WO2002033478A1 - Optical device and substrate - Google Patents

Optical device and substrate Download PDF

Info

Publication number
WO2002033478A1
WO2002033478A1 PCT/JP2001/007212 JP0107212W WO0233478A1 WO 2002033478 A1 WO2002033478 A1 WO 2002033478A1 JP 0107212 W JP0107212 W JP 0107212W WO 0233478 A1 WO0233478 A1 WO 0233478A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
optical
crystal structure
photonic crystal
electro
Prior art date
Application number
PCT/JP2001/007212
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Hamada
Toshio Katsuyama
Masayoshi Ishibashi
Masashi Kiguchi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2002033478A1 publication Critical patent/WO2002033478A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/07Materials and properties poled
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the present invention relates to an optical communication system, an optical element used in an optical information system, and an optical integrated circuit.
  • a photonic crystal structure is a t- photonic crystal structure that is a material structure obtained by forming a refractive index change with a period of about half the light wavelength in a medium in a medium transparent to light.
  • the behavior of the light wave can be understood as an analogy of the behavior of the electron wave in the semiconductor crystal.
  • a light wave in a photonic crystal structure is subject to a periodic change in refractive index in a medium. It is scattered to form a photonic band.
  • Photonic crystal structures have unique optical properties not found in conventional materials, such as the photonic bandgap, which is a forbidden band for light, and high dispersibility for light. Application is expected.
  • the photonic crystal structure includes a two-dimensional photonic crystal structure having a two-dimensional periodic refractive index change and a three-dimensional photonic crystal structure having a three-dimensional periodic refractive index change.
  • a method of two-dimensionally opening holes in a slab optical waveguide is known. This method utilizes the fact that the waveguide and the hole have different refractive indices.
  • Japanese Patent Application Laid-Open No. H11-313609 discloses a two-dimensional photonic crystal structure acting as an optical co-twist by using this method to realize an ultra-compact ultra-low threshold laser. A method for doing so is disclosed.
  • the proposal in the publication is It utilizes the fact that light of the wavelength in the band is strongly reflected by the photonic crystal structure. In the Journal of the Japan Society of Applied Physics, Vol. 68, pp. 1335, pp.
  • an L-shaped steeply bent waveguide using a two-dimensional photonic crystal structure created by the above method is introduced.
  • This waveguide uses a photonic crystal structure as a clad, utilizing the fact that light of a wavelength in the photonic band is strongly reflected by the photonic crystal structure, and is not possible in the past.
  • the above-mentioned Japanese Patent Application Laid-Open No. H11-313609 discloses a two-dimensional photonic crystal structure formed by the above-described method, and furthermore, an ultra-small wavelength A method to realize a wave circuit is also proposed. This is a proposal that utilizes the fact that the photonic crystal structure exhibits much higher light dispersion than conventional optical crystals.
  • the three-dimensional photonic crystal structure can be prepared by (a) a method of periodically opening holes in a semiconductor multilayer film, or (b) a method of two-dimensionally oxidizing a specific layer of the semiconductor multilayer film.
  • C A method of three-dimensionally varying the layer structure of a semiconductor multilayer film is known.
  • the method (a) is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-316154. In this method, two types of semiconductors having different refractive indices are alternately stacked to form a semiconductor multilayer film, and holes are periodically opened in the multilayer film to periodically change the refractive index three-dimensionally.
  • Japanese Unexamined Patent Publication No. Hei 11-1986657 discloses that a three-dimensional photonic crystal structure is created by this method, and the ultra-small ultra-low threshold laser using the created crystal structure as an optical resonator.
  • the method (b) is disclosed in, for example, JP-A-2000-31587.
  • a specific layer constituting a semiconductor multilayer film is oxidized two-dimensionally and periodically to create a three-dimensional photonic crystal structure.
  • the method (c) is described, for example, in the Journal of the Japan Society of Applied Physics, Vol. 68, pp. 135-135.
  • Japanese Patent Application Laid-Open No. 10-83005 discloses that a diffraction grating substrate having a metal film formed on its surface is opposed to an optically functional organic material sandwiched between the diffraction grating substrates. A method for creating a more photonic crystal structure has been proposed.
  • US Pat. No. 6,064,506 discloses a photonic device in which a photonic band changes when a voltage is applied by using a nonlinear optical material whose refractive index changes according to the voltage applied. A method for constructing a crystal structure is shown. Disclosure of the invention
  • the optical integrated circuit is composed of an optical waveguide having a complicated shape, but the conventional method cannot easily produce a waveguide having a photonic crystal structure having a complicated shape.
  • An object of the present invention is to provide an optical device having a photonic crystal structure made of a solid material that can easily form an optical integrated circuit.
  • An object of the present invention is to provide an optical device having a photonic crystal structure capable of changing a photonic band structure and a photonic band gap.
  • Another object of the present invention is to provide an optical device having a photonic crystal structure that functions as an optical waveguide.
  • Another object of the present invention is to provide an optical device having a photonic crystal structure that functions as an electro-optic switch.
  • Another object of the present invention is to provide an optical device having a photonic crystal structure acting as a linear, L-shaped, S-shaped, acute-angled, obtuse-angled, arc-shaped, or T-shaped optical waveguide. In the provision of vice.
  • Another object of the present invention is to provide an optical device of photonic crystal structure, which acts as a light collector product circuit consisting of optical waveguides and electro-optical sweep rate Tutsi includes a wavelength selection circuit It is an object of the present invention to provide an optical device having a photonic crystal structure that acts as a photonic crystal.
  • Another object of the present invention is to provide an optical device having a photonic crystal structure that acts as a crossed optical switch.
  • Another object of the present invention is to provide an optical device having a photonic crystal structure that functions as an optical exchanger.
  • Another object of the present invention is to provide an optical waveguide having a photonic crystal structure in which the optical circuit structure is variable, an electro-optic switch, an optical circuit including the optical waveguide and the electro-optic switch, a wavelength selection circuit, and a crossing. It is to provide an optical device that operates as a type optical switch or optical switch.
  • Another object of the present invention is to provide a substrate for a device using the above light.
  • electrodes are arranged on both sides of a photonic crystal structure formed in a solid material formed in an electro-optical substrate made of a solid material, and a voltage is applied to the electrodes, whereby electrodes are formed.
  • An optical device is realized by changing the refractive index of the substrate in the region of the photonic crystal structure in the sandwiched region.
  • FIG. 1 is a schematic diagram showing the simplest embodiment 1 of the present invention in the form of a perspective view from the top side.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3A is a schematic diagram of a photonic band structure of a two-dimensional photonic crystal structure region
  • FIG. 3B is a schematic diagram of a photonic band structure of a modified photonic crystal structure region.
  • FIG. 4 is a diagram showing a change in the position of the photonic band gap in the modified two-dimensional photonic crystal structure region when the voltage applied between the electrodes sandwiching the two-dimensional photonic crystal structure region is changed.
  • FIG. 5 is a cross-sectional view showing one of the procedures for producing the optical device of the first embodiment.
  • FIG. 6 is a cross-sectional view showing a procedure for manufacturing the optical device of Example 1 following FIG.
  • FIG. 7 is a cross-sectional view showing a procedure for manufacturing the optical device of Example 1 following FIG.
  • FIGS. 8 (a) and (b) are diagrams showing an example of a method of applying a voltage between the electrodes sandwiching the two-dimensional photonic crystal region of the first embodiment.
  • FIG. 9 is a sectional view of the second embodiment.
  • Figure 1 1 is a cross-sectional view showing one step in creating optical devices of Example 2 is a sectional view showing a procedure for creating optical devices in Example 2 which is subsequent to FIG. 1 0.
  • FIG. 12 is a cross-sectional view showing a procedure for manufacturing the optical device of Example 2 following FIG. 11.
  • FIG. 13 is a cross-sectional view illustrating a procedure for manufacturing the optical device of Example 2 following FIG.
  • FIG. 14 is a perspective view of Example 4 of the optical device of the present invention acting as a linear optical waveguide, as viewed from above.
  • FIG. 15 is a perspective view of Example 4 of the present invention acting as an L-shaped optical waveguide, as viewed from above.
  • FIG. 16 is a perspective view of Example 4 of the present invention acting as an S-shaped optical waveguide, as viewed from above.
  • FIG. 17 is a perspective view of Example 4 of the present invention acting as an acute angle optical waveguide, as viewed from above.
  • FIG. 18 is a perspective view of Example 4 of the present invention acting as an obtuse angle optical waveguide, as viewed from above.
  • FIG. 19 is a perspective view of Example 4 of the present invention acting as an arc-shaped optical waveguide, as viewed from above.
  • FIG. 20 is a perspective view of Example 5 of the present invention acting as a T-shaped optical waveguide, as viewed from above.
  • FIG. 21 is a perspective view of Example 6 of the present invention acting as an optical integrated circuit including an optical waveguide and an electro-optic switch, as viewed from above.
  • FIG. 22 is a diagram illustrating a photonic band gap of a modified two-dimensional photonic crystal structure region for causing the electro-optic switch of FIG. 13 to function as the wavelength selection circuit of the seventh embodiment.
  • FIG. 23 shows the top side of the eighth embodiment of the present invention acting as a crossed optical switch. It is the perspective view seen from.
  • FIG. 24 is a plan view of Embodiment 9 of the present invention acting as a 4 ⁇ 4 optical switch.
  • FIG. 25 is a schematic diagram showing Example 10 of the present invention in the form of a perspective view from above.
  • FIG. 26 is a perspective view of the optical device of Example 10 acting as an L-shaped or T-shaped optical waveguide, as viewed from the upper surface side.
  • FIG. 27 is a perspective view of the optical device of Example 10 acting as an intersecting optical switch in a bar state, as viewed from the upper surface side.
  • FIG. 28 is a perspective view of the optical device of Example 10 acting as a cross-type optical switch in a cross state, as viewed from the upper surface side.
  • the shape of the photonic crystal structure was mechanically or chemically changed to create a photonic crystal structure having a required photonic band. For this reason, there is a problem that the process becomes complicated when an optical integrated circuit composed of an optical waveguide having a complicated shape is produced by the conventional technology.
  • the photonic band structure also changes depending on the refractive index of the material that is the base of the photonic crystal structure. This can be easily understood from the fact that the refractive index of a material affects the wavelength of light traveling through the material.
  • the refractive index of the substrate in the photonic crystal structure region is changed by the electro-optic effect.
  • One electrode is provided as a common electrode on the entire surface of the substrate forming the photonic crystal structure, and the other electrode is provided on the other surface of the substrate forming the photonic crystal structure for the optical device.
  • the pattern By forming the pattern, any optical device can be easily obtained.
  • the photonic band structure of the two-dimensional photonic crystal structure region where the second electrode is installed is electrically controlled. It can be changed by the optical effect.
  • the second electrode can be patterned into an arbitrary shape by using a photolithography technique used for producing a semiconductor element. Therefore, in the present invention, by appropriately setting the shape of the second electrode, a photonic crystal structure having a photonic band and a shape required for an optical integrated circuit can be formed by the electro-optic effect.
  • an optical device acting as an optical waveguide can be produced.
  • This device utilizes the fact that when a voltage is applied between the first electrode and the second electrode, the photonic band gap of the two-dimensional photonic crystal structure region where the second electrode is installed changes. This is realized by changing the photonic band gap so that the guided light only passes through the portion where the second electrode is provided when a voltage is applied.
  • the shape of the optical waveguide is the second electrode shape, and therefore, according to the present invention, a waveguide having an arbitrary shape can be formed.
  • the second electrode shape is linear, L-shaped, S-shaped, acute-angled, obtuse-angled, arc-shaped, and T-shaped, respectively, linear, L-shaped, S-shaped, acute-angled, obtuse-angled Shaped, arc-shaped and T-shaped waveguides are formed.
  • a sharply bent waveguide unique to a photonic crystal structure waveguide is possible, and the path of the guided light can be bent by 90 degrees.
  • the width of the second electrode is set to one of the wavelengths of the light guided in the electro-optical substrate 2 so that the light can travel in the two-dimensional photonic crystal structure on which the second electrode is provided. / 2 or more.
  • an optical device that acts as an electro-optic switch is created. it can. Since the waveguide device according to the present invention is formed only when a voltage is applied between the first electrode and the second electrode, the waveguide disappears when the applied voltage is set to zero. Thus, the optical waveguide of the present invention acts as an electro-optic switch that transmits light only when a voltage is applied to the photonic crystal structure.
  • an optical device that functions as an optical integrated circuit including an optical waveguide and an electro-optic switch.
  • This optical device has a plurality of independent second electrodes continuously placed on the surface of a single two-dimensional photonic crystal structure on the electrodes, and a voltage between the first and second electrodes. This is realized by making a part of the optical waveguide formed when the voltage is applied act as an electro-optic switch.
  • an optical device that functions as a wavelength demultiplexing optical circuit.
  • a plurality of independent second electrodes are continuously arranged on a single two-dimensional photonic crystal structure surface on a first electrode, and a space between the electrode and each pattern electrode is provided. This is realized by making the voltage applied to the power supply different.
  • an optical device that operates as a cross-type optical switch.
  • This device is realized by forming an intersecting optical circuit by the above-described optical waveguide forming method, and enabling the photonic band gap at the intersecting portion to be changed.
  • An optical switch is realized by forming an optical circuit in which a plurality of crossed optical switches are combined in a single two-dimensional photonic crystal structure.
  • an optical waveguide having a photonic crystal structure in which the optical circuit structure is variable, an electro-optical switch, an optical circuit including the optical waveguide and the electro-optical switch, a wavelength selection circuit, and a cross-type optical switch are provided.
  • an optical device that acts as an optical switch In this optical device, a plurality of independent second electrodes are successively arranged in a matrix on a single two-dimensional photonic crystal structure surface on a first electrode, and a desired optical circuit structure is formed. 2D photo Achieved by selecting multiple second electrodes to be formed by the electro-optic effect in the nick crystal structure and applying a voltage between the first electrode and the selected second electrode Is done. By making the voltage applied between the first electrode and the selected second electrode different from each other, a wavelength selection circuit, a cross-type optical switch, and an optical switch are realized.
  • any material may be used as the substrate exhibiting the electro-optical effect that constitutes the present invention. It is preferable to use an inorganic material from the viewpoint of force stability.
  • niobium conventionally used as an optical circuit substrate lithium acid (L i N b 0 3) may be used as the substrate.
  • an optical integrated circuit having a photonic crystal structure can be formed electrically from a single two-dimensional photonic crystal structure, which is superior to the conventional technology requiring complicated processes. ing.
  • Embodiments of the present invention relate to the basic configuration of the invention (Examples 1 and 2), and those in which a single second electrode is provided on the surface of a two-dimensional photonic crystal structure (Examples 3 to 5). A plurality of second electrodes arranged continuously (Examples 6 to 9); and a plurality of second electrodes arranged in matrix (Example 10). are categorized.
  • FIG. 1 is a schematic diagram showing the simplest embodiment 1 of the present invention in the form of a perspective view from the upper surface side
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. In Fig. 2, it is also necessary to apply a voltage between the first electrode and the second electrode. Is also shown.
  • 1 is a first electrode
  • 2 is an electro-optic substrate on the electrode 1
  • 3 is a hole
  • 4 is a two-dimensional photonic crystal structure region formed in the substrate 2
  • 5 is a second electrode
  • 6 Is a modified two-dimensional photonic crystal structure region whose refractive index changes when a voltage is applied between the electrodes 1 and 5 in the photonic crystal structure region 4
  • 7 is a voltage applied between the electrodes 1 and 5.
  • a DC power supply 8 is an open / close switch.
  • the holes 3 are formed so as to penetrate the electrode 1, the electrode 5, and the electro-optical substrate 2. Since it is easier to form holes 3 after forming electrodes 5 and electrodes 5 in a predetermined shape, it is not inevitable to form holes 3 in electrodes 1 and 5.
  • the arrangement period of the holes 3 is a in both the vertical and horizontal directions.
  • the value of “a” is about 1 Z 2 of the wavelength of light guided in the electro-optical substrate 2.
  • the value of a is about 0.5 / z m.
  • the portion of the two-dimensional photonic crystal structure region 4 to which the electric field is applied is a modified two-dimensional photonic crystal. This becomes the structural region 6, where the refractive index changes due to the electro-optic effect.
  • is the electro-optic constant and ⁇ is the electric field strength.
  • is a positive or negative value, but it is known that the value of ⁇ is positive in many electro-optic materials.
  • an electro-optic material having a positive ⁇ is used for the electro-optic substrate 2, and when a voltage is applied between the electrodes 1 and 5, the modified two-dimensional photonic crystal region 6 has a modified refractive index.
  • the refractive index was set to be larger than the refractive index of the photonic crystal structure region 4.
  • FIG. 3A is a schematic diagram of the photonic band structure of the two-dimensional photonic crystal structure region 4.
  • Photonic band a forbidden zone against light The position of the gap is indicated by a bold line. Since the modified two-dimensional photonic crystal structure region 6 is a part of the photonic crystal region 4, if no voltage is applied between the electrodes 1 and 5, that is, if the region is not modified, The photonic band structure is also shown in Fig. 3 (a).
  • the refractive index of the modified two-dimensional photonic crystal structure region 6 increases due to the electro-optic effect.
  • the wavelength of light guided inside the photonic crystal region 4 in the region where the electrode 5 exists becomes 1 Zm, and the wave number k becomes m times. .
  • the photonic band when a voltage is applied between the electrodes 1 and 5 has a structure that is 1 / m times the scale of the vertical axis.
  • the refractive index of the electro-optic substrate constituting the modified two-dimensional photonic crystal structure region 6 is set to 1.18 times.
  • Figure 3 (b) shows the photonic band structure of the modified two-dimensional photonic crystal structure region 6 when a voltage V is applied between the electrodes 1 and 5.
  • the photonic band structure of the modified two-dimensional photonic crystal structure region 6 can be changed.
  • the photonic band gap in FIG. 3 (b) has larger energy at the upper and lower ends of the band gap and a wider band gap than that in FIG. 3 (a).
  • the photonic node gap of the two-dimensional photonic crystal structure region 6 can be changed.
  • the photonic band of the photonic crystal structure region where the pattern electrode is provided is set.
  • the structure and photonic band gap can be varied.
  • the refractive index change ⁇ n due to the electro-optic effect is As can be seen from Eq. (1), the voltage increases in proportion to the applied electric field E.
  • the applied voltage between the electrodes 1 and 5 by changing the applied voltage between the electrodes 1 and 5, the photon of the two-dimensional photonic crystal structure region 6 is changed. It is possible to continuously change the tonic band structure and the photonic band gap.
  • Figure 4 shows the modified two-dimensional photonic crystal region 6 when the voltage applied between electrodes 1 and 5 is changed to 0, 1.0 V, 1.2 V, 1.3 V, and 1.5 V. The change in the position of the photonic bandgap is shown. By increasing the applied voltage, the energy at the upper and lower ends of the band gap increases, and the width of the band gap increases.
  • Electrodes 1 and 5 are formed on both sides of the electro-optic substrate 2 (FIG. 5).
  • the electro-optical substrate 2 for example, lithium niobate LiNbO 3 is used.
  • the electrodes 1 and 5 are formed by depositing a metal such as aluminum on the surface of the electro-optical substrate 2.
  • the electrode 5 is patterned by the optical lithography technique used for semiconductor device fabrication (FIG. 6). According to the current optical lithography technology, a pattern electrode having a line width of about 0.1 ⁇ can be formed.
  • the holes 3 are periodically formed so as to penetrate through the electrode 5, the electro-optic substrate 2, and the electrode 1, and the present embodiment is performed.
  • the optical device of Example 1 is obtained (Fig. 7).
  • the holes 3 are formed by the optical photolithography technology and the plasma etching technology used for fabricating semiconductor devices. It can be formed by selectively etching the holes. In plasma etching using C ⁇ 4 and C 2 , the chemical reaction shown below (Fig. 1) proceeds and active species F are generated.
  • the holes 1 can be formed by etching the electrodes 1 and 5 and the electro-optical substrate 2.
  • Figures 8 (a) and (b) show examples of applying a voltage between electrodes 1 and 5.
  • (a) 7 is an electric circuit as a voltage source
  • 8 is a metal substrate
  • 9 is an electrode of the voltage source 7
  • 10 is a metal wire connecting the electrode 5 and the electrode 9.
  • the electrode 1 is arranged so as to be in contact with the metal substrate 8 connected to the other electrodes of the voltage source 7 and to be electrically connected thereto.
  • the voltage source 7 generates a predetermined DC voltage between the metal substrate 8 and the electrode 9, and can apply a voltage between the electrodes 1 and 5 by the metal substrate 8 and the metal wires 10.
  • a voltage can be applied between the electrodes 1 and 5.
  • (B) is a top surface of the electro-optical substrate 2, for example, by forming a S i 0 2 insulating layer 1 0 0 by, thereon to form a wiring layer 1 0 'in place of the metal Waiya one 1 0,
  • the wiring layer 100 ′ is connected to the electrode 5 through a through hole formed in the insulating layer 100, and is connected to the electrode 9 by a metal wire 101.
  • the wiring layer 10 ′ becomes a two-dimensional photonic. It does not affect the crystal region 4.
  • FIG. 9 is a cross-sectional view of the first embodiment when the holes 3 are not penetrated through the electro-optical substrate 2.
  • d is the thickness of the portion of the electro-optic substrate 2 where no holes are formed, and is set to be ⁇ or less of the wavelength of light incident on the portion of the photonic crystal structure 4.
  • light cannot enter a region of less than one to two wavelengths. Therefore, the incident light is The holes of the electro-optical substrate 3 cannot enter the portion where the holes are not perforated, and 4 acts as the same photonic crystal structure as in the first embodiment.
  • the optical device of the present embodiment can be manufactured by using the optical lithography technique and the plasma etching technique as in the first embodiment.
  • the optical device of this embodiment is used.
  • the optical device of this embodiment is used.
  • Figures 10, 11, 12, and 13 show the creation procedure.
  • An electro-optical substrate 2 made of iron dopaniobate doped with a small amount (0.2 mo 1%) of iron is formed on an electrode 1, and an electrode 5 of indium tin oxide and a negative resist are formed thereon. Apply 102 (Fig. 10).
  • gold is used as a material of the electrode 1, for example.
  • the electrode 1 is formed by depositing gold on the electro-optical substrate 2 and the electrode 5 is formed by depositing tin oxide on the electro-optical substrate 2, and the negative resist is formed on the electro-optical substrate 2 and the electrode 5 by a spin coating method. Subsequently, light having a wavelength of 488 rim is applied to the portion of the electro-optic substrate 2 where the holes 3 are to be formed by using a mask 103 by optical lithography (FIG. 11). Since the electrode 5 is a transparent electrode, the irradiation light passes through the electrode 5 and reaches the electro-optical substrate 2. By this light irradiation, the portion 104 of the negative resist 102 irradiated with the light is sensitized and can be removed. As reported by E.
  • electrode 1 is gold, it is not removed by this mixed solution.
  • the etching speed and time are controlled so that the holes 3 do not penetrate the electro-optical substrate 2 and the thickness d can be left.
  • the thickness d of the portion of the electro-optic substrate 2 where the holes 3 are not perforated must be set to be equal to or less than 1/2 of the wavelength of light incident on the photonic crystal structure region 4 beforehand. It is exactly the same.
  • the structure of the optical device of this embodiment (FIG. 9) can be obtained by removing the negative resist 102 that has not reacted.
  • the optical device of this embodiment has an advantage that the mechanical strength is larger than that of the optical device of Embodiment 1 (FIG. 7) since the holes 3 do not penetrate the electro-optical substrate 2 and If the thickness d of the unexposed portion is equal to or less than 1/2 of the wavelength of light incident on the photonic crystal structure region 4, even if the thickness varies, the original function may be impaired. There is no. Therefore, as described in the above-mentioned Barry et al. Document, when lithium iron dopniobate is etched using a 1: 2 mixed solution of hydrofluoric acid and nitric acid at 110 ° C. The etching rate is 0.92 mZ minutes. The etching time can be determined from this data.
  • the etching time is 108 minutes 16 Seconds.
  • the etching rate can be controlled by changing the concentration and temperature of the etching solution.
  • the effect of the etching process on the substrate may vary, but it is not necessary to strictly control the thickness d of the non-perforated portion, and there may be a portion that is partially penetrated. It can be simple.
  • FIG. 14 is a perspective view of the embodiment of the optical device of the present invention acting as a linear optical waveguide, as viewed from the upper surface side.
  • 1 is a first electrode
  • 2 is an electro-optic substrate
  • 3 is a hole
  • 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2
  • 5 is a second electrode.
  • a linear electrode 5 was used.
  • electrode The width of 5 is slightly larger than twice the arrangement period a of the holes 3. That is, the wavelength is set to be slightly longer than the wavelength of light introduced into the waveguide configured in the present example. The same applies to the following embodiments.
  • the region covered with the electrode 5 in the two-dimensional photonic crystal structure region 4 by applying a voltage between the electrodes 1 and 5 becomes a modified two-dimensional photonic crystal structure region.
  • the refractive index of the modified two-dimensional photonic crystal structure region was increased by the electro-optic effect.
  • Numerals 1 1 and 1 2 are optical fibers, each of which is an end face of the electro-optical substrate 2 and is optically connected to a portion of the area covered with the electrode 5.
  • the arrangement period a of the electrode 1, the electro-optical substrate 2, the holes 3, and the holes 3 is the same as in the first embodiment.
  • This embodiment is different from the first embodiment in that the electrodes 5 and 6 are linear in shape. Therefore, the photonic band structure of the two-dimensional photonic crystal structure region 4 is shown in FIG.
  • the photonic band structure of the modified two-dimensional photonic crystal structure region by applying a voltage between electrodes 1 and 5 changes according to the applied voltage between electrodes 1 and 5, and when the applied voltage is zero.
  • the photonic band structure is shown in Fig. 3 (a), and the photonic band structure when V is applied is shown in Fig. 3 (b).
  • the incident light Is light in the photonic band gap (see Fig. 3 (a)).
  • the photonic band structure of the modified two-dimensional photonic crystal structure region is as shown in Fig. 3 (b). It can be transmitted through the crystal structure region.
  • the photonic band structure of the portion of the two-dimensional photonic crystal structure region 4 excluding the modified two-dimensional photonic crystal structure region is shown in Fig.
  • the incident light is reflected in the two-dimensional photonic region excluding the modified two-dimensional photonic crystal structure region.
  • the light cannot travel to the optical crystal region 4 and is guided to the modified two-dimensional photonic crystal structure region ⁇ to be output to the optical fibers 12.
  • the voltage V when the voltage V is applied between the electrodes 1 and 5, it acts as a linear optical waveguide.
  • the present embodiment when no voltage is applied between the electrodes 1 and 5, the present embodiment does not function as a waveguide. Therefore, in this embodiment, the transmission state of the light 6 can be controlled by the voltage between the electrodes 1 and 5. That is, when no voltage is applied between the electrodes 1 and 5, the optical fiber 11 and the optical fiber 12 are not optically connected, but when a voltage V is applied between the electrodes 1 and 5, the optical fiber 1 Optical fibers 1 1 and 1 2 are optically connected by a modified two-dimensional photonic crystal structure region. As described above, the present embodiment operates as an electro-optic switch by changing the voltage between the electrodes 1 and 5.
  • wiring similar to that described with reference to FIGS. 8 (a) and 8 (b) can be provided, but the notation is omitted because the drawing is complicated. In the following embodiments, the description of the wiring is omitted.
  • FIGS. 15, 16, 17, 18, and 19 show the L-shaped, S-shaped, acute-angled, obtuse-shaped, and arc-shaped optical waveguides of the present invention, respectively. It is the perspective view seen from the shape side of an example. 1 is a first electrode, 2 is an electro-optic substrate, 3 is a hole, 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2, and 5 is a second electrode.
  • the fourth embodiment is the same as the second embodiment except that the shape of the electrode 5 is different.
  • the portion of the two-dimensional photonic crystal region 4 covered by the electrode 5 becomes a modified two-dimensional photonic crystal structure region, and the second As in the embodiment, the light incident from the optical fiber 11 is output to the optical fiber 12.
  • the waveguides in Figs. 15 to 19 act as steep waveguides, and can provide steeply bent waveguides characteristic of optical waveguides having a photonic crystal structure.
  • the fourth embodiment shown in FIGS. 15 to 19 does not function as an optical waveguide, as in the third embodiment. Therefore, in the fourth embodiment, by changing the voltage between the electrodes 1 and 5, the optical connection state between the optical fibers 11 and 12 can be changed, and the electro-optical switch can be used. This is also the same as in the third embodiment.
  • FIG. 20 is a top perspective view of the embodiment of the present invention acting as a T-shaped optical waveguide.
  • 1 is a first electrode
  • 2 is an electro-optic substrate
  • 3 is a hole
  • 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2
  • 5 is a second electrode.
  • the fifth embodiment differs from the second to fourth embodiments only in that the electrode 5 has a T-shape, and is otherwise the same.
  • the region covered with the T-shaped electrode 5 becomes a modified two-dimensional photonic crystal structure region when a voltage is applied between the electrodes 1 and 5.
  • the photonic band structure of the two-dimensional photonic crystal region 4 and the photonic band structure of the two-dimensional photonic crystal region modified by voltage application are the same as in the first embodiment (FIG. 3, 4).
  • this embodiment functions as an optical waveguide. That is, when a voltage V is applied between the electrodes 1 and 5 and the optical energy is applied by the optical fiber 11 to the light A, the incident light passes through the modified two-dimensional photonic crystal structure region. The light is guided, branched at the intersection, and output to the optical fibers 112 and 13.
  • the present embodiment acts as a T-shaped steep waveguide using a steeply bent waveguide characteristic of an optical waveguide having a photonic crystal structure.
  • this embodiment when no voltage is applied between the electrodes 1 and 5, this embodiment does not function as a waveguide, as in the third to fifth embodiments. Therefore, in the fifth embodiment, by changing the voltage between the electrodes 1 and 5, the optical connection between the optical fiber 11 and the optical fibers 12 and 13 can be changed. Acts as a switch.
  • an optical waveguide corresponding to the second electrode shape can be formed in the two-dimensional photonic crystal structure region 4, and the formed waveguide is an electro-optical switch. It can operate as Although various types of optical integrated circuits are conceivable, the waveguide pattern can be decomposed into the waveguide shapes of the above-described third to fifth embodiments.
  • optical integrated circuits of all shapes can be realized.
  • a photonic crystal waveguide and an electro-optic switch having an arbitrary shape can be formed, and a complicated optical integrated circuit can be formed.
  • FIG. 21 is a perspective view of an embodiment of the present invention acting as an optical integrated circuit including an optical waveguide and an electro-optic switch, as viewed from above.
  • 1 is a first electrode
  • 2 is an electro-optical substrate
  • 3 is a hole
  • 4 is a two-dimensional photonic crystal structure region in the electro-optical substrate 2
  • 5 and 14 are second electrodes.
  • the seventh embodiment is different from the second to fifth embodiments only in that the second electrode is divided into an electrode 5 and an electrode 14 and both are arranged at a distance d, and the other is the same.
  • the two-dimensional photonic crystal structure in which the regions corresponding to electrodes 5 and 14 of two-dimensional photonic crystal region 4 are modified The region 6 and the photonic band structure of the two-dimensional photonic crystal structure region 4 and the modified two-dimensional photonic crystal structure region are the same as in the first embodiment (FIGS. 3 and 4). ).
  • the distance d between the electrode 5 and the electrode 14 is made smaller than the vacancy period a of the two-dimensional photonic crystal structure region 4 and the vacancy 3 forming the two-dimensional photonic crystal structure at that position. To prevent this area from scattering or reflecting light.
  • the optical fibers 11 to 13 are provided in the same manner as in the fifth embodiment, but the electrode 5 and the electrode 14 are separated and the voltage applied thereto is independent. Controlled. Therefore, between the optical fibers 1 1 and 1 2
  • a voltage V is applied between the electrodes 1 and 5
  • the light is guided through the modified two-dimensional photonic crystal structure region. Since the region corresponding to the electrode 14 is not a modified two-dimensional photonic crystal structure region, no wave is guided.
  • a voltage V is applied between the electrodes 1 and 5 and between the electrodes 1 and 14
  • light having an optical energy of A is incident on the modified two-dimensional photonic crystal region by the optical fiber 111.
  • the incident light is guided through this region, is branched at the T-shaped portion of the electrode 5, and is guided to the optical fiber 113 as well as to the optical fiber 113.
  • the transmission of the light introduced from the optical fiber 11 is restricted to the optical fiber 11 or only to the optical fiber 11.
  • the fiber can function as an optical integrated circuit including an electro-optic switch and an optical waveguide that can be controlled by either of the fibers 112 and 13.
  • FIG. 22 shows the photonic band gap of the modified two-dimensional photonic crystal structure region corresponding to the position of the electrode 14 when the applied voltage between the electrodes 1 and 14 is changed.
  • the applied voltage is V
  • this region can pass light with energy E but not light with energy D.
  • the applied voltage is 1.2 V
  • this region transmits both light with energy E and light with D.
  • the modified two-dimensional photonic crystal structure region corresponding to the position of the electrode 5 if the voltage applied between the electrodes 1 and 5 is V, this region will pass light of energy E The energy does not pass through D light.
  • the applied voltage is 1.2 V, this region passes both light with energy E and light with D. Therefore, a voltage of 1.2 V is applied between the electrodes 1 and 5 and a voltage of V is applied between the electrodes 1 and 14.
  • the optical fiber 111 emits both light having energy E and light having energy D.
  • these lights are guided through the modified two-dimensional photonic crystal structure region corresponding to the electrode 5 and branched at the T-shaped part of the electrode 5.
  • the eighth embodiment can function as a wavelength selection circuit by controlling the voltage applied to the electrodes 5 and 14.
  • FIG. 23 is a perspective view of the embodiment of the present invention acting as a crossed optical switch, as viewed from above.
  • 1 is a first electrode
  • 2 is an electro-optic substrate
  • 3 is a hole
  • 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2
  • 51 and 52 are second electrodes
  • 18 is a third electrode. Electrodes.
  • the second electrode is divided into V-shaped electrodes 51 and 52 whose bottoms face each other
  • the third electrode 18 is divided into the opposed bottoms of the V-shaped electrodes 51 and 52. Only differ from Examples 2 to 6 in that they are separated by a distance d between them and that the optical fibers for transmitting and receiving light are placed at the ends of the V-shaped electrodes 51 and 52.
  • the voltage applied to the electrodes 51 and 52 and the voltage applied to the electrode 18 are controlled independently.
  • the distance d between the electrodes 51, 52 and the electrode 18 is made smaller than the vacancy period a of the two-dimensional photonic crystal structure region 4 and the vacancy forming the two-dimensional photonic crystal at that position.
  • this region is made not to scatter or reflect light so as not to include 3.
  • Example 8 the area covered by the V-shaped electrode 5 was the electrode 1, 5
  • a modified two-dimensional photonic crystal region is formed.
  • the photonic band structure of the two-dimensional photonic crystal structure region 4 and the photonic band structure of the two-dimensional photonic crystal structure region modified by voltage application are the same as in the first embodiment (FIG. 3). , 4).
  • the modified two-dimensional photonic crystal region functions as an optical waveguide. That is, when a voltage V is applied between the electrodes 1 and 51, and light having an optical energy of A is made incident on the optical fiber 111, the incident light is guided through the modified two-dimensional photonic crystal region. It is output to the optical fiber 112.
  • the third electrodes 18 are arranged at intervals d between the opposed bottoms of the V-shaped electrodes 51 and 52, respectively. Since the applied voltage and the voltage applied to the electrode 18 were controlled independently, the voltage was applied only between the electrodes 1 and 51 and between the electrodes 1 and 52 to apply the voltage to the optical fiber 1 1 Therefore, even if the optical energy beam enters the light of A, this light is only guided to the optical fiber 112. Because no voltage is applied to the electrode 18, the two-dimensional photonic crystal structure region corresponding to the electrode 18 does not function as a modified two-dimensional photonic crystal structure region and does not function as an optical waveguide. .
  • the two-dimensional photonic crystal structure region corresponding to the V-shaped electrode 51 becomes a modified two-dimensional photonic crystal structure region and guides light, it corresponds to the electrode 18. This is because the light is blocked in the two-dimensional photonic crystal structure region and is not propagated to the modified two-dimensional photonic crystal structure region corresponding to the V-shaped electrode 52.
  • the refractive index of the two-dimensional photonic crystal structure is higher than the refractive index of the two-dimensional photonic crystal structure corresponding to the electrodes 51 and 52. Acts as an optical waveguide. In this case, the optical circuit between fibers 12 and 17 and between fibers 11 and 13 can be prevented from crosstalk.
  • This function is reversible, and the same applies to the case where light having an optical energy of A is incident from the optical fiber 13. That is, when a voltage is applied only between the electrodes 1 and 51 and between the electrodes 1 and 5, the incident light is propagated only to the optical fiber 17, and between the electrodes 1 and 51, the electrodes 1 and 5 2 When a voltage is applied between the electrodes 1 and 18 while a voltage is applied between them, the incident light is also propagated to the optical fibers 11 and 12.
  • the eighth embodiment it is possible to change the light output state by controlling the voltage application between the electrodes 1 and 18 and to select the bar state or the cross state. It can function as a switch.
  • FIG. 24 is a plan view of an embodiment of the present invention acting as a 4 ⁇ 4 optical switch.
  • a four-by-four optical switch is constructed by combining four cross-type optical switches of the eighth embodiment.
  • This embodiment is shown in a plan view for simplification of the drawing, and the optical fiber is not shown, but the basic structure is the same as the above-described embodiment.
  • 1 is the first electrode
  • 2 is the electro-optical substrate
  • 3 is the hole
  • 4 is the two-dimensional photonic crystal structure region in the electro-optical substrate 2
  • 51, 52, 53, and 54 are the second electrodes
  • 18 ⁇ to 18 4 are third electrodes.
  • the second electrodes are W-shaped electrodes 51 and 52 whose bottoms face each other and W-shaped electrodes 53 and 54 whose bottoms face each other.
  • the central part of poles 51 and 53 was integrated.
  • the third electrodes 18, to 18 4 are spaced d (between the opposed bottoms of the W-shaped electrodes 51, 52 and the opposed bottoms of the W-shaped electrodes 53, 54, respectively.
  • Examples 2 to 5 are arranged in such a manner that they are spaced apart from each other, and that an optical fiber for transmitting and receiving light is arranged at the ends of the W-shaped electrodes 51 to 54 (not shown). Only the difference from 6 and 8 is the same.
  • Both the voltage applied to the voltage electrode 1 8 t ⁇ 1 8 4 applied to the electrode 5 1-5 4 is controlled independently, is selectively performed.
  • the distance d between the electrodes 51, 52 and the electrode 18 is made smaller than the vacancy period a of the two-dimensional photonic crystal structure region 4, and the vacancy forming the two-dimensional photonic crystal structure is formed at that position.
  • the region 3 is not included so that this region does not scatter or reflect light.
  • the incident light S l, S 2, and the optical fiber 1 are placed at positions corresponding to the two-dimensional photonic crystal structure region 4 at both ends of the second electrodes 51, 52, 53, and 54.
  • S 3 and S 4 are added, but by selectively applying a voltage between the third electrode 18 L to 18 4 and electrode 1, the output light 3 1 ′, 3 2 ′, S 3 ′ And S 4 'can be switched.
  • the electrode 1 and the electrode 5 1, 5 2, 5 3 and 5 to mark pressurizing the voltage V between 4, state shape without applying any voltage also between electrodes 1 and 1 8 • L ⁇ 1 8 4
  • incident light S 1 to S 4 having an energy of A is incident
  • the incident light S 1 to S 4 is prevented from being guided at the positions corresponding to the electrodes 18 to 18 4 , so that the output light S 1 ′, S 2 ′, Output as S 3 'and S 4'.
  • the electrodes 5 1, 5 2 Only the two-dimensional photonic crystal structure region at the positions corresponding to 53 and 54 becomes a modified two-dimensional photonic crystal structure region, and also corresponds to electrodes 18, ⁇ 18 The incident light S 1 to S 4 is guided at the position corresponding to the electrodes 18 ⁇ to 18 4 because the two-dimensional photonic crystal structure region is also a modified two-dimensional photonic crystal structure region It will be.
  • the incident light S1 becomes the output light S4 '
  • the incident light S2 becomes the output light S2'
  • the incident light S3 becomes the output light S3 '
  • the incident light S4 becomes the output light S1'.
  • the case where lithium niobate is used for the electro-optical substrate 2 will be considered.
  • a 4 ⁇ 4 optical exchanger has been fabricated by diffusing titanium ions into a lithium niobate substrate to form a waveguide core in the substrate.
  • the size will be 0.1 ⁇ 6.5 cm. (Masahiro Ikeda, “Optical Fiber Communication”, p. Corona, Tokyo, 199 7)).
  • the optical exchanger of this example is formed on a photonic crystal structure with a lattice constant a of 0.5 ⁇ m and a period of about 35 ⁇ 35, and the size is about 18 X 18 ⁇ m.
  • Light exchanger of this embodiment the area compared to conventional optical exchanger is about 1/1 0 8 very small les.
  • the tenth embodiment operates as a micro optical switch.
  • the conventional optical switch has a length of each waveguide path of about 7 cm and transmission loss.
  • the loss caused by the waveguide structure is basically extremely small, and the transmission loss is considered to be caused by the lithium niobate used for the electro-optic substrate 2. May be. Assuming that the loss due to lithium niobate is 4.5 dB at 7 cm as described above, since each waveguide path in this embodiment is about 30 ⁇ m, the transmission loss of each path is It is estimated to be 4 XI 0-dB In this way, an extremely low-loss optical exchanger can be realized according to the present embodiment, and the optical anisotropy of lithium niobate is small.
  • the optical switch of the embodiment is characterized in that the guided light is not polarized.
  • FIG. 25 shows an optical waveguide, an electro-optic switch, and a wavelength selection circuit whose circuit structure is arbitrarily variable.
  • FIG. 2 is a perspective view seen from the top side of an embodiment of the present invention functioning as an optical circuit including a cross-type optical switch, an optical switch, or an optical waveguide and an electro-optical switch.
  • 1 is a first electrode
  • 2 is an electro-optical substrate
  • 3 is a hole
  • 4 is a photonic crystal structure region in the electro-optical substrate 2
  • 5 is a second electrode.
  • 96 second electrodes 5 are arranged in a matrix on the electro-optical substrate 2 and the surface of the photonic crystal structure.
  • the optical fiber is not shown, and its position is X1 ⁇ ; X8, XI ' ⁇ X8', Y1 ⁇ Y 8, ⁇ 1 'to ⁇ 8'.
  • the distance d between the adjacent second electrodes 5 is set to be smaller than the vacancy period a in the structural region of the photonic crystal structure 4.
  • a two-dimensional photonic crystal structure is formed at that position. This region is not scattered or reflected so as not to include the void 3 which is the same as in the sixth embodiment.
  • the photonics are selected by appropriately selecting the second electrodes arranged in a matrix and applying a voltage between the first electrodes 1 and the selected second electrodes 5. It is characterized in that an optical circuit of any shape can be formed in the crystal structure 4.
  • FIG. 26 is a perspective view of the optical waveguide formed in the photonic crystal structure region 4 as viewed from the top side using the tenth embodiment.
  • the electrode 5 ′ with diagonally lower right and the electrode 5 ′ with diagonally higher right are selected, and the first electrode 1 and the right electrode 5 ′ are selected.
  • the optical device of FIG. 26 functions as an electro-optic switch or a wavelength selection circuit in the fourth to seventh aspects. This is the same as the embodiment. It is obvious that by changing the selected second electrode 5, optical circuits of other shapes can be formed similarly.
  • FIGS. 27 and 28 are perspective views of the case where the cross-type optical switch is formed in the photonic crystal structure region using the tenth embodiment, as viewed from above.
  • electrodes 5 ′ with diagonally lower slashes and electrodes 5 ′ with diagonally right slashes are selected among the second electrodes 5 arranged in a matrix. Electrodes ;! When a voltage V is applied between the first electrode 1 and the selected second electrode 5 ′, an optical waveguide is formed, X 4 and Y 5 ′ are optically connected, and the first electrode 1 and the selected second electrode 5 ′ are connected. When a voltage V is applied between 5 ′ ′, an optical waveguide is formed, and X 4 and Y 5 are optically connected.
  • FIG. 1 When a voltage V is applied between 5 ′ ′, an optical waveguide is formed, and X 4 and Y 5 are optically connected.
  • the electrode 5 'with a diagonally downward slanted line and the electrode 5 "with a diagonally rightward slant were selected, and were selected as the first electrodes.
  • a voltage V is applied simultaneously between the second electrode 5 ′ and the first electrode and the selected second electrode 5 ′, the cross-shaped optical waveguide is formed inside the electro-optic substrate 2 and the photonic crystal structure 4.
  • the voltage applied between the second electrode 5 x at the intersection of the first electrode and the selected second electrode is slightly smaller than the voltage applied to the electrode 5 ′ and the electrode 5 ′′.
  • this optical waveguide becomes a high refractive index crossed optical waveguide, and no crosstalk occurs between the optical waveguides Y 5 and Y 5 ′ and the optical waveguides X 4 and X 4 ′.
  • the embodiment of FIG. 27 operates as a cross-shaped optical switch in a buried state
  • the embodiment of FIG. 28 operates as a cross-shaped cross-switch in a cross state.
  • the present embodiment functions as a crossed optical switch by appropriately selecting the second electrode 5.
  • the fact that an optical switch can be configured by connecting a plurality of crossed optical switches according to the present embodiment is the same as that described in the eighth and ninth embodiments.
  • the optical circuit structure can be arbitrarily changed by appropriately selecting the second electrode 5, and the optical circuit, the electro-optical switch, and the wavelength can be arbitrarily changed. It can be used as a selection circuit, a cross-type optical switch, an optical switch, or an optical device composed of an optical waveguide and an electro-optical switch.
  • the electrode 1 covers the entire surface of the electro-optical substrate 2 forming the two-dimensional photonic crystal region 4, but the modified two-dimensional photonic crystal structure region In order to form 6, it is only necessary that the electrode 1 is provided only in the portion corresponding to the pattern electrode 5, so for example, the pattern electrode corresponding to the pattern electrode 5 is lithographically formed on an appropriate semiconductor substrate surface.
  • the electro-optical substrate 2 may be formed thereon by forming by a luffy technique.
  • the holes 3 need only be formed periodically, and need not be formed perpendicular to the electro-optical substrate 2 as shown in FIG. This is because regions 4 and 6 interact with the photonic crystal structure as long as vacancies are formed periodically.
  • a hole 3 is formed through the electro-optic substrate 2 This need not be as described in the second embodiment.
  • an optical waveguide having an arbitrary shape, a photonic crystal structure, an electro-optical switch, an optical integrated circuit including them, a wavelength selection circuit, a cross-type optical switch, and an optical switch can be combined into a single two-dimensional optical switch. It can be easily created using tonic crystals. According to the present invention, it is possible to electrically form a microminiature optical integrated circuit utilizing the characteristics of a photonic crystal. INDUSTRIAL APPLICABILITY
  • the present invention can be used for an opto-electronics technology in which an optical signal and an electric signal coexist, for example, an optical interconnection technology.

Abstract

An optical device of photonic crystal structure for constituting an optical integrated circuit readily comprising a first electrode, an electro-optical substrate provided on one surface of the first electrode and made of a solid material, a photonic crystal structure region provided in the electro-optical substrate and made of a solid material, a second electrode provided in the photonic crystal region and formed in a pattern on the surface opposed to the one surface, a means for applying a voltage between the first and second electrodes, means for directing a light beam to the photonic crystal region under the second electrode, and means for receiving the light beam guided by the photonic crystal structure region under the second electrode.

Description

明 細 ^  Clear ^
光デバイスおよび基板 技術分野 Optical devices and substrates Technical field
本発明は、 光通信システム、 光情報システムに用いられる光素子およ び光集積回路に関する 背景技術  The present invention relates to an optical communication system, an optical element used in an optical information system, and an optical integrated circuit.
近年、 光の波動状態を波長オーダで制御できる材料構造と してフォ ト 二ック結晶構造が注目を集めており、 その研究が数多くなされている。 フォ トニック結晶構造とは、 光に対して透明な媒質中に、 媒質中光波長 の 2分の 1程度の周期の屈折率変化を形成して得られる材料構造である t フォ トニック結晶構造中での光波の挙動は、 半導体結晶中での電子波 の挙動のアナロジーと して理解できる。 半導体結晶中での電子波が、 周 期的な結晶構造によりブラッグ反射されて電子バンド構造ができるのと 同様に、 フォ トニック結晶構造中の光波は、 媒質中の周期的な屈折率変 化に散乱されてフォ トニックバンドを形成する。 フォ トニック結晶構造 は、 光に対する禁制帯であるフォ トニックバンドギャップ、 光に対する 高い分散性等、 従来の材料には見られないユニークな光学的性質を有す るため、 超小型光集積回路への応用が期待されている。 In recent years, photonic crystal structures have attracted attention as a material structure that can control the wave state of light in the order of wavelength, and many studies have been made on them. A photonic crystal structure is a t- photonic crystal structure that is a material structure obtained by forming a refractive index change with a period of about half the light wavelength in a medium in a medium transparent to light. The behavior of the light wave can be understood as an analogy of the behavior of the electron wave in the semiconductor crystal. Just as an electron wave in a semiconductor crystal is Bragg-reflected by a periodic crystal structure to form an electron band structure, a light wave in a photonic crystal structure is subject to a periodic change in refractive index in a medium. It is scattered to form a photonic band. Photonic crystal structures have unique optical properties not found in conventional materials, such as the photonic bandgap, which is a forbidden band for light, and high dispersibility for light. Application is expected.
フォ トニック結晶構造には、 2次元周期的な屈折率変化を有する 2次 元フォ トニック結晶構造と 3次元的周期的な屈折率変化を有する 3次元 フォ トニック結晶構造がある。  The photonic crystal structure includes a two-dimensional photonic crystal structure having a two-dimensional periodic refractive index change and a three-dimensional photonic crystal structure having a three-dimensional periodic refractive index change.
2次元フォ トニック結晶構造の作成法と しては、 スラブ光導波路に 2 次元周期的に空孔を開ける方法が知られている。 この方法は、 導波路と 空孔がそれぞれ異なる屈折率を有することを利用する方法である。 たと えば、 特開平 1 1一 3 3 0 6 1 9号公報は、 この方法により光共捩器と して作用する 2次元フォ トニック結晶構造を作成し、 超小型極低しきい 値レーザを実現する方法を開示している。 同公報の提案は、 フォ トニッ クバン ド中の波長の光がフオ トニック結晶構造により強く反射されるこ とを利用したものである。 また、 応用物理学会誌第 6 8卷 1 3 3 5頁一 1 3 4 5頁には、 上記方法により作成される 2次元フォ トニック結晶構 造を利用した L字型急峻曲がり導波路が紹介されている。この導波路は、 フォ トニックバンド中の波長の光がフォ トニック結晶構造によ り強く反 射されることを利用して、フォ トニック結晶構造をクラッ ドと して用い、 従来は不可能であった急峻曲がり導波路を実現しよう とするものであるお 上述の特開平 1 1一 3 3 0 6 1 9号公報は、 上記方法により 2次元フォ トニック結晶構造を作成し、 さらに、 超小型波長分波回路を実現する方 法をも提案している。 これは、 フォ トニック結晶構造が、 従来の光学結 晶よ りもはるかに高い光分散性を示すことを利用した提案である。 As a method of creating a two-dimensional photonic crystal structure, a method of two-dimensionally opening holes in a slab optical waveguide is known. This method utilizes the fact that the waveguide and the hole have different refractive indices. For example, Japanese Patent Application Laid-Open No. H11-313609 discloses a two-dimensional photonic crystal structure acting as an optical co-twist by using this method to realize an ultra-compact ultra-low threshold laser. A method for doing so is disclosed. The proposal in the publication is It utilizes the fact that light of the wavelength in the band is strongly reflected by the photonic crystal structure. In the Journal of the Japan Society of Applied Physics, Vol. 68, pp. 1335, pp. 1 345, an L-shaped steeply bent waveguide using a two-dimensional photonic crystal structure created by the above method is introduced. ing. This waveguide uses a photonic crystal structure as a clad, utilizing the fact that light of a wavelength in the photonic band is strongly reflected by the photonic crystal structure, and is not possible in the past. The above-mentioned Japanese Patent Application Laid-Open No. H11-313609 discloses a two-dimensional photonic crystal structure formed by the above-described method, and furthermore, an ultra-small wavelength A method to realize a wave circuit is also proposed. This is a proposal that utilizes the fact that the photonic crystal structure exhibits much higher light dispersion than conventional optical crystals.
3次元フォ トニック結晶構造の作成法と しては、 ( a ) 半導体多層膜に 2次元周期的に空孔を開ける方法、 ( b ) 半導体多層膜の特定層を 2次元 周期的に酸化する方法、 ( c ) 半導体多層膜の層構造を 3次元周期的に変 動させる方法が知られている。 ( a ) の方法は、 たとえば、 特開平 1 1 ― 3 1 6 1 5 4号公報に開示されている。 この方法は、 屈折率が異なる 2 種類の半導体を交互積層して半導体多層膜を作成し、 多層膜に 2次元周 期的に空孔を開けるこ とによ り 3次元周期的な屈折率変化を形成して 3 次元フォ トニック結晶構造を作る方法である。 たとえば、 特開平 1 1一 1 8 6 6 5 7号公報には、 この方法により 3次元フォ トニック結晶構造 を作成し、 作成した結晶構造を光共振器とする超小型極低しきい値レー ザを実現する方法が開示されている。 (b ) の方法は、 たとえば、 特開 2 0 0 0 - 3 1 5 8 7号公報に開示されている。 この方法は、 半導体多層 膜を構成する特定層を 2次元周期的に酸化して、 3次元フォ トニック結 晶構造を作成する方法である。 ( c ) の方法は、 たとえば、 応用物理学会 誌第 6 8卷 1 3 3 5 — 1 3 4 5ページに説明されている。 この方法は、 2次元周期的な凹凸を有する基板上に、 屈折率の異なる 2種類の半導体 を交互積層し、 基板の凹凸を層構造に反映させて 3次元周期的な凹凸を 有する層構造を形成して、 3次元フォ トニック結晶構造を得る方法であ る。 The three-dimensional photonic crystal structure can be prepared by (a) a method of periodically opening holes in a semiconductor multilayer film, or (b) a method of two-dimensionally oxidizing a specific layer of the semiconductor multilayer film. (C) A method of three-dimensionally varying the layer structure of a semiconductor multilayer film is known. The method (a) is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-316154. In this method, two types of semiconductors having different refractive indices are alternately stacked to form a semiconductor multilayer film, and holes are periodically opened in the multilayer film to periodically change the refractive index three-dimensionally. This is a method of forming a three-dimensional photonic crystal structure by forming For example, Japanese Unexamined Patent Publication No. Hei 11-1986657 discloses that a three-dimensional photonic crystal structure is created by this method, and the ultra-small ultra-low threshold laser using the created crystal structure as an optical resonator. Are disclosed. The method (b) is disclosed in, for example, JP-A-2000-31587. In this method, a specific layer constituting a semiconductor multilayer film is oxidized two-dimensionally and periodically to create a three-dimensional photonic crystal structure. The method (c) is described, for example, in the Journal of the Japan Society of Applied Physics, Vol. 68, pp. 135-135. In this method, two types of semiconductors having different refractive indices are alternately laminated on a substrate having two-dimensional periodic irregularities, and three-dimensional periodic irregularities are reflected by reflecting the irregularities of the substrate in the layer structure. This is a method of obtaining a three-dimensional photonic crystal structure by forming a layer structure having the same.
そのほカ たとえば、 特開平 1 0— 8 3 0 0 5公報には、 表面に金属 膜が形成された回折格子基板を対向させ、 回折格子基板の間に光機能性 有機材料を挟みこむことによ りフォ トニック結晶構造を作成する方法が 提案されている。  For example, Japanese Patent Application Laid-Open No. 10-83005 discloses that a diffraction grating substrate having a metal film formed on its surface is opposed to an optically functional organic material sandwiched between the diffraction grating substrates. A method for creating a more photonic crystal structure has been proposed.
さ らに、 たとえば、 米国特許 6, 0 6 4, 5 0 6号には、 電圧印カロに より屈折率が変化する非線形光学材料を用いて電圧印加時にフォ トニッ クパンドが変化するフォ ト二ック結晶構造を構成する方法が示されてい る。 発明の開示  Further, for example, US Pat. No. 6,064,506 discloses a photonic device in which a photonic band changes when a voltage is applied by using a nonlinear optical material whose refractive index changes according to the voltage applied. A method for constructing a crystal structure is shown. Disclosure of the invention
しかしながら、 従来の技術では、 光集積回路をフォ トニック結晶構造 によ り形成することが困難であった。 光集積回路は、 複雑な形状の光導 波路からなるが、 前記の従来方法では、 複雑な形状のフォ トニック結晶 構造の導波路を容易に作成できないからである。  However, it has been difficult to form an optical integrated circuit with a photonic crystal structure using conventional techniques. The optical integrated circuit is composed of an optical waveguide having a complicated shape, but the conventional method cannot easily produce a waveguide having a photonic crystal structure having a complicated shape.
たとえば、 スラブ型導波路あるいは半導体多層膜に 2次元周期的に空 孔を開けて L字型光導波路を作成する場合、 L字型の導波路コアを除く 材料部分に、 波長の 2分の 1程度の周期で 2次元周期的に空孔を開ける 必要があるが、 このような空孔を機械的に開けるのは困難である。 従つ て、 この方法では、 より複雑な形状の導波路を有する光集積回路を作成 することは難しい。 また、 半導体多層膜の特定層を 2次元周期的に酸化 してフォ トニック結晶構造を作成する上述の特開平 2 0 0 0— 3 1 5 8 7号公報の方法は、 フォ トニック結晶構造の母体となる材料が限定され るという欠点がある。 一方、 表面に金属膜を形成した回折格子基板の間 に光機能性有機材料を挟みこむ上述の特開平 1 0— 8 3 0 0 5号公報の 方法は、 有機腠厚を一定の値に保つことが困難であるという問題点を有 し、 均一なフォ トニック結晶構造を作成するのに適さない。 また、 上述の米国特許 6, 0 6 4 , 5 0 6号で開示された方法は、 髙 い屈折率を有する材料より、 リ ソグラフィ技術を用いて、 柱状構造が光 波長の半分程度の間隔で 2 次元あるいは 3 次元に配列した構造を作り、 構造の間に形成された空間を非線形光学材料あるいは液晶材料で満たす ものとなっている。 このようなきわめて狭い空間を液体で満たす場合に は必然的に空孔が発生するので、 光学的に均一なフォ トニック結晶構造 を得ることはきわめて困難である。 このように、 従来法では、 フォ ト二 ック結晶構造を用いて超小型光集積回路を作るのは困難であった。 For example, when an L-shaped optical waveguide is created by two-dimensionally opening holes in a slab waveguide or a semiconductor multilayer film, the material portion excluding the L-shaped waveguide core has a half of the wavelength. It is necessary to make holes two-dimensionally periodically with a small period, but it is difficult to open such holes mechanically. Therefore, with this method, it is difficult to produce an optical integrated circuit having a waveguide having a more complicated shape. Also, the method disclosed in Japanese Patent Application Laid-Open No. 2000-31587, in which a specific layer of a semiconductor multilayer film is oxidized two-dimensionally periodically to form a photonic crystal structure, is disclosed in Japanese Patent Application Laid-Open No. 2000-310587. However, there is a disadvantage that the material used is limited. On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. H10-83005, in which an optically functional organic material is sandwiched between diffraction grating substrates having a metal film formed on the surface, maintains the organic thickness at a constant value. However, it is difficult to create a uniform photonic crystal structure. In the method disclosed in the above-mentioned U.S. Pat. No. 6,064,506, a columnar structure is formed at an interval of about half the light wavelength using a lithographic technique from a material having a high refractive index. Two-dimensional or three-dimensional structures are created, and the space formed between the structures is filled with nonlinear optical material or liquid crystal material. When such a very narrow space is filled with a liquid, voids are inevitably generated, and it is extremely difficult to obtain an optically uniform photonic crystal structure. Thus, it has been difficult with the conventional method to fabricate a microminiature optical integrated circuit using a photonic crystal structure.
本発明の目的は、 容易に光集積回路を形成できる固体材料によるフォ トニック結晶構造の光デバイスを提供することにある。  An object of the present invention is to provide an optical device having a photonic crystal structure made of a solid material that can easily form an optical integrated circuit.
本発明の目的は、 フォ トニックバン ド構造およびフォ トニックバン ド ギヤップを変化させることができるフォ トニック結晶構造の光デバイス を提供することにある。  An object of the present invention is to provide an optical device having a photonic crystal structure capable of changing a photonic band structure and a photonic band gap.
本発明の他の目的は、 光導波路と して作用するフォ ト二ック結晶構造 の光デバイスの提供にある。  Another object of the present invention is to provide an optical device having a photonic crystal structure that functions as an optical waveguide.
本発明の他の目的は、 電気光学スィ ツチと して作用するフォ トニック 結晶構造の光デバイスの提供にある。  Another object of the present invention is to provide an optical device having a photonic crystal structure that functions as an electro-optic switch.
本発明の他の目的は、 直線型、 L字型、 S字型、 鋭角型.、 鈍角型、 円 弧型および T字型光導波路と して作用するフォ ト二ック結晶構造の光デ バイスの提供にある。  Another object of the present invention is to provide an optical device having a photonic crystal structure acting as a linear, L-shaped, S-shaped, acute-angled, obtuse-angled, arc-shaped, or T-shaped optical waveguide. In the provision of vice.
本発明の他の目的は、 光導波路および電気光学スィ ツチからなる光集 積回路と して作用するフォ トニック結晶構造の光デバイスの提供にある t 本発明の他の目的は、 波長選択回路と して作用するフォ トニック結晶 構造の光デバイスの提供にある。 Another object of the present invention, another object of t present invention is to provide an optical device of photonic crystal structure, which acts as a light collector product circuit consisting of optical waveguides and electro-optical sweep rate Tutsi includes a wavelength selection circuit It is an object of the present invention to provide an optical device having a photonic crystal structure that acts as a photonic crystal.
本発明の他の目的は、 交差型光スィ ッチと して作用するフォ トニック 結晶構造の光デバイスの提供にある。  Another object of the present invention is to provide an optical device having a photonic crystal structure that acts as a crossed optical switch.
本発明の他の目的は、 光交換器と して作用するフオ ト二ック結晶構造 の光デバイスの提供にある。 本発明の他の目的は、 光回路構造が可変なフォ ト二ック結晶構造の光 導波路、 電気光学スィ ッチ、 光導波路および電気光学スィ ッチからなる 光回路、 波長選択回路、 交差型光スィ ッチ、 あるいは光交換機と して作 用する光デバイスの提供にある。 Another object of the present invention is to provide an optical device having a photonic crystal structure that functions as an optical exchanger. Another object of the present invention is to provide an optical waveguide having a photonic crystal structure in which the optical circuit structure is variable, an electro-optic switch, an optical circuit including the optical waveguide and the electro-optic switch, a wavelength selection circuit, and a crossing. It is to provide an optical device that operates as a type optical switch or optical switch.
本発明の他の目的は、上記光でデバイス用基板を提供することにある。 本発明は、 固体材料よりなる電気光学基板中に形成された固体材料中 に形成されたフォ トニック結晶構造の両面に電極を配置して、 これに電 圧を印加することによ り、 電極で挟まれた領域のフォ ト二ック結晶構造 領域の基板の屈折率を変化させることにより光デバイスを実現するもの である。 図面の簡単な説明  Another object of the present invention is to provide a substrate for a device using the above light. According to the present invention, electrodes are arranged on both sides of a photonic crystal structure formed in a solid material formed in an electro-optical substrate made of a solid material, and a voltage is applied to the electrodes, whereby electrodes are formed. An optical device is realized by changing the refractive index of the substrate in the region of the photonic crystal structure in the sandwiched region. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の最も単純な実施例 1 を上面側からの斜視図の形で示す 模式図である。  FIG. 1 is a schematic diagram showing the simplest embodiment 1 of the present invention in the form of a perspective view from the top side.
図 2は図 1の A A位置で矢印方向に見た面断面図である。  FIG. 2 is a cross-sectional view taken along line AA in FIG.
図 3は ( a ) は、 2次元フォ トニック結晶構造領域のフォ トニックバ ンド構造の模式図、 (b ) は修飾されたフォ トニック結晶構造領域のフォ トニックバンド構造の模式図である。  3A is a schematic diagram of a photonic band structure of a two-dimensional photonic crystal structure region, and FIG. 3B is a schematic diagram of a photonic band structure of a modified photonic crystal structure region.
図 4は 2次元フォ トニック結晶構造領域を挟む電極間に印加する電圧 を変えた場合の修飾された 2次元フォ トニック結晶構造領域のフォ トニ ックバンドギヤップの位置の変化を示す図である。  FIG. 4 is a diagram showing a change in the position of the photonic band gap in the modified two-dimensional photonic crystal structure region when the voltage applied between the electrodes sandwiching the two-dimensional photonic crystal structure region is changed.
図 5は実施例 1の光デバイスの作成手順の一つを示す断面図である。 図 6は、 図 5に続く実施例 1の光デバイスの作成手順を示す断面図で ある。  FIG. 5 is a cross-sectional view showing one of the procedures for producing the optical device of the first embodiment. FIG. 6 is a cross-sectional view showing a procedure for manufacturing the optical device of Example 1 following FIG.
図 7は、 図 6に続く実施例 1の光デバイスの作成手順を示す断面図で ある。  FIG. 7 is a cross-sectional view showing a procedure for manufacturing the optical device of Example 1 following FIG.
図 8は (a ), ( b ) は実施例 1の 2次元フォ トニック結晶領域を挟む 電極間に電圧を印加する方法の例を示す図である。 図 9は実施例 2の断面図である。 FIGS. 8 (a) and (b) are diagrams showing an example of a method of applying a voltage between the electrodes sandwiching the two-dimensional photonic crystal region of the first embodiment. FIG. 9 is a sectional view of the second embodiment.
図 1 0は実施例 2の光デバイスの作成手順の一つを示す断面図である t 図 1 1は、 図 1 0に続く実施例 2 の光デバイスの作成手順を示す断面 図である。 1 0 t Figure 1 1 is a cross-sectional view showing one step in creating optical devices of Example 2 is a sectional view showing a procedure for creating optical devices in Example 2 which is subsequent to FIG. 1 0.
図 1 2は、 図 1 1 に続く実施例 2の光デバイスの作成手順を示す断面 図である。  FIG. 12 is a cross-sectional view showing a procedure for manufacturing the optical device of Example 2 following FIG. 11.
図 1 3は、 図 1 2に続く実施例 2の光デバイスの作成手順を示す断面 図である。  FIG. 13 is a cross-sectional view illustrating a procedure for manufacturing the optical device of Example 2 following FIG.
図 1 4は直線型光導波路として作用する本発明の光デバイスの実施例 4の上面側から見た斜視図である。  FIG. 14 is a perspective view of Example 4 of the optical device of the present invention acting as a linear optical waveguide, as viewed from above.
図 1 5は L字型光導波路と して作用する本発明の実施例 4の上面側か ら見た斜視図である。  FIG. 15 is a perspective view of Example 4 of the present invention acting as an L-shaped optical waveguide, as viewed from above.
図 1 6は S字型光導波路と して作用する本発明の実施例 4の上面側か ら見た斜視図である。  FIG. 16 is a perspective view of Example 4 of the present invention acting as an S-shaped optical waveguide, as viewed from above.
図 1 7は鋭角型光導波路と して作用する本発明の実施例 4の上面側か ら見た斜視図である。  FIG. 17 is a perspective view of Example 4 of the present invention acting as an acute angle optical waveguide, as viewed from above.
図 1 8は鈍角型光導波路と して作用する本発明の実施例 4の上面側か ら見た斜視図である。  FIG. 18 is a perspective view of Example 4 of the present invention acting as an obtuse angle optical waveguide, as viewed from above.
図 1 9は円弧型光導波路と して作用する本発明の実施例 4の上面側か ら見た斜視図である。  FIG. 19 is a perspective view of Example 4 of the present invention acting as an arc-shaped optical waveguide, as viewed from above.
図 2 0は丁字型光導波路と して作用する本発明の実施例 5の上面側か ら見た斜視図である。  FIG. 20 is a perspective view of Example 5 of the present invention acting as a T-shaped optical waveguide, as viewed from above.
図 2 1は光導波路および電気光学スィ ツチからなる光集積回路と して 作用する本発明の実施例 6の上面側から見た斜視図である。  FIG. 21 is a perspective view of Example 6 of the present invention acting as an optical integrated circuit including an optical waveguide and an electro-optic switch, as viewed from above.
図 2 2は、 図 1 3の電気光学スィ ッチを実施例 7の波長選択回路と し て機能させるための修飾された 2次元フォ トニック結晶構造領域のフォ トニックバン ドギャップを示す図である。  FIG. 22 is a diagram illustrating a photonic band gap of a modified two-dimensional photonic crystal structure region for causing the electro-optic switch of FIG. 13 to function as the wavelength selection circuit of the seventh embodiment.
図 2 3は交差型光スィ ツチと して作用する本発明の実施例 8の上面側 から見た斜視図である。 FIG. 23 shows the top side of the eighth embodiment of the present invention acting as a crossed optical switch. It is the perspective view seen from.
図 2 4は 4 X 4の光交換器と して作用する本発明の実施例 9の平面図 である。  FIG. 24 is a plan view of Embodiment 9 of the present invention acting as a 4 × 4 optical switch.
図 2 5は本発明の実施例 1 0を上面側からの斜視図の形で示す模式図 である。  FIG. 25 is a schematic diagram showing Example 10 of the present invention in the form of a perspective view from above.
図 2 6は L字型及び T字型光導波路と して作用する実施例 1 0の光デ パイスの上面側から見た斜視図である。  FIG. 26 is a perspective view of the optical device of Example 10 acting as an L-shaped or T-shaped optical waveguide, as viewed from the upper surface side.
図 2 7はバー状態の交差型光スィ ツチとして作用する実施例 1 0の光 デバイスの上面側から見た斜視図である。  FIG. 27 is a perspective view of the optical device of Example 10 acting as an intersecting optical switch in a bar state, as viewed from the upper surface side.
図 2 8はクロス状態の交差型光スィ ツチと して作用する実施例 1 0の 光デバイスの上面側から見た斜視図である。 発明を実施するための最良の形態  FIG. 28 is a perspective view of the optical device of Example 10 acting as a cross-type optical switch in a cross state, as viewed from the upper surface side. BEST MODE FOR CARRYING OUT THE INVENTION
従来技術は、 フォ トニック結晶構造の形状を機械的あるいは化学的に 変えて、 必要と されるフォ トニックバンドを有するフォ トニック結晶構 造を作成していた。 このため、 従来技術により複雑な形状の光導波路か らなる光集積回路を作成する場合、 工程が複雑となるという問題点があ つ 7こ  In the prior art, the shape of the photonic crystal structure was mechanically or chemically changed to create a photonic crystal structure having a required photonic band. For this reason, there is a problem that the process becomes complicated when an optical integrated circuit composed of an optical waveguide having a complicated shape is produced by the conventional technology.
ところで、 フォ トニックパンド構造は、 フォ トニック結晶構造の母体 となる材料の屈折率によっても変化する。 これは、 材料の屈折率が材料 中を進行する光の波長に影響することから容易に理解できる。  By the way, the photonic band structure also changes depending on the refractive index of the material that is the base of the photonic crystal structure. This can be easily understood from the fact that the refractive index of a material affects the wavelength of light traveling through the material.
そこで、 本発明では、 フォ トニック結晶構造の両面に電極を配置して 電圧を加えることにより、フォ トニック結晶構造領域の基板の屈折率が、 電気光学効果により変化させるよ うにするものであるから、 一方の電極 を共通電極と してフォ トニック結晶構造を形成する基板の一つの面の全 面に設け、 他の電極をフォ トニック結晶構造を形成する基板の他の面上 に光デバイスに対応するパタ一ンと して形成することにより、 任意の光 デバイスデバイスを容易に得ることができる。 以下、 全面に設けた電極 を第 1の電極、 光デバイスに対応するパターンと して形成された電極を 第 2の電極という ことにする。 Therefore, in the present invention, by arranging electrodes on both surfaces of the photonic crystal structure and applying a voltage, the refractive index of the substrate in the photonic crystal structure region is changed by the electro-optic effect. One electrode is provided as a common electrode on the entire surface of the substrate forming the photonic crystal structure, and the other electrode is provided on the other surface of the substrate forming the photonic crystal structure for the optical device. By forming the pattern, any optical device can be easily obtained. Below, electrodes provided on the entire surface Is referred to as a first electrode, and an electrode formed as a pattern corresponding to an optical device is referred to as a second electrode.
-本発明では、 第 1 の電極と第 2の電極の間に電圧を印加することによ り、 第 2の電極が設置してある 2次元フォ トニック結晶構造領域のフォ トニックバン ド構造を電気光学効果により変化させることができる。 そ して、 第 2の電極は、 半導体素子作成に用いられるフォ ト リ ソグラフィ 一技術を用いて任意の形状にパターン形成できる。 したがって本発明で は、 第 2の電極形状を適宜設定することにより、 光集積回路に必要なフ ォ トニックバンド及び形状を有するフオ トニック結晶構造を、 電気光学 効果によ り形成できる。  -In the present invention, by applying a voltage between the first electrode and the second electrode, the photonic band structure of the two-dimensional photonic crystal structure region where the second electrode is installed is electrically controlled. It can be changed by the optical effect. Then, the second electrode can be patterned into an arbitrary shape by using a photolithography technique used for producing a semiconductor element. Therefore, in the present invention, by appropriately setting the shape of the second electrode, a photonic crystal structure having a photonic band and a shape required for an optical integrated circuit can be formed by the electro-optic effect.
例えば、 本発明により、 光導波路と して作用する光デバイスを作成す ることができる。 このデバイスは、 第 1の電極と第 2の電極の間に電圧 を印加した場合に、 第 2の電極が設置してある 2次元フォ トニック結晶 構造領域のフォ トニックパン ドギヤップが変化することを利用したもの であり、 電圧印加時に導波光が第 2の電極が設置してある部分のみを透 過するよ うにフォ トニックバンドギャップを変化させることにより実現 される。  For example, according to the present invention, an optical device acting as an optical waveguide can be produced. This device utilizes the fact that when a voltage is applied between the first electrode and the second electrode, the photonic band gap of the two-dimensional photonic crystal structure region where the second electrode is installed changes. This is realized by changing the photonic band gap so that the guided light only passes through the portion where the second electrode is provided when a voltage is applied.
この場合の光導波路形状は、 第 2の電極形状となるので、 本発明によ れば任意形状の導波路を形成することができる。 例えば、 第 2の電極形 状を、 直線形、 L字形、 S字形、 鋭角型、 鈍角型、 円弧型および T形と した場合には、 それぞれ直線形、 L字形、 S字形、 鋭角型、 鈍角型、 円 弧型および T字形の導波路が形成される。 なお、 本発明による光導波路 では、 フォ トニック結晶構造導波路に特有な急崚曲がり導波が可能であ り、 導波光の進路を 9 0度曲げることができる。  In this case, the shape of the optical waveguide is the second electrode shape, and therefore, according to the present invention, a waveguide having an arbitrary shape can be formed. For example, if the second electrode shape is linear, L-shaped, S-shaped, acute-angled, obtuse-angled, arc-shaped, and T-shaped, respectively, linear, L-shaped, S-shaped, acute-angled, obtuse-angled Shaped, arc-shaped and T-shaped waveguides are formed. In the optical waveguide according to the present invention, a sharply bent waveguide unique to a photonic crystal structure waveguide is possible, and the path of the guided light can be bent by 90 degrees.
本発明では、 第 2の電極の設置してある 2次元フォ トニック結晶構造 中に光が進行できるよ うに、 第 2の電極の幅を、 電気光学基板 2中を導 波する光の波長の 1/ 2以上と してある。  In the present invention, the width of the second electrode is set to one of the wavelengths of the light guided in the electro-optical substrate 2 so that the light can travel in the two-dimensional photonic crystal structure on which the second electrode is provided. / 2 or more.
本発明によれば、 電気光学スィ ツチと して作用する光デバイスを作成 できる。 本発明による上記導波路デバイスは、 第 1の電極と第 2の電極 の間に電圧を印加した場合にのみ形成されるので、 印加電圧を 0 と した 場合には、 導波路は消滅する。 このよ う に本発明の光導波路は、 フォ ト 二ック結晶構造に電圧を印加した場合にのみ光を透過する電気光学スィ ツチと して作用する。 According to the present invention, an optical device that acts as an electro-optic switch is created. it can. Since the waveguide device according to the present invention is formed only when a voltage is applied between the first electrode and the second electrode, the waveguide disappears when the applied voltage is set to zero. Thus, the optical waveguide of the present invention acts as an electro-optic switch that transmits light only when a voltage is applied to the photonic crystal structure.
さらに、 本発明によれば、 光導波路および電気光学スィ ッチからなる 光集積回路と して作用する光デバイスを作成できる。この光デバイスは、 電極上の単一の 2次元フォ ト二ック結晶構造の表面上に複数の独立した 第 2の電極を連続的に設置し、 第 1 と第 2の電極の間に電圧を印加した 場合に形成される光導波路の 1部分が電気光学スィツチと して作用する ようにすることにより実現される。  Further, according to the present invention, it is possible to produce an optical device that functions as an optical integrated circuit including an optical waveguide and an electro-optic switch. This optical device has a plurality of independent second electrodes continuously placed on the surface of a single two-dimensional photonic crystal structure on the electrodes, and a voltage between the first and second electrodes. This is realized by making a part of the optical waveguide formed when the voltage is applied act as an electro-optic switch.
また、 本発明によれば、 波長分波光回路として作用する光デバイスを 提供できる。 この光デバイスは、 第 1の電極上の単一の 2次元フォ ト二 ック結晶構造表面上に複数の独立した第 2の電極を連続的に設置し、 電 極とそれぞれのパターン電極の間に印加する電圧が異なるよ うにするこ とにより実現される。  Further, according to the present invention, it is possible to provide an optical device that functions as a wavelength demultiplexing optical circuit. In this optical device, a plurality of independent second electrodes are continuously arranged on a single two-dimensional photonic crystal structure surface on a first electrode, and a space between the electrode and each pattern electrode is provided. This is realized by making the voltage applied to the power supply different.
また、 本発明によれば、 交差型光スィ ッチと して作用する光デバイス を提供できる。 このデバイスは、 上記光導波路形成法により交差型光回 路を形成し、 交差部分のフォ トニックバン ドギヤップを変化できるよ う にすることにより実現される。 この交差型光スィ ッチを複数組み合わせ た光回路を単一の 2次元フォ トニック結晶構造中に形成することによ り . 光交換器が実現される。  Further, according to the present invention, it is possible to provide an optical device that operates as a cross-type optical switch. This device is realized by forming an intersecting optical circuit by the above-described optical waveguide forming method, and enabling the photonic band gap at the intersecting portion to be changed. An optical switch is realized by forming an optical circuit in which a plurality of crossed optical switches are combined in a single two-dimensional photonic crystal structure.
さらに本発明によれば、 光回路構造が可変なフォ トニック結晶構造の 光導波路、 電気光学スィ ッチ、 光導波路および電気光学スィ ッチからな る光回路、 波長選択回路、 交差型光スィ ッチ、 あるいは光交換機と して 作用する光デバイスを作成できる。 この光デバイスは、 第 1の電極上の 単一の 2次元フォ トニック結晶構造表面上に複数の独立した第 2の電極 をマ ト リ ツクス状に連続して配置し、 所望の光回路構造が 2次元フォ ト ニック結晶構造中に電気光学効果によ り形成されるよ うに複数の第 2の 電極を選び、 第 1の電極と、 選んだ第 2の電極の間に電圧を印加するよ うにすることにより実現される。 第 1の電極と、 それぞれの選んだ第 2 の電極の間に印加する電圧を異なるよ うにすることにより、 波長選択回 路、 交差型光スィ ッチ、 及び光交換機が実現される。 Further, according to the present invention, an optical waveguide having a photonic crystal structure in which the optical circuit structure is variable, an electro-optical switch, an optical circuit including the optical waveguide and the electro-optical switch, a wavelength selection circuit, and a cross-type optical switch are provided. Or an optical device that acts as an optical switch. In this optical device, a plurality of independent second electrodes are successively arranged in a matrix on a single two-dimensional photonic crystal structure surface on a first electrode, and a desired optical circuit structure is formed. 2D photo Achieved by selecting multiple second electrodes to be formed by the electro-optic effect in the nick crystal structure and applying a voltage between the first electrode and the selected second electrode Is done. By making the voltage applied between the first electrode and the selected second electrode different from each other, a wavelength selection circuit, a cross-type optical switch, and an optical switch are realized.
本発明を構成する電気光学効果を示す基板と しては何を用いてもよい 力 安定性の観点から無機材料を用いることが好ましく、 例えば、 従来 より光回路基板と して用いられているニオブ酸リチウム (L i N b 0 3 ) を基板と して用いることができる。 Any material may be used as the substrate exhibiting the electro-optical effect that constitutes the present invention. It is preferable to use an inorganic material from the viewpoint of force stability. For example, niobium conventionally used as an optical circuit substrate lithium acid (L i N b 0 3) may be used as the substrate.
このよ うに本発明によれば、単一の 2次元フォ トニック結晶構造より、 フォ トニック結晶構造の光集積回路を電気的に形成的に作成でき、 複雑 な工程を要する従来技術と比較してすぐれている。  As described above, according to the present invention, an optical integrated circuit having a photonic crystal structure can be formed electrically from a single two-dimensional photonic crystal structure, which is superior to the conventional technology requiring complicated processes. ing.
以下、 図面を参照して本発明の実施例を詳細に説明する。 図中、 同一 の機能を有するものには同一の符号をつけてある。 本発明の実施例は、 発明の基本構成に関するもの (実施例 1、 2 )、 2次元フォ トニック結晶 構造表面上に単一の第 2の電極が設置されているもの (実施例 3〜 5 )、 第 2の電極が、 連続して複数配置されているもの (実施例 6〜 9 )、 第 2 の電極が複数マ トリ ツタス状に配置されているもの (実施例 1 0 )、 の 3 つに分類される。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, components having the same function are denoted by the same reference numerals. Embodiments of the present invention relate to the basic configuration of the invention (Examples 1 and 2), and those in which a single second electrode is provided on the surface of a two-dimensional photonic crystal structure (Examples 3 to 5). A plurality of second electrodes arranged continuously (Examples 6 to 9); and a plurality of second electrodes arranged in matrix (Example 10). are categorized.
なお、 以下の実施例では、 空孔が正方格子状に配置されている 2次元 フォ トニック結晶構造を用いた例を示すが、 本発明は 2次元フォ トニッ ク結晶構造の空孔格子形状に制限されない。  In the following embodiments, an example is shown in which a two-dimensional photonic crystal structure in which holes are arranged in a square lattice shape is used. However, the present invention is limited to the hole lattice shape of the two-dimensional photonic crystal structure. Not done.
(第 1の実施例…基本構成に関する実施例)  (First embodiment: embodiment relating to basic configuration)
本実施例では、 本発明のもっとも基本的な構成について、 その具体例 を説明する。  In this embodiment, a specific example of the most basic configuration of the present invention will be described.
図 1は、 本発明の最も単純な実施例 1を上面側からの斜視図の形で示 す模式図、 図 2は、 図 1の A A位置で矢印方向に見た面断面図である。 図 2では、 さらに、 第 1の電極と第 2の電極の間に電圧を印加するため の構成も示した。 図中、 1は第 1の電極、 2は電極 1上の電気光学基板、 3は空孔、 4は基板 2中に形成された 2次元フォ トニック結晶構造領域、 5は第 2の電極、 6はフォ トニック結晶構造領域 4の内、 電極 1 、 5間 に電圧が印加されることにより屈折率が変化する修飾された 2次元フォ トニック結晶構造領域、 7は電極 1 、 5間に電圧を印加するための直流 電源、 8は開閉スィ ツチである。 この実施例 1では、 図 2に示すように、 空孔 3は、 電極 1、 電極 5及び電気光学基板 2を貫通するように形成さ れているが、 これは、 電極 1、 電気光学基板 2及び電極 5を所定の形に 形成した上で、 空孔 3を形成する方が製作しやすいからこう したのであ つて、 電極 1及び電極 5に空孔 3を形成することは必然ではない。 FIG. 1 is a schematic diagram showing the simplest embodiment 1 of the present invention in the form of a perspective view from the upper surface side, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. In Fig. 2, it is also necessary to apply a voltage between the first electrode and the second electrode. Is also shown. In the figure, 1 is a first electrode, 2 is an electro-optic substrate on the electrode 1, 3 is a hole, 4 is a two-dimensional photonic crystal structure region formed in the substrate 2, 5 is a second electrode, 6 Is a modified two-dimensional photonic crystal structure region whose refractive index changes when a voltage is applied between the electrodes 1 and 5 in the photonic crystal structure region 4, and 7 is a voltage applied between the electrodes 1 and 5. A DC power supply 8 is an open / close switch. In the first embodiment, as shown in FIG. 2, the holes 3 are formed so as to penetrate the electrode 1, the electrode 5, and the electro-optical substrate 2. Since it is easier to form holes 3 after forming electrodes 5 and electrodes 5 in a predetermined shape, it is not inevitable to form holes 3 in electrodes 1 and 5.
空孔 3の配列周期は、 縦横ともに aである。 aの値は、 電気光学基板 2中を導波する光の波長の 1 Z 2程度である。 例えば、 電気光学基板 2 を光ファイバ一通信で用いられる波長 1 . 5 m帯用のフォ トニック結 晶構造とする場合には、 aの値は 0 . 5 /z m程度である。  The arrangement period of the holes 3 is a in both the vertical and horizontal directions. The value of “a” is about 1 Z 2 of the wavelength of light guided in the electro-optical substrate 2. For example, when the electro-optical substrate 2 has a photonic crystal structure for a 1.5 m wavelength band used in one optical fiber communication, the value of a is about 0.5 / z m.
本実施例 1では、電極 1、 5間に電源 7によ り電圧を印加した場合に、 2次元フォ トニック結晶構造領域 4の内、 電場が印加された部分は修飾 された 2次元フォ トニック結晶構造領域 6 となり、 この領域は電気光学 効果によ り屈折率が変化する。  In the first embodiment, when a voltage is applied between the electrodes 1 and 5 by the power supply 7, the portion of the two-dimensional photonic crystal structure region 4 to which the electric field is applied is a modified two-dimensional photonic crystal. This becomes the structural region 6, where the refractive index changes due to the electro-optic effect.
電気光学による屈折率変化 δ ηは ( 1 ) 式で与えられる。  The change in refractive index δ η due to electro-optics is given by equation (1).
δ η = ζ Ε ( 1 )  δ η = ζ Ε (1)
ここで、 ζは電気光学定数、 Εは電場強度である。 ζは、 正または負 の値であるが、 多く の電気光学材料では ζの値が正であることが知られ ている。 本実施例では、 ζが正である電気光学材料を電気光学基板 2に 用い、 電極 1 、 5間に電圧を印加した場合に修飾された 2次元フォ ト二 ック結晶領域 6の屈折率がフォ ト二ック結晶構造領域 4の部分の屈折率 より も大きく なるようにした。  Where ζ is the electro-optic constant and Ε is the electric field strength. ζ is a positive or negative value, but it is known that the value of ζ is positive in many electro-optic materials. In this embodiment, an electro-optic material having a positive ζ is used for the electro-optic substrate 2, and when a voltage is applied between the electrodes 1 and 5, the modified two-dimensional photonic crystal region 6 has a modified refractive index. The refractive index was set to be larger than the refractive index of the photonic crystal structure region 4.
図 3 ( a ) は、 2次元フォ トニック結晶構造領域 4のフォ トニックバ ンド構造の模式図である。 光に対する禁制帯であるフォ トニックバン ド ギャップの位置を太線でしめす。 修飾された 2次元フォ トニック結晶構 造領域 6はフォ トニック結晶領域 4の 1部分であるので、 電極 1、 5間 に電圧を印加しない場合、 すなわち、 修飾されていない場合には、 この 領域のフォ トニックバンド構造も図 3 ( a ) である。 FIG. 3A is a schematic diagram of the photonic band structure of the two-dimensional photonic crystal structure region 4. Photonic band, a forbidden zone against light The position of the gap is indicated by a bold line. Since the modified two-dimensional photonic crystal structure region 6 is a part of the photonic crystal region 4, if no voltage is applied between the electrodes 1 and 5, that is, if the region is not modified, The photonic band structure is also shown in Fig. 3 (a).
電極 1 、 5間に電圧を印加すると、 修飾された 2次元フォ トニック結 晶構造領域 6の部分の屈折率が電気光学効果により増加する。 一般に屈 折率が m倍になった場合、 電極 5の存在する領域のフォ ト二ック結晶領 域 4内部を導波する光の波長は 1 Z mとなり、その波数 kは m倍となる。 —方、 光のエネルギーは屈折率変化の前後で変化しないので、 電極 1、 5間に電圧を印加した場合のフォ トニックバンドは、 縦軸のスケールを 1 / m倍した構造となる。  When a voltage is applied between the electrodes 1 and 5, the refractive index of the modified two-dimensional photonic crystal structure region 6 increases due to the electro-optic effect. Generally, when the refractive index increases by m times, the wavelength of light guided inside the photonic crystal region 4 in the region where the electrode 5 exists becomes 1 Zm, and the wave number k becomes m times. . —On the other hand, since the light energy does not change before and after the change in the refractive index, the photonic band when a voltage is applied between the electrodes 1 and 5 has a structure that is 1 / m times the scale of the vertical axis.
本実施例では、 電極 1 、 5間に電圧 Vを印加した場合、 修飾された 2 次元フォ トニック結晶構造領域 6を構成する電気光学基板の屈折率が 1 . 1 8倍となるよ うにした。 電極 1 、 5間に電圧 Vを印加した場合の修飾 された 2次元フォ トニック結晶構造領域 6のフォ トニックバン ド構造を 図 3 ( b ) に示す。  In this embodiment, when a voltage V is applied between the electrodes 1 and 5, the refractive index of the electro-optic substrate constituting the modified two-dimensional photonic crystal structure region 6 is set to 1.18 times. Figure 3 (b) shows the photonic band structure of the modified two-dimensional photonic crystal structure region 6 when a voltage V is applied between the electrodes 1 and 5.
このよ うに、 本実施例 1では、 電極 1 、 5間に電圧を印加することに より、 修飾された 2次元フォ トニック結晶構造領域 6のフォ トニックバ ンド構造を変化させることができる。  Thus, in the first embodiment, by applying a voltage between the electrodes 1 and 5, the photonic band structure of the modified two-dimensional photonic crystal structure region 6 can be changed.
図 3 ( b ) のフォ トニックバンドギャップは、 図 3 ( a ) のそれと比 較して、 バン ドギャップ上端および下端のエネルギーが大きく 、 バン ド ギヤプ幅が広い。 このように、 本実施例では、 電極 1、 5間に電圧を印 加することによ り、 2次元フォ ト二ック結晶構造領域 6のフォ トニック ノくンドギャップを変化させることができる。  The photonic band gap in FIG. 3 (b) has larger energy at the upper and lower ends of the band gap and a wider band gap than that in FIG. 3 (a). As described above, in the present embodiment, by applying a voltage between the electrodes 1 and 5, the photonic node gap of the two-dimensional photonic crystal structure region 6 can be changed.
このよ うに、 本実施例では、 第 1の電極と第 2の電極の間に電圧を印 加することによ り、 パターン電極が設置してあるフォ ト二ック結晶構造 領域のフォ トニックバンド構造およびフォ トニックバン ドギャップを変 化させることができる。 なお、 電気光学効果による屈折率変化 δ nは、 ( 1 ) 式からわかるよ うに、 印加電場 Eに比例して増大するので、 本実 施例では、 電極 1、 5間の印加電圧を変えることにより、 2次元フォ ト ニック結晶構造領域 6のフォ トニックバンド構造およびフォ トニックバ ンドギヤップを連続的に変化させることが可能である。図 4に、電極 1、 5間に印加する電圧を 0、 1 . 0 V、 1 . 2 V、 1 . 3 V、 1 . 5 Vと 変えた場合の修飾された 2次元フォ トニック結晶領域 6 のフォ トニック バンドギヤップの位置の変化を示す。 印加する電圧を高くすることによ り、 バンドギャップの上端および下端のエネルギーが上昇し、 パン ドギ ャップの幅が広くなる。 As described above, in the present embodiment, by applying a voltage between the first electrode and the second electrode, the photonic band of the photonic crystal structure region where the pattern electrode is provided is set. The structure and photonic band gap can be varied. The refractive index change δn due to the electro-optic effect is As can be seen from Eq. (1), the voltage increases in proportion to the applied electric field E. In this embodiment, by changing the applied voltage between the electrodes 1 and 5, the photon of the two-dimensional photonic crystal structure region 6 is changed. It is possible to continuously change the tonic band structure and the photonic band gap. Figure 4 shows the modified two-dimensional photonic crystal region 6 when the voltage applied between electrodes 1 and 5 is changed to 0, 1.0 V, 1.2 V, 1.3 V, and 1.5 V. The change in the position of the photonic bandgap is shown. By increasing the applied voltage, the energy at the upper and lower ends of the band gap increases, and the width of the band gap increases.
図 5、 6、 及び 7に、 本実施例 1の光デバイスの作成手順を断面図で 示す。最初に電気光学基板 2の両面に電極 1、電極 5を形成する(図 5 )。 電気光学基板 2 と しては、 例えば、 ニオブ酸リチウム L i N b O 3を用 レ、、 電極 1、 電極 5は、 アルミニウム等の金属を電気光学基板 2表面に 蒸着して形成する。 続いて、 半導体素子作成に用いられている光リ ソグ ラフィ一技術により、 電極 5をパターン形成する (図 6 )。 なお、 現在の 光リ ソグラフィー技術によれば、 0 . 1 ηα程度の線幅のパターン電極 を形成できる。 最後に、 電子ビームリ ソグラフィ一と反応性イオンビ一 ムエッチングを用いて、 空孔 3を電極 5、 電気光学基板 2、 電極 1 を貫 通するよ うに周期的に形成することによ り、 本実施例 1の光デバイスが 得られる (図 7 )。 5, 6 and 7 are sectional views showing a procedure for manufacturing the optical device of the first embodiment. First, electrodes 1 and 5 are formed on both sides of the electro-optic substrate 2 (FIG. 5). As the electro-optical substrate 2, for example, lithium niobate LiNbO 3 is used. The electrodes 1 and 5 are formed by depositing a metal such as aluminum on the surface of the electro-optical substrate 2. Subsequently, the electrode 5 is patterned by the optical lithography technique used for semiconductor device fabrication (FIG. 6). According to the current optical lithography technology, a pattern electrode having a line width of about 0.1 ηα can be formed. Finally, by using electron beam lithography and reactive ion beam etching, the holes 3 are periodically formed so as to penetrate through the electrode 5, the electro-optic substrate 2, and the electrode 1, and the present embodiment is performed. The optical device of Example 1 is obtained (Fig. 7).
電極 1及び 5がアルミ二ゥムであり、 電気光学基板 2がニオブ酸リチ ゥムである場合、 空孔 3は、 半導体素子作成に用いられる光フォ ト リ ソ グラフィ一技術及びプラズマエッチング技術を用い、 空孔部分を選択的 にエッチングして形成できる。 C Η 4及び 0 2を用いるプラズマエツチン グでは下記 (ィヒ 1 ) に示す化学反応が進行し活性種 Fが生じる。 When the electrodes 1 and 5 are made of aluminum and the electro-optic substrate 2 is made of lithium niobate, the holes 3 are formed by the optical photolithography technology and the plasma etching technology used for fabricating semiconductor devices. It can be formed by selectively etching the holes. In plasma etching using C Η 4 and C 2 , the chemical reaction shown below (Fig. 1) proceeds and active species F are generated.
C F ^ + O s—C O F s + F + C O (ィヒ 1 )  C F ^ + O s—C O F s + F + C O (Ichi 1)
この反応条件下では、 アルミ二ゥムは酸化されては酸化アルミ -ゥム となり、 活性種 Fによりエッチッグ可能となる。 またニオブ酸リチウム は、 活性種 Fによ りエッチング可能である。 したがって、 上記プラズマ エッチングによれば電極 1及び 5、 ならびに電気光学基板 2をエツチン グして空孔 3を形成できる。 Under this reaction condition, aluminum is oxidized to aluminum oxide, which can be etched by active species F. Also lithium niobate Can be etched by the active species F. Therefore, according to the above-described plasma etching, the holes 1 can be formed by etching the electrodes 1 and 5 and the electro-optical substrate 2.
図 8 ( a ), ( b ) に、 電極 1、 5間に電圧を印加する方法の例を示す。  Figures 8 (a) and (b) show examples of applying a voltage between electrodes 1 and 5.
( a ) において、 7は電圧源と しての電気回路、 8は金属基板、 9は電 圧源 7の電極、 1 0は電極 5 と電極 9を接続する金属ワイヤ一である。 電極 1は電圧源 7の他の電極に接続された金属基板 8 と接触すると とも に電気的に接続されて配置されている。 電圧源 7は金属基板 8 と電極 9 の間に所定の直流電圧を発生させ、 金属基板 8 と金属ワイヤ一 1 0 とに より電極 1、 5間に電圧を印加できる。 このよ う に、 本実施例を電気回 路と組み合わせて構成することにより、 電極 1、 5間に電圧が印加する よ う にできる。  In (a), 7 is an electric circuit as a voltage source, 8 is a metal substrate, 9 is an electrode of the voltage source 7, and 10 is a metal wire connecting the electrode 5 and the electrode 9. The electrode 1 is arranged so as to be in contact with the metal substrate 8 connected to the other electrodes of the voltage source 7 and to be electrically connected thereto. The voltage source 7 generates a predetermined DC voltage between the metal substrate 8 and the electrode 9, and can apply a voltage between the electrodes 1 and 5 by the metal substrate 8 and the metal wires 10. Thus, by configuring the present embodiment in combination with the electric circuit, a voltage can be applied between the electrodes 1 and 5.
( b ) は、 電気光学基板 2の上面に、 たとえば、 S i 0 2による絶縁 層 1 0 0を形成して、 その上に、 金属ワイャ一 1 0に代わる配線層 1 0 ' を形成し、 この配線層 1 0 ' を絶縁層 1 0 0に形成したスルーホールを 介して電極 5 と接続するとともに、 金属ワイヤー 1 0 1によって電極 9 と接続したものである。このように電気光学基板 2の上面に配線層 1 0 ' を形成する場合、電気光学基板 2の厚さの 3倍程度の絶縁層を設ければ、 この配線層 1 0 ' が 2次元フォ トニック結晶領域 4に影響を及ぼすこ と はなレ、。 (B) is a top surface of the electro-optical substrate 2, for example, by forming a S i 0 2 insulating layer 1 0 0 by, thereon to form a wiring layer 1 0 'in place of the metal Waiya one 1 0, The wiring layer 100 ′ is connected to the electrode 5 through a through hole formed in the insulating layer 100, and is connected to the electrode 9 by a metal wire 101. When the wiring layer 10 ′ is formed on the upper surface of the electro-optical substrate 2 as described above, if the insulating layer having a thickness of about three times the thickness of the electro-optical substrate 2 is provided, the wiring layer 10 ′ becomes a two-dimensional photonic. It does not affect the crystal region 4.
(実施例 2…墓本構成に関する実施例)  (Embodiment 2 ... Embodiment related to grave book configuration)
実施例 1では、 図 2に示すように空孔 3が電気光学基板 2を貫通する ように穿孔されているが、 このよ うに空孔を穿孔することは必ずしも必 然ではない。 図 9は、 実施例 1において、 空孔 3を電気光学基板 2を貫 通しないよ うにした場合の断面図である。 図中、 dは電気光学基板 2の うち空孔が穿孔されていない部分の厚さであり、 フォ トニック結晶構造 4の部分に入射される光の波長の 1 / 2以下と してある。 一般的に光は、 その波長の 1ノ 2以下の領域には進入できない。 したがって、 入射光は 電気光学基板 3の空孔が穿孔されていない部分に進入できず、 4は実施 例 1 の場合と同じフォ トニック結晶構造と して作用する。 In the first embodiment, the holes 3 are formed so as to penetrate the electro-optical substrate 2 as shown in FIG. 2, but such holes are not necessarily required. FIG. 9 is a cross-sectional view of the first embodiment when the holes 3 are not penetrated through the electro-optical substrate 2. In the figure, d is the thickness of the portion of the electro-optic substrate 2 where no holes are formed, and is set to be 以下 or less of the wavelength of light incident on the portion of the photonic crystal structure 4. In general, light cannot enter a region of less than one to two wavelengths. Therefore, the incident light is The holes of the electro-optical substrate 3 cannot enter the portion where the holes are not perforated, and 4 acts as the same photonic crystal structure as in the first embodiment.
本実施例の光デバイスは、 実施例 1 と同様に光リ ソグラフィ一技術お よびプラズマエッチング技術を用いて作成できる。  The optical device of the present embodiment can be manufactured by using the optical lithography technique and the plasma etching technique as in the first embodiment.
また、 電極 5の材料が透明電極材料である酸化インジウム . ズズ ( I n 2 O 3 - S η 0 2 )、電気光学基板 2の材料がニオブ酸リチウムである場 合、 本実施例の光デバイスは、 光化学エッチング技術を用いて作成する ことが可能である。 図 1 0、 1 1 、 1 2、 及び 1 3にその作成手順を示 す。 電極 1上に微量 ( 0 . 2 m o 1 % ) の鉄をドープした鉄ド一プニォ ブ酸リ チウムの電気光学基板 2を形成し、 その上に酸化イ ンジウム · ス ズの電極 5及びネガレジス ト 1 0 2を塗布する (図 1 0 )。 電極 1 の材料 と しては、例えば金を用いる。 電極 1 は金を、 電極 5は酸化ィンジゥム · スズを電気光学基板 2上に蒸着して形成し、 ネガレジス トはスピンコ一 ト法により電気光学基板 2及び電極 5上に形成する。 続いて光リ ソグラ フィ一法により、 マスク 1 0 3を用いて波長 4 8 8 ri mの光を電気光学 基板 2のうち空孔 3を穿孔する部分に照射する (図 1 1 )。 電極 5は透明 電極であるので、 照射光は 5を透過し、 電気光学基板 2に到達する。 こ の光照射により、 光が照射されたネガレジス ト 1 0 2の部分 1 0 4は感 光し除去可能となる。 E . Barry らがアプライ ドサ一フェスサイエンス (Applied Surface Science) 1 4 3巻、 3 2 8〜 3 3 1ページに報告し ているように、 4 8 8 ri mの光が照射された鉄ド一プニオブ酸リチウム は、 フッ酸と硝酸の混合溶液に溶解しやすく なるので、 光が照射された 電気光学基板 2の部分 1 0 5は、 この混合溶液によりエッチング可能と なる。 感光したネガレジス ト部分 1 0 4を除去した後 (図 1 2 )、 フッ酸 と硝酸の 1 : 2混合溶液によ りエッチングすると、 酸化インジウム · ス ズの電極 5 と、 光が照射された電気光学基板 2の都分 1 0 5がエツチン グされ、空孔 3及びフォ トニック結晶構造領域 4が形成される(図 1 3 )。 電極 1は金であるため、 この混合溶液により除去されることはない。 光 が照射された電気光学基板 2の部分 1 0 5のエッチングに際しては、 空 孔 3が電気光学基板 2を貫通せず、 厚さ dを残すことができるよ うにェ ツチングのスピードおよび時間を管理する。 なお、 電気光学基板 2のう ち空孔 3が穿孔されていない部分の厚さ dを、 フォ トニック結晶構造領 域 4に入射される光の波長の 1 / 2以下とすることは、先にのベた通りで ある。 光反応していないネガレジス ト 1 0 2を除去することによ り、 本 実施例の光デバイスの構造 (図 9 ) が得られる。 When the material of the electrode 5 is indium oxide.tin (In 2 O 3 -Sη 0 2 ), which is a transparent electrode material, and the material of the electro-optical substrate 2 is lithium niobate, the optical device of this embodiment is used. Can be made using photochemical etching technology. Figures 10, 11, 12, and 13 show the creation procedure. An electro-optical substrate 2 made of iron dopaniobate doped with a small amount (0.2 mo 1%) of iron is formed on an electrode 1, and an electrode 5 of indium tin oxide and a negative resist are formed thereon. Apply 102 (Fig. 10). As a material of the electrode 1, for example, gold is used. The electrode 1 is formed by depositing gold on the electro-optical substrate 2 and the electrode 5 is formed by depositing tin oxide on the electro-optical substrate 2, and the negative resist is formed on the electro-optical substrate 2 and the electrode 5 by a spin coating method. Subsequently, light having a wavelength of 488 rim is applied to the portion of the electro-optic substrate 2 where the holes 3 are to be formed by using a mask 103 by optical lithography (FIG. 11). Since the electrode 5 is a transparent electrode, the irradiation light passes through the electrode 5 and reaches the electro-optical substrate 2. By this light irradiation, the portion 104 of the negative resist 102 irradiated with the light is sensitized and can be removed. As reported by E. Barry et al. In Applied Surface Science, Vol. 144, pp. 328-33, page 1, iron crystals exposed to 488 rim light were used. Since lithium pniobate is easily dissolved in a mixed solution of hydrofluoric acid and nitric acid, the portion 105 of the electro-optical substrate 2 irradiated with light can be etched by this mixed solution. After removing the exposed negative resist 104 (Fig. 12), etching was performed using a 1: 2 mixed solution of hydrofluoric acid and nitric acid, and the electrode 5 of indium oxide and tin and the light- Etching is performed on each portion of the optical substrate 2 to form holes 3 and photonic crystal structure regions 4 (FIG. 13). Since electrode 1 is gold, it is not removed by this mixed solution. light During etching of the portion 105 of the electro-optical substrate 2 irradiated with, the etching speed and time are controlled so that the holes 3 do not penetrate the electro-optical substrate 2 and the thickness d can be left. . The thickness d of the portion of the electro-optic substrate 2 where the holes 3 are not perforated must be set to be equal to or less than 1/2 of the wavelength of light incident on the photonic crystal structure region 4 beforehand. It is exactly the same. The structure of the optical device of this embodiment (FIG. 9) can be obtained by removing the negative resist 102 that has not reacted.
本実施例の光デバイスは、 空孔 3が電気光学基板 2を貫通していな いので、 実施例 1の光デバイス (図 7 ) と比較して力学的強度が大きい という利点を有するとともに、 穿孔されていない部分の厚さ dがフォ ト 二ック結晶構造領域 4に入射される光の波長の 1 / 2以下であれば、 厚さ にばらつきがあっても本来の機能に支障をきたすことは無い。 したがつ て、 前出の] B a r r yらの文献にあるように、 1 1 0 °Cのフッ酸と硝酸 の 1 : 2混合溶液を用いて鉄ド一プニオブ酸リチウムをエッチングする 場合、 そのエッチング速度は 0 . 9 2 m Z分である。 エッチング時間を このデータよ り決めることができる。 例えば、 この混合溶液によ り厚さ が 1 0 0 παの鉄ド一プニオブ酸リチウム基板をエッチングし、 空孔の 非貫通部分を 0 . 4 とする場合、 エッチング時間は 1 0 8分 1 6秒 である。 エッチング速度は、 エッチング溶液の濃度及び温度を変えてコ ントロールできることは自明である。 この場合、 エッチング処理の基板 に対する効果のばらつきがあり得るが、 穿孔されていない部分の厚さ d を厳密に管理する必要は無く、 部分的に貫通するところがあっても良い から、 エツチングの制御は簡易なものとできる。  The optical device of this embodiment has an advantage that the mechanical strength is larger than that of the optical device of Embodiment 1 (FIG. 7) since the holes 3 do not penetrate the electro-optical substrate 2 and If the thickness d of the unexposed portion is equal to or less than 1/2 of the wavelength of light incident on the photonic crystal structure region 4, even if the thickness varies, the original function may be impaired. There is no. Therefore, as described in the above-mentioned Barry et al. Document, when lithium iron dopniobate is etched using a 1: 2 mixed solution of hydrofluoric acid and nitric acid at 110 ° C. The etching rate is 0.92 mZ minutes. The etching time can be determined from this data. For example, when a lithium iron dopniobate substrate having a thickness of 100 πα is etched with this mixed solution to make the non-penetrating portions of the pores 0.4, the etching time is 108 minutes 16 Seconds. Obviously, the etching rate can be controlled by changing the concentration and temperature of the etching solution. In this case, the effect of the etching process on the substrate may vary, but it is not necessary to strictly control the thickness d of the non-perforated portion, and there may be a portion that is partially penetrated. It can be simple.
(第 3の実施例…単一の第 2の電極を有する実施例)  (Third embodiment: an embodiment having a single second electrode)
図 1 4は直線型光導波路と して作用する本発明の光デバイスの実施例 の上面側から見た斜視図である。 1は第 1の電極、 2は電気光学基板、 3は空孔、 4は電気光学基板 2中の 2次元フォ ト二ック結晶構造領域、 5は第 2の電極である。 本実施例では、 直線状の電極 5を用いた。 電極 5の幅は空孔 3の配列周期 aの 2倍よ りやや大きく した。 すなわち、 本 実施例で構成される導波路に導入される光の波長よりやや長いものと し た。 以下の実施例でも同様とする。 電極 1 、 5間の電圧印加により 2次 元フォ トニック結晶構造領域 4の内、 電極 5で覆われた領域は修飾され た 2次元フォ トニック結晶構造領域となる。 電極 1 、 5間に電圧を印加 することによ り、 修飾された 2次元フォ トニック結晶構造領域の屈折率 が電気光学効果によ り増大するようにした。 1 1 と 1 2は光ファィバー であり、 それぞれが電気光学基板 2の端面で、 電極 5で覆われた領域の 部分と光学的に接続されるようにした。 FIG. 14 is a perspective view of the embodiment of the optical device of the present invention acting as a linear optical waveguide, as viewed from the upper surface side. 1 is a first electrode, 2 is an electro-optic substrate, 3 is a hole, 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2, and 5 is a second electrode. In this example, a linear electrode 5 was used. electrode The width of 5 is slightly larger than twice the arrangement period a of the holes 3. That is, the wavelength is set to be slightly longer than the wavelength of light introduced into the waveguide configured in the present example. The same applies to the following embodiments. The region covered with the electrode 5 in the two-dimensional photonic crystal structure region 4 by applying a voltage between the electrodes 1 and 5 becomes a modified two-dimensional photonic crystal structure region. By applying a voltage between the electrodes 1 and 5, the refractive index of the modified two-dimensional photonic crystal structure region was increased by the electro-optic effect. Numerals 1 1 and 1 2 are optical fibers, each of which is an end face of the electro-optical substrate 2 and is optically connected to a portion of the area covered with the electrode 5.
電極 1、 電気光学基板 2、 空孔 3及び空孔 3の配列周期 aは第 1の実 施例の場合と同じである。 本実施例は、 電極 5および 6の形状は直線状 である点が、 第 1実施例と異なる。 従って、 2次元フォ トニック結晶構 造領域 4のフォ トニックバンド構造は図 3 ( a ) である。 電極 1 、 5間 への電圧印加による修飾された 2次元フォ トニック結晶構造領域のフォ トニックバンド構造は、 電極 1 、 5間の印加電圧によ り変化し、 印加電 圧が 0である場合のフォ トニックバン ド構造は図 3 ( a )、 印加電圧が V を印加した場合のフォ トニックバンド構造は図 3 ( b ) である。  The arrangement period a of the electrode 1, the electro-optical substrate 2, the holes 3, and the holes 3 is the same as in the first embodiment. This embodiment is different from the first embodiment in that the electrodes 5 and 6 are linear in shape. Therefore, the photonic band structure of the two-dimensional photonic crystal structure region 4 is shown in FIG. The photonic band structure of the modified two-dimensional photonic crystal structure region by applying a voltage between electrodes 1 and 5 changes according to the applied voltage between electrodes 1 and 5, and when the applied voltage is zero. The photonic band structure is shown in Fig. 3 (a), and the photonic band structure when V is applied is shown in Fig. 3 (b).
電極 1 、 5間に電圧を印加せずに、 光ファイバ一 1 1により光ェネル ギ一が Aの光を電極 5で覆われた領域の電気光学基板 2の端面に入射す ると、入射光はフォ トニックバンドギャップ中の光であるので(図 3 ( a ) 参照) 2次元フォ トニック結晶構造領域 4を透過できず、 光ファイバ一 1 2 へ光は出力されない。一方、電極 1 、 5間に電圧 Vを印加した場合、 修飾された 2次元フォ トニック結晶構造領域のフォ トニックバンド構造 は図 3 ( b ) となるので、 入射光は修飾された 2次元フォ トニック結晶 構造領域を透過できるようになる。 修飾された 2次元フォ トニック結晶 構造領域を除く 2次元フォ トニック結晶構造領域 4の部分のフォ トニッ クバン ド構造は印加電圧に関係なく 図 3 ( a ) である。 このため、 入射 光は修飾された 2次元フォ トニック結晶構造領域を除く 2次元フォ トニ ック結晶領域 4に進行できず、 修飾された 2次元フォ トニック結晶構造 領域內部を導波して光ファィバ一 1 2へと出力される。 このよ うに、 本 実施例は、 電極 1、 5間に電圧 Vを印加した場合、 直線型光導波路と し て作用する。 When no light is applied between the electrodes 1 and 5 and the optical energy is incident on the end face of the electro-optical substrate 2 in the area covered by the electrode 5 by the optical fiber 111, the incident light Is light in the photonic band gap (see Fig. 3 (a)). Thus, the light cannot pass through the two-dimensional photonic crystal structure region 4 and is not output to the optical fiber 112. On the other hand, when a voltage V is applied between the electrodes 1 and 5, the photonic band structure of the modified two-dimensional photonic crystal structure region is as shown in Fig. 3 (b). It can be transmitted through the crystal structure region. The photonic band structure of the portion of the two-dimensional photonic crystal structure region 4 excluding the modified two-dimensional photonic crystal structure region is shown in Fig. 3 (a) regardless of the applied voltage. For this reason, the incident light is reflected in the two-dimensional photonic region excluding the modified two-dimensional photonic crystal structure region. The light cannot travel to the optical crystal region 4 and is guided to the modified two-dimensional photonic crystal structure region 內 to be output to the optical fibers 12. As described above, in the present embodiment, when the voltage V is applied between the electrodes 1 and 5, it acts as a linear optical waveguide.
これに対して、 電極 1 、 5間に電圧を印加しない場合、 本実施例は導 波路と して作用しない。 従って、 本実施例は、 電極 1、 5間の電圧によ り 6の光の透過状態をコントロールすることができる。 即ち、 電極 1、 5間に電圧を印加しない場合、 光ファイバ一 1 1 と光フアイバー 1 2は 光学的に接続されないが、 電極 1 、 5間に電圧 Vを印加した場合には、 光ファイバ一 1 1 と光ファイバ一 1 2は修飾された 2次元フォ トニック 結晶構造領域により光学的に接続される。 このように、 本実施例は、 電 極 1 、 5間の電圧を変化させることにより、 電気光学スィ ッチと して作 用する。  On the other hand, when no voltage is applied between the electrodes 1 and 5, the present embodiment does not function as a waveguide. Therefore, in this embodiment, the transmission state of the light 6 can be controlled by the voltage between the electrodes 1 and 5. That is, when no voltage is applied between the electrodes 1 and 5, the optical fiber 11 and the optical fiber 12 are not optically connected, but when a voltage V is applied between the electrodes 1 and 5, the optical fiber 1 Optical fibers 1 1 and 1 2 are optically connected by a modified two-dimensional photonic crystal structure region. As described above, the present embodiment operates as an electro-optic switch by changing the voltage between the electrodes 1 and 5.
なお、 本実施例でも、 図 8 ( a ) , ( b ) で説明したと同様の配線が設 けられるが、 図が煩雑となるだけなので、 表記を省略した。 以下の実施 例についても配線の表記は省略する。  In this embodiment, wiring similar to that described with reference to FIGS. 8 (a) and 8 (b) can be provided, but the notation is omitted because the drawing is complicated. In the following embodiments, the description of the wiring is omitted.
(第 4の実施例-—単一の第 2の電極を有する実施例)  (Fourth embodiment--an embodiment having a single second electrode)
図 1 5、 図 1 6、 図 1 7、 図 1 8、 及び図 1 9は、 それぞれ L字型、 S字型、 鋭角型、 鈍角型、 及び円弧型光導波路と して作用する本発明の 実施例の状面側からみた斜視図である。 1は第 1 の電極、 2は電気光学 基板、 3は空孔、 4は電気光学基板 2中の 2次元フォ トニック結晶構造 領域、 5は第 2の電極である。 本実施例 4では、 電極 5の形状が実施例 2 と異なるのみで、 他は同じである。 本実施例でも、 電極 1、 5に電圧 が印加されると、 2次元フォ トニック結晶領域 4の内、 電極 5に覆われ た部分は修飾された 2次元フォ トニック結晶構造領域となり、 第 2の実 施例と同様に、 光フアイバー 1 1から入射された光は光ファィバー 1 2 に出力される。 図 1 5〜 1 9の導波路は急峻導波路と して作用し、 フォ トニック結晶構造の光導波路に特徴的な急峻曲がり導波が可能である。 電極 1、 5間に電圧を印加しない場合には、 第 3の実施例同様、 図 1 5〜 1 9に示す本実施例 4は光導波路と して作用しない。 従って本実施 例 4は、 電極 1、 5間の電圧を変化させることにより、 光ファイバ一 1 1 と光ファイバ一 1 2の間の光学的接続状態を変えることができ、 電気 光学スィ ツチと して作用することも実施例 3 と同様である。 FIGS. 15, 16, 17, 18, and 19 show the L-shaped, S-shaped, acute-angled, obtuse-shaped, and arc-shaped optical waveguides of the present invention, respectively. It is the perspective view seen from the shape side of an example. 1 is a first electrode, 2 is an electro-optic substrate, 3 is a hole, 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2, and 5 is a second electrode. The fourth embodiment is the same as the second embodiment except that the shape of the electrode 5 is different. Also in the present embodiment, when a voltage is applied to the electrodes 1 and 5, the portion of the two-dimensional photonic crystal region 4 covered by the electrode 5 becomes a modified two-dimensional photonic crystal structure region, and the second As in the embodiment, the light incident from the optical fiber 11 is output to the optical fiber 12. The waveguides in Figs. 15 to 19 act as steep waveguides, and can provide steeply bent waveguides characteristic of optical waveguides having a photonic crystal structure. When no voltage is applied between the electrodes 1 and 5, the fourth embodiment shown in FIGS. 15 to 19 does not function as an optical waveguide, as in the third embodiment. Therefore, in the fourth embodiment, by changing the voltage between the electrodes 1 and 5, the optical connection state between the optical fibers 11 and 12 can be changed, and the electro-optical switch can be used. This is also the same as in the third embodiment.
(第 5の実施例一単一の第 2の電極を有する実施例)  (Fifth Embodiment—Embodiment Having Single Second Electrode)
図 2 0は T字型光導波路と して作用する本発明の実施例の上面側から 見た斜視図である。 1は第 1の電極、 2は電気光学基板、 3は空孔、 4 は電気光学基板 2中の 2次元フォ トニック結晶構造領域、 5は第 2の電 極である。 本実施例 5では、 電極 5を T字型と した点において実施例 2 〜 4 と異なるのみで、 他は同じである。  FIG. 20 is a top perspective view of the embodiment of the present invention acting as a T-shaped optical waveguide. 1 is a first electrode, 2 is an electro-optic substrate, 3 is a hole, 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2, and 5 is a second electrode. The fifth embodiment differs from the second to fourth embodiments only in that the electrode 5 has a T-shape, and is otherwise the same.
本実施例 5においても、 T字型電極 5で覆われた領域は、 電極 1、 5 間に電圧を印加されると、 修飾された 2次元フォ トニック結晶構造領域 となる。 2次元フォ トニック結晶領域 4のフォ トニックバンド構造およ び電圧印加による修飾された 2次元フォ トニック結晶領域のフオ トニッ クバン ド構造は、 第 1の実施例の場合と同じである (図 3、 4参照)。 実施例 3〜 4の実施例同様、 本実施例は光導波路として作用する。 即 ち、 電極 1、 5間に電圧 Vを印加して、 光ファイバ一 1 1により光エネ ルギ一が Aの光を入射させると、 入射光は修飾された 2次元フォ トニッ ク結晶構造領域を導波し、 丁字交差部で分岐されて光ファイバ一 1 2、 1 3へと出力される。 このように、 本実施例は、 フォ トニック結晶構造 の光導波路に特徴的な急峻曲がり導波を利用する T字型急峻導波路と し て作用する。  Also in the fifth embodiment, the region covered with the T-shaped electrode 5 becomes a modified two-dimensional photonic crystal structure region when a voltage is applied between the electrodes 1 and 5. The photonic band structure of the two-dimensional photonic crystal region 4 and the photonic band structure of the two-dimensional photonic crystal region modified by voltage application are the same as in the first embodiment (FIG. 3, 4). As in the third and fourth embodiments, this embodiment functions as an optical waveguide. That is, when a voltage V is applied between the electrodes 1 and 5 and the optical energy is applied by the optical fiber 11 to the light A, the incident light passes through the modified two-dimensional photonic crystal structure region. The light is guided, branched at the intersection, and output to the optical fibers 112 and 13. As described above, the present embodiment acts as a T-shaped steep waveguide using a steeply bent waveguide characteristic of an optical waveguide having a photonic crystal structure.
—方、 電極 1、 5間に電圧を印加しない場合には、 第 3〜 5の実施例 同様、 本実施例は導波路と して作用しない。 従って本実施例 5は、 電極 1、 5間の電圧を変化させることにより、 光ファイバ一 1 1 と光フアイ バ一 1 2、 1 3の間の光学的接続状態を変えることができ、 電気光学ス イッチと して作用する。 上述した実施例 3〜 5に示したよ うに、 本発明は、 2次元フォ トニッ ク結晶構造領域 4中に第 2の電極形状に対応した光導波路を形成でき、 形成された導波路は電気光学スィツチと して動作可能である。 光集積回 路にはいろいろなものが考えられるが、 その導波路パターンは上記の第 3〜 5の実施例の導波路形状に分解できる。 したがって、 本発明によれ ば、 あらゆる形状の光集積回路が実現できるわけである。 このように、 本発明によれば、 第 2の電極形状を適宜変えることにより、 任意形状の フォ トニック結晶導波路及び電気光学スィツチを作成でき、 複雑な光集 積回路を作ることができる。 On the other hand, when no voltage is applied between the electrodes 1 and 5, this embodiment does not function as a waveguide, as in the third to fifth embodiments. Therefore, in the fifth embodiment, by changing the voltage between the electrodes 1 and 5, the optical connection between the optical fiber 11 and the optical fibers 12 and 13 can be changed. Acts as a switch. As described in Examples 3 to 5 described above, according to the present invention, an optical waveguide corresponding to the second electrode shape can be formed in the two-dimensional photonic crystal structure region 4, and the formed waveguide is an electro-optical switch. It can operate as Although various types of optical integrated circuits are conceivable, the waveguide pattern can be decomposed into the waveguide shapes of the above-described third to fifth embodiments. Therefore, according to the present invention, optical integrated circuits of all shapes can be realized. As described above, according to the present invention, by appropriately changing the shape of the second electrode, a photonic crystal waveguide and an electro-optic switch having an arbitrary shape can be formed, and a complicated optical integrated circuit can be formed.
(第 6の実施例- - -複数の第 2の電極を有する実施例)  (Sixth embodiment---an embodiment having a plurality of second electrodes)
図 2 1は、 光導波路および電気光学スィツチからなる光集積回路と し て作用する本発明の実施例の上面側から見た斜視図である。 1は第 1の 電極、 2は電気光学基板、 3は空孔、 4は電気光学基板 2中の 2次元フ オ トニック結晶構造領域、 5および 1 4は第 2の電極である。 本実施例 7では、 第 2の電極を電極 5 と電極 1 4に分割し、 両者を間隔 dだけ離 して配置した点において実施例 2〜 5 と異なるのみで、他は同じである。 従って、 電極 1 、 5間および電極 1、 1 4間に電圧を印加した場合に、 2次元フォ トニック結晶領域 4の電極 5、 1 4に対応する領域が修飾さ れた 2次元フォ トニック結晶構造領域 6 となること、 また、 2次元フォ トニック結晶構造領域 4および修飾された 2次元フォ トニック結晶構造 領域のフォ トニックバンド構造は、第 1の実施例の場合と同じである(図 3、 4 )。 ここで、 電極 5 と電極 1 4の間隔 dを 2次元フォ トニック結晶 構造領域 4の空孔周期 a より も小さくすると ともに、 その位置に 2次元 フォ ト二ック結晶構造を形成する空孔 3を含まないよ うにして、 この領 域が光を散乱あるいは反射しないようにされている。  FIG. 21 is a perspective view of an embodiment of the present invention acting as an optical integrated circuit including an optical waveguide and an electro-optic switch, as viewed from above. 1 is a first electrode, 2 is an electro-optical substrate, 3 is a hole, 4 is a two-dimensional photonic crystal structure region in the electro-optical substrate 2, and 5 and 14 are second electrodes. The seventh embodiment is different from the second to fifth embodiments only in that the second electrode is divided into an electrode 5 and an electrode 14 and both are arranged at a distance d, and the other is the same. Therefore, when a voltage is applied between electrodes 1 and 5 and between electrodes 1 and 14, the two-dimensional photonic crystal structure in which the regions corresponding to electrodes 5 and 14 of two-dimensional photonic crystal region 4 are modified The region 6 and the photonic band structure of the two-dimensional photonic crystal structure region 4 and the modified two-dimensional photonic crystal structure region are the same as in the first embodiment (FIGS. 3 and 4). ). Here, the distance d between the electrode 5 and the electrode 14 is made smaller than the vacancy period a of the two-dimensional photonic crystal structure region 4 and the vacancy 3 forming the two-dimensional photonic crystal structure at that position. To prevent this area from scattering or reflecting light.
本実施例 6では、 光フアイバ一 1 1 〜 1 3が実施例 5 と同様に設けら れているが、 電極 5 と電極 1 4とは分離されるとともに、 これに加えら れる電圧は独立して制御される。従って、光フアイバー 1 1、 1 2間は、 電極 1、 5間に電圧 Vを印加することにより、 修飾された 2次元フォ ト 二ック結晶構造領域を介して導波されるが、 光ファイバ一 1 1、 1 3間 は、 これだけでは、 電極 1 4に対応する領域が修飾された 2次元フォ ト ニック結晶構造領域とならないので、 導波されない。 電極 1 と電極 5、 及び電極 1 と電極 1 4の間にともに電圧 Vを印加し、 光ファイバ一 1 1 により光エネルギーが Aの光を、 修飾された 2次元フオ トニック結晶領 域に入射すると、 入射光はこの領域を導波され、 電極 5の T字部で分岐 され、 光ファイバ一 1 2へ導かれると ともに、 光ファイバ一 1 3へも導 かれる。 In the sixth embodiment, the optical fibers 11 to 13 are provided in the same manner as in the fifth embodiment, but the electrode 5 and the electrode 14 are separated and the voltage applied thereto is independent. Controlled. Therefore, between the optical fibers 1 1 and 1 2 When a voltage V is applied between the electrodes 1 and 5, the light is guided through the modified two-dimensional photonic crystal structure region. Since the region corresponding to the electrode 14 is not a modified two-dimensional photonic crystal structure region, no wave is guided. When a voltage V is applied between the electrodes 1 and 5 and between the electrodes 1 and 14, light having an optical energy of A is incident on the modified two-dimensional photonic crystal region by the optical fiber 111. The incident light is guided through this region, is branched at the T-shaped portion of the electrode 5, and is guided to the optical fiber 113 as well as to the optical fiber 113.
このように、 本実施例 6は、 電極 5 と電極 1 4にかける電圧を独立に 制御することにより、 光ファイバ一 1 1から導入された光の透過を光フ アイバ一 1 2のみ、 あるいは光ファイバ一 1 2 と 1 3の両方のいずれか に制御することができる電気光学スィ ツチおよび光導波路からなる光集 積回路と して機能させることができる。  As described above, in the sixth embodiment, by controlling the voltage applied to the electrode 5 and the electrode 14 independently, the transmission of the light introduced from the optical fiber 11 is restricted to the optical fiber 11 or only to the optical fiber 11. The fiber can function as an optical integrated circuit including an electro-optic switch and an optical waveguide that can be controlled by either of the fibers 112 and 13.
(第 7の実施例…複数の第 2の電極を有する実施例)  (Seventh embodiment: an embodiment having a plurality of second electrodes)
図 4で説明したよ うに、 2次元フォ トニック結晶構造領域 4の電圧印 加部のフォ トニックバン ドは、 印加電圧に依存して変化する。 このこと を利用して、 上述した第 6の実施例 (図 2 1 ) を波長選択回路と して機 能するものとすることができる。 図 2 2は、 電極 1、 1 4の間の印加電 圧を変化させた場合の電極 1 4の位置に対応する修飾された 2次元フォ トニック結晶構造領域のフォ トニックバン ドギヤップを示す。 印加電圧 が Vの場合、 この領域はエネルギー Eの光は通しても、 エネルギーが D の光を通さない。 印加電圧が 1 . 2 Vの場合には、 この領域はエネルギ 一が Eの光および Dの両方の光を通す。 同様に、 電極 5の位置に対応す る修飾された 2次元フォ トニック結晶構造領域の場合にも、 電極 1、 5 間の印加電圧が Vの場合、 この領域はエネルギー Eの光は通しても、 ェ ネルギ一が Dの光を通さない。 印加電圧が 1 . 2 Vの場合、 この領域は エネルギーが Eの光および Dの光の両方を通す。 従って、 電極 1、 5間に 1 . 2 Vの電圧、 電極 1、 1 4間に Vの電圧 を印加し、 光ファイバ一 1 1 によりエネルギ一が Eの光およびエネルギ 一が Dの両方の光を修飾された 2次元フォ ト二ック結晶構造領域に入射 すると、 これらの光は電極 5に対応する修飾された 2次元フォ トニック 結晶構造領域を導波して電極 5の T字部で分岐され、 光ファイバ一 1 2 導かれるとともに、 電極 1 4に対応する修飾された 2次元フォ トニック 結晶構造領域にも導かれる。 電極 1、 5間には 1 . 2 Vの電圧が印加さ れているから、 光ファイバ一 1 2はエネルギーが Eの光およびエネルギ —が Dの両方の光を受光できるが、 電極 1、 1 4間には電圧 Vが印加さ れているので、 光ファイバ一 1 3はエネルギーが Eの光のみしか受光で きない。 このよ うに本実施例 8は、 電極 5、 1 4に加える電圧を制御す ることで、 波長選択回路と して機能するものとできる。 As described in FIG. 4, the photonic band of the voltage application section of the two-dimensional photonic crystal structure region 4 changes depending on the applied voltage. By utilizing this fact, the sixth embodiment (FIG. 21) described above can function as a wavelength selection circuit. FIG. 22 shows the photonic band gap of the modified two-dimensional photonic crystal structure region corresponding to the position of the electrode 14 when the applied voltage between the electrodes 1 and 14 is changed. When the applied voltage is V, this region can pass light with energy E but not light with energy D. When the applied voltage is 1.2 V, this region transmits both light with energy E and light with D. Similarly, also in the case of the modified two-dimensional photonic crystal structure region corresponding to the position of the electrode 5, if the voltage applied between the electrodes 1 and 5 is V, this region will pass light of energy E The energy does not pass through D light. When the applied voltage is 1.2 V, this region passes both light with energy E and light with D. Therefore, a voltage of 1.2 V is applied between the electrodes 1 and 5 and a voltage of V is applied between the electrodes 1 and 14. The optical fiber 111 emits both light having energy E and light having energy D. When the light enters the modified two-dimensional photonic crystal structure region, these lights are guided through the modified two-dimensional photonic crystal structure region corresponding to the electrode 5 and branched at the T-shaped part of the electrode 5. Then, the light is led to the optical fiber 112 and also to the modified two-dimensional photonic crystal structure region corresponding to the electrode 14. Since a voltage of 1.2 V is applied between the electrodes 1 and 5, the optical fiber 112 can receive both the light of energy E and the light of energy D, but the electrodes 1, 1 Since the voltage V is applied between the four, the optical fiber 13 can receive only light having energy E. As described above, the eighth embodiment can function as a wavelength selection circuit by controlling the voltage applied to the electrodes 5 and 14.
(第 8の実施例一複数の第 2の電極を有する実施例)  (Eighth embodiment-an embodiment having a plurality of second electrodes)
図 2 3は、 交差型光スィツチとして作用する本発明の実施例の上面側 から見た斜視図である。 1は第 1の電極、 2は電気光学基板、 3は空孔、 4は電気光学基板 2中の 2次元フォ トニック結晶構造領域、 5 1, 5 2 は第 2の電極、 1 8は第 3の電極である。 本実施例 8では、 第 2の電極 を底部が対向した V字型の電極 5 1, 5 2に分割し、 第 3の電極 1 8を V字型の電極 5 1, 5 2の対向した底部の間にそれぞれ間隔 dだけ離し て配置したこと、 および V字型の電極 5 1, 5 2の端部に光を授受する ための光ファイバ一を配置したことにおいて実施例 2〜 6 と異なるのみ で、 他は同じである。 電極 5 1, 5 2に印加される電圧と電極 1 8に印 加される電圧は独立に制御される。 ここで、 電極 5 1, 5 2 と電極 1 8 の間隔 dを 2次元フォ トニック結晶構造領域 4の空孔周期 a より も小さ くすると ともに、 その位置に 2次元フォ トニック結晶を形成する空孔 3 を含まないよ うにして、 この領域が光を散乱あるいは反射しないよ うに されていることは実施例 6 と同じである。  FIG. 23 is a perspective view of the embodiment of the present invention acting as a crossed optical switch, as viewed from above. 1 is a first electrode, 2 is an electro-optic substrate, 3 is a hole, 4 is a two-dimensional photonic crystal structure region in the electro-optic substrate 2, 51 and 52 are second electrodes, and 18 is a third electrode. Electrodes. In the eighth embodiment, the second electrode is divided into V-shaped electrodes 51 and 52 whose bottoms face each other, and the third electrode 18 is divided into the opposed bottoms of the V-shaped electrodes 51 and 52. Only differ from Examples 2 to 6 in that they are separated by a distance d between them and that the optical fibers for transmitting and receiving light are placed at the ends of the V-shaped electrodes 51 and 52. And the others are the same. The voltage applied to the electrodes 51 and 52 and the voltage applied to the electrode 18 are controlled independently. Here, the distance d between the electrodes 51, 52 and the electrode 18 is made smaller than the vacancy period a of the two-dimensional photonic crystal structure region 4 and the vacancy forming the two-dimensional photonic crystal at that position. As in the sixth embodiment, this region is made not to scatter or reflect light so as not to include 3.
本実施例 8においても、 V字型電極 5で覆われた領域は、 電極 1、 5 1間、 電極 1、 5 2間に電圧を印加されると、 修飾された 2次元フォ ト ニック結晶領域となる。 2次元フォ トニック結晶構造領域 4のフォ トニ ックバン ド構造および電圧印加による修飾された 2次元フォ トニック結 晶構造領域のフォ トニックバンド構造は、 第 1の実施例の場合と同じで ある (図 3、 4参照)。 実施例 2〜 6 と同様、 本実施例でも、 修飾された 2次元フォ ト二ック結晶領域は光導波路と して作用する。即ち、電極 1、 5 1間に電圧 Vを印加して、 光ファイバ一 1 1により光エネルギーが A の光を入射させると、 入射光は修飾された 2次元フォ トニック結晶領域 を導波して光ファイバ一 1 2へと出力される。 Also in Example 8, the area covered by the V-shaped electrode 5 was the electrode 1, 5 When a voltage is applied between the electrodes 1 and between the electrodes 1 and 52, a modified two-dimensional photonic crystal region is formed. The photonic band structure of the two-dimensional photonic crystal structure region 4 and the photonic band structure of the two-dimensional photonic crystal structure region modified by voltage application are the same as in the first embodiment (FIG. 3). , 4). As in Examples 2 to 6, also in this example, the modified two-dimensional photonic crystal region functions as an optical waveguide. That is, when a voltage V is applied between the electrodes 1 and 51, and light having an optical energy of A is made incident on the optical fiber 111, the incident light is guided through the modified two-dimensional photonic crystal region. It is output to the optical fiber 112.
ところで、 本実施例 8では、 V字型の電極 5 1, 5 2の対向した底部 の間には第 3の電極 1 8をそれぞれ間隔 dだけ離して配置するとともに. 電極 5 1 , 5 2に印加される電圧と電極 1 8に印加される電圧は独立に 制御されるものと したので、 電極 1、 5 1間、 電極 1、 5 2間にのみ電 圧を印加して光ファイバ一 1 1によ り光エネノレギ一が Aの光を入射させ ても、 この光は光ファイバ一 1 2に導波されるのみである。 なぜなら、 電極 1 8には電圧が印加されていないから、 電極 1 8に対応する 2次元 フォ トニック結晶構造領域は、 修飾された 2次元フォ トニック結晶構造 領域とはならず、 光導波路として機能しない。 それゆえ、 V字型の電極 5 1に対応する 2次元フォ トニック結晶構造領域が、 修飾された 2次元 フォ トニック結晶構造領域となって光を導波しても、 電極 1 8に対応す る 2次元フォ トニック結晶構造領域で、 この光は阻止されてしまい、 V 字型の電極 5 2に対応する修飾された 2次元フォ トニック結晶構造領域 には伝播されないからである。  By the way, in the eighth embodiment, the third electrodes 18 are arranged at intervals d between the opposed bottoms of the V-shaped electrodes 51 and 52, respectively. Since the applied voltage and the voltage applied to the electrode 18 were controlled independently, the voltage was applied only between the electrodes 1 and 51 and between the electrodes 1 and 52 to apply the voltage to the optical fiber 1 1 Therefore, even if the optical energy beam enters the light of A, this light is only guided to the optical fiber 112. Because no voltage is applied to the electrode 18, the two-dimensional photonic crystal structure region corresponding to the electrode 18 does not function as a modified two-dimensional photonic crystal structure region and does not function as an optical waveguide. . Therefore, even if the two-dimensional photonic crystal structure region corresponding to the V-shaped electrode 51 becomes a modified two-dimensional photonic crystal structure region and guides light, it corresponds to the electrode 18. This is because the light is blocked in the two-dimensional photonic crystal structure region and is not propagated to the modified two-dimensional photonic crystal structure region corresponding to the V-shaped electrode 52.
—方、電極 1、 5 1間、電極 1、 5 2間に電圧 Vを印加するとともに、 電極 1、 1 8間にも電圧 Vを印加した場合には、 電極 5 1、 電極 5 2に 対応する 2次元フォ トニック結晶構造領域が、 修飾された 2次元フォ ト ニック結晶構造領域になるとともに、 電極 1 8に対応する領域も修飾さ れた 2次元フォ トニック結晶構造領域になる。 したがって、 光ファイバ 一 1 1 により光エネルギーが Aの光を入射されると、 入射光は電極 1 8 に対応する領域を導波されて光ファイバ一 1 3、 1 7に出力されること になる。 ここで、 電極 1、 1 8間に印加する電圧を電圧 Vより もわずか に大きくすると、 電気光学効果による屈折率変化は印加電圧に比例する ( ( 1 ) 式) ので、 電極 1 8に対応する 2次元フォ トニック結晶構造の屈 折率は、 電極 5 1及び 5 2に対応する 2次元フォ トニック結晶構造の屈 折率よ り も大きくなり、 本実施例の光デバイスは、 高屈折率型交差光導 波路と して作用する。 この場合、 ファイバー 1 2 - 1 7間、 ファイバー 1 1— 1 3間の光回路がクロス トークしないよ うにできる。 -When a voltage V is applied between electrodes 1 and 5 and between electrodes 1 and 5 and a voltage V is applied between electrodes 1 and 18, it corresponds to electrodes 51 and 52 The two-dimensional photonic crystal structure region becomes a modified two-dimensional photonic crystal structure region, and the region corresponding to the electrode 18 also becomes a modified two-dimensional photonic crystal structure region. Therefore, the optical fiber When the light with the light energy of A is made incident by 1 11, the incident light is guided through the region corresponding to the electrode 18 and outputted to the optical fibers 13 and 17. Here, if the voltage applied between the electrodes 1 and 18 is slightly higher than the voltage V, the change in the refractive index due to the electro-optic effect is proportional to the applied voltage (Equation (1)). The refractive index of the two-dimensional photonic crystal structure is higher than the refractive index of the two-dimensional photonic crystal structure corresponding to the electrodes 51 and 52. Acts as an optical waveguide. In this case, the optical circuit between fibers 12 and 17 and between fibers 11 and 13 can be prevented from crosstalk.
この機能は可逆的であり、 光ファイバ一 1 3から光エネルギーが Aの 光が入射される場合においても同様である。すなわち、電極 1、 5 1間、 電極 1、 5 2間にのみ電圧を印加した場合には、 入射光は光ファイバ一 1 7にのみ伝播され、 電極 1、 5 1間、 電極 1、 5 2間に電圧を印加す るとともに、 電極 1、 1 8間にも電圧 Vを印加した場合には、 入射光は 光ファイバ一 1 1、 1 2にも伝播される。  This function is reversible, and the same applies to the case where light having an optical energy of A is incident from the optical fiber 13. That is, when a voltage is applied only between the electrodes 1 and 51 and between the electrodes 1 and 5, the incident light is propagated only to the optical fiber 17, and between the electrodes 1 and 51, the electrodes 1 and 5 2 When a voltage is applied between the electrodes 1 and 18 while a voltage is applied between them, the incident light is also propagated to the optical fibers 11 and 12.
このように、 本実施例 8は、 電極 1、 1 8間への電圧印加を制御する ことによ り光の出力状態を変化させることができ、 バー状態、 クロス状 態を選択できる交型光スィ ツチと して機能させることができる。  As described above, in the eighth embodiment, it is possible to change the light output state by controlling the voltage application between the electrodes 1 and 18 and to select the bar state or the cross state. It can function as a switch.
(第 9の実施例…複数の第 2の電極を有する実施例)  (Ninth embodiment: an embodiment having a plurality of second electrodes)
図 2 4は、 4 X 4の光交換器と して作用する本発明の実施例の平面図 である。 本実施例は、 第 8の実施例の交差型光スィ ッチを 4つ組み合わ せて 4 X 4の光交換器を構成したものである。 本実施例は図を簡便化す るために平面図で示し、 光ファイバ一は図示を省略したが、 構造の基本 とする点は上述の実施例と同じである。 ュは第 1の電極、 2は電気光学 基板、 3は空孔、 4は電気光学基板 2中の 2次元フォ トニック結晶構造 領域、 5 1、 5 2、 5 3および 5 4は第 2の電極、 1 8 ^〜 1 8 4は第 3 の電極である。 本実施例 9では、 第 2の電極を底部が対向した W字型の 電極 5 1, 5 2および底部が対向した W字型の電極 5 3 , 5 4と し、 電 極 5 1および 5 3の中央部は一体化した。 第 3の電極 1 8 ,〜 1 84を W 字型の電極 5 1 , 5 2の対向した底部の間および W字型の電極 5 3, 5 4の対向した底部の間にそれぞれ間隔 d (図示は省略) だけ離して配置 したこと、 および W字型の電極 5 1〜 5 4の端部に光を授受するための 光ファイバ一を配置 (ただし図示は省略) したことにおいて実施例 2〜 6および 8 と異なるのみで、 他は同じである。 電極 5 1〜 5 4に印加さ れる電圧と電極 1 8 t〜 1 84に印加される電圧は独立に制御されると ともに、 選択的に行われる。 ここで、 電極 5 1 , 5 2 と電極 1 8の間隔 dを 2次元フォ トニック結晶構造領域 4の空孔周期 a より も小さくする とともに、 その位置に 2次元フォ トニック結晶構造を形成する空孔 3を 含まないようにして、 この領域が光を散乱あるいは反射しないようにさ れていることは実施例 6と同じである。 FIG. 24 is a plan view of an embodiment of the present invention acting as a 4 × 4 optical switch. In this embodiment, a four-by-four optical switch is constructed by combining four cross-type optical switches of the eighth embodiment. This embodiment is shown in a plan view for simplification of the drawing, and the optical fiber is not shown, but the basic structure is the same as the above-described embodiment. Where 1 is the first electrode, 2 is the electro-optical substrate, 3 is the hole, 4 is the two-dimensional photonic crystal structure region in the electro-optical substrate 2, 51, 52, 53, and 54 are the second electrodes , 18 ^ to 18 4 are third electrodes. In the ninth embodiment, the second electrodes are W-shaped electrodes 51 and 52 whose bottoms face each other and W-shaped electrodes 53 and 54 whose bottoms face each other. The central part of poles 51 and 53 was integrated. The third electrodes 18, to 18 4 are spaced d (between the opposed bottoms of the W-shaped electrodes 51, 52 and the opposed bottoms of the W-shaped electrodes 53, 54, respectively. Examples 2 to 5 are arranged in such a manner that they are spaced apart from each other, and that an optical fiber for transmitting and receiving light is arranged at the ends of the W-shaped electrodes 51 to 54 (not shown). Only the difference from 6 and 8 is the same. Both the voltage applied to the voltage electrode 1 8 t~ 1 8 4 applied to the electrode 5 1-5 4 is controlled independently, is selectively performed. Here, the distance d between the electrodes 51, 52 and the electrode 18 is made smaller than the vacancy period a of the two-dimensional photonic crystal structure region 4, and the vacancy forming the two-dimensional photonic crystal structure is formed at that position. This is the same as the sixth embodiment in that the region 3 is not included so that this region does not scatter or reflect light.
本実施例では、 第 2の電極 5 1, 5 2、 5 3および 5 4の両端部の 2 次元フォ トニック結晶構造領域 4に対応する位置に、 光ファイバ一で入 射光 S l、 S 2、 S 3および S 4を加えるが、 第 3の電極 1 8 L〜 1 84 と電極 1の間に選択的に電圧を加えることにょ り、出カ光3 1 '、 3 2 '、 S 3 ' および S 4 ' のいずれ力 こ切り替えられる。 In this embodiment, the incident light S l, S 2, and the optical fiber 1 are placed at positions corresponding to the two-dimensional photonic crystal structure region 4 at both ends of the second electrodes 51, 52, 53, and 54. S 3 and S 4 are added, but by selectively applying a voltage between the third electrode 18 L to 18 4 and electrode 1, the output light 3 1 ′, 3 2 ′, S 3 ′ And S 4 'can be switched.
例えば、 電極 1 と電極 5 1 , 5 2、 5 3および 5 4の間に電圧 Vを印 加し、 電極 1 と電極 1 8 L〜 1 84の間のいずれにも電圧を印加しない状 態で、 エネルギーが Aの入射光 S 1〜 S 4を入射すると、 電極 5 1, 5 2、 5 3および 54に対応する位置の 2次元フォ トニック結晶構造領域 のみが修飾された 2次元フォ ト-ック結晶構造領域となるだけなので、 入射光 S 1〜 S 4は電極 1 8 ,〜 1 84に対応する位置で導波を阻止さ れる結果、 それぞれ出力光 S 1 '、 S 2 '、 S 3 ' および S 4 ' と して出 力される。 For example, the electrode 1 and the electrode 5 1, 5 2, 5 3 and 5 to mark pressurizing the voltage V between 4, state shape without applying any voltage also between electrodes 1 and 1 8 • L ^ 1 8 4 When incident light S 1 to S 4 having an energy of A is incident, the two-dimensional photonic crystal in which only the two-dimensional photonic crystal structure regions at the positions corresponding to the electrodes 51, 52, 53 and 54 are modified In this case, the incident light S 1 to S 4 is prevented from being guided at the positions corresponding to the electrodes 18 to 18 4 , so that the output light S 1 ′, S 2 ′, Output as S 3 'and S 4'.
一方、 電極 1 と電極 5 1, 5 2、 5 3および 5 4の間に電圧 Vを印加 すると ともに、 電極 1 と電極 1 8 〜 1 8 の間にも電圧を印加した状態 で、エネルギーが Aの入射光 S 1〜 S 4を入射すると、電極 5 1 , 5 2、 5 3および 5 4に対応する位置の 2次元フォ ト二ック結晶構造領域のみ が修飾された 2次元フォ ト二ック結晶構造領域となるのみならず、 電極 1 8 ,〜 1 8 に対応する位置でも 2次元フォ トニック結晶構造領域が 修飾された 2次元フォ トニック結晶構造領域となるので、 入射光 S 1 〜 S 4は電極 1 8 ^〜 1 8 4に対応する位置で導波されることとなる。 その 結果、 入射光 S 1は出力光 S 4 ' に、 入射光 S 2は出力光 S 2 ' に、 入 射光 S 3は出力光 S 3 ' に、 入射光 S 4は出力光 S 1 ' に、 それぞれ出 力される。電極 1 と電極 1 8 t〜 1 8 の間に印加する電圧を Vより もわ ずかに大きくすることにより、 光回路 S 1 — S 4 '、 S 2 — S 2 ', S 3 — S 3 '、 及び S 4 — S I ' がクロス トーク しないようにできることは実 施例 8の場合と同様である。 On the other hand, when the voltage V is applied between the electrode 1 and the electrodes 51, 52, 53, and 54, and the voltage is applied between the electrode 1 and the electrodes 18 to 18, the energy A is increased. When the incident light S 1 to S 4 is incident, the electrodes 5 1, 5 2, Only the two-dimensional photonic crystal structure region at the positions corresponding to 53 and 54 becomes a modified two-dimensional photonic crystal structure region, and also corresponds to electrodes 18, ~ 18 The incident light S 1 to S 4 is guided at the position corresponding to the electrodes 18 ^ to 18 4 because the two-dimensional photonic crystal structure region is also a modified two-dimensional photonic crystal structure region It will be. As a result, the incident light S1 becomes the output light S4 ', the incident light S2 becomes the output light S2', the incident light S3 becomes the output light S3 ', and the incident light S4 becomes the output light S1'. , Respectively. By making the voltage applied between electrode 1 and electrode 18 t to 18 slightly higher than V, the optical circuits S 1 — S 4 ′, S 2 — S 2 ′, S 3 — S 3 ', And S 4-SI' can be prevented from crosstalk as in the eighth embodiment.
本実施例において、 電気光学基板 2にニオブ酸リチウムを用いた場合 について考察する。 従来より、 ニオブ酸リチウム基板中にチタンイオン を拡散させて基板中に導波路コアを形成し、 4 X 4光交換器が作成され ている。 しかし、 従来法では、 導波路の曲率半径を 4 c m以上大きくす る必要があった。 これは、 従来法では、 導波路コアと基板の屈折率差を 大きくできないため、 曲率半径を大きく しないと、 放射損失一導波路曲 部における光放射一が大きく なり伝送損失が大きくなつてしまうからで ある。 このため、 従来法では、 スィ ッチの大きさが極めて大きくなつて しま う という問題があった。 例えば、 従来技術によりニオブ酸リチウム を用いて 4 X 4光交換器を構成すると、 その大きさは 0 . 1 X 6 . 5 c mとなる (池田正宏著 「光ファイバ通信」、 1 1 1ページ (コロナ社、 東 京、 1 9 9 7年))。 それに対して、 本実施例の光交換器は、 格子定数 a が 0 . 5 μ mで周期が約 3 5 X 3 5のフォ トニック結晶構造上に形成さ れており、 そのサイズは約 1 8 X 1 8 μ mである。 本実施例の光交換器 は、 従来の光交換器と比較して面積が約 1 / 1 0 8程度であり、 極めて 小さレ、。 このよ うに、 実施例 1 0は超小型光交換器と して作用する。 前記従来型の光交換器は、 各導波パスの長さが約 7 c m、 伝送損失が 約 4 . 7 d Bである。 本実施例では、 フォ トニック結晶構造の導波路を 用いているので、 導波路構造に起因する損失は基本的に極めて小さく、 その伝送損失は電気光学基板 2に用いたニオブ酸リチウムに起因すると 考えてよい。 ニオブ酸リチウムに起因する損失が、 前記のよ うに 7 c m で 4 . 5 d Bと仮定すると、 本実施例の各導波パスは約 3 0「mであるの で、 各パスの伝送損失は 4 X I 0 - d Bと推定される。 このよ う に、 本 実施例により、 極低損失の光交換器が実現できる。 なお、 ニオブ酸リチ ゥムの光学的異方性は小さいので、 本実施例の光交換機では導波光が偏 波しない特徴がある。 In this embodiment, the case where lithium niobate is used for the electro-optical substrate 2 will be considered. Conventionally, a 4 × 4 optical exchanger has been fabricated by diffusing titanium ions into a lithium niobate substrate to form a waveguide core in the substrate. However, in the conventional method, it was necessary to increase the radius of curvature of the waveguide by 4 cm or more. This is because, in the conventional method, the refractive index difference between the waveguide core and the substrate cannot be increased, so if the radius of curvature is not increased, the radiation loss, the light radiation in the waveguide curved section, and the transmission loss will increase. It is. For this reason, the conventional method has a problem that the size of the switch becomes extremely large. For example, if a 4 × 4 optical switch is constructed using lithium niobate according to the conventional technology, the size will be 0.1 × 6.5 cm. (Masahiro Ikeda, “Optical Fiber Communication”, p. Corona, Tokyo, 199 7)). In contrast, the optical exchanger of this example is formed on a photonic crystal structure with a lattice constant a of 0.5 μm and a period of about 35 × 35, and the size is about 18 X 18 μm. Light exchanger of this embodiment, the area compared to conventional optical exchanger is about 1/1 0 8 very small les. Thus, the tenth embodiment operates as a micro optical switch. The conventional optical switch has a length of each waveguide path of about 7 cm and transmission loss. It is about 4.7 dB. In this embodiment, since a waveguide having a photonic crystal structure is used, the loss caused by the waveguide structure is basically extremely small, and the transmission loss is considered to be caused by the lithium niobate used for the electro-optic substrate 2. May be. Assuming that the loss due to lithium niobate is 4.5 dB at 7 cm as described above, since each waveguide path in this embodiment is about 30 `` m, the transmission loss of each path is It is estimated to be 4 XI 0-dB In this way, an extremely low-loss optical exchanger can be realized according to the present embodiment, and the optical anisotropy of lithium niobate is small. The optical switch of the embodiment is characterized in that the guided light is not polarized.
(第 1 0の実施例-- -マ ト リ ツクス状の第 2の電極を有する実施例) 図 2 5は、 回路構造が任意に可変な光導波路、 電気光学スィ ッチ、 波 長選択回路、 交差型光スィ ッチ、 光交換機、 あるいは光導波路および電 気光学スィ ッチからなる光回路として機能する本発明の実施例の上面側 からみた斜視図である。 1は第 1の電極、 2は電気光学基板、 3は空孔、 4は電気光学基板 2中のフォ トニック結晶構造領域、 5は第 2の電極で ある。 本実施例では、 9 6個の第 2の電極 5が電気光学基板 2およぴフ オ ト二ック結晶構造表面上にマトリ ツクス状に配置されている。 図を簡 素化するために、 9 6個の第 2の電極を 5 と し、 光ファイバ一は図示を 省略し、 その位置を X 1〜; X 8、 X I ' 〜X 8 '、 Y 1〜Y 8、 Υ 1 ' 〜 Υ 8 ' で表示してある。 ここで、 隣接する第 2の電極 5の間隔 dをフォ ト二ック結晶構造 4の構造領域の空孔周期 a より も小さくすると ともに. その位置に 2次元フォ ト二ック結晶構造を構成する空孔 3を含まないよ うにして、 この領域が光を散乱あるいは反射しないよ うになっているこ とは、 第 6の実施例の場合と同じである。  (Embodiment 10-Embodiment having a matrix-shaped second electrode) Fig. 25 shows an optical waveguide, an electro-optic switch, and a wavelength selection circuit whose circuit structure is arbitrarily variable. FIG. 2 is a perspective view seen from the top side of an embodiment of the present invention functioning as an optical circuit including a cross-type optical switch, an optical switch, or an optical waveguide and an electro-optical switch. 1 is a first electrode, 2 is an electro-optical substrate, 3 is a hole, 4 is a photonic crystal structure region in the electro-optical substrate 2, and 5 is a second electrode. In the present embodiment, 96 second electrodes 5 are arranged in a matrix on the electro-optical substrate 2 and the surface of the photonic crystal structure. For simplicity of the figure, 96 second electrodes are denoted by 5, the optical fiber is not shown, and its position is X1 ~; X8, XI '~ X8', Y1 ~ Y 8, Υ 1 'to Υ 8'. Here, the distance d between the adjacent second electrodes 5 is set to be smaller than the vacancy period a in the structural region of the photonic crystal structure 4. A two-dimensional photonic crystal structure is formed at that position. This region is not scattered or reflected so as not to include the void 3 which is the same as in the sixth embodiment.
本実施例は、 マ ト リ ックス状に配置した第 2の電極を適宜選択して、 第 1の電極 1 と選択された第 2の電極 5の間に電圧を印加することによ り フォ トニック結晶構造 4中に任意形状の光回路を構成できるこ とを特 徴とする。 図 2 6は、 本実施例 1 0を用いて、 光導波路をフオ トニック結晶構造 領域 4中に形成した場合の上面側からみた斜視図である。 マ ト リ ックス 状に配置された第 2の電極 5のうち右下がりの斜線を付した電極 5 ' お よび右上がりの斜線を付した電極 5 ' ' を選択し、 第 1の電極 1 と右下が り の斜線を付した第 2の電極 5 ' の間および第 1 の電極 1 と右上がりの 斜線を付した電極 5 ' ' の間に電圧を印加すると、 2次元フォ トニック結 晶構造領域 4の內、 電極 5 ' および電極 5 ' ' に覆われた部分は修飾され た 2次元フォ トニック結晶構造領域となり、 L学型導波路および T字型 導波が電気光学 ¾板 2およびフォ ト二ック結晶構造 4の内部に形成され る。 これにより、 Y 3 と X 3 '、 X 5 と X 5 ' 及び Y 5 ' が光学的に接続 される。 第 1 の電極と選択した第 2の電極 5 の間に印加する電圧を変え ることにより、 図 2 6の光デバイスが、 電気光学スィ ツチあるいは波長 選択回路として機能することは、 第 4〜 7の実施例と同様である。 選択 する第 2の電極 5を変えることによ り、 他の形状の光回路も同様に形成 できることは自明である。 In this embodiment, the photonics are selected by appropriately selecting the second electrodes arranged in a matrix and applying a voltage between the first electrodes 1 and the selected second electrodes 5. It is characterized in that an optical circuit of any shape can be formed in the crystal structure 4. FIG. 26 is a perspective view of the optical waveguide formed in the photonic crystal structure region 4 as viewed from the top side using the tenth embodiment. Among the second electrodes 5 arranged in a matrix, the electrode 5 ′ with diagonally lower right and the electrode 5 ′ with diagonally higher right are selected, and the first electrode 1 and the right electrode 5 ′ are selected. When a voltage is applied between the lower shaded second electrode 5 ′ and between the first electrode 1 and the shaded upper electrode 5 ″, the two-dimensional photonic crystal structure region 4), the area covered by the electrode 5 ′ and the electrode 5 ′ ″ becomes a modified two-dimensional photonic crystal structure region, and the L-shaped waveguide and the T-shaped waveguide It is formed inside the nickel crystal structure 4. Thereby, Y 3 and X 3 ′, X 5 and X 5 ′, and Y 5 ′ are optically connected. By changing the voltage applied between the first electrode and the selected second electrode 5, the optical device of FIG. 26 functions as an electro-optic switch or a wavelength selection circuit in the fourth to seventh aspects. This is the same as the embodiment. It is obvious that by changing the selected second electrode 5, optical circuits of other shapes can be formed similarly.
図 2 7、 2 8は、 本実施例 1 0を用いて交差型光スィ ツチをフォ トニ ック結晶構造領域中に形成した場合の上面側からみた斜視図である。 図 FIGS. 27 and 28 are perspective views of the case where the cross-type optical switch is formed in the photonic crystal structure region using the tenth embodiment, as viewed from above. Figure
2 7に示すように、 マ トリ ックス状に配置された第 2の電極 5のうち右 下がりの斜線を付した電極 5 ' および右上がりの斜線を付した電極 5 ' ' を選択し、 第 1 の電極;! と選 した第 2の電極 5 ' の間に電圧 Vを印加 すると、 光導波路が形成され、 X 4, と Y 5 ' が光学的に接続され、 第 1の電極 1 と選択した第 2の電極 5 ' ' の間に電圧 Vを印加すると、 光導 波路が形成され、 X 4と Y 5が光学的に接続される。 一方、 図 2 8に示 すように、 第 2の電極 5のうち右下がりの斜線を付した電極 5 ' および 右上がりの斜線を付した電極 5 " を選択し、 第 1 の電極と選択した第 2 の電極 5 ' および第 1 の電極と選択した第 2の電極 5 ' ' の間に同時に電 圧 Vを印加すると、 交差型光導波が電気光学基板 2およびフォ トニック 結晶構造 4の内部に形成され Y 5と Y 5 '、 及び X 4と X 4 ' が光学的に 接続される。 ここで、 第 1の電極と選択された第 2の電極の交差部の第 2の電極 5 xの間に印加する電圧を、 電極 5 ' および電極 5 ' ' に印加す る Vより も僅かに大きくすると、 この光導波路は高屈折交差光導波路と なり、 光導波路 Y 5— Y 5 ' と光導波路 X 4— X 4 ' 間でクロス トーク が発生しない。 図 2 7の実施例は、 バ一状態の交差型光スィ ッチ、 図 2 8の実施例はクロス状態の交差型クロススィ ツチと して作用する。 この ように、 本実施例は、 第 2の電極 5を適宜選択することにより交差型光 スィ ッチと して機能する。 本実施例による交差型光スィツチを複数接続 することにより光交換機が構成できることは、 第 8、 9の実施例に記載 したのと同様である。 As shown in FIG. 27, among the second electrodes 5 arranged in a matrix, electrodes 5 ′ with diagonally lower slashes and electrodes 5 ′ with diagonally right slashes are selected. Electrodes ;! When a voltage V is applied between the first electrode 1 and the selected second electrode 5 ′, an optical waveguide is formed, X 4 and Y 5 ′ are optically connected, and the first electrode 1 and the selected second electrode 5 ′ are connected. When a voltage V is applied between 5 ′ ′, an optical waveguide is formed, and X 4 and Y 5 are optically connected. On the other hand, as shown in FIG. 28, among the second electrodes 5, the electrode 5 'with a diagonally downward slanted line and the electrode 5 "with a diagonally rightward slant were selected, and were selected as the first electrodes. When a voltage V is applied simultaneously between the second electrode 5 ′ and the first electrode and the selected second electrode 5 ′, the cross-shaped optical waveguide is formed inside the electro-optic substrate 2 and the photonic crystal structure 4. Formed Y 5 and Y 5 ′, and X 4 and X 4 ′ Connected. Here, the voltage applied between the second electrode 5 x at the intersection of the first electrode and the selected second electrode is slightly smaller than the voltage applied to the electrode 5 ′ and the electrode 5 ″. When it is made larger, this optical waveguide becomes a high refractive index crossed optical waveguide, and no crosstalk occurs between the optical waveguides Y 5 and Y 5 ′ and the optical waveguides X 4 and X 4 ′. The embodiment of FIG. 27 operates as a cross-shaped optical switch in a buried state, and the embodiment of FIG. 28 operates as a cross-shaped cross-switch in a cross state. As described above, the present embodiment functions as a crossed optical switch by appropriately selecting the second electrode 5. The fact that an optical switch can be configured by connecting a plurality of crossed optical switches according to the present embodiment is the same as that described in the eighth and ninth embodiments.
このよ うに、 本実施例は第 2の電極 5を適宜選択することによ り、 光 回路構造を任意に変えることができ、 光回路構造が任意に可変な光導波 路、 電気光学スィッチ、 波長選択回路、 交差型光スィッチ、 光交換機、 あるいは光導波路および電気光学スィ ツチからなる光デバイスと して用 いることができる。  As described above, in the present embodiment, the optical circuit structure can be arbitrarily changed by appropriately selecting the second electrode 5, and the optical circuit, the electro-optical switch, and the wavelength can be arbitrarily changed. It can be used as a selection circuit, a cross-type optical switch, an optical switch, or an optical device composed of an optical waveguide and an electro-optical switch.
(その他の実施例)  (Other examples)
第 1〜第 9の実施例では、 電極 1 は 2次元フォ ト二ック結晶領域 4を 形成する電気光学基板 2の全面をカバーするものと したが、 修飾された 2次元フォ トニック結晶構造領域 6を形成するためには、 電極 1 もパタ —ン電極 5に対応する部分にのみ有れば良いわけであるから、たとえば、 適当な半導体基板面にパターン電極 5に対応するパターン電極をリ ソグ ラフィ技術によ り形成して、 この上に電気光学基板 2を形成しても良い わけである。  In the first to ninth embodiments, the electrode 1 covers the entire surface of the electro-optical substrate 2 forming the two-dimensional photonic crystal region 4, but the modified two-dimensional photonic crystal structure region In order to form 6, it is only necessary that the electrode 1 is provided only in the portion corresponding to the pattern electrode 5, so for example, the pattern electrode corresponding to the pattern electrode 5 is lithographically formed on an appropriate semiconductor substrate surface. The electro-optical substrate 2 may be formed thereon by forming by a luffy technique.
また、 第 1の実施例において、 空孔 3は周期的に形成されていればよ く、 図 7に示すように電気光学基板 2に対して垂直に形成されている必 要はない。 これは、 空孔が周期的に形成されてさえいれば、 領域 4およ び 6はフォ ト二ック結晶構造と作用するからである。 第 2〜 9の実施例 に関しても同様である。 空孔 3が電気光学基板 2を貫通して形成されて いる必要がないことは、 実施例 2で述べた通りである。 産業上の利用可能性 In the first embodiment, the holes 3 need only be formed periodically, and need not be formed perpendicular to the electro-optical substrate 2 as shown in FIG. This is because regions 4 and 6 interact with the photonic crystal structure as long as vacancies are formed periodically. The same applies to the second to ninth embodiments. A hole 3 is formed through the electro-optic substrate 2 This need not be as described in the second embodiment. Industrial applicability
本発明により、 任意形状のフォ トニック結晶構造の光導波路、 電気光 学スィ ッチ、 それらからなる光集積回路、 波長選択回路、 交差型光スィ ツチ、 及び光交換器を単一の 2次元フォ トニック結晶を用いて容易に作 成できる。 本発明によれば、 フォ トニック結晶の特徴を生かした超小型 光集積回路を電気的に形成することができる。 本発明は、 光信号と電気 信号が共存するォプトエレク トロニタス技術、 例えばオプティカルィン タ一コネクション技術に用いることができる。  According to the present invention, an optical waveguide having an arbitrary shape, a photonic crystal structure, an electro-optical switch, an optical integrated circuit including them, a wavelength selection circuit, a cross-type optical switch, and an optical switch can be combined into a single two-dimensional optical switch. It can be easily created using tonic crystals. According to the present invention, it is possible to electrically form a microminiature optical integrated circuit utilizing the characteristics of a photonic crystal. INDUSTRIAL APPLICABILITY The present invention can be used for an opto-electronics technology in which an optical signal and an electric signal coexist, for example, an optical interconnection technology.

Claims

請求の範囲 The scope of the claims
1 . 第 1の電極と、 前記第 1の電極の一面に形成された固体材料より なる電気光学基板と、 前記電気光学基板中に形成された固体材料よりな るフォ トニック結晶構造領域と、 前記フォ トニック結晶構造領域の前記 第 1の電極と対向する面に前記電気光学基板中を導波する光の波長の 1 / 2以上の幅を持つよ うにパターン形成された第 2の電極を有すること を特徴とする光デバイス。  1. a first electrode; an electro-optic substrate made of a solid material formed on one surface of the first electrode; a photonic crystal structure region made of a solid material formed in the electro-optic substrate; A second electrode patterned on the surface of the photonic crystal structure region facing the first electrode so as to have a width of 1 or more of a wavelength of light guided in the electro-optical substrate. An optical device characterized by the above.
2 . 前記第 2の電極下のフォ トニック結晶構造領域に光を入射する照 射器および前記第 2の電極下のフォ トニック結晶構造領域で導波された 光を受光する受光器とを備えたことを特徴とする請求項 1記載の光デバ イス。  2. An illuminator for irradiating light to the photonic crystal structure region below the second electrode and a light receiving device for receiving light guided by the photonic crystal structure region below the second electrode The optical device according to claim 1, wherein:
3 . 前記第 2の電極が二つ以上に分離され、 かつ、 分離された電極が 前記第 2の電極下のフォ トニック結晶構造領域に入射される光の波長の 1 / 2程度に近接して配置されるとともに、 それぞれの電極に加える電 圧が独立に制御される請求項 2記載の光デバイス。  3. The second electrode is separated into two or more, and the separated electrode is close to about の of the wavelength of light incident on the photonic crystal structure region below the second electrode. 3. The optical device according to claim 2, wherein the optical device is arranged and a voltage applied to each electrode is independently controlled.
4 . 前記二つ以上に分離された第 2の電極が、 マ トリ ックス状に配置 されている請求項 3記載のデバイス。  4. The device according to claim 3, wherein the two or more separated second electrodes are arranged in a matrix.
5 . 前記分離された二つの第 2の電極の間に第 3の独立した電極を前 記第 2の電極下のフォ ト二ック結晶構造領域に入射される光の波長の 1 / 2程度に近接して配置するとともに、 ·前記第 2の電極に加える電圧と 前記第 3の独立した電極に加える電圧とが独立に制御される請求項 3記 载の光デバイス。  5. A third independent electrode is placed between the two separated second electrodes about 1/2 of the wavelength of light incident on the photonic crystal structure region below the second electrode. 4. The optical device according to claim 3, wherein the voltage is applied to the second electrode, and the voltage applied to the second electrode and the voltage applied to the third independent electrode are independently controlled.
6 . 前記電気光学墓板上面に絶縁材料の層が形成されるとともに、 前 記第 2または第 3の電極が前記絶縁材料の層に形成されたスルーホール を介して導出された導体を利用して電圧が印加される請求項 1ないし 5 のいずれかに記載の光デバイス  6. A layer of insulating material is formed on the upper surface of the electro-optic grave plate, and the second or third electrode uses a conductor led out through a through hole formed in the layer of insulating material. 6. The optical device according to claim 1, wherein a voltage is applied to the optical device.
7 . 固体材料よ りなる電気光学基板と、 前記電気光学基板中に形成さ れた固体材料よ りなるフォ トニック結晶構造領域と、 前記フォ トニック 結晶構造領域の両面に同一のパターンで形成された第 1の電極および第 2の電極と、 前記第 1 の電極と前記第 2の電極の間に電圧を印加する手 段と、 前記第 2の電極下のフォ トニック結晶構造領域に光を入射する照 射器および前記第 2の電極下のフォ トニック結晶構造領域で導波された 光を受光する受光器とを備えたことを特徴とする光デバイス。 7. An electro-optic substrate made of a solid material, a photonic crystal structure region made of a solid material formed in the electro-optic substrate, and the photonic A first electrode and a second electrode formed in the same pattern on both surfaces of the crystal structure region; a means for applying a voltage between the first electrode and the second electrode; A light comprising: an illuminator for entering light into a photonic crystal structure region below an electrode; and a light receiving device for receiving light guided by the photonic crystal structure region below the second electrode. device.
8 . 前記電極のパターンに対応するフォ トニック結晶構造領域が、 直 線型、 L字型、 S字型、 鋭角型、 鈍角型、 円弧型および T字型光導波路、 電気光学スィ ッチ、 波長選択回路、 交差型光スィ ッチ、 光交換器、 ある いは光導波路および電気光学スィ ツチからなる光集積回路と して機能す る請求項 1ないし 7のいずれかに記載の光デバイス。  8. The photonic crystal structure regions corresponding to the electrode patterns are linear, L-shaped, S-shaped, acute-angled, obtuse-angled, arc-shaped and T-shaped optical waveguides, electro-optic switches, and wavelength selection. 8. The optical device according to claim 1, which functions as an optical integrated circuit including a circuit, a crossed optical switch, an optical exchanger, or an optical waveguide and an electro-optical switch.
9 . 前記電極のパターンに対応するフォ トニック結晶構造領域が可変 であり、 光回路構造が任意に可変な光導波路、 電気光学スィ ッチ、 波長 選択回路、 交差型光スィ ッチ、 光交換機、 あるいは光導波路および電気 光学スィ ッチからなる光回路として機能する、 請求項 1ないし 7のいず れにかに記載の光デバイス。  9. The photonic crystal structure region corresponding to the electrode pattern is variable, and the optical circuit structure is arbitrarily variable, such as an optical waveguide, an electro-optic switch, a wavelength selection circuit, a cross-type optical switch, an optical switch, 8. The optical device according to claim 1, which functions as an optical circuit including an optical waveguide and an electro-optic switch.
1 0 . 第 1の電極と、 前記第 1の電極の一面に形成された固体材料よ りなる電気光学基板と、 前記電気光学基板中に形成された固体材料より なるフォ トニック結晶構造領域と、 前記フォ トニック結晶構造領域の前 記第 1の電極と対向する面に前記電気光学基板中を導波する光の波長の 1 / 2以上の幅をもつよ うにパターン形成された第 2の電極と、 前記第 1の電極と前記第 2の電極の間に電圧を印加する手段とよりなることを 特徴とする光デバイス用基板。  10. a first electrode; an electro-optic substrate made of a solid material formed on one surface of the first electrode; a photonic crystal structure region made of the solid material formed in the electro-optic substrate; A second electrode patterned on a surface of the photonic crystal structure region facing the first electrode so as to have a width of 1 or more of a wavelength of light guided in the electro-optical substrate; An optical device substrate, comprising: means for applying a voltage between the first electrode and the second electrode.
1 1 . 前記第 2の電極が二つ以上に分離され、 かつ、 分離された電極 が前記第 2の電極下のフォ トニック結晶構造領域に入射される光の波長 の 1 / 2程度に近接して配置されるとともに、 それぞれの電極に加える 電圧が独立に制御される請求項 1 0記載の光デバイス用基板。  1 1. The second electrode is separated into two or more, and the separated electrodes are close to about 2 of the wavelength of light incident on the photonic crystal structure region below the second electrode. 10. The optical device substrate according to claim 10, wherein the voltage is applied to each of the electrodes and is independently controlled.
1 2 . 前記二つ以上に分離された電極がマ ト リ ックス状に配置されて いることを特徴とする請求項 1 1記載の光デバイス用基板。 12. The optical device substrate according to claim 11, wherein the two or more separated electrodes are arranged in a matrix.
1 3 . 前記分離された二つの第 2の電極の間に第 3の独立した電極を 前記第 2の電極下のフォ トニック結晶構造領域に入射される光の波長の 1 2程度に近接して配置するとともに、 前記第 2の電極に加える電圧 と前記第 3の独立した電極に加える電圧とが独立に制御される請求項 1 1記載の光デバイス用基板。 13. A third independent electrode is placed between the two separated second electrodes in close proximity to about 12 wavelengths of light incident on the photonic crystal structure region below the second electrode. 21. The optical device substrate according to claim 11, wherein the arrangement is such that a voltage applied to the second electrode and a voltage applied to the third independent electrode are independently controlled.
1 4 . 前記電気光学基板上面に絶縁材料の層が形成されるとともに、 前記第 2または第 3の電極が前記絶縁材料の層に形成されたスル一ホー ルを介して導出された導体を利用して電圧が印加される請求項 1 0ない し 1 3のいずれかに記載の光デバイス用基板。  14. An insulating material layer is formed on the upper surface of the electro-optic substrate, and the second or third electrode uses a conductor led out through a through hole formed in the insulating material layer. The optical device substrate according to any one of claims 10 to 13, wherein a voltage is applied as a voltage.
1 5 . 固体材料よりなる電気光学基板と、 前記電気光学基板中に形成 された固体材料よりなるフォ トニック結晶構造領域と、 前記フォ トニッ ク結晶構造領域の両面に同一のパターンで形成された第 1の電極および 第 2の電極と、 前記第 1の電極と前記第 2の電極の間に電圧を印加する 手段ととよりなることを特徴とする光デバイス用基板。  15. An electro-optic substrate made of a solid material, a photonic crystal structure region made of the solid material formed in the electro-optic substrate, and a photonic crystal structure region formed in the same pattern on both surfaces of the photonic crystal structure region An optical device substrate, comprising: a first electrode and a second electrode; and means for applying a voltage between the first electrode and the second electrode.
1 6 . フォ トニック結晶構造領域が、 前記電気光学基板に空孔を周期 的に貫通あるいは非貫通させて形成されており、 非貫通の場合、 非貫通 部分の電気光学基板の厚さがフォ ト二ック結晶構造領域に入射される光 の波長の 1 / 2以下である請求項 1 5の光デバイス用基板。  16. The photonic crystal structure region is formed by periodically penetrating or non-penetrating holes in the electro-optical substrate. 16. The optical device substrate according to claim 15, wherein the wavelength of the light incident on the nickel crystal structure region is 2 or less.
PCT/JP2001/007212 2000-10-19 2001-08-23 Optical device and substrate WO2002033478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000319375A JP3586635B2 (en) 2000-10-19 2000-10-19 Optical devices and substrates
JP2000-319375 2000-10-19

Publications (1)

Publication Number Publication Date
WO2002033478A1 true WO2002033478A1 (en) 2002-04-25

Family

ID=18797843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007212 WO2002033478A1 (en) 2000-10-19 2001-08-23 Optical device and substrate

Country Status (2)

Country Link
JP (1) JP3586635B2 (en)
WO (1) WO2002033478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008200A2 (en) * 2002-07-17 2004-01-22 Mesophotonics Ltd Photonic crystal waveguide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004042465A1 (en) * 2002-10-30 2004-05-21 Raytheon Company Method and apparatus for switching optical signals with a photon band gap device
KR100465172B1 (en) 2002-11-15 2005-01-13 삼성전자주식회사 Apparatus for 2 ×2 optical switching using photonic crystal structures
JP2004233476A (en) 2003-01-29 2004-08-19 Nec Corp Photonic crystal optical circuit and its control method
JP2004302457A (en) * 2003-03-20 2004-10-28 Fujitsu Ltd Optical function element, wavelength variable optical filter, and wavelength variable light source
JP2004325708A (en) * 2003-04-24 2004-11-18 Yokogawa Electric Corp Active diffraction grating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291328A (en) * 1991-03-20 1992-10-15 Fujitsu Ltd Waveguide type electrooptic device
WO1994016345A1 (en) * 1993-01-08 1994-07-21 Massachusetts Institute Of Technology Low-loss optical and optoelectronic integrated circuits
WO1998053350A1 (en) * 1997-05-17 1998-11-26 Deutsche Telekom Ag Integrated optical circuit
JPH11330619A (en) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical device
US6002522A (en) * 1996-06-11 1999-12-14 Kabushiki Kaisha Toshiba Optical functional element comprising photonic crystal
US6075915A (en) * 1997-03-29 2000-06-13 Koops; Hans W. P. In-fiber photonic crystals and systems
JP2001051244A (en) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt Optical modulator using photonic band gap structure and optical modulation method
JP2001091912A (en) * 1999-09-24 2001-04-06 Toshiba Corp Optical element and demultiplexer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04291328A (en) * 1991-03-20 1992-10-15 Fujitsu Ltd Waveguide type electrooptic device
WO1994016345A1 (en) * 1993-01-08 1994-07-21 Massachusetts Institute Of Technology Low-loss optical and optoelectronic integrated circuits
US6002522A (en) * 1996-06-11 1999-12-14 Kabushiki Kaisha Toshiba Optical functional element comprising photonic crystal
US6075915A (en) * 1997-03-29 2000-06-13 Koops; Hans W. P. In-fiber photonic crystals and systems
WO1998053350A1 (en) * 1997-05-17 1998-11-26 Deutsche Telekom Ag Integrated optical circuit
JPH11330619A (en) * 1998-05-18 1999-11-30 Nippon Telegr & Teleph Corp <Ntt> Optical device
JP2001051244A (en) * 1999-08-11 2001-02-23 Communication Research Laboratory Mpt Optical modulator using photonic band gap structure and optical modulation method
JP2001091912A (en) * 1999-09-24 2001-04-06 Toshiba Corp Optical element and demultiplexer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MITSURU NAGANUMA ET AL.: "Photonic kesshou tokusei no gaibu seigyo ni tsuiteno 1-teian", 2000NEN DENSHI JOHO TSUUSHIN GAKKAI SOUGOU TAIKAI KOUEN RONBUNSHUU, ELECTRONIC 1, 7 February 2000 (2000-02-07), pages 182, XP002949972 *
T. HUYNEN ET AL.: "A novel nanostructured microstrip device for tunable stopband filtering applications at microwave", IEEE MICROWAVE AND GUIDED WAVE LETTERS, vol. 9, no. 10, pages 401 - 403, XP002949971 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004008200A2 (en) * 2002-07-17 2004-01-22 Mesophotonics Ltd Photonic crystal waveguide
WO2004008200A3 (en) * 2002-07-17 2004-04-29 Mesophotonics Ltd Photonic crystal waveguide

Also Published As

Publication number Publication date
JP2002131715A (en) 2002-05-09
JP3586635B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
EP2513715B1 (en) Apparatus and method for guiding optical waves
US6999156B2 (en) Tunable subwavelength resonant grating filter
US6393172B1 (en) Method of manipulating optical wave energy using patterned electro-optic structures
US6853760B2 (en) Optical functional device and optical integrated device
JP2002303836A (en) Optical switch with photonic crystal structure
US6931191B2 (en) Photonic crystal device having variable bandgap, optical waveguide using the same, and optical multiplexing/demultiplexing device using the same
EP0784803A1 (en) Controllable beam director using poled structure
JP2007052328A (en) Composite optical waveguide
JP3763709B2 (en) Optical element and duplexer
US7317860B2 (en) Optical device having photonic crystal structure
WO2002033478A1 (en) Optical device and substrate
JP2004334190A (en) Element and device for optical control
JP4653393B2 (en) Light control element
JP2004258169A (en) Optical deflection element and optical switch using the same
JP3507659B2 (en) Optical function element
JP2002006278A (en) Optical device
Kossey et al. Four-wave mixing in a multi-layer SiN x/a-Si: H photonic chip
JP4634102B2 (en) Light control element
JP2650931B2 (en) Optical device
JP4121409B2 (en) Optical output device
CN117518345A (en) Method for constructing diffraction optical element in optical waveguide and optical waveguide
JP4253606B2 (en) Light control element
JP2003344677A (en) Photonic crystal optical waveguide
JPH05264834A (en) Waveguide type optical parts
US20030133643A1 (en) Optical switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase