WO2002042483A1 - Process for producing ethanol from starch - Google Patents

Process for producing ethanol from starch Download PDF

Info

Publication number
WO2002042483A1
WO2002042483A1 PCT/JP2001/001538 JP0101538W WO0242483A1 WO 2002042483 A1 WO2002042483 A1 WO 2002042483A1 JP 0101538 W JP0101538 W JP 0101538W WO 0242483 A1 WO0242483 A1 WO 0242483A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
starch
fermentation
medium
dalcoamylase
Prior art date
Application number
PCT/JP2001/001538
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Fukuda
Akihiko Kondo
Atsuo Tanaka
Mitsuyoshi Ueda
Hideo Noda
Moriyasu Abe
Hisayori Shigechi
Shouji Takahashi
Original Assignee
Kansai Chemical Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co., Ltd. filed Critical Kansai Chemical Engineering Co., Ltd.
Priority to JP2002545187A priority Critical patent/JP4666884B2/en
Publication of WO2002042483A1 publication Critical patent/WO2002042483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing ethanol from starch. More specifically, the present invention relates to a method for producing ethanol using yeast that displays dalcoamylase on the cell surface.
  • biomass as a new energy resource has attracted attention in recent years.
  • Cellulose and starchy substances of plant origin are the most abundant and available biomass resources.
  • ethanol produced from starch resources is attracting attention as a renewable environmentally-friendly energy resource, and the demand for it is expected to increase in the future.
  • Ethanol production from starch by current fermentation processes is a two-step process: starch saccharification by steaming and enzymatic treatment, followed by yeast fermentation.
  • yeast does not have a secretory enzyme such as amylase, so that yeast cannot degrade starch to saccharify it and cannot use starch as a carbon source.
  • rice starch is sugar-dried using a koji mold or the like that secretes amylase, and then yeast is allowed to act on the starch to carry out alcohol fermentation to produce alcohol. Therefore, if a gene encoding amylase is introduced into yeast to secrete amylase, the yeast will grow using starch as the sole carbon source, and alcohol fermentation will be possible.
  • An object of the present invention is to provide a method for producing ethanol with higher efficiency by using a more stable yeast that presents dalcoamylase on the cell surface.
  • the present invention relates to a method for producing ethanol, which comprises a step of fermenting in the presence of starch using a flocculent yeast having D ⁇ recombined to display dalcoamylase on the cell surface.
  • the step of fermenting is a step of repeated batch fermentation or a step of continuous fermentation.
  • the fermentation step is performed in a medium containing 40 to 300 g / 1 of starch at pH 4 to 6 at 20 to 45 ° C under anaerobic conditions.
  • the supply rate of the medium is 0.07 to 0.2 vZv% Z hours of the amount of the medium.
  • the DNA is in the form of a plasmid, and the plasmid is a multicopy vector or a chromosomal integration vector.
  • the aggregating yeast is derived from the YF207 strain, and the aggregating yeast having the DNA is YF207 / pGA11 or YF207 / IGA11.
  • the present invention also includes a step of repeatedly performing batch fermentation or continuous fermentation in the presence of starch using a non-aggregating yeast having a DNA modified to present dalcoamylase on the cell surface. It relates to a manufacturing method.
  • the fermentation step is performed in a medium containing 40-300 gZl of starch at pH 4-6 at 20-45 ° C under anaerobic conditions.
  • the supply rate of the medium is 0.07 to 0.2 v / v% / hour of the amount of the medium.
  • the DNA is in the form of a plasmid
  • the plasmid is a multicopy vector or a chromosomal integration vector.
  • the present invention also relates to an aggregating yeast that presents dalcoamylase on the cell surface.
  • FIG. 1 is a schematic diagram showing the structures of plasmid pGAl1 and plasmid: pIGA11.
  • Figure 2 shows the results of (a) in a batch fermentation process using YF207Zp GA11. Starch, glucose, and ethanol concentrations in the medium, and
  • Figure 3 shows (a) starch concentration, glucose concentration, and ethanol concentration in the medium, as well as (b) dry cell weight, dalcoamylase activity, and the following in a repeated batch fermentation process using YF207 / pGAl1.
  • 5 is a graph showing the change over time in the stability of plasmid.
  • Figure 4 shows (a) starch concentration, glucose concentration, and ethanol concentration in the culture medium, and (b) dry cell weight and dalcoamylase in the fed-batch fermentation process using YF207 / pGA11. It is a graph showing a time-dependent change in activity.
  • the yeast used in the method of the present invention is a yeast transformed by introducing DNA so that dalcoamylase is displayed on the cell surface.
  • the introduced DNA contains, in this order, a secretory signal sequence, a structural gene sequence for dalcoamylase, a sequence encoding a part of a cell surface localization protein, and a GPI anchor attachment signal sequence.
  • the secretory signal sequence is an amino acid sequence containing a large number of highly hydrophobic amino acids, which is bound to the N-terminus of proteins (secretory proteins) that are generally secreted extracellularly (including periplasm). It is removed when proteins are secreted from inside the cell, across the cell membrane and out of the cell.
  • any secretory signal sequence that can secrete (migrate) dalcoamylase out of yeast cells can be used, regardless of its origin.
  • the secretory signal sequence includes the secretory signal sequence of dalcoamylase and the yeast ⁇ - or a-agglutinin signal. And the like are preferably used. Some or all of the secretory signal sequence may remain at the N-terminus of the dalcoamylase provided that it does not affect the activity of the dalcoamylase.
  • the cell surface display protein is a protein that is fixed on the yeast cell surface and displayed on the cell surface.
  • ⁇ - or a-adaltin which is a sex aggregation protein
  • Such proteins are similar to secreted proteins in having a secretory signal sequence, but differ from secreted proteins in that they are anchored and transported to the cell membrane via GPI anchors.
  • the cell surface display protein has a GPI anchor attachment recognition signal sequence at the C-terminus, and its recognition signal sequence is fixed to the cell membrane by binding to the GPI anchor at the selectively cleaved C-terminal portion. You. Then, the base of the GPI anchor is cut by PI-PLC, incorporated into the cell wall, fixed to the cell surface, and presented to the cell surface.
  • the GPI anchor is based on ethanolamine phosphate-6 mannose ⁇ 1-2 mannose a 1-6 mannose ⁇ 1-4 darcosamine ⁇ 1-6 inositol phospholipid called glycosylphosphatidylinositol (GPI)
  • GPI glycosylphosphatidylinositol
  • ⁇ -PLC phosphatidylinositol-dependent phospholipase C.
  • a sequence encoding a part of a cell surface localization protein is a sequence encoding a part of a protein (for example, or a-agglutinin) displayed on a yeast cell surface, and mainly a sequence encoding a C-terminal portion.
  • a sequence encoding a sequence of 320 amino acids from the C-terminal of ⁇ -agglutinin is used. There are four carbohydrate binding sites in this amino acid sequence.
  • the sugar chain and the polysaccharides that make up the cell wall are covalently linked, and the C-terminal sequence of agglutin is linked to the cell wall. It is particularly useful because it is kept together.
  • the GPI anchor attachment signal sequence is a sequence recognized when the GPI anchor binds to a cell surface localized protein, and is usually a sequence located at or near the C-terminus of a cell surface localized protein. is there.
  • a sequence encoding the C-terminal part of the yeast ⁇ -agglutinin sequence is preferably used.
  • the sequence encoding the G ⁇ ⁇ ⁇ ⁇ I anchor attachment signal sequence is included at the 3rd and 3rd ends of the sequence encoding the sequence of 320 amino acids from the C-terminus of ⁇ -agglutinin.
  • a sequence encoding a sequence of 0 amino acids is useful.
  • dalcoamylase refers to an exo-type hydrolase that separates a glucose unit from the non-reducing end of starch. As long as it has such activity, its origin does not matter, but fungal dalcoamylase such as Rhizopus and Aspergillus is used. For example, as described in Ueda et al. (Supra), darcoamylase derived from Rhizopus oryzae is preferably used.
  • An unknown dalcoamylase gene may be determined and used by a person of ordinary skill in the art using a known method, or a known darcoamylase sequence is used.
  • Secretion signal sequence, dalcoamylase structural gene sequence, cell surface localized protein Synthesis of a DNA comprising a sequence encoding a part of the sequence and a GPI anchor attachment signal sequence in this order is performed by a technique commonly used by those skilled in the art.
  • the binding between the secretory signal sequence and the structural gene of dalcoamylase can be performed using a site-directed mutagenesis method, which allows accurate cleavage of the secretory signal sequence and expression of active dalcoamylase.
  • this sequence may be combined with a sequence encoding a part of a cell surface localization protein, such as a GPI anchor attachment signal sequence.
  • the DNA is in the form of a plasmid.
  • a shuttle vector with Escherichia coli is preferable.
  • this Starting materials for DNA include, for example, a replication origin (0 ri) of yeast 2 ⁇ plasmid and a replication origin of ColEl, and a yeast selection marker (eg, drug resistance gene, TRP, LEU2, etc.). ) And a selection marker for E. coli (such as a drug resistance gene).
  • a so-called regulatory sequence such as an operator that controls the expression of this gene, a motor, a terminator, and an enhancer.
  • GAPDH daricelaldehyde 3'-phosphate dehydrogenase
  • GAPDH terminator Such starting material plasmids include pYE22m, pYGA2270, and the like.
  • a sequence having a secretory signal sequence and a structural gene sequence of glucoamylase, and 320 C from the C-terminal of a-agglutinin Insertion of a sequence linked to a sequence encoding an amino acid produces a plasmid used for introduction into yeast.
  • the multicopy pGA11 and chromosomal integration pIGA11 thus produced are preferably used (FIG. 1).
  • any yeast may be used as long as it has an alcohol fermentation ability.
  • Non-agglutinating yeast is used.
  • the cohesive yeast force S is preferable because it can be separated easily after the reaction, or because it can be fixed easily, so that a continuous reaction can be performed.
  • the non-aggregating yeast is not particularly limited, and examples thereof include Saccharomyces ce revisiae MT8-1.
  • Examples of the cohesive yeast include Saccharomyces diastaticus ATCC60715, ATCC60712, Saccharomyces cerevisiae IF01953, CG1945, and HF7C. Also, you may construct a new flocculant yeast. For example, the following Example 1 According to the method of MD Rose et al. (Methods in Yeast Genetics, 1990, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), a coagulation yeast ATCC60712 and a non-aggregation yeast W303-1B were used for conjugation. From the diploid, the cohesive yeast YF207 and yeast having properties equivalent thereto can be obtained.
  • the flocculent yeast strain YF207 obtained by the present inventors has excellent plasmid stability and extremely high fermentation ability. Therefore, when the flocculent yeast strain YF207 which has been recombined so as to express dalcoamylase on the cell surface is used, the productivity of ethanol becomes extremely high.
  • the yeast displaying the dalcoamylase used in the method of the present invention on the cell surface can be obtained by introducing the above DNA into the yeast.
  • Introduction of DNA means that DNA is introduced into yeast and expressed.
  • Methods for introducing DNA include methods such as transformation, transduction, transfection, cotransfection, and electoral poration.Specific examples include the method using lithium acetate and the protoplast method. .
  • the introduced DNA may be integrated into the chromosome in the form of a plasmid, inserted into a host gene, or undergoing homologous recombination with the host gene.
  • the yeast into which DNA has been introduced is selected with a selectable marker (for example, TRP), and is selected by measuring glucose amylase activity.
  • a selectable marker for example, TRP
  • the immobilization of darcoamylase on the cell surface can be confirmed by an immunoantibody method using an anti-darcoamylase antibody and a FITC-labeled antibody.
  • the yeast that presents dalcoamylase to the cell surface used in the method of the present invention may contain DNA encoded to secrete dalcoamylase.
  • the enzyme presenting dalcoamylase to the cell surface used in the method of the present invention was coded to express amylase, an endo-type hydrolase that solubilizes starch, on the cell surface or secrete it extracellularly. Including DN ⁇ You can stay.
  • the yeast which displays the dalcoamylase used in the method of the present invention on the cell surface may be immobilized on a carrier. When fixed, it is convenient for use in repeated batch or continuous fermentations.
  • the carrier means a substance capable of immobilizing yeast, and is preferably a substance that is insoluble in water or a specific solvent.
  • the material of the carrier that can be used in the present invention, for example, foams or resins such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin porous body, silicon foam, and cellulose porous body are preferable.
  • a porous carrier is preferred in consideration of the growth of yeast and the elimination of yeast that has decreased or has lost activity.
  • the size of the opening of the porous material varies depending on the cell, but it is appropriate that the yeast can sufficiently enter and grow, and the size is preferably 50 ⁇ to 1,000 ⁇ , but is not limited to this. Not done.
  • the shape of the carrier is not limited. Taking into account the strength of the carrier, culture efficiency, etc., it is spherical or cubic.
  • the size is 2 mm to 50 mm in diameter for a sphere, and 2 mn! For a cubic. 55 O mm square is preferred.
  • the immobilization of yeast means a state in which the yeast is not in a free state, for example, a state in which the yeast is bound to or adhered to a carrier or incorporated into the carrier.
  • a method commonly used by those skilled in the art such as a carrier binding method, a cross-linking method, and a comprehensive method can be applied.
  • the carrier binding method is most suitable for immobilizing cohesive yeast.
  • the carrier binding method includes a chemical adsorption method or a physical adsorption method in which the resin is adsorbed on an ion-exchange resin.
  • the aggregating yeast used in the method of the present invention which displays dalcoamylase on the cell surface, has the property of being able to proliferate despite being immobilized on a carrier, and of being naturally dropped off when the activity is reduced.
  • the characteristic of yeast is that the viable cell count is kept almost constant and the activity is high. Considering this feature, physical adsorption is most preferred for binding to the carrier. No special measures are required for physical adsorption. By simply mixing and culturing the cohesive or adhesive cells and the porous carrier, the cells enter the openings of the porous body and adhere to the carrier.
  • cohesiveness means a property in which yeasts or the like suspended or dispersed in a liquid are aggregated to form a lump (aggregate). Or, it means the property of combining to form an aggregate.
  • the term "reduced activity” refers to a state in which the yeast itself is not killed, but the activity of the whole cell is weakened, or, for example, a DNA encoding an enzyme related to aggregation that has reduced activity related to aggregation. It is a state where the activity is weakened at the level and it becomes impossible to aggregate.
  • the agglutinating or adhesive yeast may be a yeast to which the aggregating or adhesive property has been imparted by introducing a gene relating to agglutination or adhesion.
  • the gene relating to aggregation or adhesion includes a substance involved in aggregation or adhesion, for example, a structural gene encoding chitin, lectin, etc. in yeast, and the gene relating to aggregation is FL ⁇ 1 (J. Watari et al.). Agric. Biol. Chem., 55: 1547 (1991), GG Stewart et al., Can.J. Microbiol., 23: 441 (1977), I. Russell et al., Inst. Brew., 86: 120 (1980). , CW Lewis et al .: ⁇ ⁇ Inst.
  • genes related to aggregation or adhesion are incorporated into the above-described starting material plasmid and introduced into yeast along with DNA designed to display dalcoamylase on the cell surface.
  • the immobilized yeast thus obtained can be cultured in a floating state while attached to a carrier, or packed in a column or the like, and used as a so-called bioreactor. Even when cultivation and fermentation are performed continuously or in batches (batch), the cells with reduced or dead activity are detached, so that the yeast activity is not reduced and the yeast can be used effectively. it can.
  • the yeast that presents dalcoamylase on the cell surface is first cultured under aerobic conditions to increase its number.
  • the medium may be a selective medium or a non-selective medium.
  • This yeast can grow using starch as a carbon source, and when the soluble ⁇ fe starch is used, the starch concentration in the medium during culture is preferably a limit concentration of soluble starch. It is about 10 g / l, more preferably about 2 to about 6 g / l, most preferably about 4 g / l.
  • the pH of the culture medium during the culturing is preferably about 4.0 to about 6.0, most preferably about 5.0.
  • the concentration of dissolved oxygen in the medium during aerobic cultivation is preferably about 0.5 to about 6 ppra, more preferably about 1 to about 4 ppm, and most preferably about 2.0 ppm.
  • the temperature during the culture is about 20 to about 45 ° C, preferably about 25 to about 35 ° C, and most preferably about 30 ° C.
  • the cultivation time is preferably until the cell concentration reaches 10 g / l or more, and is about 20 to about 50 hours.
  • the yeast displaying dalcoamylase on the cell surface is fermented under anaerobic conditions to produce ethanol.
  • Examples of the form of the fermentation process include a batch (batch) process, a fed-batch batch process, a repetitive batch process, and a continuous process. Preferably, it is a repeated batch process or a continuous process.
  • Batch fermentation is the process of inoculating a yeast medium into a fermenter. This is a closed fermentation method performed by The time of the batch fermentation process can be determined according to the target alcohol concentration.
  • the fed-batch process fermentation is performed while supplying a nutrient medium to the batch process, but the target product is not extracted until a certain time.
  • the supply of starch in each batch is preferably such that the initial starch concentration in the fermentor is from about 40 to about 150 g / l, more preferably from about 60 to about 120 g / l.
  • the time for performing the fed-batch process may be determined according to the target alcohol concentration.
  • the repeating batch process is a process in which the above batch process is repeated. Specifically, after the first batch process, the operation of separating the culture medium and the yeast, extracting the culture medium, and then adding a fresh medium to perform the fermentation step is repeatedly performed.
  • the time of one batch process may be determined according to the target alcohol concentration.
  • a continuous fermentation process is a process in which fresh medium is continuously supplied to the fermenter while simultaneously removing the medium containing the product (ie, ethanol) from the fermenter.
  • the operation is performed with the supply rate of fresh medium equal to the discharge rate of medium containing ethanol.
  • the feed rate of the culture medium is preferably about 0.01 to about 0.4 v / v% Z hours, more preferably about 0.07 to about 0.2 v / v% / hour of the amount of the culture medium in the fermenter.
  • the yeast is preferably fixed to a carrier in the fermenter.
  • the concentration of starch added to the medium during fermentation is preferably about 40 to about 150 g / l.
  • the starch concentration is more preferably from about 50 to about 120 g / l, most preferably about 60 g / l.
  • the added starch concentration is preferably maintained at about 40 to about 300 g / l, more preferably about 60 to about 250 g / l, most preferably about 200 g / l.
  • the pH of the medium during fermentation is preferably from about 4.0 to about 6.0, most preferably about 5.0.
  • the concentration of dissolved oxygen in the medium during anaerobic fermentation is preferably about 1. ⁇ or less, Preferably about 0. LPPM less, and most preferably about 0. 05p P m.
  • the temperature during fermentation is about 20 to about 45 ° C, preferably about 25 to about 35 ° C, and most preferably about 30 ° C.
  • a medium containing ethanol is withdrawn from the fermenter, and ethanol is isolated by a separation process commonly used by those skilled in the art, for example, a separation operation using a centrifuge and a distillation operation.
  • Saccharomyces diastaticus ATCC60712 (MATa leu2-3, 1 12 his2 lys2 stal FL08), which is an agglutinating yeast, and W303-IB ( ⁇ ⁇ ura3-52 trpl A 2 leu2- 3, 112 his3-, which is a non-aggregating yeast 11 ade2-1 cant 100) and according to the method of MD Rose et al. (Supra), a new agglutinating strain of tributofan auxotrophy YF207 (MATa ura3-52 trpl A 2 his ade2-1 canl) -100 stal FL08).
  • the chromosome-integrated plasmid IGA11 was digested with the restriction enzyme Apal and then introduced into yeast. This is used as a selective medium,
  • SD agar supplemented with appropriate amino acids and bases without L-tryptophan Medium (6.7 g / L yeast nitrogen base w / o amino acids (Difco Laboratories), 2% glucose, 0.02 g / L adenine sulfate, 0.02 g / L L-histidine 'HC1, 0.03 g / L L-leucine, 0.02 g / L L-lysine and 0.02 g / L rasinole).
  • the grown yeasts were selected and named YF207ZpGA11 and YF207 / pIGA11, respectively.
  • Example 2 Confirmation of the function of yeast presenting dalcoamylase on the cell surface
  • the strains YF207 / pGA11 and YF207 / pIGA11 obtained in Example 1 were subjected to cell surface dalcoamylase.
  • Soluble starch was added to a boiled sodium acetate buffer (pH 4.6) to a concentration of 0.5% to prepare a substrate solution. After holding 0.9 ml of the substrate solution at 30 ° C. for 5 minutes, 0.1 ml of the cell suspension was added, and the mixture was incubated at 30 ° C. for 15 minutes. The reaction was stopped by boiling for 10 minutes, and the concentration of the resulting glucose was measured using a commercially available kit, Glucose CII Test Co. (Wako Pure Chemical Industries, Ltd.), using a spectrophotometer (U-2001, manufactured by Hitachi, Ltd.). ) was used to determine the absorbance at 505 mn.
  • YF207 / pGAl1 and YF207 / pIGA11 express dalcoamylase of about 1 to 4 units Zg dry cells and about 0.5 to 2 units / g dry cells, respectively. I understand.
  • the dry cell weight was measured as follows. A sample of 1 ml was taken into an eppendorf tube and pelleted by centrifugation at 6000 rpm for 5 minutes. After removing the supernatant, the pellet was resuspended in 1 ml of distilled water and again pelletized by centrifugation and dried.
  • the weight of the tube containing the pellet was measured, and the dry cell weight was determined from the difference from the weight of the empty Etpendorf tube.
  • the aggregation ability of the new strains YF207pGAl1 and YF207 / pIGA11 obtained in Example 1 was determined by the method of Smit et al. (Smit et al., Appl. Environ. Microbiol., 58: 3709-3714). (1992)). As a result, these strains exhibited the same strong agglutinating ability as YF207 before introducing the plasmid. This indicates that the expression of dalcoamylase on the cell surface does not affect the aggregation ability of yeast.
  • Seed culture was performed by inoculating 5 ml of each yeast obtained in Example 1 into 100 ml of SD medium containing 1 ° / 0 casamino acid (manufactured by Difco Laboratories) and shaking at 30 ° C for 48 hours. went.
  • each seed culture was mixed with 1 L of 4% YPS medium (10 g / L yeast extract (manufactured by Dco Laboratories), 20 g / L polypeptone (manufactured by Wako Pure Chemical Industries, Ltd.), 40 g / L starch (soluble ) (Made by Wako Pure Chemical Industries, Ltd.) and 5 g / L glucose) into a 2 L jar arm mentor (BMJ-02PI, Biott Corp., Tokyo), respectively, and aerobically at 30 ° C. Culture under specific conditions. The pH of the medium was maintained at 5.0 with sulfuric acid and sodium hydroxide, and the dissolved oxygen concentration (DO) was maintained at 2.0 ppm by adjusting the stirring speed. After the weight of the dried cells reached about 15 g / L, the medium was removed, and the cells were collected by centrifugation at 5000 rpm for 10 minutes. The strains thus cultured were used in the following various fermentation steps.
  • 4% YPS medium 10 g / L yeast extract
  • the recovered cell pellet of YF207 / pGA11 was added to 1 L of 6% YPS medium (i.e., 60 g / L (Including starch) at pH 5.0, 30 ° C under anaerobic conditions
  • the fermentation was performed for about 35 hours with gentle stirring (150 rpm).
  • Starch, glucose, ethanol, dry cell weight, dalcoamylase activity, and plasmid stability were monitored throughout the culture and fermentation process.
  • the glucose concentration was measured using a glucose CI I Test Co., Ltd. (manufactured by Wako Pure Chemical Industries, Ltd.) and a spectrophotometer (U-2001, manufactured by Hitachi).
  • the starch concentration was measured as follows. That is, cells were separated from a 1.0 ml sample by centrifugation at 5 OOOrpm for 5 minutes, and the supernatant was diluted with distilled water and used for starch concentration measurement.
  • a dalcoamylase solution from Aspergillus niger (6100 units / ml, Sigma Chemical Co., St. Louis, MO) was diluted 100-fold with distilled water, and 0.1 ml of the dalcoamylase solution was added to 0.9 ml of the diluted sample. And incubated at 30 ° C. for 30 minutes. After the reaction was stopped by boiling for 10 minutes, the glucose concentration in the solution was measured in the same manner as in the above-mentioned measurement of glucose concentration, and converted to starch concentration.
  • the ethanol concentration was measured using a gas chromatograph (Model GC-8; manufactured by Shimadzu Corporation) equipped with a flame ionization detector.
  • the measurement conditions were as follows: column, Unisole 300 0, (GL Science Inc.) packed in a 3.0 mm x 3. lm glass; column temperature, 210 ° C; injector / detector temperature, 270 ° C; carrier gas, nitrogen (flow rate: 25 ml / min).
  • Plasmid stability was measured as follows. Samples were diluted in tryptophan-free SD medium and plated on YPD plates and tryptophan-free SD plates (M.D. Rose et al., Supra). After 48 hours of incubation at 30 ° C, the number of colonies on both plates was counted. Plasmid stability (X) was determined by comparing the number of colonies on YPD plates (A) with the number of colonies on SD plates without tryptophan (B). That is, X (%) B X 100 / A was set.
  • the yeast was separated by centrifugation at 5000 rpm for 10 minutes. Since YF207 / pGAl1 is an agglutinating yeast, it can be separated from the medium by sedimentation. However, centrifugation was performed to completely recover the cells. The collected cells were inoculated into 1 L of fresh 6% YPS medium, and the fermentation process was performed again. This operation was repeated seven times over about 300 hours.
  • the results are shown in Figure 3.
  • the ethanol production rates for 1 to 7 batches calculated from the ethanol concentration ( ⁇ ) during the fermentation process were 0.71, 0.67, 0.56, 0.59, 0.67, 0.62, and 0.60 g / hr / L, respectively.
  • the yields of ethanol from starch in one to seven batches were 58, 46, 49, 50, 59, 51, and 57%, respectively.
  • the ethanol production rate and ethanol yield were maintained for about 300 hours of seven repeated fermentation steps.
  • the activity (V) and plasmid stability ( ⁇ ) of dalcoamylase displayed on the cell surface were maintained at the same level during prolonged fermentation. Therefore, YF207ZpGAll has a very high level of stability in ethanol production by this strain, despite the introduction of a multicopy type plasmid. Turned out to be something.
  • Example 6 Production of ethanol by fed-batch fermentation process using YF207 / pGA11).
  • 500 ml of concentrated medium 1 (lg / L yeast extratato, 1 g / L polypeptone, 105 g / L starch and 7.5 g / L glucose) were supplied to a fermenter, and fermentation was performed at 30 ° C at pH 5.0 under anaerobic conditions.
  • 500 ml of concentrated medium 2 (2 g / L yeast extratato, lg / L polypeptone, 140 g / L starch, 10 g / L glucose). Fermentation continued at C.
  • 500 mL of the fermentation medium was removed from the fermenter, and 500 mL of the concentrated medium 2 was supplied to the fermenter to continue the fermentation. The same feeding procedure was repeated again.
  • the results are shown in FIG.
  • the ethanol concentration ( ⁇ ) in the fermentation medium reached 76. Og / L after about 140 hours of fermentation.
  • the glucose concentration in the fermentation medium remained low during the fermentation.
  • starch () accumulated during the fed-batch fermentation process. This is because darcoamylase presented on the cell surface is insoluble due to the presence of insoluble starch in the enriched medium supplied on the way.
  • Batch fermentation was performed using YF207 / pGA11 under the same medium and culture conditions as in Example 4, and after about 30 hours from the start of fermentation, continuous fermentation was started by switching to continuous fermentation.
  • a medium with a starch concentration of 200 g / 1 was intermittently supplied at a supply rate of 0.2 Vr. About 90 hours after switching A steady state was confirmed, and continuous operation was performed for about 400 hours.
  • Table 1 shows the analysis results of the continuously extracted medium.
  • ethanol can be efficiently produced directly from starch without using a process of saccharifying starch by using yeast that displays dalcoamylase on the cell surface.
  • it is possible to produce ethanol with higher efficiency by performing a repeated batch fermentation step or a continuous fermentation step using yeast that displays extremely stable dalcoamylase on the cell surface.
  • a recombinant yeast derived from the YF207 strain has a very high ethanol fermentation ability, a high stability in the method of the present invention, and is very useful. Therefore, the method of the present invention is effective for industrial use in ethanol production.

Abstract

A yeast presenting glucoamylase on the surface layer of the cells; and an industrially applicable process for producing ethanol at a higher efficiency which comprises repeating a batchwise or continuous fermentation step by using this yeast.

Description

明 細 書 デンプンからのェタノールの製造方法 技術分野  Description Method for producing ethanol from starch
本発明は、 デンプンからのエタノールの製造方法に関する。 さらに詳しく は、 ダルコアミラーゼを細胞表面に提示する酵母を用いる、 エタノールの製 造方法に関する。 背景技術  The present invention relates to a method for producing ethanol from starch. More specifically, the present invention relates to a method for producing ethanol using yeast that displays dalcoamylase on the cell surface. Background art
新しいエネルギー資源としてのバイオマスの利用が、 近年注目されている。 植物起源のセルロースおよびデンプン性物質は、 最も豊富に存在する利用可 能なバイオマス資源である。 特に、 デンプン資源から生産されるエタノール は、 再生可能な環境調和型エネルギー資源として注目され、 今後その需要が 増加すると予想されている。  The use of biomass as a new energy resource has attracted attention in recent years. Cellulose and starchy substances of plant origin are the most abundant and available biomass resources. In particular, ethanol produced from starch resources is attracting attention as a renewable environmentally-friendly energy resource, and the demand for it is expected to increase in the future.
現在の発酵法によるデンプンからのェタノール生産は、 蒸煮および酵素処 理によるデンプン質の糖化、 ならびにその後の酵母による発酵という 2段階 の工程で行われている。 これは、 酵母が、 アミラーゼなどの分泌型酵素を有 していないため、 酵母はデンプンを分解して糖ィ匕することができず、 デンプ ンを炭素源として利用できないからである。 そこで、 酒作りにおいては、 ァ ミラーゼを分泌する麹菌などを用いて米のデンプンを糖ィ匕させ、 次いで、 こ れに酵母を作用させて、 アルコール発酵を行い、 酒を製造している。 したが つて、 酵母にアミラーゼをコードする遺伝子を導入してアミラーゼを分泌さ せれば、 酵母はデンプンを唯一の炭素源として生育し、 アルコール発酵が可 能となる。 このようなダルコアミラーゼ分泌型酵母は、 これまでにいくつか 構築されている (Briol, G.ら、 Enzyme Mi crob. Technol. , 22 : 672 - 677 (199 8) ; Cole, G.E.ら、 Bio/Technol. , 6:417—421(1988) ; Ibragimova, S.I.ら、 Biotechnol. Bioeng. , 46:285-290(1995) ; Inlow, D.ら、 Biotechnol. Bien g., 32:227-234(1988) ; Innis, M. A.ら、 Science 288 :21 - 26 (1985) ; Nakamu raら、 Biotechnol. Bioeng. , 53:21-25(1997)) 。 しかし、 いずれも酵母の 生育おょぴエタノール生産量が低く、 実用的ではない。 Ethanol production from starch by current fermentation processes is a two-step process: starch saccharification by steaming and enzymatic treatment, followed by yeast fermentation. This is because yeast does not have a secretory enzyme such as amylase, so that yeast cannot degrade starch to saccharify it and cannot use starch as a carbon source. Thus, in sake brewing, rice starch is sugar-dried using a koji mold or the like that secretes amylase, and then yeast is allowed to act on the starch to carry out alcohol fermentation to produce alcohol. Therefore, if a gene encoding amylase is introduced into yeast to secrete amylase, the yeast will grow using starch as the sole carbon source, and alcohol fermentation will be possible. Several such dalcoamylase-secreting yeasts have been constructed (Briol, G. et al., Enzyme Microb. Technol., 22: 672-677 (199). 8); Cole, GE et al., Bio / Technol., 6: 417-421 (1988); Ibragimova, SI et al., Biotechnol. Bioeng., 46: 285-290 (1995); Inlow, D. et al., Biotechnol. Bien. g., 32: 227-234 (1988); Innis, MA et al., Science 288: 21-26 (1985); Nakamura et al., Biotechnol. Bioeng., 53: 21-25 (1997)). However, in all cases, the growth of yeast and the production of ethanol are low and are not practical.
そこで、 例えば、 アミラーゼを分泌するよりも、 酵母の細胞表層に固定化 した方が、 より効率的なアルコール発酵が可能であると考えられる。 本努明 者らは、 ダルコアミラーゼを非凝集性酵母表層に固定化し、 この酵母をデン プンを唯一の炭素源として生育させ、 アルコールを生産することに成功して レ、る (植田ら、 Appl. Environ. Microbiol. , 63:1362—1366 (1997)) 。 しか し、 この段階では、 酵母に組込まれたプラスミ ドの安定性が低く、 そしてェ タノールの生産量も多くないため、 工業的利用は困難であった。 発明の開示  Thus, for example, immobilization on the cell surface of yeast would allow more efficient alcohol fermentation than secretion of amylase. The present researchers succeeded in immobilizing dalcoamylase on the surface of non-aggregating yeast, growing this yeast using starch as the sole carbon source, and producing alcohol (Ueda et al., Appl. Environ. Microbiol., 63: 1362-1366 (1997)). However, at this stage, industrial utilization was difficult due to the low stability of the plasmid incorporated into the yeast and the low yield of ethanol. Disclosure of the invention
そこで、 工業的に利用可能な、 より効率のよいエタノール製造プロセスが 求められている。 本発明では、 ダルコアミラーゼを細胞表面に提示するより 安定な酵母を用いて、 より高い効率でエタノールを製造する方法を提供する ことを目的とする。  Therefore, there is a need for a more efficient ethanol production process that can be used industrially. An object of the present invention is to provide a method for producing ethanol with higher efficiency by using a more stable yeast that presents dalcoamylase on the cell surface.
本発明は、 ダルコアミラーゼを細胞表層に提示するように組換えられた D ΝΑを有する凝集性酵母を用いて、 デンプン存在下で発酵させる工程を含む、 エタノールの製造方法に関する。  The present invention relates to a method for producing ethanol, which comprises a step of fermenting in the presence of starch using a flocculent yeast having DΝΑ recombined to display dalcoamylase on the cell surface.
好ましい実施態様において.は、 前記発酵させる工程が、 繰り返し回分発酵 させる工程または連続発酵させる工程である。  In a preferred embodiment, the step of fermenting is a step of repeated batch fermentation or a step of continuous fermentation.
また、 好ましい実施態様においては、 前記発酵工程が、 40〜300 g/ 1のデンプンを含む培地中で、 pH4〜6にて、 20〜45 °Cで嫌気的条件 下行われる。 別の好ましい実施態様においては、 前記連続発酵工程において、 培地の供 給速度が培地の量の 0. 07〜0. 2 vZv %Z時間である。 In a preferred embodiment, the fermentation step is performed in a medium containing 40 to 300 g / 1 of starch at pH 4 to 6 at 20 to 45 ° C under anaerobic conditions. In another preferred embodiment, in the continuous fermentation step, the supply rate of the medium is 0.07 to 0.2 vZv% Z hours of the amount of the medium.
また、 好ましい実施態様においては、 前記 DNAがプラスミドの形態であ り、 このプラスミ ドが、 マルチコピー型ベクターまたは染色体組込み型べク ターである。  In a preferred embodiment, the DNA is in the form of a plasmid, and the plasmid is a multicopy vector or a chromosomal integration vector.
好ましい実施態様においては、 前記凝集性酵母が YF 207株に由来し、 前記 DNAを有する凝集性酵母が YF 207/p GA 1 1または YF 207 / I GA 1 1である。  In a preferred embodiment, the aggregating yeast is derived from the YF207 strain, and the aggregating yeast having the DNA is YF207 / pGA11 or YF207 / IGA11.
本発明は、 また、 ダルコアミラーゼを細胞表層に提示するように組換えら れた DN Aを有する非凝集性酵母を用いて、 デンプン存在下で繰り返し回分 発酵または連続発酵させる工程を含む、 エタノールの製造方法に関する。 好ましい実施態様においては、 前記発酵工程が、 40〜300 gZlのデ ンプンを含む培地中で、 p H 4〜 6にて、 20〜 45 °Cで嫌気的条件下行わ れる。  The present invention also includes a step of repeatedly performing batch fermentation or continuous fermentation in the presence of starch using a non-aggregating yeast having a DNA modified to present dalcoamylase on the cell surface. It relates to a manufacturing method. In a preferred embodiment, the fermentation step is performed in a medium containing 40-300 gZl of starch at pH 4-6 at 20-45 ° C under anaerobic conditions.
また、 好ましい実施態様においては、 前記連続発酵工程において、 培地の 供給速度が培地の量の 0. 07〜0. 2 v/v %/時間である。  In a preferred embodiment, in the continuous fermentation step, the supply rate of the medium is 0.07 to 0.2 v / v% / hour of the amount of the medium.
別の好ましい実施態様においては、 前記 DNAがプラスミドの形態であり、 該プラスミ ドが、 マルチコピー型ベクターまたは染色体組込み型ベクターで ある。 さらに、 本発明は、 ダルコアミラーゼを細胞表層に提示する凝集性酵母に も関する。 図面の簡単な説明  In another preferred embodiment, the DNA is in the form of a plasmid, and the plasmid is a multicopy vector or a chromosomal integration vector. Furthermore, the present invention also relates to an aggregating yeast that presents dalcoamylase on the cell surface. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 プラスミド pGAl 1およびプラスミド: p I GA11の構造を示 す模式図である。  FIG. 1 is a schematic diagram showing the structures of plasmid pGAl1 and plasmid: pIGA11.
図 2は、 YF 207Zp GA1 1を用いる回分発酵工程における、 (a) 培地中のデンプン濃度、 グルコース濃度、 およびエタノール濃度、 ならびにFigure 2 shows the results of (a) in a batch fermentation process using YF207Zp GA11. Starch, glucose, and ethanol concentrations in the medium, and
(b) 乾燥菌体重量およびダルコアミラーゼ活性の経時変化を示すグラフで ある。 (b) It is a graph which shows the time-dependent change of dry cell weight and dalcoamylase activity.
図 3は、 YF 207/pGAl 1を用いる繰り返し回分発酵工程における、 (a) 培地中のデンプン濃度、 グルコース濃度、 およびエタノール濃度、 な らぴに (b) 乾燥菌体重量、 ダルコアミラーゼ活性、 およびプラスミ ド安定 性の経時変化を示すグラフである。  Figure 3 shows (a) starch concentration, glucose concentration, and ethanol concentration in the medium, as well as (b) dry cell weight, dalcoamylase activity, and the following in a repeated batch fermentation process using YF207 / pGAl1. 5 is a graph showing the change over time in the stability of plasmid.
図 4は、 YF 207/p GA 1 1を用いる流加回分発酵工程における、 (a) 培地中のデンプン濃度、 グルコース濃度、 およびエタノール濃度、 な らぴに (b) 乾燥菌体重量およびダルコアミラーゼ活性の経時変化を示すグ ラフである。  Figure 4 shows (a) starch concentration, glucose concentration, and ethanol concentration in the culture medium, and (b) dry cell weight and dalcoamylase in the fed-batch fermentation process using YF207 / pGA11. It is a graph showing a time-dependent change in activity.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法に使用される酵母は、 ダルコアミラーゼを細胞表層に提示す るように DN Aを導入して形質転換された酵母である。 導入される DNAは、 分泌シグナル配列、 ダルコアミラーゼの構造遺伝子配列、 細胞表層局在タン パク質の一部をコードする配列、 および GP Iアンカー付着シグナル配列を この順で含む。  The yeast used in the method of the present invention is a yeast transformed by introducing DNA so that dalcoamylase is displayed on the cell surface. The introduced DNA contains, in this order, a secretory signal sequence, a structural gene sequence for dalcoamylase, a sequence encoding a part of a cell surface localization protein, and a GPI anchor attachment signal sequence.
分泌シグナル配列は、 一般に細胞外 (ペリブラズムも含む) に分泌される タンパク質 (分泌性タンパク質) の N末端に結合している、 疎水性に富んだ アミノ酸を多く含むアミノ酸配列であり、 通常、 分泌性タンパク質が細胞内 から細胞膜を通過して細胞外へ分泌される際に除去される。  The secretory signal sequence is an amino acid sequence containing a large number of highly hydrophobic amino acids, which is bound to the N-terminus of proteins (secretory proteins) that are generally secreted extracellularly (including periplasm). It is removed when proteins are secreted from inside the cell, across the cell membrane and out of the cell.
本発明においては、 ダルコアミラーゼを酵母の細胞外に分泌 (移動) させ ることができる分泌シグナル配列であれば、 どのような分泌シグナル配列で も用いられ、 起 は問わない。 例えば、 分泌シグナル酉己列としては、 ダルコ ァミラーゼの分泌シグナル配列、 酵母の α -または a -ァグルチニンのシグナ ル配列などが好適に用いられる。 ダルコアミラーゼの活性に影響を及ぼさな いのであれば、 分泌シグナル配列の一部または全部がダルコアミラーゼの N 末端に残ってもよい。 In the present invention, any secretory signal sequence that can secrete (migrate) dalcoamylase out of yeast cells can be used, regardless of its origin. For example, the secretory signal sequence includes the secretory signal sequence of dalcoamylase and the yeast α- or a-agglutinin signal. And the like are preferably used. Some or all of the secretory signal sequence may remain at the N-terminus of the dalcoamylase provided that it does not affect the activity of the dalcoamylase.
細胞表層提示タンパク質は、 酵母の細胞表層に固定され、 細胞表層に提示 されるタンパク質をいう。 例えば、 性凝集タンパク質である α -または a -ァ ダルチ-ンが挙げられる。 このようなタンパク質は、 分泌シグナル配列を有 する点で分泌タンパク質と同様であるが、 G P Iアンカーを介して細胞膜に 固定されて輸送される点で分泌タンパク質とは異なる。 細胞表層提示タンパ ク質は、 C末端に G P Iアンカー付着認識シグナノレ配列を有しており、 その 認識シグナル配列は、 選択的に切断された C末端部分で G P Iアンカーと結 合して細胞膜に固定される。 その後、 PI- PLCにより、 G P Iアンカーの根元 部が切断され、 細胞壁に組み込まれて細胞表層に固定され、 細胞表層に提示 される。 The cell surface display protein is a protein that is fixed on the yeast cell surface and displayed on the cell surface. For example, α- or a-adaltin, which is a sex aggregation protein, can be mentioned. Such proteins are similar to secreted proteins in having a secretory signal sequence, but differ from secreted proteins in that they are anchored and transported to the cell membrane via GPI anchors. The cell surface display protein has a GPI anchor attachment recognition signal sequence at the C-terminus, and its recognition signal sequence is fixed to the cell membrane by binding to the GPI anchor at the selectively cleaved C-terminal portion. You. Then, the base of the GPI anchor is cut by PI-PLC, incorporated into the cell wall, fixed to the cell surface, and presented to the cell surface.
ここで、 G P Iアンカーとは、 グリコシルホスファチジルイノシト一ノレ (G P I ) と呼ばれるエタノールァミンリン酸- 6マンノース α 1-2マンノース a 1 - 6マンノース α 1-4ダルコサミン α 1-6ィノシトールリン脂質を基本構造 とする糖脂質をいい、 ΡΙ - PLCとは、 ホスファチジルイノシトール依存性ホス ホリパーゼ Cをいう。  Here, the GPI anchor is based on ethanolamine phosphate-6 mannose α 1-2 mannose a 1-6 mannose α 1-4 darcosamine α 1-6 inositol phospholipid called glycosylphosphatidylinositol (GPI) Refers to glycolipids having a structure. ΡΙ-PLC refers to phosphatidylinositol-dependent phospholipase C.
細胞表層局在タンパク質の一部をコードする配列とは、 酵母の細胞表面に 提示されるタンパク質 (例えば または a -ァグルチニン) の一部をコード する配列をいい、 主に C末端部分をコードする配列をいうが、 グルコアミラ ーゼの活性に悪影響を与えなければ、 どのような配列でもよい。 好適には、 α—ァグルチニンの C末端から 3 2 0アミノ酸の配列をコードする配列が用 いられる。 このアミノ酸配列中には 4個所の糖鎖結合部位がある。 G P Iァ ンカーが ΡΙ - PLCで切断された後に、 この糖鎖と細胞壁を構成する多糖類とが 共有結合することにより、 ァグルチュンの C末端配列部分が細胞壁と結 合して保持されるので、 特に有用である。 A sequence encoding a part of a cell surface localization protein is a sequence encoding a part of a protein (for example, or a-agglutinin) displayed on a yeast cell surface, and mainly a sequence encoding a C-terminal portion. However, any sequence may be used as long as it does not adversely affect the activity of glucoamylase. Preferably, a sequence encoding a sequence of 320 amino acids from the C-terminal of α-agglutinin is used. There are four carbohydrate binding sites in this amino acid sequence. After the GPI anchor is cleaved with ΡΙ-PLC, the sugar chain and the polysaccharides that make up the cell wall are covalently linked, and the C-terminal sequence of agglutin is linked to the cell wall. It is particularly useful because it is kept together.
G P Iアンカー付着シグナル配列とは、 G P Iアンカーが細胞表層局在タ ンパク質と結合する際に認識される配列であり、 通常、 細胞表層局在タンパ ク質の C末端あるいはその近傍に位置する配列である。 酵母の α -ァグルチ ニン配列の C末端部分をコードする配列が好適に用いられる。 上記 α—ァグ ルチニンの C末端から 3 2 0アミノ酸の配列をコードする配列の 3, 末端側 には、 G Ρ Iアンカー付着シグナル配列をコードする配列が含まれるので、 この C末端から 3 2 0アミノ酸の配列をコードする配列が有用である。  The GPI anchor attachment signal sequence is a sequence recognized when the GPI anchor binds to a cell surface localized protein, and is usually a sequence located at or near the C-terminus of a cell surface localized protein. is there. A sequence encoding the C-terminal part of the yeast α-agglutinin sequence is preferably used. The sequence encoding the G ア ミ ノ 酸 I anchor attachment signal sequence is included at the 3rd and 3rd ends of the sequence encoding the sequence of 320 amino acids from the C-terminus of α-agglutinin. A sequence encoding a sequence of 0 amino acids is useful.
本明細書において、 ダルコアミラーゼとは、 デンプンの非還元末端からグ ルコース単位を切り離していくェキソ型の加水分解酵素をいう。 このような 活性を有していれば、 その起源は問わないが、 Rhizopusおよび Aspergillus などのカビ由来のダルコアミラーゼが用いられる。 例えば、 植田らの文献 (前出) に記載のように、 Rhizopus oryzae由来のダルコアミラーゼが好適 に用いられる。 未知のダルコアミラーゼの遺伝子を当業者が通常用いる方法 で決定して用いてもよいし、 あるいは公知のダルコアミラーゼの配列を利用 分泌シグナル配列、 ダルコアミラーゼの構造遺伝子配列、 細胞表層局在タ ンパク質の一部をコードする配列、 および G P Iアンカー付着シグナル配列 をこの順で含む D N Aの合成は、 当業者が通常用い得る技術で行われる。 例 えば、 分泌シグナル配列とダルコアミラーゼの構造遺伝子との結合は、 部位 特異的突然変異法を用いて行うことができ、 正確な分泌シグナル配列の切断 と活性なダルコアミラーゼの発現が可能である。 さらにこの配列と、 細胞表 層局在タンパク質の一部をコードする配列おょぴ G P Iアンカー付着シグナ ル配列とを結合すればよレ、。  As used herein, dalcoamylase refers to an exo-type hydrolase that separates a glucose unit from the non-reducing end of starch. As long as it has such activity, its origin does not matter, but fungal dalcoamylase such as Rhizopus and Aspergillus is used. For example, as described in Ueda et al. (Supra), darcoamylase derived from Rhizopus oryzae is preferably used. An unknown dalcoamylase gene may be determined and used by a person of ordinary skill in the art using a known method, or a known darcoamylase sequence is used.Secretion signal sequence, dalcoamylase structural gene sequence, cell surface localized protein Synthesis of a DNA comprising a sequence encoding a part of the sequence and a GPI anchor attachment signal sequence in this order is performed by a technique commonly used by those skilled in the art. For example, the binding between the secretory signal sequence and the structural gene of dalcoamylase can be performed using a site-directed mutagenesis method, which allows accurate cleavage of the secretory signal sequence and expression of active dalcoamylase. Furthermore, this sequence may be combined with a sequence encoding a part of a cell surface localization protein, such as a GPI anchor attachment signal sequence.
上記 D N Aはプラスミ ドの形態であることが望ましい。 D NAの取得の簡 易化の点からは、 大腸菌とのシャトルベクターであることが好ましい。 この D N Aの出発材料としては、 例えば、 酵母の 2 μ πιプラスミドの複製起点 (0 ri) と ColElの複製起点とを有しており、 また、 酵母選択マーカー (例えば、 薬剤耐性遺伝子、 TRP、 LEU2など) および大腸菌の選択マーカー (薬剤耐性 遺伝子など) を有することがさらに好ましい。 また、 ダルコアミラーゼ構造 遺伝子を発現させるために、 この遺伝子の発現を調節するオペレーター、 プ 口モーター、 ターミネータ一、 ェンハンサーなどのいわゆる調節配列をも含 んでいることが望ましい。 例えば、 GAPDH (ダリセルアルデヒド 3 ' -リン酸 デヒドロゲナーゼ) プロモーターおよび GAPDHターミネータ一が挙げられる。 このような出発材料のプラスミドとして、 pYE22m、 pYGA2270などが挙げられ る。 Preferably, the DNA is in the form of a plasmid. From the viewpoint of simplification of obtaining DNA, a shuttle vector with Escherichia coli is preferable. this Starting materials for DNA include, for example, a replication origin (0 ri) of yeast 2 μπι plasmid and a replication origin of ColEl, and a yeast selection marker (eg, drug resistance gene, TRP, LEU2, etc.). ) And a selection marker for E. coli (such as a drug resistance gene). In addition, in order to express the dalcoamylase structural gene, it is preferable to include a so-called regulatory sequence such as an operator that controls the expression of this gene, a motor, a terminator, and an enhancer. Examples include the GAPDH (daricelaldehyde 3'-phosphate dehydrogenase) promoter and the GAPDH terminator. Such starting material plasmids include pYE22m, pYGA2270, and the like.
最も好適には、 プラスミド PYGA2270または pYE22mの GAPDHプロモーターと G APDHターミネータ一の配列の間に、 分泌シグナル配列およぴグルコアミラー ゼの構造遺伝子配列を有する配列と a -ァグルチニンの C末端から 3 2 0ァ ミノ酸をコードする配列とを結合した配列を挿入すれば、 酵母に導入するた めに使用されるプラスミドが製造される。 本発明においては、 好適には、 こ のように製造されたマルチコピー型の p G A 1 1および染色体組込み型の p I G A 1 1が用いられる (図 1 ) 。  Most preferably, between the GAPDH promoter and the sequence of the GAPDH terminator of the plasmid PYGA2270 or pYE22m, a sequence having a secretory signal sequence and a structural gene sequence of glucoamylase, and 320 C from the C-terminal of a-agglutinin. Insertion of a sequence linked to a sequence encoding an amino acid produces a plasmid used for introduction into yeast. In the present invention, the multicopy pGA11 and chromosomal integration pIGA11 thus produced are preferably used (FIG. 1).
宿主の酵母としては、 アルコール発酵能を有する酵母であれば、 どのよう な酵母でもよい。 非凝集性おょぴ凝集性の酵母が用いられる。 凝集性の酵母 力 S、 反応後の分離が簡単である点で、 あるいは簡単に固定できるため連続反 応を行い得る点で好ましい。  As the yeast of the host, any yeast may be used as long as it has an alcohol fermentation ability. Non-agglutinating yeast is used. The cohesive yeast force S is preferable because it can be separated easily after the reaction, or because it can be fixed easily, so that a continuous reaction can be performed.
非凝集性の酵母としては、 特に制限はないが、 例えば、 Saccharomyces ce revisiae MT 8— 1などが挙げられる。  The non-aggregating yeast is not particularly limited, and examples thereof include Saccharomyces ce revisiae MT8-1.
凝集性の酵母としては、 Saccharomyces diastaticus ATCC60715、 同 ATCC6 0712、 Saccharomyces cerevisiae IF01953、 同 CG1945、 同 HF7Cなどが挙げら れる。 また、 新たな凝集性酵母を構築してもよレ、。 例えば、 後述の実施例 1 に示すように、 M. D. Roseら (Methods in Yeast Genetics, 1990, Cold Spr ing Harbor Laboratory Press, Cold Spring Harbor, NY) の方法に従って、 凝集性酵母 ATCC60712と非凝集性酵母 W303 - 1Bとの接合による二倍体から、 凝 集性酵母 Y F 2 0 7およびこれと同等の性質を有する酵母を得ることができ る。 本発明者らが取得した凝集性酵母 Y F 2 0 7株は、 プラスミドの安定性 に優れ、 さらに発酵能が非常に高い。 従って、 ダルコアミラーゼを細胞表層 に発現するように組換えられた凝集性酵母 Y F 2 0 7株を用いた場合は、 ェ タノールの生産性は非常に高くなる。 Examples of the cohesive yeast include Saccharomyces diastaticus ATCC60715, ATCC60712, Saccharomyces cerevisiae IF01953, CG1945, and HF7C. Also, you may construct a new flocculant yeast. For example, the following Example 1 According to the method of MD Rose et al. (Methods in Yeast Genetics, 1990, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY), a coagulation yeast ATCC60712 and a non-aggregation yeast W303-1B were used for conjugation. From the diploid, the cohesive yeast YF207 and yeast having properties equivalent thereto can be obtained. The flocculent yeast strain YF207 obtained by the present inventors has excellent plasmid stability and extremely high fermentation ability. Therefore, when the flocculent yeast strain YF207 which has been recombined so as to express dalcoamylase on the cell surface is used, the productivity of ethanol becomes extremely high.
本発明の方法で用いられるダルコアミラーゼを細胞表層に提示する酵母は、 上記 D NAを酵母に導入することにより得られる。 D N Aの導入とは、 酵母 の中に D N Aを導入し、 発現させることを意味する。 D NAの導入の方法に は、 形質転換、 形質導入、 トランスフエクシヨン、 コトランスフエクシヨン、 エレクト口ポレーシヨンなどの方法があり、 具体的には、 酢酸リチウムを用 いる方法、 プロトプラスト法などがある。  The yeast displaying the dalcoamylase used in the method of the present invention on the cell surface can be obtained by introducing the above DNA into the yeast. Introduction of DNA means that DNA is introduced into yeast and expressed. Methods for introducing DNA include methods such as transformation, transduction, transfection, cotransfection, and electoral poration.Specific examples include the method using lithium acetate and the protoplast method. .
導入される D NAは、 プラスミ ドの形態で、 あるいは宿主の遺伝子に挿入 して、 または宿主の遺伝子と相同組換えを起こして染色体に取り込まれても よい。  The introduced DNA may be integrated into the chromosome in the form of a plasmid, inserted into a host gene, or undergoing homologous recombination with the host gene.
D N Aが導入された酵母は、 選択マーカー (例えば TRP) で選択され、 グ ルコアミラーゼ活性を測定することにより選択される。 ダルコアミラーゼが 細胞表層に固定されていることは、 抗ダルコアミラーゼ抗体と FITC標識抗体 とを用いる免疫抗体法によつて確認し得る。  The yeast into which DNA has been introduced is selected with a selectable marker (for example, TRP), and is selected by measuring glucose amylase activity. The immobilization of darcoamylase on the cell surface can be confirmed by an immunoantibody method using an anti-darcoamylase antibody and a FITC-labeled antibody.
本発明の方法で用いられるダルコアミラーゼを細胞表層に提示する酵母は、 ダルコアミラーゼを分泌するようにコードされた D NAを含んでいてもよい。 また、 本発明の方法で用いられるダルコアミラーゼを細胞表層に提示する酵 母は、 デンプンを可溶化するエンド型加水分解酵素である アミラーゼを 細胞表層に発現または細胞外に分泌するようにコードされた D N Αを含んで いてもよレヽ。 The yeast that presents dalcoamylase to the cell surface used in the method of the present invention may contain DNA encoded to secrete dalcoamylase. In addition, the enzyme presenting dalcoamylase to the cell surface used in the method of the present invention was coded to express amylase, an endo-type hydrolase that solubilizes starch, on the cell surface or secrete it extracellularly. Including DN Α You can stay.
本発明の方法で用いられるダルコアミラーゼを細胞表層に提示する酵母は、 担体に固定ィ匕されていてもよい。 固定されていると、 繰り返し回分発酵また は連続発酵における使用に便利である。  The yeast which displays the dalcoamylase used in the method of the present invention on the cell surface may be immobilized on a carrier. When fixed, it is convenient for use in repeated batch or continuous fermentations.
本明細書において、 担体とは、 酵母を固定化することができる物質を意味 し、 好ましくは、 水またはある特定の溶媒に対して不溶性の物質である。 本 発明に用い得る担体の材質としては、 例えば、 ポリビニルアルコール、 ポリ ウレタンフォーム、 ポリスチレンフォーム、 ポリアクリルアミド、 ポリビニ ルフォルマール樹脂多孔質体、 シリコンフォーム、 セルロース多孔質体など の発泡体あるいは樹脂が好ましい。 酵母の増殖および活性が低下したあるい は死滅した酵母の脱離などを考慮すると、 多孔質の担体が好ましい。 多孔質 体の開口部の大きさは細胞によっても異なるが、 酵母が十分に入り込めて、 増殖できる大きさが適当であり、 50 πι〜1, 000 μ ιηが好適であるが、 これ に限定されない。  In the present specification, the carrier means a substance capable of immobilizing yeast, and is preferably a substance that is insoluble in water or a specific solvent. As the material of the carrier that can be used in the present invention, for example, foams or resins such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin porous body, silicon foam, and cellulose porous body are preferable. A porous carrier is preferred in consideration of the growth of yeast and the elimination of yeast that has decreased or has lost activity. The size of the opening of the porous material varies depending on the cell, but it is appropriate that the yeast can sufficiently enter and grow, and the size is preferably 50 πι to 1,000 μιη, but is not limited to this. Not done.
また、 担体の形状は問わない。 担体の強度、 培養効率などを考慮すると、 球状あるいは立方体状であり、 大きさは、 球状の場合、 直径が 2 mm〜5 0 mm、 立方体状の場合、 2 mn!〜 5 O mm角が好ましい。  The shape of the carrier is not limited. Taking into account the strength of the carrier, culture efficiency, etc., it is spherical or cubic. The size is 2 mm to 50 mm in diameter for a sphere, and 2 mn! For a cubic. 55 O mm square is preferred.
本明細書において、 酵母の固定化とは、 酵母が遊離の状態ではない状態を 意味し、 例えば、 酵母が担体に結合あるいは付着または担体内部に取り込ま れた状態などをいう。 酵母の固定化には、 例えば、 担体結合法、 架橋法およ ぴ包括法などの当業者が通常用いる方法が適用できる。 なかでも、 凝集性の 酵母の固定化には、 担体結合法が最適である。 担体結合法には、 イオン交換 性の樹脂に吸着させる化学的吸着法あるいは物理的吸着法が含まれる。  In the present specification, the immobilization of yeast means a state in which the yeast is not in a free state, for example, a state in which the yeast is bound to or adhered to a carrier or incorporated into the carrier. For the immobilization of yeast, for example, a method commonly used by those skilled in the art such as a carrier binding method, a cross-linking method, and a comprehensive method can be applied. Above all, the carrier binding method is most suitable for immobilizing cohesive yeast. The carrier binding method includes a chemical adsorption method or a physical adsorption method in which the resin is adsorbed on an ion-exchange resin.
本発明の方法で用いられるダルコアミラーゼを細胞表層に提示する凝集性 酵母は、 担体に固定化されているにもかかわらず、 増殖可能であり、 そして 活性が低下すると自然に脱落していく性質を有しているため、 担体に結合し た酵母は、 生菌数がほぼ一定に保たれ、 活性が高いという特徴がある。 この 特徴を考慮すると、 担体への結合は物理的吸着が最も好ましい。 物理的吸着 には特別な手段は必要なレ、。 凝集性あるいは接着性の細胞と上記多孔質の担 体とを単に混合して培養することにより、 細胞が多孔質体の開口部に入りこ み、 担体に付着する。 The aggregating yeast used in the method of the present invention, which displays dalcoamylase on the cell surface, has the property of being able to proliferate despite being immobilized on a carrier, and of being naturally dropped off when the activity is reduced. To bind to the carrier The characteristic of yeast is that the viable cell count is kept almost constant and the activity is high. Considering this feature, physical adsorption is most preferred for binding to the carrier. No special measures are required for physical adsorption. By simply mixing and culturing the cohesive or adhesive cells and the porous carrier, the cells enter the openings of the porous body and adhere to the carrier.
本明細書において、 凝集性とは、 液体中に浮遊または分散して存在する酵 母などが、 集合して塊 (集合体) を作る性質を意味し、 接着性とは、 酵母同 士が接着または結合し、 集合体を形成する性質を意味する。  In the present specification, cohesiveness means a property in which yeasts or the like suspended or dispersed in a liquid are aggregated to form a lump (aggregate). Or, it means the property of combining to form an aggregate.
本明細書において、 活性が低下したとは、 酵母自体は死滅していないもの の細胞全体の活性が弱まった状態、 あるいは、 例えば、 凝集に関する活性が 低下する、 凝集に関する酵素をコードする DN Aのレベルで活性が弱まるな どの状態となり、 凝集できなくなる状態をいう。  As used herein, the term "reduced activity" refers to a state in which the yeast itself is not killed, but the activity of the whole cell is weakened, or, for example, a DNA encoding an enzyme related to aggregation that has reduced activity related to aggregation. It is a state where the activity is weakened at the level and it becomes impossible to aggregate.
また、 本発明においては、 凝集性または接着性の酵母は、 凝集または接着 に関する遺伝子の導入により凝集性または接着性を付与された酵母であつて もよい。  Further, in the present invention, the agglutinating or adhesive yeast may be a yeast to which the aggregating or adhesive property has been imparted by introducing a gene relating to agglutination or adhesion.
凝集または接着に関する遺伝子とは、 凝集または接着に関与する物質、 例 えば、 酵母におけるキチン、 レクチンなどをコードする構造遺伝子が挙げら れ、 凝集性に関する遺伝子としては、 FL〇 1 (J. Watariら、 Agric. Biol. Chem. , 55:1547(1991), G. G. Stewartら、 Can. J. Microbiol. , 23:441(19 77), I. Russellら、 Inst. Brew. , 86:120(1980), C. W. Lewisら、 : Γ· Inst. The gene relating to aggregation or adhesion includes a substance involved in aggregation or adhesion, for example, a structural gene encoding chitin, lectin, etc. in yeast, and the gene relating to aggregation is FL〇1 (J. Watari et al.). Agric. Biol. Chem., 55: 1547 (1991), GG Stewart et al., Can.J. Microbiol., 23: 441 (1977), I. Russell et al., Inst. Brew., 86: 120 (1980). , CW Lewis et al .: Γ · Inst.
Brew. , 82:158(1976))、 FLO 5 (I. Russellら、 J. Inst. Brew. , 85: 95 (1979))、 および FL08 (I. Yamashitaら、 Agric. Biol. Chem. , 48:131(1 984))などの遺伝子が挙げられる。 Brew., 82: 158 (1976)), FLO 5 (I. Russell et al., J. Inst. Brew., 85: 95 (1979)), and FL08 (I. Yamashita et al., Agric. Biol. Chem., 48). : 131 (1 984)).
これらの凝集または接着に関する遺伝子は、 上記の出発材料のプラスミド に組み込まれて、 ダルコアミラーゼを細胞表層に提示するように設計された DNAとともに酵母に導入される。 このようにして得られる固定化された酵母は、 担体に付着した状態で、 浮 遊状態で培養されるか、 カラムなどに充填されて、 いわゆるバイオリアクタ 一として用いることもできる。 連続的にあるいは回分 (バッチ)で繰り返し 培養および発酵させた場合でも、 活性が低下したあるいは死滅した細胞が脱 離していくので、 酵母としての活性が低下することはなく、 有効に利用する ことができる。 These genes related to aggregation or adhesion are incorporated into the above-described starting material plasmid and introduced into yeast along with DNA designed to display dalcoamylase on the cell surface. The immobilized yeast thus obtained can be cultured in a floating state while attached to a carrier, or packed in a column or the like, and used as a so-called bioreactor. Even when cultivation and fermentation are performed continuously or in batches (batch), the cells with reduced or dead activity are detached, so that the yeast activity is not reduced and the yeast can be used effectively. it can.
本発明による、 ダルコアミラーゼを細胞表層に提示する酵母を、 デンプン 存在下で発酵させて、 エタノールを製造する方法を説明する。  A method for producing ethanol by fermenting yeast presenting dalcoamylase on the cell surface according to the present invention in the presence of starch will be described.
ダルコアミラーゼを細胞表層に提示する酵母を、 まず、 好気的条件下で培 養して、 その数を增加させる。 培地は、 選択培地であっても非選択培地であ つてもよい。 この酵母は、 デンプンを炭素源として生育可能であり、 培養時 の培地中のデンプン濃度は、 可溶 ^feデンプンを用いる場合、 溶ける限界濃度 のデンプンを添加することが好ましく、 好ましくは約 1〜約 10g/l、 より好 ましくは約 2〜約 6 g/l、 最も好ましくは約 4 g/lである。 培養時の培地の p Hは、 好ましくは約 4. 0〜約 6. 0、 最も好ましくは約 5. 0である。 好気的培養 時の培地中の溶存酸素濃度は、 好ましくは約 0. 5〜約 6 ppra, より好ましくは 約 1〜約 4 ppm、 最も好ましくは約 2. Oppmである。 また、 培養時の温度は、 約 20〜約 45°C、 好ましくは約 25〜約 35°C、 最も好ましくは約 30°Cである。 培 養時間は、 菌体濃度が lOg/1以上になるまで培養することが好ましく、 約 20 〜約 50時間程度である。  The yeast that presents dalcoamylase on the cell surface is first cultured under aerobic conditions to increase its number. The medium may be a selective medium or a non-selective medium. This yeast can grow using starch as a carbon source, and when the soluble ^ fe starch is used, the starch concentration in the medium during culture is preferably a limit concentration of soluble starch. It is about 10 g / l, more preferably about 2 to about 6 g / l, most preferably about 4 g / l. The pH of the culture medium during the culturing is preferably about 4.0 to about 6.0, most preferably about 5.0. The concentration of dissolved oxygen in the medium during aerobic cultivation is preferably about 0.5 to about 6 ppra, more preferably about 1 to about 4 ppm, and most preferably about 2.0 ppm. The temperature during the culture is about 20 to about 45 ° C, preferably about 25 to about 35 ° C, and most preferably about 30 ° C. The cultivation time is preferably until the cell concentration reaches 10 g / l or more, and is about 20 to about 50 hours.
次いで、 ダルコアミラーゼを細胞表層に提示する酵母を、 嫌気的条件下で 発酵させて、 エタノールを生産させる。 この発酵工程の形式としては、 回分 (バッチ) 工程、 流加回分工程、 繰り返し回分工程、 連続工程などが挙げら れるが、 これらのいずれであってもよレ、。 好ましくは、 繰り返し回分工程ま たは連続工程である。  Next, the yeast displaying dalcoamylase on the cell surface is fermented under anaerobic conditions to produce ethanol. Examples of the form of the fermentation process include a batch (batch) process, a fed-batch batch process, a repetitive batch process, and a continuous process. Preferably, it is a repeated batch process or a continuous process.
回分発酵工程とは、 予め発酵槽内に入れられた培地に酵母を接種すること によつて行われる閉鎖的発酵法である。 目的とするアルコール濃度に応じて、 回分発酵工程の時間を決定すればよレ、。 Batch fermentation is the process of inoculating a yeast medium into a fermenter. This is a closed fermentation method performed by The time of the batch fermentation process can be determined according to the target alcohol concentration.
流加回分工程とは、 上記回分工程に対し、 栄養培地を供給しながら発酵さ せるが、 目的生産物はある時期に至るまで抜き取らない方法である。 各回分 のデンプンの供給量は、 好ましくは発酵槽内の初期デンプン濃度が約 40〜約 150g/l、 より好ましくは約 60〜約 120g/lである。 また、 流加回分工程を行う 時間は、 目的とするアルコール濃度に応じて決定すればよレ、。  In the fed-batch process, fermentation is performed while supplying a nutrient medium to the batch process, but the target product is not extracted until a certain time. The supply of starch in each batch is preferably such that the initial starch concentration in the fermentor is from about 40 to about 150 g / l, more preferably from about 60 to about 120 g / l. The time for performing the fed-batch process may be determined according to the target alcohol concentration.
繰り返し回分工程とは、 上記回分工程を、 操り返して行う工程である。 具 体的には、 1回目の回分工程後、 培地と酵母とを分離して、 培地を抜き出し、 その後新鮮培地を新たに添加して発酵工程を行う、 という操作が繰り返して 行われる。 1回あたりの回分工程の時間は、 目的とするアルコール濃度に応 じて決定すればよい。  The repeating batch process is a process in which the above batch process is repeated. Specifically, after the first batch process, the operation of separating the culture medium and the yeast, extracting the culture medium, and then adding a fresh medium to perform the fermentation step is repeatedly performed. The time of one batch process may be determined according to the target alcohol concentration.
連続発酵工程とは、 発酵槽に新鮮な培地を連続的に供給しながら、 同時に 生産物 (すなわち、 エタノール) を含む培地を発酵槽から抜き取つていくェ 程である。 連続発酵工程では、 新鮮培地の供給速度とエタノールを含む培地 の排出速度とを等しくして操作される。 培地の供給速度は、 好ましくは発酵 槽内の培地の量の約 0. 01〜約 0. 4v/v%Z時間、 より好ましくは約 0. 07〜約 0. 2v/v% /時間である。 また、 連続発酵工程では、 酵母は、 発酵槽内で担体に 固定されていることが好ましい。  A continuous fermentation process is a process in which fresh medium is continuously supplied to the fermenter while simultaneously removing the medium containing the product (ie, ethanol) from the fermenter. In the continuous fermentation process, the operation is performed with the supply rate of fresh medium equal to the discharge rate of medium containing ethanol. The feed rate of the culture medium is preferably about 0.01 to about 0.4 v / v% Z hours, more preferably about 0.07 to about 0.2 v / v% / hour of the amount of the culture medium in the fermenter. . In the continuous fermentation step, the yeast is preferably fixed to a carrier in the fermenter.
発酵時の培地に添加するデンプン濃度は、 好ましくは約 40〜約 150g/lであ る。 特に、 繰り返し回分工程の場合、 デンプン濃度は、 より好ましくは約 50 〜約 120g/l、 最も好ましくは約 60g/lである。 また、 連続工程の場合、 添加 デンプン濃度は、 好ましくは約 40〜約 300g/l、 より好ましくは約 60〜約 250g /1、 最も好ましくは約 200g/lで維持される。 発酵時の培地の p Hは、 好まし くは約 4. 0〜約 6. 0、 最も好ましくは約 5. 0である。 The concentration of starch added to the medium during fermentation is preferably about 40 to about 150 g / l. In particular, in the case of a repeated batch process, the starch concentration is more preferably from about 50 to about 120 g / l, most preferably about 60 g / l. Also, in the case of a continuous process, the added starch concentration is preferably maintained at about 40 to about 300 g / l, more preferably about 60 to about 250 g / l, most preferably about 200 g / l. The pH of the medium during fermentation is preferably from about 4.0 to about 6.0, most preferably about 5.0.
嫌気的発酵時の培地中の溶存酸素濃度は、 好ましくは約 1. Ορρπι以下、 より 好ましくは約 0. lppm以下、 最も好ましくは約 0. 05pPm以下である。 また、 発 酵時の温度は、 約 20〜約 45°C、 好ましくは約 25〜約 35°C、 最も好ましくは約 30°Cである。 The concentration of dissolved oxygen in the medium during anaerobic fermentation is preferably about 1.Ορρπι or less, Preferably about 0. LPPM less, and most preferably about 0. 05p P m. The temperature during fermentation is about 20 to about 45 ° C, preferably about 25 to about 35 ° C, and most preferably about 30 ° C.
発酵の進行とともに上記の発酵条件が変化するので、 これらを一定の範囲 に調節することが好ましレ、。 発酵の経時変化は、 例えば、 ガスクロマトグラ フ、 H P L Cなどの当業者が通常用いる手段でモニターすればよい。  Since the above fermentation conditions change as the fermentation progresses, it is preferable to adjust these to a certain range. Changes over time in fermentation may be monitored by means commonly used by those skilled in the art, such as, for example, gas chromatography and HPLC.
発酵工程終了後、 エタノールを含む培地を発酵槽から抜き取り、 例えば、 遠心分離機による分離操作およぴ蒸留操作などの当業者が通常用レ、る分離ェ 程によって、 エタノールが単離される。  After completion of the fermentation step, a medium containing ethanol is withdrawn from the fermenter, and ethanol is isolated by a separation process commonly used by those skilled in the art, for example, a separation operation using a centrifuge and a distillation operation.
以下、 実施例を挙げて本発明を説明するが、 本発明はこの実施例によって 限定されるものではない。  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(実施例 1 :ダルコアミラーゼを細胞表層に提示する酵母の作成) (Example 1: Preparation of yeast displaying dalcoamylase on cell surface)
凝集 '性酵母である Saccharomyces diastaticus ATCC60712 (MATa leu2- 3, 1 12 his2 lys2 stal FL08) およぴ非凝集性酵母である W303- IB (ΜΑΤ α ura3 - 52 trpl A 2 leu2- 3, 112 his3- 11 ade2- 1 canト 100) を用い、 M. D. Roseら (前出) の方法に従って、 トリブトファン栄養要求性の新たな凝集性の菌株 Y F 2 0 7 (MATa ura3-52 trpl A 2 his ade2- 1 canl- 100 stal FL08) を得 た。  Saccharomyces diastaticus ATCC60712 (MATa leu2-3, 1 12 his2 lys2 stal FL08), which is an agglutinating yeast, and W303-IB (ΜΑΤ α ura3-52 trpl A 2 leu2- 3, 112 his3-, which is a non-aggregating yeast 11 ade2-1 cant 100) and according to the method of MD Rose et al. (Supra), a new agglutinating strain of tributofan auxotrophy YF207 (MATa ura3-52 trpl A 2 his ade2-1 canl) -100 stal FL08).
マルチコピー型プラスミド p G A 1 1およぴ染色体組込み型プラスミ ド p Multicopy plasmid pGA11 and chromosomal integration plasmid p
1 G A 1 1 (いずれも京都大学大学院工学研究科合成 ·生物化学専攻の田中 研究室より供与された;図 1 ) を、 Yeast Maker (Clontech Laboratories, Inc. , Palo Alto, CA)を用いた酢酸リチウム法によって、 それぞれ酵母 Y F1 GA 1 1 (all provided by Tanaka Lab., Department of Synthesis and Biochemistry, Graduate School of Engineering, Kyoto University; Fig. 1) was converted to acetic acid using Yeast Maker (Clontech Laboratories, Inc., Palo Alto, CA). Yeast YF by lithium method
2 0 7に導入した。 なお、 染色体組込み型プラスミド I G A 1 1について は、 制限酵素 Apalで切断した後、 酵母に導入した。 これを、 選択培地として、Introduced in 2007. The chromosome-integrated plasmid IGA11 was digested with the restriction enzyme Apal and then introduced into yeast. This is used as a selective medium,
L -トリプトファンを含まない適切なアミノ酸および塩基を補充した S D寒天 培地 (6.7g/L Yeast nitrogen base w/o amino acids (Difco Laboratories 製) 、 2%グルコース、 0.02g/L硫酸アデニン、 0.02g/L L-ヒスチジン 'HC1、 0.03g/L L-ロイシン、 0.02g/L L-リジン、 0.02g/L ゥラシノレ) を用いて、 培 養した。 生育した酵母を選択し、 それぞれ YF 207Zp GA1 1および Y F 207/p I GA 1 1と命名した。 SD agar supplemented with appropriate amino acids and bases without L-tryptophan Medium (6.7 g / L yeast nitrogen base w / o amino acids (Difco Laboratories), 2% glucose, 0.02 g / L adenine sulfate, 0.02 g / L L-histidine 'HC1, 0.03 g / L L-leucine, 0.02 g / L L-lysine and 0.02 g / L rasinole). The grown yeasts were selected and named YF207ZpGA11 and YF207 / pIGA11, respectively.
(実施例 2 :ダルコアミラーゼを細胞表層に提示する酵母の機能の確認) 実施例 1で得られた菌株 Y F 207/p GA 1 1および YF 207/p I GA1 1力 S、 ダルコアミラーゼを細胞表層に提示しているかどうかを、 以下 のようにグノレコアミラーゼ活性を測定することによつて確認した。 (Example 2: Confirmation of the function of yeast presenting dalcoamylase on the cell surface) The strains YF207 / pGA11 and YF207 / pIGA11 obtained in Example 1 were subjected to cell surface dalcoamylase. Was confirmed by measuring the gnorecoamylase activity as follows.
煮沸した酢酸ナトリゥム緩衝液(p H4.6)に、 0.5%の濃度になるように可 溶性デンプンを加えて、 基質溶液とした。 0.9mlの基質溶液を 30°Cで 5分間保 持した後、 0. lmlの菌体懸濁液を添加し、 そして混合物を 30°Cにて 15分間ィ ンキュペートした。 反応を、 10分間の煮沸によって停止し、 そして生じたグ ルコースの濃度を、 市販のキットであるグルコース CIIテストヮコー (和 光純薬 (株)製) を用い、 分光光度計 (U- 2001、 日立製) を使用して 505mnで の吸光度を測定することによって求めた。 ダルコアミラーゼ 1ュニットを、 デンプンから 1分あたり 1 μιοΐグルコースを遊離させるために必要な酵素 の量と定義した。 その結果、 YF 207/pGAl 1および YF 207/p I G A 1 1は、 それぞれ約 1〜4ユニット Zg乾燥菌体およぴ約 0.5〜 2ュ ニット /g乾燥菌体のダルコアミラーゼを発現していることがわかった。 なお、 乾燥菌体重量は、 以下のように測定した。 試料 lmlをエツペンドル フチューブに取り、 6000rpmで 5分間の遠心分離によってペレツトにした。 上清を除去した後、 ペレツトを lmlの蒸留水に再懸濁して再度遠心分離によ つてペレットにして乾燥させた。 ペレットの入ったチューブの重量を測定し、 空のエツペンドルフチューブの重量との差から、 乾燥菌体重量を求めた。 また、 実施例 1で得た新たな菌株 YF 207 pGAl 1および YF 20 7/p I GA1 1の凝集能を、 Smitらの方法 (Smitら、 Appl. Environ. Mic robiol. , 58: 3709-3714 (1992) ) に従って測定した。 その結果、 これらの菌株 は、 プラスミドを導入する前の YF 207と同様の強い凝集能を示した。 こ れは、 ダルコアミラーゼの細胞表層発現が、 酵母の凝集能に影響を及ぼさな いことを示す。 Soluble starch was added to a boiled sodium acetate buffer (pH 4.6) to a concentration of 0.5% to prepare a substrate solution. After holding 0.9 ml of the substrate solution at 30 ° C. for 5 minutes, 0.1 ml of the cell suspension was added, and the mixture was incubated at 30 ° C. for 15 minutes. The reaction was stopped by boiling for 10 minutes, and the concentration of the resulting glucose was measured using a commercially available kit, Glucose CII Test Co. (Wako Pure Chemical Industries, Ltd.), using a spectrophotometer (U-2001, manufactured by Hitachi, Ltd.). ) Was used to determine the absorbance at 505 mn. One unit of darcoamylase was defined as the amount of enzyme required to release 1 μιοΐ glucose per minute from starch. As a result, YF207 / pGAl1 and YF207 / pIGA11 express dalcoamylase of about 1 to 4 units Zg dry cells and about 0.5 to 2 units / g dry cells, respectively. I understand. The dry cell weight was measured as follows. A sample of 1 ml was taken into an eppendorf tube and pelleted by centrifugation at 6000 rpm for 5 minutes. After removing the supernatant, the pellet was resuspended in 1 ml of distilled water and again pelletized by centrifugation and dried. The weight of the tube containing the pellet was measured, and the dry cell weight was determined from the difference from the weight of the empty Etpendorf tube. In addition, the aggregation ability of the new strains YF207pGAl1 and YF207 / pIGA11 obtained in Example 1 was determined by the method of Smit et al. (Smit et al., Appl. Environ. Microbiol., 58: 3709-3714). (1992)). As a result, these strains exhibited the same strong agglutinating ability as YF207 before introducing the plasmid. This indicates that the expression of dalcoamylase on the cell surface does not affect the aggregation ability of yeast.
(実施例 3 :グ /レコアミラーゼを細胞表層に提示する酵母の培養) (Example 3: Cultivation of yeast displaying guar / recoamylase on cell surface)
実施例 1で得られた酵母各 5mlを、 1 °/0カザミノ酸 (Difco Laboratories 製) を含む SD培地 100mlにそれぞれ接種し、 30°Cにて 48時間振とうするこ とによって、 種培養を行った。 Seed culture was performed by inoculating 5 ml of each yeast obtained in Example 1 into 100 ml of SD medium containing 1 ° / 0 casamino acid (manufactured by Difco Laboratories) and shaking at 30 ° C for 48 hours. went.
次いで、 各 50mlの種培養物を、 1Lの 4%YPS培地 (10g/L酵母エキストラ クト (D co Laboratories製) 、 20g/Lポリペプトン (和光純薬 (株)製) 、 40g/Lデンプン (溶性) (和光純薬 (株)製) 、 5g/L グルコース) を予め入 れた 2Lのジャーフアーメンター (BMJ- 02PI、 Biott Corp. , 東京) にそれぞ れ入れ、 30°Cにて好気的条件下で培養した。 培地の pHを、 硫酸およぴ水酸 化ナトリウムの添カ卩によって 5.0に維持し、 そして溶存酸素濃度 (DO) を、 撹拌速度を調節することによって 2. Oppmに維持した。 乾燥菌体重量が約 15g/ Lに達した後、 培地を抜き取って、 5000rpmでの 10分間の遠心分離によって菌 体を回収した。 このように培養した菌株を、 以下の種々の発酵工程に用いた。  Next, 50 ml of each seed culture was mixed with 1 L of 4% YPS medium (10 g / L yeast extract (manufactured by Dco Laboratories), 20 g / L polypeptone (manufactured by Wako Pure Chemical Industries, Ltd.), 40 g / L starch (soluble ) (Made by Wako Pure Chemical Industries, Ltd.) and 5 g / L glucose) into a 2 L jar arm mentor (BMJ-02PI, Biott Corp., Tokyo), respectively, and aerobically at 30 ° C. Culture under specific conditions. The pH of the medium was maintained at 5.0 with sulfuric acid and sodium hydroxide, and the dissolved oxygen concentration (DO) was maintained at 2.0 ppm by adjusting the stirring speed. After the weight of the dried cells reached about 15 g / L, the medium was removed, and the cells were collected by centrifugation at 5000 rpm for 10 minutes. The strains thus cultured were used in the following various fermentation steps.
(実施例 4 : YF 207/pGAl 1を用いる回分発酵工程によるエタノー ルの製造) (Example 4: Production of ethanol by batch fermentation process using YF207 / pGAl1)
実施例 3に記載の培養を約 35時間行った後、 回収した YF 207/pGA 1 1の菌体ペレットを、 ジャーフアーメンター中の 1Lの 6%YPS培地 (すな わち、 60g/Lのデンプンを含む) に接種し、 pH5.0、 30°Cにて嫌気的条件下 で緩やかに撹拌 (150rpm) しながら約 35時間発酵を行った。 培養およぴ努酵 工程を通して、 デンプン濃度、 グルコース濃度、 エタノール濃度、 乾燥菌体 重量、 ダルコアミラーゼ活性、 およびプラスミ ド安定性をモニターした。 グルコース濃度は、 グルコース CI Iテス トヮコー (和光純薬 (株)製) を用 レ、、 分光光度計 (U-2001、 日立製) を使用して測定した。 After performing the culture described in Example 3 for about 35 hours, the recovered cell pellet of YF207 / pGA11 was added to 1 L of 6% YPS medium (i.e., 60 g / L (Including starch) at pH 5.0, 30 ° C under anaerobic conditions The fermentation was performed for about 35 hours with gentle stirring (150 rpm). Starch, glucose, ethanol, dry cell weight, dalcoamylase activity, and plasmid stability were monitored throughout the culture and fermentation process. The glucose concentration was measured using a glucose CI I Test Co., Ltd. (manufactured by Wako Pure Chemical Industries, Ltd.) and a spectrophotometer (U-2001, manufactured by Hitachi).
デンプン濃度は、 以下のように測定した。 すなわち、 1. 0mlの試料から、 5 OOOrpmで 5分間遠心分離によつて菌体を分離し、 上清を蒸留水で希釈して、 デンプン濃度測定に使用した。 Aspergillus niger由来のダルコアミラーゼ 溶液 (6100ユニット/ ml、 Sigma Chemical Co. , St. Louis, MO) を蒸留水で 100倍希釈し、 0. 9mlの希釈した試料に 0. 1mlのダルコアミラーゼ溶液を加え て、 30°Cにて 30分間インキュベートした。 反応を 10分間の煮沸によって停止 した後、 溶液中のグルコース濃度を、 上記グルコース濃度の測定と同様に測 定し、 デンプン濃度に換算した。  The starch concentration was measured as follows. That is, cells were separated from a 1.0 ml sample by centrifugation at 5 OOOrpm for 5 minutes, and the supernatant was diluted with distilled water and used for starch concentration measurement. A dalcoamylase solution from Aspergillus niger (6100 units / ml, Sigma Chemical Co., St. Louis, MO) was diluted 100-fold with distilled water, and 0.1 ml of the dalcoamylase solution was added to 0.9 ml of the diluted sample. And incubated at 30 ° C. for 30 minutes. After the reaction was stopped by boiling for 10 minutes, the glucose concentration in the solution was measured in the same manner as in the above-mentioned measurement of glucose concentration, and converted to starch concentration.
また、 エタノール濃度は、 水素炎イオン化検出器を装着したガスクロマト グラフ (Model GC-8 ; 島津製作所製) を使用して測定した。 測定条件は以下 のとおりであった:カラム、 3. 0mm X 3. lmのガラスに充填された Unisole 300 0, (GL Science Inc. ) ;カラム温度、 210°C;インジェクター/検出器の温度、 270°C;キャリアガス、 窒素 (流速: 25ml/分) 。  The ethanol concentration was measured using a gas chromatograph (Model GC-8; manufactured by Shimadzu Corporation) equipped with a flame ionization detector. The measurement conditions were as follows: column, Unisole 300 0, (GL Science Inc.) packed in a 3.0 mm x 3. lm glass; column temperature, 210 ° C; injector / detector temperature, 270 ° C; carrier gas, nitrogen (flow rate: 25 ml / min).
また、 プラスミ ド安定性は、 以下のように測定した。 試料を、 トリプトフ アンを含まない S D培地で希釈し、 そして Y P Dプレートおよびトリプトフ アンを含まない S Dプレートに播いた (M. D. Roseら、 前出) 。 30°Cにて 48 時間のインキュベーション後、 両方のプレート上のコロニー数をカウントし た。 プラスミ ド安定性 (X) を、 Y P Dプレート上のコロニー数 (A) と ト リプトフアンを含まない S Dプレート上のコロニー数 (B ) との比較によつ て決定した。 すなわち、 X (%) B X 1 0 0 /Aとした。  In addition, the plasmid stability was measured as follows. Samples were diluted in tryptophan-free SD medium and plated on YPD plates and tryptophan-free SD plates (M.D. Rose et al., Supra). After 48 hours of incubation at 30 ° C, the number of colonies on both plates was counted. Plasmid stability (X) was determined by comparing the number of colonies on YPD plates (A) with the number of colonies on SD plates without tryptophan (B). That is, X (%) B X 100 / A was set.
結果を図 2に示す。 好気的条件下培養での酵母の増殖速度は速く、 デンプ ン濃度は迅速に低下した。 発酵工程では、 デンプン (〇) の分解おょぴエタ ノール (▲) の生産は、 時間のずれなく開始された (図 2 (a)) 。 エタノー ルの生産速度は速く (0.71g/時間/ L) 、 そしてその濃度は、 30時間の発酵 で 25g/Lまで達した。 プラスミド安定'!"生は、 培養時にはわずかに低下したが、 発酵工程においては維持されていた (データは示さず) 。 さらに、 細胞上の ダルコアミラーゼ活性 (▽) は、 むしろ上昇しており、 発酵工程中は維持さ れていた。 The result is shown in figure 2. The growth rate of yeast in aerobic culture is high, The concentration rapidly decreased. In the fermentation process, the production of starch (〇) and the production of ethanol (▲) were started without delay (Fig. 2 (a)). Ethanol production was fast (0.71 g / hr / L), and its concentration reached 25 g / L after 30 hours of fermentation. Plasmid stability! "Raw decreased slightly during culture but was maintained during the fermentation process (data not shown). In addition, dalcoamylase activity (▽) on the cells was rather elevated during the fermentation process. Was maintained.
(実施例 5 : YF 207/p GA11を用いる繰り返し回分発酵工程による エタノールの製造) (Example 5: Production of ethanol by repeated batch fermentation process using YF207 / pGA11)
実施例 4に記載の回分発酵工程と同様に 1回目の発酵工程を約 35時間行つ た後、 酵母を 5000rpmで 10分間の遠心分離によって分離した。 YF 207/ pGAl 1は凝集性酵母なので、 沈降によって培地と分離可能であるが、 菌 体を完全に回収するために遠心分離を行った。 回収した菌体を、 1 Lの新鮮 な 6%YPS培地に接種し、 再度発酵工程を行った。 この繰り返し操作を、 約 3 00時間にわたつて 7回続けた。  After performing the first fermentation step for about 35 hours in the same manner as the batch fermentation step described in Example 4, the yeast was separated by centrifugation at 5000 rpm for 10 minutes. Since YF207 / pGAl1 is an agglutinating yeast, it can be separated from the medium by sedimentation. However, centrifugation was performed to completely recover the cells. The collected cells were inoculated into 1 L of fresh 6% YPS medium, and the fermentation process was performed again. This operation was repeated seven times over about 300 hours.
結果を、 図 3に示す。 発酵工程中のエタノール濃度 (▲) から算出した 1 〜 7回分におけるエタノール生産速度は、 それぞれ 0.71、 0.67、 0.56、 0.59、 0.67、 0.62、 および 0· 60g/時間/ Lであった。 1〜 7回分におけるエタノー ルのデンプンからの収率は、 それぞれ 58、 46、 49、 50、 59、 51、 およぴ 57% であった。 このように、 エタノール生産速度およびエタノールの収率は、 7 回の繰り返し発酵工程の約 300時間にわたって維持されていた。 さらに、 細 胞表層に提示されたダルコアミラーゼの活性 (V) およびプラスミド安定性 (♦) は、 長時間の発酵工程中、 同じレベルで維持された。 したがって、 Y F 207ZpGAl lは、 マルチコピー型のプラスミドが導入されたもので あるにもかかわらず、 この菌株によるエタノール生産の安定性が非常に高レヽ ものであることが分かった。 The results are shown in Figure 3. The ethanol production rates for 1 to 7 batches calculated from the ethanol concentration (▲) during the fermentation process were 0.71, 0.67, 0.56, 0.59, 0.67, 0.62, and 0.60 g / hr / L, respectively. The yields of ethanol from starch in one to seven batches were 58, 46, 49, 50, 59, 51, and 57%, respectively. Thus, the ethanol production rate and ethanol yield were maintained for about 300 hours of seven repeated fermentation steps. In addition, the activity (V) and plasmid stability (♦) of dalcoamylase displayed on the cell surface were maintained at the same level during prolonged fermentation. Therefore, YF207ZpGAll has a very high level of stability in ethanol production by this strain, despite the introduction of a multicopy type plasmid. Turned out to be something.
(実施例 6 : YF 207/p GA1 1を用いる流加回分発酵工程によるエタ ノールの製造) . (Example 6: Production of ethanol by fed-batch fermentation process using YF207 / pGA11).
実施例 3に記載と同様に培養を約 35時間行って、 乾燥菌体重量が約 15g/L に達した後、 500mlの濃縮培地 1 (lg/L酵母エキストラタト、 1 g/L ポリ ペプトン、 105g/Lデンプン、 7.5g/L グルコース) をフアーメンターに供給 し、 嫌気的条件下、 pH5.0で 30°Cにて発酵を行った。 酵母によるデンプン消 費量が低下した後、 500mlの濃縮培地 2 (2 g/L酵母エキストラタト、 lg/L ポリペプトン、 140g/Lデンプン、 10g/L グルコース) を補充し、 30。Cにて 発酵を続けた。 酵母によるデンプン消費量が再度低下した後、 500mLの発酵 培地をファーメンターから取り出し、 そして 500mlの濃縮培地 2をファーメ ンターに供給し、 発酵を続けた。 同じ供給手順を再度繰り返した。  After culturing for about 35 hours in the same manner as described in Example 3 and the dry cell weight reached about 15 g / L, 500 ml of concentrated medium 1 (lg / L yeast extratato, 1 g / L polypeptone, 105 g / L starch and 7.5 g / L glucose) were supplied to a fermenter, and fermentation was performed at 30 ° C at pH 5.0 under anaerobic conditions. After the consumption of starch by the yeast decreased, supplemented with 500 ml of concentrated medium 2 (2 g / L yeast extratato, lg / L polypeptone, 140 g / L starch, 10 g / L glucose). Fermentation continued at C. After the starch consumption by the yeast decreased again, 500 mL of the fermentation medium was removed from the fermenter, and 500 mL of the concentrated medium 2 was supplied to the fermenter to continue the fermentation. The same feeding procedure was repeated again.
結果を、 図 4に示す。 発酵培地中のエタノール濃度 (▲) は、 約 140時間 の発酵によって 76. Og/Lに達した。 発酵培地中のグルコース濃度 (會) は、 発酵中低レベルを維持した。 しかし、 流加回分発酵工程においては、 デンプ ン (〇) は蓄積していった。 これは、 途中で供給される濃縮培地中に不溶性 デンプンが存在するため、 細胞表層に提示されたダルコアミラーゼが不溶性  The results are shown in FIG. The ethanol concentration (▲) in the fermentation medium reached 76. Og / L after about 140 hours of fermentation. The glucose concentration in the fermentation medium remained low during the fermentation. However, starch () accumulated during the fed-batch fermentation process. This is because darcoamylase presented on the cell surface is insoluble due to the presence of insoluble starch in the enriched medium supplied on the way.
'十分に分解できなかったためと考えられた。  'It was thought that it could not be sufficiently disassembled.
(実施例 7 : YF 207/p GA1 1を用いる連続発酵工程によるエタノー ルの製造) (Example 7: Production of ethanol by continuous fermentation process using YF207 / pGA11)
実施例 4と同様の培地おょぴ培養条件下で YF 207/p GA1 1を用い て回分発酵を行い、 発酵開始から約 30時間後、 連続発酵に切り替えて連続 運転を開始した。 デンプン濃度 200 g / 1の培地を、 供給速度が 0. 2 V rとなるように、 違続的に供給した。 切替え後約 90時間目から 定常状態が確認され、 約 4 0 0時間連続運転を行った。 連続的に抜き出した 培地の分析結果を表 1に示す。 Batch fermentation was performed using YF207 / pGA11 under the same medium and culture conditions as in Example 4, and after about 30 hours from the start of fermentation, continuous fermentation was started by switching to continuous fermentation. A medium with a starch concentration of 200 g / 1 was intermittently supplied at a supply rate of 0.2 Vr. About 90 hours after switching A steady state was confirmed, and continuous operation was performed for about 400 hours. Table 1 shows the analysis results of the continuously extracted medium.
Figure imgf000020_0001
表 1からわかるように、 プラスミドの安定性は長時間維持され、 アルコ' ルも安定して生産されることが明らかになった。
Figure imgf000020_0001
As can be seen from Table 1, it was revealed that the stability of the plasmid was maintained for a long time, and that alcohol was produced stably.
産業上の利用可能性 Industrial applicability
本発明によれば、 ダルコアミラーゼを細胞表層に提示する酵母を用いるこ とによって、 デンプンを糖化する工程を経ることなく、 デンプンから直接的 にエタノールを効率よく製造することができる。 特に、 本発明の方法では、 非常に安定なダルコアミラーゼを細胞表層に提示する酵母を用いて、 繰り返 し回分発酵工程または連続発酵工程を行うことによって、 より高い効率でェ タノールを製造することができる。 中でも、 Y F 2 0 7株に由来する組換え 酵母は、 エタノール発酵能が非常に高く、 本発明の方法における安定性も高 く、 非常に有用である。 したがって、 本発明の方法は、 エタノール製造にお ける工業的利用に有効である。  According to the present invention, ethanol can be efficiently produced directly from starch without using a process of saccharifying starch by using yeast that displays dalcoamylase on the cell surface. In particular, in the method of the present invention, it is possible to produce ethanol with higher efficiency by performing a repeated batch fermentation step or a continuous fermentation step using yeast that displays extremely stable dalcoamylase on the cell surface. Can be. Among them, a recombinant yeast derived from the YF207 strain has a very high ethanol fermentation ability, a high stability in the method of the present invention, and is very useful. Therefore, the method of the present invention is effective for industrial use in ethanol production.

Claims

請求の範囲 The scope of the claims
1. ダルコアミラーゼを細胞表層に提示するように組換えられた D N Aを有 する凝集性酵母を用いて、 デンプン存在下で発酵させる工程を含む、 ェタノ ールの製造方法。 1. A method for producing ethanol, comprising a step of fermenting in the presence of starch using a flocculent yeast having DNA that has been recombined so that dalcoamylase is displayed on the cell surface.
2. 前記発酵させる工程が、 繰り返し回分発酵させる工程または連続発酵さ せる工程である、 請求項 1に記載の方法。 2. The method according to claim 1, wherein the step of fermenting is a step of repeated batch fermentation or a step of continuous fermentation.
3. 前記発酵工程が、 40〜300 gZlのデンプンを含む培地中で、 p H 4〜6にて、 20〜45 °Cで嫌気的条件下行われる、 請求項 2に記載の方法。 3. The method according to claim 2, wherein the fermentation step is performed in a medium containing 40-300 gZl of starch at pH 4-6 at 20-45 ° C under anaerobic conditions.
4. 前記連続発酵工程において、 培地の供給速度が培地の量の 0. 07〜0. 2 v/v %/時間である、 請求項 2に記載の方法。 4. The method according to claim 2, wherein in the continuous fermentation step, the supply rate of the medium is 0.07 to 0.2 v / v% / hour of the amount of the medium.
5. 前記 DNAがプラスミドの形態であり、 該プラスミドが、 マルチコピー 型ベクターまたは染色体糸且込み型べクターである、 請求項 1に記載の方法。 5. The method of claim 1, wherein the DNA is in the form of a plasmid, and the plasmid is a multicopy vector or a chromosomal integration vector.
6. 前記凝集性酵母が YF 207株に由来する、 請求項 1に記載の方法。 6. The method according to claim 1, wherein the flocculating yeast is derived from strain YF207.
7. 前記 DN Aを有する凝集性酵母が YF 207/p GA 1 1または YF 2 07/p I GAl lである、 請求項 8に記載の方法。 7. The method according to claim 8, wherein the flocculent yeast having the DNA is YF207 / pGA11 or YF207 / pIGALL.
8. ダルコアミラーゼを細胞表層に提示するように組換えられた DN Aを有 する非凝集性酵母を用いて、 デンプン存在下で繰り返し回分発酵または連続 発酵させる工程を含む、 エタノールの製造方法。 8. A method for producing ethanol, comprising a step of repeatedly performing batch fermentation or continuous fermentation in the presence of starch using a non-aggregating yeast having a DNA that has been recombined so that dalcoamylase is displayed on the cell surface.
9. 前記発酵工程が、 40〜300 gZlのデンプンを含む培地中で、 p H 4〜6にて、 20〜45 °Cで嫌気的条件下行われる、 請求項 8に記載の方法。 9. The method according to claim 8, wherein the fermentation step is performed in a medium containing 40-300 gZl of starch at pH 4-6 at 20-45 ° C under anaerobic conditions.
10. 前記連続発酵工程において、 培地の供給速度が培地の量の 0. 07〜 0. 2 vZv %Z時間である、 請求項 8に記載の方法。 10. The method according to claim 8, wherein in the continuous fermentation step, the supply rate of the medium is from 0.07 to 0.2 vZv% Z hours of the amount of the medium.
11. 前記 DNAがプラスミ ドの形態であり、 該プラスミ ドが、 マルチコピ 一型べクタ一または染色体組込み型べクターである、 請求項 8に記載の方法。 11. The method according to claim 8, wherein the DNA is in the form of a plasmid, and the plasmid is a multicopy type vector or a chromosomal integration vector.
12. ダルコアミラーゼを細胞表層に提示する凝集性酵母。 12. An aggregating yeast that displays dalcoamylase on the cell surface.
PCT/JP2001/001538 2000-11-27 2001-02-28 Process for producing ethanol from starch WO2002042483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002545187A JP4666884B2 (en) 2000-11-27 2001-02-28 Method for producing ethanol from starch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000360013 2000-11-27
JP2000-360013 2000-11-27

Publications (1)

Publication Number Publication Date
WO2002042483A1 true WO2002042483A1 (en) 2002-05-30

Family

ID=18831677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001538 WO2002042483A1 (en) 2000-11-27 2001-02-28 Process for producing ethanol from starch

Country Status (2)

Country Link
JP (1) JP4666884B2 (en)
WO (1) WO2002042483A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960511B2 (en) 2008-04-10 2011-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Acid-resistance endoglucanase and the use of thereof
JP2011182644A (en) * 2010-03-04 2011-09-22 Kaneka Corp Method for producing glutathione

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164188A (en) * 1988-09-30 1991-07-16 Sanou Techno Insuteichiyuuto Kk Production of ethanol with free cell and immobilized cell using agglutinative yeast
JPH05236942A (en) * 1992-02-27 1993-09-17 Tsusho Sangyosho Kiso Sangyo Kyokucho New agglutinative alcohol fermentation yeast

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290078A (en) * 1998-04-09 1999-10-26 Kansai Kagaku Kikai Seisaku Kk Yeast having lipase on cell surface and its utilization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164188A (en) * 1988-09-30 1991-07-16 Sanou Techno Insuteichiyuuto Kk Production of ethanol with free cell and immobilized cell using agglutinative yeast
JPH05236942A (en) * 1992-02-27 1993-09-17 Tsusho Sangyosho Kiso Sangyo Kyokucho New agglutinative alcohol fermentation yeast

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Murai T. et al., "Construction of a Starch-Utilizing Yeast by Cell Surface Engineering", Applied and Environmental Microbiology (1997), Vol. 63, No. 4, pages 1362-1366 *
Ueda M. et al., "Cell Surface Engineering of Yeast: Construction of Arming Yeast with Biocatalyst", Journal of Bioscience and Bioengineering, (August, 2000), Vol. 90, No. 2, pages 125-136 *
Ueda M. et al., "Molecular Breeding of Polysaccharide-Utilizing Yeast Cells by Cell Surface Engineering", Annals New York Academy of Sciences (1998), Vol. 864, pages 528-537 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960511B2 (en) 2008-04-10 2011-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Acid-resistance endoglucanase and the use of thereof
JP2011182644A (en) * 2010-03-04 2011-09-22 Kaneka Corp Method for producing glutathione

Also Published As

Publication number Publication date
JP4666884B2 (en) 2011-04-06
JPWO2002042483A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
Domingues et al. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells
Kondo et al. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase
CN107586789B (en) High-yield acidic protease aspergillus niger recombinant expression strain and construction method and application thereof
CN106755015B (en) Novel pullulanase gene, method for obtaining high-yield strain and enzyme production process
CN109207373B (en) Microbial strain for high yield of citric acid and method for producing citric acid by fermenting starch sugar through microbial strain
CN116286900A (en) Acetate osmotic enzyme A gene RkAcpa and application thereof
Hayashida et al. High concentration-ethanol fermentation of raw ground corn
Kim et al. High-efficiency, one-step starch utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse alpha-amylase
WO2019008131A1 (en) Recombinant pseudomonas putida for the production of d-xylonate from d-xylose
Murai et al. Evaluation of the function of arming yeast displaying glucoamylase on its cell surface by direct fermentation of corn to ethanol
Spohr et al. Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations
WO2003016525A9 (en) Process for producing alcohol from starch
WO1997000944A1 (en) Transformant producing substance pf1022 and method for transforming microorganism belonging to the class hyphomycetes
Coppella et al. α‐Factor directed expression of the human epidermal growth factor in Saccharomyces cerevisiae
CN114761553A (en) Nucleic acids, vectors, host cells and methods for producing beta-fructofuranosidase from aspergillus niger
WO2002042483A1 (en) Process for producing ethanol from starch
CN116200279A (en) Trichoderma reesei recombinant strain, preparation method and application thereof
CN107236680B (en) Pichia pastoris recombinant bacterium for expressing Streptomyces sp.FA1-derived xylanase
JP4189317B2 (en) Process for producing alcohol from starch
Abd-Aziz et al. Effect of C/N ratio and starch concentration on ethanol production from sago starch using recombinant yeast
JP2007020539A (en) Arabinofuranosidase b-presenting yeast and utilization thereof
JP2022553854A (en) Filamentous fungal strains with enhanced protein productivity phenotypes and methods thereof
GB2586115A (en) Method for producing lysine by utilizing adsorption and immobilized fermentation of recombinant corynebacterium glutamincum
CN114746548A (en) Nucleic acids, vectors, host cells and methods for producing fructosyltransferase from aspergillus japonicus
Alekseiva et al. Enhancement of acid proteinase production by the fungus Humicola lutea 120-5 immobilized in crosslinked poly (vinyl alcohol) mixed with poly (ethylene glycol)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 545187

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)