WO2002041430A2 - Brennstoffzellenanlage - Google Patents

Brennstoffzellenanlage Download PDF

Info

Publication number
WO2002041430A2
WO2002041430A2 PCT/DE2001/004266 DE0104266W WO0241430A2 WO 2002041430 A2 WO2002041430 A2 WO 2002041430A2 DE 0104266 W DE0104266 W DE 0104266W WO 0241430 A2 WO0241430 A2 WO 0241430A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell system
stack
bipolar plate
membrane electrode
Prior art date
Application number
PCT/DE2001/004266
Other languages
English (en)
French (fr)
Other versions
WO2002041430A3 (de
Inventor
Joachim Grosse
Manfred Poppinger
Rolf BRÜCK
Meike Reizig
Original Assignee
Siemens Aktiengesellschaft
Emitec Gesellschaft Für Emissionstechnologie Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Emitec Gesellschaft Für Emissionstechnologie Mbh filed Critical Siemens Aktiengesellschaft
Priority to EP01996901A priority Critical patent/EP1415364A2/de
Priority to JP2002543729A priority patent/JP2004514261A/ja
Priority to CA002429075A priority patent/CA2429075A1/en
Priority to AU2002218979A priority patent/AU2002218979A1/en
Priority to KR10-2003-7006723A priority patent/KR20030064789A/ko
Publication of WO2002041430A2 publication Critical patent/WO2002041430A2/de
Publication of WO2002041430A3 publication Critical patent/WO2002041430A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell system with at least one fuel cell module containing at least one fuel cell with a membrane electrode assembly and an associated bipolar plate.
  • a fuel cell module is usually formed from individual fuel cells for generating an elementary voltage as a stack of fuel cells from units connected electrically in series, which is also referred to in the technical terminology as a so-called “stack”.
  • MEA Membrane Electrode Assembly
  • the membrane-electrode units are each installed between two so-called current collectors, which are also referred to as collector plates or, in particular, as bipolar plates.
  • bipolar plates have two tasks, namely to collect the electrical current and to guide the gases to the MEA.
  • the bipolar plates must be in intimate contact with the respective electrode of the MEA over the entire surface of the electrode.
  • the bipolar plates have gas guide channels with which the fuel gas and the oxidant are brought to the most suitable point on the electrode. Cooling of the MEAs must also be provided. For this purpose, cooling channels are introduced into the bipolar plates, for example. However, separate cooling plates or so-called cooling cards can also be provided, which are stacked between two bipolar plates. Two embodiments of such arrangements are known from the prior art.
  • the MEAs and the bipolar and cooling plates form separate units, which are only alternately stacked when a cell stack is assembled.
  • the MEAs with the bipolar plates form a complete unit, which is referred to as a cell, and which are alternately stacked with cooling plates.
  • the object of the invention is therefore to create a simplified structure of a fuel cell unit for a fuel cell system.
  • the invention creates a self-supporting unit consisting of a membrane electrode unit and associated MEA.
  • the construction of a complete stack for a fuel cell system is thus simplified.
  • the self-supporting unit can be formed by clamping a single MEA to the bipolar plate. det be. It is also possible to form two MEAs by means of suitable connection technology for collector plates as intermediate elements to form a self-supporting unit.
  • a bipolar plate in the form of webs arranged in parallel, which resiliently rest on the membrane-electrode unit.
  • the webs are connected to the electrodes of the MEAs for electrical contacting with the membrane electrode unit. It is possible to achieve an improvement in the electrical connection to the membrane by means of a suitable adhesive technique, provided that adhesive points are placed on the membrane and the webs are glued to it.
  • a large number of MEAs can form a stack as a so-called stack.
  • the stability is guaranteed from the outset by the invention.
  • the entire stack can, however, be held in an outer frame in which the media and electrical supply are accommodated.
  • the invention is applied to the so-called PEM fuel cell.
  • the invention has particular advantages, in particular in the case of the HT-PEM fuel cell, since the conduction mechanism of the membrane is independent of water at the higher operating temperatures and the product water leaves the stack in gaseous form. This makes it possible to dispense with the gas guide channels on the air-facing side of the MEA and to form the bipolar plate in the form of parallel webs, which enables the cell to breathe itself.
  • FIG. 1 shows a perspective illustration of a membrane electrode unit clamped to a bipolar plate
  • 2 shows a section of a portion of two individual membrane electrodes with an interposed collector surface for self-supporting formation
  • FIG. 3 shows several stacked fuel cells with membrane electrode units according to FIG. 2, an outer one
  • FIG. 2 shows a section of Figure 3.
  • the same or equivalent elements have the same reference numerals.
  • the figures are partly written together below.
  • each so-called MEA Membrane Electrode Assembly
  • MEAs 10 or 20 are known from the prior art and form the core of a fuel cell, in particular a so-called PEM (polymer electrolyte membrane) fuel cell.
  • PEM polymer electrolyte membrane
  • FIG. 1 a single MEA, the construction of which is not discussed further here, is designated by 10.
  • a bipolar plate 15 On one side of the MEA 10 there is a bipolar plate 15 which has gas guide channels 16 on the one hand and cooling channels 17 on the other.
  • FIG. 1 there is a metal frame 1 for mechanically clamping the MEA 10 and the bipolar plate 15, which surrounds both parts and is provided with parallel webs 5 at a distance on the free side of the MEA.
  • the electrical contact and sufficient pressure are exerted on the unit formed from the MEA 10 and the bipolar plate 15.
  • insulations 8 are provided on the inside of the metal frame opposite the bipolar plate 15. In particular, the individual webs 5 can thus be contacted with the bipolar plate of the next fuel cell.
  • an mechanical structure is present between two MEAs 20 and 20 ', which is formed from two metallic, wave-shaped components 21, 22 which are connected to one another at the wave maxima.
  • the corrugated components 21 and 22 can be connected by riveting, soldering or welding or else by gluing. If necessary, stacking is also sufficient if the outer areas of the elements 21, 22 are fixed.
  • connection of the wave-shaped components 21 and 22 to one another and the attachment to the electrodes of the MEAs 20 and 20 ′′ form collector plates with cooling channels 24 on the one hand and gas supply channels 26 which are necessary for operating the fuel cell unit.
  • the function of the bipolar plate is thus realized.
  • a mechanically stable structural unit is therefore also formed. Since the structure is located between two MEAs, the stability properties can be transferred to the two MEAs 20 and 20 '.
  • a conductive adhesive is particularly suitable for this.
  • an MEA 20 or 20 'on both sides of the spacer it is not absolutely necessary, as shown in FIG. 2, to fasten an MEA 20 or 20 'on both sides of the spacer.
  • An MEA 20 can also be attached to only one side, which is pressed against the spacer, for example with resilient webs.
  • FIG. 3 shows that a large number of units according to FIG. 2 are stacked with an outer frame 30 and thus form a complete fuel cell system.
  • stability measures can advantageously be present, for example as an outer clasp 35 with grooves on the inside for receiving the individual units.
  • the outer frame 30 only has sealing functions and electrical power transmission functions. It will not become like the
  • a single unit can have dimensions of, for example, 12 each in height and width and 1 cm in depth or thickness. Deviations are possible, for example in the first dimension between 10 and 20 mm and in the second dimension between 0.5 and 2 cm.
  • the fuel cell stack formed from the individual units can be constructed in the manner of a cooler. r H> M o Üi O C ⁇ ⁇ -

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Eine bekannte Brennstoffzellenanlage besteht aus einem Stapel Brennstoffzellen (Stack) mit jeweils wenigstens einer Membran-Elektroden-Einheit (MEA) und zugehöriger bipolarer Platte. Zur Verbesserung der Gebrauchseigenschaften ist die MEA (10, 20) mit Bipolarplatten (15; 21, 22) als selbsttragende Einheit aufgebaut. Eine solche Einheit ist für eine PEM-Brennstoffzelle, insbesondere HT-PEM-Brennstoffzelle, geeignet.

Description

Beschreibung
Brennstoffzellenanlage
Die Erfindung bezieht sich auf eine Brennstoffzellenanlage mit wenigstens einem Brennstoffzellenmodul, enthaltend wenigstens eine Brennstoffzelle mit einer Membran-Elektroden- Einheit und einer zugehörigen Bipolarplatte.
Brennstoffzellenanlagen sind mit unterschiedlich ausgebildeten Brennstoffzellen vom Stand der Technik bekannt. Aus einzelnen Brennstoffzellen zur Generierung einer Elementarspannung wird üblicherweise ein Brennstoffzellenmodul als Stapel von Brennstoffzellen aus elektrisch hintereinandergeschalte- ten Einheiten gebildet, der in der Fachterminologie auch als sogenanntes „Stack* bezeichnet wird.
Wesentlicher Bestandteil einer einzelnen Brennstoffzellenein- heit ist eine Membran-Elektroden-Einheit, die sog. MEA (Memb- rane Electrode Assembly) , an der die chemische Umsetzung zur Generierung der elektrischen Spannung erfolgt. Die Membran- Elektroden-Einheiten werden jeweils zwischen zwei sog. Stromkollektoren eingebaut, die auch als Kollektorbleche oder insbesondere als Bipolarplatten bezeichnet werden.
Diese Bipolarplatten haben zwei Aufgaben, nämlich den elektrischen Strom zu sammeln und die Gase an die MEA zu führen. Zur Erfüllung der ersten Aufgabe müssen die Bipolarplatten mit der jeweiligen Elektrode der MEA über die gesamte Fläche der Elektrode in innigem Kontakt stehen. Zur Erfüllung der zweiten Aufgabe haben die Bipolarplatten Gasführungskanäle, mit denen das Brenngas und das Oxidans an die jeweils geeignete Stelle der Elektrode gebracht wird. Weiterhin ist eine Kühlung der MEA' s vorzusehen. Dazu sind beispielsweise in die Bipolarplatten Kühlkanäle eingebracht. Es können aber auch eigene Kühlplatten oder sog. Kühlkarten vorgesehen sein, die zwischen zwei Bipolarplatten gestapelt werden. Nach dem Stand der Technik sind zwei Ausführungsformen solcher Anordnungen bekannt. In der einen Form bilden die MEA' s und die Bipolar- und Kühlplatten getrennte Einheiten, die erst beim Zusammenbau eines Zellstapels abwechselnd aufeinander geschichtet werden. Bei der zweiten Form bilden die MEA' s mit den Bipolarplatten eine komplette Einheit, die als Zelle bezeichnet wird, und die abwechselnd mit Kühlplatten gestapelt werden.
In beiden Aufbaufor en ist der innige Kontakt zwischen Bipolarplatte und jeweiliger Elektrode nicht gewährleistet. Üblicherweise werden beim Zusammenbau der Zellen zu einem Stack Maßnahmen getroffen, einen Anpressdruck zu erzeugen, der die Bipolarplatten in innigen Kontakt mit der MEA bringt. Eine beispielhafte Maßnahme besteht in der Verwendung von massiven Endplatten, zwischen denen der Stapel aus MEA' s und Bipolarplatten mittels Zugankern zusammen gepresst wird. Diese Maßnahmen und insbesondere die versatzfreie Schichtung der ein- zelnen BrennstoffZelleneinheiten und Platten zu einem Stack sind kompliziert und dadurch aufwendig.
Aufgabe der Erfindung ist es daher, einen vereinfachten Aufbau einer BrennstoffZelleneinheit für eine Brlennstoffzellen- anläge zu schaffen.
Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Weiterbildungen sind in den Unteransprüchen angegeben.
Mit der Erfindung ist eine selbsttragende Einheit aus Membran-Elektroden-Einheit und zugehöriger MEA geschaffen. Der Aufbau eines kompletten Stacks für eine Brennstoffzellenanlage wird somit vereinfacht.
Bei der Erfindung kann die selbsttragende Einheit durch Verklammerung einer einzigen MEA mit der bipolaren Platte gebil- det sein. Es ist auch möglich, zwei MEA' s durch geeignete Verbindungstechnik von Kollektorblechen als Zwischenelemente zu einer selbsttragenden Einheit auszubilden.
Bei der Erfindung sind hinreichende Anpressdrücke durch Ausbildung einer Bipolarplatte in Form parallel angeordneter Stege, die auf der Membran-Elektroden-Einheit federnd aufliegen, gewährleistet. Zur elektrischen Kontaktierung mit der Membran-Elektroden-Einheit sind die Stege mit den Elektroden der MEA' s verbunden. Es ist möglich, durch eine geeignete Klebetechnik eine Verbesserung der elektrischen Verbindung zur Membran zu erreichen, sofern Klebepunkte auf die Membran gesetzt sind und daran die Stege angeklebt sind.
Vorteilhaft ist bei der Erfindung, dass wie bisher eine Vielzahl von MEA' s einen Stapel als sogenanntes Stack bilden können. Die Stabilität ist dabei von vorneherein durch die Erfindung gewährleistet. Der gesamte Stack kann aber in einem äußeren Rahmen gehaltert sein, in dem die Mittel zur Medien- und elektrischen Versorgung untergebracht sind.
Die Erfindung wird bei der sog. PEM-Brennstoffzelle angewendet. Insbesondere bei der HT-PEM -Brennstoffzelle hat die Erfindung besondere Vorteile, da hier bei den höheren Betriebs- temperaturen der Leitungsmechanismus der Membran unabhängig von Wasser ist und das Produktwasser den Stack gasförmig ver- lässt. Dadurch ist es möglich, auf der der Luft zugewandten Seite der MEA auf die Gasführungskanäle zu verzichten und die Bipolarplatte in Form von parallelen Stegen auszubilden, was ein Selbstatmen der Zelle ermöglicht.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung eines Ausführungsbeispieles in Verbindung mit den Patentansprüchen. Es zeigen
Figur 1 eine perspektivische Darstellung einer mit einer Bipolarplatte verklammerten Membran-Elektroden-Einheit, Figur 2 im Schnitt einen Teilbereich von zwei einzelnen Membran-Elektroden mit dazwisc engefügten Kollektorflächen zur selbsttragenden Ausbildung und Figur 3 mehrere gestapelte Brennstoffzellen mit Membran- Elektroden-Einheiten gemäß Figur 2, wobei ein äußerer
Rahmen zusätzlich Mittel zur Stabilitätserhöhung vorhanden ist.
Figur 2 stellt einen Ausschnitt aus Figur 3 dar. Gleiche bzw. gleichwirkende Elemente haben gleiche Bezugszeichen. Die Figuren werden nachfolgend teilweise gemeinsam geschrieben.
In den Figuren sind einzelne Membran-Elektroden-Einheiten mit 10 oder 20 bezeichnet. Jede als sogenannte MEA (Membrane Electrode Assembly) bezeichnete Einheit besteht aus einer geeigneten Polymermembran, die auf beiden Seiten mit Katalysatormaterial und metallischen Elektroden versehen ist. Solche MEA' s 10 oder 20 sind vom Stand der Technik bekannt und bilden den Kern einer Brennstoffzelle, insbesondere einer soge- nannten PEM (Polymer Electrolyte Membran) -Brennstoffzelle . Eine Vielzahl solcher MEA' s sind zu einem Brennstoffzellensta- pel zusammengefasst, der in der Fachterminologie auch als Brennstoffzellenstack bezeichnet wird.
In Figur 1 ist eine einzige MEA, auf deren Aufbau hier nicht weiter eingegangen wird, mit 10 bezeichnet. Auf der einen Seite der MEA 10 befindet sich eine bipolare Platte 15, die Gasführungskanäle 16 einerseits und Kühlkanäle 17 andererseits hat.
Soweit ist eine einzelne Brennstoffzelleneinheit bekannt. Beim Stand der Technik wird eine Vielzahl solcher Einheiten zu einem Stapel geschichtet, mit Endplatten versehen und mit einem Zuganker so verspannt, dass eine geeignete Verbindung und ein kompaktes Modul erreicht ist. Ein derartiger Aufbau wird in der Fachterminologie als Brennstoffzellenstack auch kurz als „Stack bezeichnet. In Figur 1 ist zur mechanischen Verklammerung von MEA 10 und bipolarer Platte 15 ein Metallrahmen 1 vorhanden, der beide Teile umgreift und auf der freien Seite der MEA mit paralle- len Stegen 5 im Abstand versehen ist. Durch die einzelnen Stege 5 wird der elektrische Kontakt und ein hinreichender Druck auf die aus MEA 10 und bipolarer Platte 15 gebildeter Einheit ausgeübt. Zur elektrischen Isolation sind auf der Innenseite des Metallrahmens Isolierungen 8 gegenüber der Bipo- larplatte 15 angebracht. Insbesondere die einzelnen Stege 5 lassen sich somit mit der bipolaren Platte der nächsten Brennstoffzelle kontaktieren.
In der Figur 2 ist zwischen zwei MEA' s 20 und 20' ein echa- nischer Aufbau vorhanden, das aus zwei metallischen, wellenförmigen Bauteilen 21, 22 gebildet ist, die an den Wellenma- xima miteinander verbunden sind. Die Verbindung der wellenförmigen Bauteile 21 und 22 kann durch Vernieten, Verlöten oder Verschweißen oder aber auch durch Kleben erfolgen. Gege- benenfalls ist auch ein Stapeln hinreichend, wenn an den Außenbereichen der Elemente 21, 22 eine Fixierung erfolgt.
Durch die Verbindung der wellenförmigen Bauteile 21 und 22 untereinander und die Befestigung an den Elektroden der MEA' s 20 bzw. 20'' werden Kollektorbleche mit Kühlkanälen 24 einerseits und GasZuführungskanäle 26 gebildet, welche zum Betrieb der Brennstoffzelleneinheit notwendig sind. Es wird somit die Funktion der bipolaren Platte realisiert.
Bei dem Aufbau gemäß Figur 2 ist also ebenfalls eine mechanisch stabile Baueinheit gebildet. Da der Aufbau sich zwischen zwei MEA' s befindet, können die Stabilitätseigenschaften auf die beiden MEA' s 20 und 20' übertragen werden. An der jeweils anderen Seite der MEA 20 bzw. 20' ist wiederum - ent- sprechend Figur 1 - eine Anzahl paralleler Stege 25 vorhanden, die mit den Elektroden der MEA' s 20 und 20' mechanisch und elektrisch verbunden sind. Dafür kommt insbesondere ein leitfähiger Kleber in Frage.
Es ist möglich, durch eine geeignete Klebetechnik die MEA' s 20 und 20' mit dem stabilen mechanischen Abstandselernent zu verkleben. Es ist aber auch möglich, die MEA' s 20 und 20' mittels zweier Bipolarplatten mit federnden Stegen an den Abstandshalter zu pressen. In beiden Fällen ist eine selbsttragende Brennstoffzelleneinheit gebildet, was für die Praxis erhebliche Vorteile mit sich bringt.
Es ist aber nicht zwingend nötig, wie in Figur 2 dargestellt, auf beiden Seiten des Abstandshalters eine MEA 20 bzw. 20' zu befestigen. Es kann auch nur auf einer Seite eine MEA 20 an- gebracht sein, die beispielsweise mit federnden Stegen gegen den Abstandshalter gepresst wird.
In der Figur 3 ist gezeigt, dass eine Vielzahl von Einheiten entsprechend Figur 2 mit einem äußeren Rahmen 30 gestapelt sind und so eine komplette Brennstoffzellenanlage bilden. Dafür können vorteilhafterweise Stabilitätsmaßnahmen vorhanden sein, beispielsweise als äußere Spange 35 mit innenseitigen Nuten zur Aufnahme der einzelnen Einheiten. Allerdings hat der äußere Rahmen 30 lediglich Dichtfunktionen und elektri- sehe Stromübertragungsfunktionen. Er wird nicht wie beim
Stand der Technik als Träger- und Verspannelement benötigt.
Bei der anhand Figur 2 beschriebenen selbsttragenden Anordnung kann eine einzelne Einheit Abmessungen von beispielswei- se jeweils 12 in der Höhe und Breite und 1 cm in der Tiefe bzw. Dicke haben. Dabei sind Abweichungen möglich, beispielsweise bei der erstgenannten Abmessung zwischen 10 und 20 mm und bei der zweitgenannten Abmessung zwischen 0,5 bis 2 cm. Der aus den einzelnen Einheiten gebildete Brennstoffzellen- stapel kann nach Art eines Kühlers aufgebaut sein. r H> M o Üi O Cπ μ-
CΛ rt
Figure imgf000009_0001

Claims

Patentansprüche
1. Brennstoffzellenanlage mit wenigstens einem Brennstoffzellenmodul, enthaltend wenigstens eine Brennstoffzelle mit einer Membran-Elektroden-Einheit (MEA) und einer zugehörigen Bipolarplatte, d a d u r c h g e k e n n z e i c h n e t , dass die Membran-Elektroden-Einheit (10, 20) mit der Bipolarplatte (5, 15; 21, 22) eine selbsttragende Einheit bildet.
2. Brennstoffzellenanlage nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass eine einzige Membran- Elektroden-Einheit (10) und eine einzige Bipolarplatte (15) mechanisch verklammert sind und die selbsttragende Einheit bilden.
3. Brennstoffzellenanlage nach Anspruch 2, d a du r c h g e k e n n z e i c h n e t , dass die mechanische Verklammerung ein Metallrahmen (1) ist, der Isolierelemente (8) zur elektrischen Isolierung gegen die bipolare Platte (15) aufweist.
4. Brennstoffzellenanlage nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t , dass der Metallrahmen (1) Stege (5) zur Gewährleistung eines hinreichenden Anpressdruckes der Verklammerung zwischen Bipolarplatte (15) und Membran-Elektroden-Einheit (10) mit Elektroden aufweist.
5. Brennstoffzellenanlage nach Anspruch 1, wobei eine Mehr- zahl von Brennstoffzellen einen BrennstoffZellenstapel
(„Stack1") bilden, d a d u r c h g e k e n n z e i c h e t , dass zwei Membran-Elektroden-Einheiten (20, 20') mit dazwischenliegenden Kollektorblechen (21, 22) mechanisch und elektrisch verbunden sind und die selbsttragende Einheit bilden.
6. Brennstoff zellenanlage nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass die freie Seite der Membranelektroden-Einheiten (20, 20' ) Stege (25) zur Stromerfassung aufweist.
7. Brennstoffzellenanlage nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass eine Vielzahl Membran-Elektroden-Einheiten (10; 20, 20', ...) mit zugehörigen Bipolarplatten (15; 21, 22) einen Brenn- stoffzellen-Stapel bilden.
8. Brennstoffzellenanlage nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , dass der Brennstoffzellensta- pel in einem äußeren Rahmen (30) gehaltert ist.
9. Brennstoffzellenanlage nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Brennstoffzellenstapel nach Art eines Kühlers aufgebaut ist.
10. Brennstoffzellenanlage nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die einzelne selbsttragende Einheit mit Abmessungen von 10 bis 20 cm in der Höhe und Breite, vorzugsweise etwa 12 cm, und 0,5 bis 2 cm in der Tiefe bzw. Dicke, vorzugsweise etwa 1 cm, ausgebildet ist.
11. Brennstoffzellenanlage nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Brennstoffzellenmodul PEM-Brennstoffzellen enthält.
12. Brennstoffzellenanlage nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Brennstoffzellenmodul wenigstens eine HT-PEM-Brennstoff- zelle enthält.
13. Brennstoffzellenanlage nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass die Membran-Elektroden- Einheit (10, 20) der HT-PEM-Brennstoffzellen einen eigendissoziierenden und/oder autoprotolytischen Elektrolyten enthal- ten.
PCT/DE2001/004266 2000-11-17 2001-11-14 Brennstoffzellenanlage WO2002041430A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01996901A EP1415364A2 (de) 2000-11-17 2001-11-14 Brennstoffzellenanlage
JP2002543729A JP2004514261A (ja) 2000-11-17 2001-11-14 燃料電池設備
CA002429075A CA2429075A1 (en) 2000-11-17 2001-11-14 Fuel cell system
AU2002218979A AU2002218979A1 (en) 2000-11-17 2001-11-14 Fuel cell system
KR10-2003-7006723A KR20030064789A (ko) 2000-11-17 2001-11-14 연료 전지 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10057071.2 2000-11-17
DE10057071A DE10057071A1 (de) 2000-11-17 2000-11-17 Brennstoffzellenanlage

Publications (2)

Publication Number Publication Date
WO2002041430A2 true WO2002041430A2 (de) 2002-05-23
WO2002041430A3 WO2002041430A3 (de) 2004-02-19

Family

ID=7663677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004266 WO2002041430A2 (de) 2000-11-17 2001-11-14 Brennstoffzellenanlage

Country Status (7)

Country Link
EP (1) EP1415364A2 (de)
JP (1) JP2004514261A (de)
KR (1) KR20030064789A (de)
AU (1) AU2002218979A1 (de)
CA (1) CA2429075A1 (de)
DE (1) DE10057071A1 (de)
WO (1) WO2002041430A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10301052B4 (de) * 2003-01-13 2008-04-03 Daimler Ag Bipolarplatteneinheit, elektrochemische Zelle und Mittel zum Abdichten
KR101117633B1 (ko) * 2004-06-30 2012-02-29 삼성에스디아이 주식회사 연료전지용 일산화탄소 흡착제, 연료전지용 일산화탄소정화기, 연료전지 시스템 및 일산화탄소 흡착제를 이용한일산화탄소 제거방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640876A (en) * 1984-07-27 1987-02-03 Occidental Chemical Corp. Fuel cell structures
EP0620609A1 (de) * 1993-03-26 1994-10-19 Daimler-Benz Aktiengesellschaft Elektrochemische Mehrzellenbatterie
WO1998033224A1 (de) * 1997-01-22 1998-07-30 Siemens Aktiengesellschaft Brennstoffzelle und verwendung von legierungen auf der basis von eisen für die konstruktion von brennstoffzellen
DE19823880A1 (de) * 1997-06-03 1998-12-10 Motorola Inc Bipolarplatte für Brennstoffzellenanordnung
WO2000002279A2 (de) * 1998-06-30 2000-01-13 Manhattan Scientifics, Inc. Gasdichter verbund aus bipolarplatte und membran-elektroden-einheit von polymerelektrolytmembran-brennstoffzellen
GB2348047A (en) * 1997-03-29 2000-09-20 Ballard Power Systems Electrochemical cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640876A (en) * 1984-07-27 1987-02-03 Occidental Chemical Corp. Fuel cell structures
EP0620609A1 (de) * 1993-03-26 1994-10-19 Daimler-Benz Aktiengesellschaft Elektrochemische Mehrzellenbatterie
WO1998033224A1 (de) * 1997-01-22 1998-07-30 Siemens Aktiengesellschaft Brennstoffzelle und verwendung von legierungen auf der basis von eisen für die konstruktion von brennstoffzellen
GB2348047A (en) * 1997-03-29 2000-09-20 Ballard Power Systems Electrochemical cells
DE19823880A1 (de) * 1997-06-03 1998-12-10 Motorola Inc Bipolarplatte für Brennstoffzellenanordnung
WO2000002279A2 (de) * 1998-06-30 2000-01-13 Manhattan Scientifics, Inc. Gasdichter verbund aus bipolarplatte und membran-elektroden-einheit von polymerelektrolytmembran-brennstoffzellen

Also Published As

Publication number Publication date
DE10057071A1 (de) 2002-05-29
WO2002041430A3 (de) 2004-02-19
KR20030064789A (ko) 2003-08-02
JP2004514261A (ja) 2004-05-13
CA2429075A1 (en) 2002-05-23
AU2002218979A1 (en) 2002-05-27
EP1415364A2 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
EP0797847B1 (de) Polymerelektrolyt-membran-brennstoffzelle
EP2973809B1 (de) Bipolarplatte für eine brennstoffzelle, brennstoffzelle und verfahren zur herstellung der bipolarplatte
WO2020193055A1 (de) Bipolarplatte für einen brennstoffzellenstapel und brennstoffzellenstapel
DE10244410B4 (de) Brennstoffzellenstapel und Verfahren zur Überwachung einzelner Zellen eines Brennstoffzellenstapels
DE3520855C1 (de) Galvanische Zelle mit Presskontaktierung
DE102009035461A1 (de) Batterie mit einer Vielzahl von Batterieeinzelzellen
EP2130256A2 (de) Brennstoffzellenstack in leichtbauweise
WO2008046487A1 (de) Brennstoffzellenmodul und dessen verwendung
DE102011010607A1 (de) Plattenverbindungsverfahren für einen eingebetteten brennstoffzellensensor
EP1429406B1 (de) Rahmenelemente für monopolare Brennstoffzellenstacks
WO2002041430A2 (de) Brennstoffzellenanlage
EP3736894B1 (de) Bipolarplatte für brennstoffzellen, brennstoffzellenstapel mit solchen bipolarplatten sowie fahrzeug mit einem solchen brennstoffzellenstapel
WO2013178536A1 (de) Endplatte für eine brennstoffzelle sowie brennstoffzelle mit einer solchen
DE102021203646A1 (de) Zelle für ein elektrochemisches System mit einer flexiblen elektrischen Leitung zum Abgreifen einer elektrischen Spannung
DE19649456C2 (de) Hochtemperatur-Brennstoffzelle
DE102020203048A1 (de) Brennstoffzelleneinheit
DE102008029183B4 (de) Vorrichtung zur Erzeugung von elektrischer Energie
DE102019205069A1 (de) Bipolarplatte für Brennstoffzellen, Brennstoffzellenstapel mit solchen Bipolarplatten sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
DE102012018088A1 (de) Vorrichtung zum elektrischen Kontaktieren von prismatischen Batterieeinzelzellen
DE102016122587A1 (de) Polarplatten-Anordnung für eine Brennstoffzelle und Einzelzelle
DE10342493B4 (de) Brennstoffzellenmodul und Brennstoffzellenbatterie
DE102004023461A1 (de) Kontaktelement für einen Brennstoffzellenstapel
DE102020203040A1 (de) Brennstoffzelleneinheit
WO2021259568A1 (de) Bipolarplatte sowie brennstoffzellenstapel
DE102022205239A1 (de) Zellenstapel mit einer Anzahl elektrochemischer Zellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001996901

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002543729

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2429075

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037006723

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018203442

Country of ref document: CN

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 1020037006723

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001996901

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001996901

Country of ref document: EP