WO2002033362A1 - Flow sensor - Google Patents

Flow sensor

Info

Publication number
WO2002033362A1
WO2002033362A1 PCT/JP2001/009119 JP0109119W WO0233362A1 WO 2002033362 A1 WO2002033362 A1 WO 2002033362A1 JP 0109119 W JP0109119 W JP 0109119W WO 0233362 A1 WO0233362 A1 WO 0233362A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
substrate
fluid
flow path
flow
Prior art date
Application number
PCT/JP2001/009119
Other languages
French (fr)
Japanese (ja)
Inventor
Shoji Kamiunten
Yoshiyuki Ishikura
Shinichi Ike
Seiichiro Kinugasa
Hidekazu Tanaka
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Priority to US10/399,350 priority Critical patent/US7117736B2/en
Priority to EP01976718A priority patent/EP1333255B1/en
Publication of WO2002033362A1 publication Critical patent/WO2002033362A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6847Structural arrangements; Mounting of elements, e.g. in relation to fluid flow where sensing or heating elements are not disturbing the fluid flow, e.g. elements mounted outside the flow duct
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements

Definitions

  • the present invention relates to a flow sensor for measuring a flow velocity or a flow rate of a fluid flowing in a flow path, particularly to a thermal flow sensor.
  • the first type is a type (indirect heat type) in which the spatial temperature distribution of the fluid due to the heat generated from the heating element (heater) causes a bias due to the flow, and this is detected by a temperature sensor.
  • the second type is a self-heating type that detects a change in electric power or a change in resistance due to removal of heat from a heating element by a fluid, and detects a flow velocity or a flow rate (self-heating type).
  • this type of flow sensor was mainly used for non-corrosive gases, but recently a sensor that can be used for liquids and corrosive gases has been developed.
  • a flow sensor disclosed in Japanese Patent Application Laid-Open No. Hei 4-295572 (prior art 1) is known.
  • a thermistor flow rate sensor and a liquid flow rate sensor (prior art 2) disclosed in Japanese Patent Application Laid-Open No. 8-146600 are known.
  • first, second, and third regions are provided on the first surface of the silicon substrate.
  • a heating element is provided in the first area
  • a thermometer component is provided in the second area
  • the first and second areas are insulated from each other by a porous silicon area obtained by oxidizing the third area.
  • a second surface opposite to the first surface is a surface that receives a fluid flow.
  • a silicon cap is fixed to the first surface to increase the rigidity of the silicon base and protect the heating element and thermometer components.
  • a heating element and its electrodes are formed on one surface of a plate-like substrate such as alumina or Si 2 , and the heating element is covered with an insulator.
  • a thermistor for measuring the temperature of the heating element and its electrode are formed on this insulator, and the opposite surface is fixed to the inner surface of the force par (container) with an adhesive so that the sensor is completely separated from the fluid. Be isolated.
  • the cover has good thermal conductivity and is made of a metal having good corrosion resistance to the fluid to be measured, for example, stainless steel (SUS316L). Therefore, there is no problem such as abrasion and corrosion as compared with the flow sensor of the prior art 1 described above, and the reliability can be improved.
  • the flow rate sensor described in Prior Art 1 has a problem that it cannot be used for corrosive gases or liquids used in semiconductor manufacturing equipment, etc., because the silicon base is directly exposed to the fluid. .
  • the flow velocity and flow rate sensor described in Prior Art 2 since the sensor is fixed to the inner surface of the cover with an adhesive, the heat transfer efficiency between the fluid and the sensor decreases, the heat capacity of the sensor increases, and the sensitivity increases. And the response speed is reduced.
  • Another problem was that the characteristics varied depending on the amount of adhesive used.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a flow sensor capable of handling almost corrosive fluids and improving responsiveness and sensitivity. It is to provide Summary of the Invention
  • the flow sensor according to the present invention includes a thin plate-shaped substrate forming a part of a fluid flow path, and a temperature detection unit including a heating element provided on a surface of the substrate opposite to the flow path side. Is done. According to this configuration, since the temperature detecting means including the heating element is provided on the surface of the substrate opposite to the flow path side, The fluid does not come into direct contact with the temperature detection means and can be used for measuring corrosive gases and liquids depending on the material of the substrate. Since the temperature detection means is not exposed to fluid, it is unlikely to accumulate dirt or change over time due to fluid, and maintains stable performance. Since the substrate is a thin plate, heat conduction between the fluid and the temperature detecting means is good. BRIEF DESCRIPTION OF THE FIGURES
  • 1A, 1B, and 1C are a front view, a cross-sectional view, and a rear view showing one embodiment of a flow sensor according to the present invention.
  • FIG. 2 is a front view of the sensor unit.
  • FIG. 3 is a front view showing another embodiment of the sensor unit.
  • FIG. 4 is a front view showing another embodiment of the sensor unit.
  • FIG. 5 is a front view showing another embodiment of the sensor unit.
  • FIG. 6 is a front view showing another embodiment of the sensor unit.
  • FIG. 7 is a front view showing another embodiment of the sensor unit.
  • 8A, 8B, and 8C are a front view, a sectional view, and a rear view showing another embodiment of the present invention.
  • FIG. 9 is a diagram showing the relationship between the distance and the temperature difference between the two temperature sensors when the distance from the heating element of the upstream and downstream temperature sensors is changed.
  • FIG. 10 is a diagram showing the distance from the heater (R h) to the temperature sensors (R u, R d).
  • FIG. 11 is a diagram showing a constant temperature difference circuit.
  • FIG. 12 is a diagram showing another constant temperature difference circuit.
  • FIG. 13 is a diagram showing another constant temperature difference circuit.
  • FIG. 14 is a diagram showing a sensor output circuit.
  • FIG. 15 is a diagram showing another sensor output circuit. Detailed description of the embodiment
  • FIG. 1A, 1B, and 1C are a front view, a cross-sectional view, and a rear view showing an embodiment of a flow sensor according to the present invention
  • FIG. 2 is a front view of a sensor unit.
  • the flow sensor 1 is disposed so that the surface 4 a faces the substrate 4 facing the flow path 3 of the fluid to be measured (hereinafter referred to as fluid) 2 with the substrate 4 interposed therebetween. It is composed of a flow path forming member 5 and a plate 6.
  • the substrate 4 and the flow path forming member 5 form a part of the flow path 3.
  • the flow path forming member 5 and the plate 6 are joined by welding, brazing, porting, or the like.
  • the substrate 4 is formed in an elongated rectangular thin plate shape, and the outer peripheral edge is joined to the back surface of the flow path forming member 5.
  • a material of the substrate 4 a material having low thermal conductivity, high heat resistance, corrosion resistance and high rigidity is preferable.
  • the sensor portion 4A having a diaphragm structure is formed of a thin stainless steel plate having a thickness of about 50 to 150 m, and a central portion thereof is separated from the plate 6 and thermally insulated. To form When the substrate 4 is made of stainless steel, if the plate thickness is 50 m or less, the strength decreases, which is not preferable.
  • the heat transfer efficiency in the thickness direction of the substrate that is, the heat transfer efficiency between the fluid and the temperature detecting means decreases, and the amount of heat transfer in the direction parallel to the surface of the substrate (heat loss). Undesirably increases.
  • An electrical insulating film (not shown) is formed on the back surface 4 b of the sensor unit 4 A opposite to the passage 3 side, and a temperature detection sensor for measuring the flow rate (flow rate) of the fluid 2 is formed thereon.
  • (Temperature detecting means) 7, ambient temperature sensor 8, electrode pad 9, and metal thin film 10 for wiring are formed by a known thin film forming technique. For example, it is formed by depositing a material such as platinum on the surface of the electrical insulating film and etching it into a predetermined pattern.
  • the ambient temperature sensor 8 is electrically connected to the electrode pad 9 via the wiring metal thin film 10.
  • the temperature detection sensor 7 is formed at the center of the back surface of the sensor section 4A.
  • the ambient temperature sensor 8 is used to compensate for the change in the ambient temperature, that is, the fluid temperature, and is formed near the outer peripheral edge of the back surface of the sensor section 4A.
  • the electric insulating film for example, a thin silicon oxide (Si 2 ) film or a silicon nitride film having a thickness of about several thousand angstroms is used.
  • the silicon oxide film is formed by, for example, sputtering, CVD, or applying a solvent mixed with silicon oxide and heating it to a predetermined temperature to melt and solidify the silicon oxide.
  • the silicon nitride film is formed by sputtering or CVD.
  • the ambient temperature sensor 8 may be provided outside the sensor section 4 A on the substrate 4 or in a portion other than the substrate 4.
  • the electrode pad 9 may be provided on the substrate 4 outside the sensor section 4A, and the electrode may be taken out therefrom.
  • the configuration of the temperature detection sensor 7 for measuring the flow velocity (flow rate) is as follows.
  • FIG. 2 shows an example in which one heating element 11 constitutes a self-heating type temperature detection sensor 7.
  • One ambient temperature sensor 8 is provided on the upstream side near the outer peripheral portion of the back surface of the sensor section 4A.
  • FIG. 3 shows an example in which a self-heating type temperature detecting sensor 7 is composed of two heating elements 11A and 11B.
  • the two heating elements 11 A and 11 B are arranged close to the center of the back surface of the sensor section 4 A in the flow direction of the fluid 2.
  • two ambient temperature sensors 8A and 8B are provided. These ambient temperature sensors The sensors 8A and 8B are formed near the outer periphery of the sensor unit 4A so as to face each other in a direction orthogonal to the flow direction of the fluid 2.
  • FIG. 4 shows an example in which one heating element 11 and two temperature sensors 12 A and 12 B constitute an indirectly heated temperature detection sensor 7.
  • the heating element 11 is provided at the center of the back surface of the sensor section 4A.
  • the two temperature sensors 12 A and 12 B are respectively arranged on the upstream side and the downstream side in the flow direction of the fluid 2 with the heating element 11 interposed therebetween.
  • one ambient temperature sensor 8 is provided on the outer peripheral portion of the back surface of the sensor section 4A, on the upstream side in the flow direction of the fluid 2.
  • the pattern width of the heating element 11 is preferably 10 to 50 m, and the pattern width of the temperature sensors 12 A and 12 B and the ambient temperature sensor 8 is preferably about 5 to 10 m.
  • FIG. 5 shows an example in which a self-heating type temperature detecting sensor 7 is composed of two heating elements 11A and 11B.
  • the two heating elements 11A and 1IB are arranged close to the center of the back surface of the sensor section 4A in the flow direction of the fluid 2.
  • one ambient temperature sensor 8 is provided on the upstream side in the flow direction of the fluid 2.
  • Fig. 6 shows an example in which two heating elements 11A and 11B are arranged close to the center of the back surface of the sensor section 4A in the flow direction of the fluid 2 to form a self-heating type temperature detection sensor 7. .
  • Two ambient temperature sensors 8A and 8B are provided on the upstream and downstream sides in the flow direction of the fluid 2 near the outer periphery of the back surface of the sensor section 4A.
  • Fig. 7 shows an example in which two heating elements 11A and 11B are arranged close to the center of the back surface of the sensor section 4A in the flow direction of the fluid 2 to form a self-heating type temperature detection sensor 7.
  • One ambient temperature sensor 8 is provided on the back surface of the sensor unit 4A near the outer periphery in a direction orthogonal to the flow direction of the fluid 2.
  • the flow path forming member 5 is made of an elongated metal plate, and a concave portion 14 slightly smaller than the substrate 4 and having a depth of about 0.5 to several mm is formed at the center of the rear surface.
  • the space formed between the recess 14 and the surface 4 a of the substrate 4 forms a part of the flow path 3 of the fluid 2.
  • the longitudinal direction of the flow path forming member 5 Near both ends, fluid supply port 15 and fluid discharge port communicating with flow path 3
  • the plate 6 is made of an elongated metal plate, and is closely attached to and bonded to the back surface 4 b of the substrate 4. In the center of the plate 6, a through hole 17 having substantially the same size as the sensor portion 4A of the substrate 4 is provided.
  • An electrode 18 for electrically connecting the 7 and the ambient temperature sensor 8 to the outside is provided.
  • the electrode 18 is formed by fixing a plurality of metal pins 20 to a metal frame 19 via an octagonal glass 21.
  • the inner end of 0 is joined to the electrode pad 9 of the sensor section 4A by brazing.
  • the through hole 17 is evacuated and mounted, or a dry inert gas having low thermal conductivity is sealed in the closed space between the substrate 4 and the electrode 18.
  • a dry inert gas having low thermal conductivity is sealed in the closed space between the substrate 4 and the electrode 18.
  • the electrode pad of the sensor and the external circuit board may be connected with a wire pound made of a gold wire.
  • the material of the flow path forming member 5 is preferably a material having high thermal conductivity and high heat resistance, corrosion resistance and rigidity because it also serves as a structural material and a heat sink.
  • the flow path forming member 5 is formed of stainless steel (particularly, SUS316L), which is the same material as the substrate 4. In this way, by forming the substrate 4 and the flow path forming member 5 from stainless steel, it is possible to perform joining without using a dissimilar metal by using a YAG laser or welding.
  • Stainless steel has relatively good workability and is used as a sensor material. It is suitable. However, not only stainless steel, but also materials with high thermal conductivity, such as sapphire and ceramics, can be used because if they are formed thinner, the escape of heat to the surface can be reduced.
  • the thermal conductivity of stainless steel, sapphire, and ceramics at 300 K is about 16, 46, and 36 [WZ m K], respectively, depending on the composition.
  • a material of the plate 6 a material having high thermal conductivity, heat resistance, and rigidity is also preferable because it also serves as a structural material and a heat sink, but since it does not come into contact with the measurement fluid, corrosion resistance is not so necessary.
  • the flow velocity can be converted into a voltage signal by using a constant temperature difference circuit as shown in FIG.
  • this constant temperature difference circuit consists of a series circuit of resistors R 1 and R 2, a heating element (resistance heater) 11, a resistor R 3, and an ambient temperature sensor 8.
  • a circuit and an operational amplifier OP1 having a connection point voltage of the resistor R1 and the heating element 11 as an inverting input and a non-inverting input of a connection point voltage of the resistor R2 and the resistor R3.
  • the output of the operational amplifier OP 1 is connected to one end of the resistors R 1 and R 2 that constitute the bridge circuit.
  • the resistance values of the resistors R 1, R 2, and R 3 are set such that the temperature is always higher than the ambient temperature sensor 8 by a constant temperature.
  • the constant temperature difference circuit controls the current or voltage so that the temperature of the heating element 11 becomes constant temperature higher than the ambient temperature measured by the ambient temperature sensor 8, thereby keeping the temperature difference constant.
  • the flow velocity or flow rate of fluid 2 can be measured.
  • the circuit shown in Fig. 13 detects the voltage difference between the heating element 11A on the upstream side and the heating element 11B on the downstream side to determine the flow velocity or flow rate of the fluid 2 and the direction of the flow. Can be measured.
  • the circuit shown in Fig. 13 uses the two constant temperature difference circuits shown in Fig. 11 to amplify the voltage difference between the terminals of the heating elements 11A and 11B with the operational amplifier OP3 and output the voltage. It shall be.
  • the magnitude of the voltage output indicates the flow velocity, and the polarity indicates the direction.
  • the voltage difference is used, the current or power difference may be used.
  • the circuit shown in Fig. 12 is composed of a bridge circuit composed of resistors R1, R2, a heating element (resistance heater), 11A, 11B, a resistor R3, and an ambient temperature sensor 8. It is similar to the constant temperature difference circuit shown in Fig. 11 in that it includes an operational amplifier OP1 that keeps the bridge circuit in a balanced state. In the circuit shown in Fig.
  • the operational amplifiers ⁇ ⁇ P2A and OP2B which amplify the voltage between the terminals of two heating elements 11A and 11B connected in series, respectively, and the difference between these outputs
  • An OP 3 is provided as an input, and the output of the OP 3 Voltage output.
  • the two heating elements 11A and 11B are made into one heating element by energizing the bridge circuit of the constant temperature difference circuit shown in Fig. 12, and heated to a certain higher temperature than the ambient temperature
  • the heating element 11 A located on the upstream side is cooled and its temperature drops.
  • the heating element 11 B located on the downstream side rises in temperature due to heat conduction from the heating element 11 A on the upstream side using the flow of the fluid 2 as a medium, and the two heating elements 11 A, 11 B A temperature difference occurs between the two.
  • This temperature difference can be considered as a change in the resistance values of the heating elements 11A and 11B.
  • the flow velocity or flow rate of the fluid 2 is measured.
  • the reproducibility and accuracy can be improved as compared with the case where one is used.
  • the flow direction of the fluid 2 can be detected by the resistance change of the heating elements 11A and 1IB.
  • the heating element is energized by energizing a constant temperature difference circuit as shown in Fig. 11.
  • a constant temperature difference circuit as shown in Fig. 11.
  • the circuit shown in FIG. 14 supplies a voltage output using a bridge circuit including two temperature sensors 12A and 12B.
  • the voltage between the terminals of two temperature sensors 12 A and 12 B connected in series is amplified by operational amplifiers ⁇ P 1 and OP 2 respectively, and the difference is further amplified by operational amplifier OP
  • the voltage amplified in step 3 is used as the voltage output.
  • the temperature detection sensor 7 is provided on the surface of the substrate 4 made of a thin plate-shaped body opposite to the surface in contact with the fluid 2. For this reason, the temperature detection sensor 7, the ambient temperature sensor 8, the electrode pad 9, and the like do not directly contact the fluid 2 to be corroded or deteriorated, and no dust or the like is attached. As a result, it can be used for measuring corrosive gases and liquids used in semiconductor manufacturing equipment and the like, and the reliability and durability of the sensor can be improved.
  • the substrate 4 is formed of a thin plate made of stainless steel having a low thermal conductivity, the heat conduction in a direction parallel to the surface is small, and the thickness direction of the substrate, that is, the fluid 2 and the temperature detection sensor 7 are formed. Good heat conduction between them, and can improve responsiveness.
  • Stainless steel is excellent in heat resistance, corrosion resistance, workability and rigidity, and is suitable as a sensor material.
  • a sensor mounting hole 31 is formed in the flow path forming member 30 forming the flow path 3 of the fluid 2, and a flow sensor 32 is mounted in the sensor mounting hole 31.
  • the flow path forming member 30 is formed of stainless steel.
  • the flow sensor 32 has a circular opening 33 in the center of the front surface, an open back surface, and a flange-shaped package provided with a flange 34 at the rear end of the outer peripheral surface.
  • the substrate 4 is formed of a thin plate made of stainless steel, and a temperature detecting sensor 7, an ambient temperature sensor 8, an electrode pad 9, and a metal thin film 10 for wiring shown in FIG. It is provided via an edge film.
  • the substrate 4 is not limited to a square, but may be another shape such as a circle.
  • the configurations of the temperature detection sensor 7 and the ambient temperature sensor 8 are not limited to those shown in FIG. 4, but may be those shown in FIG. 2, FIG. 3, FIG. 5, FIG. 6, or FIG. . Further, the ambient temperature sensor 8 may be provided in a portion other than the substrate 4.
  • the package 35 is made of stainless steel, is fitted into the sensor mounting hole 31 of the flow path forming member 30, and the flange 34 is joined to the back surface of the flow path forming member 30 by YAG laser welding or the like.
  • the front surface of the package 35 and the surface of the substrate 4 form the same plane as the inner wall surface 30 a of the flow path forming member 30 and constitute a part of the flow path 3.
  • An electrode 18 is incorporated into the package 35 from the opening on the back side, and the pin 20 is connected to the electrode pad 9 by brazing. Note that the sensor electrode pad may be connected to the circuit board by a single wire bond made of gold wire.
  • the sensor mounting hole 31 is formed in the flow path forming member 30, and the flow sensor 32 is fitted into the sensor mounting hole 31, and the surface of the substrate 4 is fluidized. Touch 2 For this reason, since it is only necessary to join the package 35 to the flow path forming member 30, there is no need to use a special device, component, or the like, and the mounting can be easily performed.
  • the flange 34 and the flow path forming member 30 may be joined by a port using a sealing material such as a ring.
  • the temperature of the heating element 11 is set 30 ° C. higher than the ambient temperature in the air in the structure of the sensor section 4 A shown in FIG. 4, and the upstream and downstream temperature sensors 12 A,
  • the relationship between the distance and the temperature difference between the two temperature sensors 12A and 12B when the simulation is performed by changing the distance of the 12B from the heating element 11 is shown.
  • Figure 10 shows the distance from the heater Rh (heating element) to the temperature sensors (Ru, Rd). As evident from Figure 9 In this condition, the position where the temperature difference becomes the largest under these conditions was a position of 650 m from the center of the heating element 11 respectively.
  • the temperature detecting means including the heating element is provided on the surface of the substrate made of a thin plate-like body forming a part of the flow path on the side opposite to the flow path side, the fluid Does not come into direct contact with temperature detecting means, electrode pads, metal thin films for wiring, etc. Therefore, by selecting the material of the substrate, it is possible to measure a liquid or a corrosive gas, and a highly reliable and durable sensor can be provided.
  • Examples of the material of the substrate include stainless steel, sapphire, ceramics and the like. Among them, stainless steel is particularly suitable in terms of corrosion resistance, workability, thermal conductivity, and rigidity. Sapphire is preferred if needed.
  • the thickness of the substrate is preferably as thin as possible in order to improve the heat conduction between the fluid and the temperature detecting means and to reduce the lateral heat conduction in the substrate.
  • the conditions need to be determined in consideration of external factors in manufacturing such as workability, strength, and handling. Therefore, in the case of stainless steel, about 50 to 150 m is optimal.
  • the flow rate can be measured only by incorporating the sensor into the flow path. Thereby, the bonding of the thin plate-shaped substrate is performed stably, and the reliability is improved. Also, since the flow path can be formed small and with high accuracy in accordance with the measurement range, etc., a sensor for high accuracy or low flow rate can be realized.
  • an opening is provided on the front surface which comes into contact with the fluid while facing the inside of the flow path of the package attached to the sensor mounting hole provided in the flow path forming member for forming the flow path of the fluid.
  • a temperature detecting means including a heating element is provided on the surface of the substrate opposite to the flow path side, so no special equipment, parts, etc. are required, and the flow path forming member is simple. To Can be attached.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A flow sensor (1) comprising a substrate (4) having surface (4a) side facing a channel (3) of fluid (2) to be measured, and a channel forming member (5) and a plate (6) disposed oppositely across the substrate (4). The substrate (4) is formed of a stainless plate having thickness on the order of 50-150 νm and an electric insulating film is formed on the side (4b) opposite to the channel (3) side. A temperature sensor (7) for measuring the current velocity (flow rate) of the fluid (2) an ambient termperature sensor (8), an electrode pad (9) and a thin metal film (10) for wiring are foremd thereon.

Description

明細書 フ口一センサ 発明の背景  Description One sensor Background of the invention
本発明は、 流路中を流れる流体の流速または流量を計測するための フローセンサ、 特に熱式のフローセンサに関する。  The present invention relates to a flow sensor for measuring a flow velocity or a flow rate of a fluid flowing in a flow path, particularly to a thermal flow sensor.
流体の流量や流速を計測する熱式のフローセンサとして、 2つの夕 イブが知られている。 第 1のタイプは、 発熱体 (ヒーター) から出た 熱による流体の空間的温度分布に流れによって偏りを生じさせ、 これ を温度センサで検出するタイプ (傍熱型) である。 第 2のタイプは、 流体により発熱体の熱が奪われることによる電力の変化や抵抗の変化 を検出し、 流速または流量を検出するタイプ (自己発熱型) である。 従来、 この種のフローセンサは、 主として非腐食性の気体に対して 用いられていたが、 最近では液体や腐食性の気体にも使用可能なもの が開発されている。 例えば、 その一例として、 特開平 4 一 2 9 5 7 2 4号公報 (先行技術 1 ) に開示された流量センサが知られている。 ま た、 特開平 8— 1 4 6 0 2 6号公報に開示されたサ一ミスタ流速セン サ一および液体用流量センサー (先行技術 2 ) が知られている。  Two evening eves are known as thermal flow sensors that measure the flow rate and flow velocity of a fluid. The first type is a type (indirect heat type) in which the spatial temperature distribution of the fluid due to the heat generated from the heating element (heater) causes a bias due to the flow, and this is detected by a temperature sensor. The second type is a self-heating type that detects a change in electric power or a change in resistance due to removal of heat from a heating element by a fluid, and detects a flow velocity or a flow rate (self-heating type). In the past, this type of flow sensor was mainly used for non-corrosive gases, but recently a sensor that can be used for liquids and corrosive gases has been developed. For example, as one example, a flow sensor disclosed in Japanese Patent Application Laid-Open No. Hei 4-295572 (prior art 1) is known. Also, a thermistor flow rate sensor and a liquid flow rate sensor (prior art 2) disclosed in Japanese Patent Application Laid-Open No. 8-146600 are known.
先行技術 1 に記載の流量センサにおいては、 シリコン基体の第 1の 面に第 1、 第 2、 第 3の領域が設けられる。 第 1領域には発熱体が設 けられ、 第 2領域には温度計構成部分が設けられ、 第 1および第 2領 域は第 3領域を酸化した多孔性シリコン領域によって相互に絶縁分離 される。 第 1の面と反対側の面である第 2の面が、 流体の流れを受け 入れる面とされる。 また、 第 1の面にはシリコン製のキャップが固定 され、 シリコン基体の剛性を高めるとともに発熱体および温度計構成 部分を保護する。 先行技術 2に記載の流速および流量センサーにおいては、 アルミナ、 S i 〇 2 等の板状の基板の一方の面に発熱体およびその電極が形成さ れ、 発熱体は絶縁体で覆われる。 この絶縁体上には発熱体の温度を測 定するサーミス夕およびその電極が形成され、 反対側の面を力パー (容 器) の内面に接着剤によって固着することによりセンサが流体から完 全に隔絶される。 カバーは熱伝導率がよく、 被測定流体に対して耐食 性のよい金属、 例えばステンレス (S U S 3 1 6 L ) で形成される。 したがって、 上記した先行技術 1の流量センサ以上に、 摩耗や腐食等 の問題が生じることがなく、 信頼性を向上させることができる。 In the flow sensor described in Prior Art 1, first, second, and third regions are provided on the first surface of the silicon substrate. A heating element is provided in the first area, a thermometer component is provided in the second area, and the first and second areas are insulated from each other by a porous silicon area obtained by oxidizing the third area. . A second surface opposite to the first surface is a surface that receives a fluid flow. In addition, a silicon cap is fixed to the first surface to increase the rigidity of the silicon base and protect the heating element and thermometer components. In the flow velocity and flow rate sensor described in Prior Art 2, a heating element and its electrodes are formed on one surface of a plate-like substrate such as alumina or Si 2 , and the heating element is covered with an insulator. A thermistor for measuring the temperature of the heating element and its electrode are formed on this insulator, and the opposite surface is fixed to the inner surface of the force par (container) with an adhesive so that the sensor is completely separated from the fluid. Be isolated. The cover has good thermal conductivity and is made of a metal having good corrosion resistance to the fluid to be measured, for example, stainless steel (SUS316L). Therefore, there is no problem such as abrasion and corrosion as compared with the flow sensor of the prior art 1 described above, and the reliability can be improved.
しかしながら、 先行技術 1 に記載された流量センサは、 シリコン基 体が流体に直接晒される構造であるため、 半導体製造装置などで使用 される腐食性気体や液体などには使用できないという問題があった。 先行技術 2に記載された流速および流量センサは、 センサーをカバ —の内面に接着剤によって固着しているため、 流体とセンサ間の熱伝 導効率が低下するとともにセンサの熱容量も大きくなり、 感度や応答 速度が低くなるという問題があった。 また、 接着剤の使用量によって 特性がばらつくという問題もあった。  However, the flow rate sensor described in Prior Art 1 has a problem that it cannot be used for corrosive gases or liquids used in semiconductor manufacturing equipment, etc., because the silicon base is directly exposed to the fluid. . In the flow velocity and flow rate sensor described in Prior Art 2, since the sensor is fixed to the inner surface of the cover with an adhesive, the heat transfer efficiency between the fluid and the sensor decreases, the heat capacity of the sensor increases, and the sensitivity increases. And the response speed is reduced. Another problem was that the characteristics varied depending on the amount of adhesive used.
本発明は、 上記した従来の問題を解決するためになされたもので、 その目的とするところは、 ほとんどの腐食性流体に対応でき、 応答性 および感度を向上させることができるようにしたフローセンサを提供 することにある。 発明の要約  SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a flow sensor capable of handling almost corrosive fluids and improving responsiveness and sensitivity. It is to provide Summary of the Invention
本発明に係るフローセンサは、 流体の流路の一部を形成する薄肉板 状の基板と、 この基板の流路側とは反対側の面に設けられた発熱体を 含む温度検出手段とから構成される。 この構成によれば、 基板の流路 側とは反対側の面に発熱体を含む温度検出手段が設けられているので、 流体が温度検出手段に直接接触せず、 基板の材料によつて腐食性の気 体や液体の測定に使用することができる。 温度検出手段は、 流体に晒 されないため、 ごみが堆積したり、 流体により経年変化したりするお それが少なく、 安定した性能を維持する。 基板は薄肉板状体であるた め、 流体と温度検出手段間の熱伝導が良い。 図面の簡単な説明 The flow sensor according to the present invention includes a thin plate-shaped substrate forming a part of a fluid flow path, and a temperature detection unit including a heating element provided on a surface of the substrate opposite to the flow path side. Is done. According to this configuration, since the temperature detecting means including the heating element is provided on the surface of the substrate opposite to the flow path side, The fluid does not come into direct contact with the temperature detection means and can be used for measuring corrosive gases and liquids depending on the material of the substrate. Since the temperature detection means is not exposed to fluid, it is unlikely to accumulate dirt or change over time due to fluid, and maintains stable performance. Since the substrate is a thin plate, heat conduction between the fluid and the temperature detecting means is good. BRIEF DESCRIPTION OF THE FIGURES
図 1 A、 1 B、 1 Cは、 本発明に係るフローセンサの一実施例を示 す正面図、 断面図および背面図である。  1A, 1B, and 1C are a front view, a cross-sectional view, and a rear view showing one embodiment of a flow sensor according to the present invention.
図 2は、 センサ部の正面図である。  FIG. 2 is a front view of the sensor unit.
図 3は、 センサ部の他の実施例を示す正面図である。  FIG. 3 is a front view showing another embodiment of the sensor unit.
図 4は、 センサ部の他の実施例を示す正面図である。  FIG. 4 is a front view showing another embodiment of the sensor unit.
図 5は、 センサ部の他の実施例を示す正面図である。  FIG. 5 is a front view showing another embodiment of the sensor unit.
図 6は、 センサ部の他の実施例を示す正面図である。  FIG. 6 is a front view showing another embodiment of the sensor unit.
図 7は、 センサ部の他の実施例を示す正面図である。  FIG. 7 is a front view showing another embodiment of the sensor unit.
図 8 A、 8 B、 8 Cは、 本発明の他の実施例を示す正面図、 断面図 および背面図である。  8A, 8B, and 8C are a front view, a sectional view, and a rear view showing another embodiment of the present invention.
図 9は、 上流側と下流側の温度センサの発熱体からの距離を変化さ せたときの、 その距離と 2つの温度センサの温度差の関係を示す図で ある。  FIG. 9 is a diagram showing the relationship between the distance and the temperature difference between the two temperature sensors when the distance from the heating element of the upstream and downstream temperature sensors is changed.
図 1 0は、 ヒータ (R h ) から温度センサ (R u, R d ) までの距 離を示す図である。  FIG. 10 is a diagram showing the distance from the heater (R h) to the temperature sensors (R u, R d).
図 1 1は、 定温度差回路を示す図である。  FIG. 11 is a diagram showing a constant temperature difference circuit.
図 1 2は、 他の定温度差回路を示す図である。  FIG. 12 is a diagram showing another constant temperature difference circuit.
図 1 3は、 他の定温度差回路を示す図である。  FIG. 13 is a diagram showing another constant temperature difference circuit.
図 1 4は、 センサ出力回路を示す図である。  FIG. 14 is a diagram showing a sensor output circuit.
図 1 5は、 他のセンサ出力回路を示す図である。 実施例の詳細な説明 FIG. 15 is a diagram showing another sensor output circuit. Detailed description of the embodiment
以下、 本発明について図面を参照して詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the drawings.
図 1 A、 1 B、 1 Cは本発明に係るフローセンサの一実施例を示す 正面図、 断面図および背面図、 図 2はセンサ部の正面図である。 これ らの図において、 フローセンサ 1は、 表面 4 a側が被測定流体 (以下、 流体という) 2の流路 3に面する基板 4と、 この基板 4を挟んで対向 するように配設された流路形成部材 5およびプレート 6とから構成さ れる。 基板 4および流路形成部材 5は、 流路 3の一部を形成する。 な お、 流路形成部材 5とプレート 6 とは溶接、 ろう付け、 ポルトなどに よって接合される。  1A, 1B, and 1C are a front view, a cross-sectional view, and a rear view showing an embodiment of a flow sensor according to the present invention, and FIG. 2 is a front view of a sensor unit. In these figures, the flow sensor 1 is disposed so that the surface 4 a faces the substrate 4 facing the flow path 3 of the fluid to be measured (hereinafter referred to as fluid) 2 with the substrate 4 interposed therebetween. It is composed of a flow path forming member 5 and a plate 6. The substrate 4 and the flow path forming member 5 form a part of the flow path 3. The flow path forming member 5 and the plate 6 are joined by welding, brazing, porting, or the like.
基板 4は、 細長い矩形の薄肉板状に形成され、 外周縁部が流路形成 部材 5の裏面に接合される。 基板 4の材質としては、 熱伝導率が低く、 耐熱性、 耐食性および剛性の高い材料が好ましい。 本実施例において は、 板厚が 5 0〜 1 5 0 m程度の薄いステンレスによって形成され、 その中央部がプレート 6と離間して熱的に絶縁されることによりダイ ァフラム構造のセンサ部 4 Aを形成する。 なお、 基板 4がステンレス 製の場合、 その板厚が 5 0 m以下であると強度が低下するため好ま しくない。 また、 1 5 0 /z m以上であると、 基板の厚さ方向、 つまり 流体と温度検出手段間の熱の伝導効率が低下するとともに、 基板の面 と平行な方向の伝熱量 (熱損出) が増加するため好ましくない。  The substrate 4 is formed in an elongated rectangular thin plate shape, and the outer peripheral edge is joined to the back surface of the flow path forming member 5. As a material of the substrate 4, a material having low thermal conductivity, high heat resistance, corrosion resistance and high rigidity is preferable. In the present embodiment, the sensor portion 4A having a diaphragm structure is formed of a thin stainless steel plate having a thickness of about 50 to 150 m, and a central portion thereof is separated from the plate 6 and thermally insulated. To form When the substrate 4 is made of stainless steel, if the plate thickness is 50 m or less, the strength decreases, which is not preferable. If it is more than 150 / zm, the heat transfer efficiency in the thickness direction of the substrate, that is, the heat transfer efficiency between the fluid and the temperature detecting means decreases, and the amount of heat transfer in the direction parallel to the surface of the substrate (heat loss). Undesirably increases.
センサ部 4 Aの通路 3側とは反対側の面である裏面 4 bには、 電気 絶縁膜 (図示せず) が形成され、 その上に流体 2の流速 (流量) 計測 用の温度検出センサ (温度検出手段) 7、 周囲温度センサ 8、 電極パ ッ ド 9および配線用金属薄膜 1 0が周知の薄膜成形技術によって形成 される。 例えば、 白金等の材料を電気絶縁膜の表面に蒸着し、 所定の パターンにエッチングすることにより形成され、 温度検出センサ 7 と 周囲温度センサ 8が電極パッ ド 9に配線用金属薄膜 1 0を介してそれ ぞれ電気的に接続される。 An electrical insulating film (not shown) is formed on the back surface 4 b of the sensor unit 4 A opposite to the passage 3 side, and a temperature detection sensor for measuring the flow rate (flow rate) of the fluid 2 is formed thereon. (Temperature detecting means) 7, ambient temperature sensor 8, electrode pad 9, and metal thin film 10 for wiring are formed by a known thin film forming technique. For example, it is formed by depositing a material such as platinum on the surface of the electrical insulating film and etching it into a predetermined pattern. The ambient temperature sensor 8 is electrically connected to the electrode pad 9 via the wiring metal thin film 10.
温度検出センサ 7は、 センサ部 4 Aの裏面中央に形成される。 周囲 温度センサ 8は、 周囲温度つまり流体温度が変化したとき、 その変化 を補償するために用いられるもので、 センサ部 4 Aの裏面外周縁部寄 りに形成される。 電気絶縁膜としては、 例えば厚さが数千オングス ト ローム程度の薄い酸化シリコン (S i 〇 2 ) 膜または窒化シリコン膜 が用いられる。 酸化シリコン膜は、 例えばスパッタリング、 C V Dあ るいは酸化シリコンを混入した溶剤を塗布して所定温度に加熱し、 酸 化シリコンを溶融固化させることにより形成される。 窒化シリコン膜 は、 スパッタリングや C V Dによって形成される。 なお、 周囲温度セ ンサ 8は、 基板 4上のセンサ部 4 Aの外や、 基板 4以外の部分に設け てもよい。 また、 電極パッ ド 9 もセンサ部 4 Aの外の基板 4上に設け て、 そこから電極を取り出してもよい。 The temperature detection sensor 7 is formed at the center of the back surface of the sensor section 4A. The ambient temperature sensor 8 is used to compensate for the change in the ambient temperature, that is, the fluid temperature, and is formed near the outer peripheral edge of the back surface of the sensor section 4A. As the electric insulating film, for example, a thin silicon oxide (Si 2 ) film or a silicon nitride film having a thickness of about several thousand angstroms is used. The silicon oxide film is formed by, for example, sputtering, CVD, or applying a solvent mixed with silicon oxide and heating it to a predetermined temperature to melt and solidify the silicon oxide. The silicon nitride film is formed by sputtering or CVD. The ambient temperature sensor 8 may be provided outside the sensor section 4 A on the substrate 4 or in a portion other than the substrate 4. Also, the electrode pad 9 may be provided on the substrate 4 outside the sensor section 4A, and the electrode may be taken out therefrom.
流速 (流量) 計測用の温度検出センサ 7の構成としては、 一般的に は、  In general, the configuration of the temperature detection sensor 7 for measuring the flow velocity (flow rate) is as follows.
I ) 発熱体兼温度センサが 1つ、  I) One heating element and temperature sensor,
Π ) 発熱体兼温度センサが 2つ、 Π) Two heating elements and temperature sensors,
Π ) 発熱体兼温度センサと温度センサ Π) Heating element / temperature sensor and temperature sensor
の 3通りが考えられる。 There are three possibilities.
図 2に、 1つの発熱体 1 1で自己発熱型の温度検出センサ 7を構成 した例を示す。 センサ部 4 Aの裏面外周部寄りで上流側に 1つの周囲 温度センサ 8が設けられる。  FIG. 2 shows an example in which one heating element 11 constitutes a self-heating type temperature detection sensor 7. One ambient temperature sensor 8 is provided on the upstream side near the outer peripheral portion of the back surface of the sensor section 4A.
図 3に、 2つの発熱体 1 1 A , 1 1 Bで自己発熱型の温度検出セン サ 7を構成した例を示す。 2つの発熱体 1 1 A, 1 1 Bは、 センサ部 4 Aの裏面中央に流体 2の流れ方向に近接して配列される。 また、 2 つの周囲温度センサ 8 A, 8 Bが設けられる。 これらの周囲温度セン サ 8 A, 8 Bは、 流体 2の流れ方向と直交する方向において対向する ようにセンサ部 4 Aの外周寄りに形成される。 FIG. 3 shows an example in which a self-heating type temperature detecting sensor 7 is composed of two heating elements 11A and 11B. The two heating elements 11 A and 11 B are arranged close to the center of the back surface of the sensor section 4 A in the flow direction of the fluid 2. Also, two ambient temperature sensors 8A and 8B are provided. These ambient temperature sensors The sensors 8A and 8B are formed near the outer periphery of the sensor unit 4A so as to face each other in a direction orthogonal to the flow direction of the fluid 2.
図 4に、 1つの発熱体 1 1 と、 2つの温度センサ 1 2 A, 1 2 Bと で傍熱型の温度検出センサ 7を構成した例を示す。 発熱体 1 1は、 セ ンサ部 4 Aの裏面中央に設けられる。 2つの温度センサ 1 2 A, 1 2 Bは、 発熱体 1 1 を挟んで流体 2の流れ方向の上流側と下流側にそれ ぞれ配列される。 また、 1つの周囲温度センサ 8が、 センサ部 4 Aの 裏面外周部で流体 2の流れ方向の上流側に設けられる。 発熱体 1 1の パターン幅は 1 0〜5 0 m、 温度センサ 1 2 A, 1 2 Bおよび周囲 温度センサ 8のパターン幅は 5〜 1 0 m程度が好ましい。  FIG. 4 shows an example in which one heating element 11 and two temperature sensors 12 A and 12 B constitute an indirectly heated temperature detection sensor 7. The heating element 11 is provided at the center of the back surface of the sensor section 4A. The two temperature sensors 12 A and 12 B are respectively arranged on the upstream side and the downstream side in the flow direction of the fluid 2 with the heating element 11 interposed therebetween. Further, one ambient temperature sensor 8 is provided on the outer peripheral portion of the back surface of the sensor section 4A, on the upstream side in the flow direction of the fluid 2. The pattern width of the heating element 11 is preferably 10 to 50 m, and the pattern width of the temperature sensors 12 A and 12 B and the ambient temperature sensor 8 is preferably about 5 to 10 m.
図 5に、 2つの発熱体 1 1 A, 1 1 Bで自己発熱型の温度検出セン サ 7を構成した例を示す。 2つの発熱体 1 1 A, 1 I Bは、 センサ部 4 Aの裏面中央に流体 2の流れ方向に近接して配列される。 また、 1 つの周囲温度センサ 8を流体 2の流れ方向の上流側に設けられる。  FIG. 5 shows an example in which a self-heating type temperature detecting sensor 7 is composed of two heating elements 11A and 11B. The two heating elements 11A and 1IB are arranged close to the center of the back surface of the sensor section 4A in the flow direction of the fluid 2. Also, one ambient temperature sensor 8 is provided on the upstream side in the flow direction of the fluid 2.
図 6 に、 2つの発熱体 1 1 A, 1 1 Bをセンサ部 4 Aの裏面中央に 流体 2の流れ方向に近接して配列し、 自己発熱型の温度検出センサ 7 を構成した例を示す。 2つの周囲温度センサ 8 A, 8 Bが、 センサ部 4 Aの裏面外周寄りで流体 2の流れ方向の上流側と下流側に設けられ る。  Fig. 6 shows an example in which two heating elements 11A and 11B are arranged close to the center of the back surface of the sensor section 4A in the flow direction of the fluid 2 to form a self-heating type temperature detection sensor 7. . Two ambient temperature sensors 8A and 8B are provided on the upstream and downstream sides in the flow direction of the fluid 2 near the outer periphery of the back surface of the sensor section 4A.
図 7に、 同じく 2つの発熱体 1 1 A, 1 1 Bをセンサ部 4 Aの裏面 中央に流体 2の流れ方向に近接して配列し、 自己発熱型の温度検出セ ンサ 7 を構成した例を示す。 1つの周囲温度センサ 8が、 センサ部 4 Aの裏面で流体 2の流れ方向と直交する方向の外周寄りに設けられる。 図 1 において、 流路形成部材 5は細長い金属板からなり、 裏面中央 に基板 4より若干小さく、 かつ深さが 0. 5〜数 mm程度の凹部 1 4 が形成される。 凹部 1 4と基板 4の表面 4 aとの間に形成された空間 が、 流体 2の流路 3の一部を形成する。 流路形成部材 5の長手方向の 両端部寄りには、 流路 3に連通する流体供給口 1 5および流体排出口Fig. 7 shows an example in which two heating elements 11A and 11B are arranged close to the center of the back surface of the sensor section 4A in the flow direction of the fluid 2 to form a self-heating type temperature detection sensor 7. Is shown. One ambient temperature sensor 8 is provided on the back surface of the sensor unit 4A near the outer periphery in a direction orthogonal to the flow direction of the fluid 2. In FIG. 1, the flow path forming member 5 is made of an elongated metal plate, and a concave portion 14 slightly smaller than the substrate 4 and having a depth of about 0.5 to several mm is formed at the center of the rear surface. The space formed between the recess 14 and the surface 4 a of the substrate 4 forms a part of the flow path 3 of the fluid 2. The longitudinal direction of the flow path forming member 5 Near both ends, fluid supply port 15 and fluid discharge port communicating with flow path 3
1 6が貫通して形成される。 16 are formed through.
プレート 6は細長い金属板からなり、 基板 4の裏面 4 bに密接され 接合される。 また、 プレート 6の中央には、 基板 4のセンサ部 4 Aと 略同じ大きさの貫通孔 1 7が設けられ、 貫通孔 1 7に温度検出センサ The plate 6 is made of an elongated metal plate, and is closely attached to and bonded to the back surface 4 b of the substrate 4. In the center of the plate 6, a through hole 17 having substantially the same size as the sensor portion 4A of the substrate 4 is provided.
7 と周囲温度センサ 8を外部と電気的に接続する電極 1 8が配設され る。 電極 1 8は、 金属フレーム 1 9に複数本の金属製のピン 2 0を八 ーメチックガラス 2 1 を介して固定することにより形成され、 ピン 2An electrode 18 for electrically connecting the 7 and the ambient temperature sensor 8 to the outside is provided. The electrode 18 is formed by fixing a plurality of metal pins 20 to a metal frame 19 via an octagonal glass 21.
0の内端がセンサ部 4 Aの電極パッ ド 9にろう付けによって接合され る。 The inner end of 0 is joined to the electrode pad 9 of the sensor section 4A by brazing.
電極 1 8の取付けに際しては、 貫通孔 1 7を真空排気して取付ける か、 または熱伝導率の低い乾燥した不活性ガスを基板 4と電極 1 8 と の間の密閉空間に封入することが好ましいが、 周囲の風の影響を受け ないようにすれば大気開放でもよい。 なお、 電極 1 8を用いずに、 金 線によるワイヤーポンドでセンサの電極パッ ドと外部の回路基板とを 接続してもよい。  When mounting the electrode 18, it is preferable that the through hole 17 is evacuated and mounted, or a dry inert gas having low thermal conductivity is sealed in the closed space between the substrate 4 and the electrode 18. However, it can be open to the atmosphere if it is not affected by the surrounding wind. Instead of using the electrode 18, the electrode pad of the sensor and the external circuit board may be connected with a wire pound made of a gold wire.
流路形成部材 5の材質としては、 構造材およびヒートシンクの役目 もするため熱伝導率が高く、 耐熱性、 耐食性および剛性の高い材料が 好ましい。 また、 フローセンサ 1を腐食性流体に適用するには、 流体 2 と接触する部分が全て耐食性を有する同一材料であることが好まし く、 さらに各部材間の接合も接合用の異種材料を用いないで行うこと が好ましい。 このため、 本実施例においては、 流路形成部材 5を基板 4と同一材料であるステンレス (特に、 S U S 3 1 6 L ) で形成する。 このように、 基板 4および流路形成部材 5をステンレスで形成するこ とにより、 Y A Gレ一ザ一溶接等により異種金属を使用せずに接合す ることができる。  The material of the flow path forming member 5 is preferably a material having high thermal conductivity and high heat resistance, corrosion resistance and rigidity because it also serves as a structural material and a heat sink. In order to apply the flow sensor 1 to a corrosive fluid, it is preferable that all parts in contact with the fluid 2 are made of the same material having corrosion resistance. It is preferable to carry out without. For this reason, in this embodiment, the flow path forming member 5 is formed of stainless steel (particularly, SUS316L), which is the same material as the substrate 4. In this way, by forming the substrate 4 and the flow path forming member 5 from stainless steel, it is possible to perform joining without using a dissimilar metal by using a YAG laser or welding.
ステンレスは、 加工性も相対的に優れており、 センサ用材料として 好適である。 ただし、 ステンレスに限らず、 サファイア、 セラミック スなどの熱伝導率の高い材料であっても、 その分薄く形成すれば面方 向への熱の逃げを小さくできるので使用することが可能である。 なお、 3 0 0 Kでのステンレス、 サファイア、 セラミックスの熱伝導率は、 その組成にもよるがそれぞれ 1 6、 4 6、 3 6 [ W Z m K ] 程度であ る。 Stainless steel has relatively good workability and is used as a sensor material. It is suitable. However, not only stainless steel, but also materials with high thermal conductivity, such as sapphire and ceramics, can be used because if they are formed thinner, the escape of heat to the surface can be reduced. The thermal conductivity of stainless steel, sapphire, and ceramics at 300 K is about 16, 46, and 36 [WZ m K], respectively, depending on the composition.
プレート 6の材質としては、 構造材およびヒートシンクの役目もす るため熱伝導率、 耐熱性、 剛性が高い材料が好ましいが、 測定流体に は接触しないので、 耐食性はあまり必要ではない。  As a material of the plate 6, a material having high thermal conductivity, heat resistance, and rigidity is also preferable because it also serves as a structural material and a heat sink, but since it does not come into contact with the measurement fluid, corrosion resistance is not so necessary.
1つの発熱体 1 1 を用いた図 2に示すフローセンサ 1 において、 図 1 1のような定温度差回路を用いることによって流速を電圧信号に変 換することができる。  In the flow sensor 1 shown in FIG. 2 using one heating element 11 1, the flow velocity can be converted into a voltage signal by using a constant temperature difference circuit as shown in FIG.
この定温度差回路は、 図 1 1 に示すように、 抵抗 R 1 , R 2, 発熱体 (抵抗ヒータ) 1 1, 抵抗 R 3および周囲温度センサ 8の直列回路か ら構成されたプリ ッジ回路と、 抵抗 R 1 と発熱体 1 1の接続点電圧を 反転入力とするとともに抵抗 R 2 と抵抗 R 3の接続点電圧を非反転入 力とするオペアンプ O P 1 とを備える。 オペアンプ O P 1の出力は、 ブリッジ回路を構成する抵抗 R 1, R 2の一端に接続される。 抵抗 R 1, R 2 , R 3は、 周囲温度センサ 8よりも常に一定温度高くなるよ うに抵抗値が設定される。 As shown in Fig. 11, this constant temperature difference circuit consists of a series circuit of resistors R 1 and R 2, a heating element (resistance heater) 11, a resistor R 3, and an ambient temperature sensor 8. A circuit and an operational amplifier OP1 having a connection point voltage of the resistor R1 and the heating element 11 as an inverting input and a non-inverting input of a connection point voltage of the resistor R2 and the resistor R3. The output of the operational amplifier OP 1 is connected to one end of the resistors R 1 and R 2 that constitute the bridge circuit. The resistance values of the resistors R 1, R 2, and R 3 are set such that the temperature is always higher than the ambient temperature sensor 8 by a constant temperature.
このような回路構成において、 流体 2が矢印方向に流れると、 発熱 体 1 1は流体 2によって熱が奪われてその抵抗値は下がるため、 プリ ッジ回路の平衡状態が崩れる。 これにより、 オペアンプ O P 1の反転 および非反転入力間に生じる差電圧に応じた電圧がオペアンプ 0 P 1 からプリッジ回路に加えられ、 流体 2によって奪われた熱を補償する ように発熱体 1 1の発熱量を増加させる。 その結果、 発熱体 1 1の抵 抗値が上昇することにより、 ブリッジ回路は平衡状態に戻る。 したが つて、 平衡状態にあるブリッジ回路にはその流速に応じた電圧が加え られていることになる。 図 1 1の定温度差回路は、 このときブリ ツジ 回路に加えられている電圧のうち、 発熱体 1 1の端子間電圧を電圧出 力として出力する。 In such a circuit configuration, when the fluid 2 flows in the direction of the arrow, heat is removed from the heating element 11 by the fluid 2 and the resistance value of the heating element 11 decreases, so that the equilibrium state of the bridge circuit is broken. As a result, a voltage corresponding to the difference voltage generated between the inverting and non-inverting inputs of the operational amplifier OP 1 is applied from the operational amplifier 0 P 1 to the bridge circuit, and the heating element 11 is compensated for the heat taken by the fluid 2. Increase the calorific value. As a result, the bridge circuit returns to an equilibrium state by increasing the resistance value of the heating element 11. But Therefore, a voltage corresponding to the flow velocity is applied to the bridge circuit in the equilibrium state. The constant temperature difference circuit in FIG. 11 outputs, as a voltage output, the voltage between the terminals of the heating element 11 among the voltages applied to the bridge circuit at this time.
このように発熱体 1 1の温度が周囲温度センサ 8で計測される周囲 温度より一定温度高くなるように定温度差回路が電流または電圧を制 御して温度差を一定に保ち、 その電圧、 電流あるいは電力の変化を検 出することにより流体 2の流速または流量が計測できる。  In this way, the constant temperature difference circuit controls the current or voltage so that the temperature of the heating element 11 becomes constant temperature higher than the ambient temperature measured by the ambient temperature sensor 8, thereby keeping the temperature difference constant. By detecting a change in current or power, the flow velocity or flow rate of fluid 2 can be measured.
図 3および図 6は図 2に示すフロ一センサを 2つ組み合わせている。 このような構成においては、 図 1 3に示す回路で上流側の発熱体 1 1 Aと下流側の発熱体 1 1 Bの電圧差を検出することにより流体 2の流 速または流量および流れの方向が計測できる。 図 1 3に示す回路では、 図 1 1に示した定温度差回路を 2つ用い、 発熱体 1 1 Aおよび発熱体 1 1 Bの端子間電圧の差をオペアンプ O P 3で増幅して電圧出力とす る。 電圧出力の大きさで流速がわかり、 その極性で方向を知ることが できる。 なお、 電圧の差をとつているが、 電流あるいは電力の差をと るようにしてもよい。  3 and 6 combine two flow sensors shown in FIG. In such a configuration, the circuit shown in Fig. 13 detects the voltage difference between the heating element 11A on the upstream side and the heating element 11B on the downstream side to determine the flow velocity or flow rate of the fluid 2 and the direction of the flow. Can be measured. The circuit shown in Fig. 13 uses the two constant temperature difference circuits shown in Fig. 11 to amplify the voltage difference between the terminals of the heating elements 11A and 11B with the operational amplifier OP3 and output the voltage. It shall be. The magnitude of the voltage output indicates the flow velocity, and the polarity indicates the direction. Although the voltage difference is used, the current or power difference may be used.
2つの発熱体 1 1 A, 1 1 Bを用いた図 5および図 7に示すフ口一 センサにおいて、 図 1 2に示す定温度差回路を用いて流体の流速およ び流れの方向を検出することができる。 図 1 2に示す回路は、 抵抗 R 1 , R 2 , 発熱体 (抵抗ヒ一夕) 1 1 A, 1 1 B, 抵抗 R 3および周 囲温度センサ 8から構成されたブリ ッジ回路と、 このブリッジ回路を 平衡状態に保つオペアンプ O P 1 を含む点で、 図 1 1 に示した定温度 差回路と同様である。 図 1 2に示す回路においては、 直列につながれ た 2つの発熱体 1 1 A, 1 1 Bの端子間電圧をそれぞれ増幅するオペ アンプ〇 P 2 A, O P 2 Bと、 これらの出力の差を入力とするオペァ ンプ O P 3を備え、 このオペアンプ O P 3の出力を流体 2の流速に応 じた電圧出力とする。 5 and 7 using two heating elements 11A and 11B to detect the flow velocity and flow direction of the fluid using the constant temperature difference circuit shown in Fig. 12. can do. The circuit shown in Fig. 12 is composed of a bridge circuit composed of resistors R1, R2, a heating element (resistance heater), 11A, 11B, a resistor R3, and an ambient temperature sensor 8. It is similar to the constant temperature difference circuit shown in Fig. 11 in that it includes an operational amplifier OP1 that keeps the bridge circuit in a balanced state. In the circuit shown in Fig. 12, the operational amplifiers 増 幅 P2A and OP2B, which amplify the voltage between the terminals of two heating elements 11A and 11B connected in series, respectively, and the difference between these outputs An OP 3 is provided as an input, and the output of the OP 3 Voltage output.
図 1 2に示す定温度差回路のブリッジ回路への通電によって 2つの 発熱体 1 1 A, 1 1 Bを 1つの発熱体とした状態で、 周囲温度よりも 一定のより高い温度に加熱した状態で流体 2が矢印方向に流れると、 上流側に位置する発熱体 1 1 Aは冷却されて降温する。 一方、 下流側 に位置する発熱体 1 1 Bは、 流体 2の流れを媒体として上流側の発熱 体 1 1 Aからの熱伝導により温度が上昇し、 2つの発熱体 1 1 A, 1 1 Bの間に温度差が生じる。 この温度差は発熱体 1 1 A, 1 1 Bの抵 抗値の変化として捉えられる。 この抵抗値または両端子間電圧の変化 を検出してセンサ出力とすることにより、 流体 2の流速または流量が 計測される。 ,  When the two heating elements 11A and 11B are made into one heating element by energizing the bridge circuit of the constant temperature difference circuit shown in Fig. 12, and heated to a certain higher temperature than the ambient temperature When the fluid 2 flows in the direction of the arrow, the heating element 11 A located on the upstream side is cooled and its temperature drops. On the other hand, the heating element 11 B located on the downstream side rises in temperature due to heat conduction from the heating element 11 A on the upstream side using the flow of the fluid 2 as a medium, and the two heating elements 11 A, 11 B A temperature difference occurs between the two. This temperature difference can be considered as a change in the resistance values of the heating elements 11A and 11B. By detecting the change in the resistance value or the voltage between both terminals and outputting the sensor output, the flow velocity or flow rate of the fluid 2 is measured. ,
この場合、 2つの発熱体 1 1 A, 1 1 Bを用い温度差を検出すると、 1つ用いた場合に比べて再現性や精度を向上させることができる。 ま た、 発熱体 1 1 A, 1 I Bの抵抗変化により流体 2の流れの方向も検 出することができる。  In this case, when the temperature difference is detected using the two heating elements 11A and 11B, the reproducibility and accuracy can be improved as compared with the case where one is used. In addition, the flow direction of the fluid 2 can be detected by the resistance change of the heating elements 11A and 1IB.
1つの発熱体 1 1 と 2つの温度センサ 1 2 A, 1 2 Bを用いた図 4 に示すフローセンサにおいて、 図 1 1のような定温度差回路のプリッ ジ回路への通電によって、 発熱体 1 1 を周囲温度よりも一定のより高 い温度に加熱した状態で流体 2が矢印方向に流れると、 発熱体 1 1の 上流側温度センサ 1 2 Aと下流側温度センサ 1 2 Bの間に温度差が生 じる。 このため、 図 1 4または図 1 5に示す回路によってその電圧差 または抵抗値差を検出することにより、 流体 2の流速または流量が計 測される。  In the flow sensor shown in Fig. 4 that uses one heating element 11 and two temperature sensors 12A and 12B, the heating element is energized by energizing a constant temperature difference circuit as shown in Fig. 11. When fluid 2 flows in the direction of the arrow while heating 1 1 to a certain higher temperature than the ambient temperature, the temperature between the upstream temperature sensor 12 A and the downstream temperature sensor 12 B of the heating element 11 will increase. A temperature difference occurs. Therefore, the flow rate or flow rate of the fluid 2 is measured by detecting the voltage difference or the resistance value difference by the circuit shown in FIG. 14 or FIG.
図 1 4に示す回路は、 2つの温度センサ 1 2 A, 1 2 Bを含むプリ ッジ回路を用いて電圧出力を供給する。 図 1 5に示す回路は、 直列に 接続された 2つの温度センサ 1 2 A, 1 2 Bの端子間電圧をそれぞれ オペアンプ〇 P 1, O P 2で増幅し、 その差をさらにオペアンプ O P 3で増幅したものを電圧出力とする。 この場合、 2つの温度センサ 1The circuit shown in FIG. 14 supplies a voltage output using a bridge circuit including two temperature sensors 12A and 12B. In the circuit shown in Fig. 15, the voltage between the terminals of two temperature sensors 12 A and 12 B connected in series is amplified by operational amplifiers 〇 P 1 and OP 2 respectively, and the difference is further amplified by operational amplifier OP The voltage amplified in step 3 is used as the voltage output. In this case, two temperature sensors 1
2 A , 1 2 Bを用いているので、 流体 2の流れの方向を検出すること ができ、 この構成が最も精度および再現性が良い。 Since 2A and 12B are used, the direction of the flow of fluid 2 can be detected, and this configuration has the highest accuracy and reproducibility.
このようなフローセンサ 1 にあっては、 薄肉板状体からなる基板 4 の流体 2が接する面とは反対側の面に温度検出センサ 7を設けている。 このため、 温度検出センサ 7、 周囲温度センサ 8、 電極パッ ド 9等が 流体 2に直接接触して腐食したり劣化したり、 あるいはごみ等が付着 したりすることがない。 この結果、 半導体製造装置などに使用されて いる腐食性の気体や液体の測定にも使用することができ、 センサの信 頼性、 耐久性を向上させることができる。  In such a flow sensor 1, the temperature detection sensor 7 is provided on the surface of the substrate 4 made of a thin plate-shaped body opposite to the surface in contact with the fluid 2. For this reason, the temperature detection sensor 7, the ambient temperature sensor 8, the electrode pad 9, and the like do not directly contact the fluid 2 to be corroded or deteriorated, and no dust or the like is attached. As a result, it can be used for measuring corrosive gases and liquids used in semiconductor manufacturing equipment and the like, and the reliability and durability of the sensor can be improved.
また、 基板 4は熱伝導率が低いステンレスによって薄肉板状体に形 成されているので、 面と平行な方向への熱伝導が少なく、 基板の厚さ 方向、 つまり流体 2 と温度検出センサ 7間の熱伝導が良好で、 応答性 を向上させることができる。 また、 ステンレスは、 耐熱性、 耐食性、 加工性および剛性に優れ、 センサ材料とて好適である。  Further, since the substrate 4 is formed of a thin plate made of stainless steel having a low thermal conductivity, the heat conduction in a direction parallel to the surface is small, and the thickness direction of the substrate, that is, the fluid 2 and the temperature detection sensor 7 are formed. Good heat conduction between them, and can improve responsiveness. Stainless steel is excellent in heat resistance, corrosion resistance, workability and rigidity, and is suitable as a sensor material.
図 8 A、 8 B 、 8 Cは本発明の他の実施例を示す正面図、 断面図お よび背面図である。 なお、 図 1、 図 2に示した構成部材と同一のもの については同一符号をもって示し、 その説明を適宜省略する。 本実施 例では、 流体 2の流路 3を形成する流路形成部材 3 0にセンサ取付孔 3 1が形成され、 センサ取付孔 3 1 にフローセンサ 3 2が取付けられ る。 流路形成部材 3 0は、 ステンレスによって形成される。 フローセ ンサ 3 2は、 前面中央に円形の開口部 3 3を有し、 背面が開放し、 外 周面後端部にフランジ 3 4がー体に設けられた力ップ状のパッケージ 8A, 8B, and 8C are a front view, a cross-sectional view, and a rear view showing another embodiment of the present invention. The same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted as appropriate. In the present embodiment, a sensor mounting hole 31 is formed in the flow path forming member 30 forming the flow path 3 of the fluid 2, and a flow sensor 32 is mounted in the sensor mounting hole 31. The flow path forming member 30 is formed of stainless steel. The flow sensor 32 has a circular opening 33 in the center of the front surface, an open back surface, and a flange-shaped package provided with a flange 34 at the rear end of the outer peripheral surface.
3 5 と、 外周部がパッケージ 3 5の前面に接合されることにより開口 部 3 3を覆う基板 4とで構成される。 基板 4は、 ステンレスによって 薄肉板状体に形成され、 裏面中央部に図 4に示す温度検出センサ 7 、 周囲温度センサ 8、 電極パッ ド 9および配線用金属薄膜 1 0が電気絶 縁膜を介して設けられる。 3 and a substrate 4 whose outer peripheral portion is joined to the front surface of the package 35 to cover the opening 33. The substrate 4 is formed of a thin plate made of stainless steel, and a temperature detecting sensor 7, an ambient temperature sensor 8, an electrode pad 9, and a metal thin film 10 for wiring shown in FIG. It is provided via an edge film.
なお、 基板 4は正方形に限らず円形等の他の形状でもよい。 また、 温度検出センサ 7 と周囲温度センサ 8の構成としては、 図 4に示すも のに限らず、 図 2、 図 3、 図 5、 図 6または図 7に示す構成のもので あってもよい。 また、 周囲温度センサ 8は基板 4以外の部分に設けて もよい。  The substrate 4 is not limited to a square, but may be another shape such as a circle. The configurations of the temperature detection sensor 7 and the ambient temperature sensor 8 are not limited to those shown in FIG. 4, but may be those shown in FIG. 2, FIG. 3, FIG. 5, FIG. 6, or FIG. . Further, the ambient temperature sensor 8 may be provided in a portion other than the substrate 4.
パッケージ 3 5はステンレス製で、 流路形成部材 3 0のセンサ取付 孔 3 1 に嵌合され、 フランジ 3 4が流路形成部材 3 0の背面に Y A G レーザー溶接等によって接合される。 パッケージ 3 5の前面と基板 4 の表面は、 流路形成部材 3 0の内壁面 3 0 aと同一面を形成し、 流路 3の一部を構成する。 パッケージ 3 5の内部には、 電極 1 8が背面側 開口部から組み込まれ、 ピン 2 0が電極パッ ド 9にろう付けによって 接続される。 なお、 センサの電極パッ ドから金線によるワイヤ一ボン ドで回路基板と接続してもよい。  The package 35 is made of stainless steel, is fitted into the sensor mounting hole 31 of the flow path forming member 30, and the flange 34 is joined to the back surface of the flow path forming member 30 by YAG laser welding or the like. The front surface of the package 35 and the surface of the substrate 4 form the same plane as the inner wall surface 30 a of the flow path forming member 30 and constitute a part of the flow path 3. An electrode 18 is incorporated into the package 35 from the opening on the back side, and the pin 20 is connected to the electrode pad 9 by brazing. Note that the sensor electrode pad may be connected to the circuit board by a single wire bond made of gold wire.
このような構造からなるフローセンサ 3 2においては、 流路形成部 材 3 0にセンサ取付孔 3 1 を形成し、 センサ取付孔 3 1 にフローセン サ 3 2を嵌め込んで基板 4の表面を流体 2に接触させる。 このため、 パッケージ 3 5を流路形成部材 3 0に接合するだけでよいので、 特別 な装置、 部品等を用いる必要がなく、 簡単に取付けることができる。 なお、 フランジ 3 4と流路形成部材 3 0の接合は、 〇リングなどのシ —ル材を用いてポルトで固定してもよい。  In the flow sensor 32 having such a structure, the sensor mounting hole 31 is formed in the flow path forming member 30, and the flow sensor 32 is fitted into the sensor mounting hole 31, and the surface of the substrate 4 is fluidized. Touch 2 For this reason, since it is only necessary to join the package 35 to the flow path forming member 30, there is no need to use a special device, component, or the like, and the mounting can be easily performed. The flange 34 and the flow path forming member 30 may be joined by a port using a sealing material such as a ring.
図 9に、 図 4に示したセンサ部 4 Aの構造において、 空気中で発熱 体 1 1の温度を周囲温度より 3 0 ° C高く設定し、 上流側と下流側の 温度センサ 1 2 A, 1 2 Bの発熱体 1 1からの距離を変化させてシミ ユレ一シヨンを行ったときの、 その距離と 2つの温度センサ 1 2 A, 1 2 Bの温度差の関係を示す。 図 1 0に、 ヒータ R h (発熱体) から 温度センサ (R u, R d ) までの距離を示す。 図 9から明らかなよう に、 この条件において温度差が最も大きくなる位置は、 発熱体 1 1の 中心からそれぞれ 6 5 0 mの位置であった。 In FIG. 9, the temperature of the heating element 11 is set 30 ° C. higher than the ambient temperature in the air in the structure of the sensor section 4 A shown in FIG. 4, and the upstream and downstream temperature sensors 12 A, The relationship between the distance and the temperature difference between the two temperature sensors 12A and 12B when the simulation is performed by changing the distance of the 12B from the heating element 11 is shown. Figure 10 shows the distance from the heater Rh (heating element) to the temperature sensors (Ru, Rd). As evident from Figure 9 In this condition, the position where the temperature difference becomes the largest under these conditions was a position of 650 m from the center of the heating element 11 respectively.
以上説明したように本発明によれば、 流路の一部を形成する薄肉板 状体からなる基板の流路側とは反対側の面に発熱体を含む温度検出手 段を設けたので、 流体が温度検出手段、 電極パッ ド、 配線用金属薄膜 等に直接接触することがない。 このため、 基板の材質を選択すること により、 液体や腐食性気体の測定にも対応でき、 信頼性および耐久性 の高いセンサを提供することができる。  As described above, according to the present invention, since the temperature detecting means including the heating element is provided on the surface of the substrate made of a thin plate-like body forming a part of the flow path on the side opposite to the flow path side, the fluid Does not come into direct contact with temperature detecting means, electrode pads, metal thin films for wiring, etc. Therefore, by selecting the material of the substrate, it is possible to measure a liquid or a corrosive gas, and a highly reliable and durable sensor can be provided.
基板の材質としては、 ステンレス、 サファイア、 セラミックス等が 挙げられ、 この中で特にステンレスは耐食性、 加工性、 熱伝導率、 剛 性の面で非常に適した材料であり、 また耐腐食性を特に高める必要が ある場合はサファイアが好適である。  Examples of the material of the substrate include stainless steel, sapphire, ceramics and the like. Among them, stainless steel is particularly suitable in terms of corrosion resistance, workability, thermal conductivity, and rigidity. Sapphire is preferred if needed.
基板の板厚としては、 流体と温度検出手段間の熱伝導を良くすると ともに基板内の横方向の熱伝導を少なくするためできるだけ薄い構成 がよい。 但し、 条件としては加工性、 強度、 ハンドリング等の製作上 の外的要因を考慮して決定する必要がある。 このためステンレスの場 合は、 5 0〜 1 5 0 m程度が最適である。  The thickness of the substrate is preferably as thin as possible in order to improve the heat conduction between the fluid and the temperature detecting means and to reduce the lateral heat conduction in the substrate. However, the conditions need to be determined in consideration of external factors in manufacturing such as workability, strength, and handling. Therefore, in the case of stainless steel, about 50 to 150 m is optimal.
また、 発明によれば、 流路の一部をフ口一センサとして構成できる ので、 センサを流路に組込むだけで流量測定が可能となる。 これによ り、 薄肉板状の基板の接合が安定して行われ信頼性が向上する。 また、 流路を測定レンジ等に合わせて小さくかつ高精度に形成できるので、 高精度あるいは低流量用のセンサを実現できる。  Further, according to the invention, since a part of the flow path can be configured as a mouthpiece sensor, the flow rate can be measured only by incorporating the sensor into the flow path. Thereby, the bonding of the thin plate-shaped substrate is performed stably, and the reliability is improved. Also, since the flow path can be formed small and with high accuracy in accordance with the measurement range, etc., a sensor for high accuracy or low flow rate can be realized.
また、 本発明によれば、 流体の流路を形成する流路形成部材に設け たセンサ取付孔に取付けられるパッケージの流路内に臨み流体に接す る前面に開口部を設け、 この開口部を薄肉板状の基板によって覆い、 この基板の流路側とは反対側の面に発熱体を含む温度検出手段を設け たので、 特別な装置、 部品等を必要とせず、 流路形成部材に簡単に取 付けることができる。 Further, according to the present invention, an opening is provided on the front surface which comes into contact with the fluid while facing the inside of the flow path of the package attached to the sensor mounting hole provided in the flow path forming member for forming the flow path of the fluid. Is covered by a thin plate-shaped substrate, and a temperature detecting means including a heating element is provided on the surface of the substrate opposite to the flow path side, so no special equipment, parts, etc. are required, and the flow path forming member is simple. To Can be attached.

Claims

請求の範囲 The scope of the claims
1 . 流体の流路の一部を形成する薄肉板状の基板と、 この基板の流路 側とは反対側の面に設けられた発熱体を含む温度検出手段とからなる ことを特徴とするフローセンサ。  1. A thin plate-shaped substrate forming a part of a fluid flow path, and a temperature detecting means including a heating element provided on a surface of the substrate opposite to the flow path side. Flow sensor.
2 . 基板および流路形成部材が、 ステンレス、 サファイア、 セラミツ クスのうちのいずれか 1つによって形成されていることを特徴とする 請求項 1記載のフローセンサ。  2. The flow sensor according to claim 1, wherein the substrate and the flow path forming member are formed of any one of stainless steel, sapphire, and ceramics.
3 . 基板が板厚 5 0〜 1 5 0 mのステンレスで形成されていること を特徴とする請求項 1記載のフローセンサ。  3. The flow sensor according to claim 1, wherein the substrate is formed of stainless steel having a thickness of 50 to 150 m.
4 . 流体の流路を構成し、 その流路の途中に開放部を有する流路形成 部材と、 この流路形成部材の開放部を塞ぐ薄肉板状の基板と、 この基 板の流路側とは反対側の面に設けられた発熱体を含む温度検出手段と からなることを特徴とするフローセンサ。  4. A flow path forming member that constitutes a flow path of the fluid and has an opening in the middle of the flow path, a thin plate-shaped substrate that covers the opening of the flow path forming member, and a flow path side of the base plate. And a temperature detecting means including a heating element provided on the opposite surface.
5 · 基板および流路形成部材が、 ステンレス、 サファイア、 セラミツ クスのうちのいずれか 1つによって形成されていることを特徴とする 請求項 4記載のフローセンサ。  5. The flow sensor according to claim 4, wherein the substrate and the flow path forming member are formed of any one of stainless steel, sapphire, and ceramics.
6 . 基板が板厚 5 0〜 1 5 O ^ mのステンレスで形成されていること を特徴とする請求項 4記載のフローセンサ。  6. The flow sensor according to claim 4, wherein the substrate is formed of stainless steel having a thickness of 50 to 15 O ^ m.
7 . 流体の流路を形成する流路形成部材に設けたセンサ取付孔に取付 けられるパッケージを備え、 このパッケージの流路内に臨み流体に接 する前面に開口部を設け、 この開口部を薄肉板状の基板によって覆い、 この基板の流路側とは反対側の面に発熱体を含む温度検出手段を設け たことを特徴とするフローセンサ。  7. A package is provided to be mounted in a sensor mounting hole provided in a flow path forming member for forming a flow path of a fluid, and an opening is provided in a front surface of the package which faces the fluid and is in contact with the fluid. A flow sensor, comprising: a thin plate-shaped substrate; and a temperature detection unit including a heating element provided on a surface of the substrate opposite to a channel side.
8 . 基板および流路形成部材が、 ステンレス、 サファイア、 セラミツ クスのうちのいずれか 1つによって形成されていることを特徴とする 請求項 7記載のフローセンサ。  8. The flow sensor according to claim 7, wherein the substrate and the flow path forming member are formed of any one of stainless steel, sapphire, and ceramics.
9 . 基板が板厚 5 0〜 1 5 O mのステンレスで形成されていること を特徴とする請求項 7記載のフローセンサ, 9. The substrate is made of stainless steel with a thickness of 50 to 15 Om The flow sensor according to claim 7, wherein
PCT/JP2001/009119 2000-10-17 2001-10-17 Flow sensor WO2002033362A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/399,350 US7117736B2 (en) 2000-10-17 2001-10-17 Flow sensor
EP01976718A EP1333255B1 (en) 2000-10-17 2001-10-17 Flow sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-316717 2000-10-17
JP2000316717A JP3825242B2 (en) 2000-10-17 2000-10-17 Flow sensor

Publications (1)

Publication Number Publication Date
WO2002033362A1 true WO2002033362A1 (en) 2002-04-25

Family

ID=18795624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009119 WO2002033362A1 (en) 2000-10-17 2001-10-17 Flow sensor

Country Status (5)

Country Link
US (1) US7117736B2 (en)
EP (1) EP1333255B1 (en)
JP (1) JP3825242B2 (en)
CN (1) CN1231745C (en)
WO (1) WO2002033362A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365216A1 (en) * 2002-05-10 2003-11-26 Yamatake Corporation Flow sensor and method of manufacturing the same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802443B2 (en) * 2002-05-02 2006-07-26 株式会社山武 Flow rate sensor
JP3754678B2 (en) * 2003-04-16 2006-03-15 株式会社フジキン Corrosion-resistant metal thermal mass flow sensor and fluid supply equipment using the same
JP2005241279A (en) * 2004-02-24 2005-09-08 Fujikin Inc Sensor made of anti-corrosion metal for fluid and fluid supply apparatus
US20060000272A1 (en) * 2004-06-30 2006-01-05 Beat Neuenschwander Thermal flow sensor having an asymmetric design
US20100089146A1 (en) * 2007-02-28 2010-04-15 Yamatake Corporation Flow sensor
EP2040045B1 (en) * 2007-09-20 2016-11-30 Azbil Corporation Flow sensor
AU2010206053B2 (en) * 2009-07-31 2014-08-07 ResMed Pty Ltd Wire Heated Tube with Temperature Control System, Tube Type Detection, and Active Over Temperature Protection for Humidifier for Respiratory Apparatus
IL205084A (en) 2010-04-14 2017-08-31 Vasa Applied Tech Ltd Flow-meter probe
US20120001273A1 (en) * 2010-07-02 2012-01-05 Siargo Ltd. Micro-package for Micromachining Liquid Flow Sensor Chip
US9128028B2 (en) * 2010-07-29 2015-09-08 Honeywell International Inc. Thermal conductivity detectors
JP2012086426A (en) 2010-10-19 2012-05-10 Seiko Epson Corp Liquid ejecting head unit
EP2771652A4 (en) * 2011-10-28 2015-06-03 The Feinstein Inst Medical Res Microchip sensor for continuous monitoring of regional blood flow
JP6123218B2 (en) * 2012-02-03 2017-05-10 セイコーエプソン株式会社 Liquid ejecting head and liquid ejecting apparatus
NZ727820A (en) 2013-02-01 2018-06-29 Resmed Ltd Wire heated tube with temperature control system for humidifier for respiratory apparatus
US9612146B2 (en) 2014-02-07 2017-04-04 Honeywell International, Inc. Airflow sensor with dust reduction
GB2553681B (en) 2015-01-07 2019-06-26 Homeserve Plc Flow detection device
GB201501935D0 (en) 2015-02-05 2015-03-25 Tooms Moore Consulting Ltd And Trow Consulting Ltd Water flow analysis
USD800591S1 (en) 2016-03-31 2017-10-24 Homeserve Plc Flowmeter
CN107462296B (en) * 2016-06-03 2020-03-31 侯耀淞 Gas flowmeter
KR101852719B1 (en) * 2017-04-06 2018-04-27 인제대학교 산학협력단 Apparatus for Measuring Velocity of Micro Fluid Having Separable Structure by Ultra Thin Film
JP7410022B2 (en) * 2019-04-16 2024-01-09 智一 池野 flow rate sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311775A (en) * 1990-12-14 1994-05-17 Schlumberger Industries Semiconductor flow sensor
JPH08145751A (en) * 1994-11-26 1996-06-07 Stec Kk Mass flowmeter

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4548078A (en) * 1982-09-30 1985-10-22 Honeywell Inc. Integral flow sensor and channel assembly
US4542650A (en) * 1983-08-26 1985-09-24 Innovus Thermal mass flow meter
US4888988A (en) * 1987-12-23 1989-12-26 Siemens-Bendix Automotive Electronics L.P. Silicon based mass airflow sensor and its fabrication method
JPH04240566A (en) 1991-01-24 1992-08-27 Anritsu Corp Flow rate direction sensor
JP3175887B2 (en) * 1992-10-27 2001-06-11 株式会社半導体エネルギー研究所 measuring device
WO1995002164A1 (en) * 1993-07-07 1995-01-19 Ic Sensors, Inc. Pulsed thermal flow sensor system
DE19511687A1 (en) 1995-03-30 1996-10-02 Cms Mikrosysteme Gmbh Chemnitz Rate of flow sensor working according to thermo electric principle
NL1000454C2 (en) 1995-05-30 1996-12-03 Mierij Meteo Bv Device for determining the direction and speed of an air flow.
WO1997021986A1 (en) 1995-12-08 1997-06-19 Micronas Semiconductor S.A. Microsensors with silicon membranes and method of manufacturing such sensors
DE19603175A1 (en) * 1996-01-30 1997-07-31 Wilhelm Dr Buck Method and device for monitoring, setting and regulating the filling level of a refrigerant evaporator
JPH1068645A (en) 1996-08-27 1998-03-10 Yazaki Corp Sensor mounting plate sensor unit, and flow velocity sensor module
JPH10142021A (en) 1996-11-14 1998-05-29 Ee D:Kk Thermal mass flowmeter
JP3808208B2 (en) 1998-06-30 2006-08-09 株式会社リコー Solid stem for flow sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311775A (en) * 1990-12-14 1994-05-17 Schlumberger Industries Semiconductor flow sensor
JPH08145751A (en) * 1994-11-26 1996-06-07 Stec Kk Mass flowmeter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1333255A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365216A1 (en) * 2002-05-10 2003-11-26 Yamatake Corporation Flow sensor and method of manufacturing the same
US6981410B2 (en) 2002-05-10 2006-01-03 Yamatake Corporation Flow sensor and method of manufacturing the same

Also Published As

Publication number Publication date
US20040045352A1 (en) 2004-03-11
US7117736B2 (en) 2006-10-10
JP3825242B2 (en) 2006-09-27
EP1333255B1 (en) 2011-05-25
EP1333255A4 (en) 2006-08-16
CN1476530A (en) 2004-02-18
JP2002122454A (en) 2002-04-26
EP1333255A1 (en) 2003-08-06
CN1231745C (en) 2005-12-14

Similar Documents

Publication Publication Date Title
WO2002033362A1 (en) Flow sensor
US7603898B2 (en) MEMS structure for flow sensor
US7891238B2 (en) Thermal anemometer flow sensor apparatus with a seal with conductive interconnect
JP2005531771A (en) Mass flow meter with chip sensor
JP3324855B2 (en) Mass flow sensor
JPH1123338A (en) Thermosensitive flow-rate detecting element and flow-rate sensor using the same
WO2000039551A1 (en) Pressure sensor
JP2001272260A (en) Mass flow rate sensor and mass flowmeter using the same
JPH03272428A (en) Pressure sensor
JP2008039588A (en) Flow sensor and mass flow controller
US7185539B2 (en) Flow sensor
CN111220224B (en) MEMS flow sensor chip
JP2003329697A (en) Flow sensor
JP2006133243A (en) Flow sensor
JP3969564B2 (en) Flow sensor
JPH08146026A (en) Thermistor flow velocity sensor and flow rate sensor for liquid
JP4139149B2 (en) Gas sensor
JP2006208402A (en) Flow sensor
JPH11153466A (en) Flow sensor
JP2003106884A (en) Airflow sensor
JPH07234238A (en) Acceleration sensor
JP3766290B2 (en) Flow sensor
JP2003106883A (en) Airflow sensor
JPH11118565A (en) Flow sensor
JP2001281033A (en) Flow-rate sensor for liquid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001976718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018193609

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001976718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10399350

Country of ref document: US