WO2002038535A1 - Optically active cobalt (ii) or (iii) complexes, process for the preparation thereof and intermediates therefor - Google Patents

Optically active cobalt (ii) or (iii) complexes, process for the preparation thereof and intermediates therefor Download PDF

Info

Publication number
WO2002038535A1
WO2002038535A1 PCT/JP2001/003697 JP0103697W WO0238535A1 WO 2002038535 A1 WO2002038535 A1 WO 2002038535A1 JP 0103697 W JP0103697 W JP 0103697W WO 0238535 A1 WO0238535 A1 WO 0238535A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically active
represented
group
following formula
cobalt
Prior art date
Application number
PCT/JP2001/003697
Other languages
French (fr)
Japanese (ja)
Inventor
Takushi Nagata
Tohru Yamada
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Publication of WO2002038535A1 publication Critical patent/WO2002038535A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/10Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton
    • C07C251/12Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/10Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton
    • C07C251/16Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/0252Salen ligands or analogues, e.g. derived from ethylenediamine and salicylaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring

Definitions

  • the present invention relates to a method for producing an optically active isomer of an optically active cobalt complex having an optically active ketoimine compound and an optically active salen compound as a ligand, an optically active alcohol, an optically active amine and an optically active cyclopropane.
  • the present invention relates to an optically active cobalt complex catalyst whose absolute structure has been confirmed to be useful as a catalyst used in the production of an optically active compound such as
  • the present invention also relates to an intermediate for producing an optically active cobalt complex.
  • Japanese Unexamined Patent Publication (Kokai) No. 5-301878 discloses that a tetradentate ligand called a salen type obtained by a condensation reaction between two molecules of a salicylaldehyde derivative and one molecule of an ethylenediamine derivative is used.
  • the asymmetric epoxidation reaction of olefins with an optically active manganese complex is described in Japanese Patent Application Laid-Open No.
  • the present invention relates to an asymmetric metal complex catalyst obtained by a condensation reaction of two molecules of an S-diketon derivative and one molecule of an ethylenediamine derivative and using a tetradentate ligand called a -ketimine type.
  • Various asymmetric reactions have been developed by the inventors.
  • Japanese Patent Application Laid-Open No. 6-247993 discloses a method for producing an optically active epoxide by asymmetric oxygen oxidation of olefins.
  • Japanese Patent Application Laid-Open No. 9-151143 discloses a method for producing ketones.
  • a method for producing an optically active alcohol by an asymmetric reduction reaction is disclosed in W098 / 39276, and a method for producing an optically active amine by an asymmetric reduction reaction of imines is disclosed in JP-A-11-11.
  • Japanese Patent No. 246501 discloses asymmetric 1,4-reduction reaction of -unsaturated carboxylic acid amides. Discloses a method for producing an optically active carboxylic acid amide, and Heterocycles, 51, 1041 (2000) discloses a method for producing an optically active dihydropyran derivative by an asymmetric hetero Diels-Alder reaction.
  • the selectivity such as chemoselectivity, diastereoselectivity, enena selectivity, etc., or the catalytic efficiency is insufficient, and the ligand, metal, It may be necessary to improve or change the counter ion or the like.
  • the present inventors have been studying to develop an optically active cobalt complex catalyst having a higher enantioselectivity, and have obtained a ketoimine type cobalt complex derived from sterically bulky diamine. (15)
  • optically active diamine which is an asymmetric source of the above complex
  • FIG. 1 is a structural diagram obtained by an X-ray structural analysis of the optically active cobalt (III) complex represented by the formula.
  • FIG. 2 is a 0RTEP diagram showing the structure of another independent cobalt complex contained in the same crystal as the complex shown in FIG.
  • FIG. 3 is a schematic diagram of the cobalt complex shown in FIG. 1 and FIG.
  • FIG. 4 is an a-axis projection view showing the arrangement of the complexes in the single crystal containing the cobalt complex shown in FIGS. 1 and 2.
  • FIG. 5 is a b-axis projection view showing the arrangement of the complexes in the single crystal containing the cobalt complex shown in FIGS. 1 and 2.
  • optically active cobalt (II) complex of the present invention has the following general formula ( ⁇ ) or (()
  • R 1 and R 2 may be the same or different, and represent a hydrogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, a linear or branched aryl group, Or an alkoxycarbonyl group, an aryloxycarboxy group or an aralkyloxycarbonyl group, wherein the alkyl group, alkenyl group, aryl group, acryl group, alkoxycarbonyl group, aryloxycarbonyl group and aralkyl
  • the xycarbonyl group may have a substituent, and R 1 and R 2 are mutually connected to form a ring together with the carbon atom to which R 1 and R 2 are bonded. May be formed.
  • alkyl group R 1 and R 2 a methyl group, Echiru group, an isopropyl group, tert - heptyl group, sec- butyl group, n- propyl group, n - heptyl group and the like as c Ariru group is a representative Are phenyl, p-methoxyphenyl, P-chlorophenyl, p-fluorophenyl, 3,5-dimethylphenyl, 3,5-dimethoxyphenyl, 2,4,6 -Substituted or unsubstituted aromatic hydrocarbon groups such as trimethylphenyl group and naphthyl group; furyl group, chenyl group, pyridyl group, pyrrolyl group, oxazolyl group, isoxaxol group, thiazolyl group, isothiazolyl group, imidazolyl group, Pyrazo Representative examples include a substituted or unsubstituted aromatic
  • acetyl group examples include fatty acetyl group, trifluroylacetyl group, propionyl group, butyryl group, isoptyryl group, and fatty acid 55 ouidosil group such as bivaloyl group; benzoyl group, 3,5-dimethylbenzoyl group, 2,4,6 -Trimethylbenzoyl group, 2,6-dimethoxydibenzoyl group, 2,4,6-trimethoxybenzoyl group, 2,6-diisopropoxybenzoyl group, 1-naphthylcarbonyl group, 2-naphthyl Aromatic acyl groups such as a carbonyl group and a 9-anthrylcarbonyl group are typical, and typical examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an n-butoxycarbonyl group, n-octyloxycarbonyl, cyclopentyloxycarbonyl,
  • R 1 and R 2 may be mutually connected to form a ring in cooperation with the carbon atom to which R 1 and R 2 are respectively bonded.
  • the cyclohexane ring and benzene ring formed on the alkyl group include, for example, an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a sec-butyl group and a tert-butyl group; Aryl groups such as benzyl, naphthyl, etc .; alkyl groups such as methoxy, ethoxy, isopropyl, etc .; aryl groups such as phenoxy, 2,6-dimethylphenoxy; benzyl Optionally substituted with one or more substituents selected from aralkyl groups such as methoxy group, phenethyl group and the like; halogen atoms such as fluorine, chlorine and bromine; cyano groups; and nitro groups.
  • the benzene ring is fused It may form a condensed polycyclic ring such as naphthalene ring
  • optically active cobalt ( ⁇ ) complex represented by the general formula ( ⁇ ) or (J ⁇ ) is represented by the following formula (JJ or The following formula (A) or
  • R 3 is a linear or branched alkyl group, aryl group, or alkoxy group, aryl group, and the alkyl group, aryl group, alkoxy group, and aryl group have a substituent. May be. ]
  • R 4 , RR 6 , and R 7 may be the same or different, and represent a hydrogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, a linear or branched If it is an aryl group, an alkoxy group, a cyano group, or a nitro group, or a halogen atom, the alkyl group, alkenyl group, aryl group, and alkoxy group may have a substituent. And any two of R 4 to R 7 may be mutually connected to form a ring in cooperation with the carbon atom to which they are bonded, and may form a condensed ring such as a naphthyl ring. Is also good. ]
  • optically active cobalt (III) complex of the present invention has the following general formula (2) or (21)
  • R 1 and R 2 are as defined for the above general formula (1) or 01), wherein X— is a salt-forming anion pair. ] Is represented.
  • optically active cobalt (III) complex represented by the formula (2) or (2_2), the following formula () or (D)
  • R 4 , RR ⁇ R 7 and X— are as defined above.
  • optically active cobalt ( ⁇ ) complex represented by the general formula a) or oi), and a general formula
  • optically active cobalt (II) complex represented by (2) or () can be prepared according to a known method. For example, Y. Nishida et al., Inorg. Chim. Acta, 38, 213 (1980); L. Claisen, Ann. Chem., 222, 57 (1897); EG Jager, Z. Chem., 8, 30, 392, And 475 (1968), which is also disclosed in Japanese Patent Application Laid-Open No. 9-151143.
  • optically active diamine represented by (3) or
  • R 1 and R 2 are as defined above.
  • the optically active intermediate compound represented by the formula is produced, and the optically active intermediate compound is reacted with a compound containing divalent cobalt ion in the presence of a basic compound.
  • the complex can be prepared according to the process shown in the following formula (A).
  • the dehydration condensation reaction with optically active diamine is performed by adding 2 equivalents of 3-methoxymethylene-2,4-pentadiene in an alcohol solvent, stirring at room temperature for 1 to 2 hours, and then heating at 50 ° C. The heating can be carried out.
  • the crude product obtained by concentration can be purified by ordinary purification methods such as silica gel column chromatography, reprecipitation and recrystallization.
  • Examples of the basic compound used in the ligand complexing step include sodium hydroxide, potassium hydroxide, and the like.
  • the amount of the basic compound used is not less than 2.0 molar equivalents relative to the ligand. Preferably it is 2.0 to 2.5 molar equivalents.
  • Examples of the source of peritocation include compounds containing divalent ions of ⁇ relet, such as cobalt salt ( ⁇ ) and cobalt acetate ( ⁇ ), and these can be used as an aqueous solution. It is sufficient to add 1.0 mole equivalent or more of cobalt to the stake, and preferably an amount of 1.0 to 1.5 mole equivalent is used.
  • the complex formation reaction is carried out in an atmosphere of an inert gas such as nitrogen or argon, and the base, cobalt cation, water for dissolving the ligand, and the solvent used are degassed.
  • the reaction proceeds when the reaction temperature is 0 ° C. or higher, but the reaction time can be shortened by heating to about 30 to 80 ° C., preferably 40 to 60 ° C.
  • alcohol solvents such as methanol, ethanol, and 2-propanol are preferable.
  • the cobalt (II) complex starts to precipitate in about 1 to 10 minutes shortly after the addition of the aqueous solution of cobalt (II) chloride. Continue for about 2 hours. Thereafter, the reaction mixture is cooled to room temperature, and water is added as necessary to precipitate a reaction product. Next, the mixture is filtered off under an inert gas such as nitrogen, washed with water or a mixed solution of water-alcohol, and then dried under vacuum to obtain the desired optically active cobalt (II) complex.
  • an inert gas such as nitrogen
  • a halogen such as chlorine, bromine or iodine to the optically active cobalt (II) complex obtained by the above method, a corresponding halogenated optically active cobalt (II) can be obtained. It can be converted to ruto (III) complex.
  • a halogen such as chlorine, bromine or iodine
  • ruto (III) complex For example, in a dichloromethane solvent, 0.5 mole equivalent of bromine (Br 2 ) is added to the optically active conorelet (II) complex, reacted at room temperature with stirring, and concentrated to obtain a crude product. This crude product can be purified by purification operations such as silica gel column chromatography, reprecipitation, and recrystallization.
  • the complex can be prepared according to the process represented by the following formula (and) in the same manner as in the formula (A).
  • a salicylaldehyde (compound 02a) in the formula (and) can be used as a starting material instead of (113), and can be produced through a similar process.
  • optically active Koval (II) complex represented by the formula (4a) or (la) and the optically active cobalt (III) complex represented by the formula () or () thus obtained are both It is effective as a catalyst for an asymmetric borohydride reduction reaction using a ketone or imine as a substrate, or as a catalyst for an asymmetric cyclopropanation reaction of birefin.
  • these complexes are very stable in air, and can be used as catalysts without problems even if they are stored for 3 to 5 years.
  • the conoreto (III) complex it is so stable that there is no problem even when it is dissolved in a solvent and exposed to water or air.
  • the optically active cobalt (III) complex is crystallized in a tetrahydrofuran (THF) -hexane solution to obtain an X-ray-analysable crystal, which can be subjected to X-ray structure analysis.
  • THF tetrahydrofuran
  • X-ray analysis was performed using a single crystal of the optically active cobalt ( ⁇ ) complex represented by the formula () to determine the absolute configuration of the optically active diamine moiety, which had not been clarified until now. Was completed.
  • optically active diamine (1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanol represented by the above formula, which is used as an asymmetric source of the optically active cobalt complex of the present invention.
  • the method for the synthesis of Ndamine and the method for determining the absolute configuration of the optically active cobalt (III) complex are described for reference.
  • Racemic trans-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine can be prepared by the process shown by the following formula (_QJ (Method by Pedersen et al .: J. Am. Chem. Soc, It can be prepared according to 1Q9, 3152 (1987).
  • the silylimine 01) obtained above was reacted at room temperature, By treating with a base, the desired racemic trans-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine ((Sat)-) is obtained in good yield. .
  • optical resolution with optically active mandelic acid can be performed to isolate optically active diamine.
  • (+)-mandelic acid when (+)-mandelic acid is used as a resolving agent, (1)-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine is used, whereas (1-)- When mandelic acid is used, (+)-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine is obtained.
  • variable x is called the parameter of Flack overnight. (Flack, H.D., Acta Cryst.m, 876-881 (1983).)
  • the structure was solved using the direct method. Two independent THF molecules were included as a crystallization solvent, but the atomic displacement parameter was so large that non-hydrogen atoms in THF were analyzed using isotropic temperature factors, and the CC and C-0 bond distances were appropriate. Bounded to be a reasonable value.
  • the assignment of the oxygen atom in THF was judged from the fact that if it was a carbon atom, an unusually short ⁇ -' ⁇ distance would occur between the complex and an adjacent complex.
  • the hydrogen position of the coordinated water molecule was idealized by calculation (assuming sp 2 hybridization) based on the peak of D synthesis. Other hydrogen atoms were introduced and fixed by geometric calculation. Hydrogen temperature factor U is .
  • the absorption correction was performed by numerical integration of the polyhedron (the range of the transmission factor T was 0.619 to 0.854). There was no effect of the extinction effect.
  • the number of parameters refined is 749, compared to the number of reflections 11744 used for refinement.
  • the reaction solution was filtered under a nitrogen atmosphere, and the precipitate was washed with water and dried by flowing nitrogen. Nitrogen port The product was taken out in a box and dried under reduced pressure at 120 ° C. for 2 hours to obtain 451 mg of a light brown conorelet (II) complex (la) (yield> 99%).
  • the dl / meso ratio was found to be 84/16 from the 1 HNMR integral value of the derivative obtained by acetylating the hydroxyl group of the product.
  • the absolute configuration of the product was found to be (R, R) by comparison of the optical rotation with literature values.
  • Reference Example 2 was the same as Reference Example 2 except that the cobalt (II) complex catalyst (R, R)-(knob) was used at 2 mol% based on the substrate, and 2-phenacylpyridine was used instead of dibenzoylmethane. The reaction was performed in the same manner for 12 hours. Table 4 shows the yield, optical purity and absolute configuration of the main enantiomer obtained from the obtained alcohol.
  • Asymmetric cyclopropanation reaction using optically active cobalt (II) complex catalyst (4a) 29 mg (0.05 mmol) of cobalt ( ⁇ ) complex catalyst Oa) was weighed into a reactor, and the inside of the reaction vessel was replaced with a nitrogen gas atmosphere. Thereafter, 1 ml of tetrahydrofuran is added to dissolve the cobalt complex.
  • the container was immersed in an oil bath adjusted to 25 ° C in advance, and 0.57 ml (5.0 mmol) of styrene was further added to the container, followed by dropwise addition of tert-butyl diazoacetate 148 ⁇ ⁇ (1.0 mmol), and N-methylimidazole jul (0.1 mmol) was added, and the mixture was stirred at the same reaction temperature for 2 hours.
  • the progress of the reaction was confirmed by gas chromatography analysis, and the excess styrene, complex catalyst and N-methylimidazole were removed by silica gel column chromatography to obtain the product as an oil (174 mg, 80% yield). rate).
  • the isomer ratio (trans: cis) of the obtained tert-butyl 2-phenylcyclopropylcarboxylate was 83:17 as a result of analysis by gas chromatography.
  • the product was subjected to preparative thin-layer chromatography to separate the trans / cis form.
  • the optical yield of the trans form was determined by treating it with lithium aluminum hydride and producing it by column chromatography.
  • the resulting reduced form was analyzed by high-performance liquid chromatography (optically active column: Daicel Chemical Industries, Chiralcel OB-H). As a result, it was 96% ee.
  • the optical yield of the cis form was 91 ee after separation and purification by thin-layer chromatography and analysis by high-performance liquid chromatography (optically active column: Chiralcel 0B-H).
  • optically active cobalt complex of the present invention is excellent in catalytic activity and enantioselectivity in asymmetric borohydride reduction reaction and asymmetric cyclic propanation reaction, and has high stability in air and is easy to handle. It is. Therefore, this optically active cobalt complex and a ligand which is an intermediate for producing the optically active cobalt complex are useful for producing optically active physiologically active compounds such as pharmaceuticals and agricultural chemicals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Optically active cobalt (II) complexes represented by the general formulae (1) and (1'): (1) (1') wherein R?1 and R2¿ are each independently hydrogen, linear or branched alkyl, linear or branched alkenyl, aryl, acyl, alkoxycarbonyl, aryloxycarbonyl, or aralkyloxycarbonyl, these groups being each optionally substituted; or alternatively R?1 and R2¿ together with the carbon atoms to which R?1 and R2¿ are bonded respectively may form a ring.

Description

明 細 書  Specification
光学活性コバルト (Π) 、及びコバルト (III)錯体、  Optically active cobalt (Π) and cobalt (III) complexes,
その製造方法並びに製造中間体 , 技術分野  Production method and production intermediate, Technical field
本発明は光学活性 -ケ卜イミン化合物、 及び光学活性サレン化合物を配位子 とする光学活性コバル卜錯体の光学異性体の製造方法、並びに光学活性アルコ一 ル、 光学活性アミン、光学活性シクロプロパン等の光学活性化合物の製造に用い られる触媒として有用な絶対構造の確認された光学活性コバルト錯体触媒に関す る。 また本発明は、光学活性コバルト錯体の製造中間体に関する。 背景技術  The present invention relates to a method for producing an optically active isomer of an optically active cobalt complex having an optically active ketoimine compound and an optically active salen compound as a ligand, an optically active alcohol, an optically active amine and an optically active cyclopropane. The present invention relates to an optically active cobalt complex catalyst whose absolute structure has been confirmed to be useful as a catalyst used in the production of an optically active compound such as The present invention also relates to an intermediate for producing an optically active cobalt complex. Background art
これまでに光学活性遷移金属錯体を触媒とする不斉合成反応が数多く開発され、 医薬■農薬等の重要中間体製造に活用されてきた。特に、光学活性ホスフィン化 合物を配位子とする遷移金属錯体触媒が不斉水素化反応に有効であることが報告 されて以来、研究が大きく進展し、 不斉触媒を用いる才レフィンの不斉異性化反 応ゃ不斉水素化反応を工業的な生産に利用する例が数多く報告されるようになつ た。  Many asymmetric synthesis reactions using optically active transition metal complexes as catalysts have been developed so far, and have been used for the production of important intermediates such as pharmaceuticals and agricultural chemicals. In particular, since it was reported that a transition metal complex catalyst having an optically active phosphine compound as a ligand was effective for an asymmetric hydrogenation reaction, a great deal of research has been conducted, There have been many reports of the use of asymmetric isomerization / asymmetric hydrogenation in industrial production.
一方、近年、窒素 2原子と酸素 2原子からなる 4座の配位子を用いる金属錯体 触媒の開発の進展も著しく、 実用性の高い不斉触媒反応が報告されるようになつ た。例えば、 2分子のサリチルアルデヒド誘導体と 1分子のエチレンジァミン誘 導体の縮合反応により得られる、 サレン型と呼ばれる 4座の配位子を用いて、特 開平 5— 3 0 1 8 7 8号公報には光学活性マンガン錯体による才レフィンの不斉 エポキシ化反応が、特開平 9一 6 7 3 1 2号公報には下記式 (13)
Figure imgf000004_0001
On the other hand, in recent years, there has been remarkable progress in the development of metal complex catalysts using a tetradentate ligand consisting of two atoms of nitrogen and two atoms of oxygen, and highly practical asymmetric catalysis has been reported. For example, Japanese Unexamined Patent Publication (Kokai) No. 5-301878 discloses that a tetradentate ligand called a salen type obtained by a condensation reaction between two molecules of a salicylaldehyde derivative and one molecule of an ethylenediamine derivative is used. The asymmetric epoxidation reaction of olefins with an optically active manganese complex is described in Japanese Patent Application Laid-Open No.
Figure imgf000004_0001
(13)  (13)
に代表されるコバルト錯体による不斉シクロプロパン化反応が、 W0 00/09 463号公報には下記式 (Ji) The asymmetric cyclopropanation reaction with a cobalt complex represented by the following formula is described in WO 00/09463 as the following formula (Ji)
Figure imgf000004_0002
Figure imgf000004_0002
(14)  (14)
に代表されるコバルト錯体を用いる、 ラセミ体のエポキシドの光学分割による光 学活性エポキシドの合成反応等が開示されている。 And the synthesis reaction of an optically active epoxide by optical resolution of a racemic epoxide using a cobalt complex represented by the formula (1).
また、 2分子のS-ジケ卜ン誘導体と 1分子のエチレンジァミン誘導体の縮合 反応により得られる、 -ケ卜ィミン型と呼ばれる 4座の配位子を用いる不斉金 属錯体触媒に関しては、 本発明者らにより種々の不斉反応が開発されている。 例 えば、 特開平 6— 247993号公報には才レフィン類の不斉酸素酸化反応によ る光学活性エポキシドめ製造法が、 特開平 9— 1 51 1 43号公報にはケ卜ン類 の不斉還元反応による光学活性アルコールの製造法が、 W098/39276号公 報にはィミン類の不斉還元反応による光学活性ァミンの製造法が、 特開平 1 1 ― Further, the present invention relates to an asymmetric metal complex catalyst obtained by a condensation reaction of two molecules of an S-diketon derivative and one molecule of an ethylenediamine derivative and using a tetradentate ligand called a -ketimine type. Various asymmetric reactions have been developed by the inventors. For example, Japanese Patent Application Laid-Open No. 6-247993 discloses a method for producing an optically active epoxide by asymmetric oxygen oxidation of olefins. Japanese Patent Application Laid-Open No. 9-151143 discloses a method for producing ketones. A method for producing an optically active alcohol by an asymmetric reduction reaction is disclosed in W098 / 39276, and a method for producing an optically active amine by an asymmetric reduction reaction of imines is disclosed in JP-A-11-11.
246501号公報には , -不飽和カルボン酸アミド類の不斉 1,4-還元反応に よる光学活性カルボン酸アミ ドの製造法が、 また、 Heterocycles, 51, 1041 (2000) には不斉へテロ Di els-Al der反応による光学活性ジヒドロピラン誘導体 の製造法が開示ざれている。 Japanese Patent No. 246501 discloses asymmetric 1,4-reduction reaction of -unsaturated carboxylic acid amides. Discloses a method for producing an optically active carboxylic acid amide, and Heterocycles, 51, 1041 (2000) discloses a method for producing an optically active dihydropyran derivative by an asymmetric hetero Diels-Alder reaction.
しかし、 対象となる反応、 あるいは基質によっては、 化学選択性、 ジァステレ 才選択性、 ェナ,ンチ才選択性などの選択性や、 触媒効率が不十分であり、 触媒の 配位子や金属、 対イオン等に改良や変更を加える必要のある場合がある。  However, depending on the target reaction or the substrate, the selectivity such as chemoselectivity, diastereoselectivity, enena selectivity, etc., or the catalytic efficiency is insufficient, and the ligand, metal, It may be necessary to improve or change the counter ion or the like.
本発明者らは、 より高いェナンチ才選択性を有する光学活性コバルト錯体触媒 を開発すべく検討を重ね、 立体的に嵩高いジァミンより誘導して得られる -ケ トイミン型コバルト錯体、 すなわち、 下記式 (15) The present inventors have been studying to develop an optically active cobalt complex catalyst having a higher enantioselectivity, and have obtained a ketoimine type cobalt complex derived from sterically bulky diamine. (15)
Figure imgf000005_0001
(
Figure imgf000005_0001
(
で表される光学活性コバル卜錯体が、 高いェナンチ才選択性を示すことを見出し、 Synlett, 1996, 1076 (1996) 等に報告した。 ところが、 この錯体は反応点の近 傍が立体的に嵩高い基質には不適切であり、 場合によつては不斉還元反応が全く 進行しないという問題点が残されていた。 さらに検討を重ねた結果、 下記式 (½) 又は (½L) It has been found that the optically active cobalt complex represented by the formula (1) exhibits high enantioselectivity and was reported in Synlett, 1996, 1076 (1996). However, this complex is unsuitable for a sterically bulky substrate near the reaction point, and in some cases, the problem remains that the asymmetric reduction reaction does not proceed at all. As a result of further study, the following formula (½) or (½L)
Figure imgf000006_0001
Figure imgf000006_0001
(4a) (4a,) で表される光学活性コバルト (II)錯体が、種々の基質に対し有効であることが 判明した。すなわち、 この昔体は不斉シクロプロパン化反応、及び不斉ポロヒド リド還元反応の触媒として高い性能を有し、 これらの反応において高い立体(ェ ナンチ才、 及びジァステレオ)選択性を示すことが明らかになった。 これらの結 果は特開 2000— 3 5 5 5 7 3号公報、 特願 2000— 707 1 2号、 及び Chew. Lett. , 1999, 1345 (1999)、 Synlett, 20M, 535 (2000)に報告 れてい る  (4a) The optically active cobalt (II) complex represented by (4a,) was found to be effective for various substrates. In other words, it is clear that this ancient form has high performance as a catalyst for asymmetric cyclopropanation reaction and asymmetric porohydride reduction reaction, and shows high steric (enantiomer and diastereo) selectivity in these reactions. Became. These results are reported in Japanese Patent Application Laid-Open No. 2000-355557, Japanese Patent Application No. 2000-70712, and Chew. Lett., 1999, 1345 (1999), Synlett, 20M, 535 (2000). Have been
しかしながら、 上記錯体の不斉源である光学活性ジァミン、 すなわち、 下記式 However, the optically active diamine which is an asymmetric source of the above complex,
(1Q) 又は (1Q) or
Figure imgf000006_0002
Figure imgf000006_0002
(10) (10  (10) (10
で表される光学活性 1,2-ビス (2,4,6-卜リメチルフエニル) -1,2-エタンジアミ ンに関しては、 不斉酸化反応用のマンガン錯体の原料として使用された例が米国 イリノイ大学の Zhang, Weiによる学位論文 (Ph.D. thesis, University ofAs for the optically active 1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine represented by the following formula, an example of its use as a raw material for a manganese complex for asymmetric oxidation is shown in the University of Illinois in the United States. Ph.D. thesis, University of Zhang, Wei
Illinois, 1991) に開示されているものの、 絶対構造(絶対立体配置) について は明らかにされていなかった。 そのためこのジァミンを不斉源として使用する触 媒開発を系統的に行うことが困難であるばかりでなく、 生理活性の高い一方のェ ナンチォマーのみが必要とされる医薬品の合成においては、 合成時に使用してい る触媒の絶対構造がわからず、 製造管理の上で著しく不便が生じるという問題点 があつた.。 Illinois, 1991), but the absolute structure (absolute configuration) was not disclosed. For this reason, it is not only difficult to systematically develop a catalyst using this diamine as an asymmetric source, but also one of the bioactive agents with high bioactivity. In the synthesis of pharmaceuticals that require only the nantiomer, there was a problem that the absolute structure of the catalyst used at the time of synthesis was not known, resulting in significant inconvenience in production control.
, 発明の開示 , Disclosure of the invention
上述のように、 不斉還元反応、 及び不斉シクロプロパン化反応の触媒として、 種々の基質に対して高い選択性を示す錯体の提供が望まれており、併せて触媒の 絶対構造を明らかにし、 開発、 及び製造上の管理が容易になることが強く望まれ ている。本発明はこれらの要望を満足せしめることを課題とするものである。 そこで本発明者らは、 前記課題を解決するために、.不斉源に光学活性な卜ラン ス- 1,2-ビス (2, 4, 6-卜リメチルフエ二ル) - 1,2-エタンジァミンを有する 4座の コバルト錯体を触媒に用いて鋭意検討を重ねてきた。 その結果、 光学活性 Ν,Ν' - ビス(2-ァセチル- 3 -才キソブチリデン) -1 , 2-ビス (2,4, 6-トリメチルフエニル) エチレンジァミナト臭化コバルト (III ) 錯体の X線構造解析により、 光学活性 1,2-ビス (2,4,6-卜リメチルフエニル) -1 , 2-エタンジァミンの絶対構造を明ら かにした上、 この光学活性 N, N ' -ビス(2-ァセチル -3-才キソブチリデン) -1 , 2 - ビス (2,4, 6-トリメチルフエニル) エチレンジァミン、 及び光学活性 Ν , Νにビ ス(サリシリデン)-1 , 2-ビス (2, 4, 6-卜リメチルフエニル) エチレンジァミン等 の 4座の配位子を含むコバルト錯体触媒が、 不斉ボロヒドリ ド還元反応、 及び不 斉シクロプロパン化反応に有効であることを見出し、 本発明に到達した。 図面の簡単な説明  As described above, it has been desired to provide a complex having high selectivity for various substrates as a catalyst for asymmetric reduction and asymmetric cyclopropanation reactions, and to clarify the absolute structure of the catalyst. There is a strong need for easy management of development, development and manufacturing. An object of the present invention is to satisfy these needs. In order to solve the above problems, the present inventors have proposed an optically active trans-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine as an asymmetric source. We have been conducting intensive studies using a tetradentate cobalt complex having As a result, the optically active Ν, Ν'-bis (2-acetyl-3-age-isobutylidene) -1,2-bis (2,4,6-trimethylphenyl) ethylenediaminatocobalt (III) complex X-ray structure analysis revealed the absolute structure of optically active 1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine, and this optically active N, N'-bis ( 2-Acetyl-3-year-old oxobutylidene) -1,2-bis (2,4,6-trimethylphenyl) ethylenediamine, and optically active ,, Ν, bis (salicylidene) -1,2-bis (2,4) The present inventors have found that a cobalt complex catalyst containing a tetradentate ligand such as (6,6-trimethylphenyl) ethylenediamine is effective for an asymmetric borohydride reduction reaction and an asymmetric cyclopropanation reaction, and arrived at the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 式 で表される光学活性コバルト(III)錯体の X線構造解析によ つて求められた構造図である。  FIG. 1 is a structural diagram obtained by an X-ray structural analysis of the optically active cobalt (III) complex represented by the formula.
図 2は、 図 1に示した錯体と同じ結晶中に含まれる、 もう一方の独立したコバ ル卜錯体の構造を表す 0RTEP図である。  FIG. 2 is a 0RTEP diagram showing the structure of another independent cobalt complex contained in the same crystal as the complex shown in FIG.
図 3は、 図 1及び図 2に示したコバルト錯体の模式図である。  FIG. 3 is a schematic diagram of the cobalt complex shown in FIG. 1 and FIG.
図 4は、 図 1及び図 2に示したコバルト錯体を含む単結晶中での錯体の配列状 態を示す a軸投影図である。 図 5は、 図 1及び図 2に示したコバルト錯体を含む単結晶中での錯体の配列状 態を示す b軸投影図である。 発明を実施するための最良の形態 FIG. 4 is an a-axis projection view showing the arrangement of the complexes in the single crystal containing the cobalt complex shown in FIGS. 1 and 2. FIG. 5 is a b-axis projection view showing the arrangement of the complexes in the single crystal containing the cobalt complex shown in FIGS. 1 and 2. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明,を詳細に説明する。本発明の光学活性コバルト (II) 錯体は、 下 記一般式 (丄) 又は (」じ)  Hereinafter, the present invention will be described in detail. The optically active cobalt (II) complex of the present invention has the following general formula (丄) or (()
Figure imgf000008_0001
Figure imgf000008_0001
(D CD  (D CD
〔式中、 R 1及び R 2は、 同一でも異なっていてもよく、 水素原子、 直鎖もしくは 分岐状のアルキル基、 直鎖もしくは分岐状のアルケニル基、 直鎖もしくは分岐状 のァリール基、 ァシル基又はアルコキシカルボニル基、 ァリールォキシカルボ二 ル基又はァラルキル才キシカルボニル基であり、 前記アルキル基、 アルケニル基、 ァリール基、 ァシル基、 アルコキシカルボニル基、 ァリ一ル才キシカルボニル基 及びァラルキル才キシカルボ二ル基は置換基を有していてもよく、 また、 R 1及 び R 2は、 相互に連結して、 R 1及び R 2がそれぞれ結合している炭素原子と共同し て環を形成してもよい。 〕 で表される。 [In the formula, R 1 and R 2 may be the same or different, and represent a hydrogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, a linear or branched aryl group, Or an alkoxycarbonyl group, an aryloxycarboxy group or an aralkyloxycarbonyl group, wherein the alkyl group, alkenyl group, aryl group, acryl group, alkoxycarbonyl group, aryloxycarbonyl group and aralkyl The xycarbonyl group may have a substituent, and R 1 and R 2 are mutually connected to form a ring together with the carbon atom to which R 1 and R 2 are bonded. May be formed. ] Is represented.
上記 R 1及び R 2のアルキル基としては、 メチル基、 ェチル基、 イソプロピル基、 tert -プチル基、 sec-ブチル基、 n-プロピル基、 n -プチル基等が代表的である c ァリール基としては、 フエニル基、 p-メ 卜キシフエニル基、 P-クロ口フエ二 ル基、 p -フルオロフェニル基、 3,5-ジメチルフエニル基、 3,5-ジメトキシフエ ニル基、 2,4, 6-卜リメチルフエニル基、 ナフチル基等の置換又は非置換の芳香族 炭化水素基;フリル基、 チェニル基、 ピリジル基、 ピロリル基、 才キサゾリル基、 イソ才キサゾル基、 チアゾリル基、 イソチアゾリル基、 イミダゾリル基、 ピラゾ リル基、 ピリミジル基、 ピリダジニル基、 ビラリジニル基、 キノリル基、 イソキ ノリル基等の置換又は非置換の芳香族複素環基が代表的である。 Examples of the alkyl group R 1 and R 2, a methyl group, Echiru group, an isopropyl group, tert - heptyl group, sec- butyl group, n- propyl group, n - heptyl group and the like as c Ariru group is a representative Are phenyl, p-methoxyphenyl, P-chlorophenyl, p-fluorophenyl, 3,5-dimethylphenyl, 3,5-dimethoxyphenyl, 2,4,6 -Substituted or unsubstituted aromatic hydrocarbon groups such as trimethylphenyl group and naphthyl group; furyl group, chenyl group, pyridyl group, pyrrolyl group, oxazolyl group, isoxaxol group, thiazolyl group, isothiazolyl group, imidazolyl group, Pyrazo Representative examples include a substituted or unsubstituted aromatic heterocyclic group such as a luyl group, a pyrimidyl group, a pyridazinyl group, a bilaridinyl group, a quinolyl group, and an isoquinolyl group.
ァシル基としては、 ァセチル基、 トリフル才ロアセチル基、 プロピオニル基、 プチリル基、 イソプチリル基、 ビバロイル基等の脂肪 55矣ァシル基;ベンゾィル基、 3,5-ジメチルベンゾィル基、 2,4, 6-トリメチルベンゾィル基、 2, 6-ジメ卜キジべ ンゾィル基、 2,4,6-トリメ 卜キシベンゾィル基、 2,6-ジイソプロポキシベンゾィ ル基、 1-ナフチルカルボニル基、 2-ナフチルカルボニル基、 9-アン卜リルカルボ ニル基等の芳香族ァシル基が代表的であり、 アルコキシカルボニル基の代表例と しては、 メトキシカルボニル基、 エトギシカルボ二ル基、 n -ブトキシカルボ二 ル基、 n -才クチルォキシカルボニル基、 シクロペンチル才キシカルボニル基、 シクロへキシル才キシカルボニル基、 シク口才クチルォキシカルボニル基、 tert-ブ卜キシカルボニル基が挙げられ、 ァリール才キシカルボニル基の代表例 としては、 フエノキシカルボニル基が挙げられ、 ァラルキル才キシカルボニル基 の代表例としては、 ベンジル才キシカルボニル基、 フエネチル才キシカルボニル 基等が挙げられる。  Examples of the acetyl group include fatty acetyl group, trifluroylacetyl group, propionyl group, butyryl group, isoptyryl group, and fatty acid 55 ouidosil group such as bivaloyl group; benzoyl group, 3,5-dimethylbenzoyl group, 2,4,6 -Trimethylbenzoyl group, 2,6-dimethoxydibenzoyl group, 2,4,6-trimethoxybenzoyl group, 2,6-diisopropoxybenzoyl group, 1-naphthylcarbonyl group, 2-naphthyl Aromatic acyl groups such as a carbonyl group and a 9-anthrylcarbonyl group are typical, and typical examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an n-butoxycarbonyl group, n-octyloxycarbonyl, cyclopentyloxycarbonyl, cyclohexyloxycarbonyl, cyclohexylcarbonyl, tert-butoxy Typical examples of aryloxycarbonyl groups include phenoxycarbonyl groups. Typical examples of aralkyloxycarbonyl groups include benzyloxycarbonyl groups and phenethyloxycarbonyl groups. Is mentioned.
また、 R 1及び R 2は、 相互に連結して、 R 1及び R 2がそれぞれ結合している炭 素原子と共同して環を形成してもよい。 例えば、 R 1及び R 2が相互に連結して、 ― ( C H 2) 4—又は- C H二 C H - C H = C H -となる場合、 それぞれシクロへキサ ン環又はベンゼン環が形成され、 このように形成されたシクロへキサン環、 ベン ゼン璟等の環は、 例えば、 メチル基、 ェチル基、 n -プロピル基、 イソプロピル 基、 sec -プチル基、 tert -プチル基等のアルキル基;フ; τニル基、 ナフチル基等 のァリール基; メ卜キシ基、 エトキシ基、 イソプロピル才キシ基等のアルキル才 キシ基;フエノキシ基、 2,6-ジメチルフエノキシ基等のァリール才キシ基;ベン ジル才キシ基、 フエネチル才キシ基等のァラルキル才キシ基;フヅ素、 塩素、 臭 素等のハロゲン原子;シァノ基;ニトロ基から選ばれる 1又は 2以上の置換基で 置換されていてもよく、 また、 前記ベンゼン環は縮合し、 ナフタレン環等の縮合 多環を形成してもよい。 R 1 and R 2 may be mutually connected to form a ring in cooperation with the carbon atom to which R 1 and R 2 are respectively bonded. For example, when R 1 and R 2 are interconnected to form — (CH 2 ) 4 — or —CH 2 CH—CH = CH—, a cyclohexane ring or a benzene ring is formed, respectively. The cyclohexane ring and benzene ring formed on the alkyl group include, for example, an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a sec-butyl group and a tert-butyl group; Aryl groups such as benzyl, naphthyl, etc .; alkyl groups such as methoxy, ethoxy, isopropyl, etc .; aryl groups such as phenoxy, 2,6-dimethylphenoxy; benzyl Optionally substituted with one or more substituents selected from aralkyl groups such as methoxy group, phenethyl group and the like; halogen atoms such as fluorine, chlorine and bromine; cyano groups; and nitro groups. The benzene ring is fused It may form a condensed polycyclic ring such as naphthalene ring.
この一般式 (丄) 又は (J丄) で表される光学活性コバルト (Π ) 錯体の、 更 に好ましい態様は、 下記式 (JJ 又は 下記式 (A) 又は A further preferred embodiment of the optically active cobalt (Π) complex represented by the general formula (丄) or (J 丄) is represented by the following formula (JJ or The following formula (A) or
Figure imgf000010_0001
Figure imgf000010_0001
〔式中、 R 3は直鎖もしくは分岐状のアルキル基、 ァリール基、 又はアルコキシ 基、 ァリール才キシ基であり、 前記アルキル基、 ァリール基、 アルコキシ基及び ァリール才キシ基は置換基を有していてもよい。 〕 Wherein R 3 is a linear or branched alkyl group, aryl group, or alkoxy group, aryl group, and the alkyl group, aryl group, alkoxy group, and aryl group have a substituent. May be. ]
あるいは、 下記式 (ェ) 又は (i二) Alternatively, the following formula (e) or (i-ii)
Figure imgf000010_0002
Figure imgf000010_0002
〔式中、 R4、 R R 6、 及び R7は、 同一でも異なっていてもよく、 水素原子、 直鎖もしくは分岐状のアルキル基、 直鎖もしくは分岐状のアルケニル基、 直鎖も しくは分岐状のもし〈はァリール基、 アルコキシ基、 シァノ基、 又はニトロ基、 又はハロゲン原子であり、 前記アルキル基、 アルケニル基、 ァリ一ル基、 アルコ キシ基は置換基を有していてもよく、 また、 R 4〜R7のうちいずれか二つが相互 に連結し、 それぞれ結合している炭素原子と共同して環を形成してもよく、 ナフ チル環等の縮合環を形成していてもよい。 〕 [In the formula, R 4 , RR 6 , and R 7 may be the same or different, and represent a hydrogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, a linear or branched If it is an aryl group, an alkoxy group, a cyano group, or a nitro group, or a halogen atom, the alkyl group, alkenyl group, aryl group, and alkoxy group may have a substituent. And any two of R 4 to R 7 may be mutually connected to form a ring in cooperation with the carbon atom to which they are bonded, and may form a condensed ring such as a naphthyl ring. Is also good. ]
で表される光学活性コバルト (II ) 錯体であり、 具体例として、 下記式 (4a)〜And an optically active cobalt (II) complex represented by the following formula (4a)
(4i) s (la)〜(! i)で表されるもの、 及びそれらの鏡像異性体等が挙げられる。
Figure imgf000011_0001
(4i) s (la) to (! I), and their enantiomers.
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000012_0001
また、本発明の光学活性コバルト (III)錯体は、 下記一般式 (2)又は (21)
Figure imgf000013_0001
Further, the optically active cobalt (III) complex of the present invention has the following general formula (2) or (21)
Figure imgf000013_0001
(2) (2  (twenty two
〔式中、 R1及び R2は、 前記一般式 (1)又は 01)について定義したとおりであり、 式中 X—は塩を形成し得る陰イオン対である。 〕 で表される。 [Wherein, R 1 and R 2 are as defined for the above general formula (1) or 01), wherein X— is a salt-forming anion pair. ] Is represented.
上記 X-としては、 F -、 C 1 \ B r -、 Γ、 OH -、 CH3C02—、 p-C H3C6H4 S03—、 C F3S03\ P F6—、 B F4_、 B P h4一、 S b F6—、 C 1 04一等が代表的で ι¾る。 The X- Examples, F -, C 1 \ B r -, Γ, OH -, CH 3 C0 2 -, pC H 3 C 6 H 4 S0 3 -, CF 3 S0 3 \ PF 6 -, BF 4 _ , BP h 4 one, S b F 6 -, C 1 0 4 Chief is Ru representative and Iota¾.
前記式 (2) 又は (2_二) で表される光学活性コバルト(III)錯体の、 更に好 ましい態様としては、 下記式 ( )又は (D As a more preferred embodiment of the optically active cobalt (III) complex represented by the formula (2) or (2_2), the following formula () or (D)
Figure imgf000013_0002
Figure imgf000013_0002
(5) (5:)  (5) (5 :)
〔式中、 R3及び X—は前記と同義である。〕 [Wherein, R 3 and X— are as defined above. ]
あるいは下記式 (且) 又は (8, )
Figure imgf000014_0001
Or the following formula (and) or (8,)
Figure imgf000014_0001
〔式中、 R4、 R R\ R7及び X—は前記と同義である。 〕 Wherein R 4 , RR \ R 7 and X— are as defined above. ]
で表される光学活性コバルト(III)錯体であり、 具体例として、下記式 An optically active cobalt (III) complex represented by the following formula.
( 、( )〜( )で表されるもの、 及びそれらの鏡像異性体等が挙げられる c (And those represented by () to (), and their enantiomers, etc.
Figure imgf000015_0001
Figure imgf000016_0001
前記一般式 a)又は oi)で表される光学活性コバルト (Π) 錯体、 及び一般式
Figure imgf000015_0001
Figure imgf000016_0001
An optically active cobalt (Π) complex represented by the general formula a) or oi), and a general formula
(2)又は ( )で表される光学活性コバルト (ΠΙ)錯体は、 公知の方法に従って調 製することができる。 例えば、 Y. Nishidaら、 Inorg. Chim. Acta, 38, 213 (1980); L. Claisen, Ann. Chem. , 222, 57 (1897); E. G. Jager, Z. Chem. , 8, 30, 392, および 475 (1968)に報告された方法に従って調製することができ、特 開平 9— 1 5 1 1 43号公報にも開示されている。 The optically active cobalt (II) complex represented by (2) or () can be prepared according to a known method. For example, Y. Nishida et al., Inorg. Chim. Acta, 38, 213 (1980); L. Claisen, Ann. Chem., 222, 57 (1897); EG Jager, Z. Chem., 8, 30, 392, And 475 (1968), which is also disclosed in Japanese Patent Application Laid-Open No. 9-151143.
即ち、 下記式 (15)又は (101)  That is, the following formula (15) or (101)
Figure imgf000016_0002
Figure imgf000016_0002
(10)  (Ten)
で表される光学活性ジァミンを、 アルデヒド化合物と脱水縮合反応させて下記式 (3)又は ) The optically active diamine represented by (3) or)
Figure imgf000017_0001
Figure imgf000017_0001
(さ) (3:) (Sa) (3 :)
〔式中、 R1及び R2は、 前記と同義である。 〕 で表される光学活性中間体化合物 を製造し、該光学活性中間体化合物を塩基性化合物の存在下に 2価コバルトィォ ンを含む化合物と反応させることにより得られる。 [Wherein, R 1 and R 2 are as defined above. The optically active intermediate compound represented by the formula is produced, and the optically active intermediate compound is reacted with a compound containing divalent cobalt ion in the presence of a basic compound.
例えば、 式 (Sa)で表される) S-ケ卜ィミン化合物、 及びそれに対応する、 式 Ua)で表される光学活性コバルト (II)錯体、 及び式 ( )で表される光学活性 コバルト (III)錯体は、 下記式 (A) に示す工程に従って調製することができ る。  For example, an S-ketoimine compound represented by the formula (Sa), and an optically active cobalt (II) complex represented by the formula Ua), and an optically active cobalt (II) represented by the formula (): III) The complex can be prepared according to the process shown in the following formula (A).
Figure imgf000017_0002
Figure imgf000017_0002
の^-ケ卜ィミン型光学活性コバルト錯体の製造において、 原料合成工程と なる 3-メトキシメチレン- 2,4-ペンタンジ才ン (式 (A) 中の化合物 ( )) の調 製は、 例えば、 ァセチルアセトンに 1〜5モル当量のオル卜ギ酸卜リメチルを加 え、 無水酢酸溶媒中で、 加熱'還流することにより行うことができる。 Production process of the ^ -ketomine type optically active cobalt complex To prepare 3-methoxymethylene-2,4-pentanedine (compound () in formula (A)), for example, 1 to 5 molar equivalents of trimethyl orthoformate are added to acetylacetone, It can be carried out by heating and refluxing in an acetic anhydride solvent.
光学活性ジァミンとの脱水縮合反応は、 アルコール溶媒中、 3-メ卜キシメチレ ン -2, 4 -ペンタ ジ才ン を 2当量加え、 室温で 1〜2時間撹拌した後、 さら に 5 0 °Cに加熱することにより行うことができる。濃縮して得られる粗生成物は、 シリカゲルカラムクロマトグラフィー、再沈殿、 再結晶等の通常の精製方法によ つて精製することができる。  The dehydration condensation reaction with optically active diamine is performed by adding 2 equivalents of 3-methoxymethylene-2,4-pentadiene in an alcohol solvent, stirring at room temperature for 1 to 2 hours, and then heating at 50 ° C. The heating can be carried out. The crude product obtained by concentration can be purified by ordinary purification methods such as silica gel column chromatography, reprecipitation and recrystallization.
配位子の錯形成工程に使用する塩基性化合物としては水酸化ナ卜リゥ厶、 水酸 化カリウム等が挙げられ、 その使用量は、 配位子に対して 2.0モル当量以上であ り、 好ましくは 2.0〜2.5モル当量である。  Examples of the basic compound used in the ligand complexing step include sodium hydroxide, potassium hydroxide, and the like. The amount of the basic compound used is not less than 2.0 molar equivalents relative to the ligand. Preferably it is 2.0 to 2.5 molar equivalents.
υレトカチオン源としては、 塩ィ匕コバルト (Π) 、 酢酸コバルト (Π) 等、 \リレ卜の 2価イオンを含む化合物が挙げられ、 これらは水溶液として使用でき る。 配ィ立子に対して 1 .0モル当量、 もしくはそれ以上のコバルト力チ才ンを添加 すればよく、 好ましくは 1 .0〜1 .5モル当量となる量が使用される。  Examples of the source of peritocation include compounds containing divalent ions of \ relet, such as cobalt salt (Π) and cobalt acetate (Π), and these can be used as an aqueous solution. It is sufficient to add 1.0 mole equivalent or more of cobalt to the stake, and preferably an amount of 1.0 to 1.5 mole equivalent is used.
錯形成反応は、 窒素又はアルゴン等の不活性ガス雰囲気下で行い、塩基、 コバ ル卜カチオン、 配位子を溶かすための水、 及び溶媒は脱気したものを使用する。 また、 反応温度は 0°C以上であれば反応が進行するが、 30〜80°C程度に加熱する ことにより反応時間を短縮することができ、 好ましくは 40〜60°Cである。  The complex formation reaction is carried out in an atmosphere of an inert gas such as nitrogen or argon, and the base, cobalt cation, water for dissolving the ligand, and the solvent used are degassed. The reaction proceeds when the reaction temperature is 0 ° C. or higher, but the reaction time can be shortened by heating to about 30 to 80 ° C., preferably 40 to 60 ° C.
溶媒としては、 メタノール、 エタノール、 2 -プロパノール等のアルコール系溶 媒が好ましい。  As the solvent, alcohol solvents such as methanol, ethanol, and 2-propanol are preferable.
上記式 (A) に示す錯形成工程において、 塩化コバルト (Π) 水溶液の添加後 間もなく、 1〜10分程度でコバルト (II ) 錯体が析出を開始するが、 さらに加 熱 -撹拌を 30分〜 2時間程度継続して行う。 その後、 反応混合物を室温まで冷却 し、 必要に応じて水を添加して反応生成物を析出させる。 次に窒素などの不活性 ガス下で濾別し、 水又は水—アルコールの混合溶液により洗浄した後、 真空乾燥 を行い、 目的の光学活性コバルト (Π) 錯体を得ることができる。  In the complex formation step represented by the above formula (A), the cobalt (II) complex starts to precipitate in about 1 to 10 minutes shortly after the addition of the aqueous solution of cobalt (II) chloride. Continue for about 2 hours. Thereafter, the reaction mixture is cooled to room temperature, and water is added as necessary to precipitate a reaction product. Next, the mixture is filtered off under an inert gas such as nitrogen, washed with water or a mixed solution of water-alcohol, and then dried under vacuum to obtain the desired optically active cobalt (II) complex.
上記の方法により得られた光学活性コバルト (II) 錯体に、 塩素、 臭素、 ヨウ 素等のハロゲンを添加することにより、 対応するハロゲン化された光学活性コ ) ルト (III) 錯体へと変換できる。 例えば、 ジクロロメタン溶媒中で、 光学活性 コノ υレト (II) 錯体に臭素 (Br2) 0.5モル当量を加え、 室温で撹拌して反応させ、 濃縮すると粗生成物が得られる。 この粗生成物はシリカゲルカラムクロマトグラ フィ一、再沈殿、 再結晶等の精製操作により精製できる。 By adding a halogen such as chlorine, bromine or iodine to the optically active cobalt (II) complex obtained by the above method, a corresponding halogenated optically active cobalt (II) can be obtained. It can be converted to ruto (III) complex. For example, in a dichloromethane solvent, 0.5 mole equivalent of bromine (Br 2 ) is added to the optically active conorelet (II) complex, reacted at room temperature with stirring, and concentrated to obtain a crude product. This crude product can be purified by purification operations such as silica gel column chromatography, reprecipitation, and recrystallization.
一方、 例えば、 式 (Sa)で表されるサレン化合物、 及びそれに対応する、 式 (la) で表される光学活性コバルト (II) 錯体、 及び式 ( )で表される光学活性コバ ル卜 (III) 錯体は、 前記式 (A) と同様に下記式 (且) に示す工程に従って調 製することができる。  On the other hand, for example, a salen compound represented by the formula (Sa), an optically active cobalt (II) complex represented by the formula (la), and an optically active cobalt (II) represented by the formula () III) The complex can be prepared according to the process represented by the following formula (and) in the same manner as in the formula (A).
式 ( Expression (
Figure imgf000019_0001
Figure imgf000019_0001
このサレン型光学活性コバルト錯体の製造は、 前述の式 (A) における化合物 The production of this salen-type optically active cobalt complex is carried out by using the compound represented by the above formula (A).
(113)の代わりにサリチルアルデヒド (式 (且) 中の化合物 02a)) を出発原料と して用い、 同様の工程を経て製造できる。 A salicylaldehyde (compound 02a) in the formula (and) can be used as a starting material instead of (113), and can be produced through a similar process.
このようにして得られる、 前記式 (4a)又は (la)に代表される光学活性コバル (II) 錯体、 及び前記式 ( )又は ( )に代表される光学活性コバルト (III) 錯体は、 共にケトンやイミンを基質とする不斉ボロヒドリ ド還元反応の触媒とし て、 あるいは才レフィンの不斉シクロプロパン化反応の触媒として有効である。 また、 これらの錯体は空気中で非常に安定であり、 3〜5年間保管したものでも触 媒として問題なく使用できる。 特にコノ レト (III) 錯体の場合は、 溶媒に溶かして水や空気に曝しても全く 問題がないほど安定である。安定かつ取り扱いが容易であるという特性があるた め、 X線による構造解析を行うことが容易である。 すなわち、 光学活性コバルト (III) 錯体をテトラヒドロフラン (TH F) -へキサン溶液中で結晶化させて X 線分析可能な 結晶を得、 これを X線構造解析に供することができる。 実際に、 式 ( )で表される光学活性コバルト (ΠΙ) 錯体の単結晶を用いて X線分析を行 い、 これまで明らかにされていなかった光学活性ジァミン部分の絶対立体配置を 決定することができた。 The optically active Koval (II) complex represented by the formula (4a) or (la) and the optically active cobalt (III) complex represented by the formula () or () thus obtained are both It is effective as a catalyst for an asymmetric borohydride reduction reaction using a ketone or imine as a substrate, or as a catalyst for an asymmetric cyclopropanation reaction of birefin. In addition, these complexes are very stable in air, and can be used as catalysts without problems even if they are stored for 3 to 5 years. In particular, in the case of the conoreto (III) complex, it is so stable that there is no problem even when it is dissolved in a solvent and exposed to water or air. Due to its characteristics of being stable and easy to handle, it is easy to perform structural analysis using X-rays. That is, the optically active cobalt (III) complex is crystallized in a tetrahydrofuran (THF) -hexane solution to obtain an X-ray-analysable crystal, which can be subjected to X-ray structure analysis. Actually, X-ray analysis was performed using a single crystal of the optically active cobalt (ΠΙ) complex represented by the formula () to determine the absolute configuration of the optically active diamine moiety, which had not been clarified until now. Was completed.
次に、 本発明の光学活性コバルト錯体の不斉源として使用する、 前記式 で 表される光学活性ジァミン (1,2-ビス (2,4,6-トリメチルフエニル) -1,2-エタ ンジァミン) の合成法、 及び光学活性コバルト (III) 錯体の絶対立体配置決定 方法について、 参考までに説明する。  Next, the optically active diamine (1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanol represented by the above formula, which is used as an asymmetric source of the optically active cobalt complex of the present invention. The method for the synthesis of Ndamine and the method for determining the absolute configuration of the optically active cobalt (III) complex are described for reference.
光学活性ジァミン の合成法:  Synthesis method of optically active diamine:
まず、 ラセミ体のトランス -1,2-ビス (2,4,6-卜リメチルフエニル) - 1,2-エタ ンジァミンの製造法について説明する。 ラセミ体の卜ランス- 1,2-ビス (2,4,6 - 卜リメチルフエニル) -1,2-エタンジァミンは、 下記式 (_QJ に示す工程 (Pedersenらによる方法: J. Am. Chem. Soc, 1Q9, 3152 (1987)) に従って調 製することができる。  First, the method for producing racemic trans-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine will be described. Racemic trans-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine can be prepared by the process shown by the following formula (_QJ (Method by Pedersen et al .: J. Am. Chem. Soc, It can be prepared according to 1Q9, 3152 (1987).
式 (£)  Expression (£)
Figure imgf000020_0001
すなわち、 2,4,6-卜リメチルベンズアルデヒド をリチウムビス (卜リメチル シリル) アミドと反応させ、 塩化卜リメチルシランを加えて撹拌を続けた後、 濃 縮して析出する塩を濾別、 除去し、 濾液を減圧蒸留するとシリルイミン (II)が得 られる。 次に、 等モル量の四塩化ニオブ—テ卜ラヒドロフラン錯体の存在下、
Figure imgf000020_0001
That is, 2,4,6-trimethylbenzaldehyde is reacted with lithium bis (trimethylsilyl) amide, trimethylsilane chloride is added, stirring is continued, and the salt that is concentrated and precipitated is removed by filtration. When the filtrate is distilled under reduced pressure, silylimine (II) is obtained. Next, in the presence of an equimolar amount of niobium tetrachloride tetrahydrofuran complex,
1,2-ジメトキシェタン溶媒中、 上記で得たシリルイミン 01)を室温で反応させ、 塩基で処理することにより、 目的とするラセミ体のトランス- 1,2-ビス (2,4,6- 卜リメチルフエニル) -1,2-エタンジァミン ( (土) - ) が収率よ〈得られ る。 次に光学活性マンデル酸による光学分割を行い、 光学活性ジァミンを単離す る事ができる。 すなわち、 (+ ) -マンデル酸を分割剤として使用した場合には (一) - 1,2-ビス (2,4,6-卜リメチルフエニル) -1,2 -エタンジァミンが、 一方、 (一) -マンデル酸を使用した場合には (+ ) -1,2 -ビス (2,4,6 -卜リメチルフエ ニル) -1,2-エタンジァミンが得られる。 In 1,2-dimethoxyethane solvent, the silylimine 01) obtained above was reacted at room temperature, By treating with a base, the desired racemic trans-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine ((Sat)-) is obtained in good yield. . Next, optical resolution with optically active mandelic acid can be performed to isolate optically active diamine. That is, when (+)-mandelic acid is used as a resolving agent, (1)-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine is used, whereas (1-)- When mandelic acid is used, (+)-1,2-bis (2,4,6-trimethylphenyl) -1,2-ethanediamine is obtained.
絶対配置決定の原理:  Principle of absolute configuration determination:
X線の散乱と吸収が同時に強く起ると、 X線の異常散乱が生じる。 これを利用す ることにより、 対称心を持たない結晶の絶対構造が決定できる。 最近では、 最小 二乗法のパラメータとして次式で定義される変数 Xを精密化する方法が標準的に 使用されている。When X-ray scattering and absorption occur simultaneously, abnormal X-ray scattering occurs. By using this, the absolute structure of a crystal without a center of symmetry can be determined. Recently, a method of refining a variable X defined by the following equation as a parameter of the least squares method is commonly used.
Figure imgf000021_0001
Figure imgf000021_0001
変数 xを Flack のパラメ一夕という。 (Flack, H. D. , Acta Cryst. m, 876-881 (1983). )  The variable x is called the parameter of Flack overnight. (Flack, H.D., Acta Cryst.m, 876-881 (1983).)
xが 0に近ければ絶対構造は正しいが、 1に近ければ反転構造のほうが正しいこ とになる。 この Flack のパラメ一夕を利用すれば絶対構造の角科斤を行うことがで きる。 絶対配置を決定する際には、 ① Flack のパラメ一夕 Xが- 0.2以上 0.3以下 であること、 ②その標準偏差が 0.5以下であること、 という 2つの条件を満足し ている必要がある。 本発明では、 この Flackのパラメータを利用して錯体の絶対 立体配置を明らかにすることができた。 なお、絶対配置を決定するためには、 フ リーデル対 (hklと -h,- - 1の反射の組) をできるだけ多ぐ測定する必要がある c If x is close to 0, the absolute structure is correct, but if it is close to 1, the inverted structure is correct. If you use this Flack parameter, you can make an absolutely edgy horn. When determining the absolute configuration, two conditions must be satisfied: (1) the parameter X of Flack is -0.2 or more and 0.3 or less, and (2) its standard deviation is 0.5 or less. In the present invention, it was possible to clarify the absolute configuration of the complex using the Flack parameter. In order to determine the absolute configuration, full Riedel pairs (hkl and -h, - - 1 reflection set) must be possible tags measure c
以下、 実施例により本発明を具体的に説明するが、 本発明は、 これらの実施例 に限定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
(参考例 1 )  (Reference example 1)
3 -メトキシメチレン- 2,4-ペンタンジ才ン 01^)の合成:  Synthesis of 3-methoxymethylene-2,4-pentanedine 01 ^):
反応器に入 たァセチルアセトン 21.6 g (0.216 mol)とオル卜ギ酸トリメチ ル 40.0 g (0.377 mol )の無水酢酸 (66.0 g, 0.647 mol)溶液を 120°Cで 5時間加熱 した。 副生する低沸点成分を留去した後、 減圧蒸留すると、 3-メ 卜キシメチレ ン -2, 4-ペンタンジオン 29.8 g が得られた (収率 96%) 。  A solution of 21.6 g (0.216 mol) of acetylacetone and 40.0 g (0.377 mol) of trimethyl orthoformate in acetic anhydride (66.0 g, 0.647 mol) in a reactor was heated at 120 ° C for 5 hours. After distilling off the by-product low-boiling components, distillation under reduced pressure yielded 29.8 g of 3-methoxyxylene-2,4-pentanedione (96% yield).
沸点 110〜112 °C/0.7 mmHg0 Boiling point 110-112 ° C / 0.7 mmHg 0
1H 匿 (CDC13)0 = 7.63 (1H, s), 4.05 (3H, s), 2.38 (3H, s), 2.33 (3H, s); IR 2998, 2946, 2852, 1678, 1623, 1587, 1388, 1360, 1292, 1134 cm—1. (実施例 1 ) 1 H concealed (CDC1 3 ) 0 = 7.63 (1H, s), 4.05 (3H, s), 2.38 (3H, s), 2.33 (3H, s); IR 2998, 2946, 2852, 1678, 1623, 1587, 1388, 1360, 1292, 1134 cm— 1 . (Example 1)
^-ケ卜イミン型配位子 の合成:  Synthesis of ^ -ketoimine-type ligand:
ナ卜リゥ厶の D線に対してプラスの旋光性を示す 1,2-ビス(2,4, 6-トリメチルフ ェニル)エチレンジァミン 2.96 g (10 画 ol)のエタノール溶液(60 ml)に、 撹拌 しながら、 室温で 3 -メ 卜キシメチレン- 2,4 -ペンタンジ才ン 2.98 g (21 mmol)の エタノール溶液 (40 ml)を滴下した。 室温で 1時間撹拌した後、 50°Cに昇温して 2 時間撹拌を続けた。反応終了後、 溶媒を減圧留去すると粗生成物が得られた。粗 生成物をジクロロメタン/エーテル/へキサンにより再結晶を行い、 濾別、 洗浄、 真空乾燥すると; 8 -ケトイミン型配位子 (fia) 4.88 gが白色粉末として得られた (単離収率 95%) o  Stir in ethanol solution (60 ml) of 2.96 g (10 ol) of 1,2-bis (2,4,6-trimethylphenyl) ethylenediamine, which shows a positive optical rotation for sodium D-line. At the same time, an ethanol solution (40 ml) of 3.98 g (21 mmol) of 3-methoxymethylene-2,4-pentanedine was added dropwise at room temperature. After stirring at room temperature for 1 hour, the temperature was raised to 50 ° C and stirring was continued for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was recrystallized from dichloromethane / ether / hexane, filtered, washed and dried under vacuum; 4.88 g of 8-ketoimine type ligand (fia) was obtained as a white powder (isolation yield: 95 %) o
]W NMR (CDC13)(5 = 1.73 (6H, br), 2.21 (6H, s), 2.22 (6H, s), 2.46 (6H, s), 2.72 (6H, br), 5.20 (2H, m), 6.60-6.90 (4H, m), 7.65 (2H, d, J = 12.2 Hz); 比旋光度 [ ]ΰ 27 —186° (c 1.02, CHC13) ] W NMR (CDC1 3) ( 5 = 1.73 (6H, br), 2.21 (6H, s), 2.22 (6H, s), 2.46 (6H, s), 2.72 (6H, br), 5.20 (2H, m ), 6.60-6.90 (4H, m), 7.65 (2H, d, J = 12.2 Hz); Specific rotation [] ΰ 27 —186 ° (c 1.02, CHC1 3 )
(実施例 2)  (Example 2)
^-ケ卜ィミナ卜コバルト (II) 錯体 (43)の合成:  Synthesis of ^ -ketiminate cobalt (II) complex (43):
反応器に入れた -ケトイミン型配位子 ½a) 4.1 g (8 mmol)にメタノール(HO ml)を加え、 窒素流通下で撹拌して溶解させた。 30分間撹袢した後、 水酸化ナト リウ厶 0.72 g (18 mmol)水溶液 (2.8 ml)を加え、 50°Cで撹拌した。 30分後、 塩 化コバルト .6水和物 2.1 g (9讓 ol)水溶液 (3.7 ml)を滴下すると黄褐色の沈殿 が析出した。 更に 30分間撹拌した後、 室温に冷却して水を加えた (40 mlx2 回) c 窒素雰囲気下で反応液を濾過し、 析出物を水洗し、 窒素流通により乾燥させた。 窒素ボックス内で生成物を取り出し、 120°Cで 2時間減圧乾燥を行うと、 黄褐色の コバル卜 (II)錯体 (^)4.3 gが得られた (収率 93%) 。 Methanol (HO ml) was added to 4.1 g (8 mmol) of the -ketoimine-type ligand placed in the reactor, and the mixture was stirred and dissolved under a flow of nitrogen. After stirring for 30 minutes, an aqueous solution (2.8 ml) of 0.72 g (18 mmol) of sodium hydroxide was added, and the mixture was stirred at 50 ° C. 30 minutes later, salt A 2.1 g (9 mL) aqueous solution (3.7 ml) of cobalt chloride hexahydrate was added dropwise, and a yellow-brown precipitate was deposited. After further stirring for 30 minutes, the mixture was cooled to room temperature and water was added (40 ml × 2 times). C The reaction solution was filtered under a nitrogen atmosphere, and the precipitate was washed with water and dried by flowing nitrogen. The product was taken out in a nitrogen box and dried under reduced pressure at 120 ° C for 2 hours to obtain 4.3 g of a yellow-brown cobalt (II) complex (^) (93% yield).
融点 276-282 °C 276-282 ° C
(実施例 3)  (Example 3)
j8 -ケトイミナト臭化コバルト (III)錯体 ( )の合成:  Synthesis of j8-ketiminatocobalt (III) complex ():
;5—ケトイミナ卜コノ υレト (II) 錯体 (4a) 1.15 g (2 mmol )にジクロ口メタン (23 ml)を加え、 窒素流通下で臭素 168 mg (1.05 mmol )を含むジクロ口メタン溶 液 (5 ml)を滴下した。 室温で 1時間撹拌した後、 溶媒を留去し、 シリカゲルカラ 厶クロマトグラフィー (CH2Cl2/MeOH二 30/1 ) による精製を行った。 目的物を含む 留分を濃縮後、 さらに少量のジクロロメタンに溶かし、 へキサンを加えたところ、 茶色の析出物が得られた。 濾過、 洗浄、 乾燥操作を行い、 目的とする臭化コバル 卜 (III)錯体 (5aB)1.17 gを回収できた (収率 90%) 。 ; Dichloromouth methane (23 ml) was added to 1.15 g (2 mmol) of 5-ketoiminatokonopereto (II) complex (4a), and a dichloromethane solution containing 168 mg (1.05 mmol) of bromine under nitrogen flow. (5 ml) was added dropwise. After stirring at room temperature for 1 hour, the solvent was distilled off, and purification was performed by silica gel column chromatography (CH 2 Cl 2 / MeOH 2 30/1). After concentrating the fraction containing the desired product, it was further dissolved in a small amount of dichloromethane, and hexane was added, whereby a brown precipitate was obtained. By performing filtration, washing and drying operations, 1.17 g of the desired cobalt (III) bromide (IIIa) complex (5aB) was recovered (yield 90%).
(実施例 4)  (Example 4)
(-)。-/?-ケトイミナト臭化コバルト (ΙΠ) 錯体 ( ) (Ν,Ν ビス(2 -ァセチ ル -2-ブテンジィル -3 -オラ卜)- 1,2 -ビス (2,4,6 -卜リメチルフエニル) エチレン ジァミン-臭化コバルト (ΠΙ) ) の X線結晶構造解析による絶対立体配置の決定 X線構造解析:  (-). -/?-Ketoiminato cobalt bromide (ΙΠ) complex () (Ν, Νbis (2-acetyl-2-butenedyl-3-orato) -1, 2-bis (2,4,6-trimethylphenyl) Determination of absolute configuration of ethylenediamine-cobalt bromide (臭)) by X-ray crystal structure analysis X-ray structure analysis:
X線構造解析には、 前記式 ( )で表される Ν,Ν'-ビス(2-ァセチル- 2-ブテンジ ィル- 3-才ラト)- 1,2 -ビス (2,4,6-卜リメチルフエニル) エチレンジァミン-臭化 コバルト (III)錯体、 あるいはその鏡像異性体のうち、 ナトリウムの D線に対し てマイナスの旋光性 ([ひ] = -1440。 (c 0.022, THF)) を示すサンプルを用い た。分析に使用する単結晶は、錯体の TH F (テトラヒドロフラン) 溶液にへキ サンを少量加えて拡散させることにより調製した。 得られた褐色の柱状晶 In the X-ray structure analysis, Ν, Ν'-bis (2-acetyl-2-butenediyl-3-year-old) -1,2-bis (2,4,6- Trimethylphenyl) Ethylenediamine-cobalt (III) bromide complex, or its enantiomer, shows a negative optical rotation ([HI] = -1440; (c 0.022, THF)) with respect to the sodium D line. Was used. The single crystals used for the analysis were prepared by adding a small amount of hexane to a solution of the complex in THF (tetrahydrofuran) and diffusing it. Brown columnar crystals obtained
(0.5x0.3x0.1 mm) を母液と共にキヤビラリ一に封入し、 4軸型 X線回折計(0.5x0.3x0.1 mm) together with the mother liquor in a capillaries, and a 4-axis X-ray diffractometer
Rigaku AFC- 7Rにのせた。 線源には MoKひ (波長 λ=0.71073Α ) を用いて、Rigaku AFC-7R Using MoK (wavelength λ = 0.71073Α) as the source,
2Smax=55° まで + h,+k,±lの反射の X線回折強度を測定した。 また、 2S≤40° の領域については、 +h ,一 k,±lの反射の測定も行った。 全部で 12278反射を測 定し、 11744個の独立反射を得た。 なお、 この中には 3 9個のフリーデル対も含 まれている。結晶学的データを表 1に示す。 The X-ray diffraction intensity of the reflection of + h, + k, ± l was measured up to 2S max = 55 °. Also, 2S≤40 ° For the region of, the reflection of + h, 1 k, ± l was also measured. A total of 12278 reflections were measured and 11744 independent reflections were obtained. This also includes 39 Friedel pairs. Table 1 shows the crystallographic data.
表 1  table 1
結晶学的デマタ 化学式: (一) D-trans-[Co(C32H38N2〇4)Br(H20)]'C4H80 Crystallographic demata Chemical formula: (I) D -trans- [Co (C 32 H 38 N 2 〇4) Br (H 20 )] 'C4H 80
晶系:単斜晶系、空間群:  Crystal system: monoclinic, space group:
格子定数: a=13.667(2), b=15.046(2), c=17.764(2) &、 ^=100.32(1)° V=3593.8(8) A3, Z=4, 測定温度 T=297K, Lattice constant: a = 13.667 (2), b = 15.046 (2), c = 17.764 (2) &, ^ = 100.32 (1) ° V = 3593.8 (8) A 3 , Z = 4, Measurement temperature T = 297K ,
Mo Κα線に対する線吸収係数 μ = 1.638 mm一1 Mo Κα line absorption coefficient μ = 1.638 mm- 1
構造は直接法を用いて解いた。結晶溶媒として 2分子独立な THFが含まれてい たが、 原子変位パラメータが非常に大きかったため、 THFの非水素原子は等方性 温度因子を用いて解析し、 C-Cおよび C-0結合距離が妥当な値になるように束縛し た。 なお、 THF中の酸素原子の割り付けは、 それがもし炭素原子ならば近接する 錯体との間に異常に短い Η-'·Η間距離が生じてしまうことより判定した。配位して いる水分子の水素位置は D合成のピークをもとに計算で (sp2混成を仮定し)理想化 した。 その他の水素原子も幾何学的計算で導入し固定した。 水素の温度因子 Uis。(H)は、 それが結合している非水素原子の等価等方性温度因子 Ueqの 1.2倍に固 定した。 結晶構造が近似的に対称心のある構造 (空間群が疑似的に P2 c) であ つたため、 原子パラメ一夕間の相関が強く、 最小二乗法 (SHELXL97 Sheldric G. M. , Program for tne Refinement . or Crystal Structure, University of Goettingen, Germany, 1997) が収束させにくかった。 異方性温度因子が非正値 あるいは異常な値 (max/min ADP が 4以上) になるのを避けるために、 さらに 6 個の非水素原子 (08, 013, C31, C63, C71, C72原子) には等方性温度因子を用 いた。 吸収補正は多面体の数値積分により行った (透過因子 Tの範画ま 0.619 か ら 0.854) 。消衰効果の影響はなかった。 精密化に用いた反射数 11744に対して、 精密化し.たパラメータ数は 749。 R(F) =0.064, wR(F2)=0.186, S=1.035, ( A/ )max=0.020, △ O max=0.70 eA— 3, Δ ρ = -0.60 eA-3, Flackのパラメータは 0.04(2)であった。 The structure was solved using the direct method. Two independent THF molecules were included as a crystallization solvent, but the atomic displacement parameter was so large that non-hydrogen atoms in THF were analyzed using isotropic temperature factors, and the CC and C-0 bond distances were appropriate. Bounded to be a reasonable value. The assignment of the oxygen atom in THF was judged from the fact that if it was a carbon atom, an unusually short {-'·} distance would occur between the complex and an adjacent complex. The hydrogen position of the coordinated water molecule was idealized by calculation (assuming sp 2 hybridization) based on the peak of D synthesis. Other hydrogen atoms were introduced and fixed by geometric calculation. Hydrogen temperature factor U is . (H) was fixed at 1.2 times the equivalent isotropic temperature factor U eq of the non-hydrogen atom to which it was bonded. Since the crystal structure was a structure with an approximate symmetry center (the space group was pseudo P2c), the correlation between atomic parameters was strong, and the least squares method (SHELXL97 Sheldric GM, Program for tne Refinement. Or Crystal Structure, University of Goettingen, Germany, 1997) had difficulty converging. To prevent the anisotropic temperature factor from becoming non-positive or abnormal (max / min ADP is 4 or more), six additional non-hydrogen atoms (08, 013, C31, C63, C71, C72 atoms) For), the isotropic temperature factor was used. The absorption correction was performed by numerical integration of the polyhedron (the range of the transmission factor T was 0.619 to 0.854). There was no effect of the extinction effect. The number of parameters refined is 749, compared to the number of reflections 11744 used for refinement. R (F) = 0.064, wR (F 2 ) = 0.186, S = 1.035, (A /) max = 0.020, △ O max = 0.70 eA- 3 , Δ ρ = -0.60 eA- 3 , Flack parameter is 0.04 (2).
以上の結果より、 この錯体の構造が次に示すとおり明らかになった。結晶中に は 2分子の独立なコバルト錯体(図 1及び図 2 ) が存在するが、 絶対配置を含め て分子構造は本質的に同一であり、 図 3に示される通りである。 Flackのパラメ 一夕 (0.04(2) ) は正常な範囲 (-0.2く Xく 0.3、 及び標準偏差く 0.5) に入っており、 その標準偏差も充分小さい。 構造解析の精度も標準的な水準に達している (R=0.064)。 したがって、 ナトリウム D線に対してマイナスの旋光性を示すこの錯 体について、 配位子の不斉炭素原子まわりの絶対配置は(R,R)であることが明確 に決定できた。  From the above results, the structure of this complex was clarified as follows. Although there are two independent cobalt complexes (Figs. 1 and 2) in the crystal, the molecular structure including the absolute configuration is essentially the same, as shown in Fig. 3. The parameters of Flack (0.04 (2)) are in the normal range (-0.2 x X 0.3 and standard deviation 0.5), and their standard deviations are small enough. The accuracy of structural analysis has also reached a standard level (R = 0.064). Therefore, for this complex, which has a negative optical rotation with respect to the sodium D line, the absolute configuration of the ligand around the asymmetric carbon atom can be clearly determined to be (R, R).
また、 このことから、 これまでに明らかになっていなかった、対応する光学活 性配位子、 及び光学活性ジァミンの絶対立体配置が判明し、 表 2に示す通り、旋 光度と関連づけることができた。 From this, the absolute configuration of the corresponding optically active ligand and optically active diamine, which had not been elucidated before, was revealed, and as shown in Table 2, it could be correlated with the optical rotation. Was.
表 2 化合物 比旋光度 ジァミン Table 2 Compounds Specific rotation diamine
Figure imgf000026_0001
Figure imgf000026_0001
( (+)—(10)  ((+) — (10)
配位子 Ligand
Figure imgf000026_0002
Figure imgf000026_0002
( ?, ¾-(+)-(9a)  (?, ¾-(+)-(9a)
コバルト(m)錯体 Cobalt (m) complex
Figure imgf000026_0003
Figure imgf000026_0003
(/?, ¾-(-)- (5aB) (実施例 5) (/ ?, ¾-(-)-(5aB) (Example 5)
光学活性コバル卜 (III)錯体 (5aE)の合成:  Synthesis of optically active cobalt (III) complex (5aE):
前記式 ( )で表される光学活性臭化コバルト (III)錯体 327 mg(0.501 mmol) にジク□□メタン(15 ml)を加え、 銀紙でフラスコを遮光する。 錯体が溶解した ことを確認した,後、 へキサフル才口リン酸銀 (I) 210 mg (0.862 rnmol, 1.66 当量)を加えて 90分間撹拌する。 その後生成した沈殿をろ別し、 ジク□□メタン で洗浄した。 濾液を濃縮し、 残渣を最少量のジクロロメタンに溶解し、 この溶液 を大量のへキサンに加えて再沈殿■精製し、 式 ( )で表される光学活性コバル 卜 (III)錯体 (淡褐色固体 327 mg、 収率 91%) を得た。  To 327 mg (0.501 mmol) of the optically active cobalt (III) bromide complex represented by the formula (1), dik □□ methane (15 ml) is added, and the flask is shielded from light with silver paper. After confirming that the complex has dissolved, add 210 mg (0.862 rnmol, 1.66 equivalents) of hexaflu-year-old silver phosphate (I) and stir for 90 minutes. Thereafter, the formed precipitate was separated by filtration and washed with dik □ methane. The filtrate is concentrated, the residue is dissolved in a minimum amount of dichloromethane, and this solution is added to a large amount of hexane for reprecipitation / purification. The optically active cobalt (III) complex represented by the formula () (light brown solid 327 mg, yield 91%).
(実施例 6)  (Example 6)
サレン型配位子 (Sa)の合成:  Synthesis of salen-type ligand (Sa):
ナ卜リゥムの D線に対してプラスの旋光性を示す 1,2-ビス(2,4,6 -卜リメチルフ ェニル)エチレンジァミン 296 mg (1 mmol )のエタノール溶液(6 ml)に、 撹拌し ながら室温でサリチルアルデヒド 244 mg (2 mmol )のエタノール溶液 (6 ml)を滴 下した。室温で 1時間撹拌した後、 溶媒を減圧留去すると粗生成物が得られた。 粗生成物をジクロロメタン/エーテル/へキサンにより再結晶を行い、 濾別、 洗浄、 真空乾燥するとサレン型配位子 (Sa) 485 mgが淡黄色粉未として得られた(単離収 率 96%) 0 While stirring with a solution of 296 mg (1 mmol) of 1,2-bis (2,4,6-trimethylphenyl) ethylenediamine in ethanol (6 ml), which has a positive optical rotation with respect to the D-line of sodium, At room temperature, a solution of salicylaldehyde (244 mg, 2 mmol) in ethanol (6 ml) was added dropwise. After stirring at room temperature for 1 hour, the solvent was distilled off under reduced pressure to obtain a crude product. The crude product was recrystallized from dichloromethane / ether / hexane, separated by filtration, washed, and dried under vacuum to obtain 485 mg of salen-type ligand (Sa) as pale yellow powder (isolation yield: 96%). ) 0
1H NMR (CDC13)5 二 1.85 (6H, s), 2.20 (6H, s), 2.66 (6H, s), 5.65 (2H, s), 6.63-7.27 (12H, m), 8.40 (2 , s), 13.16 (2H, s); 比旋光度 [ひ]。27 +214° (c 0.60, CHC13) 1 H NMR (CDC1 3) 5 two 1.85 (6H, s), 2.20 (6H, s), 2.66 (6H, s), 5.65 (2H, s), 6.63-7.27 (12H, m), 8.40 (2, s), 13.16 (2H, s); specific rotation [h]. 27 + 214 ° (c 0.60, CHC1 3 )
(実施例 7)  (Example 7)
サレンコバルト (Π)錯体 (2a)の合成:  Synthesis of salen cobalt (Π) complex (2a):
反応器に入れたサレン型配位子 (Sa) 404 mg (0.8 mmol)にメタノール(30 ml) を加え、 窒素流通下で撹拌して溶解させた。 30分間撹拌した後、 水酸化ナ卜リウ 厶 80 mg (2.0 mmol)水溶液 (0.4 ml)を加え、 60°Cで撹拌した。 30分後、 塩化コ バル卜 ■ 6水和物 228 mg (0.96 mmol)水溶液(0.6 ml )を滴下すると茶色の沈殿が 析出した。 更に 30分間撹拌した後、 室温に冷却して水を加えた(10 ml)。 窒素雰 囲気下で反応液を濾過し、 析出物を水洗し、 窒素流通により乾燥させた。 窒素ポ ックス内で生成物を取り出し、 120°Cで 2時間減圧乾燥を行なうと、 明るい茶色の コノ レ卜 (II) 錯体 (la) 451 mgが得られた (収率 >99%) 。 Methanol (30 ml) was added to 404 mg (0.8 mmol) of the salen-type ligand (Sa) placed in the reactor, and dissolved by stirring under a nitrogen flow. After stirring for 30 minutes, an aqueous solution (0.4 ml) of sodium hydroxide 80 mg (2.0 mmol) was added, and the mixture was stirred at 60 ° C. After 30 minutes, an aqueous solution (0.6 ml) of cobalt chloride ■ hexahydrate (228 mg, 0.96 mmol) was added dropwise, and a brown precipitate was deposited. After stirring for an additional 30 minutes, the mixture was cooled to room temperature and water was added (10 ml). The reaction solution was filtered under a nitrogen atmosphere, and the precipitate was washed with water and dried by flowing nitrogen. Nitrogen port The product was taken out in a box and dried under reduced pressure at 120 ° C. for 2 hours to obtain 451 mg of a light brown conorelet (II) complex (la) (yield> 99%).
(参考例 2 )  (Reference example 2)
光学活性コバルト (II ) 錯体触媒 Oa)を用いる不斉還元反応:  Asymmetric reduction reaction using optically active cobalt (II) complex catalyst Oa):
水素化ホウ專ナ卜リゥ厶 28 mg (0.75 画 ol )のクロロホルム懸濁液(22 ml )に、 窒素雰囲気下、 -20 °Cでエタノール 0, 13 ml (2.25 mmol )s ついでテ卜ラヒドロ フルフリルアルコール 1 .0 ml (10.5 mmol )を滴下し、 15分間攪拌して修飾ポロ ヒドリ ド還元剤を調製した。 To a chloroform suspension (22 ml) of 28 mg (0.75 ol) of hydrogenated borohydride, was added 0.13 ml (2.25 mmol) s of ethanol at -20 ° C under a nitrogen atmosphere, followed by tetrahydrofuran. 1.0 ml (10.5 mmol) of furyl alcohol was added dropwise and stirred for 15 minutes to prepare a modified borohydride reducing agent.
この還元剤溶液に対し、 前記式 ( )で表される(R, R)の絶対立体配置を有する 光学活性コバル卜 (II ) 錯体 1 .4 mg (0.0025 mmol )のク□□ホルム溶液 (4 ml ) , さらにジベンゾィルメタン 56 mg (0.25 mmol )のクロ口ホルム溶液 (4 ml ) を滴 下し、 -20 °Cで 40時間反応させた。 リン酸緩衝液を加えて反応を停止し、 生成物 をジクロロメタンで抽出した。  A solution of 1.4 mg (0.0025 mmol) of an optically active cobalt (II) complex having an absolute configuration of (R, R) represented by the above formula (4) in the form ml) and 56 mg (0.25 mmol) of dibenzoylmethane in chloroform (4 ml) were added dropwise and reacted at -20 ° C for 40 hours. The reaction was stopped by adding a phosphate buffer, and the product was extracted with dichloromethane.
有機層を飽和食塩水で洗浄し、 無水硫酸ナ卜リゥムで乾燥した。溶液をろ過し、 溶媒を減圧留去した。得られた混合物をシリカゲルカラムクロマトグラフィーで 分離精製したところ、 1, 3-ジフェニル - 1, 3 -プロパンジォ一ルを定量的に得た(57 mg) o この生成物の光学純度を高速液体クロマトグラフィー(光学活性カラム:ダ ィセル化学工業社製、 CHIRALPAK AD ; Ethanol 1 .2 % in Hexane, 流速 1.0 ml/min, 保持時間 32.4 min, 52.9 min)で分析したところ、 98 eeであった。 dl/meso比は、 生成物の水酸基をァセチル化した誘導体の1 H N M Rの積分値か ら、 84/16であることがわかった。 また、 生成物の絶対立体配置は、 文献値との 旋光度の比較により(R, R)であることが判明した。 The organic layer was washed with a saturated saline solution and dried over anhydrous sodium sulfate. The solution was filtered and the solvent was distilled off under reduced pressure. The resulting mixture was separated and purified by silica gel column chromatography to give 1,3-diphenyl-1,3-propanediol quantitatively (57 mg). The optical purity of this product was determined by high-performance liquid chromatography. (Optically active column: CHIRALPAK AD, manufactured by Daicel Chemical Industries, Ltd .; Ethanol 1.2% in Hexane, flow rate 1.0 ml / min, retention time 32.4 min, 52.9 min) was 98 ee. The dl / meso ratio was found to be 84/16 from the 1 HNMR integral value of the derivative obtained by acetylating the hydroxyl group of the product. The absolute configuration of the product was found to be (R, R) by comparison of the optical rotation with literature values.
(比較例 1 )  (Comparative Example 1)
前記参考例 2において、 コバルト ( II) 錯体触媒 ( )の代わりに、 下記に示す コノ ル卜 (II) 錯体 (18) を使用した以外は、 参考例 2と同様にして反応を行つ た。 その結果、 定量的に目的物は得られたものの、 生成物の dl/meso比は 29/71、 dl体の光学収率は 61%eeであつた。 The reaction was carried out in the same manner as in Reference Example 2, except that the following cobalt (II) complex (18) was used instead of the cobalt (II) complex catalyst (). As a result, the desired product was obtained quantitatively, but the dl / meso ratio of the product was 29/71, and the optical yield of the dl form was 61% ee.
Figure imgf000029_0001
Figure imgf000029_0001
(18)  (18)
(参考例 3 ) (Reference example 3)
光学活性コバルト (III)錯体触媒 ( )を用いる不斉還元反応:  Asymmetric reduction reaction using optically active cobalt (III) complex catalyst ():
前記参考例 2において、 コバルト (II) 錯体触媒 Oa)の代わりに、 前記コバル 卜 (III) 錯体 (SaB)を使用した以外は、 参考例 2と同様にして反応を行った。 そ の結果、 定量的に目的物が得られ、 dl/meso比は 82ハ8、 dl体の光学収率は 98°/。ee であった。  The reaction was carried out in the same manner as in Reference Example 2, except that the cobalt (III) complex (SaB) was used instead of the cobalt (II) complex catalyst Oa). As a result, the desired product was obtained quantitatively, the dl / meso ratio was 82 828, and the optical yield of the dl form was 98 ° /. ee.
(参考例 4 )  (Reference example 4)
光学活性コバルト (II) 錯体 (la)を用いる不斉還元反応:  Asymmetric reduction reaction using optically active cobalt (II) complex (la):
前記参考例 2において、 コノ \リレト (II) 錯体触媒 (4a)の代わりに、 前記光学活 性コバルト (II) 錯体 (la)を触媒に用い、 ジベンゾィルメタンの代わりにァセト フエノンを用い、 反応温度を 0 °Cとする以外は参考例 2と同様にして反応を行つ た。 その結果、 反応は 1時間以内に完結して定量的に目的物が得られ、 光学収率 は 84%eeであった。  In Reference Example 2, the optically active cobalt (II) complex (la) was used as a catalyst instead of the cono \ lireto (II) complex catalyst (4a), and acetophenone was used instead of dibenzoylmethane. The reaction was carried out in the same manner as in Reference Example 2 except that the reaction temperature was 0 ° C. As a result, the reaction was completed within 1 hour, and the desired product was obtained quantitatively. The optical yield was 84% ee.
(比較例 2、 3 )  (Comparative Examples 2, 3)
各例において、 コバルト (II) 錯体触媒 (Za)の代わりに、 表 3に示すコバルト (II) 錯体 OS)又は (2Q)を使用した以外は、 参考例 4と同様にして反応を行った c 反応は比較例 2においては 1時間以内に完結して定量的に目的物が得られたが、 比較例 3では 3時間をかけても完結しなかった。 得られた生成物の光学純度を表 3に示す。 表 3 In each example, instead of cobalt (II) complex catalyst (Za), c except for using cobalt (II) complex OS) or (2Q) shown in Table 3, the reaction was carried out in the same manner as in Reference Example 4 In Comparative Example 2, the reaction was completed within 1 hour, and the desired product was obtained quantitatively. In Comparative Example 3, the reaction was not completed even after 3 hours. Table 3 shows the optical purity of the obtained product. Table 3
触媒 反応時間 収率 /% 光学収率 /%ee  Catalyst Reaction time Yield /% Optical yield /% ee
参考例 4 定量的 84
Figure imgf000030_0001
Reference Example 4 Quantitative 84
Figure imgf000030_0001
(7a)  (7a)
比較例 2 定量的 19Comparative Example 2 Quantitative 19
Figure imgf000030_0002
Figure imgf000030_0002
( 1 9)  (1 9)
比較例 3 39 11
Figure imgf000030_0003
Comparative Example 3 39 11
Figure imgf000030_0003
(20)  (20)
(参考例 5 ) (Reference example 5)
前記参考例 2において、 コバルト (II) 錯体触媒 (R,R) - (鈕)を基質に対して 2mol %用い、 ジベンゾィルメタンの代わりに 2-フエナシルピリジンを用いる以外 は参考例 2と同様にして 1 2時間反応を行った。 得られたアルコールの収率と光 学純度及び主ェナンチ才マーの絶対立体配置を表 4に示す。  Reference Example 2 was the same as Reference Example 2 except that the cobalt (II) complex catalyst (R, R)-(knob) was used at 2 mol% based on the substrate, and 2-phenacylpyridine was used instead of dibenzoylmethane. The reaction was performed in the same manner for 12 hours. Table 4 shows the yield, optical purity and absolute configuration of the main enantiomer obtained from the obtained alcohol.
(参考例 6〜8 )  (Reference Examples 6 to 8)
各例において、 コノ レト (II) 錯体触媒 (4a)の代わりに、 表 4に示すコバルト In each case, the cobalt (II) complex catalyst (4a)
(II) 錯体 (4s)、 (4d)、 及び (15)を用いる以外は参考例 5と同様にして反応を行 つた。得られたアルコールの収率と光学純度及び絶対立体配置を表 4に示す。 (比較例 4 ) (II) The reaction was carried out in the same manner as in Reference Example 5 except that the complexes (4s), (4d), and (15) were used. I got it. Table 4 shows the yield, optical purity and absolute configuration of the obtained alcohol. (Comparative Example 4)
コバルト (II) 錯体触媒 (Aa)の代わりに、 表 4に示すコバルト (II )錯体 (21)を用いる以,外は、参考例 5と同様にして反応を行った。得られたアルコール の収率と光学純度を表 4に示す。 The reaction was carried out in the same manner as in Reference Example 5, except that the cobalt (II) complex (21) shown in Table 4 was used instead of the cobalt (II) complex catalyst (Aa). Table 4 shows the yield and optical purity of the obtained alcohol.
Figure imgf000032_0001
Figure imgf000032_0001
(/? ?)- (4d)  (/??)-(4d)
参考例 8
Figure imgf000032_0002
Reference Example 8
Figure imgf000032_0002
(/?,/?)-( 15)  (/?, /?)-(15)
比較例 4 22Comparative Example 4 22
Figure imgf000032_0003
Figure imgf000032_0003
( ?,?)-(21) (参考例 9 ) ( ?,?)-(twenty one) (Reference Example 9)
光学活性コバルト (II) 錯体触媒 (4a)を用いる不斉シクロプロパン化反応: 反応器にコバルト (Π) 錯体触媒 Oa) 29mg (0.05 mmol ) を計り取り、 反応 容器内を窒素ガス雰囲気に置換した後、 テトラヒドロフラン 1mlを加え、 コバル 卜錯体を溶解さ,せる。 あらかじめ 25°Cに調整した油浴中に容器を浸けこの容器に さらに、 スチレン 0.57 ml (5.0 mmol ) を加え、 引き続きジァゾ酢酸 tert-ブチル 148 β ^ (1.0 mmol ) を滴下、 N-メチルイミダゾール 8 ju l (0.1 mmol ) を加え、 同反応温度で 2時間撹拌した。  Asymmetric cyclopropanation reaction using optically active cobalt (II) complex catalyst (4a): 29 mg (0.05 mmol) of cobalt (Π) complex catalyst Oa) was weighed into a reactor, and the inside of the reaction vessel was replaced with a nitrogen gas atmosphere. Thereafter, 1 ml of tetrahydrofuran is added to dissolve the cobalt complex. The container was immersed in an oil bath adjusted to 25 ° C in advance, and 0.57 ml (5.0 mmol) of styrene was further added to the container, followed by dropwise addition of tert-butyl diazoacetate 148β ^ (1.0 mmol), and N-methylimidazole jul (0.1 mmol) was added, and the mixture was stirred at the same reaction temperature for 2 hours.
反応の進行はガスクロマトグラフィ一分析で確認し、 シリカゲルカラムクロマ 卜グラフィ一で過剰のスチレンと錯体触媒、 N-メチルイミダゾ一ルを除去、 生成 物を油状物質として得た(174 mg, 80%収率)。得られた 2-フエニルシクロプロピ ルカルボン酸 tert-ブチルエステルの異性体比 (トランス: シス) は、 ガスクロ マトグラフィ一による分析の結果、 83 : 17であった。 生成物を分取薄層クロマト グラフィ一で卜ランス/シス体それぞれを分離した。 トランス体の光学収率は、 水素化アルミニウムリチウムで処理しカラムクロマトグラフィーで生成、 得られ た還元体を高速液体クロマトグラフィー(光学活性カラム : ダイセル化学工業社 製, Chi ralcel OB- H)により分析した結果、 96%eeであった。 シス体の光学収率は、 薄層クロマトグラフィ一で分離精製した後、 同じく高速液体ク口マトグラフィ一 (光学活性カラム : Chi ralcel 0B- H )で分析した結果、 91 eeであった。  The progress of the reaction was confirmed by gas chromatography analysis, and the excess styrene, complex catalyst and N-methylimidazole were removed by silica gel column chromatography to obtain the product as an oil (174 mg, 80% yield). rate). The isomer ratio (trans: cis) of the obtained tert-butyl 2-phenylcyclopropylcarboxylate was 83:17 as a result of analysis by gas chromatography. The product was subjected to preparative thin-layer chromatography to separate the trans / cis form. The optical yield of the trans form was determined by treating it with lithium aluminum hydride and producing it by column chromatography. The resulting reduced form was analyzed by high-performance liquid chromatography (optically active column: Daicel Chemical Industries, Chiralcel OB-H). As a result, it was 96% ee. The optical yield of the cis form was 91 ee after separation and purification by thin-layer chromatography and analysis by high-performance liquid chromatography (optically active column: Chiralcel 0B-H).
(参考例 1 0 )  (Reference Example 10)
コバルト (II) 錯体触媒 (4a)の代わりに、 前記コバルト ( II ) 錯体 を用い る以外は、 参考例 9と同様にして反応を行った。 得られた 2 -フエニルシクロプロ ピルカルボン酸 tert-ブチルエステルの収率は 99%、 異性体比 (トランス: シス) は 91 : 9であった。 また、 トランス体、 シス体の光学収率は、 それぞれ 96%ee、 77%eeであった。 • 産業上の利用可能性 The reaction was carried out in the same manner as in Reference Example 9 except that the cobalt (II) complex was used instead of the cobalt (II) complex catalyst (4a). The yield of the obtained tert-butyl 2-phenylcyclopropylcarboxylate was 99%, and the isomer ratio (trans: cis) was 91: 9. The optical yields of the trans form and the cis form were 96% ee and 77% ee, respectively. • Industrial availability
本発明の光学活性コバルト錯体は、 不斉ボロヒドリド還元反応、 及び不斉シク 口プロパン化反応において、触媒活性、 ェナンチ才選択性に優れ、 しかも空気中 での安定性が高く、取り扱いが容易なものである。 したがって、 この光学活性コ バルト錯体、 お,よびその製造中間体となる配位子は、 医薬品、農薬などの光学活 性な生理活性化合物の製造において有用である。  The optically active cobalt complex of the present invention is excellent in catalytic activity and enantioselectivity in asymmetric borohydride reduction reaction and asymmetric cyclic propanation reaction, and has high stability in air and is easy to handle. It is. Therefore, this optically active cobalt complex and a ligand which is an intermediate for producing the optically active cobalt complex are useful for producing optically active physiologically active compounds such as pharmaceuticals and agricultural chemicals.

Claims

請求の範囲 The scope of the claims
1 . 下記式 (丄) 又は (J二)  1. The following formula (丄) or (J2)
Figure imgf000035_0001
Figure imgf000035_0001
(D CD  (D CD
〔式中、 R1及び R2は、 同一でも異なっていてもよく、 水素原子、.直鎖もしくは 分岐状のアルキル基、 直鎖もしくは分岐状のアルケニル基、 直鎖もしくは分岐状 のァリール基、 ァシル基又はアルコキシカルボニル基、 ァリール才キシカルボ二 ル基又はァラルキル才キシカルボニル基であり、 前記アルキル基、 アルケニル基、 ァリール基、 ァシル基、 アルコキシカルポニル基、 ァリール才キシカルボニル基 又はァラルキル才キシカルボ二ル基は置換基を有していてもよく、 また、 R 1及 び R2は、相互に連結して、 R 1及び R2がそれぞれ結合している炭素原子と共同し て璟を形成してもよい。 〕 で表される光学活性コバルト (II) 錯体。 Wherein R 1 and R 2 may be the same or different and each represent a hydrogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, a linear or branched aryl group, An alkyl group, an alkenyl group, an aryl group, an acyl group, an alkoxycarbonyl group, an aryl group, or an aralkyl group. The group may have a substituent, and R 1 and R 2 are mutually connected to form 璟 together with the carbon atom to which R 1 and R 2 are bonded. Is also good. ] The optically active cobalt (II) complex represented by these.
2 . 下記式 (_2J 又は ( 二) 2. The following formula (_2J or (ii)
Figure imgf000035_0002
Figure imgf000035_0002
(2) (2:) 〔式中、 R1及び R2は、 前記と同義であり、 ΧΊま塩を形成し得る陰イオン対であ る。 〕 で表される光学活性コバルト (III) 錯体。 (twenty two:) [Wherein, R 1 and R 2 are as defined above, and are an anion pair that can form a salt. ] The optically active cobalt (III) complex represented by these.
3 . 下記式 (A) 又は ( 1) 3. The following formula (A) or (1)
Figure imgf000036_0001
Figure imgf000036_0001
〔式中、 R 3は直鎖もしくは分岐状のアルキル基、 ァリール基、 又はアルコキシ 基、 ァリール才キシ基であり.、 前記アルキル基、 ァリール基、 アルコキシ基及び ァリール才キシ基は置換基を有していてもよい。 〕 で表される請求項 1に記載の 光学活性コバルト (II) 錯体。 (In the formula, R 3 is a linear or branched alkyl group, aryl group, or alkoxy group, aryl group, and the alkyl group, aryl group, alkoxy group, and aryl group have a substituent. It may be. The optically active cobalt (II) complex according to claim 1, which is represented by the following formula:
4 . 下記式 (_5_) 又は (_5丄) 4. The following formula (_5_) or (_5 丄)
Figure imgf000036_0002
Figure imgf000036_0002
(δ)  (δ)
〔式中、 R3及び ΧΊま前記と同義である。 〕 で表される請求項 2記載の光学活性 コバル卜 (III) 錯体。 [Wherein, R 3 has the same meaning as above. 3. The optically active cobalt (III) complex according to claim 2, which is represented by the following formula:
5. 下記式 ( ) 又は (4a 5. The following formula () or (4a
Figure imgf000037_0001
Figure imgf000037_0001
(4a) (4:)  (4a) (4 :)
で表される請求項 3記載の光学活性コバルト (II)錯体。 4. The optically active cobalt (II) complex according to claim 3, represented by the formula:
6. 下記式 (_^) 又は (5 a 6. The following formula (_ ^) or (5 a
Figure imgf000037_0002
Figure imgf000037_0002
(5a) (5 )  (5a) (5)
〔式中、 X-は前記と同義である。 〕 で表される請求項 4記載の光学活性コバル ト (ΙΠ)錯体。 [Wherein, X- is as defined above. The optically active cobalt (II) complex according to claim 4, which is represented by the following formula:
7. 下記式 (ヱ) 又は U丄) 7. The following formula (ヱ) or U 丄)
Figure imgf000038_0001
Figure imgf000038_0001
〔式中、"" R4 R\ R6、 及び R7は、 同一でも異なっていてもよく、 水素原子、 直鎖もしくは分岐状のアルキル基、直鎖もしくは分岐状のアルケニル基、 直鎖も しくは分岐状のもしくはァリール基、 アルコキシ基、 シァノ基、 又はニトロ基、 又はハロゲン原子であり、 前記アルキル基、 アルケニル基、 ァリール墓、 アルコ キシ基は置換基を有していてもよく、 また、 R4~R7のうちいずれか二つが相互 に連結し、 それぞれ結合している炭素原子と共同して環を形成してもよ〈、 ナフ チル環等の縮合環を形成していてもよい。〕 で表される請求項 1に記載の光学活 性コバルト (II)錯体。 [In the formula, "" R 4 R \ R 6 and R 7 may be the same or different, and include a hydrogen atom, a linear or branched alkyl group, a linear or branched alkenyl group, and a linear chain. Or a branched or aryl group, an alkoxy group, a cyano group, or a nitro group, or a halogen atom, and the alkyl group, alkenyl group, aryl group, or alkoxy group may have a substituent; And any two of R 4 to R 7 may be connected to each other to form a ring in cooperation with the carbon atom to which they are bonded, or may form a condensed ring such as a naphthyl ring. Good. 2. The optically active cobalt (II) complex according to claim 1, which is represented by the following formula:
8. 下記式 ( ) 又は (_ai) 8. The following formula () or (_ai)
Figure imgf000038_0002
Figure imgf000038_0002
〔式中、 R4 R\ R6 R7及び X—は前記と同義である。 〕 で表される請求項 2 こ記載の光学活性コバルト (III) 錯体。 Wherein R 4 R \ R 6 R 7 and X— are as defined above. 3. The optically active cobalt (III) complex according to claim 2, which is represented by the formula:
9 · 下記式 Z^) 又は (JLal) 9 · The following formula Z ^) or (JLal)
Figure imgf000039_0001
Figure imgf000039_0001
(Za) ( §:)  (Za) (§ :)
で表される請求項 7に記載の光学活性コバルト (Π)錯体。 The optically active cobalt (II) complex according to claim 7, represented by:
1 0. 下記式 (_S— § 又は (8 a') 1 0. The following formula (_S— § or (8 a ')
Figure imgf000039_0002
Figure imgf000039_0002
(8a) (8§:)  (8a) (8§ :)
〔式中、 ΧΊま前記と同義である。 〕 で表される請求項 8に記載の光学活性コバ ル卜 (III)錯体。 [Wherein, it is as defined above. 9. The optically active cobalt (III) complex according to claim 8, which is represented by the following formula:
1 1. 配位子の不斉炭素原子まわりの絶対配置が (R, R)である請求項 1、 3、 5、 7, 9のいずれか 1項に記載の光学活性コバルト (Π)錯体。 1 1. The optically active cobalt (II) complex according to any one of claims 1, 3, 5, 7, and 9, wherein the absolute configuration of the ligand around the asymmetric carbon atom is (R, R).
1 2. 配位子の不斉炭素原子まわりの絶対配置が (R, R)である請求項 2, 41 2. The absolute configuration of the ligand around the asymmetric carbon atom is (R, R).
6, 8, 10のいずれか 1項に記載の光学活性コバルト (III)錯体。 11. The optically active cobalt (III) complex according to any one of 6, 8, and 10.
1 3 . 下記式 (_υυ又は ( 1 ο ' ) 1 3. The following formula (_υυ or (1 ο ')
Figure imgf000040_0001
Figure imgf000040_0001
(I© (10  (I © (10
で表される光学活性ジァミンを、 アルデヒド化合物と脱水縮合反応させて下記式 )又は (31) The optically active diamine represented by is subjected to a dehydration condensation reaction with an aldehyde compound,
Figure imgf000040_0002
Figure imgf000040_0002
(3) (3:) (3) (3 :)
〔式中、 R 1及び R2は、 前記と同義である。 〕 で表される光学活性中間体化合物 を製造し、 該光学活性中間体化合物を塩基性化合物の存在下に 2価コバル卜ィ才 ンを含む化合物と反応させることを特徴とする請求項 1 に記載の式 (丄) 又は[Wherein, R 1 and R 2 are as defined above. Wherein the optically active intermediate compound is reacted with a compound containing divalent cobalt in the presence of a basic compound. Expression (丄) or
(JL丄) で表される光学活性コバルト (II) 錯体の製造方法。 A method for producing an optically active cobalt (II) complex represented by (JL 丄).
1 4 . 前記式 LQJ又は ( 1 0, ) で表される光学活性ジァミンと下記式 (丄丄 14. The optically active diamine represented by the above formula LQJ or (10,) and the following formula (丄 丄
Figure imgf000040_0003
で表される 3—メトキシメチレン一 2, 4—ペンタンジオンとを脱水縮合させて 下記式 (J_a_) 又は
Figure imgf000040_0003
And the following formula (J_a_) or
Figure imgf000041_0001
Figure imgf000041_0001
(6a) ( )  (6a) ()
で表される光学活性 -ケ卜ィミン化合物を得た後、 該光学活性 -ケ卜イミンィ匕 合物を塩基性ィ匕合物の存在下に 2価コバルトイオンを含む化合物と反応させ、 請 求項 5に記載の式 (_ ) 又は ( 4 a' ) で表される光学活性コバルト (II)錯 体を製造する請求項 1 3に記載の製造方法。 After obtaining the optically active ketoimine compound represented by the formula, the optically active ketoimine conjugate is reacted with a compound containing a divalent cobalt ion in the presence of a basic conjugate. 14. The production method according to claim 13, wherein the optically active cobalt (II) complex represented by the formula (_) or (4a ') according to item 5 is produced.
1 5. 前記式 (」_Ώ_)又は (1 0' ) で表される光学活性ジァミンと下記式 (丄 1 5. The optically active diamine represented by the above formula ("_Ώ_") or (10 ') and the following formula (丄
Figure imgf000041_0002
で表されるサリチルアルデヒドとを脱水縮合させて下記式 又は
Figure imgf000041_0002
By dehydration condensation with salicylaldehyde represented by the following formula or
Figure imgf000042_0001
Figure imgf000042_0001
(9a) (93:) (9a) (93 :)
で表される光学活性サレン化合物を得た後、 該光学活性サレン化合物を塩基性化 合物の存在下に 2価コバルトイオンを含む化合物と反応させ、請求項 9に記載の 式 CLaJ.又は (7 a' ) で表される光学活性コバルト (Π)錯体を製造する請 求項 1 3に記載の製造方法。 After obtaining the optically active salen compound represented by the formula, the optically active salen compound is reacted with a compound containing a divalent cobalt ion in the presence of a basic compound, and the formula CLaJ. The production method according to claim 13, for producing an optically active cobalt (II) complex represented by 7a ').
1 6. 出発物質の前記式に L^)又は (1 0' ) で表される光学活性ジァミンが光 学活性マンデル酸を用いて光学分割されたものである請求項 1 3乃至 1 5のいず れか 1項に記載の製造方法。 16. The optically active diamine represented by L ^) or (10 ') in the above formula of the starting material is optically resolved by using optically active mandelic acid. The manufacturing method according to any one of the above.
1 7. 出発物質の前記式に LQJ又は M 0' ) で表される光学活性ジァミンの不 斉炭素原子まわりの絶対配置が (R, R) である請求項 1 3乃至 1 5のいずれか 1項に記載の製造方法。 17 7. The optically active diamine represented by LQJ or M 0 ′) in the above formula of the starting material, wherein the absolute configuration around the asymmetric carbon atom is (R, R). The production method according to the paragraph.
1 8. 下記式 (_!) 又は (3, ) 1 8. The following formula (_!) Or (3,)
Figure imgf000043_0001
Figure imgf000043_0001
() (3:)  () (3 :)
〔式中、 R1及び R2は、 前記と同義である。 〕 で表される光学活性中間体化合物 c [Wherein, R 1 and R 2 are as defined above. ] Optically active intermediate compound c represented by
1 9. 下記式 又は ( 6 a' )1 9. The following formula or (6 a ')
Figure imgf000043_0002
Figure imgf000043_0002
(6a) (6:)  (6a) (6 :)
で表される光学活性 -ケ卜ィミン化合物である請求項 1 8に記載の中間体化合 物。 19. The intermediate compound according to claim 18, which is an optically active ketomine compound represented by the formula:
20. 下記式 (_2」aJ又は (_9Lal) 20. The following formula (_2) aJ or (_9Lal)
Figure imgf000044_0001
Figure imgf000044_0001
(9a) (93:)  (9a) (93 :)
で表される光学活性サレン化合物である請求項 18に記載の中間体化合物。 19. The intermediate compound according to claim 18, which is an optically active salen compound represented by the formula:
21. 不斉炭素原子まわりの絶対配置が(R, R)である請求項 18乃至 20の いずれか 1項に記載の中間体化合物。 21. The intermediate compound according to any one of claims 18 to 20, wherein the absolute configuration around the asymmetric carbon atom is (R, R).
PCT/JP2001/003697 2000-11-10 2001-04-27 Optically active cobalt (ii) or (iii) complexes, process for the preparation thereof and intermediates therefor WO2002038535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000344191A JP2002145842A (en) 2000-11-10 2000-11-10 Optically active cobalt (ii), cobalt (iii) complex and production complex thereof
JP2000-344191 2000-11-10

Publications (1)

Publication Number Publication Date
WO2002038535A1 true WO2002038535A1 (en) 2002-05-16

Family

ID=18818429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003697 WO2002038535A1 (en) 2000-11-10 2001-04-27 Optically active cobalt (ii) or (iii) complexes, process for the preparation thereof and intermediates therefor

Country Status (2)

Country Link
JP (1) JP2002145842A (en)
WO (1) WO2002038535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253846A1 (en) * 2020-06-16 2021-12-23 苏州大学 DEPROTONATED β-KETIMINE LITHIUM COMPOUND AND PREPARATION METHOD THEREFOR

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675983B1 (en) 2006-03-06 2007-01-30 한국화학연구원 Novel cobalt amino-alkoxide complexes and process for preparing thereof
JP5278937B2 (en) * 2007-10-12 2013-09-04 学校法人慶應義塾 Method for producing optically active secondary alcohol
CN105254786B (en) * 2015-07-17 2017-07-11 南昌大学 A kind of C C bridgings [ONNO] β ketimides metallic catalyst and preparation method
CN113024342B (en) * 2021-03-16 2022-06-24 温州大学 Method for regio-and stereoselectively synthesizing (E) -2,4, 4-trisubstituted conjugated diene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756790A (en) * 1995-09-29 1998-05-26 Mitsui Petrochemical Industries, Ltd. Optically active cobalt (II) complexes and method for the preparation of optically active alcohols
EP0901996A1 (en) * 1997-03-06 1999-03-17 Mitsui Chemicals, Inc. Process for producing optically active amines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5756790A (en) * 1995-09-29 1998-05-26 Mitsui Petrochemical Industries, Ltd. Optically active cobalt (II) complexes and method for the preparation of optically active alcohols
EP0901996A1 (en) * 1997-03-06 1999-03-17 Mitsui Chemicals, Inc. Process for producing optically active amines

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRITZ VOEGTLE ET AL.: "The diaza-Cope rearrangement", CHEM. BER., vol. 109, no. 1, 1987, pages 1 - 40, XP002942922 *
TAKETO IKENO ET AL.: "Highly enantioselective cyclopropanation of styrenes with diazoacetates catalyzed by optically active .beta.-ketoiminato cobalt(II) complexes", CHEM. LETT., no. 12, 1999, pages 1345 - 1346, XP002942920 *
TAKUSHI NAGATA ET AL.: "Enantioselective reduction of ketones with sodium borohydride, catalyzed by optically active (.beta.-oxoaldiminato)cobalt(II) complexes", ANGEW. CHEM., INT. ED. ENGL., vol. 34, no. 19, 1995, pages 2145 - 2147, XP002942921 *
YUHKI OHTSUKA ET AL.: "Convenient preparation of optically pure 1,3-diaryl-1,3-propanediols", SYNLETT, no. 4, 2000, pages 535 - 537, XP002942919 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021253846A1 (en) * 2020-06-16 2021-12-23 苏州大学 DEPROTONATED β-KETIMINE LITHIUM COMPOUND AND PREPARATION METHOD THEREFOR

Also Published As

Publication number Publication date
JP2002145842A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
Chen et al. Modified BINOL ligands in asymmetric catalysis
Matsunaga et al. Catalytic Enantioselective m Eso-Epoxide Ring Opening Reaction with Phenolic Oxygen Nucleophile Promoted by Gallium Heterobimetallic Multifunctional Complexes
Mimoun et al. Enantioselective reduction of ketones by polymethylhydrosiloxane in the presence of chiral zinc catalysts
US5929232A (en) Stereoselective ring opening reactions
Kawabata et al. Construction of Robust Ruthenium (salen)(CO) Complexes and Asymmetric Aziridination with Nitrene Precursors in the Form of Azide Compounds That Bear Easily Removable N‐Sulfonyl Groups
Bartels et al. Iridium‐Catalysed Allylic Substitution: Stereochemical Aspects and Isolation of IrIII Complexes Related to the Catalytic Cycle
Hamada et al. Highly enantioselective benzylic hydroxylation with concave type of (salen) manganese (III) complex
US6130340A (en) Asymmetric cycloaddition reactions
Wang et al. The asymmetric synthesis of chiral cyclic α-hydroxy phosphonates and quaternary cyclic α-hydroxy phosphonates
Boobalan et al. Camphor-based Schiff base ligand SBAIB: an enantioselective catalyst for addition of phenylacetylene to aldehydes
Williams et al. Asymmetric Conjugate Addition for the Preparation of s yn-1, 3-Dimethyl Arrays: Synthesis and Structure Elucidation of Capensifuranone
CN105521826A (en) Zirconium catalyst and method for preparing chiral alpha-hydroxy-beta-keto ester compound by use of zirconium catalyst
Bigi et al. Stereoselective Synthesis of Optically Active 2-Hydroxymandelic Acids and Esters via Friedel− Crafts Coordinated Reaction: Crystal Structure of Chiral Dichloro [2-(1-oxido-1-menthoxy-carbonylmethyl)-4-methoxyphenoxido-O, O, O] titanium
Wang et al. Applications of conformational design: rational design of chiral ligands derived from a common chiral source for highly enantioselective preparations of (R)-and (S)-enantiomers of secondary alcohols
Hui et al. A new chiral sulfonamide ligand based on tartaric acid: synthesis and application in the enantioselective addition of diethylzinc to aldehydes and ketones
Chitsaz et al. BINOL compounds of group 13
Otero et al. On the search for NNO-donor enantiopure scorpionate ligands and their coordination to group 4 metals
EP1724013B1 (en) Asymmetric reaction catalyst and process for production of optically active compounds with the same
Atesin et al. Synthesis, Characterization, and Catalytic Properties of New Electrophilic Iridium (III) Complexes Containing the (R)-(+)-2, 2′-Bis (diphenylphosphino)-1, 1′-binaphthyl Ligand
Huelgas et al. New ligands and structural insights into the catalytic asymmetric addition of organozinc reagents to ketones
Jaworska et al. α-Pinene-type chiral schiff bases as tridentate ligands in asymmetric addition reactions
WO2002038535A1 (en) Optically active cobalt (ii) or (iii) complexes, process for the preparation thereof and intermediates therefor
Ceccarelli et al. Organocatalytic regioselective Michael additions of cyclic enones via asymmetric phase transfer catalysis
Lauterwasser et al. Structurally Diverse Second‐Generation [2.2] Paracyclophane Ketimines with Planar and Central Chirality: Syntheses, Structural Determination, and Evaluation for Asymmetric Catalysis
Singh et al. Cyclopentadienyl 1, 2-and 1, 3-disubstituted cobalt sandwich compounds {η5-[MeOC (O)] 2C5H3} Co (η4-C4Ph4): Precursors for sterically hindered bidentate chiral and achiral ligands

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase