WO2002033099A2 - Human kinases - Google Patents

Human kinases Download PDF

Info

Publication number
WO2002033099A2
WO2002033099A2 PCT/US2001/047728 US0147728W WO0233099A2 WO 2002033099 A2 WO2002033099 A2 WO 2002033099A2 US 0147728 W US0147728 W US 0147728W WO 0233099 A2 WO0233099 A2 WO 0233099A2
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
seq
sequence
amino acid
Prior art date
Application number
PCT/US2001/047728
Other languages
French (fr)
Other versions
WO2002033099A3 (en
Inventor
Rajagopal Gururajan
Mariah R. Baughn
Narinder K. Chawla
Vicki S. Elliott
Yuming Xu
Chandra Arvizu
Monique G. Yao
Jaya Ramkumar
Li Ding
Y. Tom Tang
April J. A. Hafalia
Danniel B. Nguyen
Ameena R. Gandhi
Yan Lu
Henry Yue
Neil Burford
Olga Bandman
Catherine M. Tribouley
Preeti G. Lal
Shirley A. Recipon
Dyung Aina M. Lu
Mark L. Borowsky
Michael Thornton
Anita Swarnaker
Kavitha Thangavelu
Farrah A. Khan
Craig H. Ison
Original Assignee
Incyte Genomics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Genomics, Inc. filed Critical Incyte Genomics, Inc.
Priority to CA002425963A priority Critical patent/CA2425963A1/en
Priority to JP2002536068A priority patent/JP2004537258A/en
Priority to EP01987811A priority patent/EP1373517A2/en
Priority to US10/415,011 priority patent/US20040053394A1/en
Priority to AU2002227352A priority patent/AU2002227352A1/en
Publication of WO2002033099A2 publication Critical patent/WO2002033099A2/en
Publication of WO2002033099A3 publication Critical patent/WO2002033099A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to nucleic acid and amino acid sequences of human kinases and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human kinases.
  • Kinases comprise the largest known enzyme superfamily and vary widely in their target molecules. Kinases catalyze the transfer of high energy phosphate groups from a phosphate donor to a phosphate acceptor. Nucleotides usually serve as the phosphate donor in these reactions, with most kinases utilizing adenosine triphosphate (ATP).
  • the phosphate acceptor can be any of a variety of molecules, including nucleosides, nucleotides, lipids, carbohydrates, and proteins. Proteins are phosphorylated on hydroxyamino acids. Addition of a phosphate group alters the local charge on the acceptor molecule, causing internal conformational changes and potentially influencing mtermolecular contacts.
  • Reversible protein phosphorylation is the primary method for regulating protein activity in eukaryotic cells.
  • proteins are activated by phosphorylation in response to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors.
  • the activated proteins initiate the cell's intracellular response by way of intracellular signaling pathways and second messenger molecules such as cyclic nucleotides, calcium-calmodulin, inositol, and various mitogens, that regulate protein phosphorylation.
  • kinases are involved in all aspects of a cell's function, from basic metabolic processes, such as glycolysis, to cell-cycle regulation, differentiation, and communication with the extracellular environment through signal transduction cascades. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle. There are two classes of protein kinases.
  • PTKs protein tyrosine kinases
  • STKs protein serme/lhreonine kinases
  • C- terminal subdomains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a tyrosine, serine, or threonine residue.
  • Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain.
  • subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif
  • subdomain ⁇ contains a critical lysine residue required for maximal catalytic activity
  • subdomains VI through LX comprise the highly conserved catalytic core.
  • PTKs and STKs also contain distinct sequence motifs in subdomains VI and VHI which may confer hydroxyarnino acid specificity.
  • kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book, Vol I p.p. 17-20 Academic Press, San Diego, CA.). In particular, two protein kinase signature sequences have been identified in the kinase domain, the first containing an active site lysine residue involved in ATP binding, and the second containing an aspartate residue important for catalytic activity. If a protein analyzed includes the two protein kinase signatures, the probability of that protein being a protein kinase is close to 100% (PROSITE: PDOCOOIOO, November 1995). Protein Tyrosine Kinases
  • Protein tyrosine kinases may be classified as either transmembrane, receptor PTKs or nontransmembrane, nonreceptor PTK proteins.
  • Transmembrane tyrosine kinases function as receptors for most growth factors. Growth factors bind to the receptor tyrosine kinase (RTK), which causes the receptor to phosphorylate itself (autophosphorylation) and specific intracellular second messenger proteins.
  • Growth factors (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.
  • Nontransmembrane, nonreceptor PTKs lack transmembrane regions and, instead, form signaling complexes with the cytosolic domains of plasma membrane receptors.
  • Receptors that function through non-receptor PTKs include those for cytokines and hormones (growth hormone and prolactin), and antigen-specific receptors on T and B lymphocytes.
  • PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.
  • STKs Protein serine/threonine kinases
  • a subclass of STKs are known as ERKs (extracellular signal regulated kinases) or MAPs (mitogen-activated protein kinases) and are activated after cell stimulation by a variety of hormones and growth factors.
  • Cell stimulation induces a signaling cascade leading to phosphorylation of MEK (MAP/ERK kinase) which, in turn, activates ERK via serine and threonine phosphorylation.
  • MEK MAP/ERK kinase
  • a varied number of proteins represent the downstream effectors for the active ERK and implicate it in the control of cell proliferation and differentiation, as well as regulation of the cytoskeleton.
  • ERK Activation of ERK is normally transient, and cells possess dual specificity phosphatases that are responsible for its down- regulation. Also, numerous studies have shown that elevated ERK activity is associated with some cancers.
  • Other STKs include the second messenger dependent protein kinases such as the cyclic- AMP dependent protein kinases (PKA), calcium-calmodulin (CaM) dependent protein kinases, and the mitogen-activated protein kinases (MAP); the cyclin-dependent protein kinases; checkpoint and cell cycle kinases; proliferation-related kinases; 5 -AMP-activated protein kinases; and kinases involved in apoptosis.
  • PKA cyclic- AMP dependent protein kinases
  • CaM calcium-calmodulin dependent protein kinases
  • MAP mitogen-activated protein kinases
  • the cyclin-dependent protein kinases checkpoint and cell cycle kinases
  • proliferation-related kinases 5
  • the second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADPribose, aracbidonic acid, diacylglycerol and calcium-calmodulin.
  • cAMP cyclic AMP
  • GMP cyclic GMP
  • inositol triphosphate phosphatidylinositol
  • 3,4,5-triphosphate cyclic ADPribose
  • aracbidonic acid diacylglycerol
  • diacylglycerol calcium-calmodulin.
  • the PKAs are involved in mediating hormone-induced cellular responses and are activated by cAMP produced within the cell in response to hormone stimulation.
  • cAMP is an intracellular mediator of hormone action in all animal cells that have been studied.
  • Hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction.
  • PKA is found in all animal cells and is thought to account for the effects of cAMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, NY, pp. 416-431, 1887).
  • CKI casein kinase I
  • CKI casein kinase I
  • CKI enzymes are present in the membranes, nucleus, cytoplasm and cytoskeleton of eukaryotic cells, and on the mitotic spindles of mammalian cells (Fish, K.J. et al., (1995) J. Biol. Chem. 270:14875-14883.
  • the CKI family members all have a short amino-terminal domain of 9-76 amino acids, a highly conserved kinase domain of 284 amino acids, and a variable carboxyl-terminal domain that ranges from 24 to over 200 amino acids in length (Cegielska, A. et al., (1998) J. Biol. Chem. 273:1357-1364.)
  • the CKI family is comprised of highly related proteins, as seen by the identification of isoforms of casein kinase I from a variety of sources. There are at least five mammalian isoforms, ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ . Fish et al., identified CKI-epsilon from a human placenta cDNA library.
  • the mammalian circadian mutation tau was found to be a sermdominant autosomal allele of CKI-epsilon that markedly shortens period length of circadian rhythms in Syrian hamsters.
  • the tau locus is encoded by casein kinase I-epsilon, which is also a homolog of the Drosophila circadian gene double-time.
  • Studies of both the wildtype and tau mutant CKI-epsilon enzyme indicated that the mutant enzyme has a noticeable reduction in the maximum velocity and autophosphorylation state.
  • CKI-epsilon is able to interact with mammalian PERIOD proteins, while the mutant enzyme is deficient in its ability to phosphorylate PERIOD.
  • CKI- epsilon plays a major role in delaying the negative feedback signal within the transcription-translation- based autoregulatory loop that composes the core of the circadian mechanism. Therefore the CKI- epsilon enzyme is an ideal target for pharmaceutical compounds influencing circadian rhythms, jet-lag and sleep, in addition to other physiologic and metabolic processes under circadian regulation (Lowrey, P.L. et al., (2000) Science 288:483-491.) Calcium-Calmodulin Dependent Protein Kinases
  • CaM kinases are involved in regulation of smooth muscle contraction, glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM dependent protein kinases are activated by calmodulin, an intracellular calcium receptor, in response to the concentration of free calcium in the cell. Many CaM kinases are also activated by phosphorylation. Some CaM kinases are also activated by autophosphorylation or by other regulatory kinases.
  • CaM kinase I phosphorylates a variety of substrates including the neurotransmitter-related proteins synapsin I and ⁇ , the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-3686). CaM kinase U also phosphorylates synapsin at different sites and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase.
  • CaM kinase II controls the synthesis of catecholamines and seratonin, through phosphorylation/activation of tyrosine hydroxylase and tryptophan hydroxylase, respectively (Fujisawa, H. (1990) BioEssays 12:27-29).
  • the mRNA encoding a calmodulin-binding protein kinase-like protein was found to be enriched in mammalian forebrain. This protein is associated with vesicles in both axons and dendrites and accumulates largely postnataUy.
  • the amino acid sequence of this protein is similar to CaM-dependent STKs, and the protein binds calmodulin in the presence of calcium (Godbout, M. et al. (1994) J. Neurosci. 14:1-13).
  • MAP mitogen-activated protein kinases
  • the extracellular stimuli which activate MAP kinase pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1).
  • EGF epidermal growth factor
  • LPS endotoxic lipopolysaccharide
  • cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1).
  • TNF tumor necrosis factor
  • IL-1 interleukin-1
  • Cyclins are small regulatory proteins that bind to and activate CDKs, which then phosphorylate and activate selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to cyclin binding, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue on the CDK.
  • NTM-related kinases Another family of STKs associated with the cell cycle are the NTMA (never in mitosis)- related kinases (Neks). Both CDKs and Neks are involved in duplication, maturation, and separation of the microtubule organizing center, the centrosome, in animal cells (Fry, A.M., et al. (1998) EMBO J. 17:470-481).
  • the NTM-related kinases also include NIKl histidine kinases, which function in signal transmission (Yamada-Okabe, T. et al. (1999) J. Bacteriol. 181:7243-7247).
  • Checkpoint and Cell Cycle Kinases In the process of cell division, the order and timing of cell cycle transitions are under control of cell cycle checkpoints, which ensure that critical events such as DNA replication and chromosome segregation are carried out with precision. If DNA is damaged, e.g. by radiation, a checkpoint pathway is activated that arrests the cell cycle to provide time for repair. If the damage is extensive, apoptosis is induced. In the absence of such checkpoints, the damaged DNA is inherited by aberrant cells which may cause proliferative disorders such as cancer. Protein kinases play an important role in this process.
  • Chkl checkpoint kinase 1
  • a specific kinase has been identified in yeast and mammals, and is activated by DNA damage in yeast. Activation of Chkl leads to the arrest of the cell at the G2/M transition.
  • Chkl phosphorylates the cell division cycle phosphatase CDC25, inhibiting its normal function which is to dephosphorylate and activate the cyclin-dependent kinase Cdc2.
  • Cdc2 activation controls the entry of cells into mitosis.
  • Chkl prevents the damaged cell from entering mitosis.
  • a similar deficiency in a checkpoint kinase, such as Chkl may also contribute to cancer by failure to arrest cells with damaged DNA at other checkpoints such as G2/M.
  • Proliferation-related kinase is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakarocytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8).
  • Proliferation-related kinase is related to the polo (derived from Drosophila polo gene) family of STKs implicated in cell division.
  • Proliferation-related kinase is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation.
  • RET rearranged during transfection
  • RET encodes a tyrosine kinase receptor involved in both multiple endocrine neoplasia type 2, an inherited cancer syndrome, and Hirschsprung disease, a developmental defect of enteric neurons.
  • RET and its functional ligand, glial cell line- derived neurotrophic factor play key roles in the development of the human enteric nervous system (Pachnis, V. et al. (1998) Am. J. Physiol. 275:G183-G186). 5 -AMP-activated protein kinase
  • a ligand-activated STK protein kinase is 5 -AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 271:8675-8681).
  • AMPK 5 -AMP-activated protein kinase
  • Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP.
  • AMPK is a heterotrimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit.
  • Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.
  • Kinases in Apoptosis Apoptosis is a highly regulated signaling pathway leading to cell death that plays a crucial role in tissue development and homeostasis. Deregulation of this process is associated with the pathogenesis of a number of diseases including autoimmune disease, neurodegenerative disorders, and cancer.
  • Various STKs play key roles in this process.
  • ZIP kinase is an STK containing a C-terminal leucine zipper domain in addition to its N-terminal protein kinase domain. This C-terminal domain appears to mediate homodimerization and activation of the kinase as well as interactions with transcription factors such as activating transcription factor, ATF4, a member of the cyclic-AMP responsive element binding protein (ATF/CREB) family of transcriptional factors (Sanjo, H et al. (1998) J. Biol. Chem, 273:29066-29071).
  • ATF4 activating transcription factor
  • ATF/CREB cyclic-AMP responsive element binding protein
  • DRAK1 and DRAK2 are STKs that share homology with the death-associated protein kinases (DAP kinases), known to function in interferon- ⁇ induced apoptosis (Sanjo et al. supra).
  • DAP kinases death-associated protein kinases
  • ZIP kinases contain a C-terminal protein-protein interaction domain, in the form of ankyrin repeats, in addition to the N-terminal kinase domain.
  • ZIP, DAP, and DRAK kinases induce morphological changes associated with apoptosis when transfected into NIH3T3 cells (Sanjo et al. supra!
  • RICK is another STK recently identified as mediating a specific apoptotic pathway involving the death receptor, CD95 (Inohara, N. et al. (1998) J. Biol. Chem. 273:12296-12300).
  • CD95 is a member of the tumor necrosis factor receptor superfamily and plays a critical role in the regulation and homeostasis of the immune system (Nagata, S. (1997) Cell 88:355-365).
  • the CD95 receptor signaling pathway involves recruitment of various intracellular molecules to a receptor complex following ligand binding. This process includes recruitment of the cysteine protease caspase-8 which, in turn, activates a caspase cascade leading to cell death.
  • RICK is composed of an N-terminal kinase catalytic domain and a C-terminal "caspase-recruitment" domain that interacts with caspase-like domains, indicating that RICK plays a role in the recruitment of caspase-8. This interpretation is supported by the fact that the expression of RICK in human 293T cells promotes activation of caspase-8 and potentiates the induction of apoptosis by various proteins involved in the CD95 apoptosis pathway (Inohara et al. supra). Mitochondrial Protein Kinases
  • a novel class of eukaryotic kinases related by sequence to prokaryotic histidine protein kinases, are the mitochondrial protein kinases (MPKs) which seem to have no sequence similarity with other eukaryotic protein kinases. These protein kinases are located exclusively in the mitochondrial matrix space and may have evolved from genes originally present in respiration-dependent bacteria which were endocytosed by primitive eukaryotic cells. MPKs are responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase complexes (Harris, R.A. et al. (1995) Adv. Enzyme Regul. 34:147-162).
  • MPKs Five MPKs have been identified. Four members correspond to pyruvate dehydrogenase kinase isozymes, regulating the activity of the pyruvate dehydrogenase complex, which is an important regulatory enzyme at the interface between glycolysis and the citric acid cycle.
  • the fifth member corresponds to a branched- chain alpha-ketoacid dehydrogenase kinase, important in the regulation of the pathway for the disposal of branched-chain amino acids. (Harris, R.A. et al. (1997) Adv. Enzyme Regul. 37:271-293).
  • Lipid kinases phosphorylate hydroxyl residues on lipid head groups.
  • a family of kinases involved in phosphorylation of phosphatidylinositol (PI) has been described, each member phosphorylating a specific carbon on the inositol ring (Leevers, S.J. et al. (1999) Curr. Opin. Cell. Biol. 11 :219-225).
  • the phosphorylation of phosphatidylinositol is involved in activation of the protein kinase
  • the inositol phospholipids (phosphoinositides) intracellular signaling pathway begins with binding of a signaling molecule to a G-protein linked receptor in the plasma membrane.
  • PI phosphatidylinositol
  • PI 3-kinase which phosphorylates the D3 position of PI and its derivatives, has a central role in growth factor signal cascades involved in cell growth, differentiation, and metabolism.
  • PI3K is a heterodimer consisting of an adapter subunit and a catalytic subunit.
  • the adapter subunit acts as a scaffolding protein, interacting with specific tyrosine-phosphorylated proteins, lipid moieties, and other cytosolic factors.
  • the adapter subunit When the adapter subunit binds tyrosine phosphorylated targets, such as the insulin responsive substrate (IRS)-l, the catalytic subunit is activated and converts PI (4,5) bisphosphate (PIP 2 ) to PI (3,4,5) P 3 (PIP 3 ). PJP 3 then activates a number of other proteins, including PKA, protein kinase B (PKB), protein kinase C (PKC), glycogen synthase kinase (GSK)-3, and p70 ribosomal s6 kinase.
  • PKA protein kinase B
  • PLC protein kinase C
  • GSK glycogen synthase kinase
  • PI3K also interacts directly with the cytoskeletal organizing proteins, Rac, rho, and cdc42 (Shepherd, P.R., et al. (1998) Biochem. J. 333:471-490).
  • PKC is also activated by diacylglycerol (DAG).
  • DAG diacylglycerol
  • PE Phorbol esters
  • PE and DAG bind to the N-terminal region of PKC. This region contains one or more copies of a cysteine-rich domain about 50 amino-acid residues long and essential for DAG/PE-binding.
  • Diacylglycerol kinase (DGK) the enzyme that converts DAG into phosphatidate, contains two copies of the DAG/PE-binding domain in its N-te ⁇ ninal section (Azzi, A. et al. (1992) Eur. J. Biochem. 208:547-557).
  • SPP lipid kinase phosphorylation activity
  • SPP D-erythro-sphingosine to the sphingolipid metabolite, spbingosine-1 -phosphate
  • SPP levels are regulated by sphingosine kinases that specifically phosphorylate D-erythro-sphingosine to SPP.
  • the importance of sphingosine kinase in cell signaling is indicated by the fact that various stimuli, including platelet-derived growth factor (PDGF), nerve growth factor, and activation of protein kinase C, increase cellular levels of SPP by activation of sphingosine kinase, and the fact that competitive inhibitors of the enzyme selectively inhibit cell proliferation induced by PDGF (Kohama et al. supra).
  • PDGF platelet-derived growth factor
  • nerve growth factor nerve growth factor
  • protein kinase C protein kinase C
  • the purine nucleotide kinases adenylate kinase (ATP:AMP phosphotransferase, or AdK) and guanylate kinase ( ATP:GMP phosphotransferase, or GuK) play a key role in nucleotide metabolism and are crucial to the synthesis and regulation of cellular levels of ATP and GTP, respectively.
  • ATP AMP phosphotransferase
  • GuK guanylate kinase
  • AdK AdK is found in almost all cell types and is especially abundant in cells having high rates of ATP synthesis and utilization such as skeletal muscle. In these cells AdK is physically associated with mitochondria and myofibrils, the subceUular structures that are involved in energy production and utilization, respectively. Recent studies have demonstrated a major function for AdK in transferring high energy phosphoryls from metabolic processes generating ATP to cellular components consuming ATP ( Zeleznikar, R.J. et al. (1995) J. Biol. Chem. 270:7311-7319). Thus AdK may have a pivotal role in mamtaining energy production in cells, particularly those having a high rate of growth or metabolism such as cancer cells, and may provide a target for suppression of its activity to treat certain cancers. Alternatively, reduced AdK activity may be a source of various metabolic, muscle-energy disorders that can result in cardiac or respiratory failure and may be treatable by increasing AdK activity.
  • GuK in addition to providing a key step in the synthesis of GTP for RNA and DNA synthesis, also fulfills an essential function in signal transduction pathways of cells through the regulation of GDP and GTP. Specifically, GTP binding to membrane associated G proteins mediates the activation of cell receptors, subsequent intracellular activation of adenyl cyclase, and production of the second messenger, cyclic AMP. GDP binding to G proteins inhibits these processes. GDP and GTP levels also control the activity of certain oncogenic proteins such as p21 ras known to be involved in control of cell proliferation and oncogenesis (Bos, J.L. (1989) Cancer Res. 49:4682-4689). High ratios of GTP:GDP caused by suppression of GuK cause activation of p21 ⁇ and promote oncogenesis. Increasing GuK activity to increase levels of GDP and reduce the GTP: GDP ratio may provide a therapeutic strategy to reverse oncogenesis.
  • GTP binding to membrane associated G proteins mediates the activation of cell receptors, subsequent intracellular activation of
  • GuK is an important enzyme in the phosphorylation and activation of certain antiviral drugs useful in the treatment of herpes virus infections. These drugs include the guanine homologs acyclovir and buciclovir (Miller, W.H. and Miller R.L. (1980) J. Biol. Chem. 255:7204-7207; Stenberg, K. et al.
  • the pyrimidine kinases are deoxycybdine kinase and thymidine kinase 1 and 2.
  • Deoxycytidine kinase is located in the nucleus, and thymidine kinase 1 and 2 are found in the cytosol (Johansson, M. et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11941-11945).
  • Phosphorylation of deoxyribonucleosides by pyrimidine kinases provides an alternative pathway for de novo synthesis of
  • DNA precursors DNA precursors.
  • pyrimidine kinases like purine kinases, in phosphorylation is critical to the activation of several chemotherapeutically important nucleoside analogues (Arner E.S. and
  • the invention features purified polypeptides, human kinases, referred to collectively as “PKIN” and individually as “PKLN-1,” “PKIN-2,” “PKIN-3,” “PKIN-4,” “PKIN-5,” “PKB -6,” “PKIN-7,” “PKIN-8,” “PKIN-9,” “PKIN-10,” “PKIN-11,” “PKIN-12,” “PKIN-13,” “PKB -14,” “PKIN-15,” “PKIN-16,” “PKIN-17,” “PKIN-18,” “PKIN-19,” “PKIN-20,” “PKIN-21,” and “PKIN- 22.”
  • the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from
  • the invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l- 22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO: 1-22.
  • the polynucleotide is selected from the group consisting of SEQ ID NO:23-44.
  • the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22
  • the invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22.
  • the invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the polynucleotide comprises at least 60 contiguous nucleotides.
  • the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
  • the probe comprises at least 60 contiguous nucleotides.
  • the invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
  • the invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and a pharmaceutically acceptable excipient.
  • the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
  • the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
  • the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
  • the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
  • the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with overexpression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
  • the invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
  • the invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
  • the invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv
  • Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
  • the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
  • Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
  • Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.
  • Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
  • Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
  • Table 5 shows the representative cDNA library for polynucleotides of the invention.
  • Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
  • Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
  • PKIN refers to the amino acid sequences of substantially purified PKIN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or rnimics the biological activity of
  • PKIN may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PKIN either by directly interacting with PKIN or by acting on components of the biological pathway in which PKIN participates.
  • An "allelic variant” is an alternative form of the gene encoding PKIN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
  • altered nucleic acid sequences encoding PKIN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as PKIN or a polypeptide with at least one functional characteristic of PKIN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PKIN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PKIN.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PKIN.
  • Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PKIN is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
  • Arnino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
  • Amplification relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
  • PCR polymerase chain reaction
  • Antagonist refers to a molecule which inhibits or attenuates the biological activity of PKIN.
  • Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PKIN either by directly interacting with PKIN or by acting on components of the biological pathway in which PKIN participates.
  • antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind PKIN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
  • antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
  • aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No.
  • Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
  • the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
  • Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
  • Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker.
  • the term "intramer” refers to an aptamer which is expressed in vivo.
  • a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al.
  • spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • the term “biologically active” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • immunologically active or “immunogenic” refers to the capability of the natural, recombinant, or synthetic PKIN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • “Complementary” describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5 ⁇
  • composition comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotide sequences encoding PKIN or fragments of PKIN maybe employed as hybridization probes.
  • the probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCI), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCI
  • detergents e.g., sodium dodecyl sulfate; SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVTEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
  • Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
  • the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation,
  • deletion refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
  • “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
  • Exon shuffling refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
  • a “fragment” is a unique portion of PKIN or the polynucleotide encoding PKIN which is identical in sequence to but shorter in length than the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
  • a fragment of SEQ ID NO:23-44 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:23-44, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
  • a fragment of SEQ ID NO:23-44 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:23-44 from related polynucleotide sequences.
  • the precise length of a fragment of SEQ ID NO:23-44 and the region of SEQ ID NO:23-44 to which the fragment corresponds are routinely deterrninable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a fragment of SEQ ID NO:l-22 is encoded by a fragment of SEQ ID NO:23-44.
  • a fragment of SEQ ID NO: 1-22 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1-22.
  • a fragment of SEQ ID NO: 1-22 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:l-22.
  • the precise length of a fragment of SEQ ID NO: 1-22 and the region of SEQ ID NO: 1-22 to which the fragment corresponds are routinely deterrninable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
  • a “full length” polynucleotide sequence encodes a "full length” polypeptide sequence.
  • Homology refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
  • percent identity and % identity refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • the "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences” can be accessed and used interactively at http://www.ncbi.nJrn.nih.gov/gorf/bl2.htrnl. The "BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example: Matrix: BLOSUM62
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
  • Percent identity and “% identity,” as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and_hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above).
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.12 (April-21-2000) with blastp set at default parameters.
  • Such default parameters may be, for example:
  • Gap x drop-off 50
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • HACs Human artificial chromosomes
  • HACs are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
  • humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in dete ⁇ nining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
  • Permissive conditions for annealing of nucleic acid sequences are routinely deterrninable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
  • Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA.
  • wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T Recipej for the specific sequence at a defined ionic strength and pH.
  • T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C maybe used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
  • Organic solvent such as formamide at a concentration of about 35-50% v/v
  • RNA:DNA hybridizations Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
  • Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
  • hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases.
  • a hybridization complex may be formed in solution (e.g., C 0 t or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • a solid support e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed.
  • insertion and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • an “immunogenic fragment” is a polypeptide or oligopeptide fragment of PKIN which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
  • the term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of PKIN which is useful in any of the antibody production methods disclosed herein or known in the art.
  • microarray refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
  • element and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
  • modulate refers to a change in the activity of PKIN. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PKIN.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which maybe single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
  • Post-translational modification of an PKIN may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of PKIN.
  • Probe refers to nucleic acid sequences encoding PKIN, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences.
  • Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
  • Primmers are short nucleic acids, usually DNA oligonucleotides, which maybe annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
  • Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
  • the Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.)
  • the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
  • this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
  • the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microa ⁇ ay elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
  • a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra.
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
  • Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, cher luminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
  • An "RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base ⁇ iymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing PKIN, nucleic acids encoding PKIN, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
  • the terms "specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule.
  • an antibody is specific for epitope "A”
  • the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
  • substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • a “transcript image” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
  • Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell.
  • the method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
  • transformed cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
  • a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
  • the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
  • a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
  • a variant may be described as, for example, an "allelic” (as defined above), “splice,” “species,” or “polymorphic” variant.
  • a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing.
  • the co ⁇ esponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
  • Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other.
  • a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
  • SNPs single nucleotide polymorphisms
  • the presence of SNPs maybe indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
  • the invention is based on the discovery of new human human kinases (PKIN), the polynucleotides encoding PKIN, and the use of these compositions for the diagnosis, treatment, or prevention of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders.
  • Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project DD).
  • Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide DD) as shown.
  • Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and an Incyte polynucleotide consensus sequence number (incyte Polynucleotide DD) as shown.
  • Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database.
  • Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ DD NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide DD) for polypeptides of the invention.
  • Column 3 shows the GenBank identification number (Genbank DD NO:) of the nearest GenBank homolog.
  • Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog.
  • Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly inco ⁇ orated by reference herein.
  • Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and
  • Table 3 shows the number of amino acid residues in each polypeptide.
  • Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as dete ⁇ nined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI).
  • Column 6 shows amino acid residues comprising signature sequences, domains, and motifs.
  • Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
  • SEQ DD NO:l is 91% identical to human casein kinase I-alpha (GenBank DD g852055) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.9e-167, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:l also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFTJLESCAN analyses provide further corroborative evidence that SEQ DD NO:l is a protein kinase.
  • HMM hidden Markov model
  • SEQ DD NO: 10 is 91% identical to Mus musculus FYVE fmger-containing phosphoinositide kinase (GenBank DD g4200446) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO: 10 also contains a phosphatidyl inositol 4-phosphate 5-kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from PRODOM analysis provides further corroborative evidence that SEQ DD NO: 10 is a phosphoinositide kinase.
  • HMM hidden Markov model
  • SEQ DD NO: 12 is 71% identical to human serine/threonine protein kinase (GenBank ID g7160989) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.7e-148, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:12 also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and MOTIF ' S analyses provide further corroborative evidence that SEQ DD NO: 12 is protein kinase.
  • HMM hidden Markov model
  • SEQ DD NO: 13 is 86% identical to murine pantothenate kinase 1 beta (GenBank DD g6690020) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.)
  • the BLAST probability score is 1.6e-129, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • Pantothenate kinase (PanK) is proposed to be the master regulator of Co A biosynthesis in mammalian cells, by controlling flux through the Co A biosynthetic pathway. Changes in the level of tissue PanK activitiy is reflected by the concurrent changes in the levels of CoA as seen in various metabolic states.
  • SEQ DD NO:16 is 68% identical to Mus musculus Nck-interacting kinase-like embryo specific kinase (GenBank DD g6472874) as dete ⁇ nined by the Basic Local Alignment Search Tool (BLAST).
  • BLAST Basic Local Alignment Search Tool
  • the BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ DD NO: 16 also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
  • HMM hidden Markov model
  • PROFTLESCAN analyses provide further co ⁇ oborative evidence that SEQ DD NO: 16 is a protein kinase.
  • SEQ DD NO.T9 is 99% identical to human RET tyrosine kinase receptor (GenBank DD g5419753) as determined by the Basic Local Alignment Search Tool (BLAST).
  • BLAST Basic Local Alignment Search Tool
  • the BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ DD NO: 19 also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
  • HMM hidden Markov model
  • PROFTLESCAN analyses provide further corroborative evidence that SEQ DD NO: 19 is a tyrosine kinase.
  • SEQ DD NO:22 is 33% identical to Gallus gallus smooth muscle myosin light chain kinase precursor (GenBank DD g212661) as deterrnined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.2 e-60, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:22 also contains two eukaryotic protein kinase domains as dete ⁇ nined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTORS, and PROFTLESCAN analyses provide further co ⁇ oborative evidence that SEQ DD NO:22 is a protein kinase.
  • HMM hidden Markov model
  • SEQ DD NO:2-9, SEQ ID NO:ll, SEQ DD NO:14-15, SEQ DD NO:17-18, and SEQ DD NO:20-21 were analyzed and annotated in a similar manner.
  • the algorithms and parameters for the analysis of SEQ ID NO: 1-22 are described in Table 7.
  • Table 4 the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
  • Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide DD) for each polynucleotide of the invention.
  • Column 3 shows the length of each polynucleotide sequence in basepairs.
  • Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ D3 NO:23-44 or that distinguish between SEQ DD NO:23-44 and related polynucleotide sequences.
  • Column 5 shows identification numbers co ⁇ esponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention.
  • Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.
  • the identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries.
  • 183812R7 is the identification number of an Incyte cDNA sequence
  • CARDNOTOl is the cDNA library from which it is derived.
  • Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71583296V1).
  • the identification numbers in column 5 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotide sequences.
  • the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST”).
  • the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i. e. , those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NF”).
  • the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm.
  • FL_XXXXXX_N 1 _N 2 _YYYY_N 3 _N 4 represents a "stitched" sequence in which XXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and ITOTis the number of the prediction generated by the algorithm, and N ;>2,3 ... > if present, represent specific exons that may have been manually edited during analysis (See Example V).
  • the identification numbers in column 5 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
  • FLXXXXXXX_gAAAAA_gBBBBB_l JV is the identification number of a "stretched" sequence, with XXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
  • a RefSeq identifier (denoted by "NM,” “NP,” or “NT”) may be used in place of the GenBank identifier (i.e. , gBBBBB).
  • a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods.
  • the following Table lists examples of component sequence prefixes and co ⁇ esponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
  • Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
  • Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences.
  • the representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences.
  • the tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
  • the invention also encompasses PKIN variants.
  • a prefe ⁇ ed PKIN variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the PKIN amino acid sequence, and which contains at least one functional or structural characteristic of PKIN.
  • the invention also encompasses polynucleotides which encode PKIN.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO:23-44, which encodes PKIN.
  • the polynucleotide sequences of SEQ DD NO:23-44 as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occu ⁇ ences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • the invention also encompasses a variant of a polynucleotide sequence encoding PKIN.
  • a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PKIN.
  • a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO:23- 44 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ DD NO:23-44. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PKIN.
  • nucleotide sequences which encode PKIN and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring PKIN under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PKIN or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of DNA sequences which encode PKIN and PKIN derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PKIN or any fragment thereof. Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ DD NO:23-44 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol.
  • Hybridization conditions including annealing and wash conditions, are described in "Definitions.” Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable 17 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD).
  • SEQUENASE US Biochemical, Cleveland OH
  • Taq polymerase Applied Biosystems
  • thermostable 17 polymerase Amersham Pharmacia Biotech, Piscataway NJ
  • combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD).
  • sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system
  • PKIN Molecular Dynamics, Sunnyvale CA
  • the resulting sequences are analyzed using a variety of algorithms which are well known in the art.
  • the nucleic acid sequences encoding PKIN may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • restriction-site PCR uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector.
  • Another method inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
  • a third method involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA.
  • multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
  • primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68 °C to 72°C.
  • Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode PKIN may be cloned in recombinant DNA molecules that direct expression of PKIN, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PKIN.
  • nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PKIN-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
  • oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of PKIN, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
  • MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C.
  • DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These prefe ⁇ ed variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
  • sequences encoding PKIN may be synthesized, in whole or in part, using chemical methods well known in the art.
  • chemical methods See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.
  • PKIN itself or a fragment thereof may be synthesized using chemical methods.
  • peptide synthesis can be performed using various solution-phase or solid-phase techniques.
  • the peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
  • the composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
  • the nucleotide sequences encoding PKIN or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3 'untranslated regions in the vector and in polynucleotide sequences encoding PKIN. Such elements may vary in their strength and specificity.
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PKIN. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., baculovirus)
  • plant cell systems transformed with viral expression vectors e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV
  • bacterial expression vectors e.g., Ti or pBR322 plasmids
  • Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population.
  • cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PKIN. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PKIN can be achieved using a multifunctional E. coli vector such as PBLUESCPJPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies).
  • PBLUESCPJPT Stratagene, La Jolla CA
  • PSPORT1 plasmid Life Technologies
  • vectors which direct high level expression of PKIN may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of PKIN.
  • a number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomvces cerevisiae or Pichia pastoris.
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation.
  • Plant systems may also be used for expression of PKIN. Transcription of sequences encoding PKIN may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters maybe used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ.
  • viral promoters e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:1311).
  • plant promoters
  • constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection.
  • pathogen-mediated transfection See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.
  • a number of viral-based expression systems may be utilized.
  • sequences encoding PKIN may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses PKIN in host cells.
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • SV40 or EBV- based vectors may also be used for high-level protein expression.
  • HACs Human artificial chromosomes
  • HACs may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345- 355.)
  • sequences encoding PKIN can be transformed into cell lines using expression vectors which may contain viral origins of replication and or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
  • selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the aminoglycosides neomycin and G-418
  • als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
  • Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites.
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding PKJN is inserted within a marker gene sequence
  • transformed cells containing sequences encoding PKIN can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding PKIN under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • host cells that contain the nucleic acid sequence encoding PKIN and that express PKIN may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of PKIN using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-linked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PKIN is preferred, but a competitive binding assay may be employed.
  • assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Cunent Protocols in Immunology, Greene Pub. Associates and Wiley- Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PKIN include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • the sequences encoding PKIN, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 RNA polymerase
  • Suitable reporter molecules or labels which maybe used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding PKIN may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode PKIN may be designed to contain signal sequences which direct secretion of PKIN through a prokaryotic or eukaryotic cell membrane.
  • a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a "prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • CHO, HeLa, MDCK, HEK293, and WI38 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities
  • ATCC American Type Culture Collection
  • HEK293, and WI38 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities
  • ATCC American Type Culture Collection
  • HEK293, and WI38 natural, modified, or recombinant nucleic acid sequences encoding PKIN may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric PKIN protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PKIN activity.
  • Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
  • Such moieties include, but are not limited to, ghitathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the PKIN encoding sequence and the heterologous protein sequence, so that PKIN may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
  • synthesis of radiolabeled PKIN may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
  • PKIN of the present invention or fragments thereof may be used to screen for compounds that specifically bind to PKIN. At least one and up to a plurality of test compounds may be screened for specific binding to PKIN. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
  • the compound thus identified is closely related to the natural ligand of PKIN, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner.
  • the compound can be closely related to the natural receptor to which PKIN binds, or to at least a fragment of the receptor, e.g., the ligand binding site.
  • the compound can be rationally designed using known techniques.
  • screening for these compounds involves producing appropriate cells which express PKIN, either as a secreted protein or on the cell membrane.
  • Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing PKIN or cell membrane fractions which contain PKIN are then contacted with a test compound and binding, stimulation, or inhibition of activity of either PKIN or the compound is analyzed.
  • An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
  • the assay may comprise the steps of combining at least one test compound with PKIN, either in solution or affixed to a solid support, and detecting the binding of PKIN to the compound.
  • the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
  • the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.
  • PKIN of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of PKIN.
  • Such compounds may include agonists, antagonists, or partial or inverse agonists.
  • an assay is performed under conditions permissive for PKIN activity, wherein PKIN is combined with at least one test compound, and the activity of PKIN in the presence of a test compound is compared with the activity of PKIN in the absence of the test compound. A change in the activity of PKIN in the presence of the test compound is indicative of a compound that modulates the activity of PKIN.
  • a test compound is combined with an in vitro or cell-free system comprising PKIN under conditions suitable for PKIN activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of PKIN may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
  • polynucleotides encoding PKIN or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells.
  • ES embryonic stem
  • Such techniques are well known in the art and are useful for the generation of animal models of human disease.
  • mouse ES cells such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture.
  • the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • a marker gene e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • the vector integrates into the corresponding region of the host genome by homologous recombination.
  • homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
  • Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL 6 mouse strain.
  • the blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
  • Polynucleotides encoding PKTN may also be manipulated in vitro in ES cells derived from human blastocysts.
  • Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
  • Polynucleotides encoding PKIN can also be used to create "knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
  • knockin technology a region of a polynucleotide encoding PKIN is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
  • Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
  • a mammal inbred to overexpress PKIN e.g., by secreting PKIN in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
  • PKIN Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of PKIN and human kinases.
  • the expression of PKIN is closely associated with brain, breast tumor, cardiovascular, digestive, fallopian tube tumor, fetal stomach, nervous, ovarian tumor, pancreatic tumor, peritoneal tumor, pituitary gland, placental, prostate tumor, neural, spinal cord, and testicular tissues, and with umbilical cord blood dendritic cells. Therefore, PKIN appears to play a role in cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders. In the treatment of disorders associated with increased PKIN expression or activity, it is desirable to decrease the expression or activity of PKIN.
  • PKIN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN.
  • disorders include, but are not limited to, a cancer, such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease; an immune disorder, such as acquired immunodeficiency syndrome (ADDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia,
  • a vector capable of expressing PKIN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those described above.
  • compositions comprising a substantially purified PKIN in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those provided above.
  • an agonist which modulates the activity of PKIN may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those listed above.
  • an antagonist of PKIN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PKIN.
  • disorders include, but are not limited to, those cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders described above.
  • an antibody which specifically binds PKIN may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express PKIN.
  • a vector expressing the complement of the polynucleotide encoding PKIN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PKIN including, but not limited to, those described above.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of PKIN may be produced using methods which are generally known in the art.
  • purified PKIN may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PKIN.
  • Antibodies to PKIN may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library.
  • Neutralizing antibodies i.e., those which inhibit dimer formation
  • various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PKIN or with any fragment or oligopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are especially preferable.
  • the oligopeptides, peptides, or fragments used to induce antibodies to PKIN have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of PKIN amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
  • Monoclonal antibodies to PKIN may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J.
  • chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity.
  • techniques developed for the production of single chain antibodies may be adapted, using methods known in the art, to produce PKfN-specific single chain antibodies.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
  • Antibody fragments which contain specific binding sites for PKIN may also be generated.
  • fragments include, but are not limited to, F(ab'> 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
  • Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
  • immunoassays may be used for screening to identify antibodies having the desired specificity.
  • Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.
  • Such immunoassays typically involve the measurement of complex formation between PKIN and its specific antibody.
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PKIN epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
  • K a association constant
  • High-affinity antibody preparations with K a ranging from about IO 9 to IO 12 L ⁇ nole are prefened for use in immunoassays in which the PKfN- antibody complex must withstand rigorous manipulations.
  • I ⁇ w-affinity antibody preparations with K a ranging from about IO 6 to IO 7 L/mole are prefened for use in immunopurification and similar procedures which ultimately require dissociation of PKIN, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
  • polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of PKIN-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
  • the polynucleotides encoding PKIN, or any fragment or complement thereof may be used for therapeutic purposes.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding PKIN.
  • complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
  • antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PKIN. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)
  • Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein.
  • Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retro virus and adeno-associated virus vectors.
  • polynucleotides encoding PKIN may be used for somatic or germline gene therapy.
  • Gene therapy may be performed to (i) co ⁇ ect a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCDD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al.
  • SCDD severe combined immunodeficiency
  • ADA adenosine deaminase
  • PKIN hepatitis B or C virus
  • fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
  • protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi.
  • the expression of PKIN from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.
  • PKIN are treated by constructing mammalian expression vectors encoding PKIN and introducing these vectors by mechanical means into PKJN-deficient cells.
  • Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Cun. Opin. Biotechnol. 9:445-450).
  • Expression vectors that may be effective for the expression of PKIN include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
  • PKIN maybe expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol.
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
  • liposome transformation kits e.g., the PERFECT LIPDD TRANSFECTION KIT, available from Invitrogen
  • PERFECT LIPDD TRANSFECTION KIT available from Invitrogen
  • transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845).
  • the introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
  • diseases or disorders caused by genetic defects with respect to PKIN expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding PKIN under the control of an independent promoter or the retrovirus long te ⁇ ninal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cz ' s-acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovirus vectors e.g., PFB and PFBNEO
  • PFB and PFBNEO are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl.
  • the vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R.
  • VSVg vector producing cell line
  • U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4 + T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al.
  • an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding PKIN to cells which have one or more genetic abnormalities with respect to the expression of PKIN.
  • the construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference.
  • a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding PKIN to target cells which have one or more genetic abnormalities with respect to the expression of PKIN.
  • the use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing PKIN to cells of the central nervous system, for which HSV has a tropism.
  • the construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art.
  • a replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395).
  • HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
  • U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
  • HSV vectors see also Goins, W.F. et al. (1999) J. Virol.
  • herpesvirus sequences The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
  • an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding PKIN to target cells.
  • SFV Semliki Forest Virus
  • This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
  • enzymatic activity e.g., protease and polymerase.
  • inserting the coding sequence for PKIN into the alphavirus genome in place of the capsid-coding region results in the production of a large number of PKTN- coding RNAs and the synthesis of high levels of PKIN in vector transduced cells.
  • alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
  • the wide host range of alphaviruses will allow the introduction of PKIN into a variety of cell types.
  • the specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
  • the methods of manipulating infectious cDNA clones of alphaviruses, perforrning alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
  • Oligonucleotides derived from the transcription initiation site may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura PubHshing, Mt. Kisco NY, pp.
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes. Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of
  • RNA The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PKIN.
  • RNA sequences within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC
  • short RNA sequences of between 15 and 20 ribonucleotides, conesponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
  • the suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PKIN. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
  • these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
  • RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3 ' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding PKIN.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple henx-fo ⁇ ning oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specifically inhibits expression of the polynucleotide encoding PKIN may be therapeutically useful, and in the treatment of disorders associated with decreased PKIN expression or activity, a compound which specifically promotes expression of the polynucleotide encoding PKIN may be therapeutically useful.
  • test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorialfy or randomly.
  • a sample comprising a polynucleotide encoding PKIN is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding PKIN are assayed by any method commonly known in the art.
  • the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding PKIN.
  • the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds.
  • a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun.
  • a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
  • oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
  • any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
  • An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
  • Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
  • Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
  • Such compositions may consist of PKIN, antibodies to PKIN, and mimetics, agonists, antagonists, or inhibitors of PKIN.
  • compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient.
  • small molecules e.g. traditional low molecular weight organic drugs
  • aerosol delivery of fast- acting formulations is well-known in the art.
  • macromolecules e.g. larger peptides and proteins
  • Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
  • the determination of an effective dose is well within the capability of those skilled in the art.
  • compositions may be prepared for direct intracellular delivery of macromolecules comprising PKIN or fragments thereof.
  • liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule.
  • PKIN or a fragment thereof may be joined to a short cationic N- teiminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
  • An animal model may also be used to dete ⁇ nine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for adrninistration in humans.
  • a therapeutically effective dose refers to that amount of active ingredient, for example PKIN or fragments thereof, antibodies of PKIN, and agonists, antagonists or inhibitors of PKIN, which ameliorates the symptoms or condition.
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 5O /ED 50 ratio. Compositions which exhibit large therapeutic indices are prefened. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with little or no toxicity.
  • the dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
  • Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
  • antibodies which specifically bind PKIN may be used for the diagnosis of disorders characterized by expression of PKIN, or in assays to monitor patients being treated with PKIN or agonists, antagonists, or inhibitors of PKIN.
  • Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PKIN include methods which utilize the antibody and a label to detect PKIN in human body fluids or in extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • PKIN PKIN-specific kinase kinase kinase
  • ELISAs ELISAs
  • RIAs RIAs
  • FACS fluorescence-activated cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic kinas, and cytoplasmic kinase kinase-specific kinase-specific kinase-specific kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinase-associated kinas
  • the polynucleotides encoding PKIN may be used for diagnostic purposes.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of PKIN may be conelated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of PKIN, and to monitor regulation of PKIN levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PKIN or closely related molecules may be used to identify nucleic acid sequences which encode PKIN.
  • the specificity of the probe whether it is made from a highly specific region, e.g., the 5 'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will dete ⁇ nine whether the probe identifies only naturally occurring sequences encoding PKIN, allelic variants, or related sequences.
  • Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the PKIN encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ DD NO:23-44 or from genomic sequences including promoters, enhancers, and introns of the PKIN gene.
  • Means for producing specific hybridization probes for DNAs encoding PKIN include the cloning of polynucleotide sequences encoding PKIN or PKIN derivatives into vectors for the production of mRNA probes.
  • vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotide sequences encoding PKIN may be used for the diagnosis of disorders associated with expression of PKIN.
  • disorders include, but are not limited to, a cancer, such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gallbladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, leukemias such as multiple myeloma and lymphomas such as Hodgkin's disease; an immune disorder, such as acquired immunodeficiency syndrome (ADDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylos
  • the polynucleotide sequences encoding PKIN may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PKIN expression. Such qualitative or quantitative methods are well known in the art.
  • the nucleotide sequences encoding PKIN may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
  • the nucleotide sequences encoding PKIN may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes.
  • the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PKIN in the sample indicates the presence of the associated disorder.
  • assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PKIN, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
  • hybridization assays may be repeated on a regular basis to dete ⁇ nine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
  • the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
  • oligonucleotides designed from the sequences encoding PKJN may involve the use of PCR. These oUgomers may be chemically synthesized, generated enzymatically, or produced in vitro.
  • OUgomers wiU preferably contain a fragment of a polynucleotide encoding PKIN, or a fragment of a polynucleotide complementary to the polynucleotide encoding PKIN, and wiU be employed under optimized conditions for identification of a specific gene or condition. OUgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • oUgonucleotide primers derived from the polynucleotide sequences encoding PKIN may be used to detect single nucleotide polymo ⁇ hisms (SNPs).
  • SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.
  • Methods of SNP detection include, but are not limited to, single-stranded conformation polymo ⁇ hism (SSCP) and fluorescent SSCP (fSSCP) methods.
  • SSCP single-stranded conformation polymo ⁇ hism
  • fSSCP fluorescent SSCP
  • oUgonucleotide primers derived from the polynucleotide sequences encoding PKIN are used to ampUfy DNA using the polymerase chain reaction (PCR).
  • the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
  • SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
  • the oUgonucleotide primers are fluorescently labeled, which aUows detection of the amplimers in high-throughput equipment such as DNA sequencing machines.
  • AdditionaUy sequence database analysis methods, termed in siUco SNP (isSNP), are capable of identifying polymo ⁇ hisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
  • SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA).
  • Methods which may also be used to quantify the expression of PKIN include radiolabeling or biotinylating nucleotides, coampUfication of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • radiolabeling or biotinylating nucleotides include radiolabeling or biotinylating nucleotides, coampUfication of a control nucleic acid, and inte ⁇ olating results from standard curves.
  • the speed of quantitation of multiple samples maybe accelerated by ranning the assay in a high-throughput format where the oUgomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • oUgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microanay.
  • the microanay can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
  • the microarray may also be used to identify genetic variants, mutations, and polymo ⁇ hisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
  • this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient.
  • therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
  • PKIN fragments of PKIN, or antibodies specific for PKIN may be used as elements on a microanay.
  • the microanay may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or ceU type.
  • a transcript image represents the global pattern of gene expression by a particular tissue or ceU type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No.
  • a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totaUty of transcripts or reverse transcripts of a particular tissue or cell type.
  • the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a phiraUty of elements on a microanay.
  • the resultant transcript image would provide a profile of gene activity.
  • Transcript images may be generated using transcripts isolated from tissues, ceU lines, biopsies, or other biological samples.
  • the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a ceU line.
  • Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as weU as toxicological testing of industrial and naturally-occurring environmental compounds.
  • AU compounds induce characteristic gene expression patterns, frequently termed molecular finge ⁇ rints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly inco ⁇ orated by reference herein).
  • a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
  • These finge ⁇ rints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families.
  • IdeaUy a genome- wide measurement of expression provides the highest quaUty signature. Even genes whose expression is not altered by any tested compounds are important as weU, as the levels of expression of these genes are used to normaUze the rest of the expression data. The normaUzation procedure is useful for comparison of expression data after treatment with different compounds.
  • the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound.
  • Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels conesponding to the polynucleotides of the present invention may be quantified.
  • the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
  • proteome refers to the global pattern of protein expression in a particular tissue or ceU type.
  • proteome expression patterns, or profiles are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time.
  • a profile of a ceU's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or ceU type.
  • the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
  • the proteins are visuaUzed in the gel as discrete and uniquely positioned spots, typicaUy by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
  • the optical density of each protein spot is generaUy proportional to the level of the protein in the sample.
  • the optical densities of equivalently positioned protein spots from different samples are compared to identify any changes in protein spot density related to the treatment.
  • the proteins in the spots are partiaUy sequenced using, for example, standard methods employing chemical or enzymatic cleavage foUowed by mass spectrometry.
  • the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
  • a proteomic profile may also be generated using antibodies specific for PKIN to quantify the levels of PKIN expression.
  • the antibodies are used as elements on a microanay, and protein expression levels are quantified by exposing the microanay to the sample and detecting the levels of protein bound to each anay element (Lueking, A. et al. (1999) Anal. Biochem. 270:103- 111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
  • Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in paraUel with toxicant signatures at the transcript level.
  • There is a poor conelation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
  • the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reUable and informative in such cases.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound.
  • Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified.
  • the amount of each protein is compared to the amount of the conesponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Microanays may be prepared, used, and analyzed using methods known in the art.
  • nucleic acid sequences encoding PKIN may be used to generate hybridization probes useful in mapping the naturaUy occurring genomic sequence.
  • Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentiaUy cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA Ubraries.
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constructions or single chromosome cDNA Ubraries.
  • nucleic acid sequences of the invention maybe used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymo ⁇ hism (RFLP).
  • RFLP restriction fragment length polymo ⁇ hism
  • Fluorescent in situ hybridization may be conelated with other physical and genetic map data.
  • FISH Fluorescent in situ hybridization
  • Examples of genetic map data can be found in various scientific journals or at the Online MendeUan Inheritance in Man (OMEvI) World Wide Web site. Conelation between the location of the gene encoding PKIN on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
  • In situ hybridization of chromosomal preparations and physical mapping techniques may be used for extending genetic maps.
  • placement of a gene on the chromosome of another mammaUan species, such as mouse may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques.
  • Once the gene or genes responsible for a disease or syndrome have been crudely locaUzed by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to llq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
  • nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
  • PKIN in another embodiment, PKIN, its catalytic or immunogenic fragments, or oUgopeptides thereof can be used for screening Ubraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a soUd support, borne on a ceU surface, or located mtraceUularly. The formation of binding complexes between PKIN and the agent being tested may be measured.
  • Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
  • This method large numbers of different smaU test compounds are synthesized on a soUd substrate. The test compounds are reacted with PKIN, or fragments thereof, and washed. Bound PKIN is then detected by methods weU known in the art. Purified PKIN can also be coated directly onto plates for use in the aforementioned drug screening techniques.
  • non-neutraUzing antibodies can be used to capture the peptide and immobiUze it on a soUd support.
  • nucleotide sequences which encode PKIN may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • poly(A)+ RNA was isolated using oUgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • Stratagene was provided with RNA and constructed the conesponding cDNA Ubraries. Otherwise, cDNA was synthesized and cDNA Ubraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oUgo d(T) or random primers. Synthetic oUgonucleotide adapters were Ugated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • the cDNA was size-selected (300- 1000 bp) using SEPHACRYL S 1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis.
  • cDNAs were Ugated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), or pINCY (Incyte Genomics), or derivatives thereof.
  • Recombinant plasmids were transformed into competent E. coU ceUs including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Life Technologies. II. Isolation of cDNA Clones
  • Plasmids obtained as described in Example I were recovered from host ceUs by in vivo excision using the UNIZAP vector system (Stratagene) or by ceU lysis. Plasmids were purified using at least one of the foUowing: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. FoUowing precipitation, plasmids were resuspended in 0.1 ml of distiUed water and stored, with or without lyophiUzation, at 4°C
  • plasmid DNA was ampUfied from host ceU lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host ceU lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-weU plates, and the concentration of ampUfied plasmid DNA was quantified fluorometricaUy using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN D fluorescence scanner (Labsystems Oy, Helsinki, Finland). III. Sequencing and Analysis
  • Incyte cDNA recovered in plasmids as described in Example D were sequenced as foUows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (AppUed Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) Uquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or suppUed in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (AppUed Biosystems).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (AppUed Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VDI.
  • the polynucleotide sequences derived from Incyte cDNAs were vaUdated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
  • the Incyte cDNA sequences or translations thereof were then queried against a selection of pubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM.
  • PubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases
  • BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM.
  • HMM is a probabiUstic approach which analyzes consensus primary structures of gene famiUes. See, for example, Eddy, S.R. (1996) Cun. Opin. Struct. Biol. 6:361-365.)
  • the queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
  • the Incyte cDNA sequences were assembled to produce fuU length polynucleotide sequences.
  • GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences were used to extend Incyte cDNA assemblages to fuU length.
  • FuU length polypeptide sequences were translated to derive the conesponding fuU length polypeptide sequences.
  • a polypeptide of the invention may begin at any of the methionine residues of the fuU length translated polypeptide. FuU length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden
  • HMM Markov model-based protein family databases such as PFAM. FuU length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence aUgnments are generated using default parameters specified by the CLUSTAL algorithm as inco ⁇ orated into the MEGALIGN multisequence aUgnment program (DNASTAR), which also calculates the percent identity between aUgned sequences.
  • Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and fuU length sequences and provides appUcable descriptions, references, and threshold parameters.
  • the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, aU of which are inco ⁇ orated by reference herein in their entirety, and the fourth column presents, where appUcable, the scores, probabiUty values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probabiUty value, the greater the identity between two sequences).
  • Genscan is a general- pu ⁇ ose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C and S. KarUn (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. KarUn (1998) Curr. Opin. Struct. Biol. 8:346-354).
  • the program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
  • Genscan is a FASTA database of polynucleotide and polypeptide sequences.
  • the maximum range of sequence for Genscan to analyze at once was set to 30 kb.
  • the encoded polypeptides were analyzed by querying against PFAM models for human kinases.
  • Potential human kinases were also identified by homology to Incyte cDNA sequences that had been annotated as human kinases. These selected Genscan- predicted sequences were then compared by BLAST analysis to the genpept and gbpri pubUc databases.
  • Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons.
  • BLAST analysis was also used to find any Incyte cDNA or pubUc cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription.
  • Incyte cDNA coverage was available, this information was used to conect or confirm the Genscan predicted sequence.
  • FuU length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or pubUc cDNA sequences using the assembly process described in Example DI.
  • full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
  • Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then aU three intervals were considered to be equivalent. This process aUows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as weU as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence).
  • Partial DNA sequences were extended to fuU length with an algorithm based on BLAST analysis.
  • First, partial cDNAs assembled as described in Example DI were queried against pubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases using the BLAST program.
  • the nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV.
  • a chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
  • HSPs high-scoring segment pairs
  • GenBank protein homolog The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubUc human genome databases. Partial DNA sequences were therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to detem ⁇ ne whether it contained a complete gene. VI. Chromosomal Mapping of PKIN Encoding Polynucleotides The sequences which were used to assemble SEQ DD NO:23-44 were compared with sequences from the Incyte LIFESEQ database and pubUc domain databases using BLAST and other implementations of the Smith- Waterman algorithm.
  • pubUc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of aU sequences of that cluster, including its particular SEQ DD NO:, to that map location.
  • Map locations are represented by ranges, or intervals, of human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
  • centiMorgan cM
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • SEQ DD NO:29 was mapped to chromosome 1 within the interval from 199.20 to 203.00 centiMorgans, to chromosome 13 within the interval from 105.20 centiMorgans to the q terminus, and to chromosome 6 within the interval from 59.60 to 72.20 centiMorgans. More than one map location is reported for SEQ ID NO:29, indicating that sequences having different map locations were assembled into a single cluster. This situation occurs, for example, when sequences having strong similarity, but not complete identity, are assembled into a single cluster. VII. Analysis of Polynucleotide Expression
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular ceU type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normaUzed value between 0 and 100, and is calculated as foUows: the BLAST score is multipUed by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quaUty in a BLAST aUgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • polynucleotide sequences encoding PKIN are analyzed with respect to the tissue sources from which they were derived. For example, some fuU length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example DI). Each cDNA sequence is derived from a cDNA Ubrary constructed from a human tissue.
  • Each human tissue is classified into one of the foUowing organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitaUa, female; genitaUa, male; germ ceUs; hemic and immune system; Uver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract.
  • the number of Ubraries in each category is counted and divided by the total number of Ubraries across aU categories.
  • each human tissue is classified into one of the foUowing disease/condition categories: cancer, ceU line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of Ubraries in each category is counted and divided by the total number of Ubraries across aU categories.
  • the resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding PKIN.
  • cDNA sequences and cDNA Ubrary/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).
  • FuU length polynucleotide sequences were also produced by extension of an appropriate fragment of the fuU length molecule using oUgonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5 'extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in hai ⁇ in structures and primer-primer dimerizations was avoided.
  • the reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH ⁇ SO ⁇ and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the foUowing parameters for primer pair PCI A and PCI B: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C
  • the parameters for primer pair T7 and SK+ were as foUows: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68
  • the plate was scanned in a Fhioroskan D (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • Fhioroskan D (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ l aUquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
  • the extended nucleotides were desalted and concentrated, transfened to 384-weU plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WT), and sonicated or sheared prior to reUgation into pUC 18 vector (Amersham Pharmacia Biotech).
  • CviJI cholera virus endonuclease Molecular Biology Research, Madison WT
  • sonicated or sheared prior to reUgation into pUC 18 vector
  • the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
  • Extended clones were reUgated using T4 Ugase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coU ceUs. Transformed ceUs were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384- weU plates in LB 2x carb Uquid media. The ceUs were lysed, and DNA was ampUfied by PCR using Taq DNA polymerase
  • Step 1 94°C, 3 min
  • Step 2 94°C, 15 sec
  • Step 3 60°C, 1 min
  • Step 4 72°C, 2 min
  • Step 5 steps 2, 3, and 4 repeated 29 times
  • Step 6 72°C, 5 min
  • Step 7 storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampUfied using the same conditions as described above.
  • fuU length polynucleotide sequences are verified using the above procedure or are used to obtain 5 'regulatory sequences using the above procedure along with oUgonucleotides designed for such extension, and an appropriate genomic Ubrary.
  • Hybridization probes derived from SEQ DD NO:23-44 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oUgonucleotides, consisting of about 20 base pairs, is specificaUy described, essentiaUy the same procedure is used with larger nucleotide fragments.
  • OUgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oUgomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • the labeled oUgonucleotides are substantiaUy purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech).
  • An aUquot containing IO 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the foUowing endonucleases: Ase I, Bgl D, Eco Rl, Pst I, Xba I, or Pvu D (DuPont NEN).
  • the DNA from each digest is fractionated on a 0.7% agarose gel and transfened to nylon membranes (Nytran Plus, Schleicher & SchueU, Durham NH). Hybridization is carried out for 16 hours at 40 °C. To remove nonspecific signals, blots are sequentiaUy washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visuaUzed using autoradiography or an alternative imaging means and compared.
  • the linkage or synthesis of anay elements upon a microanay can be achieved utiUzing photoUthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof.
  • the substrate in each of the aforementioned technologies should be uniform and soUd with a non-porous surface (Schena (1999), supra).
  • Suggested substrates include siUcon, siUca, glass sUdes, glass chips, and siUcon wafers.
  • a procedure analogous to a dot or slot blot may also be used to anange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
  • a typical array may be produced using available methods and machines weU known to those of ordinary skiU in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; MarshaU, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
  • FuU length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oUgomers thereof may comprise the elements of the microanay. Fragments or oUgomers suitable for hybridization can be selected using software weU known in the art such as LASERGENE software (DNASTAR).
  • the anay elements are hybridized with polynucleotides in a biological sample.
  • the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
  • a fluorescence scanner is used to detect hybridization at each array element.
  • laser desorbtion and mass spectrometry maybe used for detection of hybridization.
  • the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed.
  • microarray preparation and usage is described in detail below.
  • Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oUgo-(dT) ceUulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg ⁇ l oUgo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech).
  • the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
  • Specific control poly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeUng) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
  • Sequences of the present invention are used to generate anay elements.
  • Each anay element is ampUfied from bacterial ceUs containing vectors with cloned cDNA inserts.
  • PCR ampUfication uses primers complementary to the vector sequences flanking the cDNA insert.
  • Array elements are ampUfied in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g.
  • AmpUfied anay elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech). Purified anay elements are immobiUzed on polymer-coated glass sUdes.
  • Glass microscope sUdes are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distiUed water washes between and after treatments.
  • Glass sUdes are etched in 4% hydrofluoric acid (VWR Scientific Products Co ⁇ oration (VWR), West Chester PA), washed extensively in distiUed water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol.
  • Coated sUdes are cured in a 110°C oven.
  • Array elements are appUed to the coated glass substrate using a procedure described in U.S.
  • Patent No. 5,807,522 inco ⁇ orated herein by reference.
  • 1 ⁇ l of the anay element DNA, at an average concentration of 100 ng/ ⁇ l, is loaded into the open capiUary printing element by a high-speed robotic apparatus.
  • the apparatus then deposits about 5 nl of array element sample per sUde.
  • Microanays are UV-crossUnked using a STRATALINKER UV-crossUnker (Stratagene). Microanays are washed at room temperature once in 0.2% SDS and three times in distiUed water. Non-specific binding sites are blocked by incubation of microanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C foUowed by washes in 0.2% SDS and distiUed water as before.
  • PBS phosphate buffered saline
  • Hybridization Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and
  • the chamber containing the anays is incubated for about 6.5 hours at 60°C
  • the anays are washed for 10 min at 45°C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser Ught is focused on the anay using a 20X microscope objective (Nikon, Inc., MelviUe NY).
  • the sUde containing the anay is placed on a computer-controUed X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentiaUy. Emitted Ught is spUt, based on wavelength, into two photomultipUer tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) conesponding to the two fluorophores. Appropriate filters positioned between the anay and the photomultipUer tubes are used to filter the signals.
  • the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
  • Each array is typicaUy scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
  • the sensitivity of the scans is typicaUy caUbrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration.
  • a specific location on the anay contains a complementary DNA sequence, aUowing the intensity of the signal at that location to be conelated with a weight ratio of hybridizing species of 1:100,000.
  • the caUbration is done by labeling samples of the caUbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
  • the output of the photomultipUer tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) instaUed in an IBM-compatible PC computer.
  • the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first conected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
  • Sequences complementary to the PKTN-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturaUy occurring PKIN.
  • oUgonucleotides comprising from about 15 to 30 base pairs is described, essentiaUy the same procedure is used with smaller or with larger sequence fragments.
  • Appropriate oUgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PKIN.
  • a complementary oUgonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
  • a complementary oUgonucleotide is designed to prevent ribosomal binding to the PKTN-encoding transcript.
  • PKIN is achieved using bacterial or virus-based expression systems.
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express PKIN upon induction with isopropyl beta-D-thiogalactopyranoside (TPTG).
  • PKTN in eukaryotic ceUs is achieved by infecting insect or mammaUan cell Unes with recombinant Autographica caUfornica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus.
  • AcMNPV Autographica caUfornica nuclear polyhedrosis virus
  • the nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PKIN by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect ceUs in most cases, or human hepatocytes, in some cases.
  • PKTN is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, pe ⁇ mtting rapid, single-step, affinity-based purification of recombinant fusion protein from crude ceU lysates.
  • GST a 26-kilodalton enzyme from Schistosoma iaponicum, enables the purification of fusion proteins on immobiUzed glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech).
  • the GST moiety can be proteolyticaUy cleaved from PKTN at specificaUy engineered sites.
  • FLAG an 8-amino acid peptide
  • 6- His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified PKIN obtained by these methods can be used directly in the assays shown in Examples XVI, XVD, and XVDI, where appUcable. XIII. Functional Assays
  • PKIN function is assessed by expressing the sequences encoding PKIN at physiologicaUy elevated levels in mammaUan ceU culture systems.
  • cDNA is subcloned into a mammaUan expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human ceU line, for example, an endotheUal or hematopoietic ceU Une, using either Uposome formulations or electroporation.
  • 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
  • Expression of a marker protein provides a means to distinguish transfected ceUs from nontransfected ceUs and is a reUable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein.
  • Flow cytometry (FCM) an automated, laser optics- based technique, is used to identify transfected ceUs expressing GFP or CD64-GFP and to evaluate the apoptotic state of the ceUs and other ceUular properties.
  • FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with ceU death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in ceU size and granularity as measured by forward Ught scatter and 90 degree side Ught scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of ceU surface and intraceUular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the ceU surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
  • PKIN The influence of PKIN on gene expression can be assessed using highly purified populations of ceUs transfected with sequences encoding PKIN and either CD64 or CD64-GFP.
  • CD64 and CD64-GFP are expressed on the surface of transfected ceUs and bind to conserved regions of human immunoglobulin G (IgG).
  • Transfected ceUs are efficiently separated from nontransfected ceUs using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the ceUs using methods weU known by those of skiU in the art. Expression of mRNA encoding PKIN and other genes of interest can be analyzed by northern analysis or microanay techniques. XIV. Production of PKIN Specific Antibodies
  • PKTN substantiaUy purified using polyacrylamide gel electrophoresis PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
  • the PKTN amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a conesponding oUgopeptide is synthesized and used to raise antibodies by means known to those of skiU in the art.
  • LASERGENE software DNASTAR
  • Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophihc regions are weU described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
  • oUgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (AppUed Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity.
  • MBS N-maleimidobenzoyl-N-hydroxysuccinimide ester
  • Rabbits are immunized with the oUgopeptide-KLH complex in complete Freund's adjuvant.
  • Resulting antisera are tested for antipeptide and anti-PKIN activity by, for example, binding the peptide or PKTN to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
  • XV Purification of Naturally Occurring PKIN Using Specific Antibodies
  • PKIN is substantiaUy purified by immunoaffinity chromatography using antibodies specific for PKTN.
  • An immunoaffinity column is constructed by covalently coupling anti-PKIN antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
  • PKTN e.g., high ionic strength buffers in the presence of detergent.
  • the column is eluted under conditions that disrupt antibody/PKTN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PKTN is coUected.
  • aUow the preferential absorbance of PKTN e.g., high ionic strength buffers in the presence of detergent.
  • the column is eluted under conditions that disrupt antibody/PKTN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PKTN is coUected.
  • PKTN or biologicaUy active fragments thereof, are labeled with 125 I Bolton-Hunter reagent.
  • Bolton-Hunter reagent See, e.g., Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.
  • Candidate molecules previously anayed in the weUs of a multi-weU plate are incubated with the labeled PKTN, washed, and any weUs with labeled PKIN complex are assayed. Data obtained using different concentrations of PKIN are used to calculate values for the number, affinity, and association of PKTN with the candidate molecules.
  • molecules interacting with PKTN are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commerciaUy available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
  • PKTN may also be used in the PATHCALLTNG process (CuraGen Co ⁇ ., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large Ubraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
  • protein kinase activity is measured by quantifying the phosphorylation of a protein substrate by PKTN in the presence of gamma-labeled 32 P-ATP.
  • PKIN is incubated with the protein substrate, 32 P-ATP, and an appropriate kinase buffer.
  • the 32 P inco ⁇ orated into the substrate is separated from free 32 P-ATP by electrophoresis and the inco ⁇ orated 32 P is counted using a radioisotope counter.
  • the amount of inco ⁇ orated 32 P is proportional to the activity of PKTN.
  • a determination of the specific amino acid residue phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.
  • protein kinase activity is measured by quantifying the transfer of gamma phosphate from adenosine triphosphate (ATP) to a serine, threonine or tyrosine residue in a protein substrate.
  • ATP adenosine triphosphate
  • the reaction occurs between a protein kinase sample with a biotinylated peptide substrate and gamma 32 P-ATP. FoUowing the reaction, free avidin in solution is added for binding to the biotinylated 32 P-peptide product.
  • the binding sample then undergoes a centrifugal ultrafiltration process with a membrane which wiU retain the product-avidin complex and aUow passage of free gamma 32 P-ATP.
  • Suggested substrates and their respective enzymes are as foUows: Histone HI (Sigma) and p34 cdc2 kinase, Annexin I, Angiotensin (Sigma) and EGF receptor kinase, Annexin D and src kinase, ERK1 & ERK2 substrates and MEK, and myelin basic protein and ERK (Pearson, J.D. et al. (1991) Methods in Enzymology 200:62-81).
  • protein kinase activity of PKTN is demonstrated in vitro in an assay containing PKTN, 50 ⁇ l of kinase buffer, l ⁇ g substrate, such as myelin basic protein (MBP) or synthetic peptide substrates, 1 mM DTT, 10 ⁇ g ATP, and 0.5 ⁇ Ci [ ⁇ - 33 P]ATP.
  • l ⁇ g substrate such as myelin basic protein (MBP) or synthetic peptide substrates
  • reaction is stopped by heating to 100 °C in the presence of SDS loading buffer and visuaUzed on a 12% SDS polyacrylamide gel by autoradiography. Inco ⁇ orated radioactivity is conected for reactions carried out in the absence of PKIN or in the presence of the inactive kinase, K38A.
  • adenylate kinase or guanylate kinase activity may be measured by the inco ⁇ oration of 32 P from gamma-labeled 32 P -ATP into ADP or GDP using a gamma radioisotope counter.
  • the enzyme in a kinase buffer, is incubated together with the appropriate nucleotide mono-phosphate substrate (AMP or GMP) and 32 P-labeled ATP as the phosphate donor.
  • AMP or GMP nucleotide mono-phosphate substrate
  • 32 P-labeled ATP as the phosphate donor.
  • the reaction is incubated at 37°C and te ⁇ ninated by addition of trichloroacetic acid.
  • the acid extract is neutraUzed and subjected to gel electrophoresis to separate the mono-, di-, and triphosphonucleotide fractions.
  • the diphosphonucleotide fraction is cut out and counted.
  • the radioactivity recovered is proportional to the enzyme activity.
  • PKTN scintiUation proximity assays
  • useful substrates include recombinant proteins tagged with glutathione transferase, or synthetic peptide substrates tagged with biotin.
  • Inhibitors of PKIN activity such as smaU organic molecules, proteins or peptides, may be identified by such assays.
  • PKTN polyphosphate substrate
  • PolyP polyphosphate substrate
  • PKTN and Poly P are incubated at 37°C for 40 minutes and then at 90°C for 2 minutes in a buffer containing 50 mM Tris-HCl, pH 7.4, 40 mM ammonium sulfate, 4 mM MgCi 2 , and 5 ⁇ M ADP.
  • the reaction mixture is diluted 1:100 in 100 mM Tris-HCl (pH 8.0), 4 mM EDTA, which is then diluted 1:1 in luciferase reaction mixture (ATP Bioluminescence Assay Kit CLS D; Boehringer Mannheim).
  • ATP generated is then quantitated using a luminometer (Kornberg, A. et al. (1999) Annu. Rev. Biochem. 68:89-125; Ault-Riche, D. et al. (1998) J. Bacteriol. 180:1841-1847).
  • PKTN activity of PKTN may be determined using an immune complex kinase assay weU known in the art.
  • COS7 ceUs are transfected with an expression plasmid constructed from a FLAG tag expression vector (pME18S-FLAG) containing PKTN DNA.
  • pME18S-FLAG FLAG tag expression vector
  • the ceUs are lysed in buffer A (20 mM HEPES-NaOH, pH 7.5, 3 mM MgCl 2 , 100 mM NaCl 2 , 1 mM dithiothreitol, 1 mM phenylmethanesulfonyl fluoride, 1 ⁇ g/ml leupeptin, ] mM EGTA, 1 mM Na 3 Vo 4 , 10 mM NaF, 20 mM ⁇ -glycerophosphate, and 0.5% Triton X-100) and centrifuged at 14,000 ⁇ m.
  • buffer A (20 mM HEPES-NaOH, pH 7.5, 3 mM MgCl 2 , 100 mM NaCl 2 , 1 mM dithiothreitol, 1 mM phenylmethanesulfonyl fluoride, 1 ⁇ g/ml leupeptin, ] mM EGTA, 1
  • Supernatants are incubated with anti-FLAG antibody (M2 monoclonal antibody; Eastman Kodak Co.) in a 50% slurry of protein A-Sepharose (Amersham Pharmacia Biotech) for 1.5 hours at 4°C Immune complexes are precipitated and washed twice in buffer A and twice in buffer B (20 mM HEPES-NaOH, pH 7.5, 1 mM dithiothreitol, 10 ⁇ M Na 3 Vo 4 , 2 mM ⁇ - glycerophosphate, 0.1 mM phenylmethanesulfonyl fluoride, 0.1 ⁇ g/ml leupeptin, 0.1 mM EGTA.) Precipitates are incubated in buffer B containing 0.17 mg ml myelin basic protein (MBP) (Sigma), 20 ⁇ M ATP, and 5 ⁇ Ci of [ ⁇ - 32 P]ATP (NEN Life Science Products) at 30°C for 20 minutes.
  • the reaction is stopped by the addition of 4X LaemmU sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 30 mM dithiothreitol, and 10% glycerol) and heated at 95°C for 5 minutes. Proteins are separated by SDS-polyacrylamide gel electrophoresis and radioactivity inco ⁇ orated into MBP is detected by autoradiography (Nakano, K. et al. (2000) J. Biol. Chem. 275:20533-20539.)
  • an assay for PanK activity of PKTN includes the enzyme preparation method as described in VaUari, D.S. et al., (1987) J. Biol. Chem. 262:2468-247. Pantothenate kinase-specific activities in ceU lysates are calculated as a function of protein concentration with the assay being linear with respect to both time and protein input. Protein concentrations are measured using the Bradford assay using bovine ⁇ -globulin as a standard.
  • Standard assays contain D-[l- 14 C]pantothenate (45.5 ⁇ M; specific activity 55 mCi/mmol), ATP (2.5 mM, pH 7.0), MgCl 2 (2.5 mM), Tris-HCl (0.1 M, pH 7.5), and 15 ⁇ g of protein from a soluble ceU extract in a total volume of 40 ⁇ l.
  • the mixture is incubated for 10 min. at 37 °C, and the reaction is stopped by depositing a 30- ⁇ l aUquot onto a Whatman DE81 ion-exchange filter disc which is then washed in three changes of 1% acetic acid in 95% ethanol (25 ml/disc) to remove unreacted pantothenate.
  • 4'-Phosphopantothenate is quantitated by counting the dried disc in 3 ml of scintiUation solution (Rock, supra).
  • Agonists or antagonists of PKTN activation or inhibition may be tested using assays described in section XVD. Agonists cause an increase in PKIN activity and antagonists cause a decrease in PKTN activity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Rheumatology (AREA)
  • Pulmonology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Communicable Diseases (AREA)
  • Virology (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Biomedical Technology (AREA)
  • Obesity (AREA)
  • Pain & Pain Management (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Endocrinology (AREA)
  • Neurosurgery (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)

Abstract

The invention provides human human kinases (PKIN) and polynucleotides which identify and encode PKIN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of PKIN.

Description

HUMAN KINASES
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of human kinases and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human kinases.
BACKGROUND OF THE INVENTION
Kinases comprise the largest known enzyme superfamily and vary widely in their target molecules. Kinases catalyze the transfer of high energy phosphate groups from a phosphate donor to a phosphate acceptor. Nucleotides usually serve as the phosphate donor in these reactions, with most kinases utilizing adenosine triphosphate (ATP). The phosphate acceptor can be any of a variety of molecules, including nucleosides, nucleotides, lipids, carbohydrates, and proteins. Proteins are phosphorylated on hydroxyamino acids. Addition of a phosphate group alters the local charge on the acceptor molecule, causing internal conformational changes and potentially influencing mtermolecular contacts. Reversible protein phosphorylation is the primary method for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors. The activated proteins initiate the cell's intracellular response by way of intracellular signaling pathways and second messenger molecules such as cyclic nucleotides, calcium-calmodulin, inositol, and various mitogens, that regulate protein phosphorylation.
Kinases are involved in all aspects of a cell's function, from basic metabolic processes, such as glycolysis, to cell-cycle regulation, differentiation, and communication with the extracellular environment through signal transduction cascades. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle. There are two classes of protein kinases. One class, protein tyrosine kinases (PTKs), phosphorylates tyrosine residues, and the other class, protein serme/lhreonine kinases (STKs), phosphorylates serine and threonine residues. Some PTKs and STKs possess structural characteristics of both families and have dual specificity for both tyrosine and serine/threonine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family. The protein kinase catalytic domain can be further divided into 11 subdomains. N-terminal subdomains I-IY fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C- terminal subdomains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a tyrosine, serine, or threonine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-rich ATP binding consensus motif, subdomain π contains a critical lysine residue required for maximal catalytic activity, and subdomains VI through LX comprise the highly conserved catalytic core. PTKs and STKs also contain distinct sequence motifs in subdomains VI and VHI which may confer hydroxyarnino acid specificity.
In addition, kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book, Vol I p.p. 17-20 Academic Press, San Diego, CA.). In particular, two protein kinase signature sequences have been identified in the kinase domain, the first containing an active site lysine residue involved in ATP binding, and the second containing an aspartate residue important for catalytic activity. If a protein analyzed includes the two protein kinase signatures, the probability of that protein being a protein kinase is close to 100% (PROSITE: PDOCOOIOO, November 1995). Protein Tyrosine Kinases
Protein tyrosine kinases (PTKs) may be classified as either transmembrane, receptor PTKs or nontransmembrane, nonreceptor PTK proteins. Transmembrane tyrosine kinases function as receptors for most growth factors. Growth factors bind to the receptor tyrosine kinase (RTK), which causes the receptor to phosphorylate itself (autophosphorylation) and specific intracellular second messenger proteins. Growth factors (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.
Nontransmembrane, nonreceptor PTKs lack transmembrane regions and, instead, form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that function through non-receptor PTKs include those for cytokines and hormones (growth hormone and prolactin), and antigen-specific receptors on T and B lymphocytes.
Many PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.
Protein Serine Threonine Kinases
Protein serine/threonine kinases (STKs) are nontransmembrane proteins. A subclass of STKs are known as ERKs (extracellular signal regulated kinases) or MAPs (mitogen-activated protein kinases) and are activated after cell stimulation by a variety of hormones and growth factors. Cell stimulation induces a signaling cascade leading to phosphorylation of MEK (MAP/ERK kinase) which, in turn, activates ERK via serine and threonine phosphorylation. A varied number of proteins represent the downstream effectors for the active ERK and implicate it in the control of cell proliferation and differentiation, as well as regulation of the cytoskeleton. Activation of ERK is normally transient, and cells possess dual specificity phosphatases that are responsible for its down- regulation. Also, numerous studies have shown that elevated ERK activity is associated with some cancers. Other STKs include the second messenger dependent protein kinases such as the cyclic- AMP dependent protein kinases (PKA), calcium-calmodulin (CaM) dependent protein kinases, and the mitogen-activated protein kinases (MAP); the cyclin-dependent protein kinases; checkpoint and cell cycle kinases; proliferation-related kinases; 5 -AMP-activated protein kinases; and kinases involved in apoptosis.
The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADPribose, aracbidonic acid, diacylglycerol and calcium-calmodulin. The PKAs are involved in mediating hormone-induced cellular responses and are activated by cAMP produced within the cell in response to hormone stimulation. cAMP is an intracellular mediator of hormone action in all animal cells that have been studied. Hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cAMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K.J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, NY, pp. 416-431, 1887).
The casein kinase I (CKI) gene family is another subfamily of serine/threonine protein kinases. This continuously expanding group of kinases have been implicated in the regulation of numerous cytoplasmic and nuclear processes, including cell metabolism, and DNA replication and repair. CKI enzymes are present in the membranes, nucleus, cytoplasm and cytoskeleton of eukaryotic cells, and on the mitotic spindles of mammalian cells (Fish, K.J. et al., (1995) J. Biol. Chem. 270:14875-14883.
The CKI family members all have a short amino-terminal domain of 9-76 amino acids, a highly conserved kinase domain of 284 amino acids, and a variable carboxyl-terminal domain that ranges from 24 to over 200 amino acids in length (Cegielska, A. et al., (1998) J. Biol. Chem. 273:1357-1364.) The CKI family is comprised of highly related proteins, as seen by the identification of isoforms of casein kinase I from a variety of sources. There are at least five mammalian isoforms, α, β, γ, δ, and ε. Fish et al., identified CKI-epsilon from a human placenta cDNA library. It is a basic protein of 416 amino acids and is closest to CKI-delta. Through recombinant expression, it was deterrnined to phosphorylate known CKI substrates and was inhibited by the CKI-specific inhibitor CKI-7. The human gene for CKI-epsilon was able to rescue yeast with a slow-growth phenotype caused by deletion of the yeast CKI locus, HRR250 (Fish et al, supra.)
The mammalian circadian mutation tau was found to be a sermdominant autosomal allele of CKI-epsilon that markedly shortens period length of circadian rhythms in Syrian hamsters. The tau locus is encoded by casein kinase I-epsilon, which is also a homolog of the Drosophila circadian gene double-time. Studies of both the wildtype and tau mutant CKI-epsilon enzyme indicated that the mutant enzyme has a noticeable reduction in the maximum velocity and autophosphorylation state. Further, in vitro, CKI-epsilon is able to interact with mammalian PERIOD proteins, while the mutant enzyme is deficient in its ability to phosphorylate PERIOD. Lowrey et al., have proposed that CKI- epsilon plays a major role in delaying the negative feedback signal within the transcription-translation- based autoregulatory loop that composes the core of the circadian mechanism. Therefore the CKI- epsilon enzyme is an ideal target for pharmaceutical compounds influencing circadian rhythms, jet-lag and sleep, in addition to other physiologic and metabolic processes under circadian regulation (Lowrey, P.L. et al., (2000) Science 288:483-491.) Calcium-Calmodulin Dependent Protein Kinases
Calcium-calmodulin dependent (CaM) kinases are involved in regulation of smooth muscle contraction, glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM dependent protein kinases are activated by calmodulin, an intracellular calcium receptor, in response to the concentration of free calcium in the cell. Many CaM kinases are also activated by phosphorylation. Some CaM kinases are also activated by autophosphorylation or by other regulatory kinases. CaM kinase I phosphorylates a variety of substrates including the neurotransmitter-related proteins synapsin I and π, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-3686). CaM kinase U also phosphorylates synapsin at different sites and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. CaM kinase II controls the synthesis of catecholamines and seratonin, through phosphorylation/activation of tyrosine hydroxylase and tryptophan hydroxylase, respectively (Fujisawa, H. (1990) BioEssays 12:27-29). The mRNA encoding a calmodulin-binding protein kinase-like protein was found to be enriched in mammalian forebrain. This protein is associated with vesicles in both axons and dendrites and accumulates largely postnataUy. The amino acid sequence of this protein is similar to CaM-dependent STKs, and the protein binds calmodulin in the presence of calcium (Godbout, M. et al. (1994) J. Neurosci. 14:1-13). Mitogen- Activated Protein Kinases
The mitogen-activated protein kinases (MAP) which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades are another STK family that regulates intracellular signaling pathways. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S.E. and Weinberg, R.A. (1993) Nature 365:781-783). MAP kinase signaling pathways are present in mammalian cells as well as in yeast. The extracellular stimuli which activate MAP kinase pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development. Cvclin-Dependent Protein Kinases The cyclin-dependent protein kinases (CDKs) are STKs that control the progression of cells through the cell cycle. The entry and exit of a cell from mitosis are regulated by the synthesis and destruction of a family of activating proteins called cyclins. Cyclins are small regulatory proteins that bind to and activate CDKs, which then phosphorylate and activate selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to cyclin binding, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue on the CDK.
Another family of STKs associated with the cell cycle are the NTMA (never in mitosis)- related kinases (Neks). Both CDKs and Neks are involved in duplication, maturation, and separation of the microtubule organizing center, the centrosome, in animal cells (Fry, A.M., et al. (1998) EMBO J. 17:470-481). The NTM-related kinases also include NIKl histidine kinases, which function in signal transmission (Yamada-Okabe, T. et al. (1999) J. Bacteriol. 181:7243-7247). Checkpoint and Cell Cycle Kinases In the process of cell division, the order and timing of cell cycle transitions are under control of cell cycle checkpoints, which ensure that critical events such as DNA replication and chromosome segregation are carried out with precision. If DNA is damaged, e.g. by radiation, a checkpoint pathway is activated that arrests the cell cycle to provide time for repair. If the damage is extensive, apoptosis is induced. In the absence of such checkpoints, the damaged DNA is inherited by aberrant cells which may cause proliferative disorders such as cancer. Protein kinases play an important role in this process. For example, a specific kinase, checkpoint kinase 1 (Chkl), has been identified in yeast and mammals, and is activated by DNA damage in yeast. Activation of Chkl leads to the arrest of the cell at the G2/M transition. (Sanchez, Y. et al. (1997) Science 277:1497-1501.) Specifically, Chkl phosphorylates the cell division cycle phosphatase CDC25, inhibiting its normal function which is to dephosphorylate and activate the cyclin-dependent kinase Cdc2. Cdc2 activation controls the entry of cells into mitosis. (Peng, C-Y et al. (1997) Science 277:1501- 1505.) Thus, activation of Chkl prevents the damaged cell from entering mitosis. A similar deficiency in a checkpoint kinase, such as Chkl, may also contribute to cancer by failure to arrest cells with damaged DNA at other checkpoints such as G2/M. Proliferation-Related Kinases
Proliferation-related kinase is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakarocytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8). Proliferation-related kinase is related to the polo (derived from Drosophila polo gene) family of STKs implicated in cell division. Proliferation-related kinase is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation.
The RET (rearranged during transfection) proto-oncogene encodes a tyrosine kinase receptor involved in both multiple endocrine neoplasia type 2, an inherited cancer syndrome, and Hirschsprung disease, a developmental defect of enteric neurons. RET and its functional ligand, glial cell line- derived neurotrophic factor, play key roles in the development of the human enteric nervous system (Pachnis, V. et al. (1998) Am. J. Physiol. 275:G183-G186). 5 -AMP-activated protein kinase
A ligand-activated STK protein kinase is 5 -AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 271:8675-8681). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotrimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone. Kinases in Apoptosis Apoptosis is a highly regulated signaling pathway leading to cell death that plays a crucial role in tissue development and homeostasis. Deregulation of this process is associated with the pathogenesis of a number of diseases including autoimmune disease, neurodegenerative disorders, and cancer. Various STKs play key roles in this process. ZIP kinase is an STK containing a C-terminal leucine zipper domain in addition to its N-terminal protein kinase domain. This C-terminal domain appears to mediate homodimerization and activation of the kinase as well as interactions with transcription factors such as activating transcription factor, ATF4, a member of the cyclic-AMP responsive element binding protein (ATF/CREB) family of transcriptional factors (Sanjo, H et al. (1998) J. Biol. Chem, 273:29066-29071). DRAK1 and DRAK2 are STKs that share homology with the death-associated protein kinases (DAP kinases), known to function in interferon-γ induced apoptosis (Sanjo et al. supra). Like ZIP kinase, DAP kinases contain a C-terminal protein-protein interaction domain, in the form of ankyrin repeats, in addition to the N-terminal kinase domain. ZIP, DAP, and DRAK kinases induce morphological changes associated with apoptosis when transfected into NIH3T3 cells (Sanjo et al. supra! However, deletion of either the N-terminal kinase catalytic domain or the C-terminal domain of these proteins abolishes apoptosis activity, indicating that in addition to the kinase activity, activity in the C-terminal domain is also necessary for apoptosis, possibly as an interacting domain with a regulator or a specific substrate.
RICK is another STK recently identified as mediating a specific apoptotic pathway involving the death receptor, CD95 (Inohara, N. et al. (1998) J. Biol. Chem. 273:12296-12300). CD95 is a member of the tumor necrosis factor receptor superfamily and plays a critical role in the regulation and homeostasis of the immune system (Nagata, S. (1997) Cell 88:355-365). The CD95 receptor signaling pathway involves recruitment of various intracellular molecules to a receptor complex following ligand binding. This process includes recruitment of the cysteine protease caspase-8 which, in turn, activates a caspase cascade leading to cell death. RICK is composed of an N-terminal kinase catalytic domain and a C-terminal "caspase-recruitment" domain that interacts with caspase-like domains, indicating that RICK plays a role in the recruitment of caspase-8. This interpretation is supported by the fact that the expression of RICK in human 293T cells promotes activation of caspase-8 and potentiates the induction of apoptosis by various proteins involved in the CD95 apoptosis pathway (Inohara et al. supra). Mitochondrial Protein Kinases
A novel class of eukaryotic kinases, related by sequence to prokaryotic histidine protein kinases, are the mitochondrial protein kinases (MPKs) which seem to have no sequence similarity with other eukaryotic protein kinases. These protein kinases are located exclusively in the mitochondrial matrix space and may have evolved from genes originally present in respiration-dependent bacteria which were endocytosed by primitive eukaryotic cells. MPKs are responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase complexes (Harris, R.A. et al. (1995) Adv. Enzyme Regul. 34:147-162). Five MPKs have been identified. Four members correspond to pyruvate dehydrogenase kinase isozymes, regulating the activity of the pyruvate dehydrogenase complex, which is an important regulatory enzyme at the interface between glycolysis and the citric acid cycle. The fifth member corresponds to a branched- chain alpha-ketoacid dehydrogenase kinase, important in the regulation of the pathway for the disposal of branched-chain amino acids. (Harris, R.A. et al. (1997) Adv. Enzyme Regul. 37:271-293). Both starvation and the diabetic state are known to result in a great increase in the activity of the pyruvate dehydrogenase kinase in the liver, heart and muscle of the rat. This increase contributes in both disease states to the phosphorylation and inactivation of the pyruvate dehydrogenase complex and conservation of pyruvate and lactate for gluconeogenesis (Harris (1995) supra).
KINASES WITH NON-PROTEIN SUBSTRATES
Lipid and Inositol kinases
Lipid kinases phosphorylate hydroxyl residues on lipid head groups. A family of kinases involved in phosphorylation of phosphatidylinositol (PI) has been described, each member phosphorylating a specific carbon on the inositol ring (Leevers, S.J. et al. (1999) Curr. Opin. Cell. Biol. 11 :219-225). The phosphorylation of phosphatidylinositol is involved in activation of the protein kinase
C signaling pathway. The inositol phospholipids (phosphoinositides) intracellular signaling pathway begins with binding of a signaling molecule to a G-protein linked receptor in the plasma membrane.
This leads to the phosphorylation of phosphatidylinositol (PI) residues on the inner side of the plasma . membrane by inositol kinases, thus converting PI residues to the biphosphate state (PIP2). PIP2 is then cleaved into inositol triphosphate (IP3) and diacylglycerol. These two products act as mediators for separate signaling pathways. Cellular responses that are mediated by these pathways are glycogen breakdown in the liver in response to vasopressin, smooth muscle contraction in response to acetylcholine, and thrombm-induced platelet aggregation.
PI 3-kinase (PI3K), which phosphorylates the D3 position of PI and its derivatives, has a central role in growth factor signal cascades involved in cell growth, differentiation, and metabolism. PI3K is a heterodimer consisting of an adapter subunit and a catalytic subunit. The adapter subunit acts as a scaffolding protein, interacting with specific tyrosine-phosphorylated proteins, lipid moieties, and other cytosolic factors. When the adapter subunit binds tyrosine phosphorylated targets, such as the insulin responsive substrate (IRS)-l, the catalytic subunit is activated and converts PI (4,5) bisphosphate (PIP2) to PI (3,4,5) P3 (PIP3). PJP3 then activates a number of other proteins, including PKA, protein kinase B (PKB), protein kinase C (PKC), glycogen synthase kinase (GSK)-3, and p70 ribosomal s6 kinase. PI3K also interacts directly with the cytoskeletal organizing proteins, Rac, rho, and cdc42 (Shepherd, P.R., et al. (1998) Biochem. J. 333:471-490). Animal models for diabetes, such as obese and fat mice, have altered PI3K adapter subunit levels. Specific mutations in the adapter subunit have also been found in an insulin-resistant Danish population, suggesting a role for PI3K in type-2 diabetes (Shepard, supra).
PKC is also activated by diacylglycerol (DAG). Phorbol esters (PE) are analogs of DAG and tumor promoters that cause a variety of physiological changes when administered to cells and tissues. PE and DAG bind to the N-terminal region of PKC. This region contains one or more copies of a cysteine-rich domain about 50 amino-acid residues long and essential for DAG/PE-binding. Diacylglycerol kinase (DGK), the enzyme that converts DAG into phosphatidate, contains two copies of the DAG/PE-binding domain in its N-teπninal section (Azzi, A. et al. (1992) Eur. J. Biochem. 208:547-557).
An example of lipid kinase phosphorylation activity is the phosphorylation of D-erythro-sphingosine to the sphingolipid metabolite, spbingosine-1 -phosphate (SPP). SPP has emerged as a novel lipid second-messenger with both extracellular and intracellular actions (Kohama, T. et al. (1998) J. Biol. Chem. 273:23722-23728). ExtraceUularly, SPP is a ligand for the G-protein coupled receptor EDG-1 (endothelial-derived, G-protein coupled receptor). Intracellularly, SPP regulates cell growth, survival, motility, and cytoskeletal changes. SPP levels are regulated by sphingosine kinases that specifically phosphorylate D-erythro-sphingosine to SPP. The importance of sphingosine kinase in cell signaling is indicated by the fact that various stimuli, including platelet-derived growth factor (PDGF), nerve growth factor, and activation of protein kinase C, increase cellular levels of SPP by activation of sphingosine kinase, and the fact that competitive inhibitors of the enzyme selectively inhibit cell proliferation induced by PDGF (Kohama et al. supra). Purine Nucleotide Kinases The purine nucleotide kinases, adenylate kinase (ATP:AMP phosphotransferase, or AdK) and guanylate kinase ( ATP:GMP phosphotransferase, or GuK) play a key role in nucleotide metabolism and are crucial to the synthesis and regulation of cellular levels of ATP and GTP, respectively. These two molecules are precursors in DNA and RNA synthesis in growing cells and provide the primary source of biochemical energy in cells (ATP), and signal transduction pathways (GTP). Inhibition of various steps in the synthesis of these two molecules has been the basis of many antiproliferative drugs for cancer and antiviral therapy (Pillwein, K. et al. (1990) Cancer Res. 50:1576-1579).
AdK is found in almost all cell types and is especially abundant in cells having high rates of ATP synthesis and utilization such as skeletal muscle. In these cells AdK is physically associated with mitochondria and myofibrils, the subceUular structures that are involved in energy production and utilization, respectively. Recent studies have demonstrated a major function for AdK in transferring high energy phosphoryls from metabolic processes generating ATP to cellular components consuming ATP ( Zeleznikar, R.J. et al. (1995) J. Biol. Chem. 270:7311-7319). Thus AdK may have a pivotal role in mamtaining energy production in cells, particularly those having a high rate of growth or metabolism such as cancer cells, and may provide a target for suppression of its activity to treat certain cancers. Alternatively, reduced AdK activity may be a source of various metabolic, muscle-energy disorders that can result in cardiac or respiratory failure and may be treatable by increasing AdK activity.
GuK, in addition to providing a key step in the synthesis of GTP for RNA and DNA synthesis, also fulfills an essential function in signal transduction pathways of cells through the regulation of GDP and GTP. Specifically, GTP binding to membrane associated G proteins mediates the activation of cell receptors, subsequent intracellular activation of adenyl cyclase, and production of the second messenger, cyclic AMP. GDP binding to G proteins inhibits these processes. GDP and GTP levels also control the activity of certain oncogenic proteins such as p21ras known to be involved in control of cell proliferation and oncogenesis (Bos, J.L. (1989) Cancer Res. 49:4682-4689). High ratios of GTP:GDP caused by suppression of GuK cause activation of p21 and promote oncogenesis. Increasing GuK activity to increase levels of GDP and reduce the GTP: GDP ratio may provide a therapeutic strategy to reverse oncogenesis.
GuK is an important enzyme in the phosphorylation and activation of certain antiviral drugs useful in the treatment of herpes virus infections. These drugs include the guanine homologs acyclovir and buciclovir (Miller, W.H. and Miller R.L. (1980) J. Biol. Chem. 255:7204-7207; Stenberg, K. et al.
(1986) J. Biol. Chem. 261:2134-2139). Increasing GuK activity in infected cells may provide a therapeutic strategy for augmenting the effectiveness of these drugs and possibly for reducing the necessary dosages of the drugs.
Pyrimidine Kinases
The pyrimidine kinases are deoxycybdine kinase and thymidine kinase 1 and 2. Deoxycytidine kinase is located in the nucleus, and thymidine kinase 1 and 2 are found in the cytosol (Johansson, M. et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:11941-11945). Phosphorylation of deoxyribonucleosides by pyrimidine kinases provides an alternative pathway for de novo synthesis of
DNA precursors. The role of pyrimidine kinases, like purine kinases, in phosphorylation is critical to the activation of several chemotherapeutically important nucleoside analogues (Arner E.S. and
Eriksson, S. (1995) Pharmacol. Ther. 67:155-186).
The discovery of new human kinases, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human kinases.
SUMMARY OF THE INVENTION
The invention features purified polypeptides, human kinases, referred to collectively as "PKIN" and individually as "PKLN-1," "PKIN-2," "PKIN-3," "PKIN-4," "PKIN-5," "PKB -6," "PKIN-7," "PKIN-8," "PKIN-9," "PKIN-10," "PKIN-11," "PKIN-12," "PKIN-13," "PKB -14," "PKIN-15," "PKIN-16," "PKIN-17," "PKIN-18," "PKIN-19," "PKIN-20," "PKIN-21," and "PKIN- 22." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO: 1-22.
The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l- 22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO: 1-22. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:23-44. Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22.
The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.
The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof. The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition. Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional PKIN, comprising administering to a patient in need of such treatment the composition. The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide. The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:23-44, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
BRIEF DESCRIPTION OF THE TABLES
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention. Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.
Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences. Table 5 shows the representative cDNA library for polynucleotides of the invention. Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION
Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the teπninology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. DEFINITIONS
"PKIN" refers to the amino acid sequences of substantially purified PKIN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant. The term "agonist" refers to a molecule which intensifies or rnimics the biological activity of
PKIN. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PKIN either by directly interacting with PKIN or by acting on components of the biological pathway in which PKIN participates. An "allelic variant" is an alternative form of the gene encoding PKIN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
"Altered" nucleic acid sequences encoding PKIN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as PKIN or a polypeptide with at least one functional characteristic of PKIN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PKIN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PKIN. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PKIN. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PKIN is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Arnino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
"Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of PKIN. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PKIN either by directly interacting with PKIN or by acting on components of the biological pathway in which PKIN participates.
The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind PKIN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic deteπninants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No.
5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH2), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.) The term "intramer" refers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl Acad. Sci. USA 96:3606-3610). The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule. The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic PKIN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies. "Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5\
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding PKIN or fragments of PKIN maybe employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCI), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.). "Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVTEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence. "Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions. Original Residue Conservative Substitution
Ala Gly, Ser
Arg His, Lys
Asn Asp, Gin, His
Asp Asn, Glu Cys Ala, Ser
Gin Asn, Glu, His
Glu Asp, Gin, His
Gly Ala
His Asn, Arg, Gin, Glu lie Leu, Val
Leu He, Val
Lys Arg, G , Glu
Met Leu, De
Phe His, Met, Leu, Trp, Tyr Ser Cys, Thr
Thr Ser, Val
Trp Phe, Tyr
Tyr His, Phe, Trp Val lie, Leu, Thr
Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation,
(b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain. A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide. "Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
A "fragment" is a unique portion of PKIN or the polynucleotide encoding PKIN which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, maybe encompassed by the present embodiments. A fragment of SEQ ID NO:23-44 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:23-44, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:23-44 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:23-44 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:23-44 and the region of SEQ ID NO:23-44 to which the fragment corresponds are routinely deterrninable by one of ordinary skill in the art based on the intended purpose for the fragment.
A fragment of SEQ ID NO:l-22 is encoded by a fragment of SEQ ID NO:23-44. A fragment of SEQ ID NO: 1-22 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO: 1-22. For example, a fragment of SEQ ID NO: 1-22 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:l-22. The precise length of a fragment of SEQ ID NO: 1-22 and the region of SEQ ID NO: 1-22 to which the fragment corresponds are routinely deterrninable by one of ordinary skill in the art based on the intended purpose for the fragment.
A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.
"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences. Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nJrn.nih.gov/gorf/bl2.htrnl. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example: Matrix: BLOSUM62
Reward for match: 1
Penalty for mismatch: -2
Open Gap: 5 and Extension Gap: 2 penalties
Gap x drop-off: 50 Expect: 10
Word Size: 11
Filter: on
Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured. Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and_hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=l, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62
Open Gap: 11 and Extension Gap: 1 penalties Gap x drop-off: 50
Expect: 10
Word Size: 3
Filter: on
Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in deteπnining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely deterrninable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA.
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T„j for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C maybe used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides. The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C0t or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively. "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oligopeptide fragment of PKIN which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of PKIN which is useful in any of the antibody production methods disclosed herein or known in the art.
The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate. The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of PKIN. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PKIN. The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which maybe single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
"Post-translational modification" of an PKIN may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of PKIN.
"Probe" refers to nucleic acid sequences encoding PKIN, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which maybe annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols. A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microaπay elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell. Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, cher luminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art. An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base ώiymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose. The term "sample" is used in its broadest sense. A sample suspected of containing PKIN, nucleic acids encoding PKIN, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc. The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
'Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The coπesponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs maybe indicative of, for example, a certain population, a disease state, or a propensity for a disease state. A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
THE INVENTION
The invention is based on the discovery of new human human kinases (PKIN), the polynucleotides encoding PKIN, and the use of these compositions for the diagnosis, treatment, or prevention of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders. Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project DD). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide DD) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and an Incyte polynucleotide consensus sequence number (incyte Polynucleotide DD) as shown.
Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ DD NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide DD) for polypeptides of the invention. Column 3 shows the GenBank identification number (Genbank DD NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incoφorated by reference herein. Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and
2 show the polypeptide sequence identification number (SEQ DD NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide DD) for each polypeptide of the invention. Column
3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as deteπnined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied. Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are human kinases.
For example, SEQ DD NO:l is 91% identical to human casein kinase I-alpha (GenBank DD g852055) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 2.9e-167, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:l also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFTJLESCAN analyses provide further corroborative evidence that SEQ DD NO:l is a protein kinase.
For example, SEQ DD NO: 10 is 91% identical to Mus musculus FYVE fmger-containing phosphoinositide kinase (GenBank DD g4200446) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO: 10 also contains a phosphatidyl inositol 4-phosphate 5-kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from PRODOM analysis provides further corroborative evidence that SEQ DD NO: 10 is a phosphoinositide kinase.
For example, SEQ DD NO: 12 is 71% identical to human serine/threonine protein kinase (GenBank ID g7160989) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.7e-148, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:12 also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and MOTIF'S analyses provide further corroborative evidence that SEQ DD NO: 12 is protein kinase.
For example, SEQ DD NO: 13 is 86% identical to murine pantothenate kinase 1 beta (GenBank DD g6690020) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.6e-129, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. Pantothenate kinase (PanK) is proposed to be the master regulator of Co A biosynthesis in mammalian cells, by controlling flux through the Co A biosynthetic pathway. Changes in the level of tissue PanK activitiy is reflected by the concurrent changes in the levels of CoA as seen in various metabolic states. Alterations in CoA levels and PanK activity are seen during starvation/feeding, pathological states such as diabetes and by treatment with hypolipidemic drugs (Rock, CO. et al, (2000) J. Biol. Chem. 275:1377-1383.)
For example, SEQ DD NO:16 is 68% identical to Mus musculus Nck-interacting kinase-like embryo specific kinase (GenBank DD g6472874) as deteπnined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO: 16 also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTTFS, and PROFTLESCAN analyses provide further coπoborative evidence that SEQ DD NO: 16 is a protein kinase.
For example, SEQ DD NO.T9 is 99% identical to human RET tyrosine kinase receptor (GenBank DD g5419753) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO: 19 also contains a eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFTLESCAN analyses provide further corroborative evidence that SEQ DD NO: 19 is a tyrosine kinase.
For example, SEQ DD NO:22 is 33% identical to Gallus gallus smooth muscle myosin light chain kinase precursor (GenBank DD g212661) as deterrnined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.2 e-60, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ DD NO:22 also contains two eukaryotic protein kinase domains as deteπnined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTORS, and PROFTLESCAN analyses provide further coπoborative evidence that SEQ DD NO:22 is a protein kinase.
SEQ DD NO:2-9, SEQ ID NO:ll, SEQ DD NO:14-15, SEQ DD NO:17-18, and SEQ DD NO:20-21 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO: 1-22 are described in Table 7. As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide DD) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ D3 NO:23-44 or that distinguish between SEQ DD NO:23-44 and related polynucleotide sequences. Column 5 shows identification numbers coπesponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.
The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 183812R7 is the identification number of an Incyte cDNA sequence, and CARDNOTOl is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71583296V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST"). Alternatively, the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database ( i. e. , those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NF"). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, FL_XXXXXX_N1_N2_YYYYY_N3_N4 represents a "stitched" sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and ITOTis the number of the prediction generated by the algorithm, and N;>2,3...> if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, FLXXXXXX_gAAAAA_gBBBBB_l JV is the identification number of a "stretched" sequence, with XXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier (i.e. , gBBBBB).
Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and coπesponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
Figure imgf000037_0001
In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6. The invention also encompasses PKIN variants. A prefeπed PKIN variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the PKIN amino acid sequence, and which contains at least one functional or structural characteristic of PKIN.
The invention also encompasses polynucleotides which encode PKIN. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO:23-44, which encodes PKIN. The polynucleotide sequences of SEQ DD NO:23-44, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occuπences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding PKIN. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PKIN. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO:23- 44 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ DD NO:23-44. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PKIN.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PKIN, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PKIN, and all such variations are to be considered as being specifically disclosed. Although nucleotide sequences which encode PKIN and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring PKIN under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PKIN or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PKIN and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode PKIN and PKIN derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PKIN or any fragment thereof. Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ DD NO:23-44 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507- 511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions." Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable 17 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system
(Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.) The nucleic acid sequences encoding PKIN may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFTNDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68 °C to 72°C.
When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PKIN may be cloned in recombinant DNA molecules that direct expression of PKIN, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PKIN.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PKIN-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth. The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of PKIN, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These prefeπed variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In another embodiment, sequences encoding PKIN may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, PKIN itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g.,
Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis maybe achieved using the ABI 431 A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of PKIN, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
In order to express a biologically active PKIN, the nucleotide sequences encoding PKIN or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3 'untranslated regions in the vector and in polynucleotide sequences encoding PKIN. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PKIN. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PKIN and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding PKIN and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Cunent Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.) A variety of expression vector/host systems may be utilized to contain and express sequences encoding PKIN. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311 : The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed. In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PKIN. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PKIN can be achieved using a multifunctional E. coli vector such as PBLUESCPJPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PKIN into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of PKIN are needed, e.g. for the production of antibodies, vectors which direct high level expression of PKIN may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of PKIN. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomvces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, CA. et al. (1994) Bio/Technology 12:181-184.)
Plant systems may also be used for expression of PKIN. Transcription of sequences encoding PKIN may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters maybe used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)
In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PKIN may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses PKIN in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV- based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345- 355.)
For long term production of recombinant proteins in mammalian systems, stable expression of PKIN in cell lines is preferred. For example, sequences encoding PKIN can be transformed into cell lines using expression vectors which may contain viral origins of replication and or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PKJN is inserted within a marker gene sequence, transformed cells containing sequences encoding PKIN can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PKIN under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding PKIN and that express PKIN may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of PKIN using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PKIN is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Cunent Protocols in Immunology, Greene Pub. Associates and Wiley- Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)
A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PKIN include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding PKIN, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which maybe used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like. Host cells transformed with nucleotide sequences encoding PKIN may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PKIN may be designed to contain signal sequences which direct secretion of PKIN through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein. In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PKIN may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PKIN protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PKIN activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, ghitathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PKIN encoding sequence and the heterologous protein sequence, so that PKIN may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
In a further embodiment of the invention, synthesis of radiolabeled PKIN may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.
PKIN of the present invention or fragments thereof may be used to screen for compounds that specifically bind to PKIN. At least one and up to a plurality of test compounds may be screened for specific binding to PKIN. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
In one embodiment, the compound thus identified is closely related to the natural ligand of PKIN, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) Cunent Protocols in Immunology 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which PKIN binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express PKIN, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing PKIN or cell membrane fractions which contain PKIN are then contacted with a test compound and binding, stimulation, or inhibition of activity of either PKIN or the compound is analyzed.
An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with PKIN, either in solution or affixed to a solid support, and detecting the binding of PKIN to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support. PKIN of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of PKIN. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for PKIN activity, wherein PKIN is combined with at least one test compound, and the activity of PKIN in the presence of a test compound is compared with the activity of PKIN in the absence of the test compound. A change in the activity of PKIN in the presence of the test compound is indicative of a compound that modulates the activity of PKIN. Alternatively, a test compound is combined with an in vitro or cell-free system comprising PKIN under conditions suitable for PKIN activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of PKIN may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
In another embodiment, polynucleotides encoding PKIN or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL 6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents. Polynucleotides encoding PKTN may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
Polynucleotides encoding PKIN can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding PKIN is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress PKIN, e.g., by secreting PKIN in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
THERAPEUTICS Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of PKIN and human kinases. In addition, the expression of PKIN is closely associated with brain, breast tumor, cardiovascular, digestive, fallopian tube tumor, fetal stomach, nervous, ovarian tumor, pancreatic tumor, peritoneal tumor, pituitary gland, placental, prostate tumor, neural, spinal cord, and testicular tissues, and with umbilical cord blood dendritic cells. Therefore, PKIN appears to play a role in cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders. In the treatment of disorders associated with increased PKIN expression or activity, it is desirable to decrease the expression or activity of PKIN. In the treatment of disorders associated with decreased PKIN expression or activity, it is desirable to increase the expression or activity of PKIN. Therefore, in one embodiment, PKIN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN. Examples of such disorders include, but are not limited to, a cancer, such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, leukemias such as multiple myeloma, and lymphomas such as Hodgkin's disease; an immune disorder, such as acquired immunodeficiency syndrome (ADDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren' s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, tbrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a growth and developmental disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gallbladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a cardiovascular disease, such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitaUy bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumofhorax, pleural tumors, drug-induced lung disease, radiation- induced lung disease, and complications of lung transplantation; and a lipid disorder such as fatty liver, cholestasis, primary biliary ciπhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid lipofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphaupoprotememia, hypothyroidism, renal disease, liver disease, lecithinxholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay- Sachs disease, Sandhoffs disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity.
In another embodiment, a vector capable of expressing PKIN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those described above.
In a further embodiment, a composition comprising a substantially purified PKIN in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those provided above. In still another embodiment, an agonist which modulates the activity of PKIN may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those listed above.
In a further embodiment, an antagonist of PKIN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PKIN. Examples of such disorders include, but are not limited to, those cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders described above. In one aspect, an antibody which specifically binds PKIN may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express PKIN. In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PKIN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PKIN including, but not limited to, those described above.
In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of PKIN may be produced using methods which are generally known in the art. In particular, purified PKIN may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PKIN. Antibodies to PKIN may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally prefeπed for therapeutic use.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PKIN or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.
It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PKIN have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of PKIN amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to PKIN may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J.
Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)
In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PKfN-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
Antibody fragments which contain specific binding sites for PKIN may also be generated. For example, such fragments include, but are not limited to, F(ab'>2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PKIN and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PKIN epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for PKIN. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of PKIN-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PKIN epitopes, represents the average affinity, or avidity, of the antibodies for PKIN. The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular PKIN epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about IO9 to IO12 LΛnole are prefened for use in immunoassays in which the PKfN- antibody complex must withstand rigorous manipulations. I^w-affinity antibody preparations with Ka ranging from about IO6 to IO7 L/mole are prefened for use in immunopurification and similar procedures which ultimately require dissociation of PKIN, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of PKIN-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.) In another embodiment of the invention, the polynucleotides encoding PKIN, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding PKIN. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PKIN. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)
In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retro virus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, supra: Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(l):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.) In another embodiment of the invention, polynucleotides encoding PKIN may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) coπect a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCDD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VDT or Factor LX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in PKIN expression or regulation causes disease, the expression of PKIN from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency. In a further embodiment of the invention, diseases or disorders caused by deficiencies in
PKIN are treated by constructing mammalian expression vectors encoding PKIN and introducing these vectors by mechanical means into PKJN-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Cun. Opin. Biotechnol. 9:445-450).
Expression vectors that may be effective for the expression of PKIN include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). PKIN maybe expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding PKIN from a normal individual.
Commercially available liposome transformation kits (e.g., the PERFECT LIPDD TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require niinimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols. In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to PKIN expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding PKIN under the control of an independent promoter or the retrovirus long teπninal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cz's-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding PKIN to cells which have one or more genetic abnormalities with respect to the expression of PKIN. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding PKIN to target cells which have one or more genetic abnormalities with respect to the expression of PKIN. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing PKIN to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incoφorated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding PKIN to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Cun. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for PKIN into the alphavirus genome in place of the capsid-coding region results in the production of a large number of PKTN- coding RNAs and the synthesis of high levels of PKIN in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of PKIN into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, perforrning alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura PubHshing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes. Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of
RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PKIN. Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC Once identified, short RNA sequences of between 15 and 20 ribonucleotides, conesponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PKIN. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3 ' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases. An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding PKIN. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple henx-foπning oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased PKIN expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding PKIN may be therapeutically useful, and in the treatment of disorders associated with decreased PKIN expression or activity, a compound which specifically promotes expression of the polynucleotide encoding PKIN may be therapeutically useful.
At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorialfy or randomly. A sample comprising a polynucleotide encoding PKIN is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding PKIN are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding PKIN. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of PKIN, antibodies to PKIN, and mimetics, agonists, antagonists, or inhibitors of PKIN.
The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast- acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the hing have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising PKIN or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, PKIN or a fragment thereof may be joined to a short cationic N- teiminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to deteπnine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for adrninistration in humans.
A therapeutically effective dose refers to that amount of active ingredient, for example PKIN or fragments thereof, antibodies of PKIN, and agonists, antagonists or inhibitors of PKIN, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD5O/ED50 ratio. Compositions which exhibit large therapeutic indices are prefened. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration. The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
In another embodiment, antibodies which specifically bind PKIN may be used for the diagnosis of disorders characterized by expression of PKIN, or in assays to monitor patients being treated with PKIN or agonists, antagonists, or inhibitors of PKIN. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PKIN include methods which utilize the antibody and a label to detect PKIN in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring PKIN, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PKIN expression. Normal or standard values for PKIN expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to PKIN under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of PKIN expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.
In another embodiment of the invention, the polynucleotides encoding PKIN may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of PKIN may be conelated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PKIN, and to monitor regulation of PKIN levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PKIN or closely related molecules may be used to identify nucleic acid sequences which encode PKIN. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5 'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will deteπnine whether the probe identifies only naturally occurring sequences encoding PKIN, allelic variants, or related sequences. Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the PKIN encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ DD NO:23-44 or from genomic sequences including promoters, enhancers, and introns of the PKIN gene.
Means for producing specific hybridization probes for DNAs encoding PKIN include the cloning of polynucleotide sequences encoding PKIN or PKIN derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like. Polynucleotide sequences encoding PKIN may be used for the diagnosis of disorders associated with expression of PKIN. Examples of such disorders include, but are not limited to, a cancer, such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gallbladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, leukemias such as multiple myeloma and lymphomas such as Hodgkin's disease; an immune disorder, such as acquired immunodeficiency syndrome (ADDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren' s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracoφoreal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a growth and developmental disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a cardiovascular disease, such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitaUy bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemonhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemonhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug- induced lung disease, radiation-induced lung disease, and complications of lung transplantation; and a lipid disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid Upofuscinosis, abetalipoproteinemia, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, Upoid adrenal hypeφlasia, rninimal change disease, npomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoprotememia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff s disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity. The polynucleotide sequences encoding PKIN may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PKIN expression. Such qualitative or quantitative methods are well known in the art. In a particular aspect, the nucleotide sequences encoding PKIN may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding PKIN may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PKIN in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of PKIN, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PKIN, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to deteπnine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding PKJN may involve the use of PCR. These oUgomers may be chemically synthesized, generated enzymatically, or produced in vitro. OUgomers wiU preferably contain a fragment of a polynucleotide encoding PKIN, or a fragment of a polynucleotide complementary to the polynucleotide encoding PKIN, and wiU be employed under optimized conditions for identification of a specific gene or condition. OUgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
In a particular aspect, oUgonucleotide primers derived from the polynucleotide sequences encoding PKIN may be used to detect single nucleotide polymoφhisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymoφhism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oUgonucleotide primers derived from the polynucleotide sequences encoding PKIN are used to ampUfy DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oUgonucleotide primers are fluorescently labeled, which aUows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. AdditionaUy, sequence database analysis methods, termed in siUco SNP (isSNP), are capable of identifying polymoφhisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer- based methods filter out sequence variations due to laboratory preparation of DNA and sequencing enors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA).
Methods which may also be used to quantify the expression of PKIN include radiolabeling or biotinylating nucleotides, coampUfication of a control nucleic acid, and inteφolating results from standard curves. (See, e.g., Melby, P.C et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples maybe accelerated by ranning the assay in a high-throughput format where the oUgomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, oUgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microanay. The microanay can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymoφhisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
In another embodiment, PKIN, fragments of PKIN, or antibodies specific for PKIN may be used as elements on a microanay. The microanay may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above. A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or ceU type. A transcript image represents the global pattern of gene expression by a particular tissue or ceU type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, expressly incoφorated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totaUty of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a phiraUty of elements on a microanay. The resultant transcript image would provide a profile of gene activity.
Transcript images may be generated using transcripts isolated from tissues, ceU lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a ceU line.
Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as weU as toxicological testing of industrial and naturally-occurring environmental compounds. AU compounds induce characteristic gene expression patterns, frequently termed molecular fingeφrints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incoφorated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingeφrints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. IdeaUy, a genome- wide measurement of expression provides the highest quaUty signature. Even genes whose expression is not altered by any tested compounds are important as weU, as the levels of expression of these genes are used to normaUze the rest of the expression data. The normaUzation procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in inteφretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htin.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include aU expressed gene sequences.
In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels conesponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or ceU type. The term proteome refers to the global pattern of protein expression in a particular tissue or ceU type. Each protein component of a proteome can be subjected individuaUy to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a ceU's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or ceU type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visuaUzed in the gel as discrete and uniquely positioned spots, typicaUy by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generaUy proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partiaUy sequenced using, for example, standard methods employing chemical or enzymatic cleavage foUowed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
A proteomic profile may also be generated using antibodies specific for PKIN to quantify the levels of PKIN expression. In one embodiment, the antibodies are used as elements on a microanay, and protein expression levels are quantified by exposing the microanay to the sample and detecting the levels of protein bound to each anay element (Lueking, A. et al. (1999) Anal. Biochem. 270:103- 111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in paraUel with toxicant signatures at the transcript level. There is a poor conelation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reUable and informative in such cases. In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the conesponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
Microanays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT appUcation WO95/251116; Shalon, D. et al. (1995) PCT appUcation WO95/35505; HeUer, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and HeUer, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microanays are weU known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incoφorated by reference. In another embodiment of the invention, nucleic acid sequences encoding PKIN may be used to generate hybridization probes useful in mapping the naturaUy occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentiaUy cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA Ubraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, CM. (1993) Blood Rev. 7:127-134; and Trask, BJ. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention maybe used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymoφhism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)
Fluorescent in situ hybridization (FISH) may be conelated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online MendeUan Inheritance in Man (OMEvI) World Wide Web site. Conelation between the location of the gene encoding PKIN on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using estabUshed chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammaUan species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely locaUzed by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to llq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
(See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, PKIN, its catalytic or immunogenic fragments, or oUgopeptides thereof can be used for screening Ubraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a soUd support, borne on a ceU surface, or located mtraceUularly. The formation of binding complexes between PKIN and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT appUcation WO84/03564.) In this method, large numbers of different smaU test compounds are synthesized on a soUd substrate. The test compounds are reacted with PKIN, or fragments thereof, and washed. Bound PKIN is then detected by methods weU known in the art. Purified PKIN can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutraUzing antibodies can be used to capture the peptide and immobiUze it on a soUd support. In another embodiment, one may use competitive drug screening assays in which neutraUzing antibodies capable of binding PKIN specificaUy compete with a test compound for binding PKIN. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PKIN.
In additional embodiments, the nucleotide sequences which encode PKIN may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is beUeved that one skiUed in the art can, using the preceding description, utiUze the present invention to its fuUest extent. The foUowing embodiments are, therefore, to be construed as merely iUustrative, and not Umitative of the remainder of the disclosure in any way whatsoever.
Without further elaboration, it is beUeved that one skiUed in the art can, using the preceding description, utiUze the present invention to its fuUest extent. The foUowing prefened specific embodiments are, therefore, to be construed as merely iUustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of aU patents, appUcations, and pubUcations mentioned above and below, in particular U.S. Ser. No. 60/242,410, U.S. Ser. No. 60/244,068, U.S. Ser. No. 60 245,708, U.S. Ser. No. 60 247,672, U.S. Ser. No. 60/249,565, U.S. Ser. No. 60/252,730, and U.S. Ser. No. 60/250,807, are hereby expressly incoφorated by reference.
EXAMPLES I. Construction of cDNA Libraries Incyte cDNAs were derived from cDNA Ubraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most Ubraries, poly(A)+ RNA was isolated using oUgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
In some cases, Stratagene was provided with RNA and constructed the conesponding cDNA Ubraries. Otherwise, cDNA was synthesized and cDNA Ubraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oUgo d(T) or random primers. Synthetic oUgonucleotide adapters were Ugated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most Ubraries, the cDNA was size-selected (300- 1000 bp) using SEPHACRYL S 1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were Ugated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent E. coU ceUs including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies. II. Isolation of cDNA Clones
Plasmids obtained as described in Example I were recovered from host ceUs by in vivo excision using the UNIZAP vector system (Stratagene) or by ceU lysis. Plasmids were purified using at least one of the foUowing: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. FoUowing precipitation, plasmids were resuspended in 0.1 ml of distiUed water and stored, with or without lyophiUzation, at 4°C
Alternatively, plasmid DNA was ampUfied from host ceU lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host ceU lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-weU plates, and the concentration of ampUfied plasmid DNA was quantified fluorometricaUy using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN D fluorescence scanner (Labsystems Oy, Helsinki, Finland). III. Sequencing and Analysis
Incyte cDNA recovered in plasmids as described in Example D were sequenced as foUows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (AppUed Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) Uquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or suppUed in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (AppUed Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (AppUed Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VDI.
The polynucleotide sequences derived from Incyte cDNAs were vaUdated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of pubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabiUstic approach which analyzes consensus primary structures of gene famiUes. See, for example, Eddy, S.R. (1996) Cun. Opin. Struct. Biol. 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce fuU length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples TV and V) were used to extend Incyte cDNA assemblages to fuU length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The fuU length polynucleotide sequences were translated to derive the conesponding fuU length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the fuU length translated polypeptide. FuU length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden
Markov model (HMM)-based protein family databases such as PFAM. FuU length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence aUgnments are generated using default parameters specified by the CLUSTAL algorithm as incoφorated into the MEGALIGN multisequence aUgnment program (DNASTAR), which also calculates the percent identity between aUgned sequences.
Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and fuU length sequences and provides appUcable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, aU of which are incoφorated by reference herein in their entirety, and the fourth column presents, where appUcable, the scores, probabiUty values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probabiUty value, the greater the identity between two sequences).
The programs described above for the assembly and analysis of fuU length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ DD NO:23-44. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and ampUfication technologies are described in Table 4, column 4.
IV. Identification and Editing of Coding Sequences from Genomic DNA
Putative human kinases were initially identified by running the Genscan gene identification program against pubUc genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general- puφose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C and S. KarUn (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. KarUn (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To deteπnine which of these Genscan predicted cDNA sequences encode human kinases, the encoded polypeptides were analyzed by querying against PFAM models for human kinases. Potential human kinases were also identified by homology to Incyte cDNA sequences that had been annotated as human kinases. These selected Genscan- predicted sequences were then compared by BLAST analysis to the genpept and gbpri pubUc databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or pubUc cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to conect or confirm the Genscan predicted sequence. FuU length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or pubUc cDNA sequences using the assembly process described in Example DI. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example DI were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic prograrnrning to integrate cDNA and genomic information, generating possible spUce variants that were subsequently confirmed, edited, or extended to create a fuU length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then aU three intervals were considered to be equivalent. This process aUows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as weU as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri pubUc databases. Inconect exons predicted by Genscan were conected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary. "Stretched" Sequences
Partial DNA sequences were extended to fuU length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example DI were queried against pubUc databases such as the GenBank primate, rodent, mammaUan, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubUc human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to detemήne whether it contained a complete gene. VI. Chromosomal Mapping of PKIN Encoding Polynucleotides The sequences which were used to assemble SEQ DD NO:23-44 were compared with sequences from the Incyte LIFESEQ database and pubUc domain databases using BLAST and other implementations of the Smith- Waterman algorithm. Sequences from these databases that matched SEQ DD NO:23-44 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from pubUc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of aU sequences of that cluster, including its particular SEQ DD NO:, to that map location.
Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the pubUc, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to deteπnine if previously identified disease genes map within or in proximity to the intervals indicated above.
In this manner, SEQ DD NO:29 was mapped to chromosome 1 within the interval from 199.20 to 203.00 centiMorgans, to chromosome 13 within the interval from 105.20 centiMorgans to the q terminus, and to chromosome 6 within the interval from 59.60 to 72.20 centiMorgans. More than one map location is reported for SEQ ID NO:29, indicating that sequences having different map locations were assembled into a single cluster. This situation occurs, for example, when sequences having strong similarity, but not complete identity, are assembled into a single cluster. VII. Analysis of Polynucleotide Expression
Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular ceU type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)
Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as: BLAST Score x Percent Identity
5 x minimum {length(Seq. 1), length(Seq. 2)}
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normaUzed value between 0 and 100, and is calculated as foUows: the BLAST score is multipUed by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quaUty in a BLAST aUgnment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
Alternatively, polynucleotide sequences encoding PKIN are analyzed with respect to the tissue sources from which they were derived. For example, some fuU length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example DI). Each cDNA sequence is derived from a cDNA Ubrary constructed from a human tissue. Each human tissue is classified into one of the foUowing organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitaUa, female; genitaUa, male; germ ceUs; hemic and immune system; Uver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of Ubraries in each category is counted and divided by the total number of Ubraries across aU categories. Similarly, each human tissue is classified into one of the foUowing disease/condition categories: cancer, ceU line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of Ubraries in each category is counted and divided by the total number of Ubraries across aU categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding PKIN. cDNA sequences and cDNA Ubrary/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA). VIII. Extension of PKIN Encoding Polynucleotides
FuU length polynucleotide sequences were also produced by extension of an appropriate fragment of the fuU length molecule using oUgonucleotide primers designed from this fragment. One primer was synthesized to initiate 5 'extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in haiφin structures and primer-primer dimerizations was avoided.
Selected human cDNA Ubraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed. High fideUty ampUfication was obtained by PCR using methods weU known in the art. PCR was performed in 96-weU plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NH^SO^ and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the foUowing parameters for primer pair PCI A and PCI B: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C In the alternative, the parameters for primer pair T7 and SK+ were as foUows: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C The concentration of DNA in each weU was detennined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 μl of undiluted PCR product into each weU of an opaque fluorimeter plate (Corning Costar, Acton MA), aUowing the DNA to bind to the reagent. The plate was scanned in a Fhioroskan D (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aUquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, transfened to 384-weU plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WT), and sonicated or sheared prior to reUgation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were reUgated using T4 Ugase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coU ceUs. Transformed ceUs were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384- weU plates in LB 2x carb Uquid media. The ceUs were lysed, and DNA was ampUfied by PCR using Taq DNA polymerase
(Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the foUowing parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reampUfied using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (AppUed Biosystems).
In like manner, fuU length polynucleotide sequences are verified using the above procedure or are used to obtain 5 'regulatory sequences using the above procedure along with oUgonucleotides designed for such extension, and an appropriate genomic Ubrary. IX. Labeling and Use of Individual Hybridization Probes
Hybridization probes derived from SEQ DD NO:23-44 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oUgonucleotides, consisting of about 20 base pairs, is specificaUy described, essentiaUy the same procedure is used with larger nucleotide fragments. OUgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oUgomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oUgonucleotides are substantiaUy purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aUquot containing IO7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the foUowing endonucleases: Ase I, Bgl D, Eco Rl, Pst I, Xba I, or Pvu D (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transfened to nylon membranes (Nytran Plus, Schleicher & SchueU, Durham NH). Hybridization is carried out for 16 hours at 40 °C. To remove nonspecific signals, blots are sequentiaUy washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visuaUzed using autoradiography or an alternative imaging means and compared.
X. Microarrays
The linkage or synthesis of anay elements upon a microanay can be achieved utiUzing photoUthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and soUd with a non-porous surface (Schena (1999), supra). Suggested substrates include siUcon, siUca, glass sUdes, glass chips, and siUcon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to anange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines weU known to those of ordinary skiU in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; MarshaU, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
FuU length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oUgomers thereof may comprise the elements of the microanay. Fragments or oUgomers suitable for hybridization can be selected using software weU known in the art such as LASERGENE software (DNASTAR). The anay elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry maybe used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below. Tissue or Cell Sample Preparation
Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oUgo-(dT) ceUulose method. Each poly(A)+ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg μl oUgo-(dT) primer (21mer), IX first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 μM dGTP, 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeUng) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl 5X SSC/0.2% SDS. Microarray Preparation
Sequences of the present invention are used to generate anay elements. Each anay element is ampUfied from bacterial ceUs containing vectors with cloned cDNA inserts. PCR ampUfication uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are ampUfied in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μg. AmpUfied anay elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech). Purified anay elements are immobiUzed on polymer-coated glass sUdes. Glass microscope sUdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distiUed water washes between and after treatments. Glass sUdes are etched in 4% hydrofluoric acid (VWR Scientific Products Coφoration (VWR), West Chester PA), washed extensively in distiUed water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated sUdes are cured in a 110°C oven. Array elements are appUed to the coated glass substrate using a procedure described in U.S.
Patent No. 5,807,522, incoφorated herein by reference. 1 μl of the anay element DNA, at an average concentration of 100 ng/μl, is loaded into the open capiUary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per sUde.
Microanays are UV-crossUnked using a STRATALINKER UV-crossUnker (Stratagene). Microanays are washed at room temperature once in 0.2% SDS and three times in distiUed water. Non-specific binding sites are blocked by incubation of microanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C foUowed by washes in 0.2% SDS and distiUed water as before. Hybridization Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and
Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65° C for 5 minutes and is aUquoted onto the microanay surface and covered with an 1.8 cm2 coversUp. The arrays are transfened to a wateφroof chamber having a cavity just sUghtly larger than a microscope sUde. The chamber is kept at 100% humidity internaUy by the addition of 140 μl of 5X SSC in a corner of the chamber. The chamber containing the anays is incubated for about 6.5 hours at 60°C The anays are washed for 10 min at 45°C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried. Detection
Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser Ught is focused on the anay using a 20X microscope objective (Nikon, Inc., MelviUe NY). The sUde containing the anay is placed on a computer-controUed X-Y stage on the microscope and raster- scanned past the objective. The 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentiaUy. Emitted Ught is spUt, based on wavelength, into two photomultipUer tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) conesponding to the two fluorophores. Appropriate filters positioned between the anay and the photomultipUer tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typicaUy scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously. The sensitivity of the scans is typicaUy caUbrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the anay contains a complementary DNA sequence, aUowing the intensity of the signal at that location to be conelated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control ceUs), each labeled with a different fluorophore, are hybridized to a single array for the puφose of identifying genes that are differentiaUy expressed, the caUbration is done by labeling samples of the caUbrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
The output of the photomultipUer tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) instaUed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first conected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value conesponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). XI. Complementary Polynucleotides
Sequences complementary to the PKTN-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturaUy occurring PKIN. Although use of oUgonucleotides comprising from about 15 to 30 base pairs is described, essentiaUy the same procedure is used with smaller or with larger sequence fragments. Appropriate oUgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PKIN. To inhibit transcription, a complementary oUgonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oUgonucleotide is designed to prevent ribosomal binding to the PKTN-encoding transcript. XII. Expression of PKIN
Expression and purification of PKIN is achieved using bacterial or virus-based expression systems. For expression of PKIN in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PKIN upon induction with isopropyl beta-D-thiogalactopyranoside (TPTG). Expression of PKTN in eukaryotic ceUs is achieved by infecting insect or mammaUan cell Unes with recombinant Autographica caUfornica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PKIN by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect ceUs in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)
In most expression systems, PKTN is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, peπmtting rapid, single-step, affinity-based purification of recombinant fusion protein from crude ceU lysates. GST, a 26-kilodalton enzyme from Schistosoma iaponicum, enables the purification of fusion proteins on immobiUzed glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). FoUowing purification, the GST moiety can be proteolyticaUy cleaved from PKTN at specificaUy engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commerciaUy available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6- His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified PKIN obtained by these methods can be used directly in the assays shown in Examples XVI, XVD, and XVDI, where appUcable. XIII. Functional Assays
PKIN function is assessed by expressing the sequences encoding PKIN at physiologicaUy elevated levels in mammaUan ceU culture systems. cDNA is subcloned into a mammaUan expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human ceU line, for example, an endotheUal or hematopoietic ceU Une, using either Uposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected ceUs from nontransfected ceUs and is a reUable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics- based technique, is used to identify transfected ceUs expressing GFP or CD64-GFP and to evaluate the apoptotic state of the ceUs and other ceUular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with ceU death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in ceU size and granularity as measured by forward Ught scatter and 90 degree side Ught scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of ceU surface and intraceUular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the ceU surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.
The influence of PKIN on gene expression can be assessed using highly purified populations of ceUs transfected with sequences encoding PKIN and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected ceUs and bind to conserved regions of human immunoglobulin G (IgG). Transfected ceUs are efficiently separated from nontransfected ceUs using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the ceUs using methods weU known by those of skiU in the art. Expression of mRNA encoding PKIN and other genes of interest can be analyzed by northern analysis or microanay techniques. XIV. Production of PKIN Specific Antibodies
PKTN substantiaUy purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
Alternatively, the PKTN amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a conesponding oUgopeptide is synthesized and used to raise antibodies by means known to those of skiU in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophihc regions are weU described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
TypicaUy, oUgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (AppUed Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oUgopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-PKIN activity by, for example, binding the peptide or PKTN to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG. XV. Purification of Naturally Occurring PKIN Using Specific Antibodies
NaturaUy occurring or recombinant PKIN is substantiaUy purified by immunoaffinity chromatography using antibodies specific for PKTN. An immunoaffinity column is constructed by covalently coupling anti-PKIN antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing PKIN are passed over the immunoaffinity column, and the column is washed under conditions that aUow the preferential absorbance of PKTN (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PKTN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PKTN is coUected.
XVI. Identification of Molecules Which Interact with PKIN
PKTN, or biologicaUy active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously anayed in the weUs of a multi-weU plate are incubated with the labeled PKTN, washed, and any weUs with labeled PKIN complex are assayed. Data obtained using different concentrations of PKIN are used to calculate values for the number, affinity, and association of PKTN with the candidate molecules. Alternatively, molecules interacting with PKTN are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commerciaUy available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
PKTN may also be used in the PATHCALLTNG process (CuraGen Coφ., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large Ubraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
XVII. Demonstration of PKIN Activity
GeneraUy, protein kinase activity is measured by quantifying the phosphorylation of a protein substrate by PKTN in the presence of gamma-labeled 32P-ATP. PKIN is incubated with the protein substrate, 32P-ATP, and an appropriate kinase buffer. The 32P incoφorated into the substrate is separated from free 32P-ATP by electrophoresis and the incoφorated 32P is counted using a radioisotope counter. The amount of incoφorated 32P is proportional to the activity of PKTN. A determination of the specific amino acid residue phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.
In one alternative, protein kinase activity is measured by quantifying the transfer of gamma phosphate from adenosine triphosphate (ATP) to a serine, threonine or tyrosine residue in a protein substrate. The reaction occurs between a protein kinase sample with a biotinylated peptide substrate and gamma 32P-ATP. FoUowing the reaction, free avidin in solution is added for binding to the biotinylated 32P-peptide product. The binding sample then undergoes a centrifugal ultrafiltration process with a membrane which wiU retain the product-avidin complex and aUow passage of free gamma 32P-ATP. The reservoir of the centrifuged unit containing the 32P-peptide product as retentate is then counted in a scintiUation counter. This procedure aUows assay of any type of protein kinase sample, depending on the peptide substrate and kinase reaction buffer selected. This assay is provided in kit form (ASUA, Affinity Ultrafiltration Separation Assay, Transbio Coφoration, Baltimore MD, U.S. Patent No. 5,869,275). Suggested substrates and their respective enzymes are as foUows: Histone HI (Sigma) and p34cdc2kinase, Annexin I, Angiotensin (Sigma) and EGF receptor kinase, Annexin D and src kinase, ERK1 & ERK2 substrates and MEK, and myelin basic protein and ERK (Pearson, J.D. et al. (1991) Methods in Enzymology 200:62-81).
In another alternative, protein kinase activity of PKTN is demonstrated in vitro in an assay containing PKTN, 50μl of kinase buffer, lμg substrate, such as myelin basic protein (MBP) or synthetic peptide substrates, 1 mM DTT, 10 μg ATP, and 0.5μCi [γ-33P]ATP. The reaction is incubated at 30°C for 30 minutes and stopped by pipetting onto P81 paper. The unincoφorated [γ- 33P]ATP is removed by washing and the incoφorated radioactivity is measured using a radioactivity scintiUation counter. Alternatively, the reaction is stopped by heating to 100 °C in the presence of SDS loading buffer and visuaUzed on a 12% SDS polyacrylamide gel by autoradiography. Incoφorated radioactivity is conected for reactions carried out in the absence of PKIN or in the presence of the inactive kinase, K38A.
In yet another alternative, adenylate kinase or guanylate kinase activity may be measured by the incoφoration of 32P from gamma-labeled 32P -ATP into ADP or GDP using a gamma radioisotope counter. The enzyme, in a kinase buffer, is incubated together with the appropriate nucleotide mono-phosphate substrate (AMP or GMP) and 32P-labeled ATP as the phosphate donor. The reaction is incubated at 37°C and teπninated by addition of trichloroacetic acid. The acid extract is neutraUzed and subjected to gel electrophoresis to separate the mono-, di-, and triphosphonucleotide fractions. The diphosphonucleotide fraction is cut out and counted. The radioactivity recovered is proportional to the enzyme activity.
In yet another alternative, other assays for PKTN include scintiUation proximity assays (SPA), scintiUation plate technology and filter binding assays. Useful substrates include recombinant proteins tagged with glutathione transferase, or synthetic peptide substrates tagged with biotin. Inhibitors of PKIN activity, such as smaU organic molecules, proteins or peptides, may be identified by such assays.
Kinase activity of PKTN may be deteπnined by its abiUty to convert polyphosphate substrate (PolyP) to ATP in the presence of ADP. PKTN and Poly P are incubated at 37°C for 40 minutes and then at 90°C for 2 minutes in a buffer containing 50 mM Tris-HCl, pH 7.4, 40 mM ammonium sulfate, 4 mM MgCi2, and 5 μM ADP. The reaction mixture is diluted 1:100 in 100 mM Tris-HCl (pH 8.0), 4 mM EDTA, which is then diluted 1:1 in luciferase reaction mixture (ATP Bioluminescence Assay Kit CLS D; Boehringer Mannheim). The ATP generated is then quantitated using a luminometer (Kornberg, A. et al. (1999) Annu. Rev. Biochem. 68:89-125; Ault-Riche, D. et al. (1998) J. Bacteriol. 180:1841-1847).
Kinase activity of PKTN, as measured by phosphorylation of substrate, may be determined using an immune complex kinase assay weU known in the art. COS7 ceUs are transfected with an expression plasmid constructed from a FLAG tag expression vector (pME18S-FLAG) containing PKTN DNA. A control transfection using vector alone without the PKTN DNA insert is done in paraUel. After 48 hours, the ceUs are lysed in buffer A (20 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 100 mM NaCl2, 1 mM dithiothreitol, 1 mM phenylmethanesulfonyl fluoride, 1 μg/ml leupeptin, ] mM EGTA, 1 mM Na3Vo4, 10 mM NaF, 20 mM β-glycerophosphate, and 0.5% Triton X-100) and centrifuged at 14,000 φm. Supernatants are incubated with anti-FLAG antibody (M2 monoclonal antibody; Eastman Kodak Co.) in a 50% slurry of protein A-Sepharose (Amersham Pharmacia Biotech) for 1.5 hours at 4°C Immune complexes are precipitated and washed twice in buffer A and twice in buffer B (20 mM HEPES-NaOH, pH 7.5, 1 mM dithiothreitol, 10 μM Na3Vo4, 2 mM β- glycerophosphate, 0.1 mM phenylmethanesulfonyl fluoride, 0.1 μg/ml leupeptin, 0.1 mM EGTA.) Precipitates are incubated in buffer B containing 0.17 mg ml myelin basic protein (MBP) (Sigma), 20 μM ATP, and 5 μCi of [γ-32P]ATP (NEN Life Science Products) at 30°C for 20 minutes. The reaction is stopped by the addition of 4X LaemmU sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 30 mM dithiothreitol, and 10% glycerol) and heated at 95°C for 5 minutes. Proteins are separated by SDS-polyacrylamide gel electrophoresis and radioactivity incoφorated into MBP is detected by autoradiography (Nakano, K. et al. (2000) J. Biol. Chem. 275:20533-20539.)
In yet another alternative, an assay for PanK activity of PKTN includes the enzyme preparation method as described in VaUari, D.S. et al., (1987) J. Biol. Chem. 262:2468-247. Pantothenate kinase-specific activities in ceU lysates are calculated as a function of protein concentration with the assay being linear with respect to both time and protein input. Protein concentrations are measured using the Bradford assay using bovine γ-globulin as a standard.
Standard assays contain D-[l-14C]pantothenate (45.5 μM; specific activity 55 mCi/mmol), ATP (2.5 mM, pH 7.0), MgCl2 (2.5 mM), Tris-HCl (0.1 M, pH 7.5), and 15μg of protein from a soluble ceU extract in a total volume of 40 μl. The mixture is incubated for 10 min. at 37 °C, and the reaction is stopped by depositing a 30-μl aUquot onto a Whatman DE81 ion-exchange filter disc which is then washed in three changes of 1% acetic acid in 95% ethanol (25 ml/disc) to remove unreacted pantothenate. 4'-Phosphopantothenate is quantitated by counting the dried disc in 3 ml of scintiUation solution (Rock, supra).
XVIII. Enhancement/Inhibition of Protein Kinase Activity Agonists or antagonists of PKTN activation or inhibition may be tested using assays described in section XVD. Agonists cause an increase in PKIN activity and antagonists cause a decrease in PKTN activity.
Various modifications and variations of the described methods and systems of the invention wiU be apparent to those skiUed in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skiUed in molecular biology or related fields are intended to be within the scope of the foUowing claims.
Figure imgf000092_0001
Table 2
Figure imgf000093_0001
Table 2
Figure imgf000094_0001
Table 3
Figure imgf000095_0001
Table 3
Figure imgf000096_0001
Table 3
Figure imgf000097_0001
Table 3
Figure imgf000098_0001
Table 3
Figure imgf000099_0001
Table 3
Figure imgf000100_0001
Table 3
o o
Figure imgf000101_0001
Table 3
Figure imgf000102_0001
Table 3
o t
Figure imgf000103_0001
Table 3
Figure imgf000104_0001
Table 3
Figure imgf000105_0001
Table 3
Figure imgf000106_0001
Table 3
o σs
Figure imgf000107_0001
Table 3
Figure imgf000108_0001
Table 3
o oo
Figure imgf000109_0001
Table 4
s o£)
Figure imgf000110_0001
Figure imgf000110_0002
Table 4
Figure imgf000111_0001
Figure imgf000111_0002
Table 4
Figure imgf000112_0001
Figure imgf000112_0002
Table 4
N>
Figure imgf000113_0001
Table 4
w
Figure imgf000114_0001
Table 4
Figure imgf000115_0001
Table 4
<~n
Figure imgf000116_0002
Figure imgf000116_0001
Table 5
Figure imgf000117_0001
Table 6
Figure imgf000118_0001
Figure imgf000118_0002
Table 6
Figure imgf000119_0001
Table 6
Figure imgf000120_0001
Table 6
Figure imgf000121_0002
Figure imgf000121_0001
Table 7
Figure imgf000122_0002
Figure imgf000122_0001
Table 7
Figure imgf000123_0001
Figure imgf000123_0002
Table 7
Figure imgf000124_0002
Figure imgf000124_0001

Claims

What is claimed is:
1. An isolated polypeptide selected from the group consisting of: a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consistmg of SEQ ID NO:l-22, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ TD NO:23-44.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method of producing a polypeptide of claim 1, the method comprising: a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
10. A method of claim 9, wherein the polypeptide has an amino acid sequence selected from the group consistmg of SEQ ID NO: 1-22.
11. An isolated antibody which specifically binds to a polypeptide of claim 1.
12. An isolated polynucleotide selected from the group consisting of: a) a polynucleotide comprising a polynucleotide sequence selected from the group consistmg of SEQ ID NO:23-44, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ TD NO:23-44, c) a polynucleotide complementary to a polynucleotide of a), d) a polynucleotide complementary to a polynucleotide of b), and e) an RNA equivalent of a)-d).
13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.
14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising: a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.
16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising: a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
18. A composition of claim 17, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO: 1-22.
19. A method for treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition of claim 17.
20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
22. A method for treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment a composition of claim 21.
23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.
25. A method for treating a disease or condition associated with overexpression of functional PKIN, comprising administering to a patient in need of such treatment a composition of claim 24.
26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising: a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
29. A method of assessing toxicity of a test compound, the method comprising: a) treating a biological sample containing nucleic acids with the test compound, b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof, c) quantifying the amount of hybridization complex, and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
30. A diagnostic test for a condition or disease associated with the expression of PKTN in a biological sample, the method comprising: a) combining the biological sample with an antibody of claim 11 , under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and b) detecting the complex, wherein the presence of the complex coπelates with the presence of the polypeptide in the biological sample.
31. The antibody of claim 11 , wherein the antibody is: a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab')2 fragment, or e) a humanized antibody.
32. A composition comprising an antibody of claim 11 and an acceptable excipient.
33. A method of diagnosing a condition or disease associated with the expression of PKIN in a subject, comprising adnunistering to said subject an effective amount of the composition of claim 32.
34. A composition of claim 32, wherein the antibody is labeled.
35. A method of diagnosing a condition or disease associated with the expression of PKTN in a subject, comprising administering to said subject an effective amount of the composition of claim 34.
36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 11, the method comprising: a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ TD NO: 1-22, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from said animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22.
37. A polyclonal antibody produced by a method of claim 36.
38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.
39. A method of making a monoclonal antibody with the specificity of the antibody of claim
11, the method comprising: a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consistmg of SEQ
ID NO: 1-22.
40. A monoclonal antibody produced by a method of claim 39.
41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.
42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.
43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.
44. A method of detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-22 in a sample, the method comprising: a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consistmg of SEQ ID NO:l-22 in the sample.
45. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-22 from a sample, the method comprising: a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ TD NO:l-22.
46. A microanay wherein at least one element of the microanay is a polynucleotide of claim 13.
47. A method of generating a transcript image of a sample which contains polynucleotides, the method comprising: a) labeling the polynucleotides of the sample, b) contacting the elements of the microanay of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.
48. An anay comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.
49. An anay of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.
50. An anay of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
51. An anay of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.
52. An anay of claim 48, which is a microanay.
53. An anay of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.
54. An anay of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.
55. An anay of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.
56. A polypeptide of claim 1, comprising the a ino acid sequence of SEQ TD NO:l.
57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:3.
59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:4.
60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.
61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:6.
62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:8.
64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:10.
66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 11.
67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.
68. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.
69. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.
70. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO: 15.
71. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:16.
72. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO: 17.
73. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:18.
74. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:19.
75. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:20.
76. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:21.
77. A polypeptide of claim 1, comprising the amino acid sequence of SEQ TD NO:22.
78. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:23.
79. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:24.
80. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:25.
81. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:26.
82. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:27.
83. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:28.
84. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:29.
85. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:30.
86. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:31.
87. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:32.
88. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:33.
89. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:34.
90. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:35.
91. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:36.
92. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ LD NO:37.
93. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:38.
94. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:39.
95. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:40.
96. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:41.
97. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ TD NO:42.
98. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:43.
99. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:44.
PCT/US2001/047728 2000-10-20 2001-10-20 Human kinases WO2002033099A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002425963A CA2425963A1 (en) 2000-10-20 2001-10-20 Human kinases
JP2002536068A JP2004537258A (en) 2000-10-20 2001-10-20 Human kinase
EP01987811A EP1373517A2 (en) 2000-10-20 2001-10-20 Human kinases
US10/415,011 US20040053394A1 (en) 2001-10-20 2001-10-20 Human kinases
AU2002227352A AU2002227352A1 (en) 2000-10-20 2001-10-20 Human kinases

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US24241000P 2000-10-20 2000-10-20
US60/242,410 2000-10-20
US24406800P 2000-10-27 2000-10-27
US60/244,068 2000-10-27
US24570800P 2000-11-03 2000-11-03
US60/245,708 2000-11-03
US24767200P 2000-11-09 2000-11-09
US60/247,672 2000-11-09
US24956500P 2000-11-16 2000-11-16
US60/249,565 2000-11-16
US25273000P 2000-11-22 2000-11-22
US60/252,730 2000-11-22
US25080700P 2000-12-01 2000-12-01
US60/250,807 2000-12-01

Publications (2)

Publication Number Publication Date
WO2002033099A2 true WO2002033099A2 (en) 2002-04-25
WO2002033099A3 WO2002033099A3 (en) 2003-10-09

Family

ID=27569438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/047728 WO2002033099A2 (en) 2000-10-20 2001-10-20 Human kinases

Country Status (5)

Country Link
EP (1) EP1373517A2 (en)
JP (1) JP2004537258A (en)
AU (1) AU2002227352A1 (en)
CA (1) CA2425963A1 (en)
WO (1) WO2002033099A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081704A2 (en) * 2001-03-16 2002-10-17 Bayer Aktiengesellschaft Regulation of human protein kinase-like protein
WO2003066087A2 (en) * 2002-02-06 2003-08-14 Developgen Aktiengesellschaft Für Entwicklungsbiologische Forschung Kinases involved in the regulation of energy homeostasis
WO2004022756A2 (en) * 2002-09-06 2004-03-18 Ares Trading S.A. Protein kinases
EP1419242A2 (en) * 2001-07-27 2004-05-19 Applera Corporation Isolated human kinase proteins, nucleic acid molecules encoding human kinase proteins, and uses thereof
WO2005001083A1 (en) 2003-06-27 2005-01-06 Actimis Pharmaceuticals, Inc. Regulation of kinase, ´regulated in copd kinase´ (rc kinase)
US7001753B2 (en) 2001-02-15 2006-02-21 Millennium Pharmaceuticals, Inc. 59079 and 12599, protein kinase family members and uses therefor
US7326781B2 (en) 2002-04-12 2008-02-05 Bristol-Myers Squibb Company Polynucleotides encoding the human citron kinase polypeptide, BMSNKC—0020/0021

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017189A2 (en) * 1993-01-21 1994-08-04 The Salk Institute For Biological Studies Protein kinases
WO2001038503A2 (en) * 1999-11-24 2001-05-31 Sugen, Inc. Novel human protein kinases and protein kinase-like enzymes
WO2001098342A1 (en) * 2000-06-22 2001-12-27 Smithkline Beecham Corporation Novel compounds
WO2002014355A2 (en) * 2000-08-11 2002-02-21 Merck Patent Gmbh Novel mitogen activated kinase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017189A2 (en) * 1993-01-21 1994-08-04 The Salk Institute For Biological Studies Protein kinases
WO2001038503A2 (en) * 1999-11-24 2001-05-31 Sugen, Inc. Novel human protein kinases and protein kinase-like enzymes
WO2001098342A1 (en) * 2000-06-22 2001-12-27 Smithkline Beecham Corporation Novel compounds
WO2002014355A2 (en) * 2000-08-11 2002-02-21 Merck Patent Gmbh Novel mitogen activated kinase

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHUNG CHANG Y ET AL: "A novel, putative MEK kinase controls developmental timing and spatial patterning in Dictyostelium and is regulated by ubiquitin-mediated protein degradation." GENES & DEVELOPMENT, vol. 12, no. 22, 15 November 1998 (1998-11-15), pages 3564-3578, XP002246600 ISSN: 0890-9369 *
DATABASE EMBL [Online] 1 March 2001 (2001-03-01) "Hypothetical protein FLJ23074" Database accession no. Q9H5T2 XP002246601 *
FISH KIMBERLY J ET AL: "Isolation and Characterization of Human Casein Kinase I-epsilon (CKI), a Novel Member of the CKI Gene Family." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 25, 1995, pages 14875-14883, XP002177865 ISSN: 0021-9258 cited in the application *
GRAVES D J: "Powerful tools for genetic analysis come of age" TRENDS IN BIOTECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 17, no. 3, March 1999 (1999-03), pages 127-134, XP004157733 ISSN: 0167-7799 *
GREEN C L ET AL: "Identification of four alternatively spliced isoforms of chicken casein kinase I alpha that are all expressed in diverse cell types" GENE, ELSEVIER BIOMEDICAL PRESS. AMSTERDAM, NL, vol. 216, no. 1, August 1998 (1998-08), pages 189-195, XP004149296 ISSN: 0378-1119 *
PULGAR VICTOR ET AL: "The recombinant alpha isoform of protein kinase CK1 from Xenopus laevis can phosphorylate tyrosine in synthetic substrates." EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 242, no. 3, 1996, pages 519-528, XP001119751 ISSN: 0014-2956 *
ROWLES J ET AL: "PURIFICATION OF CASEIN KINASE I AND ISOLATION OF CDNAS ENCODING MULTIPLE CASEIN KINASE I-LIKE ENZYMES" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 88, no. 21, 1991, pages 9548-9552, XP001119756 ISSN: 0027-8424 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001753B2 (en) 2001-02-15 2006-02-21 Millennium Pharmaceuticals, Inc. 59079 and 12599, protein kinase family members and uses therefor
WO2002081704A3 (en) * 2001-03-16 2003-04-10 Bayer Ag Regulation of human protein kinase-like protein
WO2002081704A2 (en) * 2001-03-16 2002-10-17 Bayer Aktiengesellschaft Regulation of human protein kinase-like protein
US7148050B2 (en) 2001-03-16 2006-12-12 Bayer Healthcare Ag Regulation of human protein kinase-like protein
EP1419242A4 (en) * 2001-07-27 2005-11-02 Applera Corp Isolated human kinase proteins, nucleic acid molecules encoding human kinase proteins, and uses thereof
EP1419242A2 (en) * 2001-07-27 2004-05-19 Applera Corporation Isolated human kinase proteins, nucleic acid molecules encoding human kinase proteins, and uses thereof
WO2003066087A2 (en) * 2002-02-06 2003-08-14 Developgen Aktiengesellschaft Für Entwicklungsbiologische Forschung Kinases involved in the regulation of energy homeostasis
WO2003066087A3 (en) * 2002-02-06 2004-01-22 Developgen Ag Fuer Entwicklung Kinases involved in the regulation of energy homeostasis
US7326781B2 (en) 2002-04-12 2008-02-05 Bristol-Myers Squibb Company Polynucleotides encoding the human citron kinase polypeptide, BMSNKC—0020/0021
WO2004022756A3 (en) * 2002-09-06 2004-06-17 Ares Trading Sa Protein kinases
WO2004022756A2 (en) * 2002-09-06 2004-03-18 Ares Trading S.A. Protein kinases
WO2005001083A1 (en) 2003-06-27 2005-01-06 Actimis Pharmaceuticals, Inc. Regulation of kinase, ´regulated in copd kinase´ (rc kinase)
JP2007527209A (en) * 2003-06-27 2007-09-27 アクチミス ファーマシューティカルズ インコーポレーテッド Regulation of kinase, regulated in COPD kinase (RC kinase)
AU2004251181B2 (en) * 2003-06-27 2009-10-01 Axikin Pharmaceuticals, Inc. Regulation of kinase, 'regulated in COPD kinase' (RC kinase)
US7829685B2 (en) 2003-06-27 2010-11-09 Axikin Pharmaceuticals, Inc. Regulation of kinase, regulated in COPD kinase (RC kinase)
JP2011234724A (en) * 2003-06-27 2011-11-24 Axikin Pharmaceuticals Inc Regulation of kinase regulated in copd kinase (rc kinase)
JP4895808B2 (en) * 2003-06-27 2012-03-14 アクシキン ファーマシューティカルズ インコーポレーテッド Regulation of kinase, regulated in COPD kinase (RC kinase)

Also Published As

Publication number Publication date
CA2425963A1 (en) 2002-04-25
AU2002227352A1 (en) 2002-04-29
WO2002033099A3 (en) 2003-10-09
JP2004537258A (en) 2004-12-16
EP1373517A2 (en) 2004-01-02

Similar Documents

Publication Publication Date Title
EP1290187A2 (en) Humain kinases
EP1356032A2 (en) Human kinases
WO2001060991A2 (en) Human kinases
WO2002018557A2 (en) Human kinases
WO2002046384A2 (en) Kinases and phosphatases sequences, and use thereof
EP1419264A2 (en) Kinases and phosphatases
WO2001020004A2 (en) Protein phosphatase and kinase proteins
EP1242584A2 (en) Human kinases
WO2002033099A2 (en) Human kinases
WO2004001008A2 (en) Kinases and phosphatases
WO2001081555A2 (en) Human kinases
WO2002002757A2 (en) Adenylyl and guanylyl cyclases
US20060068481A1 (en) Human kinases
WO2002094780A2 (en) Kinases and phosphatases
WO2003050084A2 (en) Kinases and phosphatases
US20040018185A1 (en) Human kinases
EP1387889A2 (en) Kinases and phosphatases
WO2004018641A2 (en) Kinases and phosphatases
WO2003091419A2 (en) Kinases and phosphatases
WO2002000840A2 (en) Human lyases
EP1330527A2 (en) Human kinases
WO2003080805A2 (en) Kinases and phosphatases
WO2003012065A2 (en) Kinases and phosphatases
WO2002081667A2 (en) Ligases
JP2004511204A (en) Human kinase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2425963

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002536068

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10415011

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001987811

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001987811

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001987811

Country of ref document: EP