WO2002033715A1 - Magnetic thin film production method and apparatus, and magnetic thin film - Google Patents

Magnetic thin film production method and apparatus, and magnetic thin film Download PDF

Info

Publication number
WO2002033715A1
WO2002033715A1 PCT/JP2001/009187 JP0109187W WO0233715A1 WO 2002033715 A1 WO2002033715 A1 WO 2002033715A1 JP 0109187 W JP0109187 W JP 0109187W WO 0233715 A1 WO0233715 A1 WO 0233715A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
iron
cobalt
substrate
plasma
Prior art date
Application number
PCT/JP2001/009187
Other languages
French (fr)
Japanese (ja)
Inventor
Migaku Takahashi
David Djayaprawira
Hiroki Shoji
Original Assignee
Migaku Takahashi
David Djayaprawira
Hiroki Shoji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Migaku Takahashi, David Djayaprawira, Hiroki Shoji filed Critical Migaku Takahashi
Priority to AU2002210912A priority Critical patent/AU2002210912A1/en
Publication of WO2002033715A1 publication Critical patent/WO2002033715A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a magnetic thin film, and a magnetic thin film. More specifically, when producing an iron carbide film or an iron cobalt film using plasma, it is stable so that the iron carbide film or the iron cobalt film forms a main phase comprising a single phase.
  • TECHNICAL FIELD The present invention relates to a method and an apparatus for manufacturing a magnetic thin film that can be formed by using a magnetic thin film.
  • the magnetic thin film manufactured by using the manufacturing method and the manufacturing apparatus according to the present invention is suitably used when manufacturing a magnetic pole material of a magnetic head for recording a magnetic signal on a disk, a floppy disk, a magnetic tape, or the like.
  • This application is based on a patent application to Japan (Japanese Patent Application No. 2001-3211748), and the contents of the Japanese application are incorporated herein by reference. I do. 2. Description of the Related Art
  • HDDs hard disk drives
  • Conventional magnetic heads consist of a single element that has both recording and reproducing functions.However, as the size of the medium has been reduced due to the downsizing of the device and the linear velocity in the magnetization reversal direction has decreased, the linear A reproduction head composed of a magnetoresistive (MR) element utilizing a magnetoresistive effect that can detect a stray magnetic field stably with high sensitivity regardless of speed is being installed as a standard.
  • MR magnetoresistive
  • current magnetic heads have a configuration in which a write-only recording head and a read-only reproduction head are combined.
  • Reference 1 Japanese Patent Application Laid-Open Publication No. H11-07412 (hereinafter referred to as Reference 1) discloses a method for producing a Co—Fe—Ni alloy film using a plating method.
  • the cobalt content is 40 to 70 wt% (weight./.)
  • the iron content is 20 to 40 wt%
  • the nickel content is 10 to 20 wt. /.
  • a Co—Fe—Ni alloy having a crystal structure of a body-centered cubic ⁇ phase and a face-centered cubic ⁇ phase can be produced.
  • the obtained alloy film has a coercive force and magnetostriction. Is small and has a saturation magnetization of more than 2 T. Furthermore, it is described that post-heating treatment at 100 ° C. or more is effective for improving corrosion resistance.
  • Reference 2 Japanese Patent Application Laid-Open Publication No. 08-170730 discloses a method for producing an alloy film mainly composed of Fe or Co using a sputtering method.
  • Fe or Co is used as a material for a magnetic film that exhibits soft magnetic properties by performing heat treatment.
  • the obtained alloy film has a saturation magnetization of 1.5 T, a coercive force of 0.1 Oe, a magnetic permeability at 1 MHz of 30000 or more, and a magnetostriction constant of 10 to 17 units. It is described as having good soft magnetic properties.
  • iron as an evaporation source was blown by electron beams on the substrate at a temperature of 200 ° C in a nitrogen atmosphere. Then, an iron nitride film containing about 11 at% of nitrogen is manufactured. At that time, it is important to set the film forming speed to 0.002 to 0.003 nm / sec and the gas pressure during the film forming to 0.1 to 0.2 mTorr.
  • the obtained iron nitride film was a martensite ( ⁇ ') film, and its saturation magnetization was about 2.4%. Then, 2 0 0 true air of 1 0- 8 Torr table after the film formation.
  • the technology shown in Document 1 is to produce the recording head magnetic pole material by a wet process called the plating method.
  • the plating method it is difficult to fabricate the MR element, which constitutes the reproducing head that is mounted at the same time, by the plating method. Therefore, avoid double investment and build an inexpensive manufacturing process, or stabilize interface management across two processes (such as avoiding contamination and maintaining flatness). From the standpoint of manufacturing, it is in a situation where it is desired to refrain from using magnetic pole materials by plating.
  • a recording head can be manufactured by the same sputtering method as the MR element that constitutes the reproducing head, so it can be evaluated in promoting the all-dry process of the magnetic head. Meanwhile, the obtained saturation magnetization is about 1.5 T, and the information is transferred to a medium whose coercive force used to increase the recording density in the future exceeds 250 Elsted (O e). I have to say that it is powerless to write.
  • the magnetic pole material in Reference 2 must be at least a quaternary system, and the examples show a quinary system. From this, it is feared that the margin of the composition ratio at which good saturation magnetization can be obtained is narrow, and strict film composition control is required.
  • heat treatment after film formation is essential for this. For example, 50 after the crystallization temperature after film formation. It is described that heat treatment is performed at a low C of 49 ° C. for 3 hours, and then at 590 ° C. for 30 minutes. In the case where a recording head is formed after the reproduction head is manufactured, this heat treatment causes disturbance at the interface of the MR element composed of a laminate of ultra-thin layers constituting the reproduction head, and consequently reduces the characteristics of the MR element. This is a difficult process to adopt because it can cause deterioration.
  • the magnetic film of Ref. 3 has the largest saturation magnetization of 2.9 T reported so far, and has the feature that it can be manufactured by the MBE method which is one of the dry processes.
  • a magnetic film having desired characteristics can be obtained only on a special substrate surface, and its film formation rate is extremely low, from 0.002 to 0.003 nmsec, and is used in mass production. Due to difficult production conditions, it was not adopted in the actual magnetic head manufacturing process. For the above-mentioned reasons, in the manufacturing process of the separation type magnetic head for recording and reproduction, development of a recording head magnetic pole material satisfying the following conditions at the same time and a method of manufacturing the same are expected.
  • (B) A magnetic pole material having a coercive force of 2 Oe or less, preferably 1 Oe or less.
  • (D) A manufacturing method that has a film forming rate adapted to the mass production process, that is, has the ability to adapt to the manufacturing process, and enables the construction of an inexpensive manufacturing line.
  • (E) A magnetic pole that can be formed at a low temperature of 100 ° C or less so as not to affect the interface of the previously manufactured thin film laminate, for example, the MR element, and that does not require heat treatment after film formation. Material and recipe.
  • the patent application describes that the iron carbide film composed of the ⁇ ′-phase single phase can be stably obtained by setting the substrate temperature at the time of film formation within a predetermined range.
  • the application also discloses that an iron-cobalt film obtained by adding cobalt as a third element to the iron carbide film can obtain a higher saturation magnetization.
  • the temperature of the substrate needs to be fine-tuned depending on the material constituting the substrate or the laminate provided in advance on the substrate and the difference in the surface shape of the laminate.
  • the base condition of the iron carbide film is not always made of the same material and shape. Therefore, regardless of the material and shape of the substrate surface on which the iron carbide film and the iron cobalt film are deposited, a production process in which an iron carbide large iron cobalt carbide film having a main phase is always stably obtained. As a result of studying the method and the manufacturing apparatus, the present invention was reached.
  • a first object of the present invention is to provide a magnetic thin film in which an iron carbide film or an iron cobalt carbide film having an ⁇ 'phase as a main phase is stably obtained without being affected by the temperature of the deposition surface on which the thin film is provided. To provide a manufacturing method.
  • a second object of the present invention is to produce a magnetic thin film capable of setting the surface of a substrate on which an iron carbide film or an iron cobalt film having an a ′ phase as a main phase is deposited under desired plasma conditions. Manufacturing apparatus.
  • a third object of the present invention is to provide a magnetic thin film having a soft magnetization characteristic of a saturation magnetization of 2 T or more, a coercive force of 20 e or less, and a heat resistance of 300 ° C. or more.
  • the method for producing a magnetic thin film according to the present invention includes the steps of: using a process gas to generate plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space; A base material source for use in forming an iron carbide film or an iron cobalt carbide film having at least carbon and iron or carbon, iron and cobalt as constituent elements and a main phase as the main phase on the substrate. Forming step ⁇ .
  • An apparatus for producing a magnetic thin film according to the present invention is characterized in that a process gas is used to generate a plasma having a small plasma damage applied to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, and the plasma and the magnetic thin film are generated.
  • a base material source for the formation of carbon an iron carbide film or carbonized material having at least carbon and iron or carbon, iron and cobalt as constituent elements and an ⁇ ′ phase as a main phase on the substrate.
  • a manufacturing apparatus for forming an iron-cobalt film comprising: a plasma generating unit for forming the iron carbide film or the iron-cobalt carbide film; and a substrate holding unit capable of moving the substrate along a direction in which the plasma concentration gradient is generated.
  • the magnetic thin film according to the present invention is an iron-cobalt film having an ⁇ ′ phase as a main phase and at least carbon, iron and cobalt as constituent elements, and having a cobalt content of 12 to 50 in atomic%. It is characterized by being.
  • FIG. 1 is a graph showing the relationship between the substrate temperature when producing a magnetic thin film according to the present invention and the crystal morphology of the produced magnetic thin film, that is, the X-ray intensity of the (02) plane.
  • FIG. 2 is a schematic cross-sectional view showing an example of the magnetic thin film according to the present invention, wherein (a) shows a case of a single layer, and (b) shows a case of a multilayer.
  • FIG. 3 is a graph showing an X-ray analysis result when the magnetic thin film according to the present invention is an iron carbide film, wherein (a) shows a diffraction pattern mainly from a (002) plane of the magnetic thin film. (B) shows the case where only the diffraction line from the (002) plane of the magnetic thin film is observed.
  • Fig. 4 is a graph showing the results of X-ray analysis of the various samples prepared.
  • (A) is the result of sample SF and sample S1
  • (b) is the Fe-C alloy target used for film formation.
  • 7 is a graph showing the results of samples prepared by changing the carbon content of the samples.
  • Fig. 5 shows the results of X-ray analysis of the sample prepared by changing the electron density of the plasma: Ne.
  • Fig. 6 shows the graph showing the results of X-ray analysis of the sample prepared by changing the electron temperature of the plasma: Te. It is.
  • FIG. 7 is a schematic cross-sectional view illustrating an example of a magnetic thin film manufacturing apparatus according to the present invention.
  • FIG. 8 is a schematic cross-sectional view illustrating another example of a magnetic thin film manufacturing apparatus according to the present invention. .
  • FIG. 9 is a graph showing an X-ray analysis result when the magnetic thin film according to the present invention is an iron cobalt carbide film.
  • Figure 10 plots the lattice constants a and c of the iron carbide cobalt film measured by the Schulz reflection method and the axial ratio c / a obtained from these values against the carbon content in the film.
  • the carbon content is 6 at. /.
  • (A) is the direction of the bct structure in the ⁇ 001> direction
  • (b) is the direction of the Lct ⁇ b> 0 in the bct structure
  • (c) is the hysteresis curve of the iron carbide cobalt film in the bct structure. The results in the ⁇ 110> direction are shown.
  • FIG. 12 is a graph showing the relationship between the content of konole and the saturation magnetization Ms in the iron carbide cobalt film according to the present invention.
  • FIG. 13 is a graph showing an example of a result of examining a temperature change (M s ⁇ curve) of saturation magnetization in the iron carbide cobalt film according to the present invention.
  • FIG. 14 is a graph showing another example of the result of investigating the temperature change (M s ⁇ curve) of the saturation magnetization in the iron-cobalt carbide film according to the present invention.
  • FIG. 15 is a graph showing the relationship between the cobalt content and the decomposition temperature ⁇ ⁇ d. In the iron-cobalt carbide film according to the present invention.
  • FIG. 16 is a graph showing the relationship between the carbon content and the coercive force He in the iron-cobalt carbide film according to the present invention.
  • FIG. 17 is a graph showing the results of X-ray analysis before and after heat treatment of the iron-cobalt carbide film according to the present invention.
  • the method for producing a magnetic thin film according to the present invention is characterized in that the crystal structure of the magnetic thin film is mainly composed of a martensite ( ⁇ ′) phase by an X-ray diffraction method using (Co- ⁇ ) or (Cu-K) as a radiation source.
  • This is a method for producing an iron carbide film or an iron cobalt film, which is confirmed to be as follows.
  • a substrate 10 placed in a reduced pressure space of the order of 10 to 7 Torr is used.
  • a plasma having a small plasma damage applied to the deposition surface of the substrate 10 is generated by using a process gas composed of Ar gas or the like, and the plasma and a base material source for forming a magnetic thin film are used.
  • the shuus focused electron diffraction pattern By analyzing the shuus focused electron diffraction pattern, it is possible to identify the sample thickness, lattice constant, crystal symmetry (point group-space group), and lattice defects.
  • the limited area required for electron beam irradiation is smaller than 1 ⁇ . Therefore, even if the above magnetic thin film is used as a magnetic pole material such as a magnetic head or the like, since the thickness is 50 nm to 500 nm, it is possible to sufficiently analyze the structure of the film.
  • the iron carbide film 11 having the ⁇ ′ phase as the main phase is, as shown in FIG. 3, a diffraction line from the (002) plane of the ⁇ ′ phase, that is, ⁇ ′ (00 2 ) Are identified mainly by observation.
  • Fig. 3 (a) shows the case where the diffraction line from the (002) plane of the iron carbide film forms the main peak, and a broad shoulder is observed on the high angle side, and (b) shows the case where the iron carbide film has a broad shoulder. In this case, only diffraction lines from the (002) plane are observed. In other words, as apparent from FIG.
  • the iron carbide film 11 having the ⁇ ′ phase as the main phase according to the present invention has a diffraction line from the (002) plane of the ⁇ ′ phase and other diffraction lines. In other words, it consists of a broad shoulder (oblique line) observed on the high angle side.
  • the iron carbide film 11 is composed of only the ⁇ ′ phase single phase, and the ⁇ , phase ( 00 2) Only diffraction lines from the plane are observed.
  • the diffraction line from the (00 2) plane of this ⁇ 'phase is 70 at 2 ⁇ . ⁇ 7 7. It can be obtained with a power of 0. ⁇ 1 1 5. No diffraction line stronger than ⁇ '(002) is observed in the range. Therefore, the iron carbide film 11 according to the present invention can easily determine whether or not it has a desired crystal morphology at the time of manufacture, so that the film quality can be accurately determined even after the film formation as well as during the film formation. It has the feature that it can be manufactured while grasping it.
  • the iron carbide film 11 having the ⁇ 'phase as a main phase described above has a saturation magnetization (Ms) of 2 mm or more and a coercive force (2 Oe or less) of 2 Oe or less without a heating treatment after the film formation. coercive force) It has good soft magnetic characteristics with Hc.
  • the manufacturing method of the present invention for producing a magnetic thin film made of the iron carbide film 11 using plasma having a small plasma damage achieves the flattening of the magnetic thin film 11 and a desired crystal form.
  • the effect of expanding the temperature range of the substrate at the time of film formation to obtain an iron carbide film having the above is also provided.
  • an iron carbide film having a desired phase as a main phase in order to produce an iron carbide film having a desired phase as a main phase, it is not necessary to restrict the temperature of the substrate so much to a certain range, so that the material constituting the substrate and its surface are not required.
  • a process that is hardly bound by the shape and can stably and flexibly produce an iron carbide film having a desired ⁇ ′ phase as a main phase on a substrate or a thin film made of various materials and surface shapes can be provided. .
  • the method was caused by the film forming temperature Due to the problem, that is, the temperature difference on the deposition surface of the magnetic thin film caused by the difference in the surface material and surface shape of the substrate on which the iron carbide film is deposited, the iron carbide film having the ⁇ ′ phase as the main phase stably
  • the problem that the temperature range of the obtained substrate is narrow can be improved.
  • the fact that the substrate temperature at the time of film formation in which the iron carbide film having the ⁇ 'phase as the main phase is stably obtained is wider than before suggests that the conditions for manufacturing the iron carbide film according to the present invention are relaxed. As a result, the manufacturing margin is widened, which can contribute to cost reduction when mass production is performed.
  • the surface of the iron carbide film itself can be further flattened as compared with the prior art.
  • the iron carbide film gives a rough structure to the laminated structure located thereon.
  • the influence due to the size can be significantly reduced. The effects of the above-described steps can be obtained more stably by focusing on the electron temperature T e and ⁇ of the plasma or the electron density Ne of the plasma.
  • the alpha 'phase (002) plane Since the intensity of the line, that is, ⁇ ′ (002), is 80% or more of the maximum value, a stable thin film can be formed.
  • the electron temperature Te of the plasma is set to 1 X 10 to 12 eV or more and 1 eV or less, the intensity of ⁇ ′ (002) becomes 90% or more of the maximum value, and the desired magnetic characteristics are obtained. It is more preferable because the iron carbide film can be produced more stably.
  • the intensity of ⁇ '(002) is 80% or more of the maximum value, so that a stable thin film can be formed, and the electron density Ne of the above plasma is 1 ⁇ 10 9 cm— 3 or more. If it is less than 1 X 10 1 Qcm- 3 , the intensity of ⁇ '(002) will be 90% or more of the maximum value, so that an iron carbide film with desired magnetic properties can be manufactured more stably. It is more desirable because it can be done.
  • the step of forming the iron carbide film or the iron cobalt film containing the single phase may include: And a step B of forming a thin film having an interatomic distance substantially equal to the interatomic distance of the iron carbide film or the iron cobalt film. Since the method for producing a magnetic thin film according to the present invention includes the above step B, it is possible to immediately deposit an iron carbide film or an iron cobalt film containing a single-phase single phase on the thin film immediately after film formation.
  • the manufacturing method including the above-described step B contributes to the production of a magnetic thin film capable of stably obtaining soft magnetic characteristics.
  • the method of manufacturing a magnetic thin film according to the present invention is characterized in that after the step A, a step C of heating the iron carbide film or the iron cobalt film is provided.
  • Providing the step C for heating the magnetic thin film may make it possible to lower the coercive force of the magnetic thin film. This effect is particularly effective when the iron-cobalt carbide film has a predetermined carbon content, and lowers the coercive force of the magnetic thin film.
  • a film forming method suitable for performing the step of forming the iron carbide film having the ⁇ ′ phase as a main phase for example, a facing target sputtering method or a plasma deposition method can be mentioned. Since the electron temperature T e and the electron density N e in the preferable ranges described above can be easily realized, the iron carbide film in which the strength of at least ((002) is at least 80% of the maximum value can be stably obtained. Can be formed.
  • the composition is made to be 0.5 at% or more and 15 a ⁇ % or less of carbon and the balance of iron.
  • a thin film having good soft magnetic properties with a saturation magnetization of 2 ° or more and a coercive force of 2 Oe or less can be more easily formed.
  • this film composition should be 1 at% or more.
  • a base material source for forming the magnetic thin film for example, as a target, a carbon having a content of 0.5 at% or more and 15 at% or less and a balance of iron are used as long as the composition of the formed thin film and the target does not deviate. Alloy or composite material is more preferable, and an alloy or composite material composed of carbon of lat% or more and 12 at ° / o or less and the balance of iron is more preferable.
  • the iron carbide film according to the present invention may contain an appropriate amount of cobalt as the third element.
  • the iron-cobalt film 11 1 ′ obtained by adding cobalt to the iron-carbide film 11 can further increase the saturation magnetization as shown in FIG. 12, and obtain a saturation magnetization exceeding 2.2 T. Therefore, a target made of a base material for forming the magnetic thin film may be made of carbon, iron and cobalt.
  • the iron cobalt film 11 ′ according to the present invention has a saturation magnetization (Ms) of 2 T or more even without performing a heat treatment after the film formation, similarly to the iron carbide film 11 described above.
  • Ms saturation magnetization
  • the iron carbide covanolate film 11 ′ with a ratio of 12 to 50 in / 0 has a saturation magnetization of 2.2 T or more [Fig. 12] and has a crystal structure even after heat treatment at over 300 ° C. No significant change in the structure was observed [Fig. 15].
  • the iron-cobalt carbide film having a cobalt content of 30 to 42.5 atom ° / 0 has a heat resistance exceeding 400 ° C.
  • the heat treatment in the step C causes a decrease in the coercive force He in the iron-cobalt carbide film 11 ′, as is apparent from FIG.
  • the carbon content is 2 to 15 atoms. /.
  • the coercive force Hc after the heat treatment can be set to 2 Oe or less.
  • the iron-cobalt film 11 ′ according to the present invention has sufficient resistance to the heat treatment at about 300 ° C. required in the manufacturing process of the MR element constituting the magnetic head. It became clear that there was. Therefore, the magnetic thin film made of the cobalt-containing iron-cobalt film having the cobalt contained therein 1) constitutes a magnetic head. It is mounted together with the MR element to be formed, and is extremely suitable as a magnetic pole material constituting a magnetic head for writing.
  • FIG. 9 is a graph showing an X-ray analysis result of the iron cobalt film 11 ′ according to the present invention.
  • FIG. 9 shows that the iron cobalt film 11 ′ according to the present invention has a crystal structure mainly composed of the ⁇ ′ phase, similarly to the iron carbide film 11 (FIG. 3).
  • FIG. 9 shows that the iron cobalt film 11 ′ according to the present invention has a crystal structure mainly composed of the ⁇ ′ phase, similarly to the iron carbide film 11 (FIG. 3).
  • the iron-cobalt film 11 ′ having the ⁇ ′ phase as a main phase can easily identify whether or not it has a desired crystal form at the time of manufacture. It is equipped with.
  • FIG. 11 a hysteresis curve as shown in FIG. 11 is observed after the film formation.
  • (A) is the result of the ⁇ 001> direction of the bc7 structure
  • (b) is the result of the ⁇ 100> direction of the bct structure
  • (c) is the result of the ⁇ 110> direction of the bct structure.
  • a vibrating sample magnetometer (VS M) was used for this measurement. From Fig. 11 (a), it was confirmed that the c-axis of the iron-cobalt film 11 'was a hard magnetization axis, and that the c-plane was an easily magnetized surface from Figs.
  • the iron-cobalt carbide film according to the present invention is suitable as a magnetic pole of a recording head.
  • iron carbide having a cobalt content of 12 or more and 50 or less at atomic ° / 0 is obtained.
  • is obtained by X-ray diffraction or electron diffraction.
  • '' Phase The diffraction peak from the (002) plane is observed as the main peak (Fig. 9).
  • the main diffraction peak observed changes from the (002) plane of the ⁇ 'phase to the (200) plane of the a phase. It was confirmed that it would change ( Figure 17).
  • 2 ⁇ is in the range of 60 to 70 degrees, no diffraction peaks other than these peaks are observed.
  • the iron-cobalt carbide film according to the present invention has a body-centered square structure, does not depend on the presence or absence of a heat treatment performed after film formation, has a c-axis as a hard magnetization axis, a c-plane as an easy magnetization surface, The hard axis is substantially perpendicular to the film surface, and the easy magnetization surface is substantially horizontal to the film surface.
  • the iron-cobalt carbide film according to the present invention may incorporate nitrogen as the third element. When nitrogen is contained in appropriate amounts, more preferable because it reduces the magnetostriction of iron carbide cobalt film 10 one seven from 10 six.
  • the iron-cobalt carbide film according to the present invention includes a thin film having a lower layer in contact with the iron-cobalt carbide film and having an inter-atomic distance substantially equal to the inter-atomic distance of the iron-cobalt carbide film.
  • the various magnetic characteristics described above can be obtained more stably.
  • an iron film or an iron cobalt film having a (200) plane as a surface can be used.
  • the main element constituting the thin film has a lattice constant substantially equal to that of the iron-cobalt carbide film.
  • the iron-cobalt film deposited thereon can be very stably grown at the initial stage. Even if the film thickness increases, the occurrence of distortion and the like in the film is suppressed, so that higher crystallinity and film formation can be achieved, and iron carbide with stable various magnetic properties A cobalt film is obtained.
  • the element whose lattice constant is substantially the same as that of the iron-cobalt film include one or more elements selected from Ag, Au, Pd, Pt, Rh, Al, Ir, and Ru. I can do it.
  • the apparatus for manufacturing a magnetic thin film according to the present invention is characterized in that a process gas is used to generate a plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, thereby forming the plasma and the magnetic thin film.
  • a manufacturing apparatus for forming a film comprising: a plasma generating means for forming the iron carbide film or the iron cobalt film; and a substrate holding means capable of moving the substrate along a direction in which a concentration gradient of the plasma is generated. I have it.
  • the substrate is held by the substrate holding means.
  • the iron carbide film or the iron cobalt film having the desired phase as the main phase can be formed.
  • the substrate can be placed at a position where it can be formed. Therefore, in the manufacturing apparatus having the above configuration, the iron carbide film is hardly damaged by plasma even at the start of the deposition, during the deposition, or even after the deposition.
  • the thickness of the magnetic thin film to be formed can be gradually increased in an atmosphere where the influence of plasma damage is extremely small, so that the surface of the formed magnetic thin film is suppressed as much as possible and Temperature rise can be suppressed. That is, the magnetic thin film manufactured by the manufacturing apparatus having the above configuration can have an extremely flat surface form. When the flattening is promoted in this manner, the substrate temperature during film formation in which an iron carbide film having a main phase as a main phase can be stably obtained can be set in a wider range. It is possible to provide a manufacturing apparatus having a wide temperature margin during manufacturing.
  • the ⁇ ′ phase is the main phase irrespective of the material and shape of the surface of the substrate on which the iron carbide film is deposited. This contributes to the construction of a production line with high yield and high reliability, because the production equipment is capable of obtaining films in a very stable manner.
  • the functions and effects provided by the manufacturing apparatus having the above configuration can be similarly obtained in the above-described iron-cobalt carbide film which is a magnetic thin film in which cobalt is added to the iron carbide film.
  • Substrate holding means in the above structure either variably controlling the position of the base body so that the electron temperature T e of the plasma substrate is exposed becomes less 4 X 1 0- 3 e V or 3 e V, or substrate exposed the plasma electron density N e Ca 7 X 1 0 8 cm- 3 or more 2. 5 X 1 0 by 1 Q cm one 3 variably controlling the position of the base body so as to become less, primary phases phase Is obtained very stably.
  • the functions and effects obtained when the electron temperature T e and the electron density N e of the plasma fall within the above range also apply to the above-described iron-cobalt carbide film, which is a magnetic thin film containing cobalt in the iron carbide film.
  • plasma having the electron temperature T e and the electron density N e in the above-described ranges can be easily generated and maintained.
  • the plasma obtained by these two methods has a feature that the electron temperature T e and the electron density N e change gradually with distance, that is, have a gentle concentration gradient.
  • the concentration gradient of the plasma is generated in a direction perpendicular to the surface of the substrate, the magnetic thin film is deposited as long as the substrate holding means on which the substrate is placed is moved linearly back and forth.
  • the electron temperature T e and the electron density N e of the plasma to which the substrate surface is exposed can be universally controlled. However, for example, even if a normal bipolar plate type sputtering apparatus is used, if the electron temperature T e and the electron density N e of this plasma are made variable and devised so that these can be kept low, it is sufficient.
  • Iron carbide film ( ⁇ '-Fe-C film) or iron carbide covanolate film ( ⁇ '-Fe-Co-C film), which can be obtained with a facing target sputtering system or plasma evaporation system described later. Can be formed.
  • the apparatus for producing a magnetic thin film according to the present invention forms a lower layer in contact with the iron carbide film or the iron cobalt film in addition to the plasma generating means for forming the iron carbide film or the iron cobalt film described above.
  • Plasma generating means may be provided for forming a thin film having an atomic distance substantially equal to the atomic distance of the iron carbide film or the iron cobalt film.
  • the manufacturing apparatus provided with the plasma generating means for forming a thin film contributes to the magnetic thin film having stable soft magnetic characteristics.
  • the apparatus for manufacturing a magnetic thin film according to the present invention may include a heat treatment unit for heating the iron carbide film or the iron cobalt film. Heat treatment using this heat treatment means lowers the coercive force of the magnetic thin film.
  • a great effect can be obtained.
  • FIG. 7 is a schematic sectional view of the inside of the sputtering chamber as viewed from above
  • FIG. 8 is a schematic sectional view of the inside of the film forming chamber as viewed from the side.
  • the facing target type sputtering method according to the present invention is carried out by using, for example, a facing target type sputtering apparatus shown in FIG.
  • 700 is a sputtering chamber
  • 701a, 701b, 701c, 701d are substrates
  • 702a holds the substrate 7Ola and heats, cools, or maintains the substrate 7Ola at a constant temperature
  • 703a is a substrate holding means for moving the substrate 701a in the direction in which the plasma concentration gradient is generated
  • 704 is a substrate holder 701a, 701b.
  • the means for rotating and moving the substrate used to direct the surface toward each film forming chamber, and 705 is for forming an iron carbide film (hereinafter also referred to as ⁇ '-Fe-C film).
  • the first film forming chamber, 706 is a second film forming film for forming an Fe film. J!
  • vacuum evacuation means for depressurizing each deposition chamber is provided below the sputter chamber 700 (on the back side of the paper), and the substrate is taken out via a gate valve above (the front side of the paper).
  • a load lock chamber is provided, and a vacuum evacuation means for reducing the pressure in the load lock chamber is also provided.
  • each of the film forming chambers is provided with gas supply means for introducing a desired process gas, for example, Ar gas or N 2 gas therein.
  • the facing target type sputtering apparatus is characterized in that a pair of targets made of the same material are arranged facing each other in one chamber.
  • first film forming chamber 705 for forming an a′-FeFeC film for example, two plate-shaped first targets 709 a and 709 b having the same dimensions are arranged to face each other.
  • the permanent magnets 710a and 710b are placed in the force sword 716a so that the plasma focusing magnetic field is applied perpendicularly to the first target 709a and 709b.
  • 7 10 d are respectively arranged in the force swords 7 16 b.
  • a process gas such as Ar gas is introduced into the first film forming chamber 705 and a voltage is applied to both cathodes 7 16 a, 7]. 6 b from a DC power supply 7!
  • both targets 709 a And 709b are emitted from the target and reflected by high-speed ⁇ electrons (secondary electrons) accelerated by the cathode descending part Since this secondary electron acts as an electrode, this secondary electron is confined between the two targets, and the secondary electron impact on the substrate 71 a disposed outside between the first target 709 a and 709 b is suppressed. You.
  • the energy of the electrons in the plasma is increased, or the gas collides with the ambient gas to promote ionization of the gas, resulting in high-density plasma P 1 (mesh area in Fig. 7). That is, a desired thin film can be appropriately deposited on the substrate 701a without being directly exposed to the high-density plasma P1.
  • the facing target type DC sputtering apparatus shown in FIG. 7 can reduce the rise in substrate temperature during film formation due to such features, and can be formed at a lower gas pressure than a general planar type magnetron sputtering apparatus.
  • the advantage is that a membrane is possible.
  • the inner wall of the sputtering chamber 700 for forming a film is subjected to electrolytic polishing and chromium oxidation passivation (CRP) treatment to reduce the amount of gas emitted from the inner wall.
  • a load lock chamber (not shown) is provided in the sputter chamber 700 via an all-metal gate valve (not shown). When the substrate 701 is set, the sputter chamber 700 is opened to the atmosphere. Therefore, the degree of vacuum can be maintained.
  • the surface of the substrate 701 a was directed to the ⁇ ′—Fe—C film (iron carbide film) film forming chamber 705 side. Thereafter, the shirt 707a, which spatially separates the plasma P1 and the base 701a from each other, is opened for a predetermined time, so that a desired thickness is formed on the base 701. An Fe—C film can be formed.
  • ⁇ ′—Fe—C film iron carbide film
  • the plasma P1 generated by the configuration in Fig. 7 has a plasma concentration gradient from the center of the two targets 709a and 709b arranged opposite to the base 7Ola. However, the plasma concentration has a distribution near the center of the axis at a maximum, and the concentration decreases as approaching the substrate 701a.
  • the concentration of the plasma P1 is increased by using the substrate holding means 703a provided between the substrate holder 702a for holding the substrate 701a and the substrate moving means 704 of the substrate 701a. There is a gradient (The arrow c in Fig. 7 is provided
  • the first Fe—C film deposition chamber 705 has been described in detail as an example, but the other Fe deposition chamber 706, which is the other deposition chamber, is the same except that the target material is different.
  • the mechanism is provided, and almost the same film formation processing is possible. That is, by setting the substrate at the position A or the position C using the rotation moving means 704, an ⁇ ′—Fe—C film or a Fe film can be deposited on the substrate.
  • a process gas such as Ar is introduced into the first film forming chamber 705, and the substrate on which the substrate 701a is placed is placed.
  • a voltage from the AC power supply 7 13 to the honolech 70 2 a it is also possible to dry-etch the substrate surface.
  • the target is circular and its diameter t1 is 90 °, the distance between targets t2 is 100 °, and the distance t3 between the target center and the base is 90 °.
  • the value of the distance t 3 is determined by the movement of the substrate 71 along the direction in which the concentration gradient of the plasma P 1 occurs using the substrate holding means 703 a (arrow ⁇ in FIG. 7). Increases or decreases.
  • a leakage magnetic field of about 30 Oe (O e) exists in the surface of the substrate at the surface of the substrate.
  • the permanent magnet 710 or 712 was arranged so that the direction of the leakage magnetic field at the substrate surface position was the same even when the substrate 701a was rotated.
  • the rotation of the base holder 702 and the opening and closing of the shirt 707a or 707b were controlled by a stepping motor (not shown) via a rotation introducing machine (not shown).
  • the facing target type D.C. sputtering apparatus has been described in detail.
  • the ⁇ '-Fe-C film according to the present invention is an alternating current (R.F.C.) instead of a direct current (D.C.). ) Can also be used.
  • the plasma deposition method according to the present invention uses, for example, a plasma deposition apparatus shown in FIG. It is implemented by that.
  • 800 is a film forming chamber
  • 800 is a substrate
  • Reference numeral 2 denotes a substrate holder having a built-in temperature control means for holding the substrate 81 and having a function of heating, cooling, or maintaining the temperature of the substrate 800, and reference numeral 803 denotes a plasma concentration gradient.
  • 805 is a Fe-C base material
  • 806 is an ion gun that places the base material in a crucible and melts it with an electron beam
  • 807 is a filament placed above the ion gun
  • 8 0 8 is a grid arranged in the space between the filament and the substrate, 8 0
  • 810 are a DC power supply
  • 811 is a process gas inlet
  • 812 is an exhaust port of the film forming chamber which leads to a vacuum exhaust means (not shown) for reducing the pressure in the film forming chamber
  • 813 is an exhaust port of the film forming chamber.
  • This is a magnetic field applying means for applying a magnetic field which is parallel to the film-forming surface of the substrate and is in one direction.
  • an ion gun 806 that disposes and dissolves a Fe—C base material 805 in one film forming chamber 800 faces a substrate 8001.
  • the filament 807 connected to the DC power supply 809 and the DC power supply 810 are connected from the Fe-C base material 805 toward the base body 81 in the space between them.
  • the grid 808 and the shirt 804 at the ground potential are arranged in this order.
  • a process gas such as an Ar gas is supplied into the decompressed film forming chamber 800 through a process gas inlet 811 to adjust the gas pressure to a predetermined value.
  • the Fe—C base material 805 is melted by using an electron beam emitted from the ion gun 806, and is evaporated into an upper space in the film forming chamber 800. Then, the evaporated substance first passes through the space of the high-density plasma P2 generated by the electrons emitted from the filament 807. Next, the evaporated substance passes through the mesh-shaped dalid 808, passes through the plasma P 2 ′ reaching from the dalid 808 to the vicinity of the base 801, and reaches the base 800. Is deposited.
  • a mesh-like dalid 808 having a negative potential by being connected to the DC power supply 810 is provided, so that the grid 808 is provided.
  • the plasma P 2 ′ passing through the substrate 8 and reaching the vicinity of the substrate 8 0 1 has a lower density than the plasma P 2 described above, and has a lower density from the grid 8 08 toward the substrate 8 0 1.
  • the density is increasing.
  • Deposition of a single Fe-C film on substrate 800 Is performed by opening the shirt 804 for a predetermined time.
  • the plasma P 2 generated by the configuration in FIG. 8 has a concentration gradient of plasma from the dalid 808 toward the base body 81, and the plasma concentration becomes maximum near the grid 808, and It has a distribution in which the concentration decreases as it approaches 0 1.
  • the substrate holding means 803 for supporting the substrate holder 802 for holding the substrate 801 the substrate 802 can be arranged along the direction in which the concentration gradient of the plasma P 2 is generated. It is equipped with a structure that can move 1 (arrows in Fig. 8) 3).
  • the ion gun 806 includes one crucible and the Fe—C base material 805 is provided therein has been described.
  • the ion gun 806 may include a plurality of crucibles. According to this configuration, for example, by putting the Fe base material 805 ′ into the second crucible, ⁇ ′ —: Fe—C is formed on the substrate 801 in one film forming chamber 800. An Fe film can be formed instead of the film.
  • the distance t4 between the Fe-C base material 805 and the filament 807 in the ion gun 806 is 25 mm
  • the distance t4 between the filament 807 and the grid 808 is The distance t5 was 95 mm
  • the distance t6 between the grid 808 and the base body 81 was 60 mm.
  • the distance t 6 is determined by the movement of the substrate 81 along the direction in which the concentration gradient of the plasma P 2 is generated using the substrate holding means 803 (arrow 3 in FIG. 8). Increase or decrease.
  • Magnetic field applying means 8 13 composed of a permanent magnet to be applied was arranged.
  • the rotation of 2 and the opening and closing of the shirt 804 were controlled by a stepping motor (not shown) via a rotation introducing machine (not shown).
  • the carbon (C) content in the film was 4 atomic% (at%) and the balance was iron (Fe).
  • the layer 11 was directly deposited on the substrate 10 by a sputtering method to produce a sample S1 having a layer configuration shown in FIG.
  • sample S1 was prepared by changing the following three points.
  • the substrate 701a is moved along the direction in which the concentration gradient of the plasma P1 is generated (the surface of the substrate 701a on which the iron carbide film is provided is exposed by the substrate holding means 703a, which can be arrowed in FIG. 7). It was formed by changing that plasma electron density N e in four conditions (7 XI 0 s cm one 3, 2 X 1 0 9 cm one 3, 1 X 1 0 10 cm ⁇ 7 X 10 10 cm -3).
  • the electron temperature of the plasma was fixed at about 0.1 leV by adjusting the pressure of the process gas.
  • a temperature control means having a function of heating, cooling, or maintaining a constant temperature of the substrate built in the substrate holder 702 is used.
  • the temperature of the substrate 701a on which the iron carbide film was provided was changed in the range of 0 ° C to 200 ° C.
  • FIG. 2 is a schematic cross-sectional view showing the layer configuration of the magnetic thin film sample according to the present example, where 10 is a substrate, and 11 is a magnetic layer.
  • the substrate 10 was a glass substrate (Ko-Jung Co., # 7059).
  • the film composition of the magnetic layer 11 was made from the iron carbide (Fe-C) alloy used for the film formation.
  • the apparatus of the composition of the target 70 9 a, 70 9 b appropriately changed and the F e -4 at./ 0 C by sputtering 7, iron carbide film (alpha '- - becomes the first data.
  • F e- F e C film forming chamber 7 0 5 ultimate vacuum forming the magnetic layer 1 1 made of a C film) was fixed to 1 0- 7 Torr case (LTorr- about 1 3 3 P a), the deposition Occasionally, a magnetic field applying means 710 was used to apply a magnetic field [intensity: 30 to 50 gauss (G)] in one direction parallel to the film-forming surface of the base 701a.
  • the temperature control rod stage built in the base holder 702 After heating the substrate 7 Ola in a vacuum at 200 ° C. for 2 hours, the substrate 701 a is cooled to a desired constant temperature of 0 ° C. to 200 ° C., and then heated at this temperature.
  • the composition on the substrate 70 1 a is F e-4 a%.
  • the "-Fe-C film was deposited.
  • the -Fe-C film was formed using an alloy target composed of Fe and C manufactured by the vacuum melting method. Instead of the alloy tab, a target made of Fe and C produced by a sintering method, or a composite target in which a C chip is embedded on the Fe target may be used. A method for producing an ⁇ '-Fe-C film using a process gas including the Fe target may be used.
  • Table 1 shows the film forming conditions for manufacturing the magnetic thin film of this example, that is, the sample S1. is there.
  • Fe-C 0.79, 2, 3, 4, 6 at 0 / o, balance Fe
  • Magnetic field strength 30 to 50 G
  • a base 701 made of glass having been subjected to a predetermined cleaning treatment is attached to a base holder 702, and is disposed on a base support in a load lock chamber (not shown). did.
  • the substrate holding means 703 is arranged at the center of the sputtering chamber 700, and is fixed to a rotation moving means 704 having a rotatable function made of a material of SUS.
  • the central portion is defined as a film forming space 1 for forming an ⁇ ′—Fe—C film and a film forming space 1 for forming an Fe film by the shirts 70 7 a and 70 7 b and the deposition preventing plates 708 a and 708 b.
  • Growth Question 2 Refers to the space provided between
  • the substrate 701 a is moved to the side of the first film forming chamber 705 for forming an ⁇ ′—Fe—C film by using the rotation moving means 704, and the temperature control means built in the substrate holder 702 a is moved.
  • the substrate 701a was subjected to a heat treatment at 200 ° C. At that time, the shirt 70 7 a was closed.
  • Fe-C targets 709 a and 709 b are installed on the cathodes 7 16 a and 7 16 b by applying an arbitrary voltage from DC power source 714 to plasma: P 1 Occurred. As a result, the Fe—G targets 709a and 709b were sputtered.
  • the substrate 701 a is moved (in the direction of the arrow ⁇ in FIG. 7) along the direction in which the plasma concentration gradient is generated using the substrate holding means 703 a, and the surface of the substrate 701 a is moved.
  • 4 conditions electron density N e of the plasma is exposed (7 X 1 0 8 cm 3 , 2 X 1 0 9 cm one 3, l X l O ⁇ cm -3 YX l O ⁇ cnT 3) one of One.
  • the electron temperature T e of the plasma was fixed at about 0.1 eV by adjusting the pressure of the process gas.
  • the electron density N e of the plasma to which the surface of the substrate 701a is exposed is changed under four conditions (7 ⁇ 10 8 cm— 3 , 2 ⁇ 10 9 cm ” the 1 X 1 0 10 cm one 3, 7 1 0 10 cm “ 3) and a plurality of sample S 1 that was produced.
  • the electron density N e of the plasma 1 X 1 0 - was prepared by a 3 alpha '- crystal structure of the sample S 1 of F e-C film, as a radiation source (C o- It is a graph which shows the result of having investigated by the X-ray-diffraction method using (alpha)).
  • (A) shows the results of sample S1 consisting of a Fe film fabricated using a pure iron target, as well as the results of sample S1 with a carbon content X of 4 at ° / 0 in the film.
  • (B) is the result of sample S1 prepared by changing the carbon content X in the film to 0.79, 2, 3, 4, and 6 at%.
  • the sample SF made of iron film prepared for comparison with the sample S1 made of '1-Fe-C film has a different crystal morphology because the angle at which diffraction lines are observed is different. It has been found.
  • the electron density of the plasma Ne is 1 X 10 '.
  • the intensity of the diffraction line from '′ (0 2) decreases, and the shoulder tends to be observed on the high angle side. And as the area of this shoulder increases, the coercive force He increases
  • Fig. 1 is a graph showing the relationship between the substrate temperature when producing an iron carbide film and the X-ray intensity of the (002) plane of the obtained iron carbide film.
  • the surface roughness Ra of the produced iron carbide film was indicated by the in-site type STM.
  • the substrate temperature is 5 ° C or higher and 100 ° C or lower, an X-ray intensity of 80% or more of Imax is observed, so that the desired ⁇ , 1-Fe-C film is considerably stable. can get.
  • the surface roughness Ra of the produced —F e—C film is 0.2 to 0.3 nm.
  • the substrate temperature is 10 ° C or more and 70 ° C or less, since the X-ray intensity becomes 90% or more of Imax, the desired ⁇ '-Fe-C film can be obtained more stably. It is more preferable.
  • N e - l X l O ⁇ cm one 3 when: (solid line sample S 1 a), Ne 2 X 1 0 9 cm- 3 in the case (one-dot chain line: the sample S 1 c) and 7 X 1
  • the following points became clear.
  • Samples Sic (dashed-dotted line) and Sample Sid (dotted-dotted line) prepared using plasma with electron density Ne smaller than sample Sla (solid line) have more than 80% or 90% of Imax.
  • the upper limit of the substrate temperature at which the following X-ray intensity is observed shifts to a higher temperature side by about 20 to 30 ° C.
  • the maximum value is obtained in the sample S ic (the dotted line).
  • the surface roughness Ra of the produced ⁇ '-Fe-C film becomes smaller than 0.1 nm, and the flatness is remarkably improved.
  • the lower limit of the substrate temperature at which the X-ray intensity is 80% or more or 90% or more of Imax is lower than that of sample S1a (solid line). To buzz. In other words, it means that a magnetic thin film having a desired crystal morphology can be stably obtained even at a lower substrate temperature than the sample under the other three plasma conditions.
  • a plasma having a small plasma damage applied to the deposition surface of the substrate by using a process gas on the substrate disposed in the reduced pressure space for example, the electron density of the plasma is 2 ⁇ 10
  • a plasma of about 9 cm— 3 is generated, and a single phase of ⁇ ′ phase is formed on the substrate using at least carbon and iron as constituent elements by using the plasma and a base material source for forming a magnetic thin film.
  • the temperature of the substrate at which a desired iron film consisting of a single ⁇ 'phase is obtained can be reduced. It became clear that the range could be set wider.
  • the surface roughness of the manufactured iron carbide film is significantly suppressed, so that the iron carbide film has good followability along the surface shape of the substrate.
  • the present invention it is possible to provide a method of manufacturing a magnetic thin film capable of constructing a manufacturing process that is not restricted by the material constituting the base or the surface shape thereof.
  • the substrate temperature it is not necessary to limit the substrate temperature to a narrow range so much in order to produce a desired iron carbide film composed of a single ⁇ 'phase.
  • the problem caused by the difference in film formation temperature that is, the difference in the surface material and surface shape of the substrate on which the iron carbide film is deposited is caused on the deposition surface of the magnetic thin film. Due to the temperature difference, the problem that the temperature range of the substrate on which the iron carbide film composed of the ⁇ ′-phase single phase can be stably obtained is narrow can be greatly improved. In addition, the fact that the substrate temperature at the time of film formation in which an iron carbide film composed of an ⁇ ′-phase single phase can be stably obtained is wider than before, which means that the conditions for producing the iron carbide film according to the present invention are relaxed. This means that the production margin can be expanded, and that mass production can contribute to lower costs.
  • the electron density Ne of the plasma to which the surface of the substrate 701a on which the iron carbide film is to be exposed is exposed is changed in the range of 3 ⁇ 10 8 cm — 3 to 7 ⁇ 10 1 Q cm 3 to contain
  • a magnetic layer 11 having a film composition of 4 atomic% (at%) and a balance of iron (F e) was formed on a substrate 10.
  • the sample was deposited directly by the sputtering method to produce a sample S2 having a layer configuration shown in FIG. Other points were the same as in Example 1.
  • FIG. 5 is a graph showing the relationship between the electron density Ne of the plasma and the X-ray intensity of the (002) plane of the obtained iron carbide when producing the iron carbide film.
  • the electron density of the plasma was 1 X 1 0 9 cm- 3 or more 1 X 1 0 '° cm- 3 or less, since the X-ray strength degree equal to or greater than 90% of I max, the desired ⁇ '— F e — C film is more preferable because it can be obtained more stably.
  • FIG. 6 is a graph showing a relationship between the electron temperature Te of the plasma when the iron carbide film is produced and the X-ray intensity of the (002) plane of the obtained iron carbide film.
  • the electron temperature of the plasma was less 1 X 1 0- 2 e V or more on 1 e V, since the X-ray intensity is more than 90% of I max, the desired ⁇ '- F e- C It is more preferable because the film can be obtained more stably.
  • the carbon (C) content of the film was 4 atom ° / o (at%), and the magnetic composition of the film was composed of iron (Fe).
  • the layer 11 was directly deposited on the substrate 10 by a plasma deposition method to produce a sample S4 having a layer configuration shown in FIG.
  • sample S4 was prepared by changing the following two points.
  • the substrate 801 on which the iron carbide film is to be provided is exposed by the substrate holding means 803 which can move the substrate 801 in the direction in which the concentration gradient of the plasma P 2 is generated (arrow ⁇ in FIG. 8).
  • the film density was changed while changing the electron density Ne of the plasma from 7 ⁇ 10 8 cm 3 to 7 ⁇ 10 10 cm- 3 .
  • the electron temperature Te of the plasma was fixed at about 0.1 leV by adjusting the pressure of the process gas.
  • FIG. 2 is a schematic cross-sectional view showing the layer configuration of the magnetic thin film sample according to the present example, where 10 is a substrate, and 11 is a magnetic layer.
  • a glass substrate (# 7059, manufactured by Koingen Co., Ltd.) is used as the base 10, and the film composition of the magnetic layer 11 to be manufactured is supplied to the film forming chamber 800 from the process gas inlet 811.
  • magnetic layer composed of a '-F e-C film: arrival ⁇ Sorado deposition chamber 8 0 0 forming the L 1 is fixed to 1 0- 7 Torr base, formed
  • a magnetic field [intensity: 30 to 50 gauss (G)] was applied in one direction parallel to the film formation surface of the substrate 801 using a magnetic field applying means 8 13.
  • the substrate 801 was subjected to a heat treatment at 200 ° C. for 2 hours in a vacuum using a temperature control means incorporated in the substrate holder 802, and then the substrate 801 was cooled. After cooling to a desired constant temperature of 0 ° C. to 200 ° C., a single Fe-C film having a composition of Fe-4a was deposited on the substrate 801 kept at this temperature. .
  • the ⁇ '-Fe-C film was formed using the base material 805 of the alloy composed of Fe and C manufactured by the vacuum melting method.
  • the sintering method was used instead of this alloy.
  • a base material made of Fe and C, or a composite base material in which a C chip is embedded and installed on an Fe target may be used.
  • the usable process gas is not limited to the above-mentioned methane, but may be any gas containing the C element such as ethane and ethylene.
  • the simultaneous vapor deposition 2 using the base material made of Fe and the base material made of C is a typical film forming condition when the magnetic thin film according to the present example, that is, the sample S4 is manufactured.
  • Substrate material Glass (# 70 5 9)
  • Magnetic field strength 30 to 50 G
  • the method for producing the ⁇ '-Fe-C film according to the present example is based on the case where Ne is variable.
  • the following numbers in parentheses indicate the procedure.
  • the substrate 801 made of glass having been subjected to a predetermined cleaning treatment is attached to the substrate holder 802, and is disposed in the substrate holder 802 in the film forming chamber 800. Then, the pressure in the film forming chamber 800 is reduced. .
  • a process gas is introduced into the film forming chamber 800 to reduce the pressure to 10 OmTorr, and then a grid voltage Vg of 200 V is applied to the grid 808.
  • the plasma P 2 generated by the configuration in FIG. 8 has a plasma concentration gradient from the grid 808 toward the substrate 801, and the concentration of the plasma P 2 ′ having this concentration gradient becomes maximum near the Darlid 808, The distribution is such that its concentration decreases as it approaches 801. That is, the plasma P 2 ′ located in the vicinity of the base 801 has a very low concentration, in other words, a state in which the electron density Ne and the electron temperature Te are small.
  • the apparatus moves the substrate 801 in the plasma P 2 ′ in the direction in which the concentration gradient is generated by using the substrate holding means 803 supporting the substrate holder 802 holding the substrate 801 (FIG. It has a configuration that allows the arrow 8) 3).
  • the electron density Ne of the plasma to which the surface of the substrate 801 is exposed can be set to a certain value in the range of 7 ⁇ 10 8 cm— 3 to 7 ⁇ 10 ′ ° cm 3. After that, a sample S4 composed of ⁇ ′—Fe—C films of various compositions can be prepared on the substrate 801.
  • the thickness of the ⁇ '-Fe-C film deposited on the substrate 801 was controlled by the time to keep the shirt 804 at the ground potential from above the substrate 801, that is, the time to keep the shirt 804 open.
  • the crystal structure of sample S4 produced in this example was examined by an X-ray diffraction method using (C o -— ⁇ ) as a radiation source. As a result, the following points were clarified for sample S4.
  • a plasma with a small plasma damage applied to the deposition surface of the substrate is generated.
  • a manufacturing method including a step of utilizing the plasma and a base material source for forming a magnetic thin film is effective.
  • the manufacturing apparatus has a configuration capable of forming a film under such plasma conditions, a magnetic thin film having desired magnetic characteristics regardless of the film forming method, that is, the present inventors have disclosed in Patent Application 2000 —
  • An iron carbide film having a soft magnetization property having a saturation magnetization of 2 T or more and a coercive force of 2 Oe or less disclosed in 163822 can be manufactured extremely stably. That is, the opposed target sputtering apparatus shown in FIG. 7 and the plasma evaporation apparatus shown in FIG.
  • Means for moving the substrate as shown in the deposition apparatus that is, a mechanism capable of moving the position of the substrate surface along the direction in which the plasma concentration gradient occurs, and a substrate surface having a uniform concentration at least within the surface of the substrate.
  • a plasma generation mechanism capable of stably generating a plasma having a concentration gradient gradually along a direction perpendicular to the ⁇ -phase. Iron films can be manufactured very stably.
  • a reference to the facing target sputtering apparatus shown in FIG. 7, including Murrell carbon (C) content is 4 to in the film 1 0 atom 0/0 (at%), cobalt (C o) containing Quantity is 10 atoms. /. (at%), and the balance is shown in FIG. 2 in which a magnetic layer 11 ′ made of an iron-cobalt carbide film having a film composition of iron (Fe) force is directly deposited on the substrate 10 by sputtering.
  • Sample S5 having the layer structure shown was produced.
  • the fifth embodiment is different from the first embodiment in that a magnetic layer 11 ′ made of carbon, iron and cobalt is formed on the base 10 instead of the magnetic layer 11 made of carbon and iron.
  • a sample S5 was prepared by setting the electron density N e of the plasma, the electron temperature T e of the plasma, and the temperature of the substrate 71 a as follows.
  • the substrate 700a is moved along the direction in which the concentration gradient of the plasma P1 is generated (arrow a in FIG. 7).
  • the 1 a surface electron density N e of the plasma exposed was fixed at about 2 X 1 0 9 cm “3 . Further, by adjusting the pressure of the process gas, plasma electron temperature T e is about 0 le V fixed.
  • a temperature control unit having a function of heating, cooling, or maintaining a constant temperature of the substrate contained in the substrate holder 720 is used.
  • the temperature of the substrate 701 a on which the iron-cobalt carbide film was provided was fixed at about 20 ° C.
  • a sample S5 was prepared in which the carbon content y of the iron-cobalt carbide film was changed to 4, 6, 8, and 10 (at%).
  • FIG. 2 is a schematic cross-sectional view showing the layer structure of the magnetic thin film sample according to the present example, in which 10 is a substrate, and 11 'is a magnetic layer made of iron cobalt cobalt.
  • a glass substrate (# 7059, manufactured by Koingen Co., Ltd.) was used as the substrate 10, and the film composition of the magnetic layer 11 ′ to be manufactured was determined by the iron-cobalt carbide (F e—Co— C) By changing the composition of the first targets 709a and 709b made of alloy as appropriate, and sputtering, Fe-lOCo- (4 to 10 at%). And In the apparatus shown in FIG. 7, the ultimate vacuum degree of the FeCoC film forming chamber 705 for forming the magnetic layer 11 composed of the iron cobalt carbide film ( ⁇ ′—Fe—Co—C film) is as follows. 1 0- 7 Torr stand (1 Torr - about 1 3 3 P a) is fixed to.
  • a magnetic field [intensity: 30 to 50 gauss (G)] was applied in one direction parallel to the film formation surface of the substrate 701a using a magnetic field applying means 710.
  • the substrate 71 a was subjected to a heat treatment at 200 ° C. for 2 hours in a vacuum using a temperature control means incorporated in the substrate holder 702, and then the substrate 70 1 a was heated.
  • ⁇ ′ composed of F e ⁇ 10 at% C o ⁇ (4 to: L 0 at o / 0 ) C on the substrate 70 1 a maintained at this temperature.
  • an a'-Fe-Co-C film was formed using an alloy target composed of Fe, Co, and C manufactured by the vacuum melting method.
  • an alloy target a target consisting of Fe, Co, and C manufactured by sintering, or a composite target with a C chip embedded and installed on an alloy target consisting of Fe and Co was used instead of an alloy target. It does not matter.
  • a method of producing a —Fe—Co—C film using a process gas containing a C element and an alloy target composed of Fe and Co may be used.
  • Table 3 shows the film forming conditions for manufacturing the magnetic recording film of this example, that is, the sample S5.
  • the holding temperature of the substrate surface is 200.
  • Magnetic field strength 30 to 50 G
  • the substrate holding means 703 is arranged at the center of the sputtering chamber 700, and is fixed to a rotation moving means 704 made of SUS and having a rotatable function.
  • the central portion is defined as a film forming space 1 for forming a Fe—Co—C film and a Fe film by the shirts 707a and 707b and the deposition preventing plates 708a and 708b. Refers to the space provided between the film forming space 2 for forming.
  • the substrate 701 a is moved to the side of the first film forming chamber 705 for forming an ⁇ ′—Fe—Co—C film by using the rotation moving means 704, and the substrate holder 702 a is built in.
  • the substrate 701a was heat-treated at 200 ° C. by using a temperature control means. At that time, the shutter 707a was closed.
  • the substrate 701 a is moved (in the direction of the arrow ⁇ in FIG. 7) along the direction in which the plasma concentration gradient is generated using the substrate holding means 703 a, and the surface of the substrate 701 a is moved. is fixed to the electron density N e of the plasma about 2 X 1 0 9 cm- 3 exposed.
  • the electron temperature Te of the plasma was fixed at about 0.1 eV by adjusting the pressure of the process gas and the like.
  • a plurality of samples S5 having film compositions having different carbon contents were produced by using Fe—Co—C alloy targets having different compositions.
  • Fig. 9 shows the crystal structure of sample S5 consisting of the magnetic layer of the typical ⁇ '-Fe-Co-C film prepared in Example 5, using (Cu- ⁇ ) as the radiation source.
  • 6 is a graph showing a result of an examination by an X-ray diffraction method.
  • the values (4, 6, 8, 10) shown above the diffraction peaks are the carbon contents of the magnetic thin film (Sample S5) where the diffraction peaks were observed.
  • the carbon content of the magnetic thin film can be obtained from the S number by ESCA (Electron spectroscopy for chemical analysis), one of the X-ray photoelectron spectroscopy methods.
  • FIG. 9 also shows the diffraction peaks of the bulk test (F e—10 at% Co).
  • the iron-cobalt film 11 ′ having a phase as a main phase is mainly composed of a diffraction line from the (002) plane of the phase, that is, a ′ (002) by an X-ray diffraction method. And are identified by being observed.
  • FIG. 9 shows the case where only diffraction lines from the (002) plane of the iron-cobalt carbide film are observed.
  • the electron density Ne of the plasma and the electron temperature Te of the plasma were set differently from the values in Table 3, the same result as the iron carbide film shown in FIG. It was also observed in the iron-cobalt film.
  • the iron-cobalt film 11 ′ having the ⁇ ′ phase as the main phase according to the present invention has a diffraction line from the (002) plane of the single-phase and another diffraction line, that is, a broad line observed on the high-angle side. It has a crystal structure specified by the shoulder (shaded area).
  • the iron carbide film 11 is composed of only the ⁇ 3 ⁇ 4 ′ phase single phase, and the ⁇ ′ phase (00 2 ) Only diffraction lines on the surface are observed.
  • FIG. 10 shows the lattice constants a and c of the ⁇ ; '— F e— C ⁇ — C film measured by the Schulz reflection method, and the axial ratio cZ a obtained from these values with respect to the carbon content in the film. This is a plotted graph. From Fig. 10, it was observed that the lattice constant c tended to increase as the carbon content increased.
  • the lattice constant a showed a tendency to decrease slightly with increasing carbon content, and a was almost constant at about 2.85.
  • the value of cZa is about 1.04 to 1.08, the obtained ⁇ '-Fe-Co-Cflelia has a body-centered tetragonal structure (bet structure: body-centered tetragonal structure). It became clear to have.
  • FIG. 10 has been described using the sample S5, a sample having a configuration in which the iron film or the iron-cobalt film having the (200) plane as the surface described above is provided between the base and the iron-cobalt carbide film may be used. The same result as in FIG. 10 was confirmed.
  • FIG. 11 is a hysteresis curve of an a′—Fe—Co—C film having a carbon content of 6 at ° / 0 in sample S5 prepared in Example 5.
  • (A) shows the bet structure
  • (B) shows the results in the ⁇ 100> direction of the bct structure
  • (c) shows the results in the ⁇ 110> direction of the bet structure.
  • a vibrating sample magnetometer (VSM) was used for this measurement.
  • the ⁇ '-Fe-Co-C film has a hard-axis c-axis from Fig. 11 (a) and an easy-c-plane from Figs. 11 (b) and (c). Can be confirmed. This suggests that by applying a positive or negative external magnetic field having an appropriate strength in the c-plane of the iron-cobalt carbide film, it is possible to easily control the reversal of the magnetization direction generated in the C-plane. .
  • the opposed target sputtering apparatus shown in FIG. 7 was used, and the carbon (C) content in the film was 6 atomic% (at%) and the cobalt (Co) content was 0%. About 55 atomic% (at%), with the balance being a direct deposition of a magnetic layer 1 ′ ′ made of an iron-cobalt film having a film composition of iron (Fe) on the substrate 10 by sputtering.
  • a sample S6 having a layer configuration shown in FIG. 2 was produced.
  • FIG. 12 is a graph showing the relationship between the cobalt content of sample S6 produced in Example 6 and the saturation magnetization Ms. From this graph, the range of the cobalt content 0-3 7 atoms 0/0 (at%), c saturation magnetization M s is 3 7 atoms saturation magnetization Ms with increasing cobalt content increases monotonously. After showing a maximum near / 0 , the saturation magnetization M s starts to decrease monotonically with an increase in the content of konoreleto.
  • Figs. 13 and 14 are graphs showing the results of investigation of the temperature change (M s-T curve) of the saturation magnetization.
  • Fig. 13 shows the results when the cobalt content is 10 at. The case where the content of konokoku is 30 atom% is shown.
  • Temperature change of the saturation magnetization is at 2 X 1 0- 7 T orr ( 2. 4 X 1 0- 4 P a) in a vacuum of, the heating and cooling rate was min 1 ° C (1 ° C / min) The temperature was measured from room temperature to 400 ° C.
  • Figure 15 is a graph showing the relationship between the cobalt content and the point at which the saturation magnetization sharply decreases when the temperature rises (curve indicated by the rightward arrow) (hereinafter referred to as Tp.d.).
  • the decomposition temperature of the magnetic thin film Tp.d. Phase decomposition temperature
  • the decomposition temperature of the magnetic thin film Tp.d. is the temperature at the intersection of the tangent to the portion where the saturation magnetization sharply decreases and Define.
  • the decomposition temperature Tp. D Contains cono-kalt: S is 0 to 10 atoms. In the range of / 0 , there is almost no change, about 260. C. Then, to the cobalt content of the 1 2 atoms 0/0 or more As a result, the decomposition temperature Tp. D. Showed an increasing tendency and exceeded 300 ° C. In particular, in a range of co Roh Noreto content 3 0-4 2.5 atomic 0/0, 40 0. No decomposition temperature Tp. D. could be confirmed by heat treatment of C. Furthermore, when Yasu ⁇ cobalt content to 5 0 atoms 0/0 or more, the decomposition temperature Tp. D. Showed rapidly declining.
  • the iron-cobalt carbide film according to the present invention had a thermal stability exceeding 300 ° C. when the cobalt content was 12 to 50 atomic%.
  • a magnetic layer 11 consisting of an iron-cobalt carbide film with a film composition consisting of iron (Fe) having a content of 30 atomic% (at%)
  • Sample S7 having the layer configuration shown in Fig. 2 was produced by direct deposition.
  • FIG. 16 is a graph showing the relationship between the carbon content and the coercive force He of the sample S7 prepared in Example 7.
  • marks indicate values after film formation, and marks indicate values after heat treatment at 400 ° C.
  • FIG. 17 shows the crystal structure of the sample S7 comprising the magnetic layer of the representative ⁇ ′-Fe-Co-C film prepared in Example 7 before and after heat treatment at 400 ° C.
  • 7 is a graph showing the results of an X-ray diffraction method using (Cu-Ka) as an example.
  • Figure 17 shows that the main diffraction peak observed from the iron-cobalt film changes from ⁇ '(002) to a (200) by the heat treatment without depending on the carbon content.
  • 2 ⁇ is in the range of 60 to 70 degrees, no diffraction peaks other than these peaks are observed.
  • the iron-cobalt carbide film according to the present invention has a body-centered square structure without depending on the presence or absence of heat treatment performed after the film formation, the c-axis has a hard magnetization axis, and the c-plane has an easy magnetization surface. It was determined that the hard axis was substantially perpendicular to the film surface, and the easy magnetization surface was substantially horizontal to the film surface.
  • the method of manufacturing a magnetic thin film according to the present invention that is, using a process gas to generate plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, Utilizing plasma and a base material source for forming a magnetic thin film, utilizing the plasma and a base material source for forming a magnetic thin film, forming at least carbon and iron, or carbon, iron and Cobalt as a constituent element, for example, by X-ray diffraction using (Co- ⁇ ) or (Cu-Kc) as a radiation source, the crystal structure of which contains a single phase of a martensite ( ⁇ ') phase
  • the manufacturing method having a step of forming an iron carbide film or an iron cobalt carbide film, which is confirmed to be, ⁇ magnetic properties capable of responding to the increase in recording density, that is, saturation magnetization of 2 T or more and 2 Oe or less Good soft magnetic characteristics with a coercive force of A magnetic thin film with a stable at
  • the crystal structure of the iron carbide or iron cobalt carbide film according to the present invention includes a single phase of a martensite ( ⁇ ′) phase. .
  • the method for manufacturing a magnetic thin film having the above-described structure it is not necessary to restrict the temperature of the substrate to a certain range so much that it is less bound by the material constituting the substrate and its surface shape, and various materials and It is possible to provide a process that can stably and flexibly produce an iron carbide film or an iron cobalt film having a desired ⁇ ′ phase as a main phase on a substrate or a thin film having a surface shape.
  • the surface roughness of the formed magnetic thin film can be suppressed to an extremely small value by manufacturing the magnetic thin film using plasma with small plasma damage.
  • the surface can be significantly flattened.
  • the method for producing a magnetic thin film according to the present invention can contribute to the production of a magnetic head having soft magnetic properties advantageous for high-density recording.
  • the apparatus for manufacturing a magnetic thin film according to the present invention is characterized in that a process gas is used to generate a plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, thereby forming the plasma and the magnetic thin film.
  • the plasma state can be changed by the grid current and grid voltage.
  • the iron carbide film or the iron cobalt film hardly receives plasma damage at the start of the deposition, during the deposition, or after the deposition. It is possible to increase the film thickness in an atmosphere in an extremely small amount. Is suppressed. That is, according to the manufacturing apparatus having the above configuration, it is possible to stably manufacture a magnetic thin film having an extremely flat surface morphology.
  • the substrate temperature during film formation in which an iron carbide film or an iron cobalt carbide film having an ⁇ ′ phase as a main phase can be stably obtained can be made in a wide range.
  • the magnetic thin film according to the present invention is an iron-cobalt film having an ⁇ ′ phase as a main phase and at least carbon, iron and cobalt as constituent elements. Since it is 0 or less, it has a saturation magnetization corresponding to 2.2 ° or more without performing heat treatment after film formation.
  • the iron-cobalt film with a value of 12 or more and 50 or less surpasses an a-Fe film or an ⁇ '- Fe-C film having a saturation magnetization corresponding to about two, and furthermore has a value of 10%. It is possible to provide a magnetic thin film having a saturation magnetization higher than / 0 .
  • the iron-cobalt carbide film having the content of cono-noret in the above-mentioned range does not cause a significant change in the crystal structure even when subjected to a heat treatment exceeding 300 ° C.
  • An iron-cobalt carbide film having a weight of 30 to 42.5 atom ° / 0 has a heat resistance exceeding 400 ° C. Therefore, the atomic content of cobalt.
  • the iron / cobalt film of which the ratio is not less than 12 and not more than 50 by the ratio of / 0 is sufficient for the heat treatment at about 300 ° C required in the manufacturing process of the MR element constituting the magnetic head. Has resistance.
  • the coercive force of the iron-cobalt carbide film according to the present invention can be reduced by performing an appropriate heat treatment after the film formation.
  • the iron carbide cobalt film having a carbon content of 2 to 15 atomic% has a coercive force after heat treatment of 2 Oe or less and has good soft magnetic properties.
  • the iron-cobalt carbide film having the above-described structure is a magnetic thin film which is mounted together with the MR element constituting the magnetic head and is extremely promising as a magnetic pole material constituting the magnetic head for writing.
  • the iron carbide covanolate film according to the present invention is not formed by a thin film forming method using an etching process such as a conventional plating method, but by a sputtering method using a high-purity gas and a base material in an ultra-high vacuum. Because it can be manufactured using a dry process consisting of, the film thickness can be controlled with extremely high precision in the range of several nm to several hundred nm. This means that it is a magnetic thin film that meets the demand for thinner magnetic poles that make up the magnetic head for writing in order to achieve higher recording density.
  • the method and apparatus for manufacturing a magnetic thin film according to the present invention contribute to the provision of a mass production technique capable of stably and highly accurately realizing a magnetic head capable of achieving a high recording density.
  • the present invention can be implemented in various other forms without departing from its main features.
  • the above embodiments are merely examples and should not be construed as limiting.
  • the scope of the present invention is defined by the appended claims, and is not restricted by the specification text. Also, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)

Abstract

A method for producing a magnetic thin film by which an iron carbide or iron carbide-cobalt film the main phase of which is an a'-phase is formed stably without being influenced by the temperature of the deposit surface where the thin film is to be formed, an apparatus for producing a magnetic film wherein a desired plasma condition of the surface of a substrate where an iron carbide or iron carbide-cobalt film the main phase of which is an a'-phase is deposited can be set, and a magnetic thin film having a high saturation magnetization, a low coercive force, and a high temperature resistance are disclosed. The method is characterized by comprising step A of producing a plasma little damaging the deposits urface of the substrate over the substrate placed in a reduced-pressure space by using a process gas and forming an iron carbideo r iron carbide-cobalt film the main phase of which is an a'-phase and composed of constituent elements including at least carbona nd iron or carbon, iron, and cobalt on the substrate by using the plasma and a material source of the magnetic film. The magnetic thin film formed by the production method and apparatus is preferably used to produce a magnetic pole material of a magnetic head for recording a magnetism signal on a medium such as a hard disk, a floppy disk, or a magnetic tape.

Description

明細書 磁性薄膜の製造方法および製造装置、 並びに、 磁性薄膜 技術分野  Description Method and apparatus for manufacturing a magnetic thin film, and magnetic thin film
本発明は、 磁性薄膜の製造方法および製造装置、 並びに、 磁性薄膜に係る。 よ り詳細には、 プラズマを利用して炭化鉄膜又は炭化鉄コバルト膜を作製する際に 、 炭化鉄膜又は炭化鉄コバルト膜がひ ' 相を主たる相を成して構成されるように 安定して形成可能な磁性薄膜の製造方法および製造装置、 並びに、 磁性薄膜に関 する。  The present invention relates to a method and an apparatus for manufacturing a magnetic thin film, and a magnetic thin film. More specifically, when producing an iron carbide film or an iron cobalt film using plasma, it is stable so that the iron carbide film or the iron cobalt film forms a main phase comprising a single phase. TECHNICAL FIELD The present invention relates to a method and an apparatus for manufacturing a magnetic thin film that can be formed by using a magnetic thin film.
本発明に係る製造方法および製造装置を用いて作製された磁性薄膜は、 ド ディスク、 フロッピーディスク、 磁気テープ等に磁気信号を記録する磁気ヘッド の磁極材料を作製する際に好適に用いられる。 本出願は、 日本国への特許出願 (特願 2 0 0 1— 3 2 1 7 4 8号) に基づくも のであり、 当該日本出願の記載内容は本明細書の一部として取り込まれるものと する。 背景技術 近年、 高度情報化が著しく進むにつれて、 その情報を格納する機器、 中でも小 型でしかも大容量の記憶装置へのニーズが一層強まっている。 これに対応すべく 、 例えばハードディスクドライブ (HD D) では、 搭載される磁気記録媒体の単 位面積あたりの記録密度を向上させる技術開発が各研究機関によつて鋭意進めら れている。  The magnetic thin film manufactured by using the manufacturing method and the manufacturing apparatus according to the present invention is suitably used when manufacturing a magnetic pole material of a magnetic head for recording a magnetic signal on a disk, a floppy disk, a magnetic tape, or the like. This application is based on a patent application to Japan (Japanese Patent Application No. 2001-3211748), and the contents of the Japanese application are incorporated herein by reference. I do. 2. Description of the Related Art In recent years, with the advancement of advanced information, the need for devices for storing such information, especially small and large-capacity storage devices, has been increasing. In response to this, for example, in the case of hard disk drives (HDDs), research institutes are keenly developing technologies to improve the recording density per unit area of the magnetic recording media to be mounted.
上 の髙記録密度化を図るためには、 媒体の記録層に書き込んだ微小な磁区を 安定に存在させることが可能な高い保磁力を有する媒体、 媒体にこのような微小 な磁区を魯き込むことが可能な記録ヘッド、 及び、 この微小な磁区からの漏洩磁 界を髙感度に検知することが可能な再生へッド、 の開発が求められている。 従来の磁気へッドは、 記録と再生の機能を兼ね備えた一つの素子から構成され ていたが、 装置の小型化により媒体の小径化が進み、 磁化反転方向の線速が低下 するにつれて、 線速に依存せず漏洩磁界を安定して高感度に検知できる磁気抵抗 効果を利用した磁気抵抗 (M R : magneto resist ive) 素子からなる再生へッド が標準搭載されつつある。 つまり、 現在の磁気ヘッドは、 書き込み専用の記録へ ッドと読み取り専用の再生へッドを複合化した構成からなる。 In order to achieve the higher recording density, a medium with a high coercive force that enables stable existence of minute magnetic domains written on the recording layer of the medium, and such minute magnetic domains are incorporated into the medium There is a need for the development of a recording head capable of performing such operations and a reproducing head capable of detecting leakage magnetic fields from these minute magnetic domains with high sensitivity. Conventional magnetic heads consist of a single element that has both recording and reproducing functions.However, as the size of the medium has been reduced due to the downsizing of the device and the linear velocity in the magnetization reversal direction has decreased, the linear A reproduction head composed of a magnetoresistive (MR) element utilizing a magnetoresistive effect that can detect a stray magnetic field stably with high sensitivity regardless of speed is being installed as a standard. In other words, current magnetic heads have a configuration in which a write-only recording head and a read-only reproduction head are combined.
このような技術動向から明らかなように、 これからの記録ヘッドには、 保磁力 の高い媒体を十分磁化させて信号を記録するために、 強い磁界が発生できる飽和 磁化の高い磁極材料が必須となる。 現在まで好適に使われてきた磁極材料としては、 飽和磁化が約 1テスラ (T ) 程度のパ マロイ (7 8 w t o/o N i —F e合金) が有名である。 その後、 飽和磁 化を向上させた材料として、 1 . 1〜1 . 2 T程度の飽和磁化をもつセンダスト ( F e - A 1 - S 〖合金) や 1 . 5 T程度の飽和磁化をもつ C o系非晶質材料等 が開発された。 さらに最近では、 以下に示す材料系が注目されている。  As is evident from these technological trends, future recording heads will require pole materials with high saturation magnetization, which can generate strong magnetic fields, in order to record signals by sufficiently magnetizing a medium with high coercivity. . As the magnetic pole material that has been favorably used up to now, Pamalloy (78 w to / o Ni—Fe alloy) having a saturation magnetization of about 1 Tesla (T) is famous. After that, as materials with improved saturation magnetization, Sendust (Fe-A1-S 〖alloy) with a saturation magnetization of about 1.1 to 1.2 T and C with a saturation magnetization of about 1.5 T o-based amorphous materials have been developed. More recently, the following material systems have received attention.
( 1 ) 特開平 1 1一 0 7 4 1 2 2号公報 (文献 1と呼称する) には、 めっき法を 用いた C o— F e— N i合金膜の作製法が開示されている。 コバルト含有量が 4 0〜 7 0 w t % (重量。/。) 、 鉄含有量が 2 0〜 4 0 w t %およびニッケル含有量 が 1 0〜 2 0 w t。/。であり、 体心立方構造の γ相と面心立方構造の α相の結晶構 造をなす C o— F e— N i合金が作製できること、 また得られた合金膜は、 保磁 力および磁歪が小さく、 カっ 2 T以上の飽和磁化をもつことが記載されている。 さらには、 1 0 0 °C以上の後加熱処理が耐食性の改善に有効であることも説明さ れている。  (1) Japanese Patent Application Laid-Open Publication No. H11-07412 (hereinafter referred to as Reference 1) discloses a method for producing a Co—Fe—Ni alloy film using a plating method. The cobalt content is 40 to 70 wt% (weight./.), The iron content is 20 to 40 wt%, and the nickel content is 10 to 20 wt. /. And a Co—Fe—Ni alloy having a crystal structure of a body-centered cubic γ phase and a face-centered cubic α phase can be produced. The obtained alloy film has a coercive force and magnetostriction. Is small and has a saturation magnetization of more than 2 T. Furthermore, it is described that post-heating treatment at 100 ° C. or more is effective for improving corrosion resistance.
( 2 ) 特開平 0 8— 1 0 7 0 3 6号公報 (文献 2と呼称する) には、 スパッタ法 を用いた F e或いは C oを主体とした合金膜の作製法が開示されており、 熱処理 を行うことにより軟磁気特性が発現する磁性膜の材料として、 F e或いは C oを 主体とし、 これに T a、 Z r、 H ί或いは N bの内から選ばれる少なくとも 1種 類を 5〜 2 0 a t % (原子%) の濃度範囲で、 S i 、 B、 C、 Nの内から選ばれ る少なくとも 1種類の元素を 5〜 2 0 a t %の濃度範囲で含む合金からなり、 さ らに、 この磁性膜において磁性元素以外に A 1 、 T i 、 C r、 R u、 R h、 P t 、 P d、 Mo、 Wの内から選ばれる少なくとも 1種類の元素を 1〜 2 0 a t °/0の 濃度で添加したものが記載されている。 得られた合金膜は、 飽和磁化が 1. 5 T 、 保磁力が 0. 1 O e、 1MH zにおける透磁率が 3 0 0 0以上であり、 かつ 、 磁歪定数が 1 0一7台にあり、 良好な軟磁気特性を備えていると説明されてい る。 (2) Japanese Patent Application Laid-Open Publication No. 08-170730 (referred to as Reference 2) discloses a method for producing an alloy film mainly composed of Fe or Co using a sputtering method. However, Fe or Co is used as a material for a magnetic film that exhibits soft magnetic properties by performing heat treatment. And at least one selected from Ta, Zr, Hί and Nb in the concentration range of 5 to 20 at% (atomic%). It is composed of an alloy containing at least one element selected from the group in a concentration range of 5 to 20 at%, and in this magnetic film, A 1, T i, Cr, Ru, It describes that at least one element selected from Rh, Pt, Pd, Mo, and W is added at a concentration of 1 to 20 at ° / 0 . The obtained alloy film has a saturation magnetization of 1.5 T, a coercive force of 0.1 Oe, a magnetic permeability at 1 MHz of 30000 or more, and a magnetostriction constant of 10 to 17 units. It is described as having good soft magnetic properties.
( 3 ) MB E (Molecular beam epitaxy) 法を用いた単結晶 F e e N 2膜の作製 法について、 杉田らは次のように報告している [Y. Sugita et. al. , J. Appl. Phys .76, 6637(1994), 文献 3と呼称する] 。 基体としては、 作製する F e 1 6N2膜の a軸の長さと格子定数をほぼ一致させた I n。, 2 G a 0. SA s ( 0 0 1 ) という 特殊な基体を用いる。 まず、 この基体を真空中で加熱処理 (6 7 5°C、 5分) 後 、 温度を 2 0 0°Cとした基体上に、 窒素雰囲気中で蒸着源の鉄を電子ビ ムで飛 ばし、 窒素を約 1 1 a t %含有する窒化鉄膜を作製する。 その際、 成膜速度を 0 . 0 0 2〜 0. 0 0 3 n m/ s e cに、 成膜中のガス圧を 0. 1 ~0. 2mTorr にすることが重要である。 得られた窒化鉄膜はマルテンサイ ト (α ' ) 膜であ り、 その飽和磁化は約 2. 4 Τであった。 ついで、 成膜後に 1 0— 8Torr台の真 空中で 2 0 0。Cの熱処理いわゆるァニーリング処理を 9 0日き間も ί亍ぅことにより 、 飽和磁化が約 2. 9 Τの単結晶 F e 1 6N2 (a" ) 膜が得られることが記載さ れている。 しかしながら、 上述した従来技術には以下に示すような課題があった。 (3) Sugita et al. Reported the following about the preparation of a single-crystal Fe e N 2 film using the MBE (Molecular beam epitaxy) method [Y. Sugita et. Al., J. Appl. Phys. 76, 6637 (1994), referred to as Reference 3]. As the substrate, In was obtained by making the length of the a-axis and the lattice constant of the Fe 16 N 2 film substantially coincide with each other. , Using 2 G a 0. S A s ( 0 0 1) of special substrates. First, after heating this substrate in a vacuum (675 ° C, 5 minutes), iron as an evaporation source was blown by electron beams on the substrate at a temperature of 200 ° C in a nitrogen atmosphere. Then, an iron nitride film containing about 11 at% of nitrogen is manufactured. At that time, it is important to set the film forming speed to 0.002 to 0.003 nm / sec and the gas pressure during the film forming to 0.1 to 0.2 mTorr. The obtained iron nitride film was a martensite (α ') film, and its saturation magnetization was about 2.4%. Then, 2 0 0 true air of 1 0- 8 Torr table after the film formation. The even and ί亍Uko between come C heat treatment called Aniringu handle 9 0 days, a saturation magnetization of about 2.9 monocrystalline F e 1 6 N 2 (a ") of Τ film it is described that can be obtained However, the above-described related art has the following problems.
①文献 1に示す技術は、 記録へッドの磁極材料をめつき法というウエッ トプロ セスで作製するものである。 一方、 同時に搭載される再生ヘッドをなす MR素子 はめつき法による作製は困難であり、 スパッタ法という ドライプロセスで作製し なければならない。 したがって、 二重投資を回避し安価な製造工程を構築する、 あるいは 2つプロセスを跨ぐ界面管理 (汚染回避や平坦性の維持など) を安定さ せる、 などの見地からめっき法による磁極材料の作製は採用を控えたい状況にあ る。 (1) The technology shown in Document 1 is to produce the recording head magnetic pole material by a wet process called the plating method. On the other hand, it is difficult to fabricate the MR element, which constitutes the reproducing head that is mounted at the same time, by the plating method. Therefore, avoid double investment and build an inexpensive manufacturing process, or stabilize interface management across two processes (such as avoiding contamination and maintaining flatness). From the standpoint of manufacturing, it is in a situation where it is desired to refrain from using magnetic pole materials by plating.
②文献 1に示す技術では、 磁極をなす上記材料からなるめっき層を設ける際に 、 絶縁層上に下地めつき層をスパッタ法で形成することが必要である。 文献 1に 係る磁極材料が所望の特性を満たすためにはこの工程が不可欠であるが、 へッド 構造上は無駄な部分あるいは無駄な界面の追加に過ぎず、 界面に起因した膜はが れゃ歪みを助長する元となりかねない。  (2) In the technique disclosed in Reference 1, when providing a plating layer made of the above-described material forming a magnetic pole, it is necessary to form a base plating layer on the insulating layer by a sputtering method. This step is indispensable for the magnetic pole material according to Document 1 to satisfy the desired characteristics.However, the head structure is merely an unnecessary part or an unnecessary interface addition, and the film caused by the interface peels.ゃ It can be a source of distortion.
③文献 1の磁極材料は、 成膜後の耐食性が不安であり、 1 0 o °c以上の後加熱 処理あるいは保護膜の追加が必須と判断される。 これは、 文献 1の磁極材料を製 品に適用する場合は対応策の検討を要することを示唆している。  (3) For the magnetic pole material of Reference 1, the corrosion resistance after film formation is uneasy, and it is judged that post-heat treatment or addition of a protective film of 10 ° C or more is essential. This suggests that it is necessary to consider countermeasures when applying the magnetic pole material of Reference 1 to products.
④文献 2の磁極材料は、 再生へッドをなす MR素子と同様のスパッタ法で記録 へッドを作製できるので、 磁気へッドのオールドライプロセス化を推進する上か ら評価できる。 しカゝしながら、 得られる飽和磁化が 1 . 5 T程度であり、 今後高 記録密度化を図る際に用いられる保磁力が 2 5 0 0エルステッ ド (O e ) を越え る媒体に情報を書き込むには非力であると言わざるを得ない。 磁 With the magnetic pole material of Reference 2, a recording head can be manufactured by the same sputtering method as the MR element that constitutes the reproducing head, so it can be evaluated in promoting the all-dry process of the magnetic head. Meanwhile, the obtained saturation magnetization is about 1.5 T, and the information is transferred to a medium whose coercive force used to increase the recording density in the future exceeds 250 Elsted (O e). I have to say that it is powerless to write.
⑤文献 2の磁極材料は、 最低でも 4元系とする必要があり、 実施例では 5元系 が紹介されている。 これより、 良好な飽和磁化が得られる組成比のマ^ ·ジンが狭 いことが危惧され、 厳密な膜の組成制御が求められる。  磁 The magnetic pole material in Reference 2 must be at least a quaternary system, and the examples show a quinary system. From this, it is feared that the margin of the composition ratio at which good saturation magnetization can be obtained is narrow, and strict film composition control is required.
⑥文献 2の磁極材料は、 所望の磁気特性とするためには結晶粒子サイズを制御 する必要があり、 これには成膜後の熱処理が必須である。 例えば、 成膜後に結晶 化温度より 5 0。C低い 4 9 0 °Cで 3時間熱処理し、 その後 5 9 0 °Cで 3 0分間熱 処理することが記載されている。 再生へッド作製後に記録へッドを形成する場合 、 この熱処理は、 再生ヘッドを構成する極薄層の積層体からなる MR素子の界面 に乱れを発生させる原因となり、 ひいては MR素子の特性を劣化させる要因とな るので採用しがたいプロセスである。  磁 In the magnetic pole material of Reference 2, it is necessary to control the crystal grain size in order to obtain desired magnetic properties, and heat treatment after film formation is essential for this. For example, 50 after the crystallization temperature after film formation. It is described that heat treatment is performed at a low C of 49 ° C. for 3 hours, and then at 590 ° C. for 30 minutes. In the case where a recording head is formed after the reproduction head is manufactured, this heat treatment causes disturbance at the interface of the MR element composed of a laminate of ultra-thin layers constituting the reproduction head, and consequently reduces the characteristics of the MR element. This is a difficult process to adopt because it can cause deterioration.
⑦文献 3の磁性膜は、 現在報告された中で最大の飽和磁化 2 . 9 Tを有し、 カ つドライプロセスの一つである M B E法で作製できる特徴を備えている。 しかし ながら、 所望の特性を有する磁性膜は、 特殊な基体表面上でしか得られないこと 、 またその成膜速度は 0 . 0 0 2〜0 . 0 0 3 n m s e cと非常に遅く量産ェ 程で用いるには困難な作製条件であること、 等から実際の磁気へッド製造工程へ は採用されることはなかった。 上述した理由から、 記録と再生の分離型磁気へッド製造プロセスにおいては、 以下の条件を同時に満たす記録へッド用磁極材料およびその作製方法の開発が期 待されている。 磁性 The magnetic film of Ref. 3 has the largest saturation magnetization of 2.9 T reported so far, and has the feature that it can be manufactured by the MBE method which is one of the dry processes. However However, a magnetic film having desired characteristics can be obtained only on a special substrate surface, and its film formation rate is extremely low, from 0.002 to 0.003 nmsec, and is used in mass production. Due to difficult production conditions, it was not adopted in the actual magnetic head manufacturing process. For the above-mentioned reasons, in the manufacturing process of the separation type magnetic head for recording and reproduction, development of a recording head magnetic pole material satisfying the following conditions at the same time and a method of manufacturing the same are expected.
(A) 1 . 5 T以上、 望ましくは 2 T以上の飽和磁化を有する磁極材料。  (A) A magnetic pole material having a saturation magnetization of 1.5 T or more, preferably 2 T or more.
(B ) 2 O e以下、 望ましくは 1 O e以下の保磁力を有する磁極材料。  (B) A magnetic pole material having a coercive force of 2 Oe or less, preferably 1 Oe or less.
(C ) 不純物の混在や界面平坦性を維持する目的から、 再生ヘッドの MR素子製 造と同じドライプロセスにて製造可能な磁極材料および製法。  (C) Magnetic pole materials and manufacturing methods that can be manufactured by the same dry process as manufacturing MR elements for read heads for the purpose of maintaining impurities and maintaining interface flatness.
(D ) 量産工程に適応した成膜速度すなわち製造プロセスへの適応力を備え、 安 価な製造ラインの構築が可能な製法。  (D) A manufacturing method that has a film forming rate adapted to the mass production process, that is, has the ability to adapt to the manufacturing process, and enables the construction of an inexpensive manufacturing line.
(E ) 先に製造された薄膜積層体、 例えば MR素子の界面に影響を与えないため に、 1 0 0 °C以下の低温において成膜可能で、 さらには成膜後の熱処理が不要な 磁極材料および製法。  (E) A magnetic pole that can be formed at a low temperature of 100 ° C or less so as not to affect the interface of the previously manufactured thin film laminate, for example, the MR element, and that does not require heat treatment after film formation. Material and recipe.
また、 最近、 上述した分離型磁気ヘッド製造プロセスでは、 先に製造された薄 膜積層体である MR素子の磁気特性を向上させる目的から、 3 0 0 °C程度の後加 熱処理が行われる場合があるので、 このような後加熱処理を受けても上記 (A) や (B ) に示した磁気特性が確保されるような磁極材料および製法の開発も望ま れている。 このような複数の条件を満たす報告としては、 1 9 7 2年のキムと高橋の報告 が挙げられる [T. K. Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972) ] 。 この報告の特筆すべき点は、 ドライプロセスの一つである蒸着法という非常に シンプルな薄膜形成法を用い、 ほぼ室温とした基板上に、 低保磁力でかつ 2 . 5 8 Tという極めて高い飽和磁化を備えた窒化鉄膜を、 量産可能な成膜速度で作製 したことである。 しかしながら、 その後、 多数の研究機関で追試が行われたが、 上記特性を備えた磁性膜は安定して得られず、 文献 3のような特殊な条件下でし か作製できていない。 Recently, in the above-described separation type magnetic head manufacturing process, a post-heating treatment of about 300 ° C. is performed for the purpose of improving the magnetic characteristics of the MR element which is a thin film laminate manufactured earlier. Therefore, it is also desired to develop a magnetic pole material and a manufacturing method that can secure the magnetic properties shown in (A) and (B) above even after such post-heating treatment. A report that satisfies these multiple conditions is the report of Kim and Takahashi of 1972 [TK Kim and M. Takahashi, Appl. Phys. Lett. 20, 492 (1972)]. The highlight of this report is that it uses a very simple thin film formation method called evaporation, which is one of the dry processes, and has a very low coercivity and extremely high 2.58 T on a substrate at almost room temperature. That is, an iron nitride film having a saturation magnetization was produced at a deposition rate that enables mass production. However, since then, many laboratories have conducted additional tests, A magnetic film having the above characteristics cannot be obtained stably, and can only be produced under special conditions as described in Reference 3.
したがって、 上記 (A) 〜 (E) に記載した条件を満たす記録ヘッド用の磁極 材料およびその作製法が今まさに強く求められている。 この要望に応えるべく、 本発明者らは、 特願 2000— 1 6 3 8 2 2号 (20 00年 5月 3 1日出願) にて、 飽和磁化が 2 T以上で、 保磁力が 2〇e (l O e =約 79A/m) 以下の軟磁気特性を有する磁性薄膜として、 ひ' 相単相からな り、 少なくとも炭素と鉄を構成元素とする炭化鉄膜が有望であることを示した。 そして、 同特許出願には、 この α' 相単相からなる炭化鉄膜は、 成膜時の基体温 度を所定の範囲とすることで安定して得られると説明されている。 また、 同出願 は、 炭化鉄膜に第 3元素としてコバルトを含有させた炭化鉄コバルト膜は、 さら に高い飽和磁化が得られることも開示している。  Therefore, a magnetic pole material for a recording head satisfying the conditions described in the above (A) to (E) and a method for manufacturing the same are now strongly demanded. In order to respond to this demand, the present inventors have filed Japanese Patent Application No. 2000-166382 (filed on May 31, 2000) with a saturation magnetization of 2 T or more and a coercive force of 2〇. As a magnetic thin film having soft magnetic properties of e (l O e = approximately 79 A / m) or less, an iron carbide film consisting of a single phase of at least carbon and iron as a constituent element is promising. Was. The patent application describes that the iron carbide film composed of the α′-phase single phase can be stably obtained by setting the substrate temperature at the time of film formation within a predetermined range. The application also discloses that an iron-cobalt film obtained by adding cobalt as a third element to the iron carbide film can obtain a higher saturation magnetization.
しかしながら、 一般に基体温度は基体を構成する材質あるいは基体上に予め設 けられた積層物やその積層物の表面形状の違いによって温度制御を微調整する必 要があり、 ましてや磁気へッドを構成する一層として上記炭化鉄膜を設ける場合 はこの炭化鉄膜の下地条件は常に同じ材料や形状から構成されるとは限らない。 したがって、 炭化鉄膜や炭化鉄コバルト膜を堆積させる基体表面を構成する材 料や形状に依存せず、 相を主たる相とする炭化鉄莫ゃ炭化鉄コバルト膜が常 に安定して得られる製造方法および製造装置について研究した結果、 本願発明に 至った。 発明の開示 本発明の第一の目的は、 薄膜を設ける堆積面の温度に影響されずに、 α' 相を 主たる相とする炭化鉄膜又は炭化鉄コバルト膜が安定して得られる磁性薄膜の製 造方法を提供-することにある。  However, in general, the temperature of the substrate needs to be fine-tuned depending on the material constituting the substrate or the laminate provided in advance on the substrate and the difference in the surface shape of the laminate. When the above-mentioned iron carbide film is provided as a single layer, the base condition of the iron carbide film is not always made of the same material and shape. Therefore, regardless of the material and shape of the substrate surface on which the iron carbide film and the iron cobalt film are deposited, a production process in which an iron carbide large iron cobalt carbide film having a main phase is always stably obtained. As a result of studying the method and the manufacturing apparatus, the present invention was reached. DISCLOSURE OF THE INVENTION A first object of the present invention is to provide a magnetic thin film in which an iron carbide film or an iron cobalt carbide film having an α 'phase as a main phase is stably obtained without being affected by the temperature of the deposition surface on which the thin film is provided. To provide a manufacturing method.
本発明の第二の目的は、 a' 相を主たる相とする炭化鉄膜又は炭化鉄コバルト 膜を堆積させる基体表面を所望のプラズマ条件にすることができる磁性薄膜の製 造装置を提供することにある。 A second object of the present invention is to produce a magnetic thin film capable of setting the surface of a substrate on which an iron carbide film or an iron cobalt film having an a ′ phase as a main phase is deposited under desired plasma conditions. Manufacturing apparatus.
本発明の第三の目的は、 飽和磁化が 2 T以上で、 保磁力が 2 0 e以下の軟磁気 特性を有すると共に、 3 0 0 °C以上の耐熱性を兼ね備えた磁性薄膜を提供するこ とにある。 本発明に係る磁性薄膜の製造方法は、 減圧空間内に配置した基体上に、 プロセ スガスを用いて該基体の堆積面に与えるプラズマダメージの小さなプラズマを生 起させ、 該プラズマと磁性薄膜の形成用の母材源とを利用して、 前記基体上に少 なくとも炭素及び鉄、 又は、 炭素、 鉄及びコバルトを構成元素とし、 相を主 たる相とする炭化鉄膜又は炭化鉄コバルト膜を形成する工程 Αを具備したことを 特徴としている。 本発明に係る磁性薄膜の製造装置は、 減圧空間内に配置した基体上に、 プロセ スガスを用いて該基体の堆積面に与えるプラズマダメ一ジの小さなプラズマを生 起させ、 該プラズマと磁性薄膜の形成用の母材源とを利用して、 前記基体上に少 なくとも炭素及び鉄、 又は、 炭素、 鉄及びコバルトを構成元素とし、 α ' 相を主 たる相とする炭化鉄膜又は炭化鉄コバルト膜を形成する製造装置であり、 前記炭 化鉄膜又は炭化鉄コバルト膜形成用のプラズマ発生手段と、 前記プラズマの濃度 勾配が生じている方向に沿って前記基体を移動できる基体保持手段とを具備して いることを特徴としている。 本発明に係る磁性薄膜は、 α ' 相を主たる相とし、 少なくとも炭素、 鉄及びコ バルトを構成元素とする炭化鉄コバルト膜であり、 該コバルト含有量が原子%で 、 1 2以上 5 0以下であることを特徴としている。 図面の簡単な説明 図 1は、 本発明に係る磁性薄膜を作製する際の基体温度と、 作製した磁性薄膜 の結晶形態すなわち (0 0 2 ) 面の X線強度との関係を示すグラフである。 図 2は、 本発明に係る磁性薄膜の一例を示す模式的な断面図であり、 (a ) は 単層からなる場合を、 (b ) は積層からなる場合を示す。 A third object of the present invention is to provide a magnetic thin film having a soft magnetization characteristic of a saturation magnetization of 2 T or more, a coercive force of 20 e or less, and a heat resistance of 300 ° C. or more. And there. The method for producing a magnetic thin film according to the present invention includes the steps of: using a process gas to generate plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space; A base material source for use in forming an iron carbide film or an iron cobalt carbide film having at least carbon and iron or carbon, iron and cobalt as constituent elements and a main phase as the main phase on the substrate. Forming step Α. An apparatus for producing a magnetic thin film according to the present invention is characterized in that a process gas is used to generate a plasma having a small plasma damage applied to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, and the plasma and the magnetic thin film are generated. Utilizing a base material source for the formation of carbon, an iron carbide film or carbonized material having at least carbon and iron or carbon, iron and cobalt as constituent elements and an α ′ phase as a main phase on the substrate. A manufacturing apparatus for forming an iron-cobalt film, comprising: a plasma generating unit for forming the iron carbide film or the iron-cobalt carbide film; and a substrate holding unit capable of moving the substrate along a direction in which the plasma concentration gradient is generated. It is characterized by having. The magnetic thin film according to the present invention is an iron-cobalt film having an α ′ phase as a main phase and at least carbon, iron and cobalt as constituent elements, and having a cobalt content of 12 to 50 in atomic%. It is characterized by being. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the substrate temperature when producing a magnetic thin film according to the present invention and the crystal morphology of the produced magnetic thin film, that is, the X-ray intensity of the (02) plane. . FIG. 2 is a schematic cross-sectional view showing an example of the magnetic thin film according to the present invention, wherein (a) shows a case of a single layer, and (b) shows a case of a multilayer.
図 3は、 本発明に係る磁性薄膜が炭化鉄膜である場合の X線解析結果を示すグ ラフであり、 (a ) は磁性薄膜の (0 0 2 ) 面からの回折線が主たるピ クをな し、 その高角側にブロードな肩が観測される場合を、 (b ) は磁性薄膜の (0 0 2 ) 面からの回折線のみが観測される場合を示す。  FIG. 3 is a graph showing an X-ray analysis result when the magnetic thin film according to the present invention is an iron carbide film, wherein (a) shows a diffraction pattern mainly from a (002) plane of the magnetic thin film. (B) shows the case where only the diffraction line from the (002) plane of the magnetic thin film is observed.
図 4は、 作製した各種試料の X.線解析結果を示すグラフであり、 (a ) は試料 S F及び試料 S 1の結果を、 (b ) は成膜に用いた F e— C合金ターゲッ トの炭 素含有量を変えて作製した試料の結果を示すグラフである。  Fig. 4 is a graph showing the results of X-ray analysis of the various samples prepared. (A) is the result of sample SF and sample S1, (b) is the Fe-C alloy target used for film formation. 7 is a graph showing the results of samples prepared by changing the carbon content of the samples.
図 5は、 プラズマの電子密度: N eを変えて作製した試料の X線解析結果を示 図 6は、 プラズマの電子温度: T eを変えて作製した試料の X線解析結果を示 すグラフである。  Fig. 5 shows the results of X-ray analysis of the sample prepared by changing the electron density of the plasma: Ne. Fig. 6 shows the graph showing the results of X-ray analysis of the sample prepared by changing the electron temperature of the plasma: Te. It is.
図 7は、 本発明に係る磁性薄膜の製造装置の一例を示す模式的な断面図である 図 8は、 本発明に係る磁性薄膜の製造装置の他の一例を示す模式的な断面図で ある。  FIG. 7 is a schematic cross-sectional view illustrating an example of a magnetic thin film manufacturing apparatus according to the present invention. FIG. 8 is a schematic cross-sectional view illustrating another example of a magnetic thin film manufacturing apparatus according to the present invention. .
図 9は、 本発明に係る磁性薄膜が炭化鉄コバルト膜である場合の X線解析結果 を示すグラフである。  FIG. 9 is a graph showing an X-ray analysis result when the magnetic thin film according to the present invention is an iron cobalt carbide film.
図 1 0は、 シュルツ反射法で測定した炭化鉄コバル卜膜の格子定数 a , cおよ びこれらの数値から求めた軸比 c / aを膜中の炭素含有量に対してプロットした 図 1 1は、 炭素含有量が 6 a t。/。の炭化鉄コバル ト膜のヒステリシス曲線であ り、 (a ) は b c t構造のく 0 0 1〉方向、 (b ) は b c t構造のく: L 0 0〉方 向、 ( c ) は b c t構造のく 1 1 0〉方向の結果を示す。  Figure 10 plots the lattice constants a and c of the iron carbide cobalt film measured by the Schulz reflection method and the axial ratio c / a obtained from these values against the carbon content in the film. The carbon content is 6 at. /. (A) is the direction of the bct structure in the <001> direction, (b) is the direction of the Lct <b> 0 in the bct structure, and (c) is the hysteresis curve of the iron carbide cobalt film in the bct structure. The results in the <110> direction are shown.
図 1 2は、 本発明に係る炭化鉄コバルト膜において、 コノくノレト含有量と飽和磁 化 M sとの関係を示すグラフである。  FIG. 12 is a graph showing the relationship between the content of konole and the saturation magnetization Ms in the iron carbide cobalt film according to the present invention.
図 1 3は、 本発明に係る炭化鉄コバル ト膜において、 飽和磁化の温度変化 (M s— τ曲線) を調査した結果の一例を示すグラフである。 図 14は、 本発明に係る炭化鉄コバルト膜において、 飽和磁化の温度変化 (M s— τ曲線) を調査した結果の他の一例を示すグラフである。 FIG. 13 is a graph showing an example of a result of examining a temperature change (M s−τ curve) of saturation magnetization in the iron carbide cobalt film according to the present invention. FIG. 14 is a graph showing another example of the result of investigating the temperature change (M s−τ curve) of the saturation magnetization in the iron-cobalt carbide film according to the present invention.
図 1 5は、 本発明に係る炭化鉄コバルト膜において、 コバルト含有量と分解温 度 Τρ· d.との関係を示すグラフである。  FIG. 15 is a graph showing the relationship between the cobalt content and the decomposition temperature Τρ · d. In the iron-cobalt carbide film according to the present invention.
図 1 6は、 本発明に係る炭化鉄コバルト膜において、 炭素含有量と保磁力 He との関係を示すグラフである。  FIG. 16 is a graph showing the relationship between the carbon content and the coercive force He in the iron-cobalt carbide film according to the present invention.
図 1 7は、 本発明に係る炭化鉄コバルト膜において、 熱処理した前後の X線解 析結果を示すグラフである。  FIG. 17 is a graph showing the results of X-ray analysis before and after heat treatment of the iron-cobalt carbide film according to the present invention.
1 0 基体、 10 substrate,
1 1 炭化鉄膜 (磁性層) 、  1 1 Iron carbide film (magnetic layer)
1 1 ' 炭化鉄コバルト膜 (磁性層) 、  1 1 'iron cobalt carbide film (magnetic layer)
70 1 a , 70 1 b, 70 1 c , 70 1 d 基体、  70 1 a, 70 1 b, 70 1 c, 70 1 d substrate,
700 スパッタ室、  700 sputter chamber,
70 1 a , 70 1 b, 70 1 c , 70 1 d 基体、  70 1 a, 70 1 b, 70 1 c, 70 1 d substrate,
70 2 a 基体ホルダー、  70 2a substrate holder,
70 3 a 基体保持手段、  70 3a substrate holding means,
704 基体移動手段、  704 substrate moving means,
705 第一成膜室、  705 First deposition chamber,
706 第二成膜室、  706 Second deposition chamber,
707 a , 70 7 b シャツタ、  707 a, 70 7 b shirt
708 a、 708 b 防着板、  708a, 708b protection plate,
70 9 a、 70 9 b 第一ターゲット、  70 9a, 70 9b primary target,
7 1 0 a , 7 1 0 b, 7 10 c , 7 1 0 d 磁石、  7 10 a, 7 10 b, 7 10 c, 7 10 d magnet,
7 1 1 a、 7 1 1 b 第二ターゲッ ト、  7 1 1a, 7 1 1b Second target,
7 1 2 a , 7 1 2 b, 7 1 2 c , 7 1 2 d 磁石、  7 1 2 a, 7 1 2 b, 7 1 2 c, 7 1 2 d magnet,
7 1 3 交流電源、  7 1 3 AC power supply,
7 14、 7 1 5 直流電源、  7 14, 7 1 5 DC power supply,
7 1 6 a , 7 1 6 b、 7 1 7 a , 7 1 7 b 力ソード、 8 0 0 成膜室、 7 16 a, 7 16 b, 7 17 a, 7 17 b force sword, 800 film forming chamber,
8 0 1 基体、  8 0 1 Substrate,
8 0 2 基体ホルダー、  80 2 substrate holder,
8 0 3 基体保持手段、  8 0 3 substrate holding means,
8 0 4 シャッタ、  8 0 4 Shutter,
8 0 5 F e—C母材、  8 0 5 Fe-C base material,
8 0 6 イオンガン、  8 0 6 ion gun,
8 0 7 フィラメント、  8 0 7 filament,
8 0 8 グリツド、  8 0 8 grid,
8 0 9、 8 1 0 直流電源、  8 0 9, 8 1 0 DC power supply,
8 1 1 プロセスガスの導入口、  8 1 1 Process gas inlet,
