WO2002042479A2 - Polynucleotides encoding defense response proteins - Google Patents

Polynucleotides encoding defense response proteins Download PDF

Info

Publication number
WO2002042479A2
WO2002042479A2 PCT/US2001/051383 US0151383W WO0242479A2 WO 2002042479 A2 WO2002042479 A2 WO 2002042479A2 US 0151383 W US0151383 W US 0151383W WO 0242479 A2 WO0242479 A2 WO 0242479A2
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
seq
polypeptide
nucleotide sequence
Prior art date
Application number
PCT/US2001/051383
Other languages
French (fr)
Other versions
WO2002042479A3 (en
Inventor
Guo-Hua Miao
Graziana Taramino
Rebecca E. Cahoon
Guo-Liang Wang
Original Assignee
E.I.Du Pont De Nemours And Company
Pioneer Hi-Bred International, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I.Du Pont De Nemours And Company, Pioneer Hi-Bred International, Inc. filed Critical E.I.Du Pont De Nemours And Company
Priority to US10/381,448 priority Critical patent/US20050074862A1/en
Priority to AU2002239796A priority patent/AU2002239796A1/en
Publication of WO2002042479A2 publication Critical patent/WO2002042479A2/en
Publication of WO2002042479A3 publication Critical patent/WO2002042479A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance

Definitions

  • This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding defense response proteins in plants and seeds. BACKGROUND OF THE INVENTION
  • R proteins also have leucine-rich repeat domains. These belong to the so-called NBS-LRR (for nucleotide-binding site, leucine-rich repeat) type of R proteins, having in common N-terminal nucleotide binding sites (NBS) and C-terminal leucine-rich repeats (LRR) that may be involved in protein-protein interactions.
  • NBS-LRR for nucleotide-binding site, leucine-rich repeat
  • LRR C-terminal leucine-rich repeats
  • Examples include the Arabidopsis RPS2 gene which confers resistance to Pseudomonas syringae carrying the avirulence gene avrRpt2 (Mindrinos, M. et al., (1994) Cell 78:1089-1099; Bent, A.F.
  • R genes includes the Pto gene of tomato which encodes a serine/threonine kinase that confers resistance to Pseudomonas syringae pv. tomato (causal agent of bacterial speck disease) that carries the avirulence gene avrPto (Martin et al. (1993) Science 262:1432-1436).
  • Still another class of R genes includes the tomato Cf genes which confer resistance to a variety of Cladosporium fulvum strains, causal agent of leaf mold. Members of this class encode putative transmembrane receptors with LRRs making up most of the extracellular domain.
  • Xa21 encodes a putative receptor kinase, having both extracytoplasmic LRR domains similar to those of the Cf-encoded protein, and an intracellular kinase domain like that of Pto (Song et al. (1995) Science 270:1804-1806).
  • the defense response may sometimes include the onset of a hypersensitive response, rapid cell death localized at the site of infection, a process that is thought to arise from the activation of a cell death program or apoptosis (Greenberg et al. (1994) Cell 77:551-563).
  • CDC48 is an essential gene in Saccharomyces cerevisiae involved in regulating cell cycle, with a possible role in spindle pole body separation.
  • the protein Cdc48p plays an important role in the homotypic fusion of the endoplasmic reticulum.
  • AAA ATPase associated with different cellular activities
  • Yeast cdc48 mutants exhibited diagnostic markers of early and late apoptosis, including exposure of phosphatidylserine (which under normal conditions is mostly oriented towards the cytoplasm) at the outer layer of the cytoplasmic membrane, DNA fragmentation, and chromatin condensation and fragmentation (Madeo et al. (1997) J Cell Biol 139:729-734).
  • Cdc48p function is regulated by tyrosine phosphorylation and dephosphorylation since function of Valasin-Containing Protein, a mammalian homologue of Cdc48p, may be regulated through dephosphorylation by protein-tyrosine phosphatase PTPH1 (Zhang et al. (1999) J Biol Chem 274:17806-17812).
  • ADP-ribosylation factor was originally identified as the protein cofactor of a toxin secreted by Vibrio cholerae in its catalysis of ADP-ribosylation of the ⁇ subunit of the trimeric G protein G s (leading to activation of adenylate cyclase) (Schleifer et al. (1982) J Biol Chem 257:20-23; Kahn and Gilman (1984) J Biol Chem 259:6228-6234).
  • ARF is a subunit of the coat of Glogi-derived COP-coated vesicles, and may modulate vesicle budding and uncoating through controlled GTP hydrolysis (Serafini et al. (1991) Cell 67:239-253). ARF also affects cell proliferation in the sense that it has been shown to stimulate phospholipase D activity (Brown et al. (1993) Cell 75:1137-1144). Phospholipase D cleaves phosphatidylcholine into choline and phosphatidic acid. Phosphatidic acid has been found to induce DNA synthesis and cell proliferation and is produced m response to a number of agonists, including growth factors (Kahn et al. (1993) Cell 75:1045-1048).
  • the present invention concerns an isolated polynucleotide comprising: (a) a first nucleotide sequence encoding a first polypeptide comprising at least 50 or 100 amino acids, wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (b) a second nucleotide sequence encoding a second polypeptide comprising at least 50 or 100 amino acids, wherein the amino acid sequence of the second polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (c) a third nucleotide sequence encoding a third polypeptide comprising at least 100 amino acids, wherein the amino acid sequence of the third polypeptide and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85%, 90%, or 95% identity based
  • the first polypeptide preferably comprises the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14
  • the second polypeptide preferably comprises the amino acid sequence of SEQ ID NO:6
  • the third polypeptide preferably comprises the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8
  • the fourth polypeptide preferably comprises the amino acid sequence of SEQ ID NO: 12
  • the fifth polypeptide preferably comprises the amino acid sequence of SEQ ID NO:4.
  • the first nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:9 or SEQ ID NO:13
  • the second nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:5
  • the third nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:7
  • the fourth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:11
  • the fifth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:3.
  • the first polypeptide preferably is a receptor protein kinase or a tyrosine phosphatase
  • the second polypeptide preferably is an LRR protein
  • the third polypeptide preferably is an ADP-ribosylation factor or a receptor protein kinase
  • the fourth polypeptide preferably is a receptor protein kinase
  • the fifth polypeptide preferably is a Cdc48p homologue.
  • this invention relates to a vector comprising the polynucleotide of the present invention or a recombinant DNA construct comprising the polynucleotide of the present invention operably linked to at least one regulatory sequence.
  • the present invention relates to an isolated polynucleotide fragment comprising a nucleotide sequence comprised by any of the polynucleotides of the present invention, wherein the nucleotide sequence contains at least 30, 40, or 60 nucleotides.
  • the invention concerns a method for isolating a polypeptide encoded by the polynucleotide of the present invention comprising isolating the polypeptide from a cell containing a recombinant DNA construct comprising the polynucleotide operably linked to a regulatory sequence.
  • the present invention relates to an isolated polypeptide comprising: (a) a first amino acid sequence comprising at least 50 or 100 amino acids, wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (b) a second amino acid sequence comprising at least 50 or 100 amino acids, wherein the second amino acid sequence and the amino acid sequence of SEQ ID NO:6 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (c) a third amino acid sequence comprising at least 100 amino acids, wherein the third amino acid sequence and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (d) a fourth amino acid sequence comprising at least 140 amino acids, wherein the fourth amino acid sequence and the amino acid sequence of SEQ ID NO: 12 have at least 90%
  • the first amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO: 10 or SEQ ID NO:14
  • the second amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO:6
  • the third amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8
  • the fourth amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO: 12
  • the fifth amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO:4.
  • the polypeptide preferably is a receptor protein kinase, a tyrosine phosphatase, an LRR protein, an ADP-ribosylation factor, or a Cdc48p homologue.
  • the present invention relates to a virus, preferably a baculovirus, comprising any of the isolated polynucleotides of the present invention or any of the chimeric genes of the present invention.
  • the present invention relates to a method of selecting an isolated polynucleotide that affects the level of expression of a receptor protein kinase, a tyrosine phosphatase, an LRR protein, an ADP-ribosylation factor, or a Cdc48p homologue polypeptide or enzyme activity in a host cell, preferably a plant cell, the method comprising the steps of: (a) constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; (b) introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; (c) measuring the level of the receptor protein kinase, tyrosine phosphatase, LRR protein, ADP-ribosylation factor, or Cdc48p homologue polypeptide or enzyme activity in the host cell containing the isolated polynucleotide; and (d) comparing the level of the receptor protein kinase
  • the invention relates to a method of obtaining a nucleic acid fragment encoding a substantial portion of an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide, preferably a plant ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide, comprising the steps of: synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least one of 30 (preferably at least one of 40, most preferably at least one of 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11 , and 13, and the complement of such nucleotide sequences; and amplifying a nucleic acid fragment (preferably a c
  • the amplified nucleic acid fragment preferably will encode a substantial portion of an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase amino acid sequence.
  • this invention relates to a method of obtaining a nucleic acid fragment encoding all or a substantial portion of the amino acid sequence encoding an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide comprising the steps of: probing a cDNA or genomic library with an isolated polynucleotide of the present invention; identifying a DNA clone that hybridizes with an isolated polynucleotide of the present invention; isolating the identified DNA clone; and sequencing the cDNA or genomic fragment that comprises the isolated DNA clone.
  • this invention concerns a method for positive selection of a transformed cell comprising: (a) transforming a host cell with the chimeric gene of the present invention or an expression cassette of the present invention; and (b) growing the transformed host cell, preferably a plant cell, such as a monocot or a dicot, under conditions which allow expression of the ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polynucleotide in an amount sufficient to complement a null mutant to provide a positive selection means.
  • a plant cell such as a monocot or a dicot
  • this invention relates to a method of altering the level of expression of a defense response protein in a host cell comprising: (a) transforming a host cell with a chimeric gene of the present invention; and (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of altered levels of the defense response protein in the transformed host cell.
  • this invention relates to a method of introgressing a disease resistance locus or loci into rice germplasm comprising using one or more polynucleotides of the present invention for marker assisted selection among rice lines or varieties to be used in a rice breeding program.
  • the method of introgressing can involve restriction fragment length polymorphism ("RFLP") analysis, RAPD analysis, microsatellite analysis or single nucleotide polymorphism ("SNP”) analysis.
  • Figure 1 shows the chromosomal location of the rice clones disclosed herein in the rice linkage map.
  • Map positions of quantitative trait loci (QTL) for blast resistance were inferred from a study by Wang et al. (1994) Genetics 136: 1421 -1434.
  • QTLs for bacterial blight are from Li et al. (1999) Mol Gen Genet 26 :58-63, and QTLs for sheath blight from Li et al. (1995) TheorAppl Genet 97:382-388.
  • Clones rls6.pk0076.f3 (designated 3F1) and rls6.pk0077.b1 (3G1) map to chromosome 1, clones rl0n.pk0015.a6 (1G5) and rls24.pk0011.h11 (2A10) map to chromosome 3, clone rl0n.pk0024.f6 (1 H6) maps to chromosome 6, and clones rir ⁇ .pkOOOl .d 1 (2E5) and rlr24.pk0080.e3 (2F2) map to chromosome 12.
  • Figure 2 shows the results of the Northern blot analysis performed to determine expression patterns of the gene comprising the insert in clone rl0n.pk0024.f6.
  • Table 1 lists the polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides, and the corresponding identifier (SEQ ID NO:) as used in the attached Sequence Listing.
  • the sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. ⁇ 1.821-1.825.
  • the Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the lUPAC-IUBMB standards described in Nucleic Acids Res. 73:3021-3030 (1985) and in the BiochemicalJ. 219 (No. 2J:345-373 (1984) which are herein incorporated by reference.
  • the symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. ⁇ 1.822. DETAILED DESCRIPTION OF THE INVENTION In the context of this disclosure, a number of terms shall be utilized.
  • polynucleotide polynucleotide sequence
  • nucleic acid sequence nucleic acid sequence
  • nucleic acid fragment'V'isolated nucleic acid fragment are used interchangeably herein. These terms encompass nucleotide sequences and the like.
  • a polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases.
  • a polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof.
  • An isolated polynucleotide of the present invention may include at least 30 contiguous nucleotides, preferably at least 40 contiguous nucleotides, most preferably at least 60 contiguous nucleotides derived from SEQ ID NOs:1 , 3, 5, 7, 9, 11 , and 13, or the complement of such sequences.
  • isolated refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment.
  • Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides.
  • the term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
  • nucleic acid sequence is made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated nucleic acids by genetic engineering techniques.
  • sequence refers to a nucleotide sequence that is assembled from two or more constituent nucleotide sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequences of two or more nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be assembled into a single contiguous nucleotide sequence.
  • substantially similar refers to nucleic acid fragments wherein changes in one or more nucleotide bases results in substitution of one or more amino acids, but do not affect the functional properties of the polypeptide encoded by the nucleotide sequence. “Substantially similar” also refers to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate alteration of gene expression by gene silencing through for example antisense or co-suppression technology.
  • Substantially similar also refers to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially affect the functional properties of the resulting transcript vis-a-vis the ability to mediate gene silencing or alteration of the functional properties of the resulting protein molecule. It is therefore understood that the invention encompasses more than the specific exemplary nucleotide or amino acid sequences and includes functional equivalents thereof.
  • the terms “substantially similar” and “corresponding substantially” are used interchangeably herein.
  • Substantially similar nucleic acid fragments may be selected by screening nucleic acid fragments representing subfragments or modifications of the nucleic acid fragments of the instant invention, wherein one or more nucleotides are substituted, deleted and/or inserted, for their ability to affect the level of the polypeptide encoded by the unmodified nucleic acid fragment in a plant or plant cell.
  • a substantially similar nucleic acid fragment representing at least 30 contiguous nucleotides, preferably at least 40 contiguous nucleotides, most preferably at least 60 contiguous nucleotides derived from the instant nucleic acid fragment can be constructed and introduced into a plant or plant cell.
  • the level of the polypeptide encoded by the unmodified nucleic acid fragment present in a plant or plant cell exposed to the substantially similar nucleic fragment can then be compared to the level of the polypeptide in a plant or plant cell that is not exposed to the substantially similar nucleic acid fragment.
  • antisense suppression and co- suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by using nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed.
  • alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded polypeptide are well known in the art.
  • a codon for the amino acid alanine, a hydrophobic amino acid may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine.
  • a codon encoding another less hydrophobic residue such as glycine
  • a more hydrophobic residue such as valine, leucine, or isoleucine.
  • changes which result in substitution of one negatively charged residue for another such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product.
  • Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide.
  • an isolated polynucleotide comprising a nucleotide sequence of at least 30 (preferably at least 40, most preferably at least 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1 , 3, 5, 7, 9, 11, and 13, and the complement of such nucleotide sequences may be used to affect the expression and/or function of an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide in a host cell.
  • a method of using an isolated polynucleotide to affect the level of expression of a polypeptide in a host cell may comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level of a polypeptide or enzyme activity in the host cell containing the isolated polynucleotide; and comparing the level of a polypeptide or enzyme activity in the host cell containing the isolated polynucleotide with the level of a polypeptide or enzyme activity in a host cell that does not contain the isolated polynucleotide.
  • substantially similar nucleic acid fragments may also be characterized by their ability to hybridize. Estimates of such homology are provided by either DNA-DNA or DNA-RNA hybridization under conditions of stringency as is well understood by those skilled in the art (Hames and Higgins, Eds. (1985) Nucleic Acid Hybridisation, IRL Press, Oxford, U.K.). Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions.
  • One set of preferred conditions uses a series of washes starting with 6X SSC, 0.5% SDS at room temperature for 15 min, then repeated with 2X SSC, 0.5% SDS at 45°C for 30 min, and then repeated twice with 0.2X SSC, 0.5% SDS at 50°C for 30 min.
  • a more preferred set of stringent conditions uses higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2X SSC, 0.5% SDS was increased to 60°C.
  • Another preferred set of highly stringent conditions uses two final washes in 0.1 X SSC, 0.1% SDS at 65°C.
  • nucleic acid fragments of the instant invention may also be characterized by the percent identity of the amino acid sequences that they encode to the amino acid sequences disclosed herein, as determined by algorithms commonly employed by those skilled in this art.
  • Suitable nucleic acid fragments encode polypeptides that are at least about 70% identical, preferably at least about 80% identical to the amino acid sequences reported herein.
  • Preferred nucleic acid fragments encode amino acid sequences that are at least about 85% identical to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are at least about 90% identical to the amino acid sequences reported herein.
  • nucleic acid fragments that encode amino acid sequences that are at least about 95% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments not only have the above identities but typically encode a polypeptide having at least 50 amino acids, preferably at least 100 amino acids, more preferably at least 140 or 150 amino acids, still more preferably at least 200 amino acids, and most preferably at least 250 amino acids. Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wl). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS.
  • a "substantial portion" of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises.
  • Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) J. Mol. Biol. 275:403-410; see also the explanation of the BLAST alogarithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health).
  • a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene.
  • gene-specific oligonucleotide probes comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques).
  • oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers.
  • a "substantial portion" of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence.
  • the instant specification teaches amino acid and nucleotide sequences encoding polypeptides that comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art.
  • the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above.
  • "Codon degeneracy” refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide.
  • the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein.
  • the skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid.
  • nucleic acid fragments can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form larger nucleic acid fragments which may then be enzymatically assembled to construct the entire desired nucleic acid fragment.
  • “Chemically synthesized”, as related to a nucleic acid fragment, means that the component nucleotides were assembled in vitro.
  • nucleic acid fragments can be tailored for optimal gene expression based on optimization of the nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available. "Gene” refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence.
  • “Native gene” refers to a gene as found in nature with its own regulatory sequences.
  • “Chimeric gene” refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature.
  • “Endogenous gene” refers to a native gene in its natural location in the genome of an organism.
  • a “foreign- gene” refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer.
  • Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes.
  • a “transgene” is a gene that has been introduced into the genome by a transformation procedure.
  • Coding sequence refers to a nucleotide sequence that codes for a specific amino acid sequence.
  • Regulatory sequences refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
  • Promoter refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA.
  • a coding sequence is located 3' to a promoter sequence.
  • the promoter sequence consists of proximal and more distal upstream elements, the latter elements, often referred to as enhancers.
  • an “enhancer” is a nucleotide sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or may be composed of different elements derived from different promoters found in nature, or may even comprise synthetic nucleotide segments.
  • promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a nucleic acid fragment to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) Biochemistry of Plants 75:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have identical promoter activity.
  • Translation leader sequence refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence.
  • the translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence.
  • the translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1995) Mol. Biotechnol. 3:225-236).
  • 3' non-coding sequences refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression.
  • the polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor.
  • the use of different 3' non-coding sequences is exemplified by Ingelbrecht et al. (1989) Plant Cell 7:671-680.
  • RNA transcript refers to the product resulting from RNA polymerase- catalyzed transcription of a DNA sequence.
  • the primary transcript When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from posttranscriptional processing of the primary transcript and is referred to as the mature RNA.
  • Messenger RNA (mRNA) refers to the RNA that is without introns and that can be translated into polypeptides by the cell.
  • cDNA refers to DNA that is complementary to and derived from an mRNA template. The cDNA can be single-stranded or converted to double stranded form using, for example, the Klenow fragment of DNA polymerase I.
  • Sense-RNA refers to an RNA transcript that includes the mRNA and so can be translated into a polypeptide by the cell.
  • Antisense RNA refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (see U.S. Patent No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific nucleotide sequence, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence.
  • “Functional RNA” refers to sense RNA, antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes.
  • operably linked refers to the association of two or more nucleic acid fragments on a single polynucleotide so that the function of one is affected by the other.
  • a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter).
  • Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.
  • expression refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide.
  • Antisense inhibition refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein.
  • Overexpression refers to the production of a gene product in transgenic organisms that exceeds levels of production in normal or non-transformed organisms.
  • Co-suppression refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Patent No. 5,231 ,020, incorporated herein by reference).
  • a “protein” or “polypeptide” is a chain of amino acids arranged in a specific order determined by the coding sequence in a polynucleotide encoding the polypeptide. Each protein or polypeptide has a unique function.
  • altered levels or “altered expression” refers to the production of gene product(s) in transgenic organisms in amounts or proportions that differ from that of normal or non-transformed organisms.
  • Null mutant refers to a host cell which either lacks the expression of a certain polypeptide or expresses a polypeptide which is inactive or does not have any detectable expected enzymatic function.
  • “Mature protein” or the term “mature” when used in describing a protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed.
  • "Precursor protein” or the term “precursor” when used in describing a protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.
  • chloroplast transit peptide is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the chloroplast or other plastid types present in the cell in which the protein is made.
  • Chloroplast transit sequence refers to a nucleotide sequence that encodes a chloroplast transit peptide.
  • a “signal peptide” is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the secretory system (Chrispeels (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53).
  • a vacuolar targeting signal can further be added, or if to the endoplasmic reticulum, an endoplasmic reticulum retention signal (supra) may be added.
  • an endoplasmic reticulum retention signal may be added.
  • any signal peptide present should be removed and instead a nuclear localization signal included (Raikhel (1992) Plant Phys. 700:1627-1632).
  • Transformation refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include ⁇ grobactet ⁇ /m-mediated transformation (De Biaere et al. (1987) Meth. Enzymol. 143:277) and particle-accelerated or “gene gun” transformation technology (Klein et al. (1987) Nature (London) 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference).
  • isolated polynucleotides of the present invention can be incorporated into recombinant constructs, typically DNA constructs, capable of introduction into and replication in a host cell.
  • a construct can be a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell.
  • vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., Cloning Vectors: A Laboratory Manual, 1985, supp. 1987; Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989; and Flevin et al., Plant Molecular Biology Manual, Kluwer Academic Publishers, 1990.
  • plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker.
  • plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.
  • Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook et al. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Maniatis").
  • PCR or “polymerase chain reaction” is well known by those skilled in the art as a technique used for the amplification of specific DNA segments (U.S. Patent Nos. 4,683,195 and 4,800,159).
  • the present invention concerns an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a first nucleotide sequence encoding a polypeptide of at least 50 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:10 and 14; (b) a second nucleotide sequence encoding a polypeptide of at least 50 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO:6; (c) a third nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 85% identity based on the Clustal method of
  • This invention also relates to the isolated complement of such polynucleotides, wherein the complement and the polynucleotide consist of the same number of nucleotides, and the nucleotide sequences of the complement and the polynucleotide have 100% complementarity.
  • the nucleotide sequence comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs:1 , 3, 5, 7, 9, 11 , and 13, that codes for the polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, and 14.
  • nucleic acid fragments encoding at a portion of several defense response proteins have been isolated and identified by comparison of random plant cDNA sequences to public databases containing nucleotide and protein sequences using the BLAST algorithms well known to those skilled in the art.
  • the nucleic acid fragments of the instant invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction).
  • genes encoding other ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, and tyrosine phosphatase could be isolated directly by using all or a portion of the instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired plant employing methodology well known to those skilled in the art.
  • Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis).
  • an entire sequence can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling, nick translation, end-labeling techniques, or RNA probes using available in vitro transcription systems.
  • specific primers can be designed and used to amplify a part or all of the instant sequences.
  • the resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic fragments under conditions of appropriate stringency.
  • two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA.
  • the polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes.
  • the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al. (1988) Proc. Natl.
  • a polynucleotide comprising a nucleotide sequence of at least 30 (preferably at least 40, most preferably at least 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1 , 3, 5, 7, 9, 11 , and 13 and the complement of such nucleotide sequences may be used in such methods to obtain a nucleic acid fragment encoding a substantial portion of an amino acid sequence of a polypeptide.
  • this invention concerns viruses and host cells comprising either the chimeric genes of the invention as described herein or an isolated polynucleotide of the invention as described herein. Examples of host ceils which can be used to practice the invention include, but are not limited to, yeast, bacteria, and plants.
  • nucleic acid fragments of the instant invention may be used to create transgenic plants in which the disclosed polypeptides are present at higher or lower levels than normal or in cell types or developmental stages in which they are not normally found. This would have the effect of altering the level of disease resistance (e.g., resistance to rice blast, sheath blight, or bacterial blight) in those cells.
  • level of disease resistance e.g., resistance to rice blast, sheath blight, or bacterial blight
  • a disease resistance locus or loci can be introgressed into non-resistant rice germplasm using one or more polynucleotides of the present invention for marker-assisted selection among rice lines or varieties to be used in a rice breeding program.
  • the method of introgressing can involve restriction fragment length polymorphism ("RFLP") analysis, RAPD analysis, microsatellite analysis or single nucleotide polymorphism (“SNP”) analysis.
  • Overexpression of the proteins of the instant invention may be accomplished by first constructing a chimeric gene in which the coding region is operably linked to a promoter capable of directing expression of a gene in the desired tissues at the desired stage of development.
  • the chimeric gene may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non- coding sequences encoding transcription termination signals may also be provided.
  • the instant chimeric gene may also comprise one or more introns in order to facilitate gene expression.
  • Plasmid vectors comprising the instant isolated polynucleotide (or chimeric gene) may be constructed.
  • the choice of plasmid vector is dependent upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al. (1985) EMBO J. 4:2411-2418; De Almeida et al. (1989) Mol. Gen. Genetics 278:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.
  • the chimeric gene described above may be further supplemented by directing the coding sequence to encode the instant polypeptides with appropriate intracellular targeting sequences such as transit sequences (Keegstra (1989) Cell 56:247-253), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53), or nuclear localization signals (Raikhel (1992) Plant Phys.1 OO: 1627-1632) with or without removing targeting sequences that are already present. While the references cited give examples of each of these, the list is not exhaustive and more targeting signals of use may be discovered in the future.
  • a chimeric gene designed for co-suppression of the instant polypeptide can be constructed by linking a gene or gene fragment encoding that polypeptide to plant promoter sequences.
  • a chimeric gene designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in reverse orientation to plant promoter sequences. Either the co-suppression or antisense chimeric genes could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.
  • tissue specific promoters may confer agronomic advantages relative to conventional mutations which may have an effect in all tissues in which a mutant gene is ordinarily expressed.
  • the present invention concerns a polypeptide selected from the group consisting of: (a) a receptor protein kinase or tyrosine phosphatase polypeptide of at least 50 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:10 and 14; (b) an LRR polypeptide of at least 50 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO:6; (c) an ADP-ribosylation factor or receptor protein kinase polypeptide of at least 100 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2 and 8; (d) a receptor protein kinase polypeptide of at least 140 amino acids having at least 90% identity based on the Clustal method of alignment when compared to
  • the instant polypeptides may be produced in heterologous host cells, particularly in the cells of microbial hosts, and can be used to prepare antibodies to these proteins by methods well known to those skilled in the art.
  • the antibodies are useful for detecting the polypeptides of the instant invention in situ in cells or in vitro in cell extracts.
  • Preferred heterologous host cells for production of the instant polypeptides are microbial hosts. Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. Any of these could be used to construct a chimeric gene for production of the instant polypeptides. This chimeric gene could then be introduced into appropriate microorganisms via transformation to provide high level expression of the encoded defense response protein.
  • Example 12 An example of a vector for high level expression of the instant polypeptides in a bacterial host is provided (Example 12). All or a substantial portion of the polynucleotides of the instant invention may also be used as probes for genetically and physically mapping the genes that they are a part of, and used as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes.
  • the instant nucleic acid fragments may be used as restriction fragment length polymorphism (RFLP) markers.
  • nucleic acid fragments of the instant invention may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the instant nucleic acid sequence in the genetic map previously obtained using this population (Botstein et al. (1980) Am. J. Hum. Genet. 32:314-331).
  • Nucleic acid probes derived from the instant nucleic acid sequences may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: Nonmammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, and references cited therein).
  • Nucleic acid probes derived from the instant nucleic acid sequences may be used in direct fluorescence in situ hybridization (FISH) mapping (Trask (1991) Trends Genet. 7:149-154). Although current methods of FISH mapping favor use of large clones (several to several hundred KB; see Laan et al. (1995) Genome Res. 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.
  • FISH fluorescence in situ hybridization
  • nucleic acid amplification-based methods of genetic and physical mapping may be carried out using the instant nucleic acid sequences. Examples include allele-specific amplification (Kazazian (1989) J. Lab. Clin. Med. 77:95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) Genomics 76:325-332), allele-specific ligation (Landegren et al. (1988) Science 247:1077-1080), nucleotide extension reactions (Sokolov (1990) Nucleic Acid Res. 78:3671), Radiation Hybrid Mapping (Walter et al. (1997) Nat.
  • allele-specific amplification Kazazian (1989) J. Lab. Clin. Med. 77:95-96
  • CAS Sheffield et al. (1993) Genomics 76:325-332
  • allele-specific ligation Landegren et al. (1988) Science 247:1077-1080
  • Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer (1989) Proc. Natl. Acad. Sci USA 86:9402-9406; Koes et al. (1995) Proc. Natl. Acad. Sci USA 92:8149-8153; Bensen et al. (1995) Plant Cell 7:75-84). The latter approach may be accomplished in two ways.
  • short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, supra).
  • the amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the instant polypeptides.
  • the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor.
  • an arbitrary genomic site primer such as that for a restriction enzyme site-anchored synthetic adaptor.
  • EXAMPLE 1 Composition of cDNA Libraries: Isolation and Sequencing of cDNA Clones cDNA libraries representing mRNAs from various rice tissues were prepared. The characteristics of the libraries are described below.
  • cDNA libraries may be prepared by any one of many methods available.
  • the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in Uni-ZAPTM XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA). The Uni-ZAPTM XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBluescript.
  • the cDNAs may be introduced directly into precut Biuescript II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products).
  • plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBluescript plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences.
  • Amplified insert DNAs or plasmid DNAs are sequenced in dye- primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"; see Adams et al., (1991) Science 252:1651-1656). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer. Full-insert sequence (FIS) data is generated utilizing a modified transposition protocol. Clones identified for FIS are recovered from archived glycerol stocks as single colonies, and plasmid DNAs are isolated via alkaline lysis. Isolated DNA templates are reacted with vector primed M13 forward and reverse oligonucleotides in a PCR-based sequencing reaction and loaded onto automated sequencers. Confirmation of clone identification is performed by sequence alignment to the original EST sequence from which the FIS request is made.
  • Confirmed templates are transposed via the Primer Island transposition kit (PE Applied Biosystems, Foster City, CA) which is based upon the Saccharomyces cerevisiae Ty1 transposable element (Devine and Boeke (1994) Nucleic Acids Res. 22:3765-3772).
  • the in vitro transposition system places unique binding sites randomly throughout a population of large DNA molecules.
  • the transposed DNA is then used to transform DH10B electro-competent cells (Gibco BRL/Life Technologies, Rockville, MD) via electroporation.
  • the transposable element contains an additional selectable marker (named DHFR; Fling and Richards (1983) Nucleic Acids Res.
  • Phrep/Phrap is a public domain software program which re-reads the ABI sequence data, re-calls the bases, assigns quality values, and writes the base calls and quality values into editable output files.
  • the Phrap sequence assembly program uses these quality values to increase the accuracy of the assembled sequence contigs. Assemblies are viewed by the Consed sequence editor (D. Gordon, University of Washington, Seattle). In some of the clones the cDNA fragment corresponds to a portion of the 3'-terminus of the gene and does not cover the entire open reading frame. In order to obtain the upstream information one of two different protocols are used.
  • the first of these methods results in the production of a fragment of DNA containing a portion of the desired gene sequence while the second method results in the production of a fragment containing the entire open reading frame.
  • Both of these methods use two rounds of PCR amplification to obtain fragments from one or more libraries.
  • the libraries some times are chosen based on previous knowledge that the specific gene should be found in a certain tissue and some times are randomly-chosen. Reactions to obtain the same gene may be performed on several libraries in parallel or on a pool of libraries. Library pools are normally prepared using from 3 to 5 different libraries and normalized to a uniform dilution.
  • both methods use a vector-specific (forward) primer corresponding to a portion of the vector located at the 5'-terminus of the clone coupled with a gene-specific (reverse) primer.
  • the first method uses a sequence that is complementary to a portion of the already known gene sequence while the second method uses a gene-specific primer complementary to a portion of the 3'-untranslated region (also referred to as UTR).
  • UTR 3'-untranslated region
  • a nested set of primers is used for both methods.
  • the resulting DNA fragment is ligated into a pBluescript vector using a commercial kit and following the manufacturer's protocol.
  • This kit is selected from many available from several vendors including Invitrogen (Carlsbad, CA), Promega Biotech (Madison, Wl), and Gibco-BRL (Gaithersburg, MD).
  • the plasmid DNA is isolated by alkaline lysis method and submitted for sequencing and assembly using Phred/Phrap, as above.
  • the cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the "nr” database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI).
  • the DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr” database using the BLASTX algorithm (Gish and States (1993) Nat. Genet. 3:266-272) provided by the NCBI.
  • BLASTX National Center for Biotechnology Information
  • the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST "hit" represent homologous proteins.
  • ESTs submitted for analysis are compared to the genbank database as described above. ESTs that contain sequences more 5- or 3-prime can be found by using the BLASTN algorithm (Altschul et al (1997) Nucleic Acids Res.
  • nucleotide sequences that share common or overlapping regions of sequence homology. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences can be assembled into a single contiguous nucleotide sequence, thus extending the original fragment in either the 5 or 3 prime direction.
  • EST database Once the most 5-prime EST is identified, its complete sequence can be determined by Full Insert Sequencing as described in Example 1.
  • Homologous genes belonging to different species can be found by comparing the amino acid sequence of a known gene (from either a proprietary source or a public database) against an EST database using the TBLASTN algorithm. The TBLASTN algorithm searches an amino acid query against a nucleotide database that is translated in all 6 reading frames. This search allows for differences in nucleotide codon usage between different species, and for codon degeneracy.
  • the BLASTX search using the EST sequence from the clone listed in Table 3 revealed similarity of the polypeptide encoded by the cDNA to ADP-ribosylation factor from Zea mays (NCBI General Identifier No. 1351974). Shown in Table 3 is the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs (“Contig”), sequences of contigs assembled from an FIS and one or more ESTs (“Contig*”), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR (“CGS”):
  • Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of a Cdc48p homologue.
  • EST EST
  • Contig sequences of contigs assembled from two or more ESTs
  • Contig* sequences of contigs assembled from an FIS and one or more ESTs
  • CGS FIS and PCR
  • Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of an LRR protein.
  • a rice polynucleotide encoding a substantial portion of an LRR protein has been described previously (NCBI Gl No. 6498429).
  • EST EST
  • FIS cDNA inserts comprising the indicated cDNA clones
  • Contig sequences of contigs assembled from two or more ESTs
  • Contig* sequences of contigs assembled from an FIS and one or more ESTs
  • CGS FIS and PCR
  • EST sequences of the entire cDNA inserts comprising the indicated cDNA clones
  • FIS sequences of contigs assembled from two or more ESTs
  • Contig sequences of contigs assembled from an FIS and one or more ESTs
  • Contig * sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR
  • Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of a tyrosine phosphatase.
  • Genomic DNA was extracted from young leaves of rice varieties IR64 and Azucena as described by Dellaporta et al. (1984) in Molecular Biology of Plants. A Laboratory Course Manual (M. Russell, Eds.), pp. 36-37. About 2 ⁇ g aliquots of IR64 and Azucena genomic DNA were each digested with a restriction enzyme (BamHI, BglW, Dra ⁇ , EcoRI, EcoRV, Hindlll, Pstl, Xbal, Clal, Hpnl, Kpnl, Nsil, PvuW, Sac , Sacll, Sail, Smal, and Xhol).
  • a restriction enzyme BamHI, BglW, Dra ⁇ , EcoRI, EcoRV, Hindlll, Pstl, Xbal, Clal, Hpnl, Kpnl, Nsil, PvuW, Sac , Sacll, Sail, Smal, and Xhol).
  • the digested DNA were then fractionated in a 0.8% agarose gel by electrophoresis.
  • Southern blot hybridization of the fractionated DNA with probes prepared from the rice clones disclosed herein was carried out using standard procedures (Maniatis). Washing stringency in Southern analysis was 1 % SDS and 0.5X SSC at 65°C.
  • the mapping population consisted of 111 doubled haploid (DH) lines developed from a cross between indica variety IR64 and japonica variety Azucena (Huang et al. (1994) Rice Genet Newsl 77:134-137; Huang et al. (1997) Molecular Breeding 3:105-113; Maheswaran et al. (1997) Theor Appl Genet 94:39-45).
  • the genetic linkage map constructed in the DH mapping population contained 270 restriction fragment length polymorphism (RFLP) markers. Using the Mapmaker program (Lander et al.
  • Figure 1 shows the chromosomal location of the rice clones disclosed herein in the rice linkage map.
  • Map positions of quantitative trait loci (QTL) for blast resistance were inferred from a study by Wang et al. (1994) Genetics 736:1421-1434.
  • QTLs for bacterial blight are from Li et al. (1999) Mol Gen Genet 267:58-63, and QTLs for sheath blight from Li et al. (1995) TheorAppl Genet 97:382-388.
  • Clones rls6.pk0076.f3 (designated 3F1) and rls6.pk0077.b1 (3G1) map to chromosome 1
  • clone rl0n.pk0024.f6 (1 H6) maps to chromosome 6
  • RNA per lane was separated in a 1 % formaldehyde-agarose gel and transferred to a Hybond-N + membrane (Amersham) according to the manufacturer's instructions. Similar amount of RNA loaded per lane was confirmed by hybridizing the resulting filter to labeled rice ribosomal DNA.
  • the Northern hybridization was carried out under the same conditions as the Southern hybridization method (Maniatis). Washing stringency in Northern analysis was 1% SDS and 0.5 X SSC at 65°C. Figure 2 shows the results of the Northern analysis.
  • a chimeric gene comprising a cDNA encoding the instant polypeptide in sense orientation with respect to the maize 27 kD zein promoter that is located 5' to the cDNA fragment, and the 10 kD zein 3' end that is located 3' to the cDNA fragment, can be constructed.
  • the cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites (Ncol or Smal) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below.
  • Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Boulevard., Manassas, VA 20110-2209), and bears accession number ATCC 97366.
  • the DNA segment from pML103 contains a 1.05 kb Sall-Ncol promoter fragment of the maize 27 kD zein gene and a 0.96 kb Smal-Sall fragment from the 3' end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega).
  • Vector and insert DNA can be ligated at 15°C overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform E. co//XL1-Blue (Epicurian Coli XL-1 BlueTM; Stratagene).
  • Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (SequenaseTM DNA Sequencing Kit; U.S. Biochemical).
  • the resulting plasmid construct would comprise a chimeric gene encoding, in the 5' to 3' direction, the maize 27 kD zein promoter, a cDNA fragment encoding the instant polypeptide, and the 10 kD zein 3' region.
  • the chimeric gene described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132.
  • the embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long.
  • the embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al. (1975) Sci. Sin. Peking 18:659-668).
  • the embryos are kept in the dark at 27°C.
  • Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembr oids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos.
  • the embryogenic callus isolated from the primary expiant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
  • the plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker.
  • This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT).
  • PAT phosphinothricin acetyl transferase
  • the enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin.
  • the pat gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacte um tumefaciens.
  • the particle bombardment method (Klein et al. (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells.
  • gold particles (1 ⁇ m in diameter) are coated with DNA using the following technique.
  • Ten ⁇ g of plasmid DNAs are added to 50 ⁇ L of a suspension of gold particles (60 mg per mL).
  • Calcium chloride 50 ⁇ L of a 2.5 M solution
  • spermidine free base (20 ⁇ L of a 1.0 M solution) are added to the particles.
  • the suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed.
  • the particles are resuspended in 200 ⁇ L of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 ⁇ L of ethanol.
  • An aliquot (5 ⁇ L) of the DNA- coated gold particles can be placed in the center of a KaptonTM flying disc (Bio-Rad Labs).
  • the particles are then accelerated into the corn tissue with a BiolisticTM PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
  • the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium.
  • the tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter.
  • the petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen.
  • the air in the chamber is then evacuated to a vacuum of 28 inches of Hg.
  • the macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi.
  • Seven days after bombardment the tissue can be transferred to N6 medium that contains bialophos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium.
  • tissue can be transferred to fresh N6 medium containing bialophos. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialophos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
  • Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al. (1990) Bio/Technology 8:833-839).
  • a seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the ⁇ subunit of the seed storage protein phaseolin from the bean Phaseolus vulgaris (Doyle et al. (1986) J. Biol. Chem. 261 :9228-9238) can be used for expression of the instant polypeptides in transformed soybean.
  • the phaseolin cassette includes about 500 nucleotides upstream (5') from the translation initiation codon and about 1650 nucleotides downstream (3') from the translation stop codon of phaseolin. Between the 5' and 3' regions are the unique restriction endonuclease sites Ncol (which includes the ATG translation initiation codon), Smal, Kpnl and Xbal. The entire cassette is flanked by Hindlll sites.
  • the cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette. Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptide.
  • PCR polymerase chain reaction
  • somatic embryos cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26°C on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.
  • Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26°C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium. Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al. (1987) Nature (London) 327:70-73, U.S. Patent No. 4,945,050). A DuPont BiolisticTM PDS1000/HE instrument (helium retrofit) can be used for these transformations.
  • a selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 373:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al. (1983) Gene 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens.
  • the seed expression cassette comprising the phaseolin 5' region, the fragment encoding the instant polypeptide and the phaseolin 3' region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.
  • Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette.
  • approximately 5-10 plates of tissue are normally bombarded.
  • Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury.
  • the tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
  • the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly.
  • green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
  • the cDNAs encoding the instant polypeptides can be inserted into the T7 E. coli expression vector pBT430.
  • This vector is a derivative of pET-3a (Rosenberg et al. (1987) Gene 56:125-135) which employs the bacteriophage T7 RNA polymerase/T7 promoter system.
  • Plasmid pBT430 was constructed by first destroying the EcoRI and Hindlll sites in pET-3a at their original positions. An oligonucleotide adaptor containing EcoRI and Hind III sites was inserted at the BamHI site of pET-3a. This created pET-3aM with additional unique cloning sites for insertion of genes into the expression vector.
  • Ndel site at the position of translation initiation was converted to an Ncol site using oligonucleotide-directed mutagenesis.
  • Plasmid DNA containing a cDNA may be appropriately digested to release a nucleic acid fragment encoding the protein. This fragment may then be purified on a 1% low melting agarose gel. Buffer and agarose contain 10 ⁇ g/ml ethidium bromide for visualization of the DNA fragment. The fragment can then be purified from the agarose gel by digestion with GELaseTM (Epicentre Technologies, Madison, Wl) according to the manufacturer's instructions, ethanol precipitated, dried and resuspended in 20 ⁇ L of water. Appropriate oligonucleotide adapters may be ligated to the fragment using T4 DNA ligase (New England Biolabs (NEB), Beverly, MA).
  • T4 DNA ligase New England Biolabs (NEB), Beverly, MA.
  • the fragment containing the ligated adapters can be purified from the excess adapters using low melting agarose as described above.
  • the vector pBT430 is digested, dephosphorylated with alkaline phosphatase (NEB) and deproteinized with phenol/chloroform as described above.
  • the prepared vector pBT430 and fragment can then be ligated at 16°C for 15 hours followed by transformation into DH5 electrocompetent cells (GIBCO BRL).
  • Transformants can be selected on agar plates containing LB media and 100 ⁇ g/mL ampicillin. Transformants containing the gene encoding the instant polypeptide are then screened for the correct orientation with respect to the T7 promoter by restriction enzyme analysis.
  • a plasmid clone with the cDNA insert in the correct orientation relative to the T7 promoter can be transformed into E. coli strain BL21(DE3) (Studier et al. (1986) J. Mol. Biol. 789:113-130). Cultures are grown in LB medium containing ampicillin (100 mg/L) at 25°C. At an optical density at ' 600 nm of approximately 1 , IPTG (isopropylthio- ⁇ -galactoside, the inducer) can be added to a final concentration of 0.4 mM and incubation can be continued for 3 h at 25°.
  • IPTG isopropylthio- ⁇ -galactoside, the inducer
  • Cells are then harvested by centrifugation and re-suspended in 50 ⁇ L of 50 mM Tris-HCI at pH 8.0 containing 0.1 mM DTT and 0.2 mM phenyl methylsulfonyl fluoride.
  • a small amount of 1 mm glass beads can be added and the mixture sonicated 3 times for about 5 seconds each time with a microprobe sonicator.
  • the mixture is centrifuged and the protein concentration of the supernatant determined.
  • One ⁇ g of protein from the soluble fraction of the culture can be separated by SDS-polyacrylamide gel electrophoresis. Gels can be observed for protein bands migrating at the expected molecular weight.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

This invention relates to isolated nucleic acid fragments encondign defense response proteins. The invention also relates to the construction of chimeric genes enconding all or a substantial portion of the defense response proteins, in sense or antisense orientation, wherein expression of the chimeric genes results in production of altered levels of the defense response proteins in a transformed host cell. This invention further relates to a method of introgressing disease resistance loci into rice germplasm.

Description

TITLE POLYNUCLEOTIDES ENCODING DEFENSE RESPONSE PROTEINS This application claims the benefit of U.S. Provisional Application No. 60/243335, filed October 26, 2000, the entire contents of which are herein incorporated by reference.
FIELD OF THE INVENTION This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding defense response proteins in plants and seeds. BACKGROUND OF THE INVENTION
In response to invading pathogens, plants have evolved an array of defense mechanisms. Expression of particular genes, such as defensins, involved in the defense response have been observed to increase upon pathogen challenge (Manners, J. M. et al. (1998) Plant Mol. Biol. 38:1071-1080; Terras, F. R. et al. (1998) Planta 206Λ 17-124; Terras, F. R. et al. (1995) Plant Cell 7:573-588). "Leucine-rich protein", initially identified in tomato, encodes a leucine-rich repeat (LRR) protein that has been shown to be upregulated in diseased tomato plants infected with citrus exocortis viroid (Torhero et al. (1996) Plant J 70:315-330). It is processed proteolytically to a lower molecular weight form during pathogenesis, suggesting that it might be involved in recognition and interaction events taking place in the plant extracellular matrix under normal and/or pathogenesis-related conditions (Tornero et al. (1996) Plant J 10:3 5-330).
Some plant disease resistance (R) proteins also have leucine-rich repeat domains. These belong to the so-called NBS-LRR (for nucleotide-binding site, leucine-rich repeat) type of R proteins, having in common N-terminal nucleotide binding sites (NBS) and C-terminal leucine-rich repeats (LRR) that may be involved in protein-protein interactions. Examples include the Arabidopsis RPS2 gene which confers resistance to Pseudomonas syringae carrying the avirulence gene avrRpt2 (Mindrinos, M. et al., (1994) Cell 78:1089-1099; Bent, A.F. et al., (1994) Science 265:1856-1860), and the Arabidopsis RPM1 gene which confers resistance to Pseudomonas syringae carrying the avirulence genes avrRpml or avrB (Grant, M.R. et al. (1995) Science 269:843-846).
Another class of R genes includes the Pto gene of tomato which encodes a serine/threonine kinase that confers resistance to Pseudomonas syringae pv. tomato (causal agent of bacterial speck disease) that carries the avirulence gene avrPto (Martin et al. (1993) Science 262:1432-1436). Still another class of R genes includes the tomato Cf genes which confer resistance to a variety of Cladosporium fulvum strains, causal agent of leaf mold. Members of this class encode putative transmembrane receptors with LRRs making up most of the extracellular domain. In the Cf system, Cf proteins that recognize different avirulence gene products show remarkable conservation of the carboxy-terminal halves of the proteins, including about a third of the LRRs, suggesting that specificity of ligand (avirulence gene product) recognition is determined by the variable LRRs in the amino-terminal region (Dixon et al. (1996) Cell 84:451-459; Jones et al. (1994) Science 266:789-793). Finally, a different class of R genes is represented by the rice Xa21 gene, which confers resistance to several strains of Xanthomonas oryzae pv. oryzae, causal agent of bacterial blight. Xa21 encodes a putative receptor kinase, having both extracytoplasmic LRR domains similar to those of the Cf-encoded protein, and an intracelular kinase domain like that of Pto (Song et al. (1995) Science 270:1804-1806).
The defense response may sometimes include the onset of a hypersensitive response, rapid cell death localized at the site of infection, a process that is thought to arise from the activation of a cell death program or apoptosis (Greenberg et al. (1994) Cell 77:551-563). CDC48 is an essential gene in Saccharomyces cerevisiae involved in regulating cell cycle, with a possible role in spindle pole body separation. The protein Cdc48p plays an important role in the homotypic fusion of the endoplasmic reticulum. It is a member of the AAA (ATPase associated with different cellular activities) family, characterized by a highly conserved element of ~230 amino acid residues, containing an ATP binding consensus sequence that can be present singly or in two copies (Madeo et al. (1997) J Cell Biol 139:729-734). Yeast cdc48 mutants exhibited diagnostic markers of early and late apoptosis, including exposure of phosphatidylserine (which under normal conditions is mostly oriented towards the cytoplasm) at the outer layer of the cytoplasmic membrane, DNA fragmentation, and chromatin condensation and fragmentation (Madeo et al. (1997) J Cell Biol 139:729-734). It is possible that Cdc48p function is regulated by tyrosine phosphorylation and dephosphorylation since function of Valasin-Containing Protein, a mammalian homologue of Cdc48p, may be regulated through dephosphorylation by protein-tyrosine phosphatase PTPH1 (Zhang et al. (1999) J Biol Chem 274:17806-17812).
ADP-ribosylation factor (ARF) was originally identified as the protein cofactor of a toxin secreted by Vibrio cholerae in its catalysis of ADP-ribosylation of the α subunit of the trimeric G protein Gs (leading to activation of adenylate cyclase) (Schleifer et al. (1982) J Biol Chem 257:20-23; Kahn and Gilman (1984) J Biol Chem 259:6228-6234). An abundant and highly conserved low molecular weight GTP-binding protein, ARF is a subunit of the coat of Glogi-derived COP-coated vesicles, and may modulate vesicle budding and uncoating through controlled GTP hydrolysis (Serafini et al. (1991) Cell 67:239-253). ARF also affects cell proliferation in the sense that it has been shown to stimulate phospholipase D activity (Brown et al. (1993) Cell 75:1137-1144). Phospholipase D cleaves phosphatidylcholine into choline and phosphatidic acid. Phosphatidic acid has been found to induce DNA synthesis and cell proliferation and is produced m response to a number of agonists, including growth factors (Kahn et al. (1993) Cell 75:1045-1048).
Accordingly, isolation of more defense-related genes (e.g., R genes and cell death and cell cycle genes), especially those that co-map to loci that have been identified to be involved in disease resistance may pave the way for a more efficient mechanism of understanding disease resistance and the defense response, and in the process, facilitate the generation of disease resistance crops through genetic manipulation. SUMMARY OF THE INVENTION
The present invention concerns an isolated polynucleotide comprising: (a) a first nucleotide sequence encoding a first polypeptide comprising at least 50 or 100 amino acids, wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (b) a second nucleotide sequence encoding a second polypeptide comprising at least 50 or 100 amino acids, wherein the amino acid sequence of the second polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (c) a third nucleotide sequence encoding a third polypeptide comprising at least 100 amino acids, wherein the amino acid sequence of the third polypeptide and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (d) a fourth nucleotide sequence encoding a fourth polypeptide comprising at least 140 amino acids, wherein the amino acid sequence of the fourth polypeptide and the amino acid sequence of SEQ ID NO: 12 have at least 90% or 95% identity based on the Clustal alignment method, (e) a fifth nucleotide sequence encoding a fifth polypeptide comprising at least 150 amino acids, wherein the amino acid sequence of the fifth polypeptide and the amino acid sequence of SEQ ID NO:4 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, or (f) the complement of the first, second, third, fourth, or fifth nucleotide sequence, wherein the complement and the first, second, third, fourth, or fifth nucleotide sequence contain the same number of nucleotides and are 100% complementary. The first polypeptide preferably comprises the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14, the second polypeptide preferably comprises the amino acid sequence of SEQ ID NO:6, the third polypeptide preferably comprises the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8, the fourth polypeptide preferably comprises the amino acid sequence of SEQ ID NO: 12, and the fifth polypeptide preferably comprises the amino acid sequence of SEQ ID NO:4. The first nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:9 or SEQ ID NO:13, the second nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:5, the third nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:7, the fourth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:11, and the fifth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:3. The first polypeptide preferably is a receptor protein kinase or a tyrosine phosphatase, the second polypeptide preferably is an LRR protein, the third polypeptide preferably is an ADP-ribosylation factor or a receptor protein kinase, the fourth polypeptide preferably is a receptor protein kinase, and the fifth polypeptide preferably is a Cdc48p homologue.
In a second embodiment, this invention relates to a vector comprising the polynucleotide of the present invention or a recombinant DNA construct comprising the polynucleotide of the present invention operably linked to at least one regulatory sequence.
In a third embodiment, the invention concerns a cell comprising the recombinant DNA construct of the present invention. The cell may be a eukaryotic cell such as a plant cell, or a prokaryotic cell such as a bacterial cell. In a fourth embodiment, the invention relates to a method of transforming a cell by introducing into the cell a nucleic acid comprising a polynucleotide of the present invention. The invention also concerns a method for producing a plant comprising transforming a plant cell with a nucleic acid molecule comprising a polynucleotide of the present invention and regenerating a plant from the transformed plant cell. In a further embodiment, the seed from the transformed plant is included.
In a fifth embodiment, the present invention relates to an isolated polynucleotide fragment comprising a nucleotide sequence comprised by any of the polynucleotides of the present invention, wherein the nucleotide sequence contains at least 30, 40, or 60 nucleotides.
In a sixth embodiment the invention concerns a method for isolating a polypeptide encoded by the polynucleotide of the present invention comprising isolating the polypeptide from a cell containing a recombinant DNA construct comprising the polynucleotide operably linked to a regulatory sequence.
In a seventh embodiment, the present invention relates to an isolated polypeptide comprising: (a) a first amino acid sequence comprising at least 50 or 100 amino acids, wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (b) a second amino acid sequence comprising at least 50 or 100 amino acids, wherein the second amino acid sequence and the amino acid sequence of SEQ ID NO:6 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (c) a third amino acid sequence comprising at least 100 amino acids, wherein the third amino acid sequence and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (d) a fourth amino acid sequence comprising at least 140 amino acids, wherein the fourth amino acid sequence and the amino acid sequence of SEQ ID NO: 12 have at least 90% or 95% identity based on the Clustal alignment method, or (e) a fifth amino acid sequence comprising at least 150 amino acids, wherein the fifth amino acid sequence and the amino acid sequence of SEQ ID NO:4 have at least 85%, 90%, or 95% identity based on the Clustal alignment method. The first amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO: 10 or SEQ ID NO:14, the second amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO:6, the third amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8, the fourth amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO: 12, and the fifth amino acid sequence preferably comprises the amino acid sequence of SEQ ID NO:4. The polypeptide preferably is a receptor protein kinase, a tyrosine phosphatase, an LRR protein, an ADP-ribosylation factor, or a Cdc48p homologue.
In an eighth embodiment, the present invention relates to a virus, preferably a baculovirus, comprising any of the isolated polynucleotides of the present invention or any of the chimeric genes of the present invention.
In a ninth embodiment, the present invention relates to a method of selecting an isolated polynucleotide that affects the level of expression of a receptor protein kinase, a tyrosine phosphatase, an LRR protein, an ADP-ribosylation factor, or a Cdc48p homologue polypeptide or enzyme activity in a host cell, preferably a plant cell, the method comprising the steps of: (a) constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; (b) introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; (c) measuring the level of the receptor protein kinase, tyrosine phosphatase, LRR protein, ADP-ribosylation factor, or Cdc48p homologue polypeptide or enzyme activity in the host cell containing the isolated polynucleotide; and (d) comparing the level of the receptor protein kinase, tyrosine phosphatase, LRR protein, ADP- ribosylation factor, or Cdc48p homologue polypeptide or enzyme activity in the host cell containing the isolated polynucleotide with the level of the receptor protein kinase, tyrosine phosphatase, LRR protein, ADP-ribosylation factor, or Cdc48p homologue polypeptide or enzyme activity in the host cell that does not contain the isolated polynucleotide. In a tenth embodiment, the invention relates to a method of obtaining a nucleic acid fragment encoding a substantial portion of an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide, preferably a plant ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide, comprising the steps of: synthesizing an oligonucleotide primer comprising a nucleotide sequence of at least one of 30 (preferably at least one of 40, most preferably at least one of 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1, 3, 5, 7, 9, 11 , and 13, and the complement of such nucleotide sequences; and amplifying a nucleic acid fragment (preferably a cDNA inserted in a cloning vector) using the oligonucleotide primer. The amplified nucleic acid fragment preferably will encode a substantial portion of an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase amino acid sequence.
In an eleventh embodiment, this invention relates to a method of obtaining a nucleic acid fragment encoding all or a substantial portion of the amino acid sequence encoding an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide comprising the steps of: probing a cDNA or genomic library with an isolated polynucleotide of the present invention; identifying a DNA clone that hybridizes with an isolated polynucleotide of the present invention; isolating the identified DNA clone; and sequencing the cDNA or genomic fragment that comprises the isolated DNA clone.
In a twelfth embodiment, this invention concerns a method for positive selection of a transformed cell comprising: (a) transforming a host cell with the chimeric gene of the present invention or an expression cassette of the present invention; and (b) growing the transformed host cell, preferably a plant cell, such as a monocot or a dicot, under conditions which allow expression of the ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polynucleotide in an amount sufficient to complement a null mutant to provide a positive selection means.
In a thirtheenth embodiment, this invention relates to a method of altering the level of expression of a defense response protein in a host cell comprising: (a) transforming a host cell with a chimeric gene of the present invention; and (b) growing the transformed host cell under conditions that are suitable for expression of the chimeric gene wherein expression of the chimeric gene results in production of altered levels of the defense response protein in the transformed host cell. In a fourteenth embodiment, this invention relates to a method of introgressing a disease resistance locus or loci into rice germplasm comprising using one or more polynucleotides of the present invention for marker assisted selection among rice lines or varieties to be used in a rice breeding program. The method of introgressing can involve restriction fragment length polymorphism ("RFLP") analysis, RAPD analysis, microsatellite analysis or single nucleotide polymorphism ("SNP") analysis.
BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCE LISTINGS The invention can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing which form a part of this application.
Figure 1 shows the chromosomal location of the rice clones disclosed herein in the rice linkage map. Map positions of quantitative trait loci (QTL) for blast resistance were inferred from a study by Wang et al. (1994) Genetics 136: 1421 -1434. QTLs for bacterial blight are from Li et al. (1999) Mol Gen Genet 26 :58-63, and QTLs for sheath blight from Li et al. (1995) TheorAppl Genet 97:382-388. Clones rls6.pk0076.f3 (designated 3F1) and rls6.pk0077.b1 (3G1) map to chromosome 1, clones rl0n.pk0015.a6 (1G5) and rls24.pk0011.h11 (2A10) map to chromosome 3, clone rl0n.pk0024.f6 (1 H6) maps to chromosome 6, and clones rirδ.pkOOOl .d 1 (2E5) and rlr24.pk0080.e3 (2F2) map to chromosome 12. Figure 2 shows the results of the Northern blot analysis performed to determine expression patterns of the gene comprising the insert in clone rl0n.pk0024.f6.
Table 1 lists the polypeptides that are described herein, the designation of the cDNA clones that comprise the nucleic acid fragments encoding polypeptides representing all or a substantial portion of these polypeptides, and the corresponding identifier (SEQ ID NO:) as used in the attached Sequence Listing. The sequence descriptions and Sequence Listing attached hereto comply with the rules governing nucleotide and/or amino acid sequence disclosures in patent applications as set forth in 37 C.F.R. §1.821-1.825.
TABLE 1
Defense Response Proteins
SEQ ID NO
Protein (Plant Source) Clone Designation (Nucleotide) (Amino Acid)
ADP-ribosylation Factor rlr24.pk0080.e3 (EST) 1 2
(Rice)
Cdc48p Homologue rls24.pk0011.h11 (EST) 3 4
(Rice)
LRR Protein (Rice) rls6.pk0076.f3 (EST) 5 6
Receptor Protein rl0n.pk0015.a6 (EST) 7 8
Kinase (Rice)
Receptor Protein rls6.pk0077.b1 (EST) 9 10
Kinase (Rice)
Receptor Protein rl0n.pk0024.f6 (EST) 11 12
Kinase (Rice)
Tyrosine Phosphatase rlr6.pk0001.c11 (FIS) 13 14
(Rice)
The Sequence Listing contains the one letter code for nucleotide sequence characters and the three letter codes for amino acids as defined in conformity with the lUPAC-IUBMB standards described in Nucleic Acids Res. 73:3021-3030 (1985) and in the BiochemicalJ. 219 (No. 2J:345-373 (1984) which are herein incorporated by reference. The symbols and format used for nucleotide and amino acid sequence data comply with the rules set forth in 37 C.F.R. §1.822. DETAILED DESCRIPTION OF THE INVENTION In the context of this disclosure, a number of terms shall be utilized. The terms "polynucleotide", "polynucleotide sequence", "nucleic acid sequence", and "nucleic acid fragment'V'isolated nucleic acid fragment" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of RNA or DNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide in the form of a polymer of DNA may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. An isolated polynucleotide of the present invention may include at least 30 contiguous nucleotides, preferably at least 40 contiguous nucleotides, most preferably at least 60 contiguous nucleotides derived from SEQ ID NOs:1 , 3, 5, 7, 9, 11 , and 13, or the complement of such sequences.
The term "isolated" refers to materials, such as nucleic acid molecules and/or proteins, which are substantially free or otherwise removed from components that normally accompany or interact with the materials in a naturally occurring environment. Isolated polynucleotides may be purified from a host cell in which they naturally occur. Conventional nucleic acid purification methods known to skilled artisans may be used to obtain isolated polynucleotides. The term also embraces recombinant polynucleotides and chemically synthesized polynucleotides.
The term "recombinant" means, for example, that a nucleic acid sequence is made by an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated nucleic acids by genetic engineering techniques.
As used herein, "contig" refers to a nucleotide sequence that is assembled from two or more constituent nucleotide sequences that share common or overlapping regions of sequence homology. For example, the nucleotide sequences of two or more nucleic acid fragments can be compared and aligned in order to identify common or overlapping sequences. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences (and thus their corresponding nucleic acid fragments) can be assembled into a single contiguous nucleotide sequence.
As used herein, "substantially similar" refers to nucleic acid fragments wherein changes in one or more nucleotide bases results in substitution of one or more amino acids, but do not affect the functional properties of the polypeptide encoded by the nucleotide sequence. "Substantially similar" also refers to nucleic acid fragments wherein changes in one or more nucleotide bases does not affect the ability of the nucleic acid fragment to mediate alteration of gene expression by gene silencing through for example antisense or co-suppression technology.
"Substantially similar" also refers to modifications of the nucleic acid fragments of the instant invention such as deletion or insertion of one or more nucleotides that do not substantially affect the functional properties of the resulting transcript vis-a-vis the ability to mediate gene silencing or alteration of the functional properties of the resulting protein molecule. It is therefore understood that the invention encompasses more than the specific exemplary nucleotide or amino acid sequences and includes functional equivalents thereof. The terms "substantially similar" and "corresponding substantially" are used interchangeably herein.
Substantially similar nucleic acid fragments may be selected by screening nucleic acid fragments representing subfragments or modifications of the nucleic acid fragments of the instant invention, wherein one or more nucleotides are substituted, deleted and/or inserted, for their ability to affect the level of the polypeptide encoded by the unmodified nucleic acid fragment in a plant or plant cell. For example, a substantially similar nucleic acid fragment representing at least 30 contiguous nucleotides, preferably at least 40 contiguous nucleotides, most preferably at least 60 contiguous nucleotides derived from the instant nucleic acid fragment can be constructed and introduced into a plant or plant cell. The level of the polypeptide encoded by the unmodified nucleic acid fragment present in a plant or plant cell exposed to the substantially similar nucleic fragment can then be compared to the level of the polypeptide in a plant or plant cell that is not exposed to the substantially similar nucleic acid fragment.
For example, it is well known in the art that antisense suppression and co- suppression of gene expression may be accomplished using nucleic acid fragments representing less than the entire coding region of a gene, and by using nucleic acid fragments that do not share 100% sequence identity with the gene to be suppressed. Moreover, alterations in a nucleic acid fragment which result in the production of a chemically equivalent amino acid at a given site, but do not effect the functional properties of the encoded polypeptide, are well known in the art. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, can also be expected to produce a functionally equivalent product. Nucleotide changes which result in alteration of the N-terminal and C-terminal portions of the polypeptide molecule would also not be expected to alter the activity of the polypeptide. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Consequently, an isolated polynucleotide comprising a nucleotide sequence of at least 30 (preferably at least 40, most preferably at least 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1 , 3, 5, 7, 9, 11, and 13, and the complement of such nucleotide sequences may be used to affect the expression and/or function of an ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, or tyrosine phosphatase polypeptide in a host cell. A method of using an isolated polynucleotide to affect the level of expression of a polypeptide in a host cell (eukaryotic, such as plant or yeast, prokaryotic such as bacterial) may comprise the steps of: constructing an isolated polynucleotide of the present invention or an isolated chimeric gene of the present invention; introducing the isolated polynucleotide or the isolated chimeric gene into a host cell; measuring the level of a polypeptide or enzyme activity in the host cell containing the isolated polynucleotide; and comparing the level of a polypeptide or enzyme activity in the host cell containing the isolated polynucleotide with the level of a polypeptide or enzyme activity in a host cell that does not contain the isolated polynucleotide.
Moreover, substantially similar nucleic acid fragments may also be characterized by their ability to hybridize. Estimates of such homology are provided by either DNA-DNA or DNA-RNA hybridization under conditions of stringency as is well understood by those skilled in the art (Hames and Higgins, Eds. (1985) Nucleic Acid Hybridisation, IRL Press, Oxford, U.K.). Stringency conditions can be adjusted to screen for moderately similar fragments, such as homologous sequences from distantly related organisms, to highly similar fragments, such as genes that duplicate functional enzymes from closely related organisms. Post-hybridization washes determine stringency conditions. One set of preferred conditions uses a series of washes starting with 6X SSC, 0.5% SDS at room temperature for 15 min, then repeated with 2X SSC, 0.5% SDS at 45°C for 30 min, and then repeated twice with 0.2X SSC, 0.5% SDS at 50°C for 30 min. A more preferred set of stringent conditions uses higher temperatures in which the washes are identical to those above except for the temperature of the final two 30 min washes in 0.2X SSC, 0.5% SDS was increased to 60°C. Another preferred set of highly stringent conditions uses two final washes in 0.1 X SSC, 0.1% SDS at 65°C.
Substantially similar nucleic acid fragments of the instant invention may also be characterized by the percent identity of the amino acid sequences that they encode to the amino acid sequences disclosed herein, as determined by algorithms commonly employed by those skilled in this art. Suitable nucleic acid fragments (isolated polynucleotides of the present invention) encode polypeptides that are at least about 70% identical, preferably at least about 80% identical to the amino acid sequences reported herein. Preferred nucleic acid fragments encode amino acid sequences that are at least about 85% identical to the amino acid sequences reported herein. More preferred nucleic acid fragments encode amino acid sequences that are at least about 90% identical to the amino acid sequences reported herein. Most preferred are nucleic acid fragments that encode amino acid sequences that are at least about 95% identical to the amino acid sequences reported herein. Suitable nucleic acid fragments not only have the above identities but typically encode a polypeptide having at least 50 amino acids, preferably at least 100 amino acids, more preferably at least 140 or 150 amino acids, still more preferably at least 200 amino acids, and most preferably at least 250 amino acids. Sequence alignments and percent identity calculations were performed using the Megalign program of the LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, Wl). Multiple alignment of the sequences was performed using the Clustal method of alignment (Higgins and Sharp (1989) CABIOS. 5:151-153) with the default parameters (GAP PENALTY=10, GAP LENGTH PENALTY=10). Default parameters for pairwise alignments using the Clustal method were KTUPLE 1 , GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5.
A "substantial portion" of an amino acid or nucleotide sequence comprises an amino acid or a nucleotide sequence that is sufficient to afford putative identification of the protein or gene that the amino acid or nucleotide sequence comprises. Amino acid and nucleotide sequences can be evaluated either manually by one skilled in the art, or by using computer-based sequence comparison and identification tools that employ algorithms such as BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) J. Mol. Biol. 275:403-410; see also the explanation of the BLAST alogarithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health). In general, a sequence of ten or more contiguous amino acids or thirty or more contiguous nucleotides is necessary in order to putatively identify a polypeptide or nucleic acid sequence as homologous to a known protein or gene. Moreover, with respect to nucleotide sequences, gene- specific oligonucleotide probes comprising 30 or more contiguous nucleotides may be used in sequence-dependent methods of gene identification (e.g., Southern hybridization) and isolation (e.g., in situ hybridization of bacterial colonies or bacteriophage plaques). In addition, short oligonucleotides of 12 or more nucleotides may be used as amplification primers in PCR in order to obtain a particular nucleic acid fragment comprising the primers. Accordingly, a "substantial portion" of a nucleotide sequence comprises a nucleotide sequence that will afford specific identification and/or isolation of a nucleic acid fragment comprising the sequence. The instant specification teaches amino acid and nucleotide sequences encoding polypeptides that comprise one or more particular plant proteins. The skilled artisan, having the benefit of the sequences as reported herein, may now use all or a substantial portion of the disclosed sequences for purposes known to those skilled in this art. Accordingly, the instant invention comprises the complete sequences as reported in the accompanying Sequence Listing, as well as substantial portions of those sequences as defined above. "Codon degeneracy" refers to divergence in the genetic code permitting variation of the nucleotide sequence without effecting the amino acid sequence of an encoded polypeptide. Accordingly, the instant invention relates to any nucleic acid fragment comprising a nucleotide sequence that encodes all or a substantial portion of the amino acid sequences set forth herein. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. Therefore, when synthesizing a nucleic acid fragment for improved expression in a host cell, it is desirable to design the nucleic acid fragment such that its frequency of codon usage approaches the frequency of preferred codon usage of the host cell. "Synthetic nucleic acid fragments" can be assembled from oligonucleotide building blocks that are chemically synthesized using procedures known to those skilled in the art. These building blocks are ligated and annealed to form larger nucleic acid fragments which may then be enzymatically assembled to construct the entire desired nucleic acid fragment. "Chemically synthesized", as related to a nucleic acid fragment, means that the component nucleotides were assembled in vitro. Manual chemical synthesis of nucleic acid fragments may be accomplished using well established procedures, or automated chemical synthesis can be performed using one of a number of commercially available machines. Accordingly, the nucleic acid fragments can be tailored for optimal gene expression based on optimization of the nucleotide sequence to reflect the codon bias of the host cell. The skilled artisan appreciates the likelihood of successful gene expression if codon usage is biased towards those codons favored by the host. Determination of preferred codons can be based on a survey of genes derived from the host cell where sequence information is available. "Gene" refers to a nucleic acid fragment that expresses a specific protein, including regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence. "Native gene" refers to a gene as found in nature with its own regulatory sequences. "Chimeric gene" refers any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature. Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. "Endogenous gene" refers to a native gene in its natural location in the genome of an organism. A "foreign- gene" refers to a gene not normally found in the host organism, but that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes. A "transgene" is a gene that has been introduced into the genome by a transformation procedure. "Coding sequence" refers to a nucleotide sequence that codes for a specific amino acid sequence. "Regulatory sequences" refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters, translation leader sequences, introns, and polyadenylation recognition sequences.
"Promoter" refers to a nucleotide sequence capable of controlling the expression of a coding sequence or functional RNA. In general, a coding sequence is located 3' to a promoter sequence. The promoter sequence consists of proximal and more distal upstream elements, the latter elements, often referred to as enhancers. Accordingly, an "enhancer" is a nucleotide sequence which can stimulate promoter activity and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Promoters may be derived in their entirety from a native gene, or may be composed of different elements derived from different promoters found in nature, or may even comprise synthetic nucleotide segments. It is understood by those skilled in the art that different promoters may direct the expression of a gene in different tissues or cell types, or at different stages of development, or in response to different environmental conditions. Promoters which cause a nucleic acid fragment to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". New promoters of various types useful in plant cells are constantly being discovered; numerous examples may be found in the compilation by Okamuro and Goldberg (1989) Biochemistry of Plants 75:1-82. It is further recognized that since in most cases the exact boundaries of regulatory sequences have not been completely defined, nucleic acid fragments of different lengths may have identical promoter activity.
"Translation leader sequence" refers to a nucleotide sequence located between the promoter sequence of a gene and the coding sequence. The translation leader sequence is present in the fully processed mRNA upstream of the translation start sequence. The translation leader sequence may affect processing of the primary transcript to mRNA, mRNA stability or translation efficiency. Examples of translation leader sequences have been described (Turner and Foster (1995) Mol. Biotechnol. 3:225-236).
"3' non-coding sequences" refer to nucleotide sequences located downstream of a coding sequence and include polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression. The polyadenylation signal is usually characterized by affecting the addition of polyadenylic acid tracts to the 3' end of the mRNA precursor. The use of different 3' non-coding sequences is exemplified by Ingelbrecht et al. (1989) Plant Cell 7:671-680.
"RNA transcript" refers to the product resulting from RNA polymerase- catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complementary copy of the DNA sequence, it is referred to as the primary transcript or it may be a RNA sequence derived from posttranscriptional processing of the primary transcript and is referred to as the mature RNA. "Messenger RNA (mRNA)" refers to the RNA that is without introns and that can be translated into polypeptides by the cell. "cDNA" refers to DNA that is complementary to and derived from an mRNA template. The cDNA can be single-stranded or converted to double stranded form using, for example, the Klenow fragment of DNA polymerase I. "Sense-RNA" refers to an RNA transcript that includes the mRNA and so can be translated into a polypeptide by the cell. "Antisense RNA" refers to an RNA transcript that is complementary to all or part of a target primary transcript or mRNA and that blocks the expression of a target gene (see U.S. Patent No. 5,107,065, incorporated herein by reference). The complementarity of an antisense RNA may be with any part of the specific nucleotide sequence, i.e., at the 5' non-coding sequence, 3' non-coding sequence, introns, or the coding sequence. "Functional RNA" refers to sense RNA, antisense RNA, ribozyme RNA, or other RNA that may not be translated but yet has an effect on cellular processes.
The term "operably linked" refers to the association of two or more nucleic acid fragments on a single polynucleotide so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation. The term "expression", as used herein, refers to the transcription and stable accumulation of sense (mRNA) or antisense RNA derived from the nucleic acid fragment of the invention. Expression may also refer to translation of mRNA into a polypeptide. "Antisense inhibition" refers to the production of antisense RNA transcripts capable of suppressing the expression of the target protein. "Overexpression" refers to the production of a gene product in transgenic organisms that exceeds levels of production in normal or non-transformed organisms. "Co-suppression" refers to the production of sense RNA transcripts capable of suppressing the expression of identical or substantially similar foreign or endogenous genes (U.S. Patent No. 5,231 ,020, incorporated herein by reference). A "protein" or "polypeptide" is a chain of amino acids arranged in a specific order determined by the coding sequence in a polynucleotide encoding the polypeptide. Each protein or polypeptide has a unique function.
"Altered levels" or "altered expression" refers to the production of gene product(s) in transgenic organisms in amounts or proportions that differ from that of normal or non-transformed organisms.
"Null mutant" refers to a host cell which either lacks the expression of a certain polypeptide or expresses a polypeptide which is inactive or does not have any detectable expected enzymatic function.
"Mature protein" or the term "mature" when used in describing a protein refers to a post-translationally processed polypeptide; i.e., one from which any pre- or propeptides present in the primary translation product have been removed. "Precursor protein" or the term "precursor" when used in describing a protein refers to the primary product of translation of mRNA; i.e., with pre- and propeptides still present. Pre- and propeptides may be but are not limited to intracellular localization signals.
A "chloroplast transit peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the chloroplast or other plastid types present in the cell in which the protein is made. "Chloroplast transit sequence" refers to a nucleotide sequence that encodes a chloroplast transit peptide. A "signal peptide" is an amino acid sequence which is translated in conjunction with a protein and directs the protein to the secretory system (Chrispeels (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53). If the protein is to be directed to a vacuole, a vacuolar targeting signal (supra) can further be added, or if to the endoplasmic reticulum, an endoplasmic reticulum retention signal (supra) may be added. If the protein is to be directed to the nucleus, any signal peptide present should be removed and instead a nuclear localization signal included (Raikhel (1992) Plant Phys. 700:1627-1632).
"Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. Examples of methods of plant transformation include Λgrobactetπ/m-mediated transformation (De Biaere et al. (1987) Meth. Enzymol. 143:277) and particle-accelerated or "gene gun" transformation technology (Klein et al. (1987) Nature (London) 327:70-73; U.S. Patent No. 4,945,050, incorporated herein by reference). Thus, isolated polynucleotides of the present invention can be incorporated into recombinant constructs, typically DNA constructs, capable of introduction into and replication in a host cell. Such a construct can be a vector that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell. A number of vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., Cloning Vectors: A Laboratory Manual, 1985, supp. 1987; Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989; and Flevin et al., Plant Molecular Biology Manual, Kluwer Academic Publishers, 1990. Typically, plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal. Standard recombinant DNA and molecular cloning techniques used herein are well known in the art and are described more fully in Sambrook et al. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 1989 (hereinafter "Maniatis").
"PCR" or "polymerase chain reaction" is well known by those skilled in the art as a technique used for the amplification of specific DNA segments (U.S. Patent Nos. 4,683,195 and 4,800,159). The present invention concerns an isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a first nucleotide sequence encoding a polypeptide of at least 50 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:10 and 14; (b) a second nucleotide sequence encoding a polypeptide of at least 50 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO:6; (c) a third nucleotide sequence encoding a polypeptide of at least 100 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2 and 8; (d) a fourth nucleotide sequence encoding a polypeptide of at least 140 amino acids having at least 90% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO: 12; and (e) a fifth nucleotide sequence encoding a polypeptide of at least 150 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO:4.
This invention also relates to the isolated complement of such polynucleotides, wherein the complement and the polynucleotide consist of the same number of nucleotides, and the nucleotide sequences of the complement and the polynucleotide have 100% complementarity.
Preferably, the nucleotide sequence comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs:1 , 3, 5, 7, 9, 11 , and 13, that codes for the polypeptide selected from the group consisting of SEQ ID NOs:2, 4, 6, 8, 10, 12, and 14.
Nucleic acid fragments encoding at a portion of several defense response proteins have been isolated and identified by comparison of random plant cDNA sequences to public databases containing nucleotide and protein sequences using the BLAST algorithms well known to those skilled in the art. The nucleic acid fragments of the instant invention may be used to isolate cDNAs and genes encoding homologous proteins from the same or other plant species. Isolation of homologous genes using sequence-dependent protocols is well known in the art. Examples of sequence-dependent protocols include, but are not limited to, methods of nucleic acid hybridization, and methods of DNA and RNA amplification as exemplified by various uses of nucleic acid amplification technologies (e.g., polymerase chain reaction, ligase chain reaction).
For example, genes encoding other ADP-ribosylation factor, Cdc48p homologue, LRR protein, receptor protein kinase, and tyrosine phosphatase, either as cDNAs or genomic DNAs, could be isolated directly by using all or a portion of the instant nucleic acid fragments as DNA hybridization probes to screen libraries from any desired plant employing methodology well known to those skilled in the art. Specific oligonucleotide probes based upon the instant nucleic acid sequences can be designed and synthesized by methods known in the art (Maniatis). Moreover, an entire sequence can be used directly to synthesize DNA probes by methods known to the skilled artisan such as random primer DNA labeling, nick translation, end-labeling techniques, or RNA probes using available in vitro transcription systems. In addition, specific primers can be designed and used to amplify a part or all of the instant sequences. The resulting amplification products can be labeled directly during amplification reactions or labeled after amplification reactions, and used as probes to isolate full length cDNA or genomic fragments under conditions of appropriate stringency.
In addition, two short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols to amplify longer nucleic acid fragments encoding homologous genes from DNA or RNA. The polymerase chain reaction may also be performed on a library of cloned nucleic acid fragments wherein the sequence of one primer is derived from the instant nucleic acid fragments, and the sequence of the other primer takes advantage of the presence of the polyadenylic acid tracts to the 3' end of the mRNA precursor encoding plant genes. Alternatively, the second primer sequence may be based upon sequences derived from the cloning vector. For example, the skilled artisan can follow the RACE protocol (Frohman et al. (1988) Proc. Natl. Acad. Sci. USA 85:8998-9002) to generate cDNAs by using PCR to amplify copies of the region between a single point in the transcript and the 3' or 5' end. Primers oriented in the 3' and 5' directions can be designed from the instant sequences. Using commercially available 3' RACE or 5' RACE systems (BRL), specific 3' or 5' cDNA fragments can be isolated (Ohara et al. (1989) Proc. Natl. Acad. Sci. USA 86:5673-5677; Loh et al. (1989) Science 243:217-220). Products generated by the 3' and 5' RACE procedures can be combined to generate full-length cDNAs (Frohman and Martin (1989) Techniques 7:165). Consequently, a polynucleotide comprising a nucleotide sequence of at least 30 (preferably at least 40, most preferably at least 60) contiguous nucleotides derived from a nucleotide sequence selected from the group consisting of SEQ ID NOs:1 , 3, 5, 7, 9, 11 , and 13 and the complement of such nucleotide sequences may be used in such methods to obtain a nucleic acid fragment encoding a substantial portion of an amino acid sequence of a polypeptide. Availability of the instant nucleotide and deduced amino acid sequences facilitates immunological screening of cDNA expression libraries. Synthetic peptides representing portions of the instant amino acid sequences may be synthesized. These peptides can be used to immunize animals to produce polyclonal or monoclonal antibodies with specificity for peptides or proteins comprising the amino acid sequences. These antibodies can be then be used to screen cDNA expression libraries to isolate full-length cDNA clones of interest (Lerner (1984)
Figure imgf000020_0001
Immunol. 36:1-34; Maniatis). In another embodiment, this invention concerns viruses and host cells comprising either the chimeric genes of the invention as described herein or an isolated polynucleotide of the invention as described herein. Examples of host ceils which can be used to practice the invention include, but are not limited to, yeast, bacteria, and plants.
As was noted above, the nucleic acid fragments of the instant invention may be used to create transgenic plants in which the disclosed polypeptides are present at higher or lower levels than normal or in cell types or developmental stages in which they are not normally found. This would have the effect of altering the level of disease resistance (e.g., resistance to rice blast, sheath blight, or bacterial blight) in those cells.
Genetic markers closely linked to important genes may be used to indirectly select for favorable alleles more efficiently than direct phenotypic selection (Lande and Thompson (1990) Genetics 724:543-546). A disease resistance locus or loci can be introgressed into non-resistant rice germplasm using one or more polynucleotides of the present invention for marker-assisted selection among rice lines or varieties to be used in a rice breeding program. The method of introgressing can involve restriction fragment length polymorphism ("RFLP") analysis, RAPD analysis, microsatellite analysis or single nucleotide polymorphism ("SNP") analysis. Methods for the use of genetically mapped loci associated with disease resistance for marker-assisted selection during introgression of disease resistance into non-resistant germplasm have been described in US Patent No. 5,491 ,081, the entire contents of which are herein incorporated by reference. Overexpression of the proteins of the instant invention may be accomplished by first constructing a chimeric gene in which the coding region is operably linked to a promoter capable of directing expression of a gene in the desired tissues at the desired stage of development. The chimeric gene may comprise promoter sequences and translation leader sequences derived from the same genes. 3' Non- coding sequences encoding transcription termination signals may also be provided. The instant chimeric gene may also comprise one or more introns in order to facilitate gene expression.
Plasmid vectors comprising the instant isolated polynucleotide (or chimeric gene) may be constructed. The choice of plasmid vector is dependent upon the method that will be used to transform host plants. The skilled artisan is well aware of the genetic elements that must be present on the plasmid vector in order to successfully transform, select and propagate host cells containing the chimeric gene. The skilled artisan will also recognize that different independent transformation events will result in different levels and patterns of expression (Jones et al. (1985) EMBO J. 4:2411-2418; De Almeida et al. (1989) Mol. Gen. Genetics 278:78-86), and thus that multiple events must be screened in order to obtain lines displaying the desired expression level and pattern. Such screening may be accomplished by Southern analysis of DNA, Northern analysis of mRNA expression, Western analysis of protein expression, or phenotypic analysis.
For some applications it may be useful to direct the instant polypeptides to different cellular compartments, or to facilitate its secretion from the cell. It is thus envisioned that the chimeric gene described above may be further supplemented by directing the coding sequence to encode the instant polypeptides with appropriate intracellular targeting sequences such as transit sequences (Keegstra (1989) Cell 56:247-253), signal sequences or sequences encoding endoplasmic reticulum localization (Chrispeels (1991) Ann. Rev. Plant Phys. Plant Mol. Biol. 42:21-53), or nuclear localization signals (Raikhel (1992) Plant Phys.1 OO: 1627-1632) with or without removing targeting sequences that are already present. While the references cited give examples of each of these, the list is not exhaustive and more targeting signals of use may be discovered in the future.
It may also be desirable to reduce or eliminate expression of genes encoding the instant polypeptides in plants for some applications. In order to accomplish this, a chimeric gene designed for co-suppression of the instant polypeptide can be constructed by linking a gene or gene fragment encoding that polypeptide to plant promoter sequences. Alternatively, a chimeric gene designed to express antisense RNA for all or part of the instant nucleic acid fragment can be constructed by linking the gene or gene fragment in reverse orientation to plant promoter sequences. Either the co-suppression or antisense chimeric genes could be introduced into plants via transformation wherein expression of the corresponding endogenous genes are reduced or eliminated.
Molecular genetic solutions to the generation of plants with altered gene expression have a decided advantage over more traditional plant breeding approaches. Changes in plant phenotypes can be produced by specifically inhibiting expression of one or more genes by antisense inhibition or cosuppression (U.S. Patent Nos. 5,190,931 , 5,107,065 and 5,283,323). An antisense or cosuppression construct would act as a dominant negative regulator of gene activity. While conventional mutations can yield negative regulation of gene activity these effects are most likely recessive. The dominant negative regulation available with a transgenic approach may be advantageous from a breeding perspective. In addition, the ability to restrict the expression of a specific phenotype to the reproductive tissues of the plant by the use of tissue specific promoters may confer agronomic advantages relative to conventional mutations which may have an effect in all tissues in which a mutant gene is ordinarily expressed.
The person skilled in the art will know that special considerations are associated with the use of antisense or cosuppression technologies in order to reduce expression of particular genes. For example, the proper level of expression of sense or antisense genes may require the use of different chimeric genes utilizing different regulatory elements known to the skilled artisan. Once transgenic plants are obtained by one of the methods described above, it will be necessary to screen individual transgenics for those that most effectively display the desired phenotype. Accordingly, the skilled artisan will develop methods for screening large numbers of transformants. The nature of these screens will generally be chosen on practical grounds. For example, one can screen by looking for changes in gene expression by using antibodies specific for the protein encoded by the gene being suppressed, or one could establish assays that specifically measure enzyme activity. A preferred method will be one which allows large numbers of samples to be processed rapidly, since it will be expected that a large number of transformants will be negative for the desired phenotype.
In another embodiment, the present invention concerns a polypeptide selected from the group consisting of: (a) a receptor protein kinase or tyrosine phosphatase polypeptide of at least 50 amino acids having at least 80% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:10 and 14; (b) an LRR polypeptide of at least 50 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO:6; (c) an ADP-ribosylation factor or receptor protein kinase polypeptide of at least 100 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide selected from the group consisting of SEQ ID NOs:2 and 8; (d) a receptor protein kinase polypeptide of at least 140 amino acids having at least 90% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO: 12; and (e) a Cdc48p homologue polypeptide of at least 150 amino acids having at least 85% identity based on the Clustal method of alignment when compared to a polypeptide of SEQ ID NO:4.
The instant polypeptides (or portions thereof) may be produced in heterologous host cells, particularly in the cells of microbial hosts, and can be used to prepare antibodies to these proteins by methods well known to those skilled in the art. The antibodies are useful for detecting the polypeptides of the instant invention in situ in cells or in vitro in cell extracts. Preferred heterologous host cells for production of the instant polypeptides are microbial hosts. Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. Any of these could be used to construct a chimeric gene for production of the instant polypeptides. This chimeric gene could then be introduced into appropriate microorganisms via transformation to provide high level expression of the encoded defense response protein. An example of a vector for high level expression of the instant polypeptides in a bacterial host is provided (Example 12). All or a substantial portion of the polynucleotides of the instant invention may also be used as probes for genetically and physically mapping the genes that they are a part of, and used as markers for traits linked to those genes. Such information may be useful in plant breeding in order to develop lines with desired phenotypes. For example, the instant nucleic acid fragments may be used as restriction fragment length polymorphism (RFLP) markers. Southern blots
(Maniatis) of restriction-digested plant genomic DNA may be probed with the nucleic acid fragments of the instant invention. The resulting banding patterns may then be subjected to genetic analyses using computer programs such as MapMaker (Lander et al. (1987) Genomics 7:174-181) in order to construct a genetic map. In addition, the nucleic acid fragments of the instant invention may be used to probe Southern blots containing restriction endonuclease-treated genomic DNAs of a set of individuals representing parent and progeny of a defined genetic cross. Segregation of the DNA polymorphisms is noted and used to calculate the position of the instant nucleic acid sequence in the genetic map previously obtained using this population (Botstein et al. (1980) Am. J. Hum. Genet. 32:314-331).
The production and use of plant gene-derived probes for use in genetic mapping is described in Bernatzky and Tanksley (1986) Plant Mol. Biol. Reporter 4:37-41. Numerous publications describe genetic mapping of specific cDNA clones using the methodology outlined above or variations thereof. For example, F2 intercross populations, backcross populations, randomly mated populations, near isogenic lines, and other sets of individuals may be used for mapping. Such methodologies are well known to those skilled in the art.
Nucleic acid probes derived from the instant nucleic acid sequences may also be used for physical mapping (i.e., placement of sequences on physical maps; see Hoheisel et al. In: Nonmammalian Genomic Analysis: A Practical Guide, Academic press 1996, pp. 319-346, and references cited therein). Nucleic acid probes derived from the instant nucleic acid sequences may be used in direct fluorescence in situ hybridization (FISH) mapping (Trask (1991) Trends Genet. 7:149-154). Although current methods of FISH mapping favor use of large clones (several to several hundred KB; see Laan et al. (1995) Genome Res. 5:13-20), improvements in sensitivity may allow performance of FISH mapping using shorter probes.
A variety of nucleic acid amplification-based methods of genetic and physical mapping may be carried out using the instant nucleic acid sequences. Examples include allele-specific amplification (Kazazian (1989) J. Lab. Clin. Med. 77:95-96), polymorphism of PCR-amplified fragments (CAPS; Sheffield et al. (1993) Genomics 76:325-332), allele-specific ligation (Landegren et al. (1988) Science 247:1077-1080), nucleotide extension reactions (Sokolov (1990) Nucleic Acid Res. 78:3671), Radiation Hybrid Mapping (Walter et al. (1997) Nat. Genet 7:22-28) and Happy Mapping (Dear and Cook (1989) Nucleic Acid Res. 77:6795-6807). For these methods, the sequence of a nucleic acid fragment is used to design and produce primer pairs for use in the amplification reaction or in primer extension reactions. The design of such primers is well known to those skilled in the art. In methods employing PCR-based genetic mapping, it may be necessary to identify DNA sequence differences between the parents of the mapping cross in the region corresponding to the instant nucleic acid sequence. This, however, is generally not necessary for mapping methods.
Loss of function mutant phenotypes may be identified for the instant cDNA clones either by targeted gene disruption protocols or by identifying specific mutants for these genes contained in a maize population carrying mutations in all possible genes (Ballinger and Benzer (1989) Proc. Natl. Acad. Sci USA 86:9402-9406; Koes et al. (1995) Proc. Natl. Acad. Sci USA 92:8149-8153; Bensen et al. (1995) Plant Cell 7:75-84). The latter approach may be accomplished in two ways. First, short segments of the instant nucleic acid fragments may be used in polymerase chain reaction protocols in conjunction with a mutation tag sequence primer on DNAs prepared from a population of plants in which Mutator transposons or some other mutation-causing DNA element has been introduced (see Bensen, supra). The amplification of a specific DNA fragment with these primers indicates the insertion of the mutation tag element in or near the plant gene encoding the instant polypeptides. Alternatively, the instant nucleic acid fragment may be used as a hybridization probe against PCR amplification products generated from the mutation population using the mutation tag sequence primer in conjunction with an arbitrary genomic site primer, such as that for a restriction enzyme site-anchored synthetic adaptor. With either method, a plant containing a mutation in the endogenous gene encoding the instant polypeptides can be identified and obtained. This mutant plant can then be used to determine or confirm the natural function of the instant polypeptides disclosed herein. EXAMPLES
The present invention is further defined in the following Examples, in which parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
The disclosure of each reference set forth herein is incorporated herein by reference in its entirety.
EXAMPLE 1 Composition of cDNA Libraries: Isolation and Sequencing of cDNA Clones cDNA libraries representing mRNAs from various rice tissues were prepared. The characteristics of the libraries are described below.
TABLE 2 cDNA Libraries from Rice
Library Tissue Clone rlOn Rice 15 Day Old Leaf rl0n.pk0015.a6 rl0n.pk0024.f6 rlr24 Resistant Rice Leaf 15 Days After Germination, 24 rlr24.pk0080.e3 Hours After Infection of Strain Magnaporthe grisea 4360-R-62 (AVR2-YAMO) rlrδ Resistant Rice Leaf 15 Days After Germination, 6 rlr6.pk0001.d 1 Hours After Infection of Strain Magnaporthe grisea 4360-R-62 (AVR2-YAMO) rls24 Susceptible Rice Leaf 15 Days After Germination, 24 rls24.pk0011.hi 1 Hours After Infection of Strain Magnaporthe grisea 4360-R-67 (AVR2-YAMO) rlsδ Susceptible Rice Leaf 15 Days After Germination, 6 rls6.pk0076.f3 Hours After Infection of Strain Magnaporthe grisea rls6.pk0077.b1 4360-R-67 (AVR2-YAMO)
This library was normalized essentially as described in U.S. Patent No. 5,482,845, incorporated herein by reference.
cDNA libraries may be prepared by any one of many methods available. For example, the cDNAs may be introduced into plasmid vectors by first preparing the cDNA libraries in Uni-ZAP™ XR vectors according to the manufacturer's protocol (Stratagene Cloning Systems, La Jolla, CA). The Uni-ZAP™ XR libraries are converted into plasmid libraries according to the protocol provided by Stratagene. Upon conversion, cDNA inserts will be contained in the plasmid vector pBluescript. In addition, the cDNAs may be introduced directly into precut Biuescript II SK(+) vectors (Stratagene) using T4 DNA ligase (New England Biolabs), followed by transfection into DH10B cells according to the manufacturer's protocol (GIBCO BRL Products). Once the cDNA inserts are in plasmid vectors, plasmid DNAs are prepared from randomly picked bacterial colonies containing recombinant pBluescript plasmids, or the insert cDNA sequences are amplified via polymerase chain reaction using primers specific for vector sequences flanking the inserted cDNA sequences. Amplified insert DNAs or plasmid DNAs are sequenced in dye- primer sequencing reactions to generate partial cDNA sequences (expressed sequence tags or "ESTs"; see Adams et al., (1991) Science 252:1651-1656). The resulting ESTs are analyzed using a Perkin Elmer Model 377 fluorescent sequencer. Full-insert sequence (FIS) data is generated utilizing a modified transposition protocol. Clones identified for FIS are recovered from archived glycerol stocks as single colonies, and plasmid DNAs are isolated via alkaline lysis. Isolated DNA templates are reacted with vector primed M13 forward and reverse oligonucleotides in a PCR-based sequencing reaction and loaded onto automated sequencers. Confirmation of clone identification is performed by sequence alignment to the original EST sequence from which the FIS request is made.
Confirmed templates are transposed via the Primer Island transposition kit (PE Applied Biosystems, Foster City, CA) which is based upon the Saccharomyces cerevisiae Ty1 transposable element (Devine and Boeke (1994) Nucleic Acids Res. 22:3765-3772). The in vitro transposition system places unique binding sites randomly throughout a population of large DNA molecules. The transposed DNA is then used to transform DH10B electro-competent cells (Gibco BRL/Life Technologies, Rockville, MD) via electroporation. The transposable element contains an additional selectable marker (named DHFR; Fling and Richards (1983) Nucleic Acids Res. 77:5147-5158), allowing for dual selection on agar plates of only those subclones containing the integrated transposon. Multiple subclones are randomly selected from each transposition reaction, plasmid DNAs are prepared via alkaline lysis, and templates are sequenced (ABI Prism dye-terminator ReadyReaction mix) outward from the transposition event site, utilizing unique primers specific to the binding sites within the transposon.
Sequence data is collected (ABI Prism Collections) and assembled using Phred/Phrap (P. Green, University of Washington, Seattle). Phrep/Phrap is a public domain software program which re-reads the ABI sequence data, re-calls the bases, assigns quality values, and writes the base calls and quality values into editable output files. The Phrap sequence assembly program uses these quality values to increase the accuracy of the assembled sequence contigs. Assemblies are viewed by the Consed sequence editor (D. Gordon, University of Washington, Seattle). In some of the clones the cDNA fragment corresponds to a portion of the 3'-terminus of the gene and does not cover the entire open reading frame. In order to obtain the upstream information one of two different protocols are used. The first of these methods results in the production of a fragment of DNA containing a portion of the desired gene sequence while the second method results in the production of a fragment containing the entire open reading frame. Both of these methods use two rounds of PCR amplification to obtain fragments from one or more libraries. The libraries some times are chosen based on previous knowledge that the specific gene should be found in a certain tissue and some times are randomly-chosen. Reactions to obtain the same gene may be performed on several libraries in parallel or on a pool of libraries. Library pools are normally prepared using from 3 to 5 different libraries and normalized to a uniform dilution. In the first round of amplification both methods use a vector-specific (forward) primer corresponding to a portion of the vector located at the 5'-terminus of the clone coupled with a gene-specific (reverse) primer. The first method uses a sequence that is complementary to a portion of the already known gene sequence while the second method uses a gene-specific primer complementary to a portion of the 3'-untranslated region (also referred to as UTR). In the second round of amplification a nested set of primers is used for both methods. The resulting DNA fragment is ligated into a pBluescript vector using a commercial kit and following the manufacturer's protocol. This kit is selected from many available from several vendors including Invitrogen (Carlsbad, CA), Promega Biotech (Madison, Wl), and Gibco-BRL (Gaithersburg, MD). The plasmid DNA is isolated by alkaline lysis method and submitted for sequencing and assembly using Phred/Phrap, as above.
EXAMPLE 2 Identification of cDNA Clones cDNA clones encoding defense response were identified by conducting BLAST (Basic Local Alignment Search Tool; Altschul et al. (1993) J. Mol. Biol. 275:403-410; see also the explanation of the BLAST algorithm on the world wide web site for the National Center for Biotechnology Information at the National Library of Medicine of the National Institutes of Health) searches for similarity to sequences contained in the BLAST "nr" database (comprising all non-redundant GenBank CDS translations, sequences derived from the 3-dimensional structure Brookhaven Protein Data Bank, the last major release of the SWISS-PROT protein sequence database, EMBL, and DDBJ databases). The cDNA sequences obtained in Example 1 were analyzed for similarity to all publicly available DNA sequences contained in the "nr" database using the BLASTN algorithm provided by the National Center for Biotechnology Information (NCBI). The DNA sequences were translated in all reading frames and compared for similarity to all publicly available protein sequences contained in the "nr" database using the BLASTX algorithm (Gish and States (1993) Nat. Genet. 3:266-272) provided by the NCBI. For convenience, the P-value (probability) of observing a match of a cDNA sequence to a sequence contained in the searched databases merely by chance as calculated by BLAST are reported herein as "pLog" values, which represent the negative of the logarithm of the reported P-value. Accordingly, the greater the pLog value, the greater the likelihood that the cDNA sequence and the BLAST "hit" represent homologous proteins.
ESTs submitted for analysis are compared to the genbank database as described above. ESTs that contain sequences more 5- or 3-prime can be found by using the BLASTN algorithm (Altschul et al (1997) Nucleic Acids Res.
25:3389-3402.) against the Du Pont proprietary database comparing nucleotide sequences that share common or overlapping regions of sequence homology. Where common or overlapping sequences exist between two or more nucleic acid fragments, the sequences can be assembled into a single contiguous nucleotide sequence, thus extending the original fragment in either the 5 or 3 prime direction. Once the most 5-prime EST is identified, its complete sequence can be determined by Full Insert Sequencing as described in Example 1. Homologous genes belonging to different species can be found by comparing the amino acid sequence of a known gene (from either a proprietary source or a public database) against an EST database using the TBLASTN algorithm. The TBLASTN algorithm searches an amino acid query against a nucleotide database that is translated in all 6 reading frames. This search allows for differences in nucleotide codon usage between different species, and for codon degeneracy.
EXAMPLE 3 Characterization of cDNA Clone Encoding ADP-Ribosylation Factor
The BLASTX search using the EST sequence from the clone listed in Table 3 revealed similarity of the polypeptide encoded by the cDNA to ADP-ribosylation factor from Zea mays (NCBI General Identifier No. 1351974). Shown in Table 3 is the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), sequences of contigs assembled from an FIS and one or more ESTs ("Contig*"), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR ("CGS"):
TABLE 3
BLAST Result for Sequence Encoding Polypeptide Homologous to ADP-Ribosylation Factor
BLAST pLog Score Clone Status 1351974 rlr24.pk0080.e3 EST 48.00
Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of an ADP-ribosylation factor. A rice ADP-ribosylation factor has been described previously (NCBI GenBank Identifier (Gl) No. 1703380).
EXAMPLE 4 Characterization of cDNA Clone Encoding Cdc48p Homologue The BLASTX search using the EST sequence from the clone listed in Table 4 revealed similarity of the polypeptide encoded by the cDNA to Cdc48p from Saccharomyces cerevisiae (NCBI General Identifier No. 6320077). Shown in Table 4 is the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), sequences of contigs assembled from an FIS and one or more ESTs ("Contig*"). or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR ("CGS"):
TABLE 4 BLAST Results for Sequences Encoding Polypeptides Homologous to Cdc48p
BLAST pLog Score Clone Status 6320077 rls24.pk0011.h11 EST 41.00
Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of a Cdc48p homologue.
EXAMPLE 5 Characterization of cDNA Clone Encoding LRR Protein The BLASTX search using the EST sequence from clones listed in Table 5 revealed similarity of the polypeptide encoded by the cDNA the LRR protein LRP from Lycopersicon esculentum (NCBI General Identifier No. 1619300). Shown in Table 5 is the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), sequences of contigs assembled from an FIS and one or more ESTs ("Contig*"), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR ("CGS"): TABLE 5
BLAST Results for Sequences Encoding Polypeptides Homologous to LRR Protein LRP
BLAST pLog Score Clone Status 1619300 rls6.pk0076.f3 EST 59.15
Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of an LRR protein. A rice polynucleotide encoding a substantial portion of an LRR protein has been described previously (NCBI Gl No. 6498429).
EXAMPLE 6 Characterization of cDNA Clones Encoding Receptor Protein Kinase
The BLASTX search using the EST sequences from clones listed in Table 6 revealed similarity of the polypeptides encoded by the cDNAs to receptor protein kinases from Arabidopsis thaliana (NCBI General Identifier No. 3269291 and 2252830) and Oryza sativa (NCBI General Identifier No. 1076755). Shown in Table 6 are the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), sequences of contigs assembled from an FIS and one or more ESTs ("Contig*"), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR ("CGS"):
TABLE 6
BLAST Results for Sequences Encoding Polypeptides Homologous to Receptor Protein Kinase
BLAST Results Clone Status Gl No. pLog Score rl0n.pk0015.a6 EST 2252830 42.40 rls6.pk0077.b1 EST 3269291 39.30 rl0n.pk0024.f6 EST 1076755 79.22
Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragments comprising the instant cDNA clones encode a substantial portion of a receptor protein kinase. A rice polynucleotide encoding a receptor protein kinase has been described previously (Zhao et al. (1994) Plant Mol Biol 26:791-803; .NCBI Gl No. 1076755). EXAMPLE 7
Characterization of cDNA Clone Encoding Tyrosine Phosphatase
The BLASTX search using the EST sequence from the clone listed in Table 7 revealed similarity of the polypeptides encoded by the cDNAs to tyrosine phosphatase from Arabidopsis thaliana (NCBI General Identifier No. 6522932).
Shown in Table 7 are the BLAST results for individual ESTs ("EST"), the sequences of the entire cDNA inserts comprising the indicated cDNA clones ("FIS"), the sequences of contigs assembled from two or more ESTs ("Contig"), sequences of contigs assembled from an FIS and one or more ESTs ("Contig*"), or sequences encoding an entire protein derived from an FIS, a contig, or an FIS and PCR
("CGS"):
TABLE 7
BLAST Results for Sequences Encoding Polypeptides Homologous to Tyrosine Phosphatase
BLAST pLog Score Clone Status 6522932 rlr6.pk0001.c11 FIS 64.40
Sequence alignments, BLAST scores and probabilities indicate that the nucleic acid fragment comprising the instant cDNA clone encodes a substantial portion of a tyrosine phosphatase.
EXAMPLE 8 Genetic Mapping of Rice Clones
Genomic DNA was extracted from young leaves of rice varieties IR64 and Azucena as described by Dellaporta et al. (1984) in Molecular Biology of Plants. A Laboratory Course Manual (M. Russell, Eds.), pp. 36-37. About 2 μg aliquots of IR64 and Azucena genomic DNA were each digested with a restriction enzyme (BamHI, BglW, Dra\, EcoRI, EcoRV, Hindlll, Pstl, Xbal, Clal, Hpnl, Kpnl, Nsil, PvuW, Sac , Sacll, Sail, Smal, and Xhol). The digested DNA were then fractionated in a 0.8% agarose gel by electrophoresis. Southern blot hybridization of the fractionated DNA with probes prepared from the rice clones disclosed herein was carried out using standard procedures (Maniatis). Washing stringency in Southern analysis was 1 % SDS and 0.5X SSC at 65°C.
The mapping population consisted of 111 doubled haploid (DH) lines developed from a cross between indica variety IR64 and japonica variety Azucena (Huang et al. (1994) Rice Genet Newsl 77:134-137; Huang et al. (1997) Molecular Breeding 3:105-113; Maheswaran et al. (1997) Theor Appl Genet 94:39-45). The genetic linkage map constructed in the DH mapping population contained 270 restriction fragment length polymorphism (RFLP) markers. Using the Mapmaker program (Lander et al. (1987) Genomics 7:174-181) (version 3.0), the chromosomal location of the clones disclosed herein in the genetic linkage map was determined via the restriction fragment length polymorphisms the clones detected in the Southern blot analysis (described above).
Figure 1 shows the chromosomal location of the rice clones disclosed herein in the rice linkage map. Map positions of quantitative trait loci (QTL) for blast resistance were inferred from a study by Wang et al. (1994) Genetics 736:1421-1434. QTLs for bacterial blight are from Li et al. (1999) Mol Gen Genet 267:58-63, and QTLs for sheath blight from Li et al. (1995) TheorAppl Genet 97:382-388. Clones rls6.pk0076.f3 (designated 3F1) and rls6.pk0077.b1 (3G1) map to chromosome 1 , clones rl0n.pk0015.a6 (1G5) and rls24.pk0011.h11 (2A10) map to chromosome 3, clone rl0n.pk0024.f6 (1 H6) maps to chromosome 6, and clones rlr6.pk0001.c11 (2E5) and rlr24.pk0080.e3 (2F2) map to chromosome 12. It is to be noted that these clones map to the same regions where loci involved in resistance to rice blast, sheath blight, and bacterial blight are located (Wang et al.
(1994) Genetics 736:1421-1434; Li et al. (1999) Mol Gen Genet 267:58-63; Li et al.
(1995) TheorAppl Genet 97:382-388; Yu et al. (1991) TheorAppl Genet 81:47 -476; Causse et al. (1994) Genetics 738:1251-1274; McCouch et al. (1994) in Rice Blast Disease (Zeigler, Leong, and Teng, Eds.), pp. 167-186), adding further support that the rice clones disclosed herein may indeed encode polypeptides involved in the rice plant defense response.
EXAMPLE 9 Expression Analysis of clone rl0n.pk0024.f6 Leaf samples for RNA isolation were collected from seedlings of rice variety
C101A51 and CO39 at different time points after inoculation with Magnaporthe grisea isolate PO6-6 (provided by H. Leung, IRRI, Philippines). Three-week-old rice plants were inoculated with a spore suspension at a concentration of 1x 105 spores/ml. The inoculated plants were placed in a dew chamber for 24 h at 26°C and subsequently transferred to a growth chamber under 12 h light, 12 h dark, 25°C, and 90% humidity. Disease reactions were scored 6-7 days after inoculation using the scoring system described by Bonman et al. (1986) Plant Disease 70:767-769. Total RNA was isolated using TRIZOL Reagent (Life Technologies). Approximately 20 μg RNA per lane was separated in a 1 % formaldehyde-agarose gel and transferred to a Hybond-N+ membrane (Amersham) according to the manufacturer's instructions. Similar amount of RNA loaded per lane was confirmed by hybridizing the resulting filter to labeled rice ribosomal DNA. The Northern hybridization was carried out under the same conditions as the Southern hybridization method (Maniatis). Washing stringency in Northern analysis was 1% SDS and 0.5 X SSC at 65°C. Figure 2 shows the results of the Northern analysis. In panel A, it can be seen that the gene comprising the insert in clone rl0n.pk0024.f6 (designated 1 H6 in the figure) was induced as early as 4 h after blast infection and returned to normal levels 48 h after inoculation. There was no difference in the expression levels between the resistant (C101A51) and susceptible (CO39) plants. The increase in expression level suggests a role for the gene comprising the insert in clone rl0n.pk0024.f6 during the defense response to rice blast. EXAMPLE 10
Expression of Chimeric Genes in Monocot Cells A chimeric gene comprising a cDNA encoding the instant polypeptide in sense orientation with respect to the maize 27 kD zein promoter that is located 5' to the cDNA fragment, and the 10 kD zein 3' end that is located 3' to the cDNA fragment, can be constructed. The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites (Ncol or Smal) can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the digested vector pML103 as described below. Amplification is then performed in a standard PCR. The amplified DNA is then digested with restriction enzymes Ncol and Smal and fractionated on an agarose gel. The appropriate band can be isolated from the gel and combined with a 4.9 kb Ncol-Smal fragment of the plasmid pML103. Plasmid pML103 has been deposited under the terms of the Budapest Treaty at ATCC (American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209), and bears accession number ATCC 97366. The DNA segment from pML103 contains a 1.05 kb Sall-Ncol promoter fragment of the maize 27 kD zein gene and a 0.96 kb Smal-Sall fragment from the 3' end of the maize 10 kD zein gene in the vector pGem9Zf(+) (Promega). Vector and insert DNA can be ligated at 15°C overnight, essentially as described (Maniatis). The ligated DNA may then be used to transform E. co//XL1-Blue (Epicurian Coli XL-1 Blue™; Stratagene). Bacterial transformants can be screened by restriction enzyme digestion of plasmid DNA and limited nucleotide sequence analysis using the dideoxy chain termination method (Sequenase™ DNA Sequencing Kit; U.S. Biochemical). The resulting plasmid construct would comprise a chimeric gene encoding, in the 5' to 3' direction, the maize 27 kD zein promoter, a cDNA fragment encoding the instant polypeptide, and the 10 kD zein 3' region. The chimeric gene described above can then be introduced into corn cells by the following procedure. Immature corn embryos can be dissected from developing caryopses derived from crosses of the inbred corn lines H99 and LH132. The embryos are isolated 10 to 11 days after pollination when they are 1.0 to 1.5 mm long. The embryos are then placed with the axis-side facing down and in contact with agarose-solidified N6 medium (Chu et al. (1975) Sci. Sin. Peking 18:659-668). The embryos are kept in the dark at 27°C. Friable embryogenic callus consisting of undifferentiated masses of cells with somatic proembr oids and embryoids borne on suspensor structures proliferates from the scutellum of these immature embryos. The embryogenic callus isolated from the primary expiant can be cultured on N6 medium and sub-cultured on this medium every 2 to 3 weeks.
The plasmid, p35S/Ac (obtained from Dr. Peter Eckes, Hoechst Ag, Frankfurt, Germany) may be used in transformation experiments in order to provide for a selectable marker. This plasmid contains the Pat gene (see European Patent Publication 0 242 236) which encodes phosphinothricin acetyl transferase (PAT). The enzyme PAT confers resistance to herbicidal glutamine synthetase inhibitors such as phosphinothricin. The pat gene in p35S/Ac is under the control of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 313:810-812) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacte um tumefaciens.
The particle bombardment method (Klein et al. (1987) Nature 327:70-73) may be used to transfer genes to the callus culture cells. According to this method, gold particles (1 μm in diameter) are coated with DNA using the following technique. Ten μg of plasmid DNAs are added to 50 μL of a suspension of gold particles (60 mg per mL). Calcium chloride (50 μL of a 2.5 M solution) and spermidine free base (20 μL of a 1.0 M solution) are added to the particles. The suspension is vortexed during the addition of these solutions. After 10 minutes, the tubes are briefly centrifuged (5 sec at 15,000 rpm) and the supernatant removed. The particles are resuspended in 200 μL of absolute ethanol, centrifuged again and the supernatant removed. The ethanol rinse is performed again and the particles resuspended in a final volume of 30 μL of ethanol. An aliquot (5 μL) of the DNA- coated gold particles can be placed in the center of a Kapton™ flying disc (Bio-Rad Labs). The particles are then accelerated into the corn tissue with a Biolistic™ PDS-1000/He (Bio-Rad Instruments, Hercules CA), using a helium pressure of 1000 psi, a gap distance of 0.5 cm and a flying distance of 1.0 cm.
For bombardment, the embryogenic tissue is placed on filter paper over agarose-solidified N6 medium. The tissue is arranged as a thin lawn and covered a circular area of about 5 cm in diameter. The petri dish containing the tissue can be placed in the chamber of the PDS-1000/He approximately 8 cm from the stopping screen. The air in the chamber is then evacuated to a vacuum of 28 inches of Hg. The macrocarrier is accelerated with a helium shock wave using a rupture membrane that bursts when the He pressure in the shock tube reaches 1000 psi. Seven days after bombardment the tissue can be transferred to N6 medium that contains bialophos (5 mg per liter) and lacks casein or proline. The tissue continues to grow slowly on this medium. After an additional 2 weeks the tissue can be transferred to fresh N6 medium containing bialophos. After 6 weeks, areas of about 1 cm in diameter of actively growing callus can be identified on some of the plates containing the bialophos-supplemented medium. These calli may continue to grow when sub-cultured on the selective medium.
Plants can be regenerated from the transgenic callus by first transferring clusters of tissue to N6 medium supplemented with 0.2 mg per liter of 2,4-D. After two weeks the tissue can be transferred to regeneration medium (Fromm et al. (1990) Bio/Technology 8:833-839).
EXAMPLE 11 Expression of Chimeric Genes in Dicot Cells A seed-specific expression cassette composed of the promoter and transcription terminator from the gene encoding the β subunit of the seed storage protein phaseolin from the bean Phaseolus vulgaris (Doyle et al. (1986) J. Biol. Chem. 261 :9228-9238) can be used for expression of the instant polypeptides in transformed soybean. The phaseolin cassette includes about 500 nucleotides upstream (5') from the translation initiation codon and about 1650 nucleotides downstream (3') from the translation stop codon of phaseolin. Between the 5' and 3' regions are the unique restriction endonuclease sites Ncol (which includes the ATG translation initiation codon), Smal, Kpnl and Xbal. The entire cassette is flanked by Hindlll sites.
The cDNA fragment of this gene may be generated by polymerase chain reaction (PCR) of the cDNA clone using appropriate oligonucleotide primers. Cloning sites can be incorporated into the oligonucleotides to provide proper orientation of the DNA fragment when inserted into the expression vector. Amplification is then performed as described above, and the isolated fragment is inserted into a pUC18 vector carrying the seed expression cassette. Soybean embryos may then be transformed with the expression vector comprising sequences encoding the instant polypeptide. To induce somatic embryos, cotyledons, 3-5 mm in length dissected from surface sterilized, immature seeds of the soybean cultivar A2872, can be cultured in the light or dark at 26°C on an appropriate agar medium for 6-10 weeks. Somatic embryos which produce secondary embryos are then excised and placed into a suitable liquid medium. After repeated selection for clusters of somatic embryos which multiplied as early, globular staged embryos, the suspensions are maintained as described below.
Soybean embryogenic suspension cultures can be maintained in 35 mL liquid media on a rotary shaker, 150 rpm, at 26°C with florescent lights on a 16:8 hour day/night schedule. Cultures are subcultured every two weeks by inoculating approximately 35 mg of tissue into 35 mL of liquid medium. Soybean embryogenic suspension cultures may then be transformed by the method of particle gun bombardment (Klein et al. (1987) Nature (London) 327:70-73, U.S. Patent No. 4,945,050). A DuPont Biolistic™ PDS1000/HE instrument (helium retrofit) can be used for these transformations.
A selectable marker gene which can be used to facilitate soybean transformation is a chimeric gene composed of the 35S promoter from Cauliflower Mosaic Virus (Odell et al. (1985) Nature 373:810-812), the hygromycin phosphotransferase gene from plasmid pJR225 (from E. coli; Gritz et al. (1983) Gene 25:179-188) and the 3' region of the nopaline synthase gene from the T-DNA of the Ti plasmid of Agrobacterium tumefaciens. The seed expression cassette comprising the phaseolin 5' region, the fragment encoding the instant polypeptide and the phaseolin 3' region can be isolated as a restriction fragment. This fragment can then be inserted into a unique restriction site of the vector carrying the marker gene.
To 50 μL of a 60 mg/mL 1 μm gold particle suspension is added (in order): 5 μL DNA (1 μg/μL), 20 μL spermidine (0.1 M), and 50 μL CaCl2 (2.5 M). The particle preparation is then agitated for three minutes, spun in a microfuge for 10 seconds and the supernatant removed. The DNA-coated particles are then washed once in 400 μL 70% ethanol and resuspended in 40 μL of anhydrous ethanol. The DNA/particle suspension can be sonicated three times for one second each. Five μL of the DNA-coated gold particles are then loaded on each macro carrier disk.
Approximately 300-400 mg of a two-week-old suspension culture is placed in an empty 60x15 mm petri dish and the residual liquid removed from the tissue with a pipette. For each transformation experiment, approximately 5-10 plates of tissue are normally bombarded. Membrane rupture pressure is set at 1100 psi and the chamber is evacuated to a vacuum of 28 inches mercury. The tissue is placed approximately 3.5 inches away from the retaining screen and bombarded three times. Following bombardment, the tissue can be divided in half and placed back into liquid and cultured as described above.
Five to seven days post bombardment, the liquid media may be exchanged with fresh media, and eleven to twelve days post bombardment with fresh media containing 50 mg/mL hygromycin. This selective media can be refreshed weekly. Seven to eight weeks post bombardment, green, transformed tissue may be observed growing from untransformed, necrotic embryogenic clusters. Isolated green tissue is removed and inoculated into individual flasks to generate new, clonally propagated, transformed embryogenic suspension cultures. Each new line may be treated as an independent transformation event. These suspensions can then be subcultured and maintained as clusters of immature embryos or regenerated into whole plants by maturation and germination of individual somatic embryos.
EXAMPLE 12 Expression of Chimeric Genes in Microbial Cells
The cDNAs encoding the instant polypeptides can be inserted into the T7 E. coli expression vector pBT430. This vector is a derivative of pET-3a (Rosenberg et al. (1987) Gene 56:125-135) which employs the bacteriophage T7 RNA polymerase/T7 promoter system. Plasmid pBT430 was constructed by first destroying the EcoRI and Hindlll sites in pET-3a at their original positions. An oligonucleotide adaptor containing EcoRI and Hind III sites was inserted at the BamHI site of pET-3a. This created pET-3aM with additional unique cloning sites for insertion of genes into the expression vector. Then, the Ndel site at the position of translation initiation was converted to an Ncol site using oligonucleotide-directed mutagenesis. The DNA sequence of pET-3aM in this region, 5-CATATGG, was converted to 5'-CCCATGG in pBT430.
Plasmid DNA containing a cDNA may be appropriately digested to release a nucleic acid fragment encoding the protein. This fragment may then be purified on a 1% low melting agarose gel. Buffer and agarose contain 10 μg/ml ethidium bromide for visualization of the DNA fragment. The fragment can then be purified from the agarose gel by digestion with GELase™ (Epicentre Technologies, Madison, Wl) according to the manufacturer's instructions, ethanol precipitated, dried and resuspended in 20 μL of water. Appropriate oligonucleotide adapters may be ligated to the fragment using T4 DNA ligase (New England Biolabs (NEB), Beverly, MA). The fragment containing the ligated adapters can be purified from the excess adapters using low melting agarose as described above. The vector pBT430 is digested, dephosphorylated with alkaline phosphatase (NEB) and deproteinized with phenol/chloroform as described above. The prepared vector pBT430 and fragment can then be ligated at 16°C for 15 hours followed by transformation into DH5 electrocompetent cells (GIBCO BRL). Transformants can be selected on agar plates containing LB media and 100 μg/mL ampicillin. Transformants containing the gene encoding the instant polypeptide are then screened for the correct orientation with respect to the T7 promoter by restriction enzyme analysis.
For high level expression, a plasmid clone with the cDNA insert in the correct orientation relative to the T7 promoter can be transformed into E. coli strain BL21(DE3) (Studier et al. (1986) J. Mol. Biol. 789:113-130). Cultures are grown in LB medium containing ampicillin (100 mg/L) at 25°C. At an optical density at ' 600 nm of approximately 1 , IPTG (isopropylthio-β-galactoside, the inducer) can be added to a final concentration of 0.4 mM and incubation can be continued for 3 h at 25°. Cells are then harvested by centrifugation and re-suspended in 50 μL of 50 mM Tris-HCI at pH 8.0 containing 0.1 mM DTT and 0.2 mM phenyl methylsulfonyl fluoride. A small amount of 1 mm glass beads can be added and the mixture sonicated 3 times for about 5 seconds each time with a microprobe sonicator. The mixture is centrifuged and the protein concentration of the supernatant determined. One μg of protein from the soluble fraction of the culture can be separated by SDS-polyacrylamide gel electrophoresis. Gels can be observed for protein bands migrating at the expected molecular weight.

Claims

CLAIMS What is claimed is:
1. An isolated polynucleotide comprising:
(a) a first nucleotide sequence encoding a first polypeptide comprising at least 50 amino acids, wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80% identity based on the Clustal alignment method,
(b) a second nucleotide sequence encoding a second polypeptide comprising at least 50 amino acids, wherein the amino acid sequence of the second polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 85% identity based on the Clustal alignment method,
(c) a third nucleotide sequence encoding a third polypeptide comprising at least 100 amino acids, wherein the amino acid sequence of the third polypeptide and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85% identity based on the Clustal alignment method,
(d) a fourth nucleotide sequence encoding a fourth polypeptide comprising at least 140 amino acids, wherein the amino acid sequence of the fourth polypeptide and the amino acid sequence of
SEQ ID NO:12 have at least 90% identity based on the Clustal alignment method, (d) a fifth nucleotide sequence encoding a fifth polypeptide comprising at least 150 amino acids, wherein the amino acid sequence of the fifth polypeptide and the amino acid sequence of SEQ ID NO:4 have at least 85% identity based on the Clustal alignment method, or (f) the complement of the first, second, third, fourth, or fifth nucleotide sequence, wherein the complement and the first, second, third, fourth, or fifth nucleotide sequence contain the same number of nucleotides and are 100% complementary.
2. The polynucleotide of Claim 1 , wherein the first and second polypeptides comprise at least 100 amino acids.
3. The polynucleotide of Claim 1 , wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 85% identity based on the Clustal alignment method.
4. The polynucleotide of Claim 1 , wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 90% identity based on the Clustal alignment method, wherein the amino acid sequence of the second polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 90% identity based on the Clustal alignment method, wherein the amino acid sequence of the third polypeptide and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 90% identity based on the Clustal alignment method, and wherein the amino acid sequence of the fifth polypeptide and the amino acid sequence of SEQ ID NO:4 have at least 90% identity based on the Clustal alignment method.
5. The polynucleotide of Claim 1 , wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 95% identity based on the Clustal alignment method, wherein the amino acid sequence of the second polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 95% identity based on the Clustal alignment method, wherein the amino acid sequence of the third polypeptide and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 95% identity based on the Clustal alignment method, wherein the amino acid sequence of the fourth polypeptide and the amino acid sequence of SEQ ID NO:12 have at least 95% identity based on the Clustal alignment method, and wherein the amino acid sequence of the fifth polypeptide and the amino acid sequence of SEQ ID NO:4 have at least 95% identity based on the Clustal alignment method.
6. The polynucleotide of Claim 1 , wherein the first polypeptide comprises the amino acid sequence of SEQ ID NO:10 or SEQ ID NO.14, wherein the second polypeptide comprises the amino acid sequence of SEQ ID NO:6, wherein the third polypeptide comprises the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8, wherein the fourth polypeptide comprises the amino acid sequence of SEQ ID NO: 12, and wherein the fifth polypeptide comprises the amino acid sequence of SEQ ID NO:4.
7. The polynucleotide of Claim 1 , wherein the first nucleotide sequence comprises the nucleotide sequence of SEQ ID NO:9 or SEQ ID NO:13, wherein the second nucleotide sequence comprises the nucleotide sequence of SEQ ID NO:5, wherein the third nucleotide sequence comprises the nucleotide sequence of SEQ ID NO:1 or SEQ ID NO:7, wherein the fourth nucleotide sequence comprises the nucleotide sequence of SEQ ID NO:11 , and wherein the fifth nucleotide sequence comprises the nucleotide sequence of SEQ ID NO:3.
8. The polynucleotide of Claim 1 , wherein the first polypeptide is a receptor protein kinase or a tyrosine phosphatase, wherein the second polypeptide is an LRR protein, wherein the third polypeptide is an ADP-ribosylation factor or a receptor protein kinase, wherein the fourth polypeptide is a receptor protein kinase, and wherein the fifth polypeptide is a Cdc48p homologue.
9. A recombinant DNA construct comprising the polynucleotide of Claim 1 operably linked to a regulatory sequence.
10. A vector comprising the polynucleotide of Claim 1.
11. A method for transforming a cell comprising transforming a cell with the polynucleotide of Claim 1.
12. A cell comprising the recombinant DNA construct of Claim 9.
13. A method for producing a plant comprising transforming a plant cell with the polynucleotide of Claim 1 and regenerating a plant from the transformed plant cell.
14. A plant comprising the recombinant DNA construct of Claim 9.
15. A seed comprising the recombinant DNA construct of Claim 9.
16. An isolated polynucleotide comprising a first nucleotide sequence, wherein the first nucleotide sequence contains at least 30 nucleotides, and wherein the first nucleotide sequence is comprised by another polynucleotide, wherein the other polynucleotide includes:
(a) a second nucleotide sequence, wherein the second nucleotide sequence encodes a polypeptide comprising at least 50 amino acids, wherein the amino acid sequence of the polypeptide and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80% identity based on the Clustal alignment method, or
(b) the complement of the second nucleotide sequence, wherein the complement and the second nucleotide sequence contain the same number of nucleotides and are 100% complementary.
17. An isolated polynucleotide comprising a first nucleotide sequence, wherein the first nucleotide sequence contains at least 30 nucleotides, and wherein the first nucleotide sequence is comprised by another polynucleotide, wherein the other polynucleotide includes:
(a) a second nucleotide sequence, wherein the second nucleotide sequence encodes a polypeptide comprising at least 50 amino acids, wherein the amino acid sequence of the polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 85% identity based on the Clustal alignment method, or (b) the complement of the second nucleotide sequence, wherein the complement and the second nucleotide sequence contain the same number of nucleotides and are 100% complementary.
18. An isolated polynucleotide comprising a first nucleotide sequence, wherein the first nucleotide sequence contains at least 30 nucleotides, and wherein the first nucleotide sequence is comprised by another polynucleotide, wherein the other polynucleotide includes:
(a) a second nucleotide sequence, wherein the second nucleotide sequence encodes a polypeptide comprising at least 100 amino acids, wherein the amino acid sequence of the polypeptide and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85% identity based on the Clustal alignment method, or
(b) the complement of the second nucleotide sequence, wherein the complement and the second nucleotide sequence contain the same number of nucleotides and are 100% complementary.
19. An isolated polynucleotide comprising a first nucleotide sequence, wherein the first nucleotide sequence contains at least 30 nucleotides, and wherein the first nucleotide sequence is comprised by another polynucleotide, wherein the other polynucleotide includes: (a) a second nucleotide sequence, wherein the second nucleotide sequence encodes a polypeptide comprising at least 140 amino acids, wherein the amino acid sequence of the polypeptide and the amino acid sequence of SEQ ID NO:12 have at least 90% identity based on the Clustal alignment method, or (b) the complement of the second nucleotide sequence, wherein the complement and the second nucleotide sequence contain the same number of nucleotides and are 100% complementary.
20. An isolated polynucleotide comprising a first nucleotide sequence, wherein the first nucleotide sequence contains at least 30 nucleotides, and wherein the first nucleotide sequence is comprised by another polynucleotide, wherein the other polynucleotide includes:
(a) a second nucleotide sequence, wherein the a second nucleotide sequence encodes a polypeptide comprising at least 150 amino acids, wherein the amino acid sequence of the polypeptide and the amino acid sequence of SEQ ID NO:4 have at least 85% identity based on the Clustal alignment method, or (b) the complement of the second nucleotide sequence, wherein the complement and the second nucleotide sequence contain the same number of nucleotides and are 100% complementary.
21. An isolated polypeptide comprising: (a) a first amino acid sequence comprising at least 50 amino acids, wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 80% identity based on the Clustal alignment method,
(b) a second amino acid sequence comprising at least 50 amino acids, wherein the second amino acid sequence and the amino acid sequence of SEQ ID NO:6 have at least 85% identity based on the Clustal alignment method,
(c) a third amino acid sequence comprising at least 100 amino acids, wherein the third amino acid sequence and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 85% identity based on the Clustal alignment method,
(d) a fourth amino acid sequence comprising at least 140 amino acids, wherein the fourth amino acid sequence and the amino acid sequence of SEQ ID NO: 12 have at least 90% identity based on the Clustal alignment method, or
(e) a fifth amino acid sequence comprising at least 150 amino acids, wherein the fifth amino acid sequence and the amino acid sequence of SEQ ID NO:4 have at least 85% identity based on the Clustal alignment method.
22. The polypeptide of Claim 21 , wherein the first and second amino acid sequences comprise at least 100 amino acids.
23. The polypeptide of Claim 21 , wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 85% identity based on the Clustal alignment method.
24. The polypeptide of Claim 21 , wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 90% identity based on the Clustal alignment method, wherein the second amino acid sequence and the amino acid sequence of SEQ ID NO:6 have at least 90% identity based on the Clustal alignment method, wherein the third amino acid sequence and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 90% identity based on the Clustal alignment method, and wherein the fifth amino acid sequence and the amino acid sequence of SEQ ID NO:4 have at least 90% identity based on the Clustal alignment method.
25. The polypeptide of Claim 21 , wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14 have at least 95% identity based on the Clustal alignment method, wherein the second amino acid sequence and the amino acid sequence of SEQ ID NO:6 have at least 95% identity based on the Clustal alignment method, wherein the third amino acid sequence and the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8 have at least 95% identity based on the Clustal alignment method, wherein the fourth amino acid sequence and the amino acid sequence of SEQ ID NO:12 have at least 95% identity based on the Clustal alignment method, and wherein the fifth amino acid sequence and the amino acid sequence of SEQ ID NO:4 have at least 95% identity based on the Clustal alignment method.
26. The polypeptide of Claim 21 , wherein the first amino acid sequence comprises the amino acid sequence of SEQ ID NO:10 or SEQ ID NO:14, wherein the second amino acid sequence comprises the amino acid sequence of SEQ ID NO:6, wherein the third amino acid sequence comprises the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:8, wherein the fourth amino acid sequence comprises the amino acid sequence of SEQ ID NO:12, and wherein the fifth amino acid sequence comprises the amino acid sequence of SEQ ID NO:4.
27. The polypeptide of Claim 21 , wherein the polypeptide is a receptor protein kinase, a tyrosine phosphatase, an LRR protein, an ADP-ribosylation factor, or a Cdc48p homologue.
28. A method for isolating a polypeptide encoded by the polynucleotide of Claim 1 comprising isolating the polypeptide from a cell containing a recombinant
DNA construct comprising the polynucleotide operably linked to a regulatory sequence.
29. A method of introgressing a disease resistance locus or loci into rice germplasm comprising using one or more polynucleotides of Claim 1 for marker assisted selection among rice lines or varieties to be used in a rice breeding program; further comprising introgressing the disease resistance locus or loci into the rice germplasm.
PCT/US2001/051383 2000-10-26 2001-10-26 Polynucleotides encoding defense response proteins WO2002042479A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/381,448 US20050074862A1 (en) 2001-10-26 2001-10-26 Polynucleotides encoding defense responde proteins
AU2002239796A AU2002239796A1 (en) 2000-10-26 2001-10-26 Polynucleotides encoding defense response proteins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24333500P 2000-10-26 2000-10-26
US60/243,335 2000-10-26

Publications (2)

Publication Number Publication Date
WO2002042479A2 true WO2002042479A2 (en) 2002-05-30
WO2002042479A3 WO2002042479A3 (en) 2003-06-05

Family

ID=22918342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/051383 WO2002042479A2 (en) 2000-10-26 2001-10-26 Polynucleotides encoding defense response proteins

Country Status (2)

Country Link
AU (1) AU2002239796A1 (en)
WO (1) WO2002042479A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034308A (en) * 2017-06-27 2017-08-11 上海市农业生物基因中心 The molecular labeling of Rice Resistance seasonal febrile diseases gene Pigm a kind of and its application
CN114292861A (en) * 2022-01-10 2022-04-08 中国水稻研究所 Rice immune negative regulatory protein OsPHD1, and mutant and application thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [Online] 19 March 2001 (2001-03-19) SASAKI T ET AL.: "Oryza sativa (japonica cultivar-group) genomic DNA, chromosome 1, BAC clone:B1070A12" Database accession no. AP003406 XP002218112 *
DATABASE EMBL [Online] EMBL11 January 1999 (1999-01-11) WING R.A. ET AL.: "nbxb0044A06r CUGI Rice BAC Library Oryza sativa genomic clone nbxb0044A06r, genomic survey sequence" Database accession no. AQ329019 XP002218111 *
HIGO HIROMI ET AL: "Molecular cloning and characterization of a cDNA encoding a small GTP-binding protein related to mammalian ADP-ribosylation factor from rice." PLANT SCIENCE (LIMERICK), vol. 100, no. 1, 1994, pages 41-49, XP001117519 ISSN: 0168-9452 *
RONALD ET AL: "The molecular basis of disease resistance in rice" PLANT MOLECULAR BIOLOGY, NIJHOFF PUBLISHERS, DORDRECHT, NL, no. 35, 1 September 1997 (1997-09-01), pages 179-186, XP002079544 ISSN: 0167-4412 *
SONG W-Y ET AL: "A RECEPTOR KINASE-LIKE PROTEIN ENCODED BY THE RICE DISEASE RESISTANCE GENE, XA21" SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 270, 15 December 1995 (1995-12-15), pages 1804-1806, XP002926429 ISSN: 0036-8075 *
WANG Z ET AL: "RICE ESTS WITH DISEASE-RESISTANCE GENE- OR DEFENSE-RESPONSE GENE-LIKE SEQUENCES MAPPED TO REGIONS CONTAINING MAJOR RESISTANCE GENES OR QTLS" MGG MOLECULAR GENETICS AND GENOMICS, SPRINGER VERLAG, BERLIN, DE, vol. 2, no. 265, April 2001 (2001-04), pages 302-310, XP001078851 ISSN: 1617-4615 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107034308A (en) * 2017-06-27 2017-08-11 上海市农业生物基因中心 The molecular labeling of Rice Resistance seasonal febrile diseases gene Pigm a kind of and its application
CN114292861A (en) * 2022-01-10 2022-04-08 中国水稻研究所 Rice immune negative regulatory protein OsPHD1, and mutant and application thereof
CN114292861B (en) * 2022-01-10 2023-05-23 中国水稻研究所 Rice immune negative regulation protein OsPHD1, mutant and application thereof

Also Published As

Publication number Publication date
WO2002042479A3 (en) 2003-06-05
AU2002239796A1 (en) 2002-06-03

Similar Documents

Publication Publication Date Title
US8692072B2 (en) Plant transcription factors
US8637732B2 (en) Plant MYB transcription factor homologs
US20160355834A1 (en) Polynucleotides and polypeptides involved in post-transcriptional gene silencing
CA2370017A1 (en) Plant defensins
US7572951B2 (en) Plant viral movement protein genes
EP1177307B1 (en) Disease resistance factors
US6867352B2 (en) Plant cellulose synthases
US6846972B1 (en) Plant disease resistance genes
WO2002042479A2 (en) Polynucleotides encoding defense response proteins
US20050074862A1 (en) Polynucleotides encoding defense responde proteins
US6278042B1 (en) Plant arsenic transporters
US6900369B2 (en) Plant choline phosphate cytidylyltransferase
WO2000036121A2 (en) Plant protein phosphatases
US20040053285A1 (en) Plant transcription factors
AU2002245193A1 (en) Plant transcription factors
WO2001025270A2 (en) PLANT APOPTOSIS INDUCING FACTORS (AIFs)
EP1141330A2 (en) Plant phosphatidylinositol metabolism proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10381448

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP