation zone for detecting whether or not the catalyst is in an activated state When the catalyst is not in an activated state, the temperature of the adsorbent is maintained until the catalyst reaches an activated state.
  • the adsorption zone Another feature of the present invention is to adjust the output or the torque of the engine so as to maintain the exhaust gas in the exhaust gas passage of the engine.
  • An exhaust gas purification device for an internal combustion engine that temporarily adsorbs unburned hydrocarbons contained in the adsorbent, wherein the adsorbent comprises: an adsorption zone for adsorbing unburned hydrocarbons; and an adsorbent zone for adsorbing the unburned hydrocarbons.
  • a desorption zone for desorption detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, until the catalyst reaches an activated state,
  • the engine output or torque is adjusted to maintain the temperature of the adsorbent in the adsorption zone, and the net output of the engine is varied by changing the load on the generator to offset the load adjustment. To the same level It is to.
  • One aspect of the present invention is a temperature region where HC is adsorbed in an exhaust gas flow path of an engine (adsorption zone) and a temperature region which is higher than the adsorption zone and in which adsorbed HC is desorbed (desorption region).
  • An adsorbent having a separation zone) and a catalyst for treating exhaust gas are arranged. Until the catalyst reaches a temperature at which the catalyst is activated, HC contained in the exhaust gas is temporarily adsorbed by the adsorbent, and an HC adsorption zone is provided. Adjust the engine load and intake air volume so that the temperature does not exceed. Thereafter, when the temperature of the catalyst is activated, the engine load and the amount of intake air are increased, and the temperature is controlled so as to reach the HC desorption zone temperature. Can be purified.
  • the final output (driving force) of the vehicle is not changed, so the engine torque and output fluctuations are caused by the generator and high-power output provided in the engine. It can be corrected by the generator and driving mode of the vehicle. The correction may be made by changing the ignition timing of the engine or the EGR rate.
  • HC adsorbed by the HC adsorbent 18 at the time of cooling is desorbed after the downstream ternary catalyst is activated, so that HC at the time of starting the cold can be significantly reduced.
  • the engine output fluctuation during control is corrected by the generator and the driving motor, so that the driver of the car does not feel the output or torque fluctuation.
  • Hazardous emissions unburned hydrocarbons
  • FIG. 1 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine showing a typical embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for controlling the temperature of the HC adsorbent during HC adsorption in the embodiment of FIG.
  • FIG. 3 is a flowchart showing a control method of the HC adsorbent regeneration process at the time of regeneration in the embodiment of FIG.
  • FIG. 4 is an explanatory diagram of the adsorption, desorption, regeneration, and heat resistance limit zones of the HC adsorbent used in the embodiment of FIG.
  • FIG. 5 is an HC purification rate characteristic diagram of the three-way catalyst used in the embodiment of FIG.
  • FIG. 6 is a diagram showing the relationship between the exhaust gas temperature, the catalyst temperature, and the intake air amount in the control of FIG.
  • FIG. 7 is a characteristic diagram of the engine output change amount used for the control of FIG.
  • FIG. 8 is a diagram showing an example of actual measurement data of HC emissions at the time of cold start according to the embodiment of FIG.
  • FIG. 9 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention.
  • FIG. 10 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention.
  • FIG. 11 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention.
  • FIG. 12 is a system configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to another embodiment of the present invention.
  • FIG. 13 is a flowchart showing a method for controlling the temperature of the HC adsorbent during adsorption in the embodiment of FIG.
  • FIG. 14 is a flowchart showing a method for controlling the HC adsorbent regeneration process during regeneration in the embodiment of FIG.
  • FIG. 15 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a hybrid electric vehicle as another embodiment of the present invention.
  • FIG. 16 is a flowchart showing a method of controlling the temperature of the HC adsorbent during adsorption in the embodiment of FIG.
  • FIG. 17 is a flowchart showing a method of controlling the HC adsorbent regeneration process during regeneration in the embodiment of FIG.
  • FIG. 18 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a simplified hybrid electric vehicle as another embodiment of the present invention.
  • FIG. 1 is an overall system configuration including an exhaust gas purification device for an internal combustion engine according to an embodiment of the present invention.
  • the internal combustion engine includes a multi-cylinder engine 4 connected to an intake system, an exhaust system and an engine control unit (ECU) 25.
  • the intake system includes an air flow sensor 12 provided in the intake passage downstream of the air cleaner 1, a throttle valve 3 with a motor, an injector 5, an intake temperature sensor 19, and the like. Injection time 5 is supplied with fuel from fuel tank 13 by fuel pump 12. Also, a multi-cylinder engine 4 with a spark plug 6 A knock sensor 26 and a water temperature sensor 28 are provided.
  • the exhaust system has a three-way catalyst 17 and an HC adsorbent 18 provided in an exhaust pipe 11 of the engine 4.
  • the three-way catalyst 17 is provided with a catalyst for treating exhaust gas.
  • the HC adsorbent 18 is composed of a temperature region (hereinafter referred to as an “adsorption zone”) that adsorbs unburned hydrocarbons in the exhaust gas passage of the engine and an unburned hydrocarbon adsorbed in a temperature region higher than the adsorption zone. It has a desorption temperature range (hereinafter referred to as "desorption zone").
  • the adsorbent may be combined with a catalyst function for exhaust gas treatment.
  • the exhaust system further has an adsorbent oxygen concentration sensor (or A / F sensor) 19, an exhaust gas temperature sensor 20, an exhaust gas temperature sensor 21, and an exhaust gas temperature sensor 22.
  • Reference numeral 15 denotes an EGR valve that controls the EGR rate (exhaust gas recirculation rate; a part of exhaust gas is mixed with intake air).
  • the ECU 25 is composed of an I / O LSI as an input / output interface, an arithmetic processing unit ⁇ , a storage device RAM storing a large number of control programs, R0M, a timer counter, and the like.
  • the ECU 25 includes the amount of depression of the accelerator pedal 7 detected by the load sensor 18 and the number of revolutions and rotations of the engine detected by the crank angle sensor 29. The corner signal is also entered.
  • the control program of the ECU 25 includes a program for executing the H C adsorbent temperature control function 250 described below.
  • Reference numeral 51 denotes a generator, which is driven by the engine 4 and charges the battery 38 with its output.
  • the rectifier and the power generation adjusting means 52 are controlled by the ECU 25 to adjust the output of the generator 51.
  • a heater 23 is provided at the entrance of the three-way catalyst 17 so that electric power is supplied from a battery 38 via a switch 24 controlled by the ECU 25 so that the three-way catalyst 17 is activated quickly at the start. The three-way catalyst 17 is heated.
  • the internal combustion engine with the exhaust gas purification device operates as follows. First, the intake air to the engine is filtered by an air cleaner 11 and then measured by an air flow sensor 2, passes through a throttle valve 3 with a motor, and is further removed from the engine. The fuel is received from the fuel tank 5 and supplied to the engine 4 as a mixture. The air mouth sensor signal and other sensor signals are input to the ECU 25. The ECU 25 evaluates the operating state of the engine and the states of the HC adsorbent 18 and the three-way catalyst 17 to determine the operating air-fuel ratio, and controls the injection time of the injector 15 to control the fuel concentration of the air-fuel mixture. Set to a predetermined value.
  • the air-fuel mixture sucked into the cylinder 1 of the engine 4 is ignited by a spark plug 6 controlled by a signal from the ECU 25 and burns.
  • the flue gas is led to the exhaust pipe 1.1.
  • the exhaust pipe 11 is provided with an HC adsorbent 18.
  • HC is adsorbed by the HC adsorbent 18 until the temperature at which the three-way catalyst 17 is activated is reached.
  • the temperature of the three-way catalyst 17 can be monitored by an estimated value calculated from the engine load, the amount of intake air, and the like.
  • the activity of the three-way catalyst 17 may be determined by the purification rate 7? C by the exhaust sensors 21 and 21 instead of the temperature.
  • the engine load and the HC adsorbent temperature must be kept below the maximum adsorbable temperature Tamax by the ⁇ 3 11 25 11 ⁇ adsorbent temperature control function 250.
  • the intake air amount Qa is adjusted.
  • the temperature of the HC adsorbent is monitored by the exhaust gas sensor 22.
  • Exhaust gas temperature Tex is reduced by reducing engine load L and intake air volume Qa, and as a result, HC adsorbent temperature is also reduced.
  • the final load (torque) of the engine can be maintained at the same level by reducing the load (power generation) of the generator 51 as much as the engine load and intake air volume are reduced. There is no shortage. .
  • FIG. 2 is a flowchart showing a method of controlling the temperature of the HC adsorbent during HC adsorption
  • FIG. 3 is a flowchart showing a method of controlling the regeneration process of the HC adsorbent during regeneration.
  • step 1002 of Fig. 2 the engine coolant temperature Tstar t is detected by the water temperature sensor 28.
  • step 103 the HC adsorbent inlet exhaust temperature Tex is detected.
  • step 104 the three-way catalyst temperature Teat is detected.
  • Figure 4 shows the relationship between the adsorption zone, desorption zone of the HC adsorbent 18, the regeneration zone for restoring the HC adsorbing capacity to the same level as that of a new product, and the heat-resistant zone where the adsorbent deteriorates and is damaged.
  • the temperature of the HC adsorbent 18 In order to maintain the adsorption ability of the HC adsorbent 18, it is desirable to maintain the temperature of the HC adsorbent 18 at about the maximum adsorbable maximum temperature Tamax or lower. Conversely, in order to desorb HC and send it to the three-way catalyst 17, the temperature must be about Tamax or higher. Then, in order to regenerate the HC adsorbent 18 and restore the adsorption capacity to the same level as the new one, set the temperature to the regeneration zone, that is, Trmii! Must be maintained in the range of ⁇ Tng.
  • FIG. 5 shows the HC purification rate characteristics of the three-way catalyst 17 with respect to the temperature Teat. It can be seen that the HC adsorbent 18 has a sufficient purification rate at the maximum adsorbable temperature Tamax (> Tact). Tact indicates the three-way catalyst temperature at which sufficient purification efficiency can be obtained.
  • the three-way catalyst 17 is heated and controlled so as to exceed the activation temperature (light-off temperature) Tact by energizing the heater 23, and when the temperature exceeds this Tact, the heater 23 Power supply to 3 is stopped.
  • step 1005 of FIG. 2 it is determined in step 1005 of FIG. 2 whether the engine cooling water temperature Tstart at the start is equal to or lower than the predetermined temperature Tcold. Judge whether it is less than Tact. If YES, it is determined in step 1107 whether the HC adsorbent inlet exhaust gas temperature Tex is lower than the maximum HC adsorbable maximum temperature Tamax by a margin value or less. If YES, the engine output or torque is increased in step 108 to raise the temperature of the HC adsorbent.
  • the engine intake air amount Qa may be increased by the throttle valve 3 with motor.
  • FIG. 6 shows the exhaust gas temperature Tex at the inlet of the HC adsorbent 18 and the temperature of the three-way catalyst 17 with respect to the intake air amount Qa of the engine.
  • the temperature can be increased by increasing the amount of intake air.
  • the engine output (load) also increases.
  • increase the temperature by increasing the amount of fuel injected per cycle be able to.
  • FIG. 7 is a characteristic diagram of a change in engine output (or torque).
  • the convergence time (response time) to the target temperature can be shortened by using a function of the target temperature deviation A Tex.
  • Step 107 the loads (power generation) of the generators 51 and 31 are increased in steps 100 and 9 in FIG. If the answer is NO in Step 107, the engine output or torque is reduced in Step 110.
  • the engine intake air amount Qa may be reduced.
  • step 101 reduce the load (power generation) on generators 51 and 31. Since the heater 23 is provided at the entrance of the three-way catalyst 17, the generators 51 and 31 can be effectively used as loads even when the battery 38 has a large amount of stored power. If NO in step 1005, the engine cooling water temperature is warm, so go to 2 (Fig. 3). If NO in step 106, release the temperature control of the HC adsorbent in step 102 and proceed to step 2.
  • step 102 of FIG. 3 it is determined whether or not the HC adsorbent inlet exhaust gas temperature Tex is equal to or higher than the heat-resistant limit temperature Tng. If YES, the engine output or torque is reduced by mL in step 1021. The engine intake air amount Qa may be reduced. Further, the load (power generation) of the generators 51 and 31 is reduced in step 102.
  • step 1 2 3 it is determined in step 1 2 3 that the HC adsorbent inlet exhaust temperature Tex is equal to or higher than the maximum BC adsorbable temperature Tamax, and if YES, the HC adsorbent is It is determined whether the regeneration process has been completed. If NO, the engine output is set so that the HC adsorbent inlet exhaust temperature Tex falls within the range of the regeneration minimum temperature Train and the heat-resistant limit maximum temperature Tng for a predetermined time in step 1025. (Torque) to regenerate the HC adsorbent. If N0 in step 1023 or YES in step 1024, return to return.
  • FIG. 8 is a diagram showing an example of measured data of HC emissions at the time of cold start according to the embodiment of FIG.
  • the HC adsorbent temperature rises with the running time, and HC adsorbed during cooling is desorbed before the three-way catalyst is activated.
  • HC emissions increase.
  • the present invention since the temperature of the HC adsorbent is controlled by the temperature, the increase during the desorption of HC is significantly suppressed.
  • the H C adsorbed by the H C adsorbent 18 during the cold operation is desorbed after the downstream three-way catalyst is activated, so that the H C at the start of the cold operation can be significantly reduced.
  • the engine output fluctuation during control is corrected by the generator and the driving motor, so that the driver of the vehicle does not feel shock, insufficient output, or torque fluctuation.
  • the HC purification rate 7? Shown in Fig. 5 was detected.
  • the activation of the three-way catalyst may be determined when the HC purification rate reaches the predetermined value of 7 to c. Further, the activation of the three-way catalyst may be determined from the output signal waveforms of 02 arranged at the inlet and the outlet of the three-way catalyst.
  • FIG. 9 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention.
  • an example is shown in which the three-way catalyst downstream of the HC adsorbent is divided into 178 and 17B.
  • the heat capacity is reduced by making it thinner, such as a three-way catalyst of 17 A, and it is improved so that it is activated quickly.
  • the example shown in FIG. 10 is obtained by further reducing the diameter and thickness of the 17-A low-temperature catalyst, so that the heat capacity can be reduced and the catalyst can be quickly activated.
  • the three-way catalyst 17A can be made small in a cone shape to reduce the heat capacity and activate quickly.
  • FIG. 12 is a system configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to another embodiment of the present invention.
  • FIG. 13 is a flowchart showing a method for controlling the HC adsorbent temperature during adsorption in the embodiment of FIG. 12, and
  • FIG. 14 is a flowchart showing a method for controlling the HC adsorbent temperature during regeneration. is there.
  • This embodiment is a case of so-called in-cylinder injection in which the injector 5 is provided in a cylinder of the internal combustion engine 4.
  • the monitor for each temperature uses the engine load, engine speed, intake air amount Qa, vehicle speed, Estimation calculation is performed by using the characteristics shown in Fig. 6 due to overtime or the like.
  • step 123 of FIG. 13 instead of detecting the HC adsorbent inlet exhaust gas temperature Tex, the ECU 25 estimates the ECU load based on the engine load, engine speed, intake air amount, vehicle speed, elapsed time after starting, etc. Obtain by calculation. Also, in step 124, the three-way catalyst temperature Teat is obtained by an estimation calculation. In addition, the ignition timing and injection timing are retarded so that the final engine output (torque) does not change in step 1209, and the EGR rate is increased by opening the valve 01 and the valve 01.
  • FIG. 2 If YES in step 10 ° 7, increase the injection amount per cycle to increase the temperature of the HC adsorbent in step 122 to increase the engine output or torque. Increase.
  • step 1209 to raise the HC adsorption catalyst temperature, the engine output (torque) is not changed by the amount of the engine load L, so that the ignition timing is retarded and the EGR rate is reduced by the EGR valve 15 As a result, the engine output will be reduced.
  • Step 107 the injection amount per cycle is reduced in Step 122 to reduce the engine output or torque. Furthermore, it is determined whether the HC adsorbent inlet exhaust gas temperature Tex is equal to or higher than the heat-resistant limit temperature Tng in step 1020 of FIG. 14, and if YES, the injection amount per cycle is reduced in step 1021, and the engine Reduce output or torque.
  • H C adsorbed by the H C adsorbent 18 at the time of cooling is desorbed after the downstream three-way catalyst is activated, so that H C at the time of starting the cooling can be significantly reduced.
  • the engine output fluctuation during control is corrected by the generator and the driving motor, so the driver of the vehicle may feel shock, insufficient output, or torque fluctuation. Do not let.
  • by performing regeneration treatment of the HC adsorbent it is possible to always maintain the new performance (HC adsorbing ability).
  • a part of the control method described in FIGS. 2 to 3 is applied to the apparatus of the embodiment in FIG.
  • a part of the control method described in the embodiment of FIGS. 13 to 14 may be applied to the apparatus of the embodiment of FIG.
  • the exhaust gas purification device having the HC adsorbent temperature control function of the present invention can also be applied to a hybrid electric vehicle having a gasoline engine.
  • the decrease in engine output can be compensated for by the driving mode.
  • FIG. 15 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a hybrid electric vehicle as another embodiment of the present invention.
  • FIG. 16 is a flowchart showing a method for controlling the temperature of the HC adsorbent at the time of HC adsorption in the embodiment of FIG.
  • FIG. 17 is a flowchart showing a control method of the HC adsorbent regeneration process.
  • the hybrid electric vehicle has an engine 4 and a positive drive motor 33 as its driving sources. That is, the generator 31 is directly connected to the engine 4, and the driving motor 33 is further connected via the first electromagnetic clutch 32. The rotation of the driving motor 33 is transmitted to the axle of the vehicle via the second electromagnetic clutch 34, CVT 35. The output of the generator 31 is supplied to the battery 38 via the inverter 48 and the charger / discharger 49. On the other hand, power is supplied to the driving module 33 from the battery 38 via the charger / discharger 49 and the inverter 39.
  • the hybrid vehicle includes an ECU 25, an inverter control unit 40, a battery control unit 41, a clutch, and a CVT control port unit 47. Each control unit is collectively controlled by a hybrid electric vehicle control unit 42.
  • the HC adsorbent temperature control function 250 of the ECU 25 is configured to absorb engine output (torque) fluctuations for controlling the temperature of the HC adsorbent by the generator 31 and the driving module 33. , to correct.
  • HC adsorbent inlet exhaust gas temperature Tex is equal to or lower than the maximum HC adsorbable maximum temperature Tamax by a margin value in step 1107 of FIG. If YES, the engine output is increased to raise the temperature of the HC adsorbent in step 108. Or increase torque.
  • step 169 the loads (power generation) of the generator 31 and the drive motor 33 are increased. If the answer is NO in Step 1107, the engine output or torque is reduced by AL in Step 1100. The engine intake air amount Qa may be reduced. In step 1611, the loads (power generation) of the generator 31 and the drive motor 33 are reduced, and the decrease in engine output is corrected.
  • step 1622 it is determined whether the HC adsorbent inlet exhaust gas temperature Tex is equal to or higher than the heat-resistant limit temperature Tng in step 1020 of FIG. 17, and if YES, the engine output or the torque is reduced in step 1021. Further, in step 1622, the generator output 31 is corrected by the generator 31 and the drive module 33.
  • FIG. 18 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a simplified hybrid electric vehicle as another embodiment of the present invention.
  • a motor generator 36 having a function of generating electricity by driving the engine and a function of assisting the driving of the engine.
  • the exhaust gas purifying device and the control flow are the same as those of the embodiment described with reference to FIGS. 15 to 17.
  • the engine output (torque) fluctuation for controlling the temperature of the HC adsorbent is absorbed and corrected by the generator 31. That is, the motor output generator 36 corrects the decrease in engine output. Further, in step 1622 of FIG. 17, the engine output reduction is corrected by the motor generator 36.
  • the three-way catalyst 17 and the HC adsorbent 18 are shown as being separated from each other. Instead, both the HC adsorbent and the catalyst for exhaust treatment are provided. It may be a composite catalyst.
  • HC adsorbed by the HC adsorbent 18 at the time of cooling is desorbed after the downstream ternary catalyst is activated, so that HC at the time of starting the cold can be significantly reduced.
  • HC adsorbent temperature control by engine output adjustment engine output fluctuations during control are corrected by generators and driving motors. I do not feel it. In this way, harmful exhaust gas (unburned hydrocarbons) can be significantly reduced while maintaining smooth operation.
  • by performing the regeneration treatment of the HC adsorbent it is possible to always maintain the new performance (HC adsorption capacity).

Abstract

An exhaust emission control device of internal combustion engine having a simple exhaust emission treatment device structure and capable of efficiently purifying HC within the adsborbing capability of HC adsorbent and a control device for car capable of preventing a drivability from being impaired largely, wherein the adsorbent comprises an adsborbing zone adsorbing unburned hydrocarbon and a desorbing zone allowing the unburned hydrocarbon adsorbed to be desorbed, detects whether a catalyst is in the activated state or not and, when the catalyst is not in the activated state, the output or torque of an engine is regulated so that the temperature of the adsorbent can be maintained in the adsorbing zone until the catalyst reaches the activated state so as to achieve the activated state, whereby, because the adsorbent and exhaust gas treating catalyst is provided in an exhaust gas flow path of the engine, the unburned hydrocarbon contained in the exhaust gas can be adsorbed temporarily to the adsorbent.

Description

内燃機関の排気浄化装置及び自動車の制御装置 Exhaust purification device for internal combustion engine and control device for automobile
技術分野 Technical field
本発明は、内燃機関の排気浄化装置及びこの内燃機関を駆動源とする自動車 の制御装置に係り、 特に、 排ガス処理用触媒を用いた排気浄化装置を備えたガ ソリンェンジンの排気浄化装置及びこの内燃機関を駆動源とする自動車の制 御装置関するものである。 背景技術  The present invention relates to an exhaust gas purification device for an internal combustion engine and a control device for a vehicle using the internal combustion engine as a drive source, and more particularly to an exhaust gas purification device for a gasoline engine equipped with an exhaust gas purification device using an exhaust gas treatment catalyst and this internal combustion engine. It relates to a control device for a vehicle driven by an engine. Background art
自動車等の内燃機関から排出される排ガスに含まれる、 一酸化炭素(C O )、 炭化水素(H C: Hydrocarbon), 窒素酸化物( N 0 x )等は大気汚染物質である。 そこで、 従来より、 これらの排出量低減には多大の努力が払われ、 内燃機関の 燃焼方法の改善による発生量の低減に加え、排出された排ガスを触媒等を利用 して浄化する方法の開発が進められ、 着実な成果を挙げてきた。ガソリンェン ジン車に関しては、 三元触媒なる P t、 Rhを活性の主成分とし、 H C及び C 0の酸化と N O Xの還元を同時に行う触媒を用いる方法が主流となっている。 ところで、 三元触媒はその特性から、 ウィンドウと称される理論空気燃料比 近傍で燃焼させて生成した排ガスに効果的に作用し、 浄化する。 しかし、 三元 触媒が活性 (排ガスを浄化できる) を示す温度 (ライ トオフ温度、 約 3 0 0 °C ) に達するまでの間は浄化処理ができていなかった。  Carbon monoxide (CO), hydrocarbons (HC: hydrocarbons), nitrogen oxides (NOx), etc., contained in exhaust gas emitted from internal combustion engines of automobiles and the like are air pollutants. So far, great efforts have been made to reduce these emissions, and in addition to reducing the amount generated by improving the combustion method of the internal combustion engine, a method for purifying the exhaust gas using a catalyst etc. has been developed. Has been progressing and has achieved steady results. For gasoline-powered vehicles, the mainstream method is to use a three-way catalyst, Pt or Rh, as the main component of the activity, and simultaneously oxidize HC and CO and reduce NOX. By the way, due to its characteristics, the three-way catalyst effectively acts on and purifies the exhaust gas generated by burning near the theoretical air-fuel ratio called a window. However, the purification process had not been completed until the temperature of the three-way catalyst reached an activity (light exhaust gas can be purified) (light-off temperature, about 300 ° C).
そこで、バッテリを電源とするヒ一夕一により三元触媒を活性化温度より高 い温度に維持する方式が、 例えば特開平 1 0 - 2 8 8 0 2 8号公報ゃ特開平 1 1 - 2 1 0 4 4 8号公報に開示されている。 しかし、 冷機始動時に三元触媒が 活性化するまでバッテリーの電力を消費して加熱する必要があり、活性化する までの間に未燃炭化水素が大気中へ排出されることを回避することは困難でTherefore, a method of maintaining the three-way catalyst at a temperature higher than the activation temperature by using a battery as a power source is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-2808028. It is disclosed in Japanese Patent Application Publication No. 104448. However, the three-way catalyst It is necessary to consume and heat the battery until it is activated, and it is difficult to prevent unburned hydrocarbons from being released into the atmosphere before activation.
¾) ¾)
そこで、 始動運転時の三元触媒が活性化するまでの間、 排出される未燃炭化 水素を一時的に吸着し、三元触媒がライ トオフ温度に達することのできるよう な温度になったら、 吸着した未燃炭化水素 (以下、 " HC" という) を脱離す る H C吸着触媒の研究開発が盛んに行われている。  Until the three-way catalyst is activated during the start-up operation, the exhausted unburned hydrocarbons are temporarily adsorbed, and when the temperature reaches a temperature at which the three-way catalyst can reach the light-off temperature, Research and development of HC adsorption catalysts that desorb adsorbed unburned hydrocarbons (hereinafter referred to as "HC") are being actively conducted.
例えば、 自動車技術会 学術講演会前刷集 No. 19-00 The Cleanest C arへの挑戦—第 2報 ( 20005 188 )には、 同軸型バイパス H C吸着シス テムが採用され、 冷機始動時に二方弁を閉じ、 外筒側の HC吸着剤に排ガスを 導入し HCを吸着させ、 その後、 三元触媒が活性化した後、 二方弁を開き、 脱 離した HCを三元触媒に導入し浄化処理を行うものである。 この方式は、 同軸 型バイパス通路や二方弁で構成されているため構造が複雑でかつ高価である。 · また、 冷機始動時の運転状態によっては排ガス中の HC量が多く、 三元触媒が 活性化する前に HC吸着剤が吸着能力の限度に達してしまい、 HCがそのまま 大気中に放出される可能性もある。  For example, the Challenge of the Japan Society of Automotive Engineers, Academic Lecture Preprint, No. 19-00, The Cleanest Car—Second Report (20005188), a coaxial bypass HC adsorption system was adopted, Close the valve, introduce exhaust gas into the HC adsorbent on the outer cylinder to adsorb HC, and then activate the three-way catalyst.Open the two-way valve and introduce the desorbed HC into the three-way catalyst for purification. The processing is performed. This system is complicated and expensive because it is composed of a coaxial bypass passage and a two-way valve. Also, depending on the operation state at the time of starting the cold, the amount of HC in the exhaust gas is large, and the HC adsorbent reaches the limit of the adsorption capacity before the three-way catalyst is activated, and HC is released to the atmosphere as it is. There is a possibility.
また、 自動車技術会 学術講演会前刷集 No. 19-00 ガソリンエンジンの ゼロエミヅシヨン化技術 ( 20005238 )では、 2ステージ式 HCトラヅ プ触媒システムが採用されている。この HCトラヅプ触媒は H C吸着剤に排気 処理の機能を複合化したものである。このシステムでは浄化の高効率化を図る ため 2ステージ(HCトラップと三元触媒のハイプリヅド構造体がシリーズに 2段になっている) 構成になっている。 このシステムも前記例と同様に、 構造 が複雑で高価であり、 また、 三元触媒が活性化する前に HC吸着剤が吸着能力 の限度に達し、 HCがそのまま大気中に放出される可能性もある。  In addition, the two-stage HC trap catalyst system is used for the zero emission technology (20005238) of the gasoline engine of the Japan Society of Automotive Engineers of Japan. This HC trap catalyst is a composite of the exhaust treatment function and the HC adsorbent. This system has a two-stage configuration (the HC trap and three-way catalyst hybrid structure are two-stage in the series) in order to increase the efficiency of purification. As with the previous example, this system is also complicated and expensive, and the HC adsorbent may reach its adsorption capacity before the three-way catalyst is activated, and HC may be released to the atmosphere as it is. There is also.
一方、 HC吸着剤の能力を維持するために、 次の始動運転に備えて吸着した HCを脱離することも必要である。 例えば、 特開平 5-149 131号公報に は、 HC吸着剤、 三元触媒と熱交換器を排気管に設け、 排ガスの熱を利用して H Cの脱離のための温度制御を行うものが閧示されている。 この方式は、 熱交 換器を使うため排気管の構造が複雑で高価であり、 また、 始動運転時における H C吸着剤の吸着能力に関しては何らの配慮もされていない。 On the other hand, in order to maintain the capacity of the HC adsorbent, it is necessary to desorb the adsorbed HC in preparation for the next start-up operation. For example, Japanese Patent Application Laid-Open No. 5-149131 discloses that an exhaust pipe is provided with an HC adsorbent, a three-way catalyst, and a heat exchanger, and uses heat of exhaust gas. The temperature control for desorption of HC is proposed. Since this method uses a heat exchanger, the structure of the exhaust pipe is complicated and expensive, and no consideration is given to the adsorption capacity of the HC adsorbent during start-up operation.
同様に、 特開 2 0 0 0 - 8 8 3 7号公報にも、 吸着剤の H C吸着量が所定量 と判定された場合には、 吸着した H Cを放出し、 三元触媒が活性化温度に達す るまでエンジンの運転を延長するものが開示されている。 この方式でも、 始動 運転時における H C吸着剤の吸着能力に関しては何らの配慮もされていない 一方、 自動車の走行開始時を考えた場合、 エンジンの始動時から加速運転そ の他運転者の意図する運転状態に迅速且つスムーズに移行できることが望ま しく、 排ガスの浄化のために、 自動車の運転者にショックや出力不足を感じさ せることは好ましくない。 発明の開示  Similarly, in Japanese Patent Application Laid-Open No. 2000-88837, if the amount of HC adsorbed by the adsorbent is determined to be a predetermined amount, the adsorbed HC is released, and the three-way catalyst is activated at the activation temperature. It is disclosed that the operation of the engine be extended until the temperature of the engine is reached. Even with this method, no consideration is given to the adsorbing capacity of the HC adsorbent during the start-up operation.On the other hand, when considering the start of automobile operation, acceleration operation and other drivers' intentions from the start of the engine are considered. It is desirable to be able to shift to the driving state quickly and smoothly, and it is not preferable to make the driver of the vehicle feel shock or insufficient output in order to purify the exhaust gas. Disclosure of the invention
本発明の目的は、 上記従来技術の問題点に鑑み、 排気処理装置の構造が簡単 であり、 且つ、 H C吸着剤の吸着能力に配慮して効率よく H Cを浄化処理でき る内燃機関の排気浄化装置及び浄化方法を提供することにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that has a simple structure of an exhaust treatment apparatus and that can efficiently purify HC in consideration of the adsorption capacity of an HC adsorbent, in view of the above-mentioned problems of the prior art. An object of the present invention is to provide an apparatus and a purification method.
本発明の他の目的は、効率よく H Cを浄化処理できると共に、運転性が大き く損なわれることのない自動車の制御装置及び制御方法を提供することにあ る。  It is another object of the present invention to provide a control device and a control method for an automobile, which can efficiently purify HC and that do not greatly impair drivability.
上記課題は、以下の本発明の装置もしくは方法により解決することができる 本発明の特徴は、 エンジンの排ガス流路中に、 吸着剤と排ガス処理用の触媒 とを有し、排ガス中に含まれる未燃炭化水素を一時的に前記吸着剤吸着させる 内燃機関の排気浄化装置において、 前記吸着剤は、 未燃炭化水素を吸着する吸 着ゾーンと、 吸着した前記未燃炭化水素を脱離させる脱離ゾーンを有し、 前記 触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にないときに は、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸着ゾ一 ンに維持するように、前記エンジンの出力またはトルクを調整することにある 本発明の他の特徴は、 エンジンの排ガス流路中に、 吸着剤と排ガス処理用の 触媒とを有し、排ガス中に含まれる未燃炭化水素を一時的に前記吸着剤吸着さ せる内燃機関の排気浄化装置において、 前記吸着剤は、 未燃炭化水素を吸着す る吸着ゾーンと、 吸着した前記未燃炭化水素を脱離させる脱離ゾーンを有し、 前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にないと きには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸着 ゾーンに維持するように、 前記エンジンの出力またはトルクを調整し、 該負荷 調整を相殺するように前記発電機の負荷を変化させることにより前記ェンジ ンの正味出力を同等レベルに維持することにある。 The above object can be solved by the following apparatus or method of the present invention. A feature of the present invention is that an adsorbent and a catalyst for exhaust gas treatment are provided in an exhaust gas flow path of an engine and are contained in exhaust gas. In the exhaust gas purifying apparatus for an internal combustion engine for temporarily adsorbing unburned hydrocarbons with the adsorbent, the adsorbent includes an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons. A separation zone for detecting whether or not the catalyst is in an activated state. When the catalyst is not in an activated state, the temperature of the adsorbent is maintained until the catalyst reaches an activated state. The adsorption zone Another feature of the present invention is to adjust the output or the torque of the engine so as to maintain the exhaust gas in the exhaust gas passage of the engine. An exhaust gas purification device for an internal combustion engine that temporarily adsorbs unburned hydrocarbons contained in the adsorbent, wherein the adsorbent comprises: an adsorption zone for adsorbing unburned hydrocarbons; and an adsorbent zone for adsorbing the unburned hydrocarbons. A desorption zone for desorption, detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, until the catalyst reaches an activated state, The engine output or torque is adjusted to maintain the temperature of the adsorbent in the adsorption zone, and the net output of the engine is varied by changing the load on the generator to offset the load adjustment. To the same level It is to.
本発明は、その一態様としてはエンジンの排ガス流路中に H Cを吸着する温 度領域(吸着ゾーン) と該吸着ゾーンよりも高い温度領域であって吸着した H Cが脱離する温度領域(脱離ゾーン) を有する吸着剤と排ガス処理用の触媒を 配置し、 該触媒が活性化する温度に達するまでは、 排ガス中に含まれる H Cを 上記吸着剤により一時的に吸着させ、かつ H C吸着ゾーン温度を越えないよう にエンジン負荷や吸入空気量を調節する。 その後、 該触媒が活性化する温度に 達したら、 エンジン負荷や吸入空気量を増加させ、 H C脱離ゾーン温度になる ように温度制御を行うことにより、簡単な排気処理装置の構造で効率よく H C を浄化処理できる。  One aspect of the present invention is a temperature region where HC is adsorbed in an exhaust gas flow path of an engine (adsorption zone) and a temperature region which is higher than the adsorption zone and in which adsorbed HC is desorbed (desorption region). An adsorbent having a separation zone) and a catalyst for treating exhaust gas are arranged. Until the catalyst reaches a temperature at which the catalyst is activated, HC contained in the exhaust gas is temporarily adsorbed by the adsorbent, and an HC adsorption zone is provided. Adjust the engine load and intake air volume so that the temperature does not exceed. Thereafter, when the temperature of the catalyst is activated, the engine load and the amount of intake air are increased, and the temperature is controlled so as to reach the HC desorption zone temperature. Can be purified.
H C吸着ゾーン温度を越えないようにエンジン負荷や吸入空気量を調節す る場合、 自動車の最終出力 (駆動力) を変化させないため、 エンジンのトルク 、 出力変動はエンジンに設けられた発電機やハイプリヅ ド自動車の発電機、 駆 動モ一夕により補正することができる。 また、 エンジンの点火時期や E G R率 を変えることで補正してもよい。  When the engine load and intake air volume are adjusted so as not to exceed the HC adsorption zone temperature, the final output (driving force) of the vehicle is not changed, so the engine torque and output fluctuations are caused by the generator and high-power output provided in the engine. It can be corrected by the generator and driving mode of the vehicle. The correction may be made by changing the ignition timing of the engine or the EGR rate.
本発明によれば、冷機時に H C吸着剤 1 8に吸着された H Cが下流の三元触 媒が活性化した後に脱離されるため、 冷機始動時の H Cを大幅に削減できる。 また、 エンジン出力調整による H C吸着剤温度制御において、 制御中のェンジ ン出力変動は発電機や駆動用モ一夕で補正されるため、 自動車の運転者に出力 やトルク変動を感じさせない。スムーズな運転性を維持しながら同時に有害排 ガス (未燃炭化水素) を大幅に削減できる。 また、 H C吸着剤の再生処理を行 うことにより、 いつも新品の性能 (H C吸着能力) を維持することができる。 According to the present invention, HC adsorbed by the HC adsorbent 18 at the time of cooling is desorbed after the downstream ternary catalyst is activated, so that HC at the time of starting the cold can be significantly reduced. In addition, in the HC adsorbent temperature control by adjusting the engine output, the engine output fluctuation during control is corrected by the generator and the driving motor, so that the driver of the car does not feel the output or torque fluctuation. Hazardous emissions (unburned hydrocarbons) can be significantly reduced while maintaining smooth operation. Also, by performing regeneration treatment of the HC adsorbent, it is possible to always maintain the new performance (HC adsorption capacity).
図面の簡単な説明 . 図 1は、本発明の代表的な実施態様を示す内燃機関の排気浄化装置のシステ ム構成図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine showing a typical embodiment of the present invention.
図 2は、 図 1の実施態様における、 H C吸着時の H C吸着剤温度の制御方法 を示すフローチャートである。  FIG. 2 is a flowchart showing a method for controlling the temperature of the HC adsorbent during HC adsorption in the embodiment of FIG.
図 3は、 図 1の実施態様における、 再生時の H C吸着剤再生処理の制御方法 を示すフローチャートである。  FIG. 3 is a flowchart showing a control method of the HC adsorbent regeneration process at the time of regeneration in the embodiment of FIG.
図 4は、 図 1の実施態様で用いられる H C吸着剤の吸着、 脱離、 再生、 耐熱 限界ゾーンの説明図である。  FIG. 4 is an explanatory diagram of the adsorption, desorption, regeneration, and heat resistance limit zones of the HC adsorbent used in the embodiment of FIG.
図 5は、 図 1の実施態様で用いられる三元触媒の H C浄化率特性図である。 図 6は、 図 2の制御における、 排気温度、 触媒温度と吸入空気量の関係を示 す図である。  FIG. 5 is an HC purification rate characteristic diagram of the three-way catalyst used in the embodiment of FIG. FIG. 6 is a diagram showing the relationship between the exhaust gas temperature, the catalyst temperature, and the intake air amount in the control of FIG.
図 7は、 図 2の制御に用いられるエンジン出力変化量 の特性図である。 図 8は、図 1の実施態様による冷機始動時の H C排出量の実測データの例を 示す図である。  FIG. 7 is a characteristic diagram of the engine output change amount used for the control of FIG. FIG. 8 is a diagram showing an example of actual measurement data of HC emissions at the time of cold start according to the embodiment of FIG.
図 9は、 本発明の他の実施態様における H C吸着剤、 三元触媒の構成図であ る。  FIG. 9 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention.
図 1 0は、 本発明の他の実施態様における H C吸着剤、 三元触媒の構成図で ある。 図 1 1は、 本発明の他の実施態様における H C吸着剤、 三元触媒の構成図で ある。 FIG. 10 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention. FIG. 11 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention.
図 1 2は、本発明の他の実施態様を示す内燃機関の排気浄化装置のシステム 構成図である。  FIG. 12 is a system configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to another embodiment of the present invention.
図 1 3は、 図 1 2の実施態様における、 吸着時の H C吸着剤温度の制御方法 を示すフローチヤ一トである。  FIG. 13 is a flowchart showing a method for controlling the temperature of the HC adsorbent during adsorption in the embodiment of FIG.
図 1 4は、 図 1 2の実施態様における、 再生時の H C吸着剤再生処理の制御 方法 ¾示すフローチャートである。  FIG. 14 is a flowchart showing a method for controlling the HC adsorbent regeneration process during regeneration in the embodiment of FIG.
図 1 5は、本発明の他の実施態様としてのハイプリッド電気自動車における 内燃機関の排気浄化装置のシステム構成図である。  FIG. 15 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a hybrid electric vehicle as another embodiment of the present invention.
図 1 6は、 図 1 5の実施態様における、 吸着時の H C吸着剤温度の制御方法 を示すフローチヤ一トである。  FIG. 16 is a flowchart showing a method of controlling the temperature of the HC adsorbent during adsorption in the embodiment of FIG.
図 1 7は、 図 1 5の実施態様における、 再生時の H C吸着剤再生処理の制御 方法を示すフロ一チヤ一トである。  FIG. 17 is a flowchart showing a method of controlling the HC adsorbent regeneration process during regeneration in the embodiment of FIG.
図 1 8は、本発明の他の実施態様としての簡易型ハイブリツド電気自動車に おける内燃機関の排気浄化装置のシステム構成図である。  FIG. 18 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a simplified hybrid electric vehicle as another embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、本発明の一実施態様を示す内燃機関の排気浄化装置を含む全体のシ ステム構成である。  FIG. 1 is an overall system configuration including an exhaust gas purification device for an internal combustion engine according to an embodiment of the present invention.
この実施態様の内燃機関は、 吸気系に接続された多気筒エンジン 4と、 その 排気系及びエンジン制御ュニット(Engine Control Unit= E C U ) 2 5から構 成されている。吸気系は、 エアクリーナ 1の下流の吸気通路に設けられたエア フローセンサ一 2、 モ一夕付スロヅトルバルブ 3、 インジェク夕 5、 吸気温度 センサ一 9等を有する。インジェク夕 5には、燃料ポンプ 1 2により燃料タン ク 1 3の燃料が供給される。 また、 点火プラグ 6を備えた多気筒エンジン 4に は、 ノックセンサ一 2 6や水温サンサ一 2 8が設けられている。 The internal combustion engine according to this embodiment includes a multi-cylinder engine 4 connected to an intake system, an exhaust system and an engine control unit (ECU) 25. The intake system includes an air flow sensor 12 provided in the intake passage downstream of the air cleaner 1, a throttle valve 3 with a motor, an injector 5, an intake temperature sensor 19, and the like. Injection time 5 is supplied with fuel from fuel tank 13 by fuel pump 12. Also, a multi-cylinder engine 4 with a spark plug 6 A knock sensor 26 and a water temperature sensor 28 are provided.
排気系は、エンジン 4の排気管 1 1に設けられた三元触媒 1 7と H C吸着剤 1 8を有している。 三元触媒 1 7には排ガス処理用の触媒が配置されている。 H C吸着剤 1 8は、エンジンの排ガス流路中に未燃炭化水素を吸着する温度領 域 (以下、 " 吸着ゾーン" という) と該吸着ゾーンよりも高い温度領域で吸着 した未燃炭化水素が脱離する温度領域 (以下、 "脱離ゾーン" という) を有す る。三元触媒 1 7と H C吸着剤 1 8をシリーズに配置する代わりに、 吸着剤に 排ガス処理用の触媒機能を複合させても良い。排気系はさらに、 吸着剤酸素濃 度センサ一(or A/Fセンサー) 1 9、 排ガス温度センサ一 2 0、 排ガス温度セン サ一 2 1、 排ガス温度サンサー 2 2等を有する。 1 5は E G R率(排ガス還流 率;排ガスの一部を吸入空気に混ぜる) を制御する E G Rバルブである。  The exhaust system has a three-way catalyst 17 and an HC adsorbent 18 provided in an exhaust pipe 11 of the engine 4. The three-way catalyst 17 is provided with a catalyst for treating exhaust gas. The HC adsorbent 18 is composed of a temperature region (hereinafter referred to as an “adsorption zone”) that adsorbs unburned hydrocarbons in the exhaust gas passage of the engine and an unburned hydrocarbon adsorbed in a temperature region higher than the adsorption zone. It has a desorption temperature range (hereinafter referred to as "desorption zone"). Instead of arranging the three-way catalyst 17 and the HC adsorbent 18 in a series, the adsorbent may be combined with a catalyst function for exhaust gas treatment. The exhaust system further has an adsorbent oxygen concentration sensor (or A / F sensor) 19, an exhaust gas temperature sensor 20, an exhaust gas temperature sensor 21, and an exhaust gas temperature sensor 22. Reference numeral 15 denotes an EGR valve that controls the EGR rate (exhaust gas recirculation rate; a part of exhaust gas is mixed with intake air).
E C U 2 5は、 入出力イン夕一フェイスとしての I/O LSI、 演算処理装置 ΜΡ· ϋ、 多数の制御プログラムを記憶させた記憶装置 RAMおよび R0M、 タイマーカウ ン夕一等より構成される。 E C U 2 5には、 上記各センサ一により検出された 信号のほか、負荷センサ一 8により検出されたアクセルペダル 7の踏み込み量 や、 クランク角センサ一 2 9により検出されたエンジンの回転数や回転角の信 号も入力される。 E C U 2 5の制御プログラムには、 以下で述べる H C吸着剤 温度制御機能 2 5 0を実行するものが含まれている。  The ECU 25 is composed of an I / O LSI as an input / output interface, an arithmetic processing unit ΜΡ, a storage device RAM storing a large number of control programs, R0M, a timer counter, and the like. In addition to the signals detected by the above sensors, the ECU 25 includes the amount of depression of the accelerator pedal 7 detected by the load sensor 18 and the number of revolutions and rotations of the engine detected by the crank angle sensor 29. The corner signal is also entered. The control program of the ECU 25 includes a program for executing the H C adsorbent temperature control function 250 described below.
5 1は発電機であり、 エンジン 4により駆動され、 その出力でバッテリー 3 8を充電する。 E C U 2 5により整流器、 発電量調整手段 5 2が制御され発電 機 5 1の出力が調節される。三元触媒 1 7の入り口部にはヒーター 2 3が設け られており、 E C U 2 5により制御されるスィツチ 2 4を介してバッテリー 3 8から電力が供給され、始動時に早く活性化されるように三元触媒 1 7を加熱 する。  Reference numeral 51 denotes a generator, which is driven by the engine 4 and charges the battery 38 with its output. The rectifier and the power generation adjusting means 52 are controlled by the ECU 25 to adjust the output of the generator 51. A heater 23 is provided at the entrance of the three-way catalyst 17 so that electric power is supplied from a battery 38 via a switch 24 controlled by the ECU 25 so that the three-way catalyst 17 is activated quickly at the start. The three-way catalyst 17 is heated.
以上の構成の排気浄化装置付内燃機関は、 以下のように動作する。まず、 ェ ンジンへの吸入空気はエアクリーナ一 1により濾過された後エアフローセン サ一 2により計量され、 モ一夕付スロッ トルバルブ 3を経て、 さらにインジヱ クタ一 5から燃料噴射を受け、 混合気としてエンジン 4に供給される。エアフ 口一センサー信号その他の各センサ一信号は E C U 2 5へ入力される。 E C U 2 5ではエンジンの運転状態及び H C吸着剤 1 8、三元触媒 1 7の状態を評価 して運転空燃比を決定し、ィンジェクタ一 5の噴射時間等を制御して混合気の 燃料濃度を所定値に設定する。 The internal combustion engine with the exhaust gas purification device having the above configuration operates as follows. First, the intake air to the engine is filtered by an air cleaner 11 and then measured by an air flow sensor 2, passes through a throttle valve 3 with a motor, and is further removed from the engine. The fuel is received from the fuel tank 5 and supplied to the engine 4 as a mixture. The air mouth sensor signal and other sensor signals are input to the ECU 25. The ECU 25 evaluates the operating state of the engine and the states of the HC adsorbent 18 and the three-way catalyst 17 to determine the operating air-fuel ratio, and controls the injection time of the injector 15 to control the fuel concentration of the air-fuel mixture. Set to a predetermined value.
エンジン 4のシリンダ一に吸入された混合気は E C U 2 5からの信号で制 御される点火プラグ 6により着火され燃焼する。燃焼排ガスは排気管 1 .1に導 かれる。排気管 1 1には H C吸着剤 1 8が設けられており、 冷機始動時は三元 触媒 1 7が活性化する温度に達するまでは H C吸着剤 1 8により H Cが吸着 される。 三元触媒 1 7の温度は、 エンジン負荷、 吸入空気量などからの推定演 算値でモニタ一できる。 また、 三元触媒 1 7の活性を温度の代わりに排気セン サ 2 ◦と 2 1による浄化率 7? cで判定しても良い。  The air-fuel mixture sucked into the cylinder 1 of the engine 4 is ignited by a spark plug 6 controlled by a signal from the ECU 25 and burns. The flue gas is led to the exhaust pipe 1.1. The exhaust pipe 11 is provided with an HC adsorbent 18. When the cold start is performed, HC is adsorbed by the HC adsorbent 18 until the temperature at which the three-way catalyst 17 is activated is reached. The temperature of the three-way catalyst 17 can be monitored by an estimated value calculated from the engine load, the amount of intake air, and the like. Alternatively, the activity of the three-way catalyst 17 may be determined by the purification rate 7? C by the exhaust sensors 21 and 21 instead of the temperature.
その間、 確実に H Cが吸着されるようにするために、 <3 11 2 5の11〇吸着 剤温度制御機能 2 5 0により H C吸着剤温度が吸着可能最大温度 Tamaxを越え ないようにエンジン負荷や吸入空気量 Qaが調整される。 H C吸着剤の温度は排 気センサ 2 2でモニタ一する。 排ガス温度 Texはエンジン負荷 Lや吸入吸気量 Q aを減らすことで下がり、 その結果、 H C吸着剤温度も下がる。 エンジン負荷 や吸入空気量を減らした分、 発電機 5 1の負荷 (発電量) も減らすことでェン ジンの最終出力 (トルク) を同じレベルに維持でき、 自動車の運転者にショッ クゃ出力不足を感じさせることはない。 .  In the meantime, to ensure that the HC is adsorbed, the engine load and the HC adsorbent temperature must be kept below the maximum adsorbable temperature Tamax by the <3 11 25 11 温度 adsorbent temperature control function 250. The intake air amount Qa is adjusted. The temperature of the HC adsorbent is monitored by the exhaust gas sensor 22. Exhaust gas temperature Tex is reduced by reducing engine load L and intake air volume Qa, and as a result, HC adsorbent temperature is also reduced. The final load (torque) of the engine can be maintained at the same level by reducing the load (power generation) of the generator 51 as much as the engine load and intake air volume are reduced. There is no shortage. .
. H C吸着触媒温度を上げるため、 エンジン負荷 Lや吸入空気量 Qaを増加させ た場合は、 増加した分だけ発電機の負荷 (発電量) を増す。  If the engine load L or the intake air amount Qa is increased to increase the temperature of the H C adsorption catalyst, increase the generator load (power generation amount) by the increased amount.
次に、 図 2〜図 7で、 E C U 2 5の H C吸着剤温度制御機能 2 5 0の動作を 説明する。 図 2は、 H C吸着時の H C吸着剤温度の制御方法を示すフローチヤ ートであり、 図 3は、 再生時の H C吸着剤再生処理の制御方法を示すフローチ ャ一トである。  Next, the operation of the H C adsorbent temperature control function 250 of the ECU 25 will be described with reference to FIGS. FIG. 2 is a flowchart showing a method of controlling the temperature of the HC adsorbent during HC adsorption, and FIG. 3 is a flowchart showing a method of controlling the regeneration process of the HC adsorbent during regeneration.
まず、 図 2のステップ 1 0 0 2でエンジン始動時のエンジン冷却水温 Tstar tを水温センサ 2 8により検出する。 ステップ 1 0 0 3で H C吸着剤入口排気 温度 Texを検出する。 ステップ 1 0 0 4で三元触媒温度 Teatを検出する。 First, in step 1002 of Fig. 2, the engine coolant temperature Tstar t is detected by the water temperature sensor 28. In step 103, the HC adsorbent inlet exhaust temperature Tex is detected. In step 104, the three-way catalyst temperature Teat is detected.
図 4は、 H C吸着剤 1 8の吸着ゾーン、 脱離ゾーン、 H C吸着能力を新品と 同じレベルまで回復させる再生ゾーン、 吸着剤が劣化、 損傷する耐熱限界ゾー ンの関係を示す。 H C吸着剤 1 8の吸着能力を維持するためには、 H C吸着剤 1 8の温度を吸着可能最大温度 Tamax程度以下に維持するのが望ましい。 逆に H Cを脱離させて三元触媒 1 7へ送るためには、 温度を Tamax程度以上にする 必要がある。 そして、 H C吸着剤 1 8を再生して吸着能力を新品と同じレベル まで回復させるには温度を再生ゾーンすなわち Trmii!〜 Tngの範囲に維持する 必要がある。  Figure 4 shows the relationship between the adsorption zone, desorption zone of the HC adsorbent 18, the regeneration zone for restoring the HC adsorbing capacity to the same level as that of a new product, and the heat-resistant zone where the adsorbent deteriorates and is damaged. In order to maintain the adsorption ability of the HC adsorbent 18, it is desirable to maintain the temperature of the HC adsorbent 18 at about the maximum adsorbable maximum temperature Tamax or lower. Conversely, in order to desorb HC and send it to the three-way catalyst 17, the temperature must be about Tamax or higher. Then, in order to regenerate the HC adsorbent 18 and restore the adsorption capacity to the same level as the new one, set the temperature to the regeneration zone, that is, Trmii! Must be maintained in the range of ~ Tng.
また、 図 5は、 三元触媒 1 7の温度 Teatに対する H C浄化率特性を示す。 H C吸着剤 1 8は、 吸着可能最大温度 Tamax ( >Tact) で十分な浄化率になって いることがわかる。 十分な浄化効率が得られる三元触媒温度を Tactで示す。始 動時、 三元触媒 1 7は、 ヒー夕一 2 3への通電により活性化温度 (ライ トオフ 温度) Tactを超えるように加熱制御され、 この Tactを超えたときは、 ヒ一夕一 2 3への通電が停止される。  FIG. 5 shows the HC purification rate characteristics of the three-way catalyst 17 with respect to the temperature Teat. It can be seen that the HC adsorbent 18 has a sufficient purification rate at the maximum adsorbable temperature Tamax (> Tact). Tact indicates the three-way catalyst temperature at which sufficient purification efficiency can be obtained. At start-up, the three-way catalyst 17 is heated and controlled so as to exceed the activation temperature (light-off temperature) Tact by energizing the heater 23, and when the temperature exceeds this Tact, the heater 23 Power supply to 3 is stopped.
そこで、図 2のステップ 1 0 0 5で始動時のエンジン冷却水温 Tstartが所定 温度 Tcold以下か判定し、 YESの場合はステップ 1 0 0 6で三元触媒温度 Teat が活性化温度 (ライ トオフ温度) Tact以下か判定する。 YESの場合はステップ 1 0 0 7で H C吸着剤入口排気温度 Texが H C吸着可能最大温度 Tamaxから余 裕値ひだけ低い温度以下かを判定する。 YESの場合はステップ 1 0 0 8で H C 吸着剤の温度を上昇させるためエンジン出力またはトルクを 増加する。 ェ ンジンの吸入空気量 Qaをモー夕付スロッ トルバルブ 3で増加してもよい。 図 6は、 エンジンの吸入空気量 Qaに対する H C吸着剤 1 8入口の排気温度 T exと三元触媒 1 7の温度を示したものである。吸入空気量を増やすことで温度 を高めることができる。 同時にエンジン出力 (負荷) も増加する。筒内噴射ェ ンジンの場合は 1サイクル当たりの燃料噴射量を増やすことで温度を高める ことができる。 Therefore, it is determined in step 1005 of FIG. 2 whether the engine cooling water temperature Tstart at the start is equal to or lower than the predetermined temperature Tcold. Judge whether it is less than Tact. If YES, it is determined in step 1107 whether the HC adsorbent inlet exhaust gas temperature Tex is lower than the maximum HC adsorbable maximum temperature Tamax by a margin value or less. If YES, the engine output or torque is increased in step 108 to raise the temperature of the HC adsorbent. The engine intake air amount Qa may be increased by the throttle valve 3 with motor. FIG. 6 shows the exhaust gas temperature Tex at the inlet of the HC adsorbent 18 and the temperature of the three-way catalyst 17 with respect to the intake air amount Qa of the engine. The temperature can be increased by increasing the amount of intake air. At the same time, the engine output (load) also increases. For in-cylinder injection engines, increase the temperature by increasing the amount of fuel injected per cycle be able to.
図 7は、 エンジン出力 (またはトルク) 変化分 の特性図である。 目標温 度の偏差 A Texの関数にすることにより目標温度への収束時間 (応答時間) を 速められる。  FIG. 7 is a characteristic diagram of a change in engine output (or torque). The convergence time (response time) to the target temperature can be shortened by using a function of the target temperature deviation A Tex.
次に、 図 2のステップ 1 0 0 , 9で発電機 5 1、 3 1の負荷 (発電量) を増加 させる。ステップ 1 0 0 7で NOの場合はステップ 1 0 1 0でエンジン出力また はトルクを 減少させる。 エンジンの吸入空気量 Qaを減少させてもよい。 ス テヅプ 1 0 1 1で発電機 5 1、 3 1の負荷 (発電量) を減少させる。 なお、 三 元触媒 1 7の入り口部にヒー夕一 2 3を設けているため、バヅテリ 3 8の蓄電 量が多い場合でも、 発電機 5 1、 3 1を負荷として、 有効に利用できる。 ステップ 1 0 0 5で NOの場合はエンジン冷却水温が暖かいので②(図 3 ) へ 進む。 1 0 0 6で NOの場合はステツプ 1 0 1 2で H C吸着剤温度コントロ一ル を解除し、 ②へ進む。  Next, the loads (power generation) of the generators 51 and 31 are increased in steps 100 and 9 in FIG. If the answer is NO in Step 107, the engine output or torque is reduced in Step 110. The engine intake air amount Qa may be reduced. In step 101, reduce the load (power generation) on generators 51 and 31. Since the heater 23 is provided at the entrance of the three-way catalyst 17, the generators 51 and 31 can be effectively used as loads even when the battery 38 has a large amount of stored power. If NO in step 1005, the engine cooling water temperature is warm, so go to ② (Fig. 3). If NO in step 106, release the temperature control of the HC adsorbent in step 102 and proceed to step ②.
図 3のステップ 1 0 2 0で H C吸着剤入口排気温度 Texが耐熱限界温度 Tng 以上か判定し、 YESの場合はステップ 1 0 2 1でエンジン出力またはトルクを 厶 L減少させる。 エンジンの吸入空気量 Qaを減少させてもよい。 さらに、 ステ ヅプ 1 0 2 2で発電機 5 1、 3 1の負荷 (発電量) を減少させる。  In step 102 of FIG. 3, it is determined whether or not the HC adsorbent inlet exhaust gas temperature Tex is equal to or higher than the heat-resistant limit temperature Tng. If YES, the engine output or torque is reduced by mL in step 1021. The engine intake air amount Qa may be reduced. Further, the load (power generation) of the generators 51 and 31 is reduced in step 102.
ステップ 1 0 2 0で NOの場合はステップ 1◦ 2 3で H C吸着剤入口排気温 度 Texが: B C吸着可能最大温度 Tamax以上か判定し、 YESの場合はステップ 1 0 2 4で H C吸着剤再生処理完了済みかを判定し、 NOの場合はステップ 1 0 2 5 で所定時間の間、 H C吸着剤入口排気温度 Texが再生最小温度 Trainと耐熱限界 最大温度 Tngの範囲になるようなエンジン出力 (トルク) にすることで H C吸 着剤の再生処理を行う。 ステップ 1 0 2 3で N0、 またはステップ 1 0 2 4で Y ESの場合はリターンに戻る。  If NO in step 1 0 2 0, it is determined in step 1 2 3 that the HC adsorbent inlet exhaust temperature Tex is equal to or higher than the maximum BC adsorbable temperature Tamax, and if YES, the HC adsorbent is It is determined whether the regeneration process has been completed.If NO, the engine output is set so that the HC adsorbent inlet exhaust temperature Tex falls within the range of the regeneration minimum temperature Train and the heat-resistant limit maximum temperature Tng for a predetermined time in step 1025. (Torque) to regenerate the HC adsorbent. If N0 in step 1023 or YES in step 1024, return to return.
図 8は、図 1の実施態様による冷機始動時の H C排出量の実測データの例を 示す図である。 従来方式の場合は走行時間に伴い H C吸着剤温度が上昇して、 冷機時に吸着した H Cを三元触媒が活性化する前に脱離するため点線のよう に H C排出量が増えてしまう。 それに対して本発明では H C吸着剤温度が Tam ax—ひに制御されるため H C脱離時の増加が著しく抑制される。 FIG. 8 is a diagram showing an example of measured data of HC emissions at the time of cold start according to the embodiment of FIG. In the case of the conventional method, the HC adsorbent temperature rises with the running time, and HC adsorbed during cooling is desorbed before the three-way catalyst is activated. In addition, HC emissions increase. On the other hand, in the present invention, since the temperature of the HC adsorbent is controlled by the temperature, the increase during the desorption of HC is significantly suppressed.
また、 本実施態様によれば、 冷機時に H C吸着剤 1 8に吸着された H Cが下 流の三元触媒が活性化した後に脱離されるため、冷機始動時の H Cを大幅に削 減できる。 また、 エンジン出力調整による H C吸着剤温度制御において、 制御 中のエンジン出力変動は発電機や駆動用モータで補正されるため、 自動車の運 転者にショックや出力不足あるいはトルク変動を感じさせない。  Further, according to the present embodiment, the H C adsorbed by the H C adsorbent 18 during the cold operation is desorbed after the downstream three-way catalyst is activated, so that the H C at the start of the cold operation can be significantly reduced. In addition, in the HC adsorbent temperature control by adjusting the engine output, the engine output fluctuation during control is corrected by the generator and the driving motor, so that the driver of the vehicle does not feel shock, insufficient output, or torque fluctuation.
なお、 三元触媒が活性化した状態 (ライ トオフ温度) を検出するために、 三 元触媒の温度 Tactを検出するのに代えて、図 5に示した H Cの浄化率 7?を検出 し、 H C浄化率が所定値 7? cに達したことで三元触媒の活性化を判断しても良 い。 また、 三元触媒の入口及び出口に配置した 02の出力信号波形から、 三元 触媒の活性化を判断しても良い。  In order to detect the activated state (light-off temperature) of the three-way catalyst, instead of detecting the three-way catalyst temperature Tact, the HC purification rate 7? Shown in Fig. 5 was detected. The activation of the three-way catalyst may be determined when the HC purification rate reaches the predetermined value of 7 to c. Further, the activation of the three-way catalyst may be determined from the output signal waveforms of 02 arranged at the inlet and the outlet of the three-way catalyst.
図 9は、 本発明の他の実施態様における H C吸着剤、 三元触媒の構成図であ る。 この実施態様では、 H C吸着剤下流の三元触媒を 1 7八と 1 7 Bに分けた 例を示す。三元触媒 1 7 Aのように薄くすることで熱容量を下げ、早く活性化 するように改善したものである。  FIG. 9 is a configuration diagram of an HC adsorbent and a three-way catalyst according to another embodiment of the present invention. In this embodiment, an example is shown in which the three-way catalyst downstream of the HC adsorbent is divided into 178 and 17B. The heat capacity is reduced by making it thinner, such as a three-way catalyst of 17 A, and it is improved so that it is activated quickly.
図 1 0の例も同様に、 Ξ元触媒 1 7 Aの直径と厚みをさらに小さくしたもの で、 熱容量を下げ、 早く活性化することができる。  Similarly, the example shown in FIG. 10 is obtained by further reducing the diameter and thickness of the 17-A low-temperature catalyst, so that the heat capacity can be reduced and the catalyst can be quickly activated.
図 1 1の例は、 三元触媒 1 7 Aをコーン状に小さくして、 熱容量を下げ、 早 く活性化することができる。  In the example shown in Fig. 11, the three-way catalyst 17A can be made small in a cone shape to reduce the heat capacity and activate quickly.
次に、 図 1 2は、 本発明の他の実施態様を示す内燃機関の排気浄化装置のシ ステム構成図である。 図 1 3は、 図 1 2の実施態様における、 吸着時の H C吸 着剤温度の制御方法を示すフローチャートであり、 図 1 4は、 再生時の H C吸 着剤温度の制御方法を示すフローチャートである。  Next, FIG. 12 is a system configuration diagram of an exhaust gas purifying apparatus for an internal combustion engine according to another embodiment of the present invention. FIG. 13 is a flowchart showing a method for controlling the HC adsorbent temperature during adsorption in the embodiment of FIG. 12, and FIG. 14 is a flowchart showing a method for controlling the HC adsorbent temperature during regeneration. is there.
この実施例は、.インジェクター 5が内燃機関 4のシリンダー内に有る所謂筒 内噴射の場合である。 また、 各温度のモニタ一は、 図 1の排気温度センサ 2 9 の代わりに、 エンジン負荷、 エンジン回転数、 吸入空気量 Qa、 車速、 始動後経 過時間などにより、 図 6に示した特性などを利用して推定計算する。 This embodiment is a case of so-called in-cylinder injection in which the injector 5 is provided in a cylinder of the internal combustion engine 4. In addition, instead of using the exhaust temperature sensor 29 shown in Fig. 1, the monitor for each temperature uses the engine load, engine speed, intake air amount Qa, vehicle speed, Estimation calculation is performed by using the characteristics shown in Fig. 6 due to overtime or the like.
すなわち、 図 1 3のステップ 1 2 0 3において、 E C U 2 5では H C吸着剤 入口排気温度 Texを検出する代わりに、 エンジン負荷、 エンジン回転数、 吸入 空気量、 車速、 始動後経過時間などにより推定計算で求める。 また、 ステップ 1 2 0 4で三元触媒温度 Teatを推定計算で求める。 さらに、 ステップ 1 2 0 9 で最終のエンジン出力 (トルク) が変化しないように点火時期や噴射時期を遅 角したり、 £ 01 バルブ1 5を開くことで E G R率を増加する。  In other words, in step 123 of FIG. 13, instead of detecting the HC adsorbent inlet exhaust gas temperature Tex, the ECU 25 estimates the ECU load based on the engine load, engine speed, intake air amount, vehicle speed, elapsed time after starting, etc. Obtain by calculation. Also, in step 124, the three-way catalyst temperature Teat is obtained by an estimation calculation. In addition, the ignition timing and injection timing are retarded so that the final engine output (torque) does not change in step 1209, and the EGR rate is increased by opening the valve 01 and the valve 01.
この実施例の場合、 図 2ステップ 1 0◦ 7で YESの場合はステップ 1 2 0 8 で H C吸着剤の温度を上昇させるために、 1サイクル当たりの噴射量を増加し て、 エンジン出力またはトルクを 増加させる。.ステップ 1 2 0 9では、 H C吸着触媒温度を上げるため、 エンジン負荷 Lを増加させた分だけ、 エンジン 出力 (トルク) を変化させないため点火時期を遅角させたり、 E G R率を E G Rバルブ 1 5を閧くことで、 エンジン出力を減少させる。  In the case of this embodiment, FIG. 2 If YES in step 10 ° 7, increase the injection amount per cycle to increase the temperature of the HC adsorbent in step 122 to increase the engine output or torque. Increase. In step 1209, to raise the HC adsorption catalyst temperature, the engine output (torque) is not changed by the amount of the engine load L, so that the ignition timing is retarded and the EGR rate is reduced by the EGR valve 15 As a result, the engine output will be reduced.
次に、 ステップ 1 0 0 7で NOの場合は、 ステップ 1 2 1 0で 1サイクル当た りの噴射量を減少さてエンジン出力またはトルクを 減少させる。 さらに、 図 1 4のステップ 1 0 2 0で H C吸着剤入口排気温度 Texが耐熱限界温度 Tng 以上か判定し、 YESの場合はステップ 1 0 2 1で 1サイクル当たりの噴射量を 減少させ、 エンジン出力またはトルクを 減少させる。  Next, if the answer is NO in Step 107, the injection amount per cycle is reduced in Step 122 to reduce the engine output or torque. Furthermore, it is determined whether the HC adsorbent inlet exhaust gas temperature Tex is equal to or higher than the heat-resistant limit temperature Tng in step 1020 of FIG. 14, and if YES, the injection amount per cycle is reduced in step 1021, and the engine Reduce output or torque.
この実施態様でも、冷機時に H C吸着剤 1 8に吸着された H Cが下流の三元 触媒が活性化した後に脱離されるため、冷機始動時の H Cを大幅に削減できる 。 また、 エンジン出力調整による H C吸着剤温度制御において、 制御中のェン ジン出力変動は発電機や駆動用モー夕で補正されるため、 自動車の運転者にシ ョヅクや出力不足あるいはトルク変動を感じさせない。 さらに、 H C吸着剤の 再生処理を行うことにより、 いつも新品の性能 (H C吸着能力) を維持するこ とができる。  Also in this embodiment, H C adsorbed by the H C adsorbent 18 at the time of cooling is desorbed after the downstream three-way catalyst is activated, so that H C at the time of starting the cooling can be significantly reduced. In addition, in the HC adsorbent temperature control by adjusting the engine output, the engine output fluctuation during control is corrected by the generator and the driving motor, so the driver of the vehicle may feel shock, insufficient output, or torque fluctuation. Do not let. Furthermore, by performing regeneration treatment of the HC adsorbent, it is possible to always maintain the new performance (HC adsorbing ability).
なお、 H C吸着剤 1 8の温度制御や H C吸着剤の再生処理に関して、 図 2〜 図 3で述べた制御方法の一部を図 1 2の実施態様の装置に適用し、 あるいは、 図 1 3〜図 1 4の実施態様で述べた制御方法の一部を図 1の実施態様の装置 に適用しても良い。 Regarding the temperature control of the HC adsorbent 18 and the regeneration treatment of the HC adsorbent, a part of the control method described in FIGS. 2 to 3 is applied to the apparatus of the embodiment in FIG. A part of the control method described in the embodiment of FIGS. 13 to 14 may be applied to the apparatus of the embodiment of FIG.
本発明の H C吸着剤温度制御機能を備えた排気浄化装置は、 ガソリンェンジ ンを有するハイプリッ ド電気自動車にも適用できる。ハイプリッド電気自動車 の場合は、 駆動用モ一夕でエンジン出力減少分を補うことができる。  The exhaust gas purification device having the HC adsorbent temperature control function of the present invention can also be applied to a hybrid electric vehicle having a gasoline engine. In the case of a hybrid electric vehicle, the decrease in engine output can be compensated for by the driving mode.
図 1 5は、本発明の他の実施態様としてのハイプリッド電気自動車における 内燃機関の排気浄化装置のシステム構成図である。  FIG. 15 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a hybrid electric vehicle as another embodiment of the present invention.
図 1 6は、図 1 5の実施態様における H C吸着時の H C吸着剤温度の制御方法 を示すフローチャートである。 また、 図 1 7は、 H C吸着剤再生処理の制御方 法を示すフローチャートである。  FIG. 16 is a flowchart showing a method for controlling the temperature of the HC adsorbent at the time of HC adsorption in the embodiment of FIG. FIG. 17 is a flowchart showing a control method of the HC adsorbent regeneration process.
図 1 5において、 ハイブリッド電気自動車は、 その駆動源とてエンジン 4と + 駆動用モー夕 3 3を備えている。 すなわち、 エンジン 4には発電機 3 1が直結 され、 さらに第 1の電磁クラッチ 3 2を介して駆動用モ一夕 3 3が連結されて いる。 駆動用モ一夕 3 3の回転は、 第 2の電磁クラッチ 3 4、 C V T 3 5を介 して車両の車軸に伝達される。発電機 3 1の出力はインバー夕 4 8、 充放電器 4 9を介してパッテリ 3 8に供給される。 一方、 駆動用モ一夕 3 3には、 充放 電器 4 9及びインバ一夕 3 9を介してバッテリ 3 8から電力が供給される。ハ ィプリヅド自動車は、 E C U 2 5のほかに、 ィンバータコントロールュニヅト 4 0、 バヅテリコントロールュニヅ ト 4 1、 クラッチ、 C V Tコント口一ルュ ニヅト 4 7を備えており、 これらの各コントロールュニヅ トは、 ハイプリヅ ド 電気自動車コントロ一ルュニッ ト 4 2で統括制御される。  In FIG. 15, the hybrid electric vehicle has an engine 4 and a positive drive motor 33 as its driving sources. That is, the generator 31 is directly connected to the engine 4, and the driving motor 33 is further connected via the first electromagnetic clutch 32. The rotation of the driving motor 33 is transmitted to the axle of the vehicle via the second electromagnetic clutch 34, CVT 35. The output of the generator 31 is supplied to the battery 38 via the inverter 48 and the charger / discharger 49. On the other hand, power is supplied to the driving module 33 from the battery 38 via the charger / discharger 49 and the inverter 39. The hybrid vehicle includes an ECU 25, an inverter control unit 40, a battery control unit 41, a clutch, and a CVT control port unit 47. Each control unit is collectively controlled by a hybrid electric vehicle control unit 42.
この実施態様において、 E C U 2 5の H C吸着剤温度制御機能 2 5 0は、 H C吸着剤の温度制御のためのエンジン出力 (トルク) 変動は発電機 3 1と駆動 用モ一夕 3 3で吸収、 補正する。  In this embodiment, the HC adsorbent temperature control function 250 of the ECU 25 is configured to absorb engine output (torque) fluctuations for controlling the temperature of the HC adsorbent by the generator 31 and the driving module 33. , to correct.
すなわち、 図 1 6のステップ 1 0 0 7で H C吸着剤入口排気温度 Texが H C 吸着可能最大温度 Tamaxから余裕値ひだけ低い温度以下かを判定する。 YESの場 合はステヅプ 1 0 0 8で H C吸着剤の温度を上昇させるためエンジン出力ま たはトルクを 増加する。 That is, it is determined whether the HC adsorbent inlet exhaust gas temperature Tex is equal to or lower than the maximum HC adsorbable maximum temperature Tamax by a margin value in step 1107 of FIG. If YES, the engine output is increased to raise the temperature of the HC adsorbent in step 108. Or increase torque.
次に、 ステップ 1 6 0 9で発電機 3 1及び駆動モー夕 3 3の負荷 (発電量) を増加させる。ステップ 1 0 0 7で NOの場合はステップ 1 0 1 0でエンジン出 力またはトルクを AL減少させる。 エンジンの吸入空気量 Qaを減少させてもよ い。 ステップ 1 6 1 1で発電機 3 1及び駆動モータ 3 3の負荷 (発電量) をを 減少させ、 エンジン出力減少分を補正する。  Next, in step 169, the loads (power generation) of the generator 31 and the drive motor 33 are increased. If the answer is NO in Step 1107, the engine output or torque is reduced by AL in Step 1100. The engine intake air amount Qa may be reduced. In step 1611, the loads (power generation) of the generator 31 and the drive motor 33 are reduced, and the decrease in engine output is corrected.
また、 図 1 7のステップ 1 0 2 0で HC吸着剤入口排気温度 Texが耐熱限界温 度 Tng以上か判定し、 YESの場合はステップ 1 0 2 1でエンジン出力またはトル クを 減少させる。 さらに、 ステップ 1 6 2 2において発電機 3 1及び駆動 モ一夕 3 3でエンジン出力減少分を補正する。  Also, it is determined whether the HC adsorbent inlet exhaust gas temperature Tex is equal to or higher than the heat-resistant limit temperature Tng in step 1020 of FIG. 17, and if YES, the engine output or the torque is reduced in step 1021. Further, in step 1622, the generator output 31 is corrected by the generator 31 and the drive module 33.
図 1 8は、本発明の他の実施態様としての簡易型ハイブリツ ド電気自動車に おける内燃機関の排気浄化装置のシステム構成図である。 この実施態様では、 エンジン駆動による発電機能とエンジン駆動をアシストするモー夕機能を有 するモ一夕発電機 3 6を備えている。排気浄化装置及び制御フローは、 図 1 5 〜図 1 7で述べた実施態様と同じものである。 図 1 6のステップ 1 6 1 1で、 H C吸着剤の温度制御のためのエンジン出力 (トルク) 変動はモ一夕発電機 3 1で吸収、 補正する。即ちモ一夕発電機 3 6によりエンジン出力減少分を補正 する。 さらに、 図 1 7のステップ 1 6 2 2においてモ一夕発電機 3 6でェンジ ン出力減少分を補正する。  FIG. 18 is a system configuration diagram of an exhaust gas purification device for an internal combustion engine in a simplified hybrid electric vehicle as another embodiment of the present invention. In this embodiment, there is provided a motor generator 36 having a function of generating electricity by driving the engine and a function of assisting the driving of the engine. The exhaust gas purifying device and the control flow are the same as those of the embodiment described with reference to FIGS. 15 to 17. At step 1611 in Fig. 16, the engine output (torque) fluctuation for controlling the temperature of the HC adsorbent is absorbed and corrected by the generator 31. That is, the motor output generator 36 corrects the decrease in engine output. Further, in step 1622 of FIG. 17, the engine output reduction is corrected by the motor generator 36.
以上述べた各実施態様では三元触媒 1 7と H C吸着剤 1 8.の分離された方 式を示したが、 これに代えて、 H C吸着剤と排気処理用触媒機能の両方をあわ せもつ複合触媒としてもよい。  In each of the above-described embodiments, the three-way catalyst 17 and the HC adsorbent 18 are shown as being separated from each other. Instead, both the HC adsorbent and the catalyst for exhaust treatment are provided. It may be a composite catalyst.
本発明によれば、冷機時に H C吸着剤 1 8に吸着された H Cが下流の三元触 媒が活性化した後に脱離されるため、 冷機始動時の H Cを大幅に削減できる。 また、 エンジン出力調整による H C吸着剤温度制御において、 制御中のェンジ ン出力変動は発電機や駆動用モ一夕で補正されるため、 自動車の運転者にショ ックゃ出力不足あるいはトルク変動を感じさせない。 このように、 スムーズな運転性を維持しながら同時に有害排ガス (未燃炭化 水素) を大幅に削減できる。 また、 H C吸着剤の再生処理を行うことにより、 いつも新品の性能 (H C吸着能力) を維持することができる。 According to the present invention, HC adsorbed by the HC adsorbent 18 at the time of cooling is desorbed after the downstream ternary catalyst is activated, so that HC at the time of starting the cold can be significantly reduced. In addition, in HC adsorbent temperature control by engine output adjustment, engine output fluctuations during control are corrected by generators and driving motors. I do not feel it. In this way, harmful exhaust gas (unburned hydrocarbons) can be significantly reduced while maintaining smooth operation. In addition, by performing the regeneration treatment of the HC adsorbent, it is possible to always maintain the new performance (HC adsorption capacity).

Claims

請 求 の 範 囲 The scope of the claims
1 . エンジンの排ガス流路中に、 吸着剤と排ガス処理用の触媒とを有し、 排 ガス中に含まれる未燃炭化水素を一時的に前記吸着剤吸着させる内燃機関の 排気浄化装置において、 1. An exhaust gas purification apparatus for an internal combustion engine, which has an adsorbent and an exhaust gas treatment catalyst in an exhaust gas flow path of an engine and temporarily adsorbs the unburned hydrocarbons contained in exhaust gas to the adsorbent.
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、前記エンジンの出力またはトルクを調整すること を特徴とする内燃機関の排気浄化装置。  Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. The exhaust gas purifying apparatus for an internal combustion engine, wherein the output or the torque of the engine is adjusted as described above.
2 . 請求項 1において、 前記吸着剤の温度が脱離ゾーン内にならないように 前記エンジンの吸入空気量を調整し、該吸入空気量調整によるエンジン出力変 動を相殺するように前記エンジンの点火時期を変化させることを特徴とする 内燃機関の排気浄化装置。  2. The engine according to claim 1, wherein the amount of intake air of the engine is adjusted so that the temperature of the adsorbent does not enter the desorption zone, and the engine is ignited so that fluctuations in engine output due to the adjustment of the amount of intake air are offset. An exhaust gas purification device for an internal combustion engine, characterized by changing the timing.
3 . 請求項 1において、 前記吸着剤の温度が脱離ゾーン内にならないように 前記エンジンの吸入空気量を調整し、該吸入空気量調整によるエンジン出力変 動を相殺するように: E G R率を変化させることによりエンジンの正味出力を 同等レベルに維持することを特徴とする内燃機関の排気浄化装置。  3. The method according to claim 1, wherein the intake air amount of the engine is adjusted so that the temperature of the adsorbent does not enter the desorption zone, and the engine output fluctuation due to the adjustment of the intake air amount is canceled. An exhaust purification device for an internal combustion engine, characterized in that the net output of the engine is maintained at the same level by changing the output.
4 . 請求項 1において、 前記触媒が機能する温度を越えた後、 該吸着剤を再 生できる温度以上になるように前記エンジン出力またはトルクを調整するこ とを特徴とする内燃機関の排気浄化装置。  4. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the engine output or the torque is adjusted so that the temperature becomes higher than a temperature at which the adsorbent can be regenerated after exceeding a temperature at which the catalyst functions. apparatus.
5 . 請求項 1において、 前記吸着剤の温度が再生ゾーン内に入るように前記 エンジンの出力またはトルクを調整し、該負荷調整を相殺するように前記発電 機の負荷を変化させることによりエンジンの正味出力を同等レベルに維持す ることを特徴とする内燃機関の排気浄化装置。  5. The engine according to claim 1, wherein the output or torque of the engine is adjusted so that the temperature of the adsorbent enters the regeneration zone, and the load of the generator is changed so as to offset the load adjustment. An exhaust gas purification device for an internal combustion engine, wherein the net output is maintained at the same level.
6 . エンジンにより駆動される発電機を有し、 前記エンジンの排ガス流路中 に、 吸着剤と排ガス処理用の触媒とを有し、 排ガス中に含まれる未燃炭化水素 を一時的に前記吸着剤吸着させる排気浄化装置を備えた自動車の制御装置に おいて、 6. Having a generator driven by the engine, in the exhaust gas flow path of the engine A vehicle control device including an adsorbent and an exhaust gas treatment catalyst, and an exhaust purification device for temporarily absorbing unburned hydrocarbons contained in exhaust gas by the adsorbent.
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、 前記エンジンの出力またはトルクを調整し、 該負 荷調整を相殺するように前記発電機の負荷を変化させることにより前記ェン ジンの正味出力を同等レベルに維持することを特徴とする排気浄化装置を備 えた自動車の制御装置。  Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. Thus, by adjusting the output or torque of the engine and changing the load of the generator so as to offset the load adjustment, the net output of the engine is maintained at the same level. An automobile control device equipped with an exhaust gas purification device.
7 . エンジンと、 該エンジン駆動による発電機能とエンジン駆動をアシスト するモ一夕機能とを有する乇一夕発電機と、前記発電機能に基づく発電出力に より充電される電池とを有し、 前記エンジンの排ガス流路中に、 吸着剤と排ガ ス処理用の触媒とを有する排気浄化装置を備えた自動車の制御装置において、 . 前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  7. An engine, having a function of generating electricity by driving the engine and a function of assisting the driving of the engine; a generator having a function of generating electricity; and a battery charged by a power generation output based on the power generation function. A control device for a vehicle equipped with an exhaust gas purification device having an adsorbent and a catalyst for exhaust gas treatment in an exhaust gas passage of an engine, wherein the adsorbent comprises: an adsorption zone for adsorbing unburned hydrocarbons; A desorption zone for desorbing the adsorbed unburned hydrocarbon;
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸. 着ゾーンに維持するように、前記エンジンの出力またはトルクを調整すること を特徴とする排気浄化装置排気浄化装置を備えた自動車の制御装置。  Detecting whether the catalyst is in the activated state, and when the catalyst is not in the activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches the activated state. An exhaust gas control apparatus for an automobile, comprising: an exhaust gas purifying apparatus that adjusts an output or a torque of the engine so as to adjust the output or torque of the engine.
8 . エンジンと、 該エンジンにより駆動される発電機とエンジン駆動をァシ ストするまたはエンジンの代わりに車両を駆動するモ一夕を有しエンジン駆 動による発電機能とエンジン駆動をアシストするモ一夕機能とを有し、前記ェ ンジンの排ガス流路中に、吸着剤と排ガス処理用の触媒とを有する排気浄化装 置を備えた自動車の制御装置において、  8. An engine, a generator driven by the engine, and a motor that assists driving of the engine or a motor that drives the vehicle instead of the engine, and has a power generation function and an engine driving assisted by the engine. A vehicle control device having an exhaust gas purification device having an evening function and having an adsorbent and an exhaust gas treatment catalyst in the exhaust gas flow path of the engine;
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、 The adsorbent comprises: an adsorption zone for adsorbing unburned hydrocarbons; and the adsorbed unburned coal. A desorption zone for desorbing hydrogen hydride,
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、前記エンジンの出力またはトルクを調整すること を特徴とする排気浄化装置を備えた自動車の制御装置。  Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. A control device for a vehicle having an exhaust emission control device, wherein the output or torque of the engine is adjusted as described above.
9 . エンジンの排ガス流路中に、 吸着剤と排ガス処理用の触媒とを有し、 排 ガス中に含まれる未燃炭化水素を一時的に前記吸着剤吸着させる内燃機関の 排気浄化装置において、  9. An exhaust gas purifying apparatus for an internal combustion engine, which has an adsorbent and an exhaust gas treatment catalyst in an exhaust gas flow path of an engine and temporarily adsorbs unburned hydrocarbons contained in exhaust gas to the adsorbent.
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、 前記エンジンの出力またはトルクを調整し、 該負 荷調整を相殺するように前記発電機の負荷を変化させることにより前記ェン ジンの正味出力を同等レベルに維持することを特徴とする排気浄化装置を備. えた自動車の制御装置。  Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. Thus, by adjusting the output or torque of the engine and changing the load of the generator so as to offset the load adjustment, the net output of the engine is maintained at the same level. An automotive control device equipped with an exhaust purification device.
1 0 . エンジンにより駆動される発電機を有し、 前記エンジンの排ガス流路 中に、 吸着剤と排ガス処理用の触媒とを有し、 排ガス中に含まれる未燃炭化水 素を一時的に前記吸着剤吸着させる排気浄化装置を備えた自動車の制御装置 おいて、  10. It has a generator driven by the engine, has an adsorbent and a catalyst for exhaust gas treatment in the exhaust gas passage of the engine, and temporarily removes unburned hydrocarbons contained in the exhaust gas. A control device for an automobile having an exhaust purification device for adsorbing the adsorbent,
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、 前記エンジンの出力またはトルクを調整し、 該負 荷調整を相殺するように前記発電機の負荷を変化させることにより前記ェン ジンの正味出力を同等レベルに維持することを特徴とする排気浄化装置を備 えた自動車の制御装置。 Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. Thus, by adjusting the output or torque of the engine and changing the load of the generator so as to offset the load adjustment, the net output of the engine is maintained at the same level. Equipped with exhaust gas purification device Car control device.
1 1 . エンジンと、 該エンジン駆動による発電機能とエンジン駆動をアシス トするモ一夕機能とを有するモー夕発電機と、前記発電機能に基づく発電出力 により充電される電池とを有し、 前記エンジンの排ガス流路中に、 吸着剤と排 ガス処理用の触媒とを有する排気浄化装置を備えた自動車の制御装置におい て、  11. An engine, a motor generator having a power generation function by driving the engine and a motor function for assisting engine driving, and a battery charged by a power generation output based on the power generation function, In a control device of a vehicle equipped with an exhaust gas purification device having an adsorbent and a catalyst for exhaust gas treatment in an exhaust gas flow path of an engine,
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、 前記エンジンの出力またはトルクを調整し、 該調 整を相殺するように発電機の負荷を変化させたり、前記モー夕発電機のアシス トカを変化させることにより、前記エンジンの正味出力を同等レベルに維持す ることを特徴とする排気浄化装置排気浄化装置を備えた自動車の制御装置。 1 2 . エンジンと、 該エンジンにより駆動される発電機とエンジン駆動をァ シストするまたはエンジンの代わりに車両を駆動するモータを有しエンジン 駆動による発電機能とエンジン駆動をアシストするモ一夕機能とを有し、前記 エンジンの排ガス流路中に、吸着剤と排ガス処理用の触媒とを有する排気浄化 装置を備えた自動車の制御装置において、  Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. Thus, by adjusting the output or torque of the engine and changing the load of the generator so as to cancel the adjustment, or by changing the assist power of the motor generator, the net output of the engine is reduced. Exhaust gas purifier A vehicle control device equipped with an exhaust gas purifier that is maintained at the same level. 1 2. An engine, a generator driven by the engine, and a motor function for assisting the engine drive or a motor for driving the vehicle instead of the engine, and a power generation function by the engine drive and a motor function to assist the engine drive. A control device for an automobile, comprising: an exhaust gas purification device having an adsorbent and an exhaust gas treatment catalyst in an exhaust gas flow path of the engine.
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭. 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned carbon.
前記触媒が活性化状態にあるか否かを検知し、前記触媒が活性化状態にない ときには、 該触媒が活性化状態に達するまでの間、 前記吸着剤の温度を前記吸 着ゾーンに維持するように、 前記エンジンの出力またはトルクを調整し、 該負 荷調整を相殺するように発電機の負荷を変化させたり、前記モー夕のアシスト 力ゃモ一夕出力を変化させることにより前記エンジンの正味出力を同等レぺ ルに維持することを特徴とする排気浄化装置を備えた自動車の制御装置。 Detecting whether the catalyst is in an activated state, and when the catalyst is not in an activated state, maintaining the temperature of the adsorbent in the adsorption zone until the catalyst reaches an activated state. As described above, the output or torque of the engine is adjusted, and the load of the generator is changed so as to cancel the load adjustment, or the assist power of the motor is changed by changing the output of the motor. A control device for an automobile equipped with an exhaust gas purification device, characterized in that the net output is maintained at the same level.
1 3 . 請求項 9〜 1 2のいずれかにおいて、 前記吸着剤の温度が再生ゾーン 内にるように前記エンジンの出力またはトルクを調整し、該負荷調整を相殺す るように前記発電機の負荷を変化させることによりエンジンの正味出力を同 等レベルに維持することを特徴とする排気浄化装置を備えた自動車の制御装 置。 13. The generator according to claim 9, wherein the output or torque of the engine is adjusted so that the temperature of the adsorbent is within the regeneration zone, and the load adjustment is offset. A control device for an automobile equipped with an exhaust emission control device, wherein the net output of the engine is maintained at the same level by changing the load.
1 4 . 請求項 1 1または 1 2において、 エンジン駆動による発電機能とェン ジン駆動をアシストするモー夕機能を有するモ一夕と発電出力により充電さ れる電池を有し、該吸着剤の温度が再生ゾーン内に入るようにエンジンの出力 または.トルクを調整し、該負荷調整を相殺するように発電機の負荷を変化させ たり、上記モー夕のアシストカを変化させることによりエンジンの正味出力を 同等レベルに維持することを特徴とする排気浄化装置を備えた自動車の制御  14. The method according to claim 11, further comprising: a motor having a function of generating electricity by driving the engine and a function of assisting driving of the engine; and a battery charged by the power generation output. The output or torque of the engine is adjusted so that the engine enters the regeneration zone, and the net output of the engine is changed by changing the load on the generator so as to offset the load adjustment, or by changing the assist power of the motor. Control of vehicles equipped with exhaust emission control, characterized by maintaining the same level
1 5 . 請求項 1 1または 1 2において、 エンジンにより駆動される発電機と エンジン駆動をアシストするまたはエンジンの代わりに車両を駆動するモ一 夕を有し、該吸着剤の温度が再生ゾーン内に入るようにエンジンの出力または トルクを調整し、 該負荷調整を相殺するように発電機の負荷を変化させたり、 上記モ一夕のアシストカゃモ一夕出力を変化させることによりエンジンの正 味出力を同等レベルに維持することを特徴とする排気浄化装置を備えた自動 車の制御装置。 . 15. The method according to claim 11, further comprising: a generator driven by the engine and a motor that assists in driving the engine or drives a vehicle instead of the engine. The engine output or torque is adjusted so as to enter the engine, and the net load of the engine is changed by changing the generator load so as to offset the load adjustment, or by changing the assist motor output in the above mode. A control device for an automobile equipped with an exhaust emission control device that maintains the output at the same level. .
1 6 . 請求項 9〜 1 2のいずれかにおいて、 該吸着剤の温度が再生ゾーン内 に入るようにェンジンの吸入空気量を調整し、該吸入空気量調整によるェンジ ン出力変動を相殺するようにエンジンの点火時期を変化させたり、 E G R率を 変化させることによりエンジンの正味出力を同等レベルに維持することを特 徴とする排気浄化装置を備えた自動車の制御装置。  16. In any one of claims 9 to 12, the amount of intake air of the engine is adjusted so that the temperature of the adsorbent enters the regeneration zone, and the engine output fluctuation due to the adjustment of the amount of intake air is offset. A vehicle control system equipped with an exhaust gas purifier that maintains the net output of the engine at the same level by changing the ignition timing of the engine and changing the EGR rate.
1 7 . エンジンの排ガス流路中に、 吸着剤と排ガス処理用の触媒とを有し、 排ガス中に含まれる未燃炭化水素を一時的に前記吸着剤吸着させる内燃機関 の制御方法において、 17. An internal combustion engine that has an adsorbent and an exhaust gas treatment catalyst in the exhaust gas passage of the engine, and temporarily adsorbs the unburned hydrocarbons contained in the exhaust gas to the adsorbent. In the control method of
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、  Detecting whether the catalyst is in an activated state,
5 前記触媒が活性化状態にないときには、該触媒が活性化状態に達するまでの 間、 前記吸着剤の温度を前記吸着ゾーンに維持するように、 前記エンジンの出 力またはトルクを調整することを特徴とする内燃機関の制御方法。  5 When the catalyst is not in the activated state, adjust the output or torque of the engine so as to maintain the temperature of the adsorbent in the adsorption zone until the catalyst reaches the activated state. A method for controlling an internal combustion engine.
1 8 . エンジンにより駆動される発電機を有し、 前記エンジンの排ガス流路 中に、 吸着剤と排ガス処理用の触媒とを有し、 排ガス中に含まれる未燃炭化水 10 素を一時的に前記吸着剤吸着させる排気浄化装置を備えた自動車の制御方法 において、  18. Having a generator driven by the engine, having an adsorbent and a catalyst for exhaust gas treatment in the exhaust gas passage of the engine, and temporarily removing unburned hydrocarbons contained in the exhaust gas. A method for controlling an automobile having an exhaust purification device for adsorbing the adsorbent onto the vehicle,
前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、  Detecting whether the catalyst is in an activated state,
15 前記触媒が活性化状態にないときには、該触媒が活性化状態に達するまでの 間、 前記吸着剤の温度を前記吸着ゾーンに維持するように、前記エンジンの出 力またはトルクを調整し、該負荷調整を相殺す.るように前記発電機の負荷を変 化させることにより前記エンジンの正味出力を同等レベルに維持することを 特徴とする排気浄化装置を備えた自動車の制御方法。  15 When the catalyst is not in the activated state, adjust the output or torque of the engine to maintain the temperature of the adsorbent in the adsorption zone until the catalyst reaches the activated state. A method for controlling an automobile having an exhaust emission control device, wherein the net output of the engine is maintained at the same level by changing the load of the generator so as to cancel the load adjustment.
20. 1 9 . エンジンと、該エンジン駆動による発電機能とエンジン駆動をアシス トするモー夕機能とを有するモ一夕発電機と、前記発電機能に基づく発電出力 により充電される電池とを有し、 前記エンジンの排ガス流路中に、 吸着剤と排 ガス処理用の触媒とを有する排気浄化装置を備えた自動車の制御方法におい て、  20.19. An engine, a motor generator having a power generation function by driving the engine and a motor function to assist in driving the engine, and a battery charged by a power generation output based on the power generation function. A method for controlling an automobile, comprising: an exhaust gas purification device having an adsorbent and an exhaust gas treatment catalyst in an exhaust gas flow path of the engine.
25 前記吸着剤は、 未燃炭化水素を吸着する吸着ゾーンと、 吸着した前記未燃炭 化水素を脱離させる脱離ゾーンを有し、  25 The adsorbent has an adsorption zone for adsorbing unburned hydrocarbons, and a desorption zone for desorbing the adsorbed unburned hydrocarbons,
前記触媒が活性化状態にあるか否かを検知し、 前記触媒が活性化状態にないときには、該触媒が活性化状態に達するまでの 間、 前記吸着剤の温度を前記吸着ゾーンに維持するように、 前記エンジンの出 力またはトルクを調整し、該調整を相殺するように発電機の負荷を変化させた り、 前記モー夕発電機のアシストカを変化させることにより、 前記エンジンの 正味出力を同等レベルに維持することを特徴とする排気浄化装置排気浄化装 置を備えた自動車の制御方法。 Detecting whether the catalyst is in an activated state, When the catalyst is not in the activated state, the output or torque of the engine is adjusted so that the temperature of the adsorbent is maintained in the adsorption zone until the catalyst reaches the activated state. An exhaust gas purifying apparatus, wherein the net output of the engine is maintained at the same level by changing the load of the generator so as to cancel Control method for a vehicle equipped with a device.
PCT/JP2000/008352 2000-11-27 2000-11-27 Exhaust emission control device of internal combustion engine and control device for car WO2002042625A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/008352 WO2002042625A1 (en) 2000-11-27 2000-11-27 Exhaust emission control device of internal combustion engine and control device for car
JP2002544529A JPWO2002042625A1 (en) 2000-11-27 2000-11-27 Exhaust purification device for internal combustion engine and control device for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/008352 WO2002042625A1 (en) 2000-11-27 2000-11-27 Exhaust emission control device of internal combustion engine and control device for car

Publications (1)

Publication Number Publication Date
WO2002042625A1 true WO2002042625A1 (en) 2002-05-30

Family

ID=11736720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008352 WO2002042625A1 (en) 2000-11-27 2000-11-27 Exhaust emission control device of internal combustion engine and control device for car

Country Status (2)

Country Link
JP (1) JPWO2002042625A1 (en)
WO (1) WO2002042625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504490A (en) * 2009-09-15 2013-02-07 ケーピーアイティ カミンズ インフォシステムズ リミテッド Hybrid vehicle motor assistance based on predicted driving range

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149131A (en) * 1991-09-30 1993-06-15 Hitachi Ltd Exhaust emission control system
JPH07127437A (en) * 1993-10-30 1995-05-16 Suzuki Motor Corp Exhaust emission control device and manufacture of catalyst
JPH11343837A (en) * 1998-06-01 1999-12-14 Nissan Motor Co Ltd Exhaust emission control device
JP2000008837A (en) * 1998-06-29 2000-01-11 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2000274227A (en) * 1999-03-19 2000-10-03 Toyota Motor Corp Exhaust emission control device for hybrid vehicle
JP2000320324A (en) * 1991-09-30 2000-11-21 Hitachi Ltd Exhaust emission control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149131A (en) * 1991-09-30 1993-06-15 Hitachi Ltd Exhaust emission control system
JP2000320324A (en) * 1991-09-30 2000-11-21 Hitachi Ltd Exhaust emission control system
JPH07127437A (en) * 1993-10-30 1995-05-16 Suzuki Motor Corp Exhaust emission control device and manufacture of catalyst
JPH11343837A (en) * 1998-06-01 1999-12-14 Nissan Motor Co Ltd Exhaust emission control device
JP2000008837A (en) * 1998-06-29 2000-01-11 Mazda Motor Corp Exhaust emission control device for internal combustion engine
JP2000274227A (en) * 1999-03-19 2000-10-03 Toyota Motor Corp Exhaust emission control device for hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504490A (en) * 2009-09-15 2013-02-07 ケーピーアイティ カミンズ インフォシステムズ リミテッド Hybrid vehicle motor assistance based on predicted driving range

Also Published As

Publication number Publication date
JPWO2002042625A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US6434928B1 (en) Apparatus and method of purification of exhaust emission of internal combustion engine
JP4915277B2 (en) Exhaust gas purification device for internal combustion engine
JP3376948B2 (en) Exhaust gas purification control device for hybrid vehicles
KR101773734B1 (en) Hybrid vehicle and control method for hybrid vehicle
KR101734238B1 (en) System and method of regenerating diesel particulate filter for mild hybrid electric vehicle
JP4462361B2 (en) Exhaust purification device
JP2019048580A (en) Control method of hybrid vehicle and control device of hybrid vehicle
JP4682906B2 (en) Control device for internal combustion engine
JP2009250036A (en) Hybrid vehicle control device
WO2004097200A1 (en) Internal combustin engine control device
KR20200066894A (en) System and method of controlling oxygen purge of three-way catalyst
JP4321615B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, ITS CONTROL METHOD, AND VEHICLE MOUNTED WITH INTERNAL COMBUSTION ENGINE DEVICE
JP4288943B2 (en) Automatic engine stop / start control device
JP4001094B2 (en) Control device for hybrid vehicle
JP5321255B2 (en) Exhaust gas purification device for internal combustion engine
WO2002042625A1 (en) Exhaust emission control device of internal combustion engine and control device for car
US10914254B2 (en) Exhaust purification system of internal combustion engine and exhaust purification method
JP4001095B2 (en) Control device for hybrid vehicle
JP2010031737A (en) Air-fuel ratio control device and hybrid vehicle
JP4239443B2 (en) Control device for internal combustion engine
JP4013654B2 (en) Exhaust gas purification device for hybrid vehicle
JP2008240636A (en) Vehicle and its control method
JP4233144B2 (en) Exhaust gas purification device for turbocharged engine and control method thereof
JP2012233408A (en) Vehicle control device
KR102518595B1 (en) Lnt rich control method of mild hybrid electric vehicle and mild hybrid electric vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002544529

Country of ref document: JP

122 Ep: pct application non-entry in european phase