8 1 3 磁場印加手段。 発明を実施するための最良の形態 以下、 本発明の実施の形態について図面に基づき説明する。  8 1 3 Magnetic field application means. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明に係る磁性薄膜の製造方法は、 線源として (C o—Κα) 又は (C u— K ) を用いた X線回折法により、 その結晶構造がマルテンサイ ト (α' ) 相を 主たる相とすることが確認される炭化鉄膜又は炭化鉄コバルト膜を製造する方法 であり、 図 2 (a ) に示すように、 例えば 1 0— 7Torr台の減圧空間内に配置し た基体 1 0上に、 A rガス等からなるプロセスガスを用いて基体 1 0の堆積面に 与えるプラズマダメ ジの小さなプラズマを生起きせ、 該プラズマと磁性薄膜の 形成用の母材源とを利用して、 基体 1 0上に少なくとも炭素及び鉄、 又は、 炭素 、 鉄及びコバルトを構成元素とし、 α ' 相を主たる相とする炭化鉄膜 1 1又は炭 化鉄コバルト膜 I を形成する工程 Aを有する。 The method for producing a magnetic thin film according to the present invention is characterized in that the crystal structure of the magnetic thin film is mainly composed of a martensite (α ′) phase by an X-ray diffraction method using (Co-Κα) or (Cu-K) as a radiation source. This is a method for producing an iron carbide film or an iron cobalt film, which is confirmed to be as follows. For example, as shown in FIG. 2 (a), a substrate 10 placed in a reduced pressure space of the order of 10 to 7 Torr is used. A plasma having a small plasma damage applied to the deposition surface of the substrate 10 is generated by using a process gas composed of Ar gas or the like, and the plasma and a base material source for forming a magnetic thin film are used. A step A of forming at least carbon and iron or carbon, iron and cobalt as constituent elements on the substrate 10 and forming an iron carbide film 11 or an iron cobalt cobalt film I having an α ′ phase as a main phase. .
上記構成をなす X線回折法で用いる線源としては、 C oに代えて C r、 F e、 C u、 Mo、 Wなどを用いてもよい。  As the radiation source used in the X-ray diffraction method having the above configuration, Cr, Fe, Cu, Mo, W, or the like may be used instead of Co.
また、 X線回折法に代えて電子線回折法を使用しても、 マルテンサイ ト (α ' ) 相を主たる相とする炭化鉄膜又は炭化鉄コバルト膜を食認することが可能であ る。 具体的には、 収束電子回折 (Convergent- beam electron diffraction) が 好適な手法である。 この収束電子回折を用いると、 試料を照射する電子線の収束 角が大きいために回折斑点でなく回折ディスクが観測される。 この方法では他の 電子回折法 [例えば、 高分解能電子回折 (High- resolution electron dぱ fract ion) ] では得られない角度分解能をもった回折図形が得られる。 shuus収束電子 回折図形を解析することにより、 試料の厚さ、 格子定数、 結晶の対称性 (点群 - 空間群) 、 格子欠陥の同定が行える。 この解析において電子線の照射に要する制 限領域は 1 Οηπιφより小さい。 従って、 磁気へッドなどの磁極材料として上記磁 性薄膜が用いられていても、 その厚さは 50nm〜500膽であることから、 充分 にその膜の構造解析をすることが可能である。 In addition, even if an electron diffraction method is used instead of the X-ray diffraction method, it is possible to detect an iron carbide film or an iron cobalt film having a martensite (α ′) phase as a main phase. You. Specifically, convergent-beam electron diffraction is a preferred technique. When this convergent electron diffraction is used, a diffraction disk is observed instead of diffraction spots due to a large convergence angle of the electron beam irradiating the sample. This method produces diffraction patterns with angular resolution that cannot be obtained with other electron diffraction methods (eg, high-resolution electron diffraction). By analyzing the shuus focused electron diffraction pattern, it is possible to identify the sample thickness, lattice constant, crystal symmetry (point group-space group), and lattice defects. In this analysis, the limited area required for electron beam irradiation is smaller than 1 Οηπιφ. Therefore, even if the above magnetic thin film is used as a magnetic pole material such as a magnetic head or the like, since the thickness is 50 nm to 500 nm, it is possible to sufficiently analyze the structure of the film.
上記構成において α' 相を主たる相とする炭化鉄膜 1 1とは、 図 3に示すよう に、 X線回折法により、 α' 相の (002) 面からの回折線すなわち α' (00 2) を主に含み観測されることによって識別されるものである。 図 3において、 (a) は炭化鉄膜の (00 2) 面からの回折線が主たるピークをなし、 その高角 側にブロードな肩が観測される場合であり、 ( b ) は炭化鉄膜の (002) 面か らの回折線のみが観測される場合である。 つまり、 本発明に係る α ' 相を主たる相とする炭化鉄膜 1 1は、 図 3 (a) ら明らかなように、 α' 相の (002) 面からの回折線と、 その他の回折線すな わち高角側に観測されるブロードな肩部分 (斜線部) とから構成されるものであ る。  In the above configuration, as shown in FIG. 3, the iron carbide film 11 having the α ′ phase as the main phase is, as shown in FIG. 3, a diffraction line from the (002) plane of the α ′ phase, that is, α ′ (00 2 ) Are identified mainly by observation. In Fig. 3, (a) shows the case where the diffraction line from the (002) plane of the iron carbide film forms the main peak, and a broad shoulder is observed on the high angle side, and (b) shows the case where the iron carbide film has a broad shoulder. In this case, only diffraction lines from the (002) plane are observed. In other words, as apparent from FIG. 3 (a), the iron carbide film 11 having the α ′ phase as the main phase according to the present invention has a diffraction line from the (002) plane of the α ′ phase and other diffraction lines. In other words, it consists of a broad shoulder (oblique line) observed on the high angle side.
そして、 上記その他の回折線が消失し単相が形成された場合には、 炭化鉄膜 1 1は α' 相単相のみから構成され、 図 3 (b) に示すような α, 相の (00 2) 面からの回折線のみが観測される。 When the other diffraction lines disappear and a single phase is formed, the iron carbide film 11 is composed of only the α ′ phase single phase, and the α, phase ( 00 2) Only diffraction lines from the plane are observed.
この α' 相の (00 2) 面からの回折線は 2 Θが 70。 〜7 7。 の範固で得ら れ、 2 Θ力 0。 〜 1 1 5。 の範囲では α' (002) より強い回折線は観測さ れない。 したがって、 本発明に係る炭化鉄膜 1 1は、 製造時に所望の結晶形態を 備えているか否かを容易に識別することができるので、 成膜後はもとより成膜し ている最中でも膜質を正確に把握しながら作製可能であるという特徴を有する。 また、 上述した α' 相を主たる相とする炭化鉄膜 1 1は、 成膜後に敢えて加熱 処理をしなくても 2 Τ以上の飽和磁化 (saturation magnetization) Msと 2 O e以下の保磁力 (coercive force) H cを同時に備えた良好な軟磁気特性を 有する。 The diffraction line from the (00 2) plane of this α 'phase is 70 at 2Θ. ~ 7 7. It can be obtained with a power of 0. ~ 1 1 5. No diffraction line stronger than α '(002) is observed in the range. Therefore, the iron carbide film 11 according to the present invention can easily determine whether or not it has a desired crystal morphology at the time of manufacture, so that the film quality can be accurately determined even after the film formation as well as during the film formation. It has the feature that it can be manufactured while grasping it. In addition, the iron carbide film 11 having the α 'phase as a main phase described above has a saturation magnetization (Ms) of 2 mm or more and a coercive force (2 Oe or less) of 2 Oe or less without a heating treatment after the film formation. coercive force) It has good soft magnetic characteristics with Hc.
特に、 本発明に係る磁性薄膜の製造方法は、 上記構成からなる工程 Aを備えた ことにより、 図 1に示すように、 作製された炭化鉄膜 1 1からなる磁性薄膜は極 めて平坦な表面形態をもつことができる。 つまり、 基体 10の堆積面に与えるプ ラズマダメージの大きなプラズマ (プラズマの電子密度 Ne = 7 X 1010 c m" 3、 1 X 1 010 c m-3) に代えて、 プラズマダメ^ "ジの小さなプラズマ (Ne = 2 X 1 09 cm~\ 7 X 1 08 cm"3) を用いて磁性薄膜 1 1を作製することに よって、 磁性薄膜 1 1の表面粗さ R aを 0. I nm ( 1 A) より小さな数値に抑 制できるので、 膜面の平坦化を著しく図ることができる。 このように磁性薄膜の平坦化が促進されると、 図 1から明らかなように、 a' 相を主たる相とする炭化鉄膜 1 1が安定して得られることを示す、 (00 2 ) の強度が最大値の 80%以上得られる基体温度の範囲は、 例えば、 Ne = 7 X cm 3の場合 (点線) には約 5°C〜6 0°Cであるのに対し、 Ne = 2 X I 09 cm 3 の場合 (一点鎖線) には 0°C〜1 3 0°Cとなることから、 大幅に 拡大することが判明した。 In particular, since the method for producing a magnetic thin film according to the present invention includes the step A having the above configuration, as shown in FIG. 1, the produced magnetic thin film composed of the iron carbide film 11 is extremely flat. It can have a surface morphology. In other words, instead of a plasma with a large plasma damage to the deposition surface of the substrate 10 (electron density of the plasma Ne = 7 × 10 10 cm "3, 1 × 10 10 cm- 3 ), the plasma damage is small. plasma (Ne = 2 X 1 0 9 cm ~ \ 7 X 1 0 8 cm "3) Thus in fabricating a magnetic thin film 1 1 using, 0. I nm surface roughness R a of the magnetic thin film 1 1 (1 A) Since the value can be suppressed to a smaller value, the flattening of the film surface can be remarkably promoted. shown that iron carbide film 1 1, main phase can be stably obtained, the strength of 80% or more resulting substrate temperature in the range of the maximum value, for example, the Ne = 7 X cm 3 of (00 2) If while in (dotted line) is about 5 ° C~6 0 ° C, in the case of Ne = 2 XI 0 9 cm 3 ( dashed line) since it becomes 0 ° C~1 3 0 ° C , Can expand significantly found.
したがって、 プラズマダメ ジの小さなプラズマを用いて炭化鉄膜 1 1からな る磁性薄膜を作製する本発明の製造方法は、 上記磁性薄膜 1 1の平坦化を実現す ると共に、 所望の結晶形態を有する炭化鉄膜が得られる成膜時の基体温度範囲を 拡大するという作用■効果ももたらす。  Therefore, the manufacturing method of the present invention for producing a magnetic thin film made of the iron carbide film 11 using plasma having a small plasma damage achieves the flattening of the magnetic thin film 11 and a desired crystal form. The effect of expanding the temperature range of the substrate at the time of film formation to obtain an iron carbide film having the above is also provided.
言い換えれば、 本発明によれば、 所望の 相を主たる相とする炭化鉄膜を作 製するために、 基体温度をある範囲にそれほど限定する必要が無くなるので、 基 体を構成する材質やその表面形状に束縛きれることが少なく、 種々の材質や表面 形状からなる基体や薄膜上に安定して所望の α ' 相を主たる相とする炭化鉄膜を 柔軟に製造することが可能なプロセスを提供できる。  In other words, according to the present invention, in order to produce an iron carbide film having a desired phase as a main phase, it is not necessary to restrict the temperature of the substrate so much to a certain range, so that the material constituting the substrate and its surface are not required. A process that is hardly bound by the shape and can stably and flexibly produce an iron carbide film having a desired α ′ phase as a main phase on a substrate or a thin film made of various materials and surface shapes can be provided. .
つまり、 上記構成とした磁性薄膜の製造方法によれば、 成膜温度差に起因した 問題、 すなわち炭化鉄膜を堆積させる基体の表面材質や表面形状の違いにより生 じる磁性薄膜の堆積面における温度差に起因して、 α ' 相を主たる相とする炭化 鉄膜が安定して得られる基体の温度範囲が狭いという問題、 を改善できる。 また、 α' 相を主たる相とする炭化鉄膜が安定して得られる成膜時の基体温度 が従来より広いことは、 本発明に係る炭化鉄膜を製造する条件が緩和されること を示唆するので、 製造マージンが広くなり大量生産した際には低コスト化にも寄 与できる。 In other words, according to the method of manufacturing a magnetic thin film having the above-described configuration, the method was caused by the film forming temperature Due to the problem, that is, the temperature difference on the deposition surface of the magnetic thin film caused by the difference in the surface material and surface shape of the substrate on which the iron carbide film is deposited, the iron carbide film having the α ′ phase as the main phase stably The problem that the temperature range of the obtained substrate is narrow can be improved. Further, the fact that the substrate temperature at the time of film formation in which the iron carbide film having the α 'phase as the main phase is stably obtained is wider than before suggests that the conditions for manufacturing the iron carbide film according to the present invention are relaxed. As a result, the manufacturing margin is widened, which can contribute to cost reduction when mass production is performed.
さらには、 上述したひ' 相を主たる相とする炭化鉄膜が安定して得られる条件 では、 炭化鉄膜自体の表面も従来より一層平坦ィヒが図れるので、 例えば本発明に 係る炭化鉄膜を書込用の磁気へッドの磁極材料として利用する場合はこの炭化鉄 膜の上下に多数の積層構造を設ける必要があるが、 この炭化鉄膜がその上に位置 する積層構造に与える粗さに起因した影響を著しく低減できる利点も有する。 上述した工程に係る作用 '効果は、 特に、 プラズマの電子温度 T e及び Ζ又は プラズマの電子密度 Neに着目することにより、 一段と安定して得られる。  Furthermore, under the conditions in which the iron carbide film having the above-mentioned main phase as a main phase can be obtained stably, the surface of the iron carbide film itself can be further flattened as compared with the prior art. When using as a magnetic pole material for a magnetic head for writing, it is necessary to provide a large number of laminated structures above and below this iron carbide film, but this iron carbide film gives a rough structure to the laminated structure located thereon. There is also an advantage that the influence due to the size can be significantly reduced. The effects of the above-described steps can be obtained more stably by focusing on the electron temperature T e and Ζ of the plasma or the electron density Ne of the plasma.
例えば、 図 6に示すように、 基体上に生起させたプラズマの電子温度 T eを 4 X 10— 3 e V以上 3 e V以下とすることによって、 α' 相の (002) 面から の回折線、 すなわち、 α' (002) の強度が最大値の 80%以上得られるので 、 安定した薄膜形成が可能となる。 また、 上記プラズマの電子温度 T eを 1 X 1 0一2 e V以上 1 e V以下とした場合は、 α ' (002) の強度が最大値の 90 %以上となり、 所望の磁気特性を備えた炭化鉄膜がより一層安定して作製できる のでより好ましい。 For example, as shown in FIG. 6, diffraction from by the electron temperature T e of the plasma which is occurs on a substrate than 4 X 10- 3 e V or 3 e V, the alpha 'phase (002) plane Since the intensity of the line, that is, α ′ (002), is 80% or more of the maximum value, a stable thin film can be formed. When the electron temperature Te of the plasma is set to 1 X 10 to 12 eV or more and 1 eV or less, the intensity of α ′ (002) becomes 90% or more of the maximum value, and the desired magnetic characteristics are obtained. It is more preferable because the iron carbide film can be produced more stably.
—方、 基体上に生起させたプラズマの電子密度 Neを 7 X 108 cm— 3以上 2. 5 X 101 (5 c m— 3以下としても、 α' 相の (002) 面からの回折線、 す なわち、 α ' (002) の強度が最大値の 80%以上得られるので、 安定した薄 膜形成が可能となる。 さらに上記プラズマの電子密度 N eを 1 X 109 c m— 3 以上 1 X 101 Q c m— 3以下とした場合は、 α ' ( 002 ) の強度が最大値の 9 0 %以上となることから、 所望の磁気特性を備えた炭化鉄膜がより安定して製造 できることからより望ましい。 また、 本発明に係る磁性薄膜の製造方法は、 前記 相単相を含む炭化鉄膜又 は炭化鉄コバルト膜を形成する工程 Αの前に、 前記炭化鉄膜又は炭化鉄コバルト 膜に接して下層を成し、 該炭化鉄膜又は炭化鉄コバルト膜の原子間距離と略同一 の原子間距離を具備する薄 )1奠を形成する工程 Bを有することを特徴としている。 本発明に係る磁性薄膜の製造方法は、 上記工程 Bを備えることによって、 成 膜直後の薄膜上に、 直ちにひ' 相単相を含む炭化鉄膜又は炭化鉄コバルト膜を堆 積させることが可能となる。 したがって、 上記工程 Bは、 薄膜と炭化鉄膜又は炭 化鉄コバルト膜との界面が不純物などで汚染させる機会を除去でき、 また、 薄膜 上に炭化鉄膜又は炭化鉄コバルト膜がェピタキシャル成長するのを促すこともで きる。 ゆえに、 上記工程 Bを備えた製造方法は、 軟磁気特性が安定して得られる 磁性薄膜の作製に寄与する。 On the other hand, even if the electron density Ne of the plasma generated on the substrate is 7 × 10 8 cm— 3 or more and 2.5 × 10 1 (5 cm— 3 or less), the diffraction line from the (002) plane of the α 'phase In other words, the intensity of α '(002) is 80% or more of the maximum value, so that a stable thin film can be formed, and the electron density Ne of the above plasma is 1 × 10 9 cm— 3 or more. If it is less than 1 X 10 1 Qcm- 3 , the intensity of α '(002) will be 90% or more of the maximum value, so that an iron carbide film with desired magnetic properties can be manufactured more stably. It is more desirable because it can be done. Further, in the method for producing a magnetic thin film according to the present invention, the step of forming the iron carbide film or the iron cobalt film containing the single phase may include: And a step B of forming a thin film having an interatomic distance substantially equal to the interatomic distance of the iron carbide film or the iron cobalt film. Since the method for producing a magnetic thin film according to the present invention includes the above step B, it is possible to immediately deposit an iron carbide film or an iron cobalt film containing a single-phase single phase on the thin film immediately after film formation. Becomes Therefore, in the above step B, the opportunity of contaminating the interface between the thin film and the iron carbide film or the iron cobalt carbide film with impurities or the like can be eliminated, and the iron carbide film or the iron cobalt carbide film grows epitaxially on the thin film. Can be encouraged. Therefore, the manufacturing method including the above-described step B contributes to the production of a magnetic thin film capable of stably obtaining soft magnetic characteristics.
さらに、 本発明に係る磁性薄膜の製造方法は、 前記工程 Aの後に、 前記炭化鉄 膜又は前記炭化鉄コバルト膜を加熱する工程 Cを具備したことを特徴としている 。 この磁性薄膜を加熱する工程 Cを備えることにより、 磁性薄膜の保磁力を低下 させることが可能となる場合がある。 この作用は、 炭化鉄コバルト膜において所 定の炭素含有量を有するとき、 特に有効に働き、 磁性薄膜の低保磁力化をもたら す。 上記 α ' 相を主たる相とする炭化鉄膜を形成する工程 Αを実施するのに好適な 成膜法としては、 例えば対向タ ゲット式スパッタリング法やプラズマ蒸着法が 挙げられる。 上述した好適範囲の電子温度 T eや電子密度 N eを容易に実現でき るので、 少なくともび' (0 0 2 ) の強度が最大値の 8 0 %以上得られる炭化鉄 膜を常に安定して形成できる。  Furthermore, the method of manufacturing a magnetic thin film according to the present invention is characterized in that after the step A, a step C of heating the iron carbide film or the iron cobalt film is provided. Providing the step C for heating the magnetic thin film may make it possible to lower the coercive force of the magnetic thin film. This effect is particularly effective when the iron-cobalt carbide film has a predetermined carbon content, and lowers the coercive force of the magnetic thin film. As a film forming method suitable for performing the step of forming the iron carbide film having the α ′ phase as a main phase, for example, a facing target sputtering method or a plasma deposition method can be mentioned. Since the electron temperature T e and the electron density N e in the preferable ranges described above can be easily realized, the iron carbide film in which the strength of at least ((002) is at least 80% of the maximum value can be stably obtained. Can be formed.
上述した電子温度 T eや電子密度 N eのプラズマを用いて作製した炭化鉄膜で は、 その組成を 0 . 5 a t %以上 1 5 a ΐ %以下の炭素と残部鉄とすることによ り、 飽和磁化が 2 Τ以上で、 保磁力も 2 O e以下となる良好な軟磁気特性を備 える薄膜がより一層容易に形成できる。 また、 この膜組成を 1 a t %以上 1 2 a t %以下の炭素と残部鉄とした場合は、 さらに保磁力は小さくなり : L O e以下 に抑えられるのでより好ましい。 In the iron carbide film prepared by using the plasma of the electron temperature T e and the electron density N e described above, the composition is made to be 0.5 at% or more and 15 a ΐ% or less of carbon and the balance of iron. In addition, a thin film having good soft magnetic properties with a saturation magnetization of 2 ° or more and a coercive force of 2 Oe or less can be more easily formed. In addition, this film composition should be 1 at% or more. When the content of carbon and the balance of iron are less than t%, the coercive force is further reduced: LO e is preferred.
したがって、 前記磁性薄膜の形成用の母材源、 例えばターゲットとしては、 作 製した薄膜とターゲッ 卜の組成ずれが生じない限り、 0. 5 a t %以上 1 5 a t %以下の炭素と残部鉄からなる合金あるいは複合材料が好ましく、 更には l a t %以上 1 2 a t °/o以下の炭素と残部鉄からなる合金あるいは複合材料がより好適 である。 また、 本発明に係る炭化鉄膜に適当な量のコバルトを第三元素として含有させ てもよい。 すなわち、 炭化鉄膜 1 1にコバルトを添加した炭化鉄コバルト膜 1 1 ' は、 図 1 2に示すように飽和磁化をさらに増加させることができ、 2. 2 Tを 越える飽和磁化が得られる。 したがって、 前記磁性薄膜の形成用の母材源をなす タ一ゲットとしては炭素と鉄とコバルトからなるものを用いても構わない。  Therefore, as a base material source for forming the magnetic thin film, for example, as a target, a carbon having a content of 0.5 at% or more and 15 at% or less and a balance of iron are used as long as the composition of the formed thin film and the target does not deviate. Alloy or composite material is more preferable, and an alloy or composite material composed of carbon of lat% or more and 12 at ° / o or less and the balance of iron is more preferable. Further, the iron carbide film according to the present invention may contain an appropriate amount of cobalt as the third element. In other words, the iron-cobalt film 11 1 ′ obtained by adding cobalt to the iron-carbide film 11 can further increase the saturation magnetization as shown in FIG. 12, and obtain a saturation magnetization exceeding 2.2 T. Therefore, a target made of a base material for forming the magnetic thin film may be made of carbon, iron and cobalt.
本発明に係る炭化鉄コバルト膜 1 1 ' は、 上述した炭化鉄膜 1 1と同様に、 成 膜後に敢えて加熱処理をしなくても 2 T以上の飽和磁化 (saturation magnetiz ation) Msを有する [図 1 2] 。 中でも、 コバルトの含有量を原子。/0で 1 2以 上 5 0以下とした炭化鉄コバノレト膜 1 1 ' は、 2. 2 T以上の飽和磁化 [図 1 2 ] を有すると共に、 300°Cを越える加熱処理を行っても結晶構造に大きな変化 が生じた様子は観測されなかった [図 1 5] 。 中でも、 コバルトの含有量を 30 〜42. 5原子 °/0とした炭化鉄コバルト膜は、 400°Cを越える耐熱性を備えて いることが分かる。 The iron cobalt film 11 ′ according to the present invention has a saturation magnetization (Ms) of 2 T or more even without performing a heat treatment after the film formation, similarly to the iron carbide film 11 described above. Figure 12]. Among them, the atomic content of cobalt. The iron carbide covanolate film 11 ′ with a ratio of 12 to 50 in / 0 has a saturation magnetization of 2.2 T or more [Fig. 12] and has a crystal structure even after heat treatment at over 300 ° C. No significant change in the structure was observed [Fig. 15]. In particular, it can be seen that the iron-cobalt carbide film having a cobalt content of 30 to 42.5 atom ° / 0 has a heat resistance exceeding 400 ° C.
また、 工程 Cによる熱処理は、 図 16から明らかなように、 炭化鉄コバルト膜 1 1 ' において保磁力 Heの低下をもたらす。 特に、 炭素の含有量が 2〜 1 5原 子。 /。の炭化鉄コバルト膜 1 1 ' では、 熱処理後の保磁力 H cを 2 O e以下と することができる。  In addition, the heat treatment in the step C causes a decrease in the coercive force He in the iron-cobalt carbide film 11 ′, as is apparent from FIG. In particular, the carbon content is 2 to 15 atoms. /. In the iron-cobalt carbide film 11 1 ′, the coercive force Hc after the heat treatment can be set to 2 Oe or less.
以上の結果より、 本発明に係る炭化鉄コバルト膜 1 1 ' は、 磁気ヘッドを構成 する MR素子の製造プロセスにおいて要求される 300°C程度の熱処理に対して も、 +分な耐性を備えていることが明らかとなった。 したがって、 上記のコバル ト含有 を有する炭化鉄コバルト膜 1 ]ノ からなる磁性薄膜は、 磁気ヘッドを構 成する MR素子と一緒に搭載され、 書込用の磁気へッドを構成する磁極材料とし て極めて好適である。 From the above results, the iron-cobalt film 11 ′ according to the present invention has sufficient resistance to the heat treatment at about 300 ° C. required in the manufacturing process of the MR element constituting the magnetic head. It became clear that there was. Therefore, the magnetic thin film made of the cobalt-containing iron-cobalt film having the cobalt contained therein 1) constitutes a magnetic head. It is mounted together with the MR element to be formed, and is extremely suitable as a magnetic pole material constituting a magnetic head for writing.
さらに、 炭素含有量を 2〜1 5原子 °/0とした炭化鉄コバルト膜 1 1 ' は、 図 1 6に示すように、 熱処理後の保磁力が 2 O e以下となり、 良好な軟磁気特性 を兼ね備えることができるのでより好ましい。 図 9は、 本発明に係る炭化鉄コバルト膜 1 1 ' の X線解析結果を示すグラフで ある。 図 9より、 本発明に係る炭化鉄コバルト膜 1 1 ' は炭化鉄膜 1 1 (図 3) と同様に、 α' 相を主たる相とする結晶構造を有することが分かる。 図 9は、 磁 性薄膜の (002) 面からの回折線のみ観測きれた場合であり、 図 3 (b) の炭 化鉄膜 1 1に相当する結果である。 ここでは図示しないが、 炭化鉄コバルト膜 1 1' の場合も、 図 3 (a) の炭化鉄膜 1 1のように回折線が主たるピークを成し 、 その高角側にブロードな肩が観測される場合もある。 したがって、 α' 相を主 たる相とする炭化鉄コバルト膜 1 1 ' は、 上述した炭化鉄膜 1 1と同様に、 製造 時に所望の結晶形態を備えているか否かを容易に識別できるという特徴を備えて いる。 また、 本発明に係る炭化鉄コバルト膜 (α' — F e— C o— C膜) 1 1 ' は、 成膜後において、 図 1 1に示すようなヒステリシス曲線が観測される。 (a) は b c 七構造のく 00 1〉方向、 (b) は b c t構造のく 1 00〉方向、 (c) は b c t構造のく 1 1 0 >方向の結果である。 本測定には振動試料型磁力計 (VS M) を用いた。 炭化鉄コバルト膜 1 1 ' は、 図 1 1 (a ) より c軸が磁化困難軸 であり、 図 1 1 (b) 、 (c) より c面が磁化容易面となっていることが確認で きる。 これは、 炭化鉄コバルト膜の c面内において適当な強さを持つ正負の外部 磁場を印加することにより、 c面内に発生する磁化の方向の反転制御が容易にで きることを示唆する。 したがって、 本発明に係る炭化鉄コバルト膜は記録ヘッド の磁極;^料として好適である。 Further, as shown in Fig. 16, the iron cobalt film 11 'with a carbon content of 2 to 15 atom ° / 0 has a coercive force after heat treatment of 2 Oe or less, and has excellent soft magnetic properties. Is more preferable because it can also have FIG. 9 is a graph showing an X-ray analysis result of the iron cobalt film 11 ′ according to the present invention. FIG. 9 shows that the iron cobalt film 11 ′ according to the present invention has a crystal structure mainly composed of the α ′ phase, similarly to the iron carbide film 11 (FIG. 3). FIG. 9 shows the case where only the diffraction line from the (002) plane of the magnetic thin film was successfully observed, and the result corresponds to the iron carbide film 11 in FIG. 3 (b). Although not shown here, also in the case of the iron carbide film 11 ′, the diffraction line forms a main peak as in the iron carbide film 11 in FIG. 3 (a), and a broad shoulder is observed on the high angle side. In some cases. Therefore, the iron-cobalt film 11 ′ having the α ′ phase as a main phase, as in the case of the iron-carbide film 11, can easily identify whether or not it has a desired crystal form at the time of manufacture. It is equipped with. In the iron-cobalt film (α′—Fe—Co—C film) 11 ′ according to the present invention, a hysteresis curve as shown in FIG. 11 is observed after the film formation. (A) is the result of the <001> direction of the bc7 structure, (b) is the result of the <100> direction of the bct structure, and (c) is the result of the <110> direction of the bct structure. A vibrating sample magnetometer (VS M) was used for this measurement. From Fig. 11 (a), it was confirmed that the c-axis of the iron-cobalt film 11 'was a hard magnetization axis, and that the c-plane was an easily magnetized surface from Figs. 11 (b) and (c). Wear. This suggests that it is possible to easily control the reversal of the direction of magnetization generated in the c-plane by applying a positive or negative external magnetic field having an appropriate strength in the c-plane of the iron-cobalt film. Therefore, the iron-cobalt carbide film according to the present invention is suitable as a magnetic pole of a recording head.
上述したように、 コバルトの含有量を原子 °/0で 1 2以上 50以下とした炭化鉄 1ノくノレト膜 1 .1 ' は、 成膜後、 X線回折法あるいは電子線回折法により α' 相の (002) 面からの回折ピークが主たるピークとして観測される (図 9) 。 この ような炭化鉄コバルト膜に対して、 成膜後に 300°Cを越える熱処理を行うと、 観測される主たる回折ピ クが、 α' 相の (002) 面から a相の (200) 面 に変わることが確認された (図 17) 。 2 Θが 60度〜 70度の範囲では、 これ らのピ "ク以外に回折ピ"クは観測されない。 As described above, iron carbide having a cobalt content of 12 or more and 50 or less at atomic ° / 0 is obtained. After the film is formed, α is obtained by X-ray diffraction or electron diffraction. '' Phase The diffraction peak from the (002) plane is observed as the main peak (Fig. 9). When such an iron-cobalt carbide film is subjected to a heat treatment at over 300 ° C after film formation, the main diffraction peak observed changes from the (002) plane of the α 'phase to the (200) plane of the a phase. It was confirmed that it would change (Figure 17). When 2Θ is in the range of 60 to 70 degrees, no diffraction peaks other than these peaks are observed.
本発明に係る炭化鉄コバルト膜 11' は、 このように熱処理前後で結晶性に若 干の変化が見られたが、 その結晶構造や磁化困難軸、 磁化容易面などは殆ど変化 が見られず、 熱処理後の炭化鉄コバルト膜において、 図 1 1と同様のヒステリシ ス曲線が観測された。 すなわち、 本発明に係る炭化鉄コバルト膜は、 成膜後に施 される熱処理の有無に依存せず、 体心正方構造を備え、 c軸が磁化困難軸、 c面 が磁化容易面を成し、 該磁化困難軸は膜面に対して略垂直方向を、 該磁化容易面 は膜面に対して略水平方向を成している。 また、 本発明に係る炭化鉄コバルト膜は窒素を第三元素として取り入れてもよ い。 窒素を適量含有させると、 炭化鉄コバルト膜の磁歪を 10— 6 台から 10一7 台に低減できるのでより好ましい。 In the iron-cobalt film 11 'according to the present invention, slight changes in crystallinity were observed before and after the heat treatment. However, the crystal structure, the axis of hard magnetization, and the surface of easy magnetization were hardly changed. The same hysteresis curve as in FIG. 11 was observed in the heat-treated iron-cobalt film. That is, the iron-cobalt carbide film according to the present invention has a body-centered square structure, does not depend on the presence or absence of a heat treatment performed after film formation, has a c-axis as a hard magnetization axis, a c-plane as an easy magnetization surface, The hard axis is substantially perpendicular to the film surface, and the easy magnetization surface is substantially horizontal to the film surface. Further, the iron-cobalt carbide film according to the present invention may incorporate nitrogen as the third element. When nitrogen is contained in appropriate amounts, more preferable because it reduces the magnetostriction of iron carbide cobalt film 10 one seven from 10 six.
さらに、 本発明に係る炭化鉄コバルト膜は、 該炭化鉄コバルト膜に接して下層 を成し、 該炭化鉄コバルト膜の原子間距離と略同一の原子間距離を具備する薄膜 を備えることで、 上述した各種磁気特性がより一層安定して得られる。 その薄膜 の一例としては、 (200) 面を表面とする鉄膜や鉄コバルト膜が拳げられる。 またさらに、 前記炭化鉄コバルト膜の各種磁気特性がより一層安定して得るた めには、 上記薄膜を構成する主たる元素は、 該炭化鉄コバルト膜と格子定数が略 同一であるものが好ましい。 本発明に係る炭化鉄コバルト膜の下層として該炭化 鉄コバルト膜と格子定数が略同一の元素で構成された薄膜を用いることで、 その 上に堆積される炭化鉄コバルト膜は極めて安定に初期成長が行われ、 膜厚が増加 しても膜中に歪みなどの発生が抑制されることによって、 一段と結晶性の高レ、成 膜が達成されるので、 安定した各種磁気特性を備えた炭化鉄コバルト膜が得られ る。 上記炭化鉄コバルト膜と格子定数が略同一の元素としては、 例えば、 Ag、 Au、 P d、 P t、 R h、 A l、 I r、 Ruから選択される 1つ以上の元素が挙 げられる。 各元素の格子定数は、 Ag = 4. 0 9 A (a軸) 、 Au = 4. 08 A (a軸) 、 P d = 3. 8 9 A (a軸) 、 P t = 3. 9 2 A (a軸) 、 R h = 3. 8 OA (a軸) 、 A l =4. 0 5 A (a軸) 、 I r = 3. 84 A (a軸) 、 Ru =4. 28 A (c軸) である。 ここで、 本発明では炭化鉄コバルト膜と格子定数 が略同一とは、 4 A± 10%の範囲を指す。 但し、 1A=0. Inmである。 本発明に係る磁性薄膜の製造装置は、 減圧空間内に配置した基体上に、 プロセ スガスを用いて該基体の堆積面に与えるプラズマダメージの小さなプラズマを生 起させ、 該プラズマと磁性薄膜の形成用の母材源とを利用して、 前記基体上に少 なくとも炭素及び鉄、 又は、 炭素、 鉄及びコバルトを構成元素とし、 α' 相を主 たる相とする炭化鉄膜又は炭化鉄コバノレト膜を形成する製造装置であり、 前記炭 化鉄膜又は炭化鉄コバルト膜形成用のプラズマ発生手段と、 前記プラズマの濃度 勾配が生じている方向に沿つて前記基体を移動できる基体保持手段とを具備して いる。 Furthermore, the iron-cobalt carbide film according to the present invention includes a thin film having a lower layer in contact with the iron-cobalt carbide film and having an inter-atomic distance substantially equal to the inter-atomic distance of the iron-cobalt carbide film. The various magnetic characteristics described above can be obtained more stably. As an example of such a thin film, an iron film or an iron cobalt film having a (200) plane as a surface can be used. Further, in order to obtain more various magnetic properties of the iron-cobalt carbide film, it is preferable that the main element constituting the thin film has a lattice constant substantially equal to that of the iron-cobalt carbide film. By using a thin film composed of elements having substantially the same lattice constant as the iron-cobalt film as the lower layer of the iron-cobalt film according to the present invention, the iron-cobalt film deposited thereon can be very stably grown at the initial stage. Even if the film thickness increases, the occurrence of distortion and the like in the film is suppressed, so that higher crystallinity and film formation can be achieved, and iron carbide with stable various magnetic properties A cobalt film is obtained. Examples of the element whose lattice constant is substantially the same as that of the iron-cobalt film include one or more elements selected from Ag, Au, Pd, Pt, Rh, Al, Ir, and Ru. I can do it. The lattice constants of each element are Ag = 4.09 A (a-axis), Au = 4.08 A (a-axis), Pd = 3.89 A (a-axis), Pt = 3.92 A (a-axis), R h = 3.8 OA (a-axis), A l = 4.05 A (a-axis), Ir = 3.84 A (a-axis), Ru = 4.28 A ( c axis). Here, in the present invention, the lattice constant being substantially the same as that of the iron-cobalt film indicates a range of 4 A ± 10%. However, 1A = 0. Inm. The apparatus for manufacturing a magnetic thin film according to the present invention is characterized in that a process gas is used to generate a plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, thereby forming the plasma and the magnetic thin film. A base material source for use in forming an iron carbide film or iron carbide covanolate having at least carbon and iron or carbon, iron and cobalt as constituent elements and an α ′ phase as a main phase on the substrate. A manufacturing apparatus for forming a film, comprising: a plasma generating means for forming the iron carbide film or the iron cobalt film; and a substrate holding means capable of moving the substrate along a direction in which a concentration gradient of the plasma is generated. I have it.
この構成によれば、 基体上に設けられる磁性薄膜は、 堆積している間その膜表 面がプラズマ発生手段により生起されたプラズマに曝された状態となるが、 基体 保持手段を用いて基体をプラズマの濃度勾配が生じている方向に沿って適宜移動 させることにより、 該基体の堆積面がプラズマから受けるダメージを抑制しつつ 、 所望の 相を主たる相とする炭化鉄膜又は炭化鉄コバルト膜が形成可能な位 置に基体を配置することができる。 したがって、 上記構成からなる製造装置であれば、 炭化鉄膜は堆積開始時、 堆 積中あるいは堆積後においてもプラズマダメージを殆ど受けることがない。 特に 、 堆積中にはプラズマダメージの影響が極めて少ない雰囲気下でその膜厚を順次 増やすことができるので、 形成される磁性薄膜の表面は粗面化が極力抑えられる と共に、 堆積中の磁性薄膜の温度上昇も抑制きれる。 つまり、 上記構成からなる 製造装置により作製された磁性薄膜は極めて平坦な表面形態をもつことができる 。 そして、 このように平坦化が促進されると、 相を主たる相とする炭化鉄膜 が安定して得られる成膜時の基体温度をより広い範囲とすることができるので、 製造時の温度マージンが広い製造装置の提供が可能となる。 また上記構成によれ ば、 基体の堆積面がプラズマから受けるダメージを抑制できるので、 炭化鉄膜を 堆積させる基体表面を構成する材料や形状に依存せず、 α ' 相を主たる相とする 炭化鉄膜が極めて安定して得られる製造装置となるので、 これは歩留まりが高く 信頼性に優れる製造ラインの構築に貢献する。 According to this configuration, while the magnetic thin film provided on the substrate is being deposited, the surface of the film is exposed to the plasma generated by the plasma generating means, but the substrate is held by the substrate holding means. By appropriately moving along the direction in which the concentration gradient of the plasma is generated, while suppressing the damage to the deposition surface of the substrate from the plasma, the iron carbide film or the iron cobalt film having the desired phase as the main phase can be formed. The substrate can be placed at a position where it can be formed. Therefore, in the manufacturing apparatus having the above configuration, the iron carbide film is hardly damaged by plasma even at the start of the deposition, during the deposition, or even after the deposition. In particular, during deposition, the thickness of the magnetic thin film to be formed can be gradually increased in an atmosphere where the influence of plasma damage is extremely small, so that the surface of the formed magnetic thin film is suppressed as much as possible and Temperature rise can be suppressed. That is, the magnetic thin film manufactured by the manufacturing apparatus having the above configuration can have an extremely flat surface form. When the flattening is promoted in this manner, the substrate temperature during film formation in which an iron carbide film having a main phase as a main phase can be stably obtained can be set in a wider range. It is possible to provide a manufacturing apparatus having a wide temperature margin during manufacturing. According to the above configuration, damage to the deposition surface of the substrate from the plasma can be suppressed, so that the α ′ phase is the main phase irrespective of the material and shape of the surface of the substrate on which the iron carbide film is deposited. This contributes to the construction of a production line with high yield and high reliability, because the production equipment is capable of obtaining films in a very stable manner.
また、 上記構成からなる製造装置がもたらす作用 ·効果は、 上述した炭化鉄膜 にコバルトを含有させた磁性薄膜である炭化鉄コバルト膜においても同様に得ら れる。 上記構成における基体保持手段は、 基体が曝されるプラズマの電子温度 T eが 4 X 1 0— 3 e V以上 3 e V以下となるように該基体の位置を可変制御するか、 あるいは基体が曝されるプラズマの電子密度 N eカ 7 X 1 0 8 c m— 3以上 2 . 5 X 1 0 1 Q c m一3以下となるように該基体の位置を可変制御することにより、 相を主たる相とする炭化鉄膜が極めて安定して得られる。 上記範囲からなる プラズマの電子温度 T eや電子密度 N eとした際に得られる作用 ·効果は、 上述 した炭化鉄膜にコバルトを含有させた磁性薄膜である炭化鉄コバルト膜において も同様に働く。 対向タ^ゲット式スパッタリング法あるいはプラズマ蒸着法によれば、 上述し た範囲の電子温度 T eや電子密度 N eを備えたプラズマが容易に生起されると共 に維持できる。 また、 この 2つの方法によるプラズマはその電子温度 T eや電子 密度 N eが距離的に緩やかに変化する、 すなわち緩やかな濃度勾配を有するとい う特徴を備えている。 この緩やかな濃度勾配のブラズマ中に基体を適宜配置する ことにより、 磁性薄膜を堆積させる基体表面が所望の値の電子温度 T eや電子密 度 N eからなるプラズマに曝された状態とすることができる。 In addition, the functions and effects provided by the manufacturing apparatus having the above configuration can be similarly obtained in the above-described iron-cobalt carbide film which is a magnetic thin film in which cobalt is added to the iron carbide film. Substrate holding means in the above structure, either variably controlling the position of the base body so that the electron temperature T e of the plasma substrate is exposed becomes less 4 X 1 0- 3 e V or 3 e V, or substrate exposed the plasma electron density N e Ca 7 X 1 0 8 cm- 3 or more 2. 5 X 1 0 by 1 Q cm one 3 variably controlling the position of the base body so as to become less, primary phases phase Is obtained very stably. The functions and effects obtained when the electron temperature T e and the electron density N e of the plasma fall within the above range also apply to the above-described iron-cobalt carbide film, which is a magnetic thin film containing cobalt in the iron carbide film. . According to the opposed target sputtering method or the plasma deposition method, plasma having the electron temperature T e and the electron density N e in the above-described ranges can be easily generated and maintained. In addition, the plasma obtained by these two methods has a feature that the electron temperature T e and the electron density N e change gradually with distance, that is, have a gentle concentration gradient. By appropriately arranging the substrate in the plasma having the gentle concentration gradient, the surface of the substrate on which the magnetic thin film is to be deposited is exposed to a plasma having desired values of electron temperature Te and electron density Ne. Can be.
特に、 上記プラズマの濃度勾配が基体の表面と垂直をなす方向に生じているの で、 基体が載置された基体保持手段を直線的に前後に移動しさえすれば、 磁性薄 膜を堆積させる基体表面が曝されるプラズマの電子温度 T eや電子密度 N eを遍 宜制御することが可能となる。 但し、 例えば、 通常の二極平板型のスパッタリング装置を用いても、 このプラ ズマの電子温度 T eや電子密度 N eを可変とし、 これらを低く抑えることが可能 な工夫を施せば、 充分に後述する対向タレゲット式スパッタリング装匱やプラズ マ蒸着装置で得られるような炭化鉄膜 (α '— F e— C膜) 又は炭化鉄コバノレ ト膜 (α '— F e— C o—C膜) は形成可能である。 In particular, since the concentration gradient of the plasma is generated in a direction perpendicular to the surface of the substrate, the magnetic thin film is deposited as long as the substrate holding means on which the substrate is placed is moved linearly back and forth. The electron temperature T e and the electron density N e of the plasma to which the substrate surface is exposed can be universally controlled. However, for example, even if a normal bipolar plate type sputtering apparatus is used, if the electron temperature T e and the electron density N e of this plasma are made variable and devised so that these can be kept low, it is sufficient. Iron carbide film (α'-Fe-C film) or iron carbide covanolate film (α'-Fe-Co-C film), which can be obtained with a facing target sputtering system or plasma evaporation system described later. Can be formed.
また、 本発明に係る磁性薄膜の製造装置は、 上述した炭化鉄膜又は炭化鉄コバ ルト膜形成用のプラズマ発生手段に加え、 該炭化鉄膜又は該炭化鉄コバルト膜に 接して下層を成し、 該炭化鉄膜又は該炭化鉄コバルト膜の原子間距離と略同一の 原子間距離を具備する薄膜を形成するためのプラズマ発生手段を備えてよい。 上記薄膜形成用のプラズマ発生手段を備えることにより、 薄膜表面が汚染され ることなく、 この薄膜上に直ちに炭化鉄膜又は炭化鉄コバルト膜からなる磁性薄 膜を堆積できる、 すなわち、 この構成によれば、 炭化鉄膜又は炭化鉄コバルト膜 との界面をなす薄膜の表面が不純物で汚染される機会が極めて少なくなるので、 薄膜上にひ ' 相単相からなる炭化鉄膜又は炭化鉄コバルト膜をェピタキシャルに 成長し易くなる。 したがって、 上記薄膜形成用のプラズマ発生手段を備えた製造 装置は、 磁性薄膜が安定した軟磁気特性を有するのに貢献する。  Further, the apparatus for producing a magnetic thin film according to the present invention forms a lower layer in contact with the iron carbide film or the iron cobalt film in addition to the plasma generating means for forming the iron carbide film or the iron cobalt film described above. Plasma generating means may be provided for forming a thin film having an atomic distance substantially equal to the atomic distance of the iron carbide film or the iron cobalt film. By providing the plasma generating means for forming the thin film, a magnetic thin film made of an iron carbide film or an iron cobalt film can be immediately deposited on the thin film without contaminating the thin film surface. For example, since the surface of the thin film that forms an interface with the iron carbide film or the iron cobalt film is extremely unlikely to be contaminated with impurities, an iron carbide film or a cobalt cobalt film made of a single-phase single phase is formed on the thin film. It becomes easier to grow epitaxially. Therefore, the manufacturing apparatus provided with the plasma generating means for forming a thin film contributes to the magnetic thin film having stable soft magnetic characteristics.
さらに、 本発明に係る磁性薄膜の製造装置は、 前記炭化鉄膜又は前記炭化鉄コ バルト膜を加熱する熱処理手段を具備してもよい。 この熱処理手段を用いた加熱 処理は、 磁性薄膜の保磁力低下をもたらす。 特に、 磁性薄膜が所定の炭素含有量 を有する炭化鉄コバルト膜 1 1 ' からなる場合には、 大きな効果が得られる。 上述した構成を満たす磁性薄膜の製造装置としては、 例えば図 Ίに示す対向タ —ゲット式 D . C . スパッタリング装置、 あるいは図 8に示すプラズマ蒸着装置 が挙げられる。 図 7はスパッタ室内部を上方から見た概略断面図であり、 図 8は 成膜室内部を側方から見た概略断面図である。  Furthermore, the apparatus for manufacturing a magnetic thin film according to the present invention may include a heat treatment unit for heating the iron carbide film or the iron cobalt film. Heat treatment using this heat treatment means lowers the coercive force of the magnetic thin film. In particular, when the magnetic thin film is made of the iron-cobalt carbide film 11 'having a predetermined carbon content, a great effect can be obtained. As an apparatus for manufacturing a magnetic thin film satisfying the above-described configuration, for example, a facing target type DC sputtering apparatus shown in FIG. 5 or a plasma deposition apparatus shown in FIG. FIG. 7 is a schematic sectional view of the inside of the sputtering chamber as viewed from above, and FIG. 8 is a schematic sectional view of the inside of the film forming chamber as viewed from the side.
(対向タ一ゲット式スパッタリング法)  (Opposite target sputtering method)
本発明に係る対向タ一ゲット式スパッタリング法は、 例えば図 7に示す対向タ ーゲッ ト式スパッタリング装置を用いることで実施される。 図7の装置において 、 700はスパッタ室、 70 1 a , 70 1 b, 70 1 c , 70 1 dは基体、 70 2 aは基体 7 O l aを保持すると共に基体 7 O l aを加熱処理、 冷却処理または 定温保持する機能を備えた温度制御手段を内蔵した基体ホルダー、 703 aはプ ラズマの濃度勾配が生じている方向に沿って基体 70 1 aを移動させる基体保持 手段、 704は基体 70 1 a , 70 1 b, 70 1 c , 70 1 dの表面を各成膜室 側に向けるために用いる基体の回転移動手段、 70 5は炭化鉄膜 (以降、 α ' ― F e— C膜とも呼ぶ) 形成用の第一成膜室、 706は F e膜形成用の第二成 J!奠室 、 70 7 a、 70 7 bはシャツタ、 708 a、 708 bは防着板、 709 a、 7 0 9 bは F e— G合金からなる第一ターゲット、 7 10 a , 7 10 b, 7 10 c , 7 1 0 dは磁石、 7 1 1 a、 7 1 1 bは F eからなる第二タ ゲッ ト、 7 1 2 a , 7 1 2 b, 7 1 2 c , 7 1 2 dは磁石、 7 1 3は交流電源、 7 14、 7 1 5 は直流電源、 7 1 6 a , 7 1 6 b、 7 1 7 a , 7 1 7 bはカソ ドである。 また図 7には図示しないが、 スパッタ室 700の下方 (紙面裏側) には各成膜 室内を減圧させる真空排気手段が、 上方 (紙面表側) にはゲートバルブを介して 基体を仕込 Z取出するロードロック室が配置され、 このロードロック室内を減圧 する真空排気手段も備えている。 さらに各成膜室はその中に所望のプロセスガス 、 例えば A rガスや N2 ガスを導入するためのガス供給手段を備えている。 図 7に示すように、 対向ターゲット式スパッタリング装置は、 1つの成)!莫室内 ごとに、 同じ材料からなる一対のターゲットが対向配置される点が特長である。 a ' 一 F e—C膜形成用の第一成膜室 70 5を例にとって説明すると、 2枚の同 寸法の平板状の第一ターゲット 70 9 a、 709 bが向かい合って配置されてお り、 プラズマ収束磁界は第一タ ゲット 70 9 a、 70 9 bに垂直に印加される ように、 永久磁石 7 1 0 a、 7 10 bが力ソード 7 16 a内に、 永久磁石 7 1 0 c、 7 10 dが力ソード 7 1 6 b内に各々配置されている。 第一成膜室 70 5内 に A rガス等のプロセスガスを導入し、 両カソード 7 1 6 a、 7 ]. 6 bに直流電 源 7 !_ 4から電圧を印加すると、 両ターゲッ ト 709 a、 709 bは、 ターゲッ 卜から放出され、 陰極降下部で加速された高速 γ電子 (2次電子) に対して反射 電極として働くため、 この 2次電子は両ターゲット間に閉じこめられ、 第一ター ゲット 70 9 a、 7 0 9 b間の外に配置された基体 7 0 1 aへの 2次電子衝擊が 抑制される。 また、 空間内で往復運動しながら、 プラズマ中の電子のエネルギ" を高めたり、 あるいは雰囲気ガスと衝突することにより、 ガスのイオン化を促進 し、 高密度プラズマ P 1 (図 7のメッシュ領域部分) を形成する。 つまり、 基体 70 1 aは高密度プラズマ P 1に直接曝されることなく、 その上に所望の薄膜を 適宜堆積させることが可能である。 The facing target type sputtering method according to the present invention is carried out by using, for example, a facing target type sputtering apparatus shown in FIG. In the apparatus of FIG. 7 , 700 is a sputtering chamber, 701a, 701b, 701c, 701d are substrates, 702a holds the substrate 7Ola and heats, cools, or maintains the substrate 7Ola at a constant temperature. 703a is a substrate holding means for moving the substrate 701a in the direction in which the plasma concentration gradient is generated, and 704 is a substrate holder 701a, 701b. , 70 1 c, 70 1 d The means for rotating and moving the substrate used to direct the surface toward each film forming chamber, and 705 is for forming an iron carbide film (hereinafter also referred to as α'-Fe-C film). The first film forming chamber, 706 is a second film forming film for forming an Fe film. J! Room, 707a, 707b are shirts, 708a, 708b are anti-adhesion plates, 709a, 709b are F e — First target made of G alloy, 7 10 a, 7 10 b, 7 10 c, 7 10 d are magnets, 7 1 a, 7 11 b are second targets made of F e, 7 1 2 a, 7 1 2 b, 7 1 2 c, 7 1 2 d are magnets, 7 1 3 is AC power supply, 7 14, 7 1 5 is a DC power supply, and 716a and 716b, 717a and 717b are cathodes. Although not shown in FIG. 7, vacuum evacuation means for depressurizing each deposition chamber is provided below the sputter chamber 700 (on the back side of the paper), and the substrate is taken out via a gate valve above (the front side of the paper). A load lock chamber is provided, and a vacuum evacuation means for reducing the pressure in the load lock chamber is also provided. Further, each of the film forming chambers is provided with gas supply means for introducing a desired process gas, for example, Ar gas or N 2 gas therein. As shown in FIG. 7, the facing target type sputtering apparatus is characterized in that a pair of targets made of the same material are arranged facing each other in one chamber. In the first film forming chamber 705 for forming an a′-FeFeC film, for example, two plate-shaped first targets 709 a and 709 b having the same dimensions are arranged to face each other. The permanent magnets 710a and 710b are placed in the force sword 716a so that the plasma focusing magnetic field is applied perpendicularly to the first target 709a and 709b. , 7 10 d are respectively arranged in the force swords 7 16 b. When a process gas such as Ar gas is introduced into the first film forming chamber 705 and a voltage is applied to both cathodes 7 16 a, 7]. 6 b from a DC power supply 7! _ 4, both targets 709 a And 709b are emitted from the target and reflected by high-speed γ electrons (secondary electrons) accelerated by the cathode descending part Since this secondary electron acts as an electrode, this secondary electron is confined between the two targets, and the secondary electron impact on the substrate 71 a disposed outside between the first target 709 a and 709 b is suppressed. You. In addition, while reciprocating in space, the energy of the electrons in the plasma is increased, or the gas collides with the ambient gas to promote ionization of the gas, resulting in high-density plasma P 1 (mesh area in Fig. 7). That is, a desired thin film can be appropriately deposited on the substrate 701a without being directly exposed to the high-density plasma P1.
したがって、 図 7に示す対向ターゲット式 D. C. スパッタリング装置は、 こ のような特徴により、 成膜中の基板温度の上昇が低減でき、 一般のプレーナー型 マグネトロンスパッタ装置に比べて、 低ガス圧での成膜が可能であるという利点 がある。 図 7の装置において、 成膜を行うスパッタ室 700の内壁には、 電界研磨およ びクロム酸化不働態 (CRP) 処理を施し、 内壁からの放出ガスを低減する形態 が望ましい。 スパッタ室 700には、 ォ"ルメタルのゲートバルブ (不図示) を 介して、 ロ^^ドロック室 (不図示) を設けたので、 基体 70 1のセッティングの 際に、 スパッタ室 700を大気に開放することがないため、 真空度を保持するこ とができる。  Therefore, the facing target type DC sputtering apparatus shown in FIG. 7 can reduce the rise in substrate temperature during film formation due to such features, and can be formed at a lower gas pressure than a general planar type magnetron sputtering apparatus. The advantage is that a membrane is possible. In the apparatus shown in FIG. 7, it is preferable that the inner wall of the sputtering chamber 700 for forming a film is subjected to electrolytic polishing and chromium oxidation passivation (CRP) treatment to reduce the amount of gas emitted from the inner wall. A load lock chamber (not shown) is provided in the sputter chamber 700 via an all-metal gate valve (not shown). When the substrate 701 is set, the sputter chamber 700 is opened to the atmosphere. Therefore, the degree of vacuum can be maintained.
図 7に示すスパッタ室 700の中央にある墓体移動手段 704を回転させて、 基体 70 1 aの表面を α' — F e— C膜 (炭化鉄膜) 成膜室 70 5側に向けた ( 図 7の位匱 A) 後、 プラズマ P 1と基体 70 1 aとの間を空間的に仕切るシャツ タ 707 aを所定時間だけ開くことにより、 基体 70 1上に所望の厚さからなる — F e— C膜を形成することができる。  By rotating the tomb body moving means 704 at the center of the sputtering chamber 700 shown in FIG. 7, the surface of the substrate 701 a was directed to the α′—Fe—C film (iron carbide film) film forming chamber 705 side. Thereafter, the shirt 707a, which spatially separates the plasma P1 and the base 701a from each other, is opened for a predetermined time, so that a desired thickness is formed on the base 701. An Fe—C film can be formed.
図 7の構成により生じたプラズマ P 1は、 対向に配匱された 2枚のターゲッ ト 70 9 a , 70 9 bの軸中心から基体 7 O l aに向かって、 プラズマの濃度勾配 が生じており、 プラズマの濃度は軸中心付近が最大となり、 基体 70 1 aに近づ くにつれて濃度が低下する分布をなしている。 本装置では、 基体 70 1 aを保持 する基体ホルダ一 70 2 aと基体 70 1 aの基体移動手段 704との間に設けた 基体保持手段 70 3 aを用いることで、 このプラズマ P 1の濃度勾配が生じてい る方向に沿って基体 7 0 1 aの移動 (図 7の矢印 c が可能な構成を備えている The plasma P1 generated by the configuration in Fig. 7 has a plasma concentration gradient from the center of the two targets 709a and 709b arranged opposite to the base 7Ola. However, the plasma concentration has a distribution near the center of the axis at a maximum, and the concentration decreases as approaching the substrate 701a. In this apparatus, the concentration of the plasma P1 is increased by using the substrate holding means 703a provided between the substrate holder 702a for holding the substrate 701a and the substrate moving means 704 of the substrate 701a. There is a gradient (The arrow c in Fig. 7 is provided
以上、 ひ ' 一 F e— C膜成膜室 7 0 5を例にとって詳述したが、 もう一方の成 膜室をなす F e成膜室 7 0 6も、 タ ゲット材質が異なる以外は同様の機構を備 えており、 ほぼ同様の成膜処理が可能となっている。 つまり、 回転移動手段 7 0 4を用い基体を位置 Aあるいは位置 Cとすることによって、 基体上に α ' — F e 一 C膜あるいは F e膜を堆積できる。 In the above, the first Fe—C film deposition chamber 705 has been described in detail as an example, but the other Fe deposition chamber 706, which is the other deposition chamber, is the same except that the target material is different. The mechanism is provided, and almost the same film formation processing is possible. That is, by setting the substrate at the position A or the position C using the rotation moving means 704, an α′—Fe—C film or a Fe film can be deposited on the substrate.
また、 回転移動手段 7 0 4を用いて基体を位置 Aとした場合は、 例えば A r等 のプロセスガスを第一成膜室 7 0 5に導入し、 基体 7 0 1 aを載置した基体ホノレ チ一 7 0 2 aに交流電源 7 1 3から電圧を印加することで、 基体表面をドライエ ッチング処理することも可能である。  In the case where the substrate is set at the position A by using the rotating and moving means 704, for example, a process gas such as Ar is introduced into the first film forming chamber 705, and the substrate on which the substrate 701a is placed is placed. By applying a voltage from the AC power supply 7 13 to the honolech 70 2 a, it is also possible to dry-etch the substrate surface.
なお、 図 7の装置では、 タ ゲットは円形でその直径 t 1は 9 0瞧、 タ ゲッ ト間距離 t 2は 1 0 0瞧、 タ ゲッ ト中心と基体との距離 t 3は 9 0瞧とした。 ただし、 距離 t 3は、 基体保持手段 7 0 3 aを用いて行うプラズマ P 1の濃度勾 配が生じている方向に沿った基体 7 0 1の移動 (図 7の矢印 α ) により、 その値 が増減する。  In the apparatus shown in FIG. 7, the target is circular and its diameter t1 is 90 °, the distance between targets t2 is 100 °, and the distance t3 between the target center and the base is 90 °. And However, the value of the distance t 3 is determined by the movement of the substrate 71 along the direction in which the concentration gradient of the plasma P 1 occurs using the substrate holding means 703 a (arrow α in FIG. 7). Increases or decreases.
また、 プラズマ収束磁界はターゲットに垂直に印加されているため、 基体表面 位置には、 基体面内に約 3 0エルステッド (O e ) の漏れ磁界が存在している。 成膜時において、 基体表面位置の漏れ磁界の方向が、 基体 7 0 1 aを回転させて も同じ方向になるように永久磁石 7 1 0又は 7 1 2を配置した。 基体ホルダ 7 0 2の回転、 シャツタ 7 0 7 a又は 7 0 7 bの開閉は、 回転導入機 (不図示) を 介して、 ステッピングモーター (不図示) で制御した。  Further, since the plasma converging magnetic field is applied perpendicularly to the target, a leakage magnetic field of about 30 Oe (O e) exists in the surface of the substrate at the surface of the substrate. At the time of film formation, the permanent magnet 710 or 712 was arranged so that the direction of the leakage magnetic field at the substrate surface position was the same even when the substrate 701a was rotated. The rotation of the base holder 702 and the opening and closing of the shirt 707a or 707b were controlled by a stepping motor (not shown) via a rotation introducing machine (not shown).
以上の説明では、 対向ターゲット式 D . C . スパッタリング装置について詳述 したが、 本発明に係る α ' — F e— C膜は、 直流 (D . C . ) に代えて交流 (R . F . ) を用いても作製可能である。  In the above description, the facing target type D.C. sputtering apparatus has been described in detail. However, the α'-Fe-C film according to the present invention is an alternating current (R.F.C.) instead of a direct current (D.C.). ) Can also be used.
'蒸着法) 'Evaporation method)
本発明に係るプラズマ蒸着法は、 例えば図 8に示すプラズマ蒸着装置を用いる ことで実施される。 図 8の装置において、 8 0 0は成膜室、 8 0 1は基体、 8 0The plasma deposition method according to the present invention uses, for example, a plasma deposition apparatus shown in FIG. It is implemented by that. In the apparatus shown in FIG. 8, 800 is a film forming chamber, 800 is a substrate, 800
2は基体 8 0 1を保持すると共に基体 8 0 1を加熱処理、 冷却処理または定温保 持する機能を備えた温度制御手段を内蔵した基体ホルダー、 8 0 3はプラズマの 濃度勾配が生じている方向に沿って基体 8 0 1を移動させる基体保持手段、 8 0Reference numeral 2 denotes a substrate holder having a built-in temperature control means for holding the substrate 81 and having a function of heating, cooling, or maintaining the temperature of the substrate 800, and reference numeral 803 denotes a plasma concentration gradient. Substrate holding means for moving the substrate 81 along the direction, 80
4はシャツタ、 8 0 5はF e—C母材、 8 0 6は母材をるつぼに載置してこれを 電子ビームで溶解するイオンガン、 8 0 7はイオンガン上空に配置されるフイラ メント、 8 0 8はフィラメントと基体との間の空間に配置されるグリッド、 8 04 is a shirt, 805 is a Fe-C base material, 806 is an ion gun that places the base material in a crucible and melts it with an electron beam, 807 is a filament placed above the ion gun, 8 0 8 is a grid arranged in the space between the filament and the substrate, 8 0
9、 8 1 0は直流電源、 8 1 1はプロセスガスの導入口、 8 1 2は成膜室内を減 圧する真空排気手段 (図示せず) に通じる成膜室の排気口、 8 1 3は基体の成膜 面に平行で一方向をなす磁場を印加する磁場印加手段である。 9, 810 are a DC power supply, 811 is a process gas inlet, 812 is an exhaust port of the film forming chamber which leads to a vacuum exhaust means (not shown) for reducing the pressure in the film forming chamber, and 813 is an exhaust port of the film forming chamber. This is a magnetic field applying means for applying a magnetic field which is parallel to the film-forming surface of the substrate and is in one direction.
図 8に示すようなプラズマ蒸着装置は、 一つの成膜室 8 0 0内に、 F e— C母 材 8 0 5を載置して溶解するイオンガン 8 0 6と基体 8 0 1が対向して設けられ 、 その間の空間には F e— C母材 8 0 5から基体 8 0 1の方向へ向けて、 直流電 源 8 0 9に接続されたフィラメント 8 0 7、 直流電源 8 1 0に接続されたグリッ ド 8 0 8、 接地電位にあるシャツタ 8 0 4が順に配置されている。 基体 8 0 1上に成膜する場合は、 減圧された成膜室 8 0 0内にプロセスガスの 導入口 8 1 1を通し A rガスなどのプロセスガスを供給して所定のガス圧に調整 した後、 イオンガン 8 0 6から放出される電子ビームを用い F e— C母材 8 0 5 を溶解させ、 成膜室 8 0 0内の上方空間に蒸発させる。 すると、 この蒸発させた 物質は、 フィラメント 8 0 7から放出される電子によって生じている高密度のプ ラズマ P 2の空間内をまず通過する。 次いで、 この蒸発させた物質は、 メッシュ 状のダリッド 8 0 8を通過し、 ダリッド 8 0 8から基体 8 0 1付近に達するプラ ズマ P 2 ' の中を通って基体 8 0 1上に到達し堆積される。 ここで、 フイラメン ト 8 0 7と基体 8 0 1との間の空間には、 直流電源 8 1 0に接続してマイナス電 位にあるメッシュ状のダリッド 8 0 8を設けることによって、 グリッド 8 0 8を 通過し基体 8 0 1付近に達するプラズマ P 2 ' は、 前述したプラズマ P 2に比べ て低密度となっており、 かつグリッド 8 0 8から基体 8 0 1方向に向かって、 そ の低密度化が進む状態をなしている。 基体 8 0 1上への ' 一 F e— C膜の堆積 は、 シャツタ 8 0 4を所定の時間だけ開口することによって行う。 In a plasma deposition apparatus as shown in FIG. 8, an ion gun 806 that disposes and dissolves a Fe—C base material 805 in one film forming chamber 800 faces a substrate 8001. In the space between them, the filament 807 connected to the DC power supply 809 and the DC power supply 810 are connected from the Fe-C base material 805 toward the base body 81 in the space between them. The grid 808 and the shirt 804 at the ground potential are arranged in this order. When forming a film on the substrate 800, a process gas such as an Ar gas is supplied into the decompressed film forming chamber 800 through a process gas inlet 811 to adjust the gas pressure to a predetermined value. After that, the Fe—C base material 805 is melted by using an electron beam emitted from the ion gun 806, and is evaporated into an upper space in the film forming chamber 800. Then, the evaporated substance first passes through the space of the high-density plasma P2 generated by the electrons emitted from the filament 807. Next, the evaporated substance passes through the mesh-shaped dalid 808, passes through the plasma P 2 ′ reaching from the dalid 808 to the vicinity of the base 801, and reaches the base 800. Is deposited. Here, in the space between the filament 807 and the base body 81, a mesh-like dalid 808 having a negative potential by being connected to the DC power supply 810 is provided, so that the grid 808 is provided. The plasma P 2 ′ passing through the substrate 8 and reaching the vicinity of the substrate 8 0 1 has a lower density than the plasma P 2 described above, and has a lower density from the grid 8 08 toward the substrate 8 0 1. The density is increasing. Deposition of a single Fe-C film on substrate 800 Is performed by opening the shirt 804 for a predetermined time.
図 8の構成により生じたプラズマ P 2は、 ダリッド 8 0 8から基体 8 0 1に向 かって、 プラズマの濃度勾配が生じており、 プラズマの濃度はグリッド 8 0 8付 近が最大となり、 基体 8 0 1に近づくにつれて濃度が低下する分布をなしている 。 本装置では、 基体 8 0 1を保持する基体ホルダー 8 0 2を支持する基体保持手 段 8 0 3を用いることで、 このプラズマ P 2の濃度勾配が生じている方向に沿つ て基体 8 0 1の移動 (図 8の矢印 ]3 ) が可能な構成を備えている。 以上、 イオンガン 8 0 6が 1つのるつぼを備え、 その中に F e— C母材 8 0 5 を設けた場合について述べたが、 イオンガン 8 0 6は複数のるつぼを備えてもよ い。 この構成によれば、 例えば第 2のるつぼに F e母材 8 0 5 ' を入れることに よって、 一つの成膜室 8 0 0内で基体 8 0 1上に α ' —: F e— C膜に代えて F e 膜を形成することもできる。  The plasma P 2 generated by the configuration in FIG. 8 has a concentration gradient of plasma from the dalid 808 toward the base body 81, and the plasma concentration becomes maximum near the grid 808, and It has a distribution in which the concentration decreases as it approaches 0 1. In this apparatus, by using the substrate holding means 803 for supporting the substrate holder 802 for holding the substrate 801, the substrate 802 can be arranged along the direction in which the concentration gradient of the plasma P 2 is generated. It is equipped with a structure that can move 1 (arrows in Fig. 8) 3). As described above, the case where the ion gun 806 includes one crucible and the Fe—C base material 805 is provided therein has been described. However, the ion gun 806 may include a plurality of crucibles. According to this configuration, for example, by putting the Fe base material 805 ′ into the second crucible, α ′ —: Fe—C is formed on the substrate 801 in one film forming chamber 800. An Fe film can be formed instead of the film.
なお、 図 8の装置では、 イオンガン 8 0 6内の F e— C母材 8 0 5とフィラメ ント 8 0 7との距離 t 4は 2 5 mm、 フィラメント 8 0 7とグリッド 8 0 8との距 離 t 5は 9 5瞧、 グリッド 8 0 8と基体 8 0 1との距離 t 6は 6 0 mmとした。 た だし、 距離 t 6は、 基体保持手段 8 0 3を用いて行うプラズマ P 2の濃度勾配が 生じている方向に沿った基体 8 0 1の移動 (図 8の矢印 /3 ) により、 その値が増 減する。  In the apparatus shown in Fig. 8, the distance t4 between the Fe-C base material 805 and the filament 807 in the ion gun 806 is 25 mm, and the distance t4 between the filament 807 and the grid 808 is The distance t5 was 95 mm, and the distance t6 between the grid 808 and the base body 81 was 60 mm. However, the distance t 6 is determined by the movement of the substrate 81 along the direction in which the concentration gradient of the plasma P 2 is generated using the substrate holding means 803 (arrow 3 in FIG. 8). Increase or decrease.
また、 成膜時において、 基体表面位置の漏れ磁界の方向が、 基体 8 0 1を回転 きせても同じ方向になるように、 基体 8 0 1の成膜面に平行で一方向をなす磁場 を印加する永久磁石からなる磁場印加手段 8 1 3を配置した。 基体ホルダー 8 0 Further, during film formation, a magnetic field which is parallel to the film forming surface of the substrate 81 and has one direction is set so that the direction of the leakage magnetic field at the substrate surface position is the same direction even when the substrate 81 is rotated. Magnetic field applying means 8 13 composed of a permanent magnet to be applied was arranged. Base holder 8 0
2の回転、 シャツタ 8 0 4の開閉は、 回転導入機 (不図示) を介して、 ステツピ ングモ—ター (不図示) で制御した。 The rotation of 2 and the opening and closing of the shirt 804 were controlled by a stepping motor (not shown) via a rotation introducing machine (not shown).
実施例 以下に実施例をあげて本発明をより詳細に説明するが、 本発明はこれらの実施 例に限定されるものではない。 (実施例 1 ) EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. (Example 1)
本例では、 図 7に示す対向ターゲット式スパッタリング装置を用い、 膜中に含 まれる炭素 (C) 含有量が 4原子% (a t%) であり残部鉄 (F e) からなる膜 組成の磁性層 1 1を基体 10の上にスパッタリング法で直接堆積させて図 2に示 す層構成の試料 S 1を作製した。  In this example, using a facing target type sputtering apparatus shown in FIG. 7, the carbon (C) content in the film was 4 atomic% (at%) and the balance was iron (Fe). The layer 11 was directly deposited on the substrate 10 by a sputtering method to produce a sample S1 having a layer configuration shown in FIG.
その際、 以下の 3点を変えて試料 S 1を作製した。  At that time, sample S1 was prepared by changing the following three points.
(1) プラズマ P 1の濃度勾配が生じている方向に沿って基体 70 1 aを移動 ( 図 7の矢印 できる基体保持手段 703 aにより、 炭化鉄膜を設ける基体 7 0 1 a表面が曝されるプラズマの電子密度 N eを 4条件 (7 X I 0s cm一3、 2 X 1 09 c m一3、 1 X 1 010 cm~ 7 X 1010 cm-3) に変えて成膜した。 (1) The substrate 701a is moved along the direction in which the concentration gradient of the plasma P1 is generated (the surface of the substrate 701a on which the iron carbide film is provided is exposed by the substrate holding means 703a, which can be arrowed in FIG. 7). It was formed by changing that plasma electron density N e in four conditions (7 XI 0 s cm one 3, 2 X 1 0 9 cm one 3, 1 X 1 0 10 cm ~ 7 X 10 10 cm -3).
但し、 プロセスガスの圧力などを調整することにより、 プラズマの電子温度 丁 6は約0. l e Vに固定した。  However, the electron temperature of the plasma was fixed at about 0.1 leV by adjusting the pressure of the process gas.
(2) 炭化鉄膜からなる磁性層 1 1をスパッタ法で形成する際に、 基体ホルダー 70 2が内蔵する基体を加熱処理、 冷却処理または定温保持する機能を備えた温 度制御手段を用いて炭化鉄膜を設ける基体 70 1 aの温度を 0°C〜 200°Cの範 囲で変化させた。  (2) When forming the magnetic layer 11 made of an iron carbide film by a sputtering method, a temperature control means having a function of heating, cooling, or maintaining a constant temperature of the substrate built in the substrate holder 702 is used. The temperature of the substrate 701a on which the iron carbide film was provided was changed in the range of 0 ° C to 200 ° C.
(3) プラズマの電子密度 N eが 1 X 1 01 Q c π 3の場合のみ、 炭化鉄膜中の 炭素含有量 Xを 0. 7 9、 2、 3、 4、 6 ( a t %) と変えた試料を作製した。 図 2は本例に係る磁性薄膜試料の層構成を示す模式的な断面図であり、 1 0は 基体、 1 1は磁性層である。 (3) Only when the electron density N e of the plasma is 1 X 101 Q c π 3 , the carbon content X in the iron carbide film is 0.79, 2, 3, 4, 6 (at%). A modified sample was prepared. FIG. 2 is a schematic cross-sectional view showing the layer configuration of the magnetic thin film sample according to the present example, where 10 is a substrate, and 11 is a magnetic layer.
基体 1 0としてはガラス基板 (コ^ "ユング社製、 # 70 5 9) を用い、 作製す る磁性層 1 1の膜組成は、 成膜に用いた炭化鉄 (F e—C) 合金からなる第一タ —ゲット 70 9 a、 70 9 bの組成を適宜変更してスパッタすることにより F e —4 a t。/0Cとした。 図 7の装置において、 炭化鉄膜 (α ' — F e— C膜) から なる磁性層 1 1を形成する F e C成膜室 7 0 5の到達真空度は 1 0— 7 Torr 合 (lTorr-約 1 3 3 P a) に固定し、 成膜時には磁場印加手段 7 1 0を用い、 基 体 7 0 1 aの成膜面に平行で一方向に磁場 [強度: 3 0〜5 0 gauss (G) ] を印加した。 また、 成 Ji莫前には、 基体ホルダ一 702が内蔵する温度制御竿段を 用いて、 基体 7 O l aを真空中で 200°C、 2時間の加熱処理を行った後、 基体 70 1 aを 0°C〜200°Cの所望の一定温度まで冷却してから、 この温度に保つ た基体 70 1 a上に組成が F e - 4 a セ%。の"' 一 F e— C膜を堆積させた。 なお、 本例では真空溶解法で作製した F eと Cからなる合金ターゲットを用い てび ' -F e一 C膜を成膜したが、 合金タ ザッ卜に代えて焼結法で作製した F eと Cからなるターゲット、 若しくは F eタ ゲット上に Cチップを埋め込み設 置した複合ターゲットなどを用いても構わない。 また、 C元素を含むプロセスガ スと F eターゲットを用い、 α' — F e— C膜を作製する手法を用いてもよい。 表 1は、 本例の磁性薄膜すなわち試料 S 1を製造する際の成膜条件である。 The substrate 10 was a glass substrate (Ko-Jung Co., # 7059). The film composition of the magnetic layer 11 was made from the iron carbide (Fe-C) alloy used for the film formation. the apparatus of the composition of the target 70 9 a, 70 9 b appropriately changed and the F e -4 at./ 0 C by sputtering 7, iron carbide film (alpha '- - becomes the first data. F e- F e C film forming chamber 7 0 5 ultimate vacuum forming the magnetic layer 1 1 made of a C film) was fixed to 1 0- 7 Torr case (LTorr- about 1 3 3 P a), the deposition Occasionally, a magnetic field applying means 710 was used to apply a magnetic field [intensity: 30 to 50 gauss (G)] in one direction parallel to the film-forming surface of the base 701a. The temperature control rod stage built in the base holder 702 After heating the substrate 7 Ola in a vacuum at 200 ° C. for 2 hours, the substrate 701 a is cooled to a desired constant temperature of 0 ° C. to 200 ° C., and then heated at this temperature. The composition on the substrate 70 1 a is F e-4 a%. The "-Fe-C film was deposited. In this example, the -Fe-C film was formed using an alloy target composed of Fe and C manufactured by the vacuum melting method. Instead of the alloy tab, a target made of Fe and C produced by a sintering method, or a composite target in which a C chip is embedded on the Fe target may be used. A method for producing an α'-Fe-C film using a process gas including the Fe target may be used.Table 1 shows the film forming conditions for manufacturing the magnetic thin film of this example, that is, the sample S1. is there.
「表 1 J `` Table 1 J
項 目 設 定 値  Item setting value
成膜方法 対向ターゲット式スパッタリング法 基体の材質 ガラス (# 70 5 9)  Film formation method Opposite target sputtering method Substrate material Glass (# 70 59)
基体の形状 8 mm角  Substrate shape 8 mm square
基体の表面形状 鏡面加工処理、 R a < 1 nm  Surface shape of substrate Mirror finish, Ra <1 nm
第一成膜室の到達真空度 1 0 jorr台  Degree of ultimate vacuum of the first deposition chamber 10 jorr level
プロセスガス A rガス  Process gas Ar gas
A rガス中の不純物濃度 1 10 ppb以下  Impurity concentration in Ar gas 1 10 ppb or less
A rガス圧 1〜 5 OmTorr (l.33〜66.5Pa)  Ar gas pressure 1-5 OmTorr (l.33-66.5Pa)
'電子密度 N e 4条件 (7 X 1 0scnT3、 2 X 1 09cm"\ 'Electron density N e 4 condition (7 X 10 s cnT 3 , 2 X 10 9 cm "\
1 X 1010cm一3、 7 1010cm- 3) 1 x 10 10 cm 1-3 , 7 10 10 cm- 3 )
)電子温度 T e 約 0. 1 e V:固定  ) Electron temperature T e about 0.1 e V: fixed
墓体表面の保持温度 200°C (前処理)  Retention temperature of tomb body surface 200 ° C (pretreatment)
0〜2 0 0°C(o; ' -F e— C膜作製時) ターゲッ卜の材料 Fe-C (G=4at。ん残部 Fe) :N e可変の場合  0 to 200 ° C (o; '-F e-C film production) Target material Fe-C (G = 4at; balance Fe): Ne variable
Fe-C (C=0.79, 2, 3, 4, 6at0/o,残部 Fe) : Ne (- 1 X 1 0 I 0cm"3) 固定の場合 タ一ゲットの純度 3 N (FeC) タ一ゲットの形状 円形 Fe-C (C = 0.79, 2, 3, 4, 6 at 0 / o, balance Fe): When fixed to Ne (-1 X 10 I 0 cm " 3 ) Target purity 3 N (FeC) Target shape Round
ターゲット直径 t 1 9 Omm  Target diameter t 19 Omm
ターゲット間距離 t 2 1 0 Omm  Distance between targets t 2 10 Omm
ターゲット中心と基体との距離 t 3 9 Omm  Distance between target center and substrate t 3 9 Omm
ターゲットへの投入パヮ一 直流 200 W (Fe-C)  Input power to target DC 200 W (Fe-C)
基体に対する磁場印加 印加方向:基体の成膜面に平行で一方向  Application of magnetic field to substrate Application direction: One direction parallel to film formation surface of substrate
(ターゲット間の中心軸にほぼ平行方向) 磁場の強さ : 3 0〜 5 0 G  (Approximately parallel to the center axis between targets) Magnetic field strength: 30 to 50 G
'作製した膜厚 30 Onm (Fe-C)  '' Thickness of 30 Onm (Fe-C)
-成膜速度 0. 5 nm/sec (Fe-C) 以下では、 本例に係る炭化鉄膜 (ひ ' 一 F e— C膜) の作製方法について、 N eを可変とした場合を例にとり説明する。 以下の括弧付き番号は、 その手順を表 す。  -Film formation rate 0.5 nm / sec (Fe-C) Below, the method of manufacturing the iron carbide film (Hi-Fe-C film) according to the present example is based on the case where Ne is variable. explain. The numbers in parentheses below indicate the steps.
なお、 α' — F e— C膜の組成を変更する場合は、 N eを 1 X 1 01 (5 cm— 3 に固定し、 C = 0. 7 9, 2, 3, 4, 6a"t°/0、 残部 F eと組成が異なる F e— Cタ ゲットを用いた点が異なる。 When changing the composition of the α'-Fe-C film, fix Ne to 1 X 101 (5 cm- 3 , and C = 0.79, 2, 3, 4, 6a " The difference is that a Fe-C target with a composition different from t ° / 0 and the balance Fe was used.
(a 1) 所定の冼浄処理を終えたガラスからなる基体 70 1を基体ホルダ 70 2に取り付け、 不図示のロードロック室の中にある基体支持台に配設した後、 口 ードロック室内を減圧した。  (a 1) A base 701 made of glass having been subjected to a predetermined cleaning treatment is attached to a base holder 702, and is disposed on a base support in a load lock chamber (not shown). did.
(a 2) ロードロック窒の内圧が 1 0— eTorr台となった後、 ロードロック室と スパッタ室 700とを仕切るゲ一トバルブ (不図示) を開き、 ロードロック室か ら、 常時 1 0— 7Torr台の減圧状態にあるスパッタ室 7 00の中へ、 基体を移動 させる手段 (不図示) を用いて、 基体 70 1がセッ卜された基板ホルダ一 702 を基体保持手段 70 3上に移動させた。 その後、 ゲートバルブは閉じた。 (a 2) After the internal pressure of the load lock chamber reaches 10— e Torr, open the gate valve (not shown) that separates the load lock chamber from the sputter chamber 700, and always open the load lock chamber from the load lock chamber. — Using a means (not shown) for moving the substrate into the sputtering chamber 700 in a 7 Torr depressurized state, the substrate holder 702 on which the substrate 701 is set is placed on the substrate holding means 703. Moved. After that, the gate valve was closed.
基体保持手段 70 3は、 スパッタ室 700の中央部に配置されており、 材質が SU Sからなる回転可能な機能を備えた回転移動手段 704に固定されている。 ここで、 中央部とは、 シャツタ 70 7 a、 70 7 b及び防着板 708 a、 70 8 bにより、 α' — F e— C膜形成用の成膜空間 1と F e膜形成用の成臌空問 2 との間に設けられた空間を指す。 The substrate holding means 703 is arranged at the center of the sputtering chamber 700, and is fixed to a rotation moving means 704 having a rotatable function made of a material of SUS. Here, the central portion is defined as a film forming space 1 for forming an α′—Fe—C film and a film forming space 1 for forming an Fe film by the shirts 70 7 a and 70 7 b and the deposition preventing plates 708 a and 708 b. Growth Question 2 Refers to the space provided between
(a 3) 回転移動手段 704を用いて基体 70 1 aを α' — F e— C膜形成用の 第一成膜室 705の側に移動し、 基体ホルダー 702 aが内蔵する温度制御手段 を用いて、 基体 70 1 aを 200°Cで加熱処理した。 その際、 シャツタ 70 7 a は閉じた状態とした。  (a 3) The substrate 701 a is moved to the side of the first film forming chamber 705 for forming an α′—Fe—C film by using the rotation moving means 704, and the temperature control means built in the substrate holder 702 a is moved. The substrate 701a was subjected to a heat treatment at 200 ° C. At that time, the shirt 70 7 a was closed.
(a 4) その後、 基体ホルダー 70 2 aが内蔵する温度制御手段を用いて、 基体 70 1 aの温度を 0°C〜200 °Cの間の一定温度に変更し、 その温度を保持した  (a 4) Thereafter, the temperature of the substrate 701 a was changed to a constant temperature between 0 ° C. and 200 ° C. by using the temperature control means built in the substrate holder 70 2 a, and the temperature was maintained.
(a 5) 次いで、 第一成膜室 70 5の中へ、 適当な流量の A rガスを導入し、 成 膜時のガス圧を lmTorr〜5 OmTorrの間の一定値とした。 (a5) Next, Ar gas at an appropriate flow rate was introduced into the first film forming chamber 705, and the gas pressure during film formation was set to a constant value between lmTorr and 5 OmTorr.
(a 6) F e— Cターゲット 70 9 a、 70 9 bが設置されたカソ ド 7 1 6 a 、 7 1 6 bに、 直流電、源 7 14から任意の電圧を印加してプラズマ: P 1を発生さ せた。 これにより、 F e— Gターゲット 70 9 a、 70 9 bがスパッタリングさ れている状態とした。  (a 6) Fe-C targets 709 a and 709 b are installed on the cathodes 7 16 a and 7 16 b by applying an arbitrary voltage from DC power source 714 to plasma: P 1 Occurred. As a result, the Fe—G targets 709a and 709b were sputtered.
その際、 基体保持手段 70 3 aを用いて、 プラズマの濃度勾配が生じている方 向に沿って基体 70 1 aを移動 (図 7の矢印 αの方向) させ、 基体 70 1 aの表 面が曝されるプラズマの電子密度 N eを 4条件 (7 X 1 08 c m 3、 2 X 1 09 cm一3、 l X l O ^ cm-3 Y X l O ^ cnT3) のうちの一つとした。 但し、 プロセスガスの圧力などを調整することにより、 プラズマの電子温度 T eは約 0 . 1 e Vに固定した。 At this time, the substrate 701 a is moved (in the direction of the arrow α in FIG. 7) along the direction in which the plasma concentration gradient is generated using the substrate holding means 703 a, and the surface of the substrate 701 a is moved. 4 conditions electron density N e of the plasma is exposed (7 X 1 0 8 cm 3 , 2 X 1 0 9 cm one 3, l X l O ^ cm -3 YX l O ^ cnT 3) one of One. However, the electron temperature T e of the plasma was fixed at about 0.1 eV by adjusting the pressure of the process gas.
(a 7) 上記 (a 6) の状態を維持したまま、 シャツタ 70 7 aを開口し、 対向 した F e— C合金からなる第一ターゲット 70 9 a、 70 9 bの中心線と平行し た位置にある基体 70 1 aの表面上に、 膜厚 300 nmの α' — F e— C膜から なる磁性層を形成した。 膜厚は、 シャツタ 70 7 aの開口している時間によって 制御した。  (a 7) While maintaining the state of (a 6) above, the shirt 7070 a was opened, and was parallel to the center line of the opposing first targets 70 9 a and 709 b made of the Fe—C alloy. On the surface of the substrate 701a at the position, a magnetic layer made of an α'-Fe-C film having a thickness of 300 nm was formed. The film thickness was controlled by the opening time of the shirt 707a.
上記工程 (a 1) 〜 (a 7) により、 基体 70 1 aの表面が曝されるプラズマ の電子密度 N eを 4条件 (7 X 1 08 c m— 3、 2 X 1 09 c m"\ 1 X 1 010 c m一3、 7 1 010 c m"3) とした複数の試料 S 1を作製した。 図 4は、 実施例 1において、 プラズマの電子密度 N eを 1 X 1 0 — 3とし て作製した α ' — F e—C膜の試料 S 1の結晶構造を、 線源として (C o— Κα ) を用いた X線回折法により調べた結果を示すグラフである。 (a) には膜中の 炭素含有量 Xが 4 a t °/0の試料 S 1の結果と共に、 比較のため純鉄のターゲット を用いて作製した F e膜からなる試料 S Fの結果も同時に示した。 (b) は膜中 の炭素含有量 Xを 0. 7 9、 2、 3、 4、 6 a t %と変えて作製した試料 S 1の 結果である。 By the above steps (a1) to (a7), the electron density N e of the plasma to which the surface of the substrate 701a is exposed is changed under four conditions (7 × 10 8 cm— 3 , 2 × 10 9 cm ” the 1 X 1 0 10 cm one 3, 7 1 0 10 cm " 3) and a plurality of sample S 1 that was produced. 4, in Example 1, the electron density N e of the plasma 1 X 1 0 - was prepared by a 3 alpha '- crystal structure of the sample S 1 of F e-C film, as a radiation source (C o- It is a graph which shows the result of having investigated by the X-ray-diffraction method using (alpha)). (A) shows the results of sample S1 consisting of a Fe film fabricated using a pure iron target, as well as the results of sample S1 with a carbon content X of 4 at ° / 0 in the film. Was. (B) is the result of sample S1 prepared by changing the carbon content X in the film to 0.79, 2, 3, 4, and 6 at%.
図 4 (a) より、 作製した ' 一 F e— C膜の試料 S 1と比較のため作製した 鉄膜からなる試料 S Fは、 回折線が観測される角度が違うことから結晶形態が異 なることが判明した。  As shown in Fig. 4 (a), the sample SF made of iron film prepared for comparison with the sample S1 made of '1-Fe-C film has a different crystal morphology because the angle at which diffraction lines are observed is different. It has been found.
また図 4 ( b ) に示した、 膜中の炭素含有量 Xを 0. 7 9、 2、 3、 4、 6 a t °/0と変えて作製した試料 S 1の結果より、 その回折線は 2 Θが 70° 〜7 7° の範囲で得られ、 2 Θが 20° ~1 1 5。 の範囲では他の回折線は観測されない ことが分かった。 そして、 この α' (00 2) からの回折線は、 膜中の炭素含有 量が增ぇるにつれて 2 Θの低角側にシフ卜する傾向が認められ、 このシフトは ( 00 2) 格子空間の増加を示唆している。 In addition, from the result of sample S1 shown in FIG. 4 (b) in which the carbon content X in the film was changed to 0.79, 2, 3, 4, 6 at ° / 0 , the diffraction line was 2Θ is obtained in the range of 70 ° to 77 °, and 2Θ is 20 ° to 115. It was found that other diffraction lines were not observed in the range. The diffraction line from α ′ (002) tends to shift toward the low angle side of 2 mm as the carbon content in the film increases, and this shift is caused by the (002) lattice space. Suggests an increase.
ただし、 ここではプラズマの電子密度 N eを 1 X 1 0 '。cm— 3として作製した a ' — F e— C膜の試料 S 1について詳述したが、 (002) からの回折線 の強度が弱まる条件 (例えば Ne = 5 X 1 01 () Cm_3) で作製すると、 ひ' (0 0 2) からの回折線の強度が低下すると共に、 高角側に肩部が観測される傾向が ある。 そして、 この肩部の面積が増えるにつれて、 保磁力 Heが増加することか ら However, here, the electron density of the plasma Ne is 1 X 10 '. a 'was produced as cm- 3 - F e- C film sample S 1 has been described in detail in, strength weakened condition of the diffraction line from the (002) (e.g., Ne = 5 X 1 0 1 ( ) C m_ 3 ), The intensity of the diffraction line from '′ (0 2) decreases, and the shoulder tends to be observed on the high angle side. And as the area of this shoulder increases, the coercive force He increases
、 あまり大きな肩部の存在は芳しくない。 逆に言うと、 この肩部を定量的に捉え ることで、 所望の磁気特性の磁性薄膜が製造できたか否かを容易に判別すること ができることから、 安定した製造工程を構築する上で有効な情報として活用でき る e The presence of a very large shoulder is not good. Conversely, by quantitatively capturing this shoulder, it is possible to easily determine whether or not a magnetic thin film having desired magnetic properties has been manufactured, and this is effective in constructing a stable manufacturing process. E that can be used as important information
このように α' (002) からの回折線で特定される α' — F e— C膜の試料 S 1を、 成膜する際にプラズマの電子密度 N eを 4条件 (7 X 1 08 cm— 3、 2 X 1 09 c m~ l X l O ^ c m— 3、 7 X 1 010 c m— 3) に変えて作製した 結果を示すグラフが図 1である。 As described above, when the sample S 1 of the α′—F e—C film specified by the diffraction line from α ′ (002) is formed, the electron density N e of the plasma is determined under four conditions (7 × 10 8 cm- 3, 2 X 1 0 9 cm ~ l X l O ^ cm- 3, 7 X was prepared by changing to 1 0 10 cm- 3) Fig. 1 shows the results.
図 1は、 炭化鉄膜を作製するときの基体温度と得られた炭化鉄膜の (002) 面の X線強度との関係を示すグラフであり、 縦軸の X線強度は、 各基体温度で作 製した炭化鉄膜の (002) 面からの回折線強度 Iを、 (002) 面からの回折 線強度が最大となった基体温度 (例えば、 Ne = l X l (T。 cnT3 の場合は 、 基体温度 = 25°C) の数値 I max で割った値で示した。 また、 図中の括弧内 には作製した炭化鉄膜の表面粗さ R aを in - site型の S TM (走査トンネル顕微 鏡) で測定した値を示した。 ここでは、 減圧雰囲気でその場観測の可能な in- sit e型の STMを用いたが、 例えば大気圧雰囲気下に試料を取り出してから、 例え ば AFM (原子間力顕微鏡) などを用い同様の測定をしても構わない。 図 1において、 点線は N e = 7 X 10ュ Q c m— 3 の場合を、 実線は N e - 1 X 10ュ。 c m— 3 の場合を、 一点鎖線は Ne = 2 X 109cm— 3 の場合を、 二 点鎖線は 7 X 108 c ιι 3 の場合を示す。 Fig. 1 is a graph showing the relationship between the substrate temperature when producing an iron carbide film and the X-ray intensity of the (002) plane of the obtained iron carbide film. The intensity of the diffraction line I from the (002) plane of the iron carbide film prepared in step (1) is changed to the substrate temperature at which the intensity of the diffraction line from the (002) plane is maximized (for example, Ne = l Xl (T.cnT 3 In this case, the value was divided by the value I max of the substrate temperature = 25 ° C. In the parentheses in the figure, the surface roughness Ra of the produced iron carbide film was indicated by the in-site type STM. (Scanning tunneling microscope) The values shown here were obtained using an in-situ STM that allows in-situ observation in a reduced-pressure atmosphere. For example, the same measurement may be performed using an AFM (Atomic Force Microscope), etc. In Fig. 1, the dotted line indicates the case of N e = 7 X 10 Q cm— 3 , and the solid line indicates N e-1 X Ten Interview. Cm- 3 of the case, the case of the dashed line Ne = 2 X 10 9 cm- 3 , the two-dot chain line shows the case of a 7 X 10 8 c ιι 3.
まず、 図 1に示した N e = 1 X 101Q cm一3 の場合 (実線:試料 S 1 a ) より、 以下の点が明らかとなった。 First, the case of N e = 1 X 10 1Q cm one 3 shown in Figure 1: from (solid sample S 1 a), the following points became clear.
(1) 基体温度を 5°C以上 100°C以下とした場合、 Imax の 8割以上となる X線強度が観測されることから、 所望の α, 一 F e— C膜がかなり安定して得ら れる。 その際、 作製した — F e— C膜の表面粗さ R aは 0. 2~0. 3 nm である。  (1) When the substrate temperature is 5 ° C or higher and 100 ° C or lower, an X-ray intensity of 80% or more of Imax is observed, so that the desired α, 1-Fe-C film is considerably stable. can get. At this time, the surface roughness Ra of the produced —F e—C film is 0.2 to 0.3 nm.
(2) これに対して、 基体温度が 125 °Cから 200°Cのときは、 温度が増すに つれて (002) 面からの回折線強度が急激に小さくなる。 これより、 作製した 炭化鉄膜が所望の結晶構造から乖離する傾向にあると考えた。  (2) On the other hand, when the substrate temperature is between 125 ° C and 200 ° C, the diffraction line intensity from the (002) plane rapidly decreases as the temperature increases. From this, it was considered that the produced iron carbide film tended to deviate from the desired crystal structure.
(3) また基体温度を 10°C以上 70 C以下とした場合は、 X線強度が Imax の 9割以上になることから、 所望の α' — F e— C膜が一段と安定して得られる のでより好ましい。  (3) When the substrate temperature is 10 ° C or more and 70 ° C or less, since the X-ray intensity becomes 90% or more of Imax, the desired α'-Fe-C film can be obtained more stably. It is more preferable.
また、 N e = 1 X 1010 cm— 3 の場合 (実線:試料 S 1 a ) と、 N e = 7 X 1010 cm"3 の場合 (点線:試料 S 1 b) とを比較することにより、 以下 の点が明らかとなった。 (4) 試料 S I a (実線) より大きな電子密度 Neのプラズマを用いて作製した 試料 S 1 b (点線) では、 Imax の 8割以上あるいは 9割以上となる X線強度 が観測される基体温度の上限値は、 40°Cほど低温側にシフトする。 また、 基体 温度が 60°Cを越えると (00 2) 面の X線強度が急激に低下する。 その際、 作 製した α' — F e— C膜の表面粗さ R aは 0. 5 n mより大きくなることから、 粗面化が進み、 平坦性の劣化が生じている。 Also, by comparing the case of Ne = 1 × 10 × 10 cm— 3 (solid line: sample S 1 a) with the case of Ne = 7 × 10 10 cm ″ 3 (dotted line: sample S 1 b), However, the following points became clear. (4) Sample S1b (dotted line) prepared using plasma with an electron density Ne higher than that of sample SIa (solid line) shows the substrate temperature at which X-ray intensity of 80% or more or 90% or more of Imax is observed. The upper limit value shifts to the lower temperature side by about 40 ° C. When the substrate temperature exceeds 60 ° C., the X-ray intensity of the (002) plane rapidly decreases. At this time, the surface roughness Ra of the produced α'-Fe-C film is larger than 0.5 nm, so that the surface is roughened and the flatness is deteriorated.
更に、 N e - l X l O ^ cm一3 の場合 (実線:試料 S 1 a ) と、 Ne = 2 X 1 09 cm—3 の場合 (一点鎖線:試料 S 1 c) 及び 7 X 1 08 cm— 3 の場合 (二点鎖線:試料 S i d) とを比較することにより、 以下の点が明らかとなった Furthermore, N e - l X l O ^ cm one 3 when: (solid line sample S 1 a), Ne = 2 X 1 0 9 cm- 3 in the case (one-dot chain line: the sample S 1 c) and 7 X 1 By comparing with the case of 0 8 cm- 3 (two-dot chain line: sample Sid), the following points became clear.
(5) 試料 S l a (実線) より小さな電子密度 Neのプラズマを用いて作製した 試料 S i c (—点鎖線) 及び試料 S i d (二点鎖線) では、 Imax の 8割以上 あるいは 9割以上となる X線強度が観測される基体温度の上限値は 20〜 3 0°C ほど高温側にシフトする。 この基体温度の上限値を、 プラズマの電子密度の異な る 4つの試料間で比較すると、 試料 S i c (—点鎖線) において極大となる。 そ の際、 作製した α' — F e— C膜の表面粗さ R aは 0. l nmより小さくなり、 平坦性が著しく改善される。 (5) Samples Sic (dashed-dotted line) and Sample Sid (dotted-dotted line) prepared using plasma with electron density Ne smaller than sample Sla (solid line) have more than 80% or 90% of Imax. The upper limit of the substrate temperature at which the following X-ray intensity is observed shifts to a higher temperature side by about 20 to 30 ° C. When the upper limit of the substrate temperature is compared among four samples having different electron densities of the plasma, the maximum value is obtained in the sample S ic (the dotted line). At that time, the surface roughness Ra of the produced α'-Fe-C film becomes smaller than 0.1 nm, and the flatness is remarkably improved.
(6) 試料 S i c (—点鎖線) は、 Imax の 8割以上あるいは 9割以上となる X線強度が観測される基体温度の下限値も、 試料 S 1 a (実線) より低温側にシ ブトする。 つまり、 他の 3つのプラズマ条件による試料に比べて、 基体温度がよ り低温においても所望の結晶形態からなる磁性薄膜が安定して得られることを意 味する。 上記 (1) 〜 (6) の結果より、 減圧空間内に配置した基体上に、 プロセスガ スを用いて該基体の堆積面に与えるプラズマダメージの小さなプラズマ、 例えば プラズマの電子密度が 2 X 1 09 c m— 3 程度のプラズマを生起させ、 該プラズ マと磁性薄膜の形成用の母材源とを利用して、 前記基体上に少なくとも炭素と鉄 を構成元素とし、 α ' 相単相からなる炭化鉄膜を形成する工程を備えた磁性簿膜 の製造方法によれば、 所望の α ' 相単相からなる炭化鉄膜が得られる基体温度の 範囲を、 より広く設定可能なことが明らかとなった。 また、 上記プラズマダメー ジの小さなプラズマを利用する製造方法によれば、 作製した炭化鉄膜の表面粗さ も著しく抑えられることから、 この炭化鉄膜は基体の表面形状に沿って追従性よ く形成できる利点もある。 従って、 本発明によれば、 基体を構成する材質やその表面形状に束縛されない 製造プロセスを構築可能な磁性薄膜の製造方法を提供できる。 (6) The lower limit of the substrate temperature at which the X-ray intensity is 80% or more or 90% or more of Imax is lower than that of sample S1a (solid line). To buzz. In other words, it means that a magnetic thin film having a desired crystal morphology can be stably obtained even at a lower substrate temperature than the sample under the other three plasma conditions. From the results of the above (1) to (6), it is found that a plasma having a small plasma damage applied to the deposition surface of the substrate by using a process gas on the substrate disposed in the reduced pressure space, for example, the electron density of the plasma is 2 × 10 A plasma of about 9 cm— 3 is generated, and a single phase of α ′ phase is formed on the substrate using at least carbon and iron as constituent elements by using the plasma and a base material source for forming a magnetic thin film. According to the method of manufacturing a magnetic film having a step of forming an iron carbide film, the temperature of the substrate at which a desired iron film consisting of a single α 'phase is obtained can be reduced. It became clear that the range could be set wider. In addition, according to the above-described manufacturing method utilizing plasma having a small plasma damage, the surface roughness of the manufactured iron carbide film is significantly suppressed, so that the iron carbide film has good followability along the surface shape of the substrate. There are also advantages that can be formed. Therefore, according to the present invention, it is possible to provide a method of manufacturing a magnetic thin film capable of constructing a manufacturing process that is not restricted by the material constituting the base or the surface shape thereof.
言い換えれば、 本発明によれば、 所望の α ' 相単相からなる炭化鉄膜を作製す るために、 基体温度を狭い範囲にそれほど限定する必要が無くなる。  In other words, according to the present invention, it is not necessary to limit the substrate temperature to a narrow range so much in order to produce a desired iron carbide film composed of a single α 'phase.
つまり、 上記構成とした磁性薄膜の製造方法によれば、 成膜温度差に起因した 問題、 すなわち炭化鉄膜を堆積させる基体の表面材質や表面形状の違いにより生 じる磁性薄膜の堆積面における温度差に起因して、 α ' 相単相からなる炭化鉄膜 が安定して得られる基体の温度範囲が狭いという問題、 を大幅に改善できる。 また、 α ' 相単相からなる炭化鉄膜が安定して得られる成膜時の基体温度が従 来より広いということは、 本発明に係る炭化鉄膜を製造する条件が緩和されるこ とを示唆するので、 製造マージンが広がると共に、 大量生産した際には低コスト 化にも寄与できる。  In other words, according to the method of manufacturing a magnetic thin film having the above-described structure, the problem caused by the difference in film formation temperature, that is, the difference in the surface material and surface shape of the substrate on which the iron carbide film is deposited is caused on the deposition surface of the magnetic thin film. Due to the temperature difference, the problem that the temperature range of the substrate on which the iron carbide film composed of the α′-phase single phase can be stably obtained is narrow can be greatly improved. In addition, the fact that the substrate temperature at the time of film formation in which an iron carbide film composed of an α′-phase single phase can be stably obtained is wider than before, which means that the conditions for producing the iron carbide film according to the present invention are relaxed. This means that the production margin can be expanded, and that mass production can contribute to lower costs.
(実施例 2 ) (Example 2)
本例では、 炭化鉄膜を設ける基体 7 0 1 a表面が曝されるプラズマの電子密度 N eを 3 X 1 0 8 c m _ 3〜 7 X 1 0 1 Q c m 3 の範囲で変えて、 含有量が 4原子 % ( a t %) であり残部鉄 (F e ) からなる膜組成の磁性層 1 1を基体 1 0の上 にスノ、。ッタリング法で直接堆積させ、 図 2に示す層構成の試料 S 2を作製した。 他の点は実施例 1と同様とした。 In this example, the electron density Ne of the plasma to which the surface of the substrate 701a on which the iron carbide film is to be exposed is exposed is changed in the range of 3 × 10 8 cm — 3 to 7 × 10 1 Q cm 3 to contain A magnetic layer 11 having a film composition of 4 atomic% (at%) and a balance of iron (F e) was formed on a substrate 10. The sample was deposited directly by the sputtering method to produce a sample S2 having a layer configuration shown in FIG. Other points were the same as in Example 1.
図 5は、 炭化鉄膜を作製するときのプラズマの電子密度 N eと得られた炭化鉄 腠の (0 0 2 ) 面の X線強度との関係を示すグラフである。 縦軸の X線強度は、 各プラズマの電子密度で作製した炭化鉄膜の (0 0 2 ) 面からの回折線強度 Iを 、 ( 0 0 2 ) 面からの回折線強度が最大となったプラズマの電子密度 N e = 2 X 1 0 9 c m— 3の場合の数値 I maxで割った値で示した。 図 5より、 プラズマの電子密度を 7 X 1 08 c m— 3以上 2. S X l O ^ c m— 3 以下とした場合、 I max の 8割以上となる X線強度が観測されることから、 所 望の α ' — F e—C膜がかなり安定して得られることが分かった。 これに対して 、 プラズマの電子密度が 3 X 1 0 ]° cm— 3以上のときは、 電子密度が増すにつ れて (00 2) 面からの回折線強度が急激に小さくなることから、 作製した炭化 鉄膜が所望の結晶構造から乖離する傾向にあると考えた。 この傾向は、 プラズマ の電子密度を 6 X 10s c m一3 以下とした場合にも見られた。 また、 プラズマ の電子密度を 1 X 1 09 c m—3以上 1 X 1 0 ' ° c m— 3以下とした場合は、 X線強 度が I max の 9割以上になることから、 所望の α ' — F e— C膜が一段と安定 して得られるのでより好ましい。 FIG. 5 is a graph showing the relationship between the electron density Ne of the plasma and the X-ray intensity of the (002) plane of the obtained iron carbide when producing the iron carbide film. The X-ray intensity on the vertical axis shows that the diffraction line intensity I from the (002) plane and the diffraction line intensity from the (002) plane of the iron carbide film produced at the electron density of each plasma became the maximum. It expressed by the value obtained by dividing the numerical value I max in the case of the electron density of the plasma N e = 2 X 1 0 9 cm- 3. From Fig. 5, when the electron density of the plasma is set to 7 X 10 8 cm- 3 or more and 2. SX l O ^ cm- 3 or less, X-ray intensity that is 80% or more of I max is observed. It was found that the desired α'-Fe-C film could be obtained quite stably. On the other hand, when the electron density of the plasma is 3 × 10 ] ° cm- 3 or more, the diffraction line intensity from the (002) plane rapidly decreases as the electron density increases. It is considered that the produced iron carbide film tends to deviate from the desired crystal structure. This trend was also seen in the case of the electron density of the plasma and 6 X 10 s cm one 3 below. Also, if the electron density of the plasma was 1 X 1 0 9 cm- 3 or more 1 X 1 0 '° cm- 3 or less, since the X-ray strength degree equal to or greater than 90% of I max, the desired α '— F e — C film is more preferable because it can be obtained more stably.
(実施例 3 ) (Example 3)
本例では、 炭化鉄膜を設ける基体 70 1 a表面が曝されるプラズマの電子温度 T eを 2 X 1 0— 3 e V〜7 e Vの範囲で変えて、 含有量が 4原子。/。 (a t %) であり残部鉄 ( F e ) からなる膜組成の磁性層 1 1を基体 1 0の上にスパッタリ ング法で直接堆積させ、 図 2に示す層構成の試料 S 3を作製した。 その際、 ブラ ズマの電子密度 N eは約 3 X 109 c m— 3に固定した。 In this example, by changing the electron temperature T e of the plasma substrate 70 1 a surface providing an iron carbide film is exposed in a range of 2 X 1 0- 3 e V~7 e V, the content of 4 atomic. /. A magnetic layer 11 (at%) having a film composition of iron (F e) was directly deposited on the substrate 10 by a sputtering method to produce a sample S3 having a layer configuration shown in FIG. At that time, the electron density N e of the plasma was fixed at about 3 × 10 9 cm— 3 .
他の点は実施例 1と同様とした。 図 6は、 炭化鉄膜を作製するときのプラズマの電子温度 T eと得られた炭化鉄 膜の (00 2) 面の X線強度との関係を示すグラフである。 縦軸の X線強度は、 各プラズマの電子温度で作製した炭化鉄膜の (002) 面からの回折線強度 Iを 、 (00 2) 面からの回折線強度が最大となったプラズマの電子温度 T e = 1 X 1 0— 1 e Vの場合の数値 I maxで割った値で示した。 Other points were the same as in Example 1. FIG. 6 is a graph showing a relationship between the electron temperature Te of the plasma when the iron carbide film is produced and the X-ray intensity of the (002) plane of the obtained iron carbide film. The X-ray intensity on the vertical axis indicates the diffraction line intensity I from the (002) plane of the iron carbide film prepared at the electron temperature of each plasma, and the electron intensity of the plasma whose diffraction line intensity from the (002) plane was the maximum. It expressed by the value obtained by dividing the numerical value I max in the case of the temperature T e = 1 X 1 0- 1 e V.
図 6より、 プラズマの電子温度を 4 X 1 0— 3 e V以上 3 e V以下とした場合 、 I. maxの 8割以上となる X線強度が観測されることから、 所望の α' — F e— C膜がかなり安定して得られることが分かった。 これに対して、 プラズマの電子 温度が 3 X 1 0—3 e V以下のときは、 電子温度が減るにつれて (00 2) 面か らの回折線強度が急激に小さくなることから、 作製した炭化鉄膜が^ 1望の結晶構 造から乖離する傾向にあると考えた。 この傾向は、 プラズマの電子温度を 4 e V 以上とした場合にも見られた。 また、 プラズマの電子温度を 1 X 1 0— 2 e V以 上 1 e V以下とした場合は、 X線強度が I maxの 9割以上になることから、 所望 の α ' — F e— C膜がより一層安定して得られるのでより好ましい。 From FIG. 6, when the electron temperature of the plasma 4 X 1 0- 3 or less e V or 3 e V, since the X-ray intensity becomes 80% or more I. max is observed, the desired alpha '- It was found that the Fe-C film could be obtained quite stably. In contrast, carbide when the plasma electron temperature is below 3 X 1 0- 3 e V, as the electron temperature is reduced from (00 2) to diffraction intensity of the surface or we abruptly becomes small, prepared Crystal structure of iron film ^ 1 hope We thought that there was a tendency to deviate from construction. This tendency was observed even when the electron temperature of the plasma was set to 4 eV or more. Also, if the electron temperature of the plasma was less 1 X 1 0- 2 e V or more on 1 e V, since the X-ray intensity is more than 90% of I max, the desired α '- F e- C It is more preferable because the film can be obtained more stably.
(実施例 4) (Example 4)
本例では、 図 8に示すプラズマ蒸着装置を用い、 膜中に含まれる炭素 (C) 含 有量が 4原子 °/o (a t%) であり残部鉄 (F e) からなる膜組成の磁性層 1 1を 基体 10の上にプラズマ蒸着法で直接堆積させて図 2に示す層構成の試料 S 4を 作製した。  In this example, using the plasma deposition apparatus shown in Fig. 8, the carbon (C) content of the film was 4 atom ° / o (at%), and the magnetic composition of the film was composed of iron (Fe). The layer 11 was directly deposited on the substrate 10 by a plasma deposition method to produce a sample S4 having a layer configuration shown in FIG.
その際、 以下の 2点を変えて試料 S 4を作製した。  At that time, sample S4 was prepared by changing the following two points.
(1) プラズマ P 2の濃度勾配が生じている方向に沿って基体 80 1を移動 (図 8の矢印 β) できる基体保持手段 80 3により、 炭化鉄膜を設ける基体 80 1表 面が曝されるプラズマの電子密度 Neを 7 X 1 08 cm 3〜7 X 1 010 c m~3 の範囲で変えて成膜した。 その際、 プロセスガスの圧力などを調整することによ り、 プラズマの電子温度 T eは約 0. l e Vに固定した。 (1) The substrate 801 on which the iron carbide film is to be provided is exposed by the substrate holding means 803 which can move the substrate 801 in the direction in which the concentration gradient of the plasma P 2 is generated (arrow β in FIG. 8). The film density was changed while changing the electron density Ne of the plasma from 7 × 10 8 cm 3 to 7 × 10 10 cm- 3 . At that time, the electron temperature Te of the plasma was fixed at about 0.1 leV by adjusting the pressure of the process gas.
(2) 炭化鉄膜からなる磁性層 1 1をプラズマ蒸着法で形成する際に、 基体ホル ダー 802が内蔵する基体を加熱処理、 冷却処理または定温保持する機能を備え た温度制御手段を用いて炭化鉄膜を設ける基体 80 1 aの温度を 0°C〜200°C の範囲で変化させた。 図 2は本例に係る磁性薄膜試料の層構成を示す模式的な断面図であり、 1 0は 基体、 1 1は磁性層である。  (2) When forming the magnetic layer 11 composed of an iron carbide film by a plasma deposition method, using a temperature control means having a function of heating, cooling, or maintaining a constant temperature of the base contained in the base holder 802. The temperature of the substrate 801a on which the iron carbide film was provided was changed in the range of 0 ° C to 200 ° C. FIG. 2 is a schematic cross-sectional view showing the layer configuration of the magnetic thin film sample according to the present example, where 10 is a substrate, and 11 is a magnetic layer.
基体 10としてはガラス基板 (コ一二ング社製、 # 70 5 9) を用い、 作製す る磁性層 1 1の膜組成は、 プロセスガスの導入口 8 1 1から成膜室 800に供給 するメタン (CH4) ガスの圧力や流量、 あるいは薄)!臭の主な原材料をなす炭化 鉄 (F e—C) 合金からなる 材 80 5の組成を適宜変更して蒸着することによ り F e— 4 a t %Cとした。 図 8の装置において、 a' —F e—C膜からなる磁 性層 : L 1を形成する成膜室 8 0 0の到逢真空度は 1 0— 7 Torr台 に固定し、 成 膜時には磁場印加手段 8 1 3を用い、 基体 80 1の成膜面に平行で一方向に磁場 [強度: 3 0〜50gauss (G) ] を印加した。 また、 成膜前には、 基体ホルダ 一 8 0 2が内蔵する温度制御手段を用いて、 基体 80 1を真空中で 200°C、 2 時間の加熱処理を行った後、 基体 8 0 1を 0°C〜200°Cの所望の一定温度まで 冷却してから、 この温度に保った基体 80 1上に組成が F e—4 a セ じのひ ' 一 F e— C膜を堆積させた。 A glass substrate (# 7059, manufactured by Koingen Co., Ltd.) is used as the base 10, and the film composition of the magnetic layer 11 to be manufactured is supplied to the film forming chamber 800 from the process gas inlet 811. The pressure and flow rate of methane (CH 4 ) gas or thin)! The material consisting of iron carbide (Fe-C) alloy, which is the main raw material of the odor, is formed by changing the composition of 805 as appropriate and depositing it. e—4 at% C. In the apparatus of FIG. 8, magnetic layer composed of a '-F e-C film: arrival逢真Sorado deposition chamber 8 0 0 forming the L 1 is fixed to 1 0- 7 Torr base, formed At the time of film formation, a magnetic field [intensity: 30 to 50 gauss (G)] was applied in one direction parallel to the film formation surface of the substrate 801 using a magnetic field applying means 8 13. Before film formation, the substrate 801 was subjected to a heat treatment at 200 ° C. for 2 hours in a vacuum using a temperature control means incorporated in the substrate holder 802, and then the substrate 801 was cooled. After cooling to a desired constant temperature of 0 ° C. to 200 ° C., a single Fe-C film having a composition of Fe-4a was deposited on the substrate 801 kept at this temperature. .
なお、 本例では真空溶解法で作製した F eと Cからなる合金の母材 80 5を用 いて α' — F e— C膜を成膜したが、 この合金に代えて焼結法で作製した F eと Cからなる母材、 若しくは F eターゲット上に Cチップを埋め込み設置した複合 母材などを用いても構わない。 また、 使用可能なプロセスガスは上述したメタン に限定されるものではなく、 例えばェタン、 エチレンなど C元素を含むガスであ れば構わない。 さらには、 F eからなる母材と Cからなる母材とを用いて同時蒸 表 2は、 本例に係る磁性薄膜すなわち試料 S 4を製造する際の代表的な成膜条 件である。  In this example, the α'-Fe-C film was formed using the base material 805 of the alloy composed of Fe and C manufactured by the vacuum melting method. However, the sintering method was used instead of this alloy. A base material made of Fe and C, or a composite base material in which a C chip is embedded and installed on an Fe target may be used. Further, the usable process gas is not limited to the above-mentioned methane, but may be any gas containing the C element such as ethane and ethylene. Further, the simultaneous vapor deposition 2 using the base material made of Fe and the base material made of C is a typical film forming condition when the magnetic thin film according to the present example, that is, the sample S4 is manufactured.
「表 2」 "Table 2"
項 目 設 定 値  Item setting value
成膜方法 プラズマ蒸着法  Film formation method Plasma deposition method
基体の材質 ガラス (# 70 5 9)  Substrate material Glass (# 70 5 9)
基体の形状 8 mm角  Substrate shape 8 mm square
基体の表面形状 鏡面加工処理、 R a < 1 nm  Surface shape of substrate Mirror finish, Ra <1 nm
成膜室の到達真空度 1 0— 7Torr台 Of the deposition chamber ultimate vacuum of 1 0- 7 Torr table
プロセスガス CH4 ガス  Process gas CH4 gas
プロセスガスの圧力 1〜 3 00 mTorr  Process gas pressure 1-300 mTorr
)電子密度 N e 7 X 1 08cm一3〜 7 X 1 010cm一3 ) Electron density N e 7 X 1 0 8 cm one 3 ~ 7 X 1 0 10 cm one 3
)電子温度 T e 約 0. 1 e V :固定  ) Electron temperature T e about 0.1 e V: fixed
基体表面の保持温度 200°C (前処理)  Holding temperature of substrate surface 200 ° C (pretreatment)
0〜2 0 0°C (α ' — F e- C膜作製時) 母材の原料 Fe- G (C=4at°/。,残部 Fe) 0 ~ 200 ° C (α'-F e-C film production) Base material Fe-G (C = 4at ° /., Balance Fe)
母材の純度 3N (Fe-C)  Base material purity 3N (Fe-C)
母材の形状 塊状  Base material shape Lump
母材とフィラメントとの距離 t 4 2 5瞧  Distance between base material and filament t 4 2 5 瞧
フィラメントとグリッドとの距離 t 5 9 5寒  Distance between filament and grid t5 9 5 cold
グリツドと基体との距離 t 6 6 0議 (可変: 5 ~ 100麵) フィラメント電流 I f 0. 1〜 1 0 A  Distance between grid and substrate t660 (variable: 5 to 100 mm) Filament current If 0.1 to 10 A
グリッド電流 I g 0. 1〜0. 5 A  Grid current I g 0.1 to 0.5 A
グリッド電圧 V g 50〜500 V  Grid voltage V g 50 to 500 V
基体に対する磁場印加 印加方向:基体の成膜面に平行で一方向  Application of magnetic field to substrate Application direction: One direction parallel to film formation surface of substrate
(ターゲット間の中心軸にほぼ平行方向) 磁場の強さ : 3 0〜 5 0 G  (Approximately parallel to the center axis between targets) Magnetic field strength: 30 to 50 G
作製した膜厚 50 Onm {α' 一 F e— C膜)  Film thickness 50 Onm (α'-Fe-C film)
成膜速度 0. 1 nm/ sec ( a 一 F e— C月旲リ 以下では、 本例に係るの α' — F e— C膜の作製方法について、 N eを可変と した場合を例にとり説明する。 以下の括弧付き番号は、 その手順を表す。  Deposition rate 0.1 nm / sec (a-Fe-C-monthly) In the following, the method for producing the α'-Fe-C film according to the present example is based on the case where Ne is variable. The following numbers in parentheses indicate the procedure.
(b 1) 所定の洗浄処理を終えたガラスからなる基体 80 1を基体ホルダー 80 2に取り付け、 成膜室 800の中にある基体ホルダー 802に配設した後、 成膜 室 800内を減圧した。  (b 1) The substrate 801 made of glass having been subjected to a predetermined cleaning treatment is attached to the substrate holder 802, and is disposed in the substrate holder 802 in the film forming chamber 800. Then, the pressure in the film forming chamber 800 is reduced. .
(b 2) 成膜室 8 00の内圧が 5 X 1 0— 7Torr以下となった後、 F e— Cから なる母材 80 5のガス出しを行った (基体 8 0 1に対する蒸着速度が 0. 0 1〜 0. 0 5 nmとなる条件で約 60分間) 。 (b 2) after the internal pressure of the film forming chamber 8 00 becomes equal to or less than 5 X 1 0- 7 Torr, it was degassing of the base material 80 5 made of F e- C (vapor deposition speed with respect to the base body 8 0 1 0.01 to 0.05 nm for about 60 minutes).
(b 3) 成膜室 8 00内へプロセスガスを導入し圧力を約 1 0 OmTorr として 5分間放置した後、 成膜室 8 00を再び 1 0— 6Torr台となるまで減圧する。 こ のガス置換の操作を 3度繰り返した。 (b 3) the film forming chamber 8 After standing the introduced pressure process gas into the 00 to about 1 0 OmTorr as 5 minutes, under vacuum until again 1 0- 6 Torr stand the deposition chamber 8 00. This gas replacement operation was repeated three times.
(b 4) 成膜室 8 00内へプロセスガスを導入し圧力を 1 0 OmTorrとした後、 グリッド 808に 200 Vのグリツド電圧 V gを印加する。  (b 4) A process gas is introduced into the film forming chamber 800 to reduce the pressure to 10 OmTorr, and then a grid voltage Vg of 200 V is applied to the grid 808.
(b 5) 次いで、 フィラメン ト 80 7に 1 Aのフィラメント電流 L ίを流し、 プ ラズマ P 2を発生させる。 (b 5) Then, a filament current L 1 of 1 A flows through the filament 807, Generates plasma R2.
(b 6) このフィラメント電流 I ίによりグリツド電流 I gを所望の値に設定す る。 その結果、 基体上で所望の蒸着速度が得られる。 なお、 このときガス圧ゃグ リッド電流 I gが変動するので、 両者を調整しながら蒸着速度を微調整するのが 好ましい。  (b 6) The grid current I g is set to a desired value by the filament current I ί. As a result, a desired deposition rate is obtained on the substrate. At this time, since the gas pressure / grid current Ig fluctuates, it is preferable to finely adjust the deposition rate while adjusting both.
(b 7) そして、 蒸着速度、 ガス圧、 プラズマが安定した後、 シャツタ 804を 開けて基体 801上に α' — F e— C膜の成膜を開始する。  (b 7) After the deposition rate, gas pressure, and plasma are stabilized, the shutter 804 is opened, and the formation of the α′-Fe—C film on the base 801 is started.
(b 8) 所望の膜厚に達したらシャツタ 804を閉め成膜を終了する。  (b8) When the desired film thickness is reached, the shirt 804 is closed to terminate the film formation.
(b 9) グリツド電流 I g及びグリッド電圧 V gを零にしてプラズマを停止させ た後、 蒸発速度を徐々に減少させ、 成膜室 800内を排気する。  (b9) After stopping the plasma by setting the grid current I g and the grid voltage V g to zero, the evaporation rate is gradually reduced, and the inside of the film forming chamber 800 is exhausted.
(blO) 図示しない成膜室の冷却手段を用い、 成膜室 800をほぼ室温とした後 、 成膜室 800内を窒素ガスで大気圧に戻し、 成膜を終えた基体 801を取り出 した。 上記工程 (b l) 〜 (blO) により、 基体 801の表面が曝されるプラズマの 電子密度 N eを 7 X 108 c in— 3〜 7 X 101 ° c m— 3の範囲で変えた複数の試料 S 4を作製した。 (blO) After using a cooling means (not shown) for the film forming chamber to set the film forming chamber 800 to approximately room temperature, the inside of the film forming chamber 800 was returned to atmospheric pressure with nitrogen gas, and the substrate 801 after film formation was taken out. . By the above steps (bl) to (blO), a plurality of electron densities Ne of the plasma to which the surface of the substrate 801 is exposed are changed in a range of 7 × 10 8 cin— 3 to 7 × 10 1 ° cm— 3 . Sample S4 was prepared.
図 8の構成により生じたプラズマ P 2は、 グリツド 808から基体 801に向 かって、 プラズマの濃度勾配が生じており、 この濃度勾配をもつプラズマ P 2' の濃度はダリッド 808付近が最大となり、 基体 801に近づくにつれてその濃 度が低下する分布をなしている。 つまり、 基体 801の近傍に位置するプラズマ P 2 ' は極めて濃度の薄い、 言い換えれば電子密度 N eや電子温度 T eの小さな 状態となっている。  The plasma P 2 generated by the configuration in FIG. 8 has a plasma concentration gradient from the grid 808 toward the substrate 801, and the concentration of the plasma P 2 ′ having this concentration gradient becomes maximum near the Darlid 808, The distribution is such that its concentration decreases as it approaches 801. That is, the plasma P 2 ′ located in the vicinity of the base 801 has a very low concentration, in other words, a state in which the electron density Ne and the electron temperature Te are small.
そして、 本装置は、 基体 801を保持する基体ホルダー 802を支持する基体 保持手段 803を用いることで、 上記プラズマ P 2' の中を濃度勾配が生じてい る方向に沿って基体 801を移動 (図 8の矢印 3) させることが可能な構成を備 えている。  The apparatus moves the substrate 801 in the plasma P 2 ′ in the direction in which the concentration gradient is generated by using the substrate holding means 803 supporting the substrate holder 802 holding the substrate 801 (FIG. It has a configuration that allows the arrow 8) 3).
したがって、 本装置を用いることにより、 基体 801の表面が曝されるプラズ マの電子密度 N eを 7 X 108 c m— 3〜 7 X 10 '° c m 3 の範囲のある一定値 とした上で、 基体 801上に各種組成の α ' — F e— C膜からなる試料 S 4を作 製することができる。 Therefore, by using this apparatus, the electron density Ne of the plasma to which the surface of the substrate 801 is exposed can be set to a certain value in the range of 7 × 10 8 cm— 3 to 7 × 10 ′ ° cm 3. After that, a sample S4 composed of α′—Fe—C films of various compositions can be prepared on the substrate 801.
基体 801上へ堆積させる α' — F e— C膜の厚さは、 接地電位にあるシャツ タ 804を基体 801の上空から避けておく時間、 すなわちシャツタ 804を開 けた状態とする時間により制御した。 実施例 1と同様に、 本例で作製した試料 S 4に対してもその結晶構造を、 線源 として (C o— Κα) を用いた X線回折法により調べた。 その結果、 試料 S4に ついて以下に示す点が明らかとなった。  The thickness of the α'-Fe-C film deposited on the substrate 801 was controlled by the time to keep the shirt 804 at the ground potential from above the substrate 801, that is, the time to keep the shirt 804 open. . As in Example 1, the crystal structure of sample S4 produced in this example was examined by an X-ray diffraction method using (C o -—α) as a radiation source. As a result, the following points were clarified for sample S4.
(1) プラズマの電子密度 Neが小さい条件で形成した試料の方が、 C ' (00 2) からの回折線の強度が高くなる傾向を示した。  (1) The sample formed under the condition that the plasma electron density Ne was small showed a tendency that the intensity of the diffraction line from C ′ (002) was higher.
(2) 図示しない図 1と同様のグラフ、 すなわち横軸を炭化鉄膜を作製するとき の基体温度とし、 縦軸を得られた炭化鉄膜の (002) 面の X線強度としたダラ フによれば、 プラズマの電子密度 N eが小さい条件で形成した試料の方が、 縦軸 が I max の 8割以上あるいは 9割以上となる基体温度の範囲が広がることが分 力 つた。  (2) A graph similar to that shown in FIG. 1 (not shown), ie, the horizontal axis is the substrate temperature when forming the iron carbide film, and the vertical axis is the X-ray intensity of the (002) plane of the obtained iron carbide film. According to the study, it was found that the sample formed under the condition that the electron density N e of the plasma is small has a wider substrate temperature range where the vertical axis is 80% or more or 90% or more of I max.
以上の結果より、 図 7の対向ターゲット式スパッタリング装置に代えて図 8に 示すプラズマ蒸着装置を用いても、 (002) からの回折線の強度が高い α ' — F e—C膜が得られることが明らかとなった。  From the above results, it is possible to obtain an α'-Fe-C film with a high intensity of the diffraction line from (002) even when the plasma deposition apparatus shown in Fig. 8 is used instead of the facing target type sputtering apparatus shown in Fig. 7. It became clear.
つまり、 α' (002) からの回折線の強度が高い α, 一 F e— C膜を安定し て得るためには、 基体の堆積面に与えるプラズマダメ一ジの小さなプラズマを生 起させ、 このブラズマと磁性薄膜の形成用の母材源とを利用する工程を具備する 製造方法が効果的である。 また、 このようなプラズマ条件下で成膜可能な構成を備えた製造装置であれば 、 成膜法の如何に関わらず所望の磁気特性を有する磁性薄膜、 すなわち本発明者 らが、 特願 2000— 163822号にて開示した、 飽和磁化が 2 T以上で、 保 磁力が 2 O e以下の軟磁気特性を有する炭化鉄膜が極めて安定して製造できる。 つまり、 図 7の対向タ一ゲッ 卜式スパッタリング装置や図 8に示すプラズマ蒸 着装置に示すような基体の移動手段、 すなわち、 プラズマの濃度勾配が生じてい る方向に沿って基体表面の位置を移動可能とした機構と、 少なくとも基体の表面 内では均一な濃度で、 基体表面に対して垂直な方向に沿っては徐々に濃度勾配が あるようなプラズマを安定して発生しうるプラズマ発生機構と、 を備えていれば 、 本発明に係る α ' 相を主たる相とする炭化鉄膜は極めて安定に製造できる。 In other words, in order to stably obtain an α, 1-Fe—C film having a high intensity of the diffraction line from α ′ (002), a plasma with a small plasma damage applied to the deposition surface of the substrate is generated. A manufacturing method including a step of utilizing the plasma and a base material source for forming a magnetic thin film is effective. In addition, if the manufacturing apparatus has a configuration capable of forming a film under such plasma conditions, a magnetic thin film having desired magnetic characteristics regardless of the film forming method, that is, the present inventors have disclosed in Patent Application 2000 — An iron carbide film having a soft magnetization property having a saturation magnetization of 2 T or more and a coercive force of 2 Oe or less disclosed in 163822 can be manufactured extremely stably. That is, the opposed target sputtering apparatus shown in FIG. 7 and the plasma evaporation apparatus shown in FIG. Means for moving the substrate as shown in the deposition apparatus, that is, a mechanism capable of moving the position of the substrate surface along the direction in which the plasma concentration gradient occurs, and a substrate surface having a uniform concentration at least within the surface of the substrate. And a plasma generation mechanism capable of stably generating a plasma having a concentration gradient gradually along a direction perpendicular to the α-phase. Iron films can be manufactured very stably.
(実施例 5 ) (Example 5)
本例では、 図 7に示す対向ターゲット式スパッタリング装置を用い、 膜中に含 まれる炭素 (C) 含有量が 4~ 1 0原子0 /0 (a t %) であり、 コバルト (C o) 含有量が 1 0原子。 /。 (a t %) で、 残部は鉄 (F e) 力 らなる膜組成を備えた炭 化鉄コバルト膜からなる磁性層 1 1 ' を基体 1 0の上にスパッタリング法で直接 堆積させて図 2に示す層構成の試料 S 5を作製した。 In this example, a reference to the facing target sputtering apparatus shown in FIG. 7, including Murrell carbon (C) content is 4 to in the film 1 0 atom 0/0 (at%), cobalt (C o) containing Quantity is 10 atoms. /. (at%), and the balance is shown in FIG. 2 in which a magnetic layer 11 ′ made of an iron-cobalt carbide film having a film composition of iron (Fe) force is directly deposited on the substrate 10 by sputtering. Sample S5 having the layer structure shown was produced.
すなわち、 実施例 5は、 炭素と鉄からなる磁性層 1 1に代えて炭素と鉄とコバ ルトからなる磁性層 1 1 ' を基体 1 0上に作製した点が実施例 1と異なる。  That is, the fifth embodiment is different from the first embodiment in that a magnetic layer 11 ′ made of carbon, iron and cobalt is formed on the base 10 instead of the magnetic layer 11 made of carbon and iron.
その際、 プラズマの電子密度 N e、 プラズマの電子温度 T e及び基体 7 0 1 a の温度は、 以下の通り設定して試料 S 5を作製した。  At this time, a sample S5 was prepared by setting the electron density N e of the plasma, the electron temperature T e of the plasma, and the temperature of the substrate 71 a as follows.
( 1) プラズマ P 1の濃度勾配が生じている方向に沿って基体 7 0 1 aを移動 ( 図 7の矢印 a) できる基体保持手段 7 0 3 aにより、 炭化鉄コバルト膜を設ける 基体 7 0 1 a表面が曝されるプラズマの電子密度 N eは約 2 X 1 09 c m"3 に 固定した。 また、 プロセスガスの圧力などを調整することにより、 プラズマの電 子温度 T eは約 0. l e Vに固定した。 (1) The substrate 700a is moved along the direction in which the concentration gradient of the plasma P1 is generated (arrow a in FIG. 7). the 1 a surface electron density N e of the plasma exposed was fixed at about 2 X 1 0 9 cm "3 . Further, by adjusting the pressure of the process gas, plasma electron temperature T e is about 0 le V fixed.
( 2 ) 炭化鉄コバルト膜からなる磁性層 1 1をスパッタ法で形成する際に、 基体 ホルダー 7 0 2が内蔵する基体を加熱処理、 冷却処理または定温保持する機能を 備えた温度制御手段を用いて炭化鉄コバルト膜を設ける基体 7 0 1 aの温度は、 約 2 0°Cに固定した。  (2) When forming the magnetic layer 11 composed of an iron-cobalt carbide film by a sputtering method, a temperature control unit having a function of heating, cooling, or maintaining a constant temperature of the substrate contained in the substrate holder 720 is used. The temperature of the substrate 701 a on which the iron-cobalt carbide film was provided was fixed at about 20 ° C.
(3) 炭化鉄コバルト膜中の炭素の含有量 yを 4、 6、 8、 1 0 (a t %) と変 えた試料 S 5を作製した。  (3) A sample S5 was prepared in which the carbon content y of the iron-cobalt carbide film was changed to 4, 6, 8, and 10 (at%).
他の点は、 実施例 1と同様とした。 図 2は本例に係る磁性薄膜試料の層構成を示す模式的な断面図であり、 10は 基体、 1 1 ' は炭化鉄コバルトからなる磁性層である。 The other points were the same as in Example 1. FIG. 2 is a schematic cross-sectional view showing the layer structure of the magnetic thin film sample according to the present example, in which 10 is a substrate, and 11 'is a magnetic layer made of iron cobalt cobalt.
基体 10としてはガラス基板 (コ一二ング社製、 # 70 5 9) を用い、 作製す る磁性層 1 1 ' の膜組成は、 成膜に用いた炭化鉄コバルト (F e—C o— C) 合 金からなる第一ターゲット 70 9 a、 709 bの組成を適宜変更してスパッタす ることにより、 F e— l O C o— (4〜10 a t %) 。とした。 図 7の装置にお いて、 炭化鉄コバルト膜 (α' — F e— C o— C膜) からなる磁性層 1 1を形成 する F e C o C成膜室 7 0 5の到達真空度は 1 0— 7 Torr台 ( 1 Torr -約 1 3 3 P a ) に固定した。 成膜時には磁場印加手段 7 10を用い、 基体 70 1 aの成 膜面に平行で一方向に磁場 [強度: 3 0~ 50 gauss (G) ] を印加した。 ま た、 成膜前には、 基体ホルダレ 702が内蔵する温度制御手段を用いて、 基体 7 0 1 aを真空中で 200°C、 2時間の加熱処理を行った後、 基体 70 1 aを約 2 0°Cまで冷却してから、 この温度に保った基体 70 1 a上に組成が F e - 10 a t % C o - (4〜: L 0 a t o/0) Cからなる α' — F e— C o— C膜を堆積させた なお、 本例では真空溶解法で作製した F eと C oと Cからなる合金ターゲット を用いて a' —F e— C ο— C膜を成膜したが、 合金ターゲットに代えて焼結法 で作製した F eと C oと Cからなるターゲット、 若しくは F eと C oからなる合 金ターゲット上に Cチップを埋め込み設置した複合ターゲットなどを用いても構 わない。 また、 C元素を含むプロセスガスと F eと C oからなる合金ターゲット を用い、 — F e— C o— C膜を作製する手法を用いてもよい。 A glass substrate (# 7059, manufactured by Koingen Co., Ltd.) was used as the substrate 10, and the film composition of the magnetic layer 11 ′ to be manufactured was determined by the iron-cobalt carbide (F e—Co— C) By changing the composition of the first targets 709a and 709b made of alloy as appropriate, and sputtering, Fe-lOCo- (4 to 10 at%). And In the apparatus shown in FIG. 7, the ultimate vacuum degree of the FeCoC film forming chamber 705 for forming the magnetic layer 11 composed of the iron cobalt carbide film (α′—Fe—Co—C film) is as follows. 1 0- 7 Torr stand (1 Torr - about 1 3 3 P a) is fixed to. At the time of film formation, a magnetic field [intensity: 30 to 50 gauss (G)] was applied in one direction parallel to the film formation surface of the substrate 701a using a magnetic field applying means 710. Before the film formation, the substrate 71 a was subjected to a heat treatment at 200 ° C. for 2 hours in a vacuum using a temperature control means incorporated in the substrate holder 702, and then the substrate 70 1 a was heated. After cooling to about 20 ° C., α ′ composed of F e −10 at% C o − (4 to: L 0 at o / 0 ) C on the substrate 70 1 a maintained at this temperature. In this example, an a'-Fe-Co-C film was formed using an alloy target composed of Fe, Co, and C manufactured by the vacuum melting method. Instead of an alloy target, a target consisting of Fe, Co, and C manufactured by sintering, or a composite target with a C chip embedded and installed on an alloy target consisting of Fe and Co was used instead of an alloy target. It does not matter. Alternatively, a method of producing a —Fe—Co—C film using a process gas containing a C element and an alloy target composed of Fe and Co may be used.
表 3は、 本例の磁性簿膜すなわち試料 S 5を製造する際の成膜条件である。  Table 3 shows the film forming conditions for manufacturing the magnetic recording film of this example, that is, the sample S5.
「表 3J `` Table 3J
項 目 設 定 値  Item setting value
■成膜方法 対向ターゲット式スパッタリング法  ■ Film formation method Opposing target type sputtering method
-基体の材質 ガラス (# 7 0 5 9)  -Base material glass (# 7 0 5 9)
-基体の形状 8 mm角  -Base shape 8 mm square
-墓体の表面形状 鏡面加工処理、 R a < 1 nm 第一成膜室の到達真空度 1 0 iorr台 -Surface shape of grave body Mirror finish, Ra <1 nm Degree of ultimate vacuum of the first deposition chamber 10 iorr level
プロセスガス A rガス  Process gas Ar gas
A rガス中の不純物濃度 1 1 Oppb以下  Impurity concentration in Ar gas 11 Oppb or less
A rガス圧 1〜 5 OmTorr (し 33〜66.5Pa)  Ar gas pressure 1 ~ 5 OmTorr (33 ~ 66.5Pa)
電子密度 N e 2 X 1 09cra"3 :固定 Electron density N e 2 X 1 0 9 cra " 3 : fixed
電子温度 T e 約 0. 1 e V:固定  Electron temperature T e approx. 0.1 e V: fixed
基体表面の保持温度 2 0 0。C (前処理)  The holding temperature of the substrate surface is 200. C (pre-processing)
2 0°C (a ' -Fe-Co- C膜作製時)  20 ° C (at the time of a'-Fe-Co-C film production)
ターゲットの材料 Fe-Co-C (C=4-10at%, Co=10at% 残部 Fe) タ ゲットの純度 3N (Fe- Go C)  Target material Fe-Co-C (C = 4-10at%, Co = 10at% balance Fe) Target purity 3N (Fe-Go C)
タ ゲットの形状 円形  Target shape Round
ターゲット直径 t 1 9 0 mm  Target diameter t190mm
ターゲット間距離 t 2 1 0 0mm  Distance between targets t 2 100 mm
ターゲット中心と基体との距離 t 3 9 0 mm  Distance between the center of the target and the substrate t390 mm
ターゲットへの投入パワー 直流 1 50W (Fe-Co-C)  Input power to target DC 1 50W (Fe-Co-C)
基体に対する磁場印加 印加方向:基体の成膜面に平行で一方向  Application of magnetic field to substrate Application direction: One direction parallel to film formation surface of substrate
(ターゲット間の中心軸にほぼ平行方向) 磁場の強さ : 3 0 ~ 5 0 G  (Approximately parallel to the center axis between targets) Magnetic field strength: 30 to 50 G
作製した膜厚 3 0 Onm (Fe-Co-C)  Thickness 30 Onm (Fe-Co-C)
0. ύ 5隨 sec (Fe-Co-C) 以下では、 本例に係る炭化鉄膜 (ひ ' 一 F e— C o— C膜) の作製方法につい て説明する。 以下の括弧付き番号は、 その手順を表す。  0. ύ 5 sec (Fe-Co-C) A method for forming the iron carbide film (a single Fe-Co-C film) according to this example will be described below. The numbers in parentheses below indicate the procedure.
(c 1) 所定の冼浄処理を終えたガラスからなる基体 7 0 1を基体ホルダ一 7 0 2に取り付け、 不図示のロードロック室の中にある基体支持台に配設した後、 口 —ドロック室内を減圧した。  (c 1) After attaching a substrate 70 1 made of glass having been subjected to a predetermined cleaning treatment to the substrate holder 170 2, and disposing it on a substrate support stand in a load lock chamber (not shown), The pressure in the drock chamber was reduced.
( c 2) ロードロック室の内圧が 1 0— 6Torr台となった後、 ロードロック室と スパッタ室 7 0 0とを仕切るゲートバルブ (不図示) を開き、 ロードロック室か ら、 常時 1 0—7Torr台の減圧状態にあるスパッタ室 7 0 0の中へ、 基体を移動 させる手段 (不図示) を用いて、 基体 70 1がセッ卜された基板ホルダ 70 2 を基体保持手段 703上に移動させた。 その後、 ゲートバルブは閉じた。 (C 2) after the internal pressure of the load lock chamber became 1 0- 6 Torr stand, the gate valve (not shown) for partitioning the load lock chamber and the sputtering chamber 7 0 0, the load lock chamber or al always 1 in 0- 7 Torr stand reduced pressure into the sputtering chamber 7 0 0, moving the substrate The substrate holder 702 on which the substrate 701 was set was moved onto the substrate holding means 703 by using means (not shown). After that, the gate valve was closed.
基体保持手段 70 3は、 スパッタ室 700の中央部に配置されており、 材質が SUSからなる回転可能な機能を備えた回転移動手段 704に固定されている。 ここで、 中央部とは、 シャツタ 70 7 a、 70 7 b及び防着板 708 a、 70 8 bにより、 ひ' 一 F e— C o— C膜形成用の成膜空間 1と F e膜形成用の成膜 空間 2との間に設けられた空間を指す。  The substrate holding means 703 is arranged at the center of the sputtering chamber 700, and is fixed to a rotation moving means 704 made of SUS and having a rotatable function. Here, the central portion is defined as a film forming space 1 for forming a Fe—Co—C film and a Fe film by the shirts 707a and 707b and the deposition preventing plates 708a and 708b. Refers to the space provided between the film forming space 2 for forming.
( c 3 ) 回転移動手段 704を用いて基体 70 1 aを α' — F e—C o— C膜形 成用の第一成膜室 70 5の側に移動し、 基体ホルダ 702 aが内蔵する温度制 御手段を用いて、 基体 70 1 aを 200°Cで加熱処理した。 その際、 シャッタ 7 0 7 aは閉じた状態とした。  (c 3) The substrate 701 a is moved to the side of the first film forming chamber 705 for forming an α′—Fe—Co—C film by using the rotation moving means 704, and the substrate holder 702 a is built in. The substrate 701a was heat-treated at 200 ° C. by using a temperature control means. At that time, the shutter 707a was closed.
(c 4) その後、 基体ホルダー 70 2 aが内蔵する温度制御手段を用いて、 基体 70 1 aの温度を約 20°Cの一定温度に変更し、 その温度を保持した。  (c 4) Thereafter, the temperature of the base 701 a was changed to a constant temperature of about 20 ° C. by using temperature control means built in the base holder 702 a, and the temperature was maintained.
(c 5) 次いで、 第一成膜室 70 5の中へ、 適当な流量の A rガスを導入し、 成 膜時のガス圧を lmTorr〜 5 OmTorrの間の一定値とした。  (c5) Next, Ar gas at an appropriate flow rate was introduced into the first film forming chamber 705, and the gas pressure during film formation was set to a constant value between lmTorr and 5 OmTorr.
(c 6) F e— C o— Cターゲット 70 9 a、 709 bが設置された力ソード 7 1 6 a , 7 1 6 bに、 直流電源 7 1 4から任意の電圧を印加してプラズマ P 1を 発生させた。 これにより、 F e— C o— Cタ"ゲット 70 9 a、 70 9 bがスノ、° ッタリングされている状態とした。  (c 6) F e— C o— C Apply an arbitrary voltage from the DC power supply 7 14 to the power sources 7 16 a and 7 16 b on which the targets 709 a and 709 b are installed. Generated 1. As a result, the Fe—Co—C targets 709 a and 709 b are in a state where they are snow- and water-uttered.
その際、 基体保持手段 70 3 aを用いて、 プラズマの濃度勾配が生じている方 向に沿って基体 70 1 aを移動 (図 7の矢印 αの方向) させ、 基体 70 1 aの表 面が曝されるプラズマの電子密度 N eを約 2 X 1 09 cm— 3に固定した。 また 、 プロセスガスの圧力などを調整することにより、 プラズマの電子温度 T eは約 0. 1 e Vに固定した。 , At this time, the substrate 701 a is moved (in the direction of the arrow α in FIG. 7) along the direction in which the plasma concentration gradient is generated using the substrate holding means 703 a, and the surface of the substrate 701 a is moved. is fixed to the electron density N e of the plasma about 2 X 1 0 9 cm- 3 exposed. The electron temperature Te of the plasma was fixed at about 0.1 eV by adjusting the pressure of the process gas and the like. ,
(c 7) 上記 (c 6) の状態を維持したまま、 シャツタ 70 7 aを開口し、 対向 した F e— C o— C合金からなる第一タ一ゲッ ト 709 a、 709 bの中心線と 平行した位置にある基体 70 1 aの表面上に、 膜厚 300 nmの ct' — F e— C o— C膜からなる磁性層を形成した。 膜厚は、 シャツタ 70 7 aの開口している 時間によって制御した。 なお、 本例におけるひ, 一 F e— C ο— C膜の成膜速度 (0. 3 5 nmZs e c ) は、 従来技術で述べた文献 3の成膜速度 (0. 00 2〜0. 003 n m/ s e c) と比べて約 100倍の数値であり、 量産的にも十分に対応できる速さであ る。 (c 7) While maintaining the condition of (c 6) above, the shirt 707a is opened, and the center lines of the first targets 709a and 709b made of the opposed Fe—Co—C alloy are opened. A magnetic layer made of a ct'-Fe-Co-C film having a thickness of 300 nm was formed on the surface of the substrate 701a at a position parallel to the substrate. The film thickness was controlled by the opening time of the shirt 707a. In this example, the film formation rate of the Fe-Co-C film (0.35 nmZs ec) is the same as the film formation rate (0.002 to 0.003) of Reference 3 described in the prior art. (nm / sec), which is about 100 times higher, and is fast enough for mass production.
上記工程 (c 1) 〜 (c 7) により、 組成の異なる F e— C o— C合金ターグ ッ トを用いることによって、 炭素含有量の異なる膜組成からなる複数の試料 S 5 を作製した。 図 9は、 実施例 5で作製した代表的な α' — F e— C o— C膜の磁性層からな る試料 S 5の結晶構造を、 線源として (C u— Κα) を用いた X線回折法により 調べた結果を示すグラフである。 図 9の中で、 回折ピークの上に示した数値 (4 , 6, 8, 1 0) は、 同回折ピークを観測した磁性薄膜 (試料 S 5) の炭素含有 量である。 磁性薄膜の炭素含有量は、 X線光電子分光分祈法の一つである E S C A (Electron spectroscopy for chemical analysis) で S周べた数値でめる。 なお、 参考までに、 図 9の中には、 バルク試枓 (F e— 10 a t % C o ) の回折 ピ クも掲載した。  Through the above steps (c1) to (c7), a plurality of samples S5 having film compositions having different carbon contents were produced by using Fe—Co—C alloy targets having different compositions. Fig. 9 shows the crystal structure of sample S5 consisting of the magnetic layer of the typical α'-Fe-Co-C film prepared in Example 5, using (Cu-Κα) as the radiation source. 6 is a graph showing a result of an examination by an X-ray diffraction method. In Fig. 9, the values (4, 6, 8, 10) shown above the diffraction peaks are the carbon contents of the magnetic thin film (Sample S5) where the diffraction peaks were observed. The carbon content of the magnetic thin film can be obtained from the S number by ESCA (Electron spectroscopy for chemical analysis), one of the X-ray photoelectron spectroscopy methods. For reference, FIG. 9 also shows the diffraction peaks of the bulk test (F e—10 at% Co).
図 9に示すように、 上記構成において 相を主たる相とする炭化鉄コバルト 膜 1 1 ' とは、 X線回折法により、 相の (002) 面からの回折線すなわち a' (002) を主に含み観測されることによって識別されるものである。 図 9 は、 炭化鉄コバルト膜の (002) 面からの回折線のみが観測される場合である 。 なお、 図示はしないが、 プラズマの電子密度 Neやプラズマの電子温度 T eを 表 3の数値と異なる設定とした場合は、 図 3 (a) に示した炭化鉄膜と同様の結 果が炭化鉄コバルト膜でも観測された。 すなわち、 炭化鉄コバルト膜の (002 ) 面からの回折線が主たるピークをなし、 その高角側にプロ一ドな肩が観測され た。 つまり、 本発明に係る α' 相を主たる相とする炭化鉄コバルト膜 1 1 ' は、 ひ ' 相の (002) 面からの回折線と、 その他の回折線すなわち高角側に観測され るブロードな肩部分 (斜線部) によって特定される結晶構造を備えている。 そして、 上記その他の回折線が消失し単結晶が形成された場合には、 炭化鉄膜 1 1は<¾' 相単相のみから構成され、 図 9に示すような α' 相の (00 2) 面か の回折線のみが観測される。 As shown in FIG. 9, in the above configuration, the iron-cobalt film 11 ′ having a phase as a main phase is mainly composed of a diffraction line from the (002) plane of the phase, that is, a ′ (002) by an X-ray diffraction method. And are identified by being observed. FIG. 9 shows the case where only diffraction lines from the (002) plane of the iron-cobalt carbide film are observed. Although not shown, when the electron density Ne of the plasma and the electron temperature Te of the plasma were set differently from the values in Table 3, the same result as the iron carbide film shown in FIG. It was also observed in the iron-cobalt film. That is, the diffraction line from the (002) plane of the cobalt-iron-carbon film formed a main peak, and a protruded shoulder was observed on the high-angle side. In other words, the iron-cobalt film 11 ′ having the α ′ phase as the main phase according to the present invention has a diffraction line from the (002) plane of the single-phase and another diffraction line, that is, a broad line observed on the high-angle side. It has a crystal structure specified by the shoulder (shaded area). When the other diffraction lines disappear and a single crystal is formed, the iron carbide film 11 is composed of only the <¾ ′ phase single phase, and the α ′ phase (00 2 ) Only diffraction lines on the surface are observed.
図 9より、 作製した炭化鉄コバルト膜の試料 S 5は、 ひ' 相の (00 2) 面か らの回折線すなわち α' (002) のみ観測されることが分かった。 この回折線 は 2 Θが 6 1。 〜6 3。 の範囲で得られ、 2 0カ 20。 ~1 1 5。 の範囲では他 の回折線は観測されなかった。 そして、 この α' (00 2) からの回折線は、 膜 中の炭素含有量が增ぇるにつれて 2 Θの低角側にシフ卜する傾向が認められ、 こ のシフ トは (00 2) 格子空間の増加を示唆しており、 炭素 (C) が c軸に侵入 したことによる (00 2) 面間隔の伸長に対応している。  From FIG. 9, it was found that in the manufactured sample S5 of the iron-cobalt film, only the diffraction line from the (002) plane of the h ′ phase, that is, α ′ (002) was observed. The diffraction line is 61 for 2 mm. ~ 6 3. Obtained in the range of 20-20. ~ 1 1 5. No other diffraction lines were observed in the range. The diffraction line from α ′ (00 2) tends to shift toward the lower angle of 2 mm as the carbon content in the film increases, and the shift is (00 2) This suggests an increase in the lattice space, which corresponds to the extension of the (002) plane spacing due to the penetration of carbon (C) into the c-axis.
なお、 ここでは、 炭素鉄コバルト膜のみからなる試料 S 5を用いて説明したが 、 基体 1 0と炭素鉄コノ ノレト膜 1 1 ' との間に、 該炭化鉄コバルト膜の原子間距 離と略同一の原子間距離を具備する薄膜、 具体的には (200) 面を表面とする 鉄膜ゃ鉄コバルト膜を設けた構成からなる試料でも、 図 9と同様の結果が確認さ れた。 図 1 0は、 シュルツ反射法により測定した ο; ' — F e— C ο— C膜の格子定数 a , cおよびこれらの数値から求めた軸比 cZ aを膜中の炭素含有量に対してプ ロットしたグラフである。 図 10より、 格子定数 cは炭素含有量の増加に伴って 増える傾向が認められた。 これに対して、 格子定数 aは炭素含有量の増加に伴い 僅かに減少する傾向を示し、 aはおよそ 2. 8 5でほぼ一定値であった。 また、 cZaの値がおよそ 1. 04〜1. 08程度となることから、 得られた α' — F e—C o— Cfl奠は体心正方構造 (bet構造: body- centered tetragonal structu re) をもつことが明らかとなった。  Here, the description has been made using the sample S5 composed of only the carbon-iron-cobalt film. The same result as in Fig. 9 was confirmed for a thin film having the same interatomic distance, specifically, for a sample composed of an iron film and an iron cobalt film with the (200) plane as the surface. Figure 10 shows the lattice constants a and c of the ο; '— F e— C ο— C film measured by the Schulz reflection method, and the axial ratio cZ a obtained from these values with respect to the carbon content in the film. This is a plotted graph. From Fig. 10, it was observed that the lattice constant c tended to increase as the carbon content increased. On the other hand, the lattice constant a showed a tendency to decrease slightly with increasing carbon content, and a was almost constant at about 2.85. In addition, since the value of cZa is about 1.04 to 1.08, the obtained α'-Fe-Co-Cflelia has a body-centered tetragonal structure (bet structure: body-centered tetragonal structure). It became clear to have.
なお、 図 1 0は試料 S 5を用いて説明したが、 上述した (200) 面を表面と する鉄膜や鉄コバルト膜を基体と炭化鉄コバルト膜との間に設けた構成からなる 試料でも、 図 1 0と同様の結果が確認された。  Although FIG. 10 has been described using the sample S5, a sample having a configuration in which the iron film or the iron-cobalt film having the (200) plane as the surface described above is provided between the base and the iron-cobalt carbide film may be used. The same result as in FIG. 10 was confirmed.
図 1 1は、 実施例 5で作製した試料 S 5のうち膜中の炭素含有量が 6 a t °/0の a ' — F e— C o— C膜のヒステリシス曲線である。 (a ) は b e t構造のく 0 0 1〉方向、 (b) は b c t構造のく 1 00 >方向、 (c ) は b e t構造のく 1 1 0〉方向の結果を示す。 本測定には振動試料型磁力計 (VSM) を用いた。 こ の α ' — F e— C o— C膜は、 図 1 1 (a ) より c軸が磁化困難軸であり、 図 1 1 (b) 、 (c ) より c面が磁化容易面となっていることが確認できる。 これは 、 炭化鉄コバルト膜の c面内において適当な強さを持つ正負の外部磁場を印加す ることにより、 C面内に発生する磁化の方向の反転制御が容易にできることを示 唆している。 FIG. 11 is a hysteresis curve of an a′—Fe—Co—C film having a carbon content of 6 at ° / 0 in sample S5 prepared in Example 5. (A) shows the bet structure (B) shows the results in the <100> direction of the bct structure, and (c) shows the results in the <110> direction of the bet structure. A vibrating sample magnetometer (VSM) was used for this measurement. The α'-Fe-Co-C film has a hard-axis c-axis from Fig. 11 (a) and an easy-c-plane from Figs. 11 (b) and (c). Can be confirmed. This suggests that by applying a positive or negative external magnetic field having an appropriate strength in the c-plane of the iron-cobalt carbide film, it is possible to easily control the reversal of the magnetization direction generated in the C-plane. .
(実施例 6 ) (Example 6)
本例では、 図 7に示す対向タ ゲッ ト式スパッタリング装置を用い、 膜中に含 まれる炭素 (C) 含有量が 6原子% (a t %) で、 コバル ト (C o) 含有量が 0 〜5 5原子% (a t %) であり、 残部は鉄 (F e ) からなる膜組成を備えた炭化 鉄コバルト膜からなる磁性層 1 丄 ' を基体 1 0の上にスパッタリング法で直接堆 積させて図 2に示す層構成の試料 S 6を作製した。  In this example, the opposed target sputtering apparatus shown in FIG. 7 was used, and the carbon (C) content in the film was 6 atomic% (at%) and the cobalt (Co) content was 0%. About 55 atomic% (at%), with the balance being a direct deposition of a magnetic layer 1 ′ ′ made of an iron-cobalt film having a film composition of iron (Fe) on the substrate 10 by sputtering. Thus, a sample S6 having a layer configuration shown in FIG. 2 was produced.
他の点は、 実施例 5と同様とした。  Other points were the same as in Example 5.
図 1 2は、 実施例 6で作製した試料 S 6のコバルト含有量と飽和磁化 M sとの 関係を示すグラフである。 このグラフより、 コバルト含有量が 0〜 3 7原子0 /0 ( a t %) の範囲では、 コバル ト含有量の増加に伴い飽和磁化 Msは単調増加する c 飽和磁化 M sは 3 7原子。 /0付近で極大を示した後は、 コノ ノレト含有量の増加に 伴レ、飽和磁化 M sは単調減少に転じる。 FIG. 12 is a graph showing the relationship between the cobalt content of sample S6 produced in Example 6 and the saturation magnetization Ms. From this graph, the range of the cobalt content 0-3 7 atoms 0/0 (at%), c saturation magnetization M s is 3 7 atoms saturation magnetization Ms with increasing cobalt content increases monotonously. After showing a maximum near / 0 , the saturation magnetization M s starts to decrease monotonically with an increase in the content of konoreleto.
一 F e— C膜 (横軸 0の試料) は、 α— F e膜と同程度の飽和磁化 M s [ 飽和磁化 M s = 2 1 0 e muZgは、 飽和磁束密度 B s〜 2. 1 T (Tは単位テ スラを表す) に相当する] を有することが知られている (国際出願番号: P CT / J P 00/0 8 1 6 7) 力 実施例 6で作製した炭化鉄コバルト膜からなる試 料 S 6は、 コバルト含有量の広い範囲において α ' — F e— C膜の飽和磁化を越 えていることが図 1 2から分かる。 特に、 コバル ト含有量が 1 2〜5 0原子%の 範囲では、 2. 2 Tを安定して越える数値を有する炭化鉄コバルト膜が作製でき ることが判明した。 図 1 3と図 14は、 飽和磁化の温度変化 (M s— T曲線) を調査した結果を示 すグラフであり、 図 1 3はコバル ト含有量が 10原子%の場合、 図 1 4はコノくノレ ト含有量が 30原子%の場合を示す。 飽和磁化の温度変化は、 2 X 1 0— 7T o r r (2. 4 X 1 0— 4 P a ) 以下の真空中で、 昇降温速度を毎分 1°C ( 1°C/ m i n) とし、 室温から 400°Cの範囲で測定した。 One Fe-C film (sample with 0 on the horizontal axis) has the same saturation magnetization M s [saturation magnetization M s = 210 e muZg as the α-Fe film, and the saturation magnetic flux density B s ~ 2.1 T (T represents a unit of Tesla)] (International Application No .: PCT / JP 00/0 8 16 7) Force Iron cobalt carbide film prepared in Example 6 It can be seen from Fig. 12 that the sample S6 consisting of exceeds the saturation magnetization of the α'-Fe-C film in a wide range of the cobalt content. In particular, it has been found that when the cobalt content is in the range of 12 to 50 atomic%, a cobalt-iron carbide film stably having a numerical value exceeding 2.2 T can be produced. Figs. 13 and 14 are graphs showing the results of investigation of the temperature change (M s-T curve) of the saturation magnetization. Fig. 13 shows the results when the cobalt content is 10 at. The case where the content of konokoku is 30 atom% is shown. Temperature change of the saturation magnetization is at 2 X 1 0- 7 T orr ( 2. 4 X 1 0- 4 P a) in a vacuum of, the heating and cooling rate was min 1 ° C (1 ° C / min) The temperature was measured from room temperature to 400 ° C.
図 1 3より、 コノくノレト含有量が 1 0原子%の炭化鉄コバルト膜の場合、 昇温時 (右向きの矢印で示す曲線) には、 飽和磁化は温度の上昇と共に単調に減少し、 約 2 50°C付近で、 急激な減少が観測される。 この急激な減少の後、 再び飽和磁 化は単調に減少する) 。 降温時 (左向きの矢印で示す曲線) には、 温度の低下と 共に飽和磁化は単調に増加し、 約 2 30°C付近で変曲点をもって増加するが、 室 温では昇温前の飽和磁化よりも小さな値となる。 昇温時における約 2 50°C付近 で生じた飽和磁化の急激な減少は、 α ' 相が α相と F e 3 C に分解する温度に 対応すると考えられる。 また、 降温時における 2 30°C付近の変曲点は、 キュー リ点 (C u r i e点) が約 2 30°Cである F e 3Cが磁化を有するようになった ためと考えられる。 From Fig. 13, it can be seen from Fig. 13 that the saturation magnetization decreases monotonically with increasing temperature when the temperature of the iron-cobalt film is 10 atomic% and the temperature increases (the curve shown by the arrow pointing to the right). 2 A sharp decrease is observed around 50 ° C. After this sharp decrease, the saturation magnetization again decreases monotonically). When the temperature drops (the curve indicated by the arrow pointing to the left), the saturation magnetization monotonically increases with decreasing temperature, and increases with an inflection point at about 230 ° C. The value is smaller than. It is considered that the rapid decrease in saturation magnetization at about 250 ° C during heating corresponds to the temperature at which the α 'phase decomposes into α phase and Fe 3 C. The inflection point around 230 ° C when the temperature drops is considered to be due to the fact that Fe 3 C whose Curie point is about 230 ° C has become magnetized.
これに対して、 図 14に示したコノ ノレト含有量が 1 0原子0 /0の炭化鉄コバルト 膜の場合は、 異なる様相の曲線が観測された。 すなわち、 昇温時 (右向きの矢印 で示す曲線) には、 飽和磁化は温度の上昇と共に単調に減少し、 降温時 (左向き の矢印で示す曲線) には、 温度の低下と共に飽和磁化は単調に増加した。 熱処理 温度が 400°Cまでの範囲では、 図 1 3の試料で確認された飽和磁化の急激な変 ィ匕を生じる点は、 全く確認できなかった。 図 1 5は、 コバルト含有量と、 昇温時 (右向きの矢印で示す曲線) に飽和磁化 が急激に減少する点 (以下、 Tp.d.と表記する) との関係を示すグラフである。 ここで、 磁性薄膜の分解温度 Tp. d. (Phase decomposition temperature) とは 、 昇温時にお 、て飽和磁化が急激に減少する部分の接線とその前の部分の接線と の交点が示す温度と定義する。 In contrast, if the result Noreto content shown in FIG. 14 is 1 0 atom 0/0 of iron carbide cobalt film, curves for different aspects were observed. In other words, when the temperature rises (the curve shown by the arrow pointing to the right), the saturation magnetization monotonically decreases with the temperature rise, and when the temperature drops (the curve shown by the arrow pointing to the left), the saturation magnetization monotonically decreases with the temperature decrease. Increased. When the heat treatment temperature was up to 400 ° C, the point at which the sudden change in saturation magnetization was observed in the sample of FIG. 13 could not be confirmed at all. Figure 15 is a graph showing the relationship between the cobalt content and the point at which the saturation magnetization sharply decreases when the temperature rises (curve indicated by the rightward arrow) (hereinafter referred to as Tp.d.). Here, the decomposition temperature of the magnetic thin film Tp.d. (Phase decomposition temperature) is the temperature at the intersection of the tangent to the portion where the saturation magnetization sharply decreases and Define.
図 1 5より、 分解温度 Tp. d.はコノくルト含有: Sが 0 ~ 1 0原子。 /0の範囲では殆 ど変わらず約 260。Cであった。 そして、 コバルト含有量を 1 2原子0 /0以上とす ると、 分解温度 Tp. d.は増加傾向を示し 3 0 0°Cを越える値となった。 特に、 コ ノ ノレト含有量が 3 0〜4 2. 5原子0 /0の範囲では、 40 0。Cの熱処理では分解温 度 Tp. d.は確認できなかった。 更に、 コバルト含有量を 5 0原子0 /0以上に增やす と、 分解温度 Tp. d.は急激に低下傾向を示した。 According to Fig. 15, the decomposition temperature Tp. D. Contains cono-kalt: S is 0 to 10 atoms. In the range of / 0 , there is almost no change, about 260. C. Then, to the cobalt content of the 1 2 atoms 0/0 or more As a result, the decomposition temperature Tp. D. Showed an increasing tendency and exceeded 300 ° C. In particular, in a range of co Roh Noreto content 3 0-4 2.5 atomic 0/0, 40 0. No decomposition temperature Tp. D. Could be confirmed by heat treatment of C. Furthermore, when Yasu增cobalt content to 5 0 atoms 0/0 or more, the decomposition temperature Tp. D. Showed rapidly declining.
以上の結果より、 本発明に係る炭化鉄コバルト膜は、 コバルト含有量を 1 2〜 5 0原子%とした時、 3 0 0°Cを越える熱安定性を有すると判断した。  From the above results, it was determined that the iron-cobalt carbide film according to the present invention had a thermal stability exceeding 300 ° C. when the cobalt content was 12 to 50 atomic%.
(実施例 7 ) (Example 7)
本例では、 図 7に示す対向ターゲット式スパッタリング装置を用い、 H奠中に含 まれる炭素 (C) 含有量が 0〜2 0原子0 /0 (a t %) であり、 コノ ノレト (C o) 含有量が 3 0原子% (a t %) で、 残部は鉄 (F e ) からなる膜組成を備えた炭 化鉄コバルト膜からなる磁性層 1 1, を基体 1 0の上にスパッタリング法で直接 堆積させて図 2に示す層構成の試料 S 7を作製した。 In this example, a reference to the facing target sputtering apparatus shown in FIG. 7, including Murrell carbon (C) content in H奠中0-2 0 atom 0/0 (at%), Kono Noreto (C o ) A magnetic layer 11 consisting of an iron-cobalt carbide film with a film composition consisting of iron (Fe) having a content of 30 atomic% (at%) Sample S7 having the layer configuration shown in Fig. 2 was produced by direct deposition.
他の点は、 実施例 5と同様とした。  Other points were the same as in Example 5.
図 1 6は、 実施例 7で作製した試料 S 7の炭素含有量と保磁力 H eとの関係を 示すグラフである。 図 1 6において、 印は成膜後の値であり、 〇印は 40 0°C の熱処理後の値を表す。  FIG. 16 is a graph showing the relationship between the carbon content and the coercive force He of the sample S7 prepared in Example 7. In FIG. 16, marks indicate values after film formation, and marks indicate values after heat treatment at 400 ° C.
図 1 6より、 炭化鉄コバルト膜からなる試料 S 7は、 成膜後に熱処理を施すこ とによって保磁力を低下させることが可能であることが分かった。 中でも、 炭素 含有量を 2〜 1 5原子%とした炭化鉄コバルト膜は、 40 0°C、 2時間の熱処理 によって、 保磁力を 2 O e以下にできることが確認された。  From FIG. 16, it was found that the coercive force of sample S7 made of an iron-cobalt carbide film can be reduced by performing a heat treatment after the film formation. In particular, it was confirmed that the coercive force of the cobalt-iron carbide film having a carbon content of 2 to 15 atomic% can be reduced to 2 Oe or less by a heat treatment at 400 ° C. for 2 hours.
上述した実施例 6と実施例 7の結果より、 本 明に係る炭化鉄コバルト膜は、 成膜後に適当な熱処理を施すことによって、 2. 2 Tを越える飽和磁束密度と 2 O e以下の低い保磁力を持つことができ、 かつ、 3 0 0°Cを越える耐熱性も兼ね 備えていることが明らかとなった。 図 1 7は、 実施例 7で作製した代表的な α ' -F e -C ο— C膜の磁性層から なる試料 S 7の結晶構造を、 40 0°Cで熱処理した前後において、 線源として ( C u -Ka) を用いた X線回折法により調べた結果を示すグラフである。 図 1 7 において、 炭素含有量が 6原子%の場合は、 曲線 X 1 (熱処理前) と曲線 x 2 ( 熱処理後) であり、 炭素含有量が 1 0原子%の場合は、 曲線 y 1 (熱処理前) と 曲線 y 2 (熱処理後) である。 From the results of Examples 6 and 7 described above, the iron-cobalt film according to the present invention was subjected to an appropriate heat treatment after the film formation, whereby a saturation magnetic flux density exceeding 2.2 T and a low magnetic flux density of 2 Oe or less were obtained. It has been found that it has a coercive force and also has heat resistance exceeding 300 ° C. FIG. 17 shows the crystal structure of the sample S7 comprising the magnetic layer of the representative α′-Fe-Co-C film prepared in Example 7 before and after heat treatment at 400 ° C. 7 is a graph showing the results of an X-ray diffraction method using (Cu-Ka) as an example. Fig. 17 When the carbon content is 6 atomic%, the curve is X 1 (before heat treatment) and the curve x 2 (after heat treatment). When the carbon content is 10 atomic%, the curve is y 1 (before heat treatment). And curve y2 (after heat treatment).
図 1 7より、 熱処理により、 炭化鉄コバルト膜から観測される主たる回折ピー クは、 炭素含有量に依存せず、 α ' ( 0 0 2 ) から a ( 2 0 0 ) に変化すること が分かった。 2 Θが 6 0度〜 7 0度の範囲では、 これらのピーク以外に回折ピー クは観測されない。  Figure 17 shows that the main diffraction peak observed from the iron-cobalt film changes from α '(002) to a (200) by the heat treatment without depending on the carbon content. Was. When 2Θ is in the range of 60 to 70 degrees, no diffraction peaks other than these peaks are observed.
しかしながら、 熱処理後の炭化鉄コバルト膜からなる試料 S 7に対してヒステ リシス曲線を測定したところ、 熱処理前の結果、 すなわち図 1 1に示した成膜後 の炭化鉄コバルト膜で観測されたヒステリシス曲線とほぼ同じ結果が得られた。 また、 熱処理後の炭化鉄コバルト膜に対して格子定数の測定も行ったが、 熱処理 前の結果、 すなわち図 1 0に示した成膜後の炭化鉄コバルト膜で観測された結果 と変わらなかった。  However, when a hysteresis curve was measured for the sample S7 made of the iron-cobalt film after the heat treatment, the result before the heat treatment, that is, the hysteresis curve observed for the iron-cobalt film after the film formation shown in FIG. 11 was obtained. Almost the same result as the curve was obtained. The lattice constant was also measured for the heat-treated iron-cobalt film, but the result was not different from the result before the heat treatment, that is, the result observed for the film-deposited iron-cobalt film shown in FIG. .
以上の結果より、 本発明に係る炭化鉄コバルト膜は、 成膜後に施される熱処理 の有無に依存せず、 体心正方構造を備え、 c軸が磁化困難軸、 c面が磁化容易面 を成し、 該磁化困難軸は膜面に対して略垂直方向を、 該磁化容易面は膜面に対し て略水平方向を成していると判断した。 産業上の利用可能性  From the above results, the iron-cobalt carbide film according to the present invention has a body-centered square structure without depending on the presence or absence of heat treatment performed after the film formation, the c-axis has a hard magnetization axis, and the c-plane has an easy magnetization surface. It was determined that the hard axis was substantially perpendicular to the film surface, and the easy magnetization surface was substantially horizontal to the film surface. Industrial applicability
以上説明したように、 本発明に係る磁性薄膜の製造方法、 すなわち、 減圧空間 内に配置した基体上に、 プロセスガスを用いて該基体の堆積面に与えるプラズマ ダメージの小さなプラズマを生起させ、 該プラズマと磁性薄膜の形成用の母材源 とを利用して、 該プラズマと磁性薄膜の形成用の母材源とを利用して、 前記基体 上に少なくとも炭素及び鉄、 又は、 炭素、 鉄及びコバルトを構成元素とし、 例え ば線源として (C o—Κ α ) 又は (C u— K c を用いた X線回折法で、 その結 晶構造がマルテンサイ 卜 (α ' ) 相単相を含むことが確認される炭化鉄膜又は炭 化鉄コバルト膜を形成する工程 Αを有する製法によれば、 髙記録密度化に対応可 能な磁気特性、 すなわち 2 T以上の飽和磁化と 2 O e以下の保磁力を兼ね備えた 良好な軟磁気特性を備える磁性薄膜を、 広範囲な成膜時の基体温度において安定 して形成できる。 また、 上記 X線回折法に代えて電子線回折法を用いても、 本発 明に係る炭化鉄又は炭化鉄コバルト膜の結晶構造がマルテンサイ ト (α ' ) 相単 相を含むことを検知できる。 従って、 上記構成からなる磁性薄膜の製造方法によれば、 基体温度をある範囲 にそれほど限定する必要が無くなるので、 基体を構成する材質やその表面形状に 束縛されることが少なく、 種々の材質や表面形状からなる基体や薄膜上に安定し て所望の α ' 相を主たる相とする炭化鉄膜又は炭化鉄コバルト膜を柔軟に製造で きるプロセスの提供を可能とする。 また、 上記構成からなる磁性薄膜の製造方法では、 プラズマダメージの小さな プラズマを用いて磁性薄膜を作製することにより、 形成された磁性薄膜の表面粗 さを極めて小きな数値に抑制できるので、 膜面の平坦化を著しく図れる。 これに より、 例えば多数の積層膜から構成される磁気へッドの磁極部に本発明に係る磁 性薄膜を設ける場合でも、 積層膜をなす他の薄膜との間の界面等における良好な 平坦性を実現できる。 従って、 本発明に係る磁性薄膜の製造方法は、 高密度記録 に有利な軟磁気特性を備えた磁気へッドの製造に貢献できる。 本発明に係る磁性薄膜の製造装置は、 減圧空間内に配置した基体上に、 プロセ スガスを用いて該基体の堆積面に与えるプラズマダメージの小さなプラズマを生 起させ、 該プラズマと磁性薄膜の形成用の母材源とを利用して、 前記基体上に少 なくとも炭素及び鉄、 又は、 炭素、 鉄及びコバルトを構成元素とし、 相を主 たる相とする炭化鉄膜又は炭化鉄コバルト膜を形成する製造装置であり、 前記炭 化鉄膜又は炭化鉄コバルト膜形成用のプラズマ発生手段と、 前記プラズマの濃度 勾配が生じている方向に沿って前記基体を移動できる基体保持手段とを具備して いるので、 基体保持手段を用いて基体をプラズマの濃度勾配が生じている方向に 沿つて適宜移動きせることにより、 該基体の堆積面がブラズマから受けるダメ一 ジを抑制しつつ、 所望の α ' 相を主たる相とする炭化鉄膜又は炭化鉄コバルト膜 が形成可能な位置に基体を配置することができる。 ところで、 プラズマ蒸着装置 の場合は、 グリッド電流およびグリッド電圧でプラズマ状態を変化させることが できる。 しカゝし、 プラズマ一定でも、 基体位置を移動させることによつても、 基 体表面が曝されるプラズマ条件を制御することが可能である。 上記構成によれば、 炭化鉄膜又は炭化鉄コバルト膜は堆積開始時、 堆積中ある いは堆積後においてもプラズマダメ ジを殆ど受けることが無いので、 特に、 堆 積中にはブラズマダメージの影響が極めて少なレ、雰囲気下でその膜厚を順次増や すことが可能となり、 その結果、 形成される磁性薄膜の表面は粗面化が極力抑え られると共に、 堆積中の磁性薄膜の温度上昇も抑制される。 つまり、 上記構成か らなる製造装置によれば、 極めて平坦な表面形態を有する磁性薄膜の安定した製 造が可能となる。 As described above, the method of manufacturing a magnetic thin film according to the present invention, that is, using a process gas to generate plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, Utilizing plasma and a base material source for forming a magnetic thin film, utilizing the plasma and a base material source for forming a magnetic thin film, forming at least carbon and iron, or carbon, iron and Cobalt as a constituent element, for example, by X-ray diffraction using (Co-Κα) or (Cu-Kc) as a radiation source, the crystal structure of which contains a single phase of a martensite (α ') phase According to the manufacturing method having a step of forming an iron carbide film or an iron cobalt carbide film, which is confirmed to be, 髙 magnetic properties capable of responding to the increase in recording density, that is, saturation magnetization of 2 T or more and 2 Oe or less Good soft magnetic characteristics with a coercive force of A magnetic thin film with a stable at the substrate temperature during extensive deposition Can be formed. Further, even if an electron diffraction method is used instead of the X-ray diffraction method, it is possible to detect that the crystal structure of the iron carbide or iron cobalt carbide film according to the present invention includes a single phase of a martensite (α ′) phase. . Therefore, according to the method for manufacturing a magnetic thin film having the above-described structure, it is not necessary to restrict the temperature of the substrate to a certain range so much that it is less bound by the material constituting the substrate and its surface shape, and various materials and It is possible to provide a process that can stably and flexibly produce an iron carbide film or an iron cobalt film having a desired α ′ phase as a main phase on a substrate or a thin film having a surface shape. In the method of manufacturing a magnetic thin film having the above-described structure, the surface roughness of the formed magnetic thin film can be suppressed to an extremely small value by manufacturing the magnetic thin film using plasma with small plasma damage. The surface can be significantly flattened. Thereby, for example, even when the magnetic thin film according to the present invention is provided at the magnetic pole portion of a magnetic head composed of a large number of laminated films, good flatness at an interface between the magnetic thin film and the other thin films forming the laminated film can be obtained. Can be realized. Therefore, the method for producing a magnetic thin film according to the present invention can contribute to the production of a magnetic head having soft magnetic properties advantageous for high-density recording. The apparatus for manufacturing a magnetic thin film according to the present invention is characterized in that a process gas is used to generate a plasma with small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, thereby forming the plasma and the magnetic thin film. A base material source for use in forming an iron carbide film or an iron cobalt carbide film having at least carbon and iron or carbon, iron and cobalt as constituent elements and a main phase as the main phase on the substrate. A plasma generating means for forming the iron carbide film or the iron cobalt film, and a substrate holding means capable of moving the substrate along a direction in which the concentration gradient of the plasma is generated. Since the substrate is appropriately moved along the direction in which the plasma concentration gradient is generated by using the substrate holding means, damage to the deposition surface of the substrate from the plasma is suppressed. One can place the substrate into iron carbide film or possible iron carbide cobalt film forming position as the main phase of the desired alpha 'phase. By the way, plasma deposition equipment In the case of, the plasma state can be changed by the grid current and grid voltage. However, it is possible to control the plasma conditions to which the substrate surface is exposed, whether the plasma is constant or by moving the position of the substrate. According to the above configuration, the iron carbide film or the iron cobalt film hardly receives plasma damage at the start of the deposition, during the deposition, or after the deposition. It is possible to increase the film thickness in an atmosphere in an extremely small amount. Is suppressed. That is, according to the manufacturing apparatus having the above configuration, it is possible to stably manufacture a magnetic thin film having an extremely flat surface morphology.
また、 この平坦化が促進されると、 α ' 相を主たる相とする炭化鉄膜又は炭化 鉄コバルト膜が安定して得られる成膜時の基体温虔も広い範囲とすることができ るので、 製造時の温度マージンが広い製造装置の提供が可能となる。  In addition, when the flattening is promoted, the substrate temperature during film formation in which an iron carbide film or an iron cobalt carbide film having an α ′ phase as a main phase can be stably obtained can be made in a wide range. Thus, it is possible to provide a manufacturing apparatus having a wide temperature margin during manufacturing.
更には、 上記構成によれば、 基体の堆積面がプラズマから受けるダメ ジを抑 制できるので、 炭化鉄膜又は炭化鉄コバルト膜を堆積させる基体表面を構成する 材料や形状に依存せず、 α ' 相を主たる相とする炭化鉄膜又は炭化鉄コバルト膜 が極めて安定して得られる製造装置となるので、 これは歩留まりが高く信頼性に 優れる製造ラインの構築に貢献する。 本発明に係る磁性薄膜は、 α ' 相を主たる相とし、 少なくとも炭素、 鉄及びコ バルトを構成元素とする炭化鉄コバルト膜であり、 該コバルト含有量が原子 °/οで 、 1 2以上 5 0以下であることから、 成膜後に加熱処理を施すことなく、 2 . 2 Τ以上に相当する飽和磁化を有する。 換言すれば、 コバルト含有量を原子。/。で、 1 2以上 5 0以下とした炭化鉄コバルト膜は、 2丁程度に相当する飽和磁化を備 える a— F e膜や α ' — F e— C膜を凌駕し、 さらに 1 0。/0以上高い飽和磁化の 磁性薄膜の提供を可能とする。 Furthermore, according to the above configuration, damage to the deposition surface of the substrate from the plasma can be suppressed, so that the material and shape of the substrate surface on which the iron carbide film or the iron cobalt carbide film is deposited can be reduced to α. '' This will contribute to the construction of a production line with high yield and high reliability, since the production equipment will be able to obtain an iron carbide film or iron cobalt carbide film whose main phase is very stable. The magnetic thin film according to the present invention is an iron-cobalt film having an α ′ phase as a main phase and at least carbon, iron and cobalt as constituent elements. Since it is 0 or less, it has a saturation magnetization corresponding to 2.2 ° or more without performing heat treatment after film formation. In other words, the atomic cobalt content. /. Thus, the iron-cobalt film with a value of 12 or more and 50 or less surpasses an a-Fe film or an α'- Fe-C film having a saturation magnetization corresponding to about two, and furthermore has a value of 10%. It is possible to provide a magnetic thin film having a saturation magnetization higher than / 0 .
また、 コノくノレト含有量を上記範囲とした炭化鉄コバルト膜は、 3 0 0 °Cを越え る加熱処理を行っても結晶構造に大きな変化が生じない。 中でも、 コバノレトの含 有量を 3 0〜4 2 . 5原子 °/0とした炭化鉄コバルト膜は、 4 0 0 °Cを越える耐熱 性を備えている。 したがって、 コバルト含有量を原子。 /0で、 1 2以上 5 0以下と した炭化鉄コバルト膜は、 磁気へッ ドを構成する MR素子の製造プロセスにおい て要求される 3 0 0 °C程度の熱処理に対しても、 十分な耐性を備えている。 さらに、 本発明に係る炭化鉄コバルト膜は、 成膜後に、 適度な加熱処理を施す と、 保磁力を低減できる。 中でも、 炭素含有量を 2〜1 5原子%とした炭化鉄コ バルト膜は、 熱処理後の保磁力が 2 O e以下となり、 良好な軟磁気特性を有 する。 In addition, the iron-cobalt carbide film having the content of cono-noret in the above-mentioned range does not cause a significant change in the crystal structure even when subjected to a heat treatment exceeding 300 ° C. Above all, including cobanoleto An iron-cobalt carbide film having a weight of 30 to 42.5 atom ° / 0 has a heat resistance exceeding 400 ° C. Therefore, the atomic content of cobalt. The iron / cobalt film of which the ratio is not less than 12 and not more than 50 by the ratio of / 0 is sufficient for the heat treatment at about 300 ° C required in the manufacturing process of the MR element constituting the magnetic head. Has resistance. Furthermore, the coercive force of the iron-cobalt carbide film according to the present invention can be reduced by performing an appropriate heat treatment after the film formation. Among them, the iron carbide cobalt film having a carbon content of 2 to 15 atomic% has a coercive force after heat treatment of 2 Oe or less and has good soft magnetic properties.
ゆえに、 上述した構成からなる炭化鉄コバルト膜は、 磁気ヘッドを構成する M R素子と一緒に搭載され、 書込用の磁気へッドを構成する磁極材料として極めて 有望な磁性薄膜である。  Therefore, the iron-cobalt carbide film having the above-described structure is a magnetic thin film which is mounted together with the MR element constituting the magnetic head and is extremely promising as a magnetic pole material constituting the magnetic head for writing.
また、 本発明に係る炭化鉄コバノレト膜は、 従来のめっき法などからなるゥエツ トプロセス処理を用いた薄膜形成法ではなく、 超髙真空中にて髙純度なガスと母 材を用いたスパッタリング法からなるドライプロセスを用いて製造できるので、 膜厚を数 n m〜数百 n mの範囲において極めて高精度に制御できる。 これは、 高 記録密度化を図るため書込用の磁気へッドを構成する磁極の薄膜化が求められて いる要求に +分応える磁性薄膜であることを意味する。  Further, the iron carbide covanolate film according to the present invention is not formed by a thin film forming method using an etching process such as a conventional plating method, but by a sputtering method using a high-purity gas and a base material in an ultra-high vacuum. Because it can be manufactured using a dry process consisting of, the film thickness can be controlled with extremely high precision in the range of several nm to several hundred nm. This means that it is a magnetic thin film that meets the demand for thinner magnetic poles that make up the magnetic head for writing in order to achieve higher recording density.
したがって、 本発明に係る磁性薄膜の製造方法および製造装置は、 髙記録密度 を達成できる磁気ヘッドを、 安定に、 かつ、 高精度に実現できる量産技術の提供 に寄与する。 なお、 本発明は、 その主要な特徴から逸脱することなく、 他のいろいろな形で 実施することができる。 前述の実施形態は単なる例示にすぎず、 限定的に解釈し てはならない。 また、 本発明の範囲は、 特許請求の範囲によって示すものであつ て、 明細書本文には、 なんら拘束されない。 また、 特許請求の範囲の均等範囲に 属する変形や変更は、 すべて本発明の範囲内のものである。  Therefore, the method and apparatus for manufacturing a magnetic thin film according to the present invention contribute to the provision of a mass production technique capable of stably and highly accurately realizing a magnetic head capable of achieving a high recording density. It should be noted that the present invention can be implemented in various other forms without departing from its main features. The above embodiments are merely examples and should not be construed as limiting. The scope of the present invention is defined by the appended claims, and is not restricted by the specification text. Also, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1. 減圧空間内に配置した基体上に、 プロセスガスを用いて該基体の堆積面に 与えるプラズマダメージの小さなプラズマを生起させ、 該プラズマと磁性薄膜の 形成用の母材源とを利用して、 前記基体上に少なくとも炭素及び鉄、 又は、 炭素 、 鉄及びコバルトを構成元素とし、 ひ' 相を主たる相とする炭化鉄膜又は炭化鉄 コバルト膜を形成する工程 Aを具備したことを特徴とする磁性薄膜の製造方法。 1. A process gas is used to generate a plasma with a small plasma damage to a deposition surface of the substrate on a substrate disposed in a reduced-pressure space, and the plasma and a base material source for forming a magnetic thin film are used. A step of forming an iron carbide film or an iron-cobalt cobalt film having at least carbon and iron, or carbon, iron and cobalt as constituent elements on the substrate, and a gallium phase as a main phase. Of manufacturing a magnetic thin film.
2. 前記プラズマの電子温度 T eが、 4 X 10— 3 e V以上 3 e V以下である ことを特徴とする請求項 1に記載の磁性薄膜の製造方法。 2. electron temperature T e of the plasma, 4 X 10- 3 method of manufacturing a magnetic thin film according to claim 1, characterized in that e V or more and 3 e V below.
3. 前記プラズマの電子温度 T eが、 1 X 10— 2 e V以上 1 e V以下である ことを特徴とする請求項 1に記載の磁性薄膜の製造方法。 3. electron temperature T e of the plasma, the method of manufacturing a magnetic thin film according to claim 1, characterized in that less than 1 X 10- 2 e V or 1 e V.
4. 前記プラズマの電子密度 N eが、 7 X 108 cm— 3以上 2. 5 X 1010 c m_3以下であることを特徴とする請求項 1に記載の磁性薄膜の製造方法。 4. The electron density N e of the plasma, 7 X 10 8 cm- 3 or more 2. 5 X 10 10 c m_ 3 method of manufacturing a magnetic thin film according to claim 1, characterized in that less.
5. 前記プラズマの電子密度 N eが、 1 X 109 c πΓ3以上 1 X 1010 c m, 3以下であることを特徴とする請求項 1に記載の磁性薄膜の製造方法。 5. The method for producing a magnetic thin film according to claim 1, wherein the electron density N e of the plasma is 1 × 10 9 c π 3 or more and 1 × 10 10 cm, 3 or less.
6. 前記 α ' 相単相を含む炭化鉄膜又は炭化鉄コバルト膜を形成する工程 Αは 、 成膜法として対向ターゲット式スパッタリング法を用いることを特徴とする請 求項 1に記載の磁性薄膜の製造方法。 6. The magnetic thin film according to claim 1, wherein the step of forming the iron carbide film or the iron cobalt film containing the α ′ phase single phase uses a facing target sputtering method as a film forming method. Manufacturing method.
7. 前記 α ' 相単相を含む炭化鉄膜又は炭化鉄コバルト膜を形成する工程 Αは 、 成膜法としてプラズマ蒸着法を用いることを特徴とする請求項 1に記載の磁性 簿膜の製造方法。 7. The method according to claim 1, wherein the step of forming the iron carbide film or the iron cobalt film containing the α ′ phase single phase uses a plasma deposition method as a film formation method. Method.
8. 前記 CE ' 相単相を含む炭化鉄膜又は炭化鉄コバルト膜を形成する工程 Aの 前に、 前記炭化鉄膜又は炭化鉄コバルト膜に接して下層を成し、 該炭化鉄膜又は 炭化鉄コバルト膜の原子間距離と略同一の原子間距離を具備する薄膜を形成する 工程 Bを有することを特徴とする請求項 1に記載の磁性薄膜の製造方法。 8. Step A of forming an iron carbide film or an iron cobalt film containing the CE ′ phase single phase Step B of forming a lower layer in contact with the iron carbide film or the iron cobalt film to form a lower layer and having the same interatomic distance as that of the iron carbide film or the iron cobalt film. 2. The method for producing a magnetic thin film according to claim 1, wherein the method comprises:
9 . 前記工程 Aの後に、 前記炭化鉄膜又は前記炭化鉄コバルト膜を加熱するェ 程 Cを具備したことを特徴とする請求項 1に記載の磁性薄膜の製造方法。 9. The method for producing a magnetic thin film according to claim 1, further comprising a step C of heating the iron carbide film or the iron cobalt film after step A.
1 0 . 减圧空間内に配置した基体上に、 プロセスガスを用いて該基体の堆積面 に与えるプラズマダメージの小さなプラズマを生起させ、 該プラズマと磁性簿膜 の形成用の母材源とを利用して、 前記基体上に少なくとも炭素及び鉄、 又は、 炭 素、 鉄及びコバルトを構成元素とし、 ' 相を主たる相とする炭化鉄膜又は炭化 鉄コバルト膜を形成する製造装置であり、 10. A process gas is used to generate a plasma with small plasma damage on the deposition surface of the substrate on the substrate disposed in the pressurized space, and the plasma and the base material source for forming the magnetic recording film are formed. A production apparatus for forming an iron carbide film or an iron-cobalt carbide film having a main phase of at least carbon and iron, or carbon, iron and cobalt as constituent elements on the substrate,
前記炭化鉄膜又は炭化鉄コノくノレト膜形成用のブラズマ発生手段と、  A plasma generating means for forming the iron carbide film or iron carbide conoret film,
前記プラズマの濃度勾配が生じている方向に沿つて前記基体を移動できる基体 保持手段とを具備していることを特徴とする磁性薄膜の製造装置。  An apparatus for manufacturing a magnetic thin film, comprising: a substrate holding means capable of moving the substrate along a direction in which the plasma concentration gradient is generated.
1 1 . 前記基体保持手段は、 前記甚体が曝されるプラズマの電子温度 T eが 4 X 1 0— 3 e V以上 3 e V以下となるように該基体の位置を可変制御することを 特徴とする請求項 1 0に記載の磁性薄膜の製造装置。 1 1. The substrate holding means to variably control the position of the base body so that the electron temperature T e of the plasma the甚体are exposed is less than or equal to 4 X 1 0- 3 e V or 3 e V 10. The apparatus for producing a magnetic thin film according to claim 10, wherein:
1 2 . 前記基体保持手段は、 前記基体が曝されるブラズマの電子密度 N eが 7 X 1 0 8 c nT 3以上 2 . 5 X 1 0 1。 c m 3以下となるように該基体の位置を可 変制御することを特徴とする請求項 1 0に記載の磁性薄膜の製造装置。 12. The substrate holding means is such that the electron density Ne of the plasma to which the substrate is exposed is 7 × 10 8 cnT 3 or more and 2.5 × 10 1 . 10. The apparatus for producing a magnetic thin film according to claim 10, wherein the position of the substrate is variably controlled so as to be not more than cm 3 .
1 3 . 前記プラズマの濃度勾配は、 対向ターゲット式スパッタリング法により 生起されることを特徴とする請求項 1 0に記載の磁性薄膜の製造装置。 13. The apparatus for producing a magnetic thin film according to claim 10, wherein the concentration gradient of the plasma is generated by a facing target sputtering method.
1 4 . 前記プラズマの濃度勾配は、 プラズマ蒸着法により生起されることを特 徴とする請求項 1 0に記載の磁性薄膜の製造装匱。 14. The apparatus for producing a magnetic thin film according to claim 10, wherein the concentration gradient of the plasma is generated by a plasma deposition method.
1 5. 前記プラズマの濃度勾配は、 前記基体の表面と垂直をなす方向に生じて いることを特徴とする請求項 1 0に記載の磁性薄膜の製造装匱。 15. The magnetic thin film manufacturing apparatus according to claim 10, wherein the concentration gradient of the plasma is generated in a direction perpendicular to the surface of the base.
1 6. 前記炭化鉄膜又は前記炭化鉄コバルト膜形成用のプラズマ発生手段に加 え、 該炭化鉄膜又は該炭化鉄コバルト膜に接して下層を成し、 該炭化鉄膜又は該 炭化鉄コバルト膜の原子間距離と略同一の原子間距離を具備する薄膜を形成する ためのプラズマ発生手段を備えたことを特徴とする請求項 10に記載の磁性薄膜 1 6. In addition to the plasma generating means for forming the iron carbide film or the iron cobalt film, a lower layer is formed in contact with the iron carbide film or the iron cobalt film, and the iron carbide film or the cobalt cobalt film is formed. 11. The magnetic thin film according to claim 10, further comprising plasma generating means for forming a thin film having an interatomic distance substantially equal to the interatomic distance of the film.
1 7. 前記炭化鉄膜又は前記炭化鉄コバルト膜を加熱する熱処理手段を具備し たことを特徴とする請求項 10に記載の磁性薄膜の製造装置。 17. The apparatus for producing a magnetic thin film according to claim 10, further comprising a heat treatment unit for heating the iron carbide film or the iron cobalt film.
1 8. 相を主たる相とし、 少なくとも炭素、 鉄及びコバルトを構成元素と する炭化鉄コバルト膜であり、 該コバルト含有量が原子%で、 1 2以上 50以下 であることを特徴とする磁性薄膜。 1 8. A magnetic thin film characterized in that the phase is a main phase and the film is at least carbon, iron and cobalt, and at least carbon, iron and cobalt are constituent elements. .
1 9. 前記炭化鉄コバルト膜は、 炭素含有量が原子%で、 2以上 1 5以下であ ることを特徴とする請求項 1 8に記載の磁性薄膜。 19. The magnetic thin film according to claim 18, wherein the iron-cobalt carbide film has a carbon content of at least atomic%, and is 2 or more and 15 or less.
20. 前記炭化鉄コバルト膜は、 成膜後、 X線回折法あるいは電子線回折法に より α' 相の (002) 面からの回折ピークが主たるピークとして観測されるこ とを特徴とする請求項 1 8に記載の磁性薄膜。 20. The method according to claim 20, wherein, after the formation of the iron cobalt film, a diffraction peak from the (002) plane of the α 'phase is observed as a main peak by X-ray diffraction or electron diffraction. Item 18. A magnetic thin film according to Item 18.
2 1. 前記炭化鉄コバルト膜は、 熱処理後、 X線回折法あるいは電子線回折法 により α相の (200) 面からの回折ピークが主たるピークとして観測されるこ とを特徴とする請求項 1 8に記載の磁性薄膜。 2 1. The heat treatment of the iron-cobalt carbide film, wherein a diffraction peak from the (200) plane of the α phase is observed as a main peak by X-ray diffraction or electron diffraction. 8. The magnetic thin film according to 8.
2 2. 前記炭化鉄コバルト膜は、 体心正方構造を備え、 c軸が磁化困難軸、 c面が磁化容易面を成し、 該磁化困難軸は膜面に対して略垂直方向を、 該磁化容 易面は膜面に対して略水平方向をなしていることを特徴とする請求項 2 0又は 2 1に記載の磁性薄膜。 2 2. The iron-cobalt carbide film has a body-centered square structure, the c-axis is a hard magnetization axis, The c-plane forms an easy magnetization surface, the hard magnetization axis is substantially perpendicular to the film surface, and the easy magnetization surface is substantially horizontal to the film surface. 20. The magnetic thin film according to 20 or 21.
2 3 . 前記炭化鉄膜又は前記炭化鉄コバルト膜に接して下層を成し、 該炭化鉄 膜又は該炭化鉄コバルト膜の原子間距離と略同一の原子間距離を具備する薄膜を 備えたことを特徴とする請求項 1 8に記載の磁性薄膜。 23. A thin film having a lower layer in contact with the iron carbide film or the iron cobalt film and having an interatomic distance substantially equal to the interatomic distance of the iron carbide film or the iron cobalt carbide film is provided. 19. The magnetic thin film according to claim 18, wherein:
PCT/JP2001/009187 2000-10-20 2001-10-19 Magnetic thin film production method and apparatus, and magnetic thin film WO2002033715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002210912A AU2002210912A1 (en) 2000-10-20 2001-10-19 Magnetic thin film production method and apparatus, and magnetic thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000321748 2000-10-20
JP2000-321748 2000-10-20

Publications (1)

Publication Number Publication Date
WO2002033715A1 true WO2002033715A1 (en) 2002-04-25

Family

ID=18799812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009187 WO2002033715A1 (en) 2000-10-20 2001-10-19 Magnetic thin film production method and apparatus, and magnetic thin film

Country Status (3)

Country Link
AU (1) AU2002210912A1 (en)
TW (1) TW518577B (en)
WO (1) WO2002033715A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212821A (en) * 1984-04-06 1985-10-25 Tdk Corp Magnetic recording medium
JPH01264919A (en) * 1988-04-15 1989-10-23 Matsushita Electric Ind Co Ltd Production of thin iron carbide film
JPH02137712A (en) * 1988-11-16 1990-05-28 Daikin Ind Ltd Thin iron carbide film
JPH0322404A (en) * 1989-06-19 1991-01-30 Matsushita Electric Ind Co Ltd Soft magnetic thin film
JPH08147678A (en) * 1994-11-11 1996-06-07 Tdk Corp Magnetic recording medium
JPH08255712A (en) * 1992-12-16 1996-10-01 Ken Takahashi Magnetic thin film and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212821A (en) * 1984-04-06 1985-10-25 Tdk Corp Magnetic recording medium
JPH01264919A (en) * 1988-04-15 1989-10-23 Matsushita Electric Ind Co Ltd Production of thin iron carbide film
JPH02137712A (en) * 1988-11-16 1990-05-28 Daikin Ind Ltd Thin iron carbide film
JPH0322404A (en) * 1989-06-19 1991-01-30 Matsushita Electric Ind Co Ltd Soft magnetic thin film
JPH08255712A (en) * 1992-12-16 1996-10-01 Ken Takahashi Magnetic thin film and its manufacturing method
JPH08147678A (en) * 1994-11-11 1996-06-07 Tdk Corp Magnetic recording medium

Also Published As

Publication number Publication date
AU2002210912A1 (en) 2002-04-29
TW518577B (en) 2003-01-21

Similar Documents

Publication Publication Date Title
US6730421B1 (en) Magnetic recording medium and its production method, and magnetic recorder
JP3809418B2 (en) Magnetic recording medium and magnetic recording apparatus
CN100440325C (en) Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
EP0587181B1 (en) Highly corrosion-resistant metal, method and apparatus of manufacturing the same, and use thereof
US6841259B1 (en) Magnetic thin film, production method therefor, evaluation method therefor and magnetic head using it, magnetic recording device and magnetic device
US7722967B2 (en) Recording medium comprising laminated underlayer structures
JP2010272179A (en) Perpendicular magnetic recording medium and magnetic recording and playback device
WO1997005664A1 (en) Magnetoresistance element and its manufacture
JP4091228B2 (en) Perpendicular magnetic recording medium
US20020110707A1 (en) Magnetic recording disk, method of the magnetic recording disk and magnetic recording apparatus
JP3423907B2 (en) Magnetic recording medium, method of manufacturing the same, and magnetic recording device
JP3141109B2 (en) Magnetic recording medium and method of manufacturing magnetic recording medium
JP2004213869A (en) Vertical magnetic recording medium and its manufacturing method
US6506508B1 (en) Magnetic recording medium, method of production and magnetic storage apparatus
US20050100765A1 (en) Polycrystalline structure film and method of making the same
WO2002033715A1 (en) Magnetic thin film production method and apparatus, and magnetic thin film
JP2006236486A (en) Magnetic recording medium and its manufacturing method
Hayashi et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon
JP2882039B2 (en) Soft magnetic thin film
JP3129049B2 (en) High corrosion resistant metals and their manufacturing methods and applications
JP2002358627A (en) Magnetic recording medium and magnetic storage element
JPS61207006A (en) Permalloy thin film and vertical magnetic recording medium
JPH0263249B2 (en)
JP2010065312A (en) Sputtering target
JP2000215436A (en) Magnetic recording medium and magnetic disk device using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP