WO2002032996A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2002032996A1
WO2002032996A1 PCT/JP2001/009151 JP0109151W WO0232996A1 WO 2002032996 A1 WO2002032996 A1 WO 2002032996A1 JP 0109151 W JP0109151 W JP 0109151W WO 0232996 A1 WO0232996 A1 WO 0232996A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
propylene
copolymer
compound
aromatic vinyl
Prior art date
Application number
PCT/JP2001/009151
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Takeda
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Publication of WO2002032996A1 publication Critical patent/WO2002032996A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a resin composition which is excellent in flexibility, low-temperature impact resistance, good in moldability, and suppresses the pread of a low molecular weight product after molding, and has excellent transparency.
  • crystalline polypropylene has been added to ethylene-propylene copolymer rubber, ethylene-butene copolymer rubber, propylene-butene copolymer, low-density, and linear low-density.
  • a method of blending a modifier such as polyethylene is generally known. However, such a method of blending a modifier could not satisfy both flexibility and transparency at the same time.
  • a method for imparting flexibility in the polymerization stage such as a two-stage polymerization method in which propylene is polymerized in the first stage and propylene and ethylene are copolymerized in the second stage is obtained by the above-mentioned blend method.
  • the transparency is better than that of the polymer particles, it is necessary to lower the melt mass flow rate and narrow the molecular weight distribution in order to reduce the tackiness of the obtained polymer particles. There was a problem with moldability, and improvement was desired.
  • the present inventors have disclosed in Japanese Patent Application Laid-Open No. 11-24987.
  • SEBS and SEPS By blending SEBS and SEPS with low-crystalline polypropylene, flexibility and heat resistance are excellent, and We have proposed a resin composition that suppresses bleed after molding and has excellent transparency.
  • the resin composition proposed in the above-mentioned Japanese Patent Application Laid-Open No. 11-24097 has some room for improvement in flexibility, and was not sufficiently satisfactory in low-temperature impact resistance.
  • an object of the present invention is to provide a resin composition which is excellent in flexibility, transparency, and low-temperature impact property, has good moldability, and suppresses bleeding of low molecular weight substances.
  • the inventors of the present invention have conducted studies to solve the above-mentioned problems, and as a result, have found that a resin composition of a propylene-based block copolymer composed of a specific component and a specific aromatic vinyl-conjugated gen-based copolymer is used. However, they have found that flexibility, transparency, and low molecular weight compounds can be suppressed, and that both low-temperature impact resistance and moldability can be achieved, and the present invention has been completed.
  • the present invention provides: (1) 1 to 70% by weight of eluted components at 100 ° C. or higher, which are measured by a temperature-rise elution fractionation method; The content is 99 to 30% by weight, and the monomer unit based on propylene of the elution component at 100 ° C. or higher is 100 to 90% by mole, and the monomer unit based on ethylene. 0 to 10 mol%, 90 to 50 mol% of a propylene-based monomer unit of the elution component below 100 ° C, and 10 to 50 mol of an ethylene-based monomer unit.
  • the weight-average molecular weight (Mw) and the number-average molecular weight (Mw) of the copolymer measured by melt-mass mouth rate (MFR), gel permeation chromatography. n) (MwZMn) and 1 og ((Mw / Mn) XMFR ° 33 ) is 0.57 ⁇ ; L.5 ⁇ Mw is 80,000 ⁇ 150,000 Propylene block copolymer 100 parts by weight
  • the elevated temperature elution fractionation method is referred to as JournalofAppliedPolymeerScienec;
  • the method is described in detail in A pplied Polymer Symposium 45, 1-24 (1990). More specifically, first, a high-temperature polymer solution is introduced into a column filled with a diatomaceous earth filler, and the column temperature is gradually reduced, so that components having a high melting point appear on the surface of the filler. Crystallize in order and then gradually raise the ram temperature to elute the components in order from the one with the lowest melting point This is a method of separating one component of lima.
  • the values obtained by the temperature rising elution fractionation method are as follows: SSC_730 type manufactured by Sensh-Ichi Kagaku Co., Ltd., solvent: o-dichlorobenzene, flow rate: 2.5 m 1 / min-Heating rate: 4 ° CZH r, Column: 0 3 O mm X 3 OO mm
  • SSC_730 type manufactured by Sensh-Ichi Kagaku Co., Ltd.
  • solvent o-dichlorobenzene
  • flow rate 2.5 m 1 / min-Heating rate: 4 ° CZH r
  • the elution curve showing the relationship between the elution temperature and the cumulative weight ratio of the elution components. Is a value derived from
  • the propylene-based block copolymer used in the present invention has an elution component of 10 ° C. or more (hereinafter abbreviated as “high-temperature elution component”) in an amount of 1 to 70% by weight when separated by heating and elution under the above measurement conditions. Elution components below 100 ° C
  • low-temperature elution component 99 to 30% by weight.
  • the proportion of the high-temperature eluting component exceeds 70% by weight and the low-temperature eluting component is less than 30% by weight, the flexibility, transparency and low-temperature impact resistance of the obtained resin composition are reduced.
  • the desired composition cannot be obtained.
  • the proportion of high-temperature eluting components and low-temperature eluting components is 3 to 3 for high-temperature eluting components, considering flexibility, transparency, low-temperature impact resistance, etc.
  • low-temperature-eluting components 97 to 40% by weight are preferable, and high-temperature-eluting components 5 to 50% by weight, and low-temperature-eluting components 95 to 50% by weight are more preferable.
  • the monomer unit based on propylene of the high-temperature eluting component is 100 to 90 mol%, preferably 100 to 95 mol%, and the monomer unit based on ethylene is It is 0 to 10 mol%, preferably 0 to 5 mol%. If the above-mentioned high-temperature eluting component satisfies the above ratio, propylene homopolymer, propylene-ethylene copolymer, Alternatively, a mixture of a propylene homopolymer and a propylene-ethylene copolymer may be used.
  • the monomer unit based on propylene of the low-temperature eluting component is 90 to 50 mol%, preferably 85 to 50 mol%, and the monomer unit based on ethylene is 10 to 50 mol%. Mole%, preferably 15 to 50 mol% is necessary to achieve the object of the present invention.
  • the low-temperature eluting component may be a propylene-ethylene copolymer or a mixture of a propylene homopolymer and a propylene-ethylene copolymer as long as the above ratio is satisfied.
  • MF R ° '33 must be in the range of 0.5 7 to 1.5 1 og ((Mw / M n) x MFR. 33 ) If it is less than 0.57 In addition, the molecular weight distribution is too narrow, or the MFR is too small, so that the appearance of defects such as melt fracture and sharkskin tends to occur. Also, if the film forming method is used as the molding method, neck-in is likely to occur. It is not preferable because the sex becomes worse. Also,
  • log ((Mw / Mn) x MFR ° 33 ) exceeds 1.5, the molecular weight distribution is too wide or the MFR is too large, and In the resin composition to be produced, the amount of low molecular weight substances increases, and it becomes difficult to suppress bleeding.
  • the weight average molecular weight (Mw) of the propylene block copolymer used in the present invention needs to be 80,000 to 150,000. When the weight average molecular weight is less than 80,000, the above 1 og is used. ((Mw / M n) X
  • MFR ° '33 Even when MFR ° '33 ) is in the range of 0.57 to: 1.5, it is not preferable because the melt tension is reduced and the formability is reduced. On the other hand, if the weight average molecular weight exceeds 150,000, the molecular weight is too large.
  • the propylene-based block copolymer used in the present invention includes a so-called block copolymer molecular chain in which a polypropylene component and a propylene-ethylene random copolymer component are arranged in one molecular chain, Z or polypropylene component, and propylene-ethylene copolymer. It is preferable that the random copolymer component is mixed with a molecular chain composed of each single component in a micro form in order to obtain good transparency.
  • the propylene block copolymer used in the present invention contains a small amount of monomer units based on ⁇ -olefins other than ethylene and propylene, for example, in a range of 5 mol% or less. May be included.
  • the method for producing the propylene-based block polymer used in the present invention is not particularly limited as long as it satisfies the requirements of the present invention.
  • it can be suitably obtained by the following method.
  • titanium compound [a] a known titanium compound used for polymerization of an olefin can be used without any limitation. Among them, a titanium compound that can obtain a highly stereoregular polymer in a high yield when used for the polymerization of propylene is preferable. These titanium compounds are roughly classified into a supported titanium compound and a titanium trichloride compound. As a method for producing the supported titanium compound, a known method is employed without any limitation. For example, Japanese Unexamined Patent Publication Nos. Sho 56-155206, JP-A 56-136806, JP
  • Examples include a method of co-milling a magnesium compound and a method of bringing a titanium halide, a magnesium compound and an electron donor into contact with each other in a solvent.
  • the titanium trichloride compound include known ", ⁇ a and (5-titanium trichloride. The method for preparing these titanium trichloride compounds is described in, for example, Japanese Patent Application Laid-Open No. 47-34447. No. 8, No. 50 _ 1 265 0 90, No. 50 — 1 1 4 3 9 4 No., No. 50-9 3 888 No., No. 50 — 1 230 No. 91, No. 50 — No. 7 4 5 9 4 No., No. 50 _ 1041 191 No., No. 50 _ 9 8 489 No. 5, No. 5-1 3 6 6
  • the methods disclosed in JP-A Nos. 25-52, 52-308888, 52-325283, etc. are adopted.
  • the organic aluminum compound [b] a known compound used for polymerization of the olefin is employed without any limitation.
  • alkylaluminum halides such as chloride and ethylaluminum dichloride.
  • alkyl alkoxy aluminums such as monoethoxy getyl aluminum and ethoxy monoethyl aluminum can be used.
  • organic gay compound (c) a known compound used for improving the stereoregularity of the olefin is used without any limitation, but a chain-like structure in which the atom directly connected to the gay atom is tertiary carbon.
  • An organosilicon compound having a bulky substituent such as a cyclic hydrocarbon which is a hydrocarbon or a secondary carbon can increase the stereoregularity of the resulting polypropylene component. Combination is preferred because it exhibits good heat resistance.
  • the combination of the titanium compound (a), the organic aluminum compound (b) and the organic gay compound (c) used in the present invention is as follows:
  • the combination of (1) is preferable.
  • R is an iodine atom or an alkyl group having 1 to 7 carbon atoms or a phenyl group.
  • iodine compound [e] examples include iodine, methyl iodide, thiol iodide, iopropyl, butyl iodide, benzene, p-toluene iodide and the like. Among them, methyl iodide and thiol iodide are particularly preferred.
  • the amount of each of the catalyst components (a) and (b) used in the prepolymerization of the present invention and (c) and / or (e) used as necessary depends on the type of the catalyst component. Since it varies depending on the conditions of polymerization, the optimal amount may be appropriately used according to each of these conditions.
  • An example of a generally preferred range is as follows.
  • the ratio of the organoaluminum compound [b] used in the prepolymerization is 0.1 to 100, preferably 0.1 to 100, in terms of A1 / Ti (molar ratio) with respect to the titanium compound [a]. A range of 20 is preferred.
  • the organic gay compound [c] used as needed is 0.01 to 1 in terms of [c] / Ti (molar ratio) with respect to the titanium compound [a]. 100, preferably 0.01 to 10 is preferable, and the proportion of the iodine compound [e] used as necessary is I / T with respect to the titanium compound [a].
  • the i (molar ratio) is preferably in the range of 0.1 to 100, preferably 0.5 to 50.
  • the amount of prepolymerization for polymerizing the olefin is dependent on the prepolymerization conditions, but is generally from 0.1 to 500 g / g ⁇ Ti compound, preferably from 1 to: It is sufficient to be in the range of L 0 0 g Z g ⁇ Ti compound.
  • the olefin used in the prepolymerization may be propylene alone, and may be, for example, 5 mol% or less of an ⁇ -olefin other than propylene, as long as it does not adversely affect the physical properties of the propylene-based block copolymer.
  • a mixture of ethylene, 1-butene, 1-pentene, 1-hexene, 4-methylpentene-11 and propylene may be used.
  • the prepolymerization can be performed in multiple stages, and different ⁇ -olefins can be prepolymerized in each stage, and hydrogen can coexist in each prepolymerization stage.
  • slurry polymerization is usually preferably applied, and a saturated aliphatic hydrocarbon and an aromatic hydrocarbon such as hexane, heptane, cyclohexane, benzene and toluene are used alone as a solvent. Alternatively, they can be used as a mixture.
  • the prepolymerization temperature is preferably in the range of ⁇ 20 to 100 ° C., particularly preferably 0 to 60 ° C.
  • the pre-polymerization time may be appropriately determined according to the pre-polymerization temperature and the amount of polymerization in the pre-polymerization.
  • the pressure in the prepolymerization is not limited, but in the case of slurry polymerization, it is generally from atmospheric pressure to about 0.5 MPa.
  • the prepolymerization may be carried out in any of batch, semi-batch and continuous methods.
  • the present polymerization is carried out by first polymerizing propylene in the presence of the above-mentioned catalyst component or the catalyst-containing prepolymer obtained by the above prepolymer.
  • An embodiment in which the copolymerization is carried out and then random copolymerization of propylene-ethylene is performed is preferable.
  • the catalyst components added during the prepolymerization can be used as they are, but it is preferable to add and adjust the components other than the titanium compound during the main polymerization.
  • the amount of each of the catalyst components (a), (b), and (c) used in the main polymerization of the present invention and the polymerization conditions vary depending on the type of the catalyst component.
  • the optimum use amount and polymerization conditions may be determined in advance. Examples of the amounts of the catalyst components and the polymerization conditions suitably used are as follows.
  • the organoaluminum compound [b] used in the main polymerization can be used without any limitation.
  • the amount of the organic aluminum compound used in the main polymerization is A 1 Z Ti (molar ratio) with respect to the titanium atom in the catalyst; ⁇ 100, preferably 2 ⁇ 500.
  • the above compounds can be used without any limitation.
  • the amount of the organic gay compound used in the main polymerization is S i / T i (molar ratio) with respect to the titanium atom in the catalyst.
  • propylene is firstly polymerized.
  • the polymerization of propylene may be carried out by polymerizing propylene alone or a mixture of propylene and ⁇ -olefin other than propylene within a range satisfying the requirements of the present invention.
  • the polymerization temperature is preferably employed at 80 ° C. or lower, and more preferably in the range of 20 to 70 ° C. If necessary, hydrogen can be allowed to coexist as a molecular weight regulator.
  • the polymerization may be any method such as slurry polymerization using propylene itself as a solvent, gas phase polymerization, solution polymerization, etc., simplicity of the process and reaction rate, and particle properties of the produced copolymer.
  • slurry polymerization using propylene itself as a solvent is a preferred embodiment.
  • the polymerization system may be any of a batch system, a semi-batch system, and a continuous system. Further, the polymerization can be carried out in two or more stages under different conditions such as hydrogen concentration and polymerization temperature.
  • random copolymerization of propylene and ethylene is performed.
  • an ethylene gas is supplied following the propylene polymerization, and in the case of gas phase polymerization, propylene and ethylene are mixed. This is performed by supplying a mixed gas.
  • the polymerization temperature of the random copolymerization of propylene and ethylene is not more than 80 ° C, and preferably is in the range of 20 to 70 ° C. If necessary, hydrogen can be used as a molecular weight regulator, and the polymerization can be carried out by changing the hydrogen concentration at that time in multiple stages.
  • a specific catalyst is selected to produce a propylene block copolymer having the desired molecular weight distribution and crystallinity distribution in one step.
  • it can be produced by a method in which random copolymerization of ethylene and propylene is performed in multiple stages, and polymerization conditions such as hydrogen concentration and ethylene concentration are changed in each stage.
  • copolymerization is carried out by appropriately adjusting the ratio of the high-temperature eluting component and the low-temperature eluting component according to the polymerization conditions.
  • the random copolymerization of propylene and ethylene may be any of a batch system, a semi-batch system, and a continuous system, and the polymerization may be carried out in multiple stages. Further, the polymerization in this step may employ any method of slurry polymerization, gas phase polymerization, and solution polymerization.
  • propylene block copolymer of the present invention It is preferred to carry out random copolymerization of propylene and ethylene by slurry polymerization following polymerization of propylene.
  • the monomer can be evaporated from the polymerization system after completion of the main polymerization to obtain the propylene-based block copolymer of the present invention.
  • the propylene-based block copolymer can be subjected to known washing, for example, countercurrent washing, with a hydrocarbon having 7 or less carbon atoms.
  • the propylene block copolymer used in the present invention may be used after adding and mixing commercially available additives such as an antioxidant, a heat stabilizer, and a chlorine scavenger, and then pelletizing with an extruder.
  • additives such as an antioxidant, a heat stabilizer, and a chlorine scavenger
  • an organic peroxide may be added in addition to the above additives to adjust the molecular weight within a range that satisfies the requirements of the present invention.
  • a small amount of hydrogen is allowed to coexist at the time of polymerization to reduce the molecular weight and the molecular weight of the propylene-based copolymer. It is preferable to adjust the melt mass flow rate and the molecular weight within a predetermined range by adjusting the melt mass flow rate and the molecular weight to some extent with an organic peroxide.
  • the polymer obtained by allowing a small amount of hydrogen to coexist during the polymerization has a melt mass flow rate of 0.001 to: L 0 g / 10 min or less, more preferably 0.01 to 5 g. / l 0 min, more preferably
  • a method of once adjusting the viscosity to 0.01 to 3 g Z 10 min or less, melting and kneading the mixture with an organic peroxide, and adjusting the melt mass mouth opening rate and the molecular weight to a predetermined range is preferable.
  • organic peroxide to be used when decomposing the propylene block copolymer used in the present invention known compounds can be used without any limitation.
  • Representative examples include, for example, methyl ether. Luque Tonpeoxyde, Methyl Isobutyl Ketone Tonpeoxide. Ketone peroxides such as cyclohexanone peroxide; isobutylyl peroxide, lauroyl peroxide, benzoyl peroxide, etc .; diacyl peroxides such as diisopropylbenzenhydroxide, etc.
  • Dicumyl peroxide 2,5-dimethyl-2-, 5-di- (t-butylperoxy) hexane, 1,3-bis- (t-butylvinyloxy-isopropyl) -benzene, di-t-butyl Diperoxides, such as ruperoxide, 2,5-dimethyl-1,2,5-di- (t-butyl-hydroxy) 1-hexane-3; 1,1, -di-t-butyl-oxy 1,3,3 , 5 — trimethylcyclohexane, 2, 2 — dioxy (t-butylperoxy) monobutane
  • Pakabone bets such as t one Puchirupa one O carboxymethyl isopropyl Kabone preparative like; le t _ Buchiruba one Okishipibare, alkyl peresters such as t Buchiruba one Okishibenzoe bets.
  • kneading of the propylene block copolymer and the organic peroxide is carried out.
  • a known kneading apparatus is used at a temperature not lower than the melting point of the propylene block copolymer and the decomposition temperature of the organic peroxide. Done using.
  • a method of kneading at 160 to 330 ° C, preferably 170 to 300 ° C using a screw extruder, a Banbury mixer, a mixing roll, or the like is employed. can do.
  • the melt-kneading can be performed under a stream of an inert gas such as nitrogen gas.
  • preliminary kneading can also be performed using a known mixing device, for example, a tumbler, Henschel mixer or the like.
  • the following aromatic vinyl-hydrogenated conjugated diene copolymer used in the present invention is particularly excellent in flexibility and low-temperature impact resistance while maintaining the transparency of the propylene-based block copolymer. After molding This is important for obtaining a resin composition having an excellent effect of suppressing low molecular weight bleed products.
  • the monomer unit of the aromatic vinyl compound of the aromatic vinyl-hydrogenated conjugated gen-based copolymer is 5 to 25% by weight, preferably 8 to 20% by weight. If the monomer unit based on the aromatic vinyl compound is less than 5% by weight, blocking occurs during molding, which is not preferable. On the other hand, if the monomer unit based on the aromatic vinyl compound exceeds 25% by weight, It is not preferred because not only the transparency is lowered but also the effect of improving flexibility is lowered.
  • vinyl aromatic compound examples include styrene, o-methylstyrene, alkyl styrene such as ⁇ -methylstyrene and ⁇ _t-butylstyrene, p-methoxystyrene, and bulnaphthalene. Among them, styrene is particularly preferred. New
  • At least a part of the double bond of the conjugated gen moiety in the copolymer is a monomer unit based on a conjugated gen at least partially hydrogenated (hereinafter referred to as a hydrogenated conjugated gen) compound.
  • a conjugated gen at least partially hydrogenated hereinafter referred to as a hydrogenated conjugated gen
  • the compatibility with the propylene block copolymer used in the present invention is poor and transparency is impaired, which is not preferred.
  • conjugated diene compounds examples include butadiene, isoprene, pyrylene, methylpentenediene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-dimethyl-1,3-octadiene, and the like. Among them, at least one kind is mentioned, but butadiene and isoprene are particularly preferred.
  • the aromatic vinyl-hydrogenated conjugated diene copolymer used in the present invention is not particularly limited as long as it satisfies the above-mentioned rules, and the above-mentioned known ones can also be used.
  • aromatic vinyl-hydrogenated conjugated gen-based copolymers include, for example, Clayton G1657 manufactured by Shile, Septon 2043 manufactured by Kuraray, and Nubra® (1) HVS-3, and DynaPin 1320 P manufactured by Nippon Synthetic Rubber Co., Ltd.
  • copolymerization form of the aromatic vinyl compound and the hydrogenated conjugated gen compound in the aromatic vinyl-hydrogenated conjugated gen-based copolymer used in the present invention suppresses the bleeding of low molecular weight products after molding. In view of maintaining transparency, the following copolymers are preferred.
  • A is a polymer block based on an aromatic butyl compound and B is a polymer block based on a hydrogenated conjugated gen compound
  • an AB block copolymer hereinafter also referred to as a diblock type
  • A—B—A block copolymers hereinafter also referred to as triblock types
  • a mixture of these copolymers is preferable.
  • the copolymer of the aromatic vinyl compound and the hydrogenated conjugated gen in the aromatic vinyl-conjugated gen-based copolymer is considered.
  • the form is preferably a copolymer shown below.
  • A is a polymer block based on an aromatic vinyl compound
  • C is a random polymer block of a hydrogenated conjugated gen compound and an aromatic vinyl compound
  • D is a conjugated gen compound hydrogenated with an aromatic butyl compound.
  • the aromatic vinyl-hydrogenated conjugated diene copolymer component has a melt mass flow rate force of 0.1 to 20 measured at a load of 230 ° C-2.16 kg (2.1.18 N). The one with g / 10 minutes is preferably used.
  • the method for producing the aromatic vinyl-hydrogenated conjugated copolymer is not particularly limited, and may be produced by a conventionally known method. Usually, a method of copolymerizing an aromatic vinyl compound and a conjugated diene compound and then hydrogenating the double bond of the conjugated diene part in the copolymer is adopted.
  • the resin composition of the present invention comprises (1) propylene Block copolymer 1
  • aromatic vinyl-hydrogenated conjugated diene copolymer 1 to 100 parts by weight, preferably 3 to 80 parts by weight. If the amount of the aromatic vinyl-hydrogenated conjugated gen-based copolymer is less than 1 part by weight, the effect of improving the transparency and flexibility is not sufficient, and if it exceeds 100 parts by weight, the adhesiveness increases, so molding is performed. It is not preferable when the body is piled up, especially when a film sheet is obtained by a scroll, because violent blocking occurs.
  • the resin composition of the present invention may contain propylene other than the propylene-based block copolymer defined in the present invention, based on 10 Q parts by weight of the resin composition of the present invention, as long as the effects of the present invention are not impaired. It is possible to add 0 to 40 parts by weight, preferably 0 to 30 parts by weight, of the polymer.
  • the propylene-based polymer include a propylene homopolymer, 90% mol or more of propylene and an ⁇ -olefin other than propylene, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1 — Heptene.
  • the resin composition of the present invention preferably contains 1 to 30 parts by weight of a resin other than those described above with respect to 100 parts by weight of the resin composition as long as the effects of the present invention are not impaired. Alternatively, it is also possible to carry out the reforming by adding 2 to 20 parts by weight.
  • the resin used is high density polyethylene (HDPE), low density polyethylene (LDPE), ethylene and carbon number 4 ⁇
  • Polyethylene resins such as linear polyethylene (LLDPE), ethylene vinyl acetate copolymer (EVA), and ethylene methacrylate (EMMA), which are copolymerized with 10 ⁇ ;
  • Orylene-based soft resins such as pyrene copolymer (EPR, EPDM), ethylene * butene_1 copolymer (EBM), propylene / butene-1 copolymer (PBM), styrene / butadiene block copolymer
  • Known materials such as (SBR), petroleum resin, rosin resin, and hydrogenated terpene resin can be used without limitation.
  • the resin composition of the present invention may contain known additives such as antioxidants, light stabilizers, antistatic agents, lubricants, copper damage inhibitors, flame retardants, molding agents, and pigments. Can be.
  • the resin composition of the present invention is produced by a known method without any particular limitation.
  • the resin composition is obtained by blending the above-mentioned components, followed by mixing and melt-kneading.
  • the method of melt-kneading is not particularly limited, but, for example, using a screw extruder, a non-amber mixer, a mixing roll, or the like, preferably at 160 to 300 ° C. It is preferable to perform the reaction at a temperature of 180 to 270 ° C. Further, the melting and kneading can be performed under a flow of an inert gas such as a nitrogen gas.
  • a known mixing device such as a tumbler or a Henschel mixer can be used without any limitation.
  • a molded article may be obtained by mixing the components of the resin composition as necessary after mixing, and directly putting the mixture into a molding machine without melt-kneading and molding. It is possible.
  • the measurement was performed under the following measurement conditions using an SSC-7300 model manufactured by Senshu Ichigaku Co., Ltd.
  • Detector Infrared detector, wavelength 3.14 m
  • the measurement was performed using 13 C-NMR spectrometer using JEOLGSX-270.
  • ethylene was supplied at a concentration of 10 mol% while confirming the ethylene gas concentration in the gas phase by gas chromatography, and polymerization was carried out for 120 minutes (step 2).
  • the unreacted monomer was purged to obtain a polymer.
  • the obtained polymer was dried at 70 ° C. for 1 hour.
  • the melt flow rate of the obtained powder was 0.32 g / 10 min.
  • Step 1 of the main polymerization in Production Example 1 the hydrogen concentration in the gas phase was 1.5 mol%, the polymerization time of propylene was 30 minutes, and the ethylene gas concentration in the gas phase was 15.0 mol in Step 2. %, And the same operation as in Production Example 1 was performed except that ethylene was supplied and random copolymerization was performed for 120 minutes.
  • the melt flow rate of the obtained powder was 0.05 g / 1 O min. Add 10 kg to the obtained polymer.
  • Antioxidant [Ilganox 10100 (Ciba 'Specialty Chemicals)] 0.2 parts by weight, heat stabilizer [P_EPQ (Cibas (Charty Chemicals) 0.1 parts by weight, chlorine scavenger [D HT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.)] 0.2 parts by weight, and 0.03 parts by weight of 1,3-bis_ (t-butylvinyloxyisopropyl) benzene as an organic peroxide are added. After mixing, the mixture was extruded at 250 ° C. using a 5 O mm 0 extruder to obtain a pellet. The results are shown in Table 1.
  • step 1 of Production Example 1 the hydrogen concentration in the gas phase was set to 2.0 mol%, the ethylene gas concentration was supplied so as to be maintained at 0.5 mol%, and the propylene polymerization time was set to 10 minutes.
  • step 2 the same operation as in Production Example 1 was performed except that ethylene was supplied and polymerization was performed for 120 minutes so that the concentration of ethylene gas in the gas phase was maintained at 14.0 mol%.
  • the melt flow rate of the obtained powder was 0.15 g / 10 min.
  • the obtained polymer was added to 10 kg in an amount of 0.2% by weight of an antioxidant [Ilganox 11010 (Ciba Specialty Chemicals)], 0.2 parts by weight, and a heat stabilizer [P-EPQ (Ciba).
  • a sheet for measuring haze was created.
  • the sheets evaluated as good were evaluated for appearance, and those evaluated as poor when melt fracture occurred and evaluated as X.
  • the sheet width at which neck ine was evaluated as an index of formability was measured and determined by the following method.
  • Example 2 Same as Example 1 except that the propylene block copolymer obtained in Production Example 2 was used, and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. Table 2 shows the results.
  • Example 2 Except that the propylene-based block copolymer resin obtained in Production Example 3-1, 3-2 was used, and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed in the proportions shown in Table 2, The same operation as in Example 1 was performed. The results are shown in Table 2.
  • Example 7 Same as Example 1 except that the propylene block copolymer obtained in Production Example 4 was used and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. The operation was performed. Table 2 shows the results.
  • Example 2 Same as Example 1 except that the propylene block copolymer obtained in Production Example 5 was used, and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. Table 2 shows the results.
  • a pellet of the propylene-based block copolymer obtained in Production Examples 1-2 and a styrene-hydrogenated butadiene copolymer, Cleton G 1657 (trade name: Table 2 shows the hydrogenation rate of 90% or more (rubber structure: ethylene-butylene), styrene content of 13 wt%, triblock, diblock type, menoleto flow rate of 8 g / 10 minutes)
  • the same operation as in Example 1 was performed except that the components were mixed. The results are shown in Table 2.
  • Example 1 Pellet of the propylene-based block copolymer obtained in 1-2 Kuraray HVS-3 (trade name: vinyl 'isoprene, hydrogenation rate of at least 80%, styrene content of 20% by weight, triblock structure) The same operation as in Example 1 was carried out, except that the melt (6 g of Zol) was mixed at the ratio shown in Table 2. The results are shown in Table 2.
  • Example 2 Same as Example 1 except that the propylene-based block copolymer obtained in Comparative Production Example 2 was used and the styrene-hydrogenated isoprene copolymer used in Example 11 was mixed at the ratio shown in Table 2. Table 2 shows the results.
  • Example 2 Using the propylene block copolymer obtained in Production Example 1-2. Same as Example 1 except that the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. The results are shown in Table 2.
  • Production Example 1 The propylene block copolymer obtained in 1-2 was used. Except that the styrene monohydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2, the same as in Example 1 was used. The same operation was performed. The results are shown in Table 2.
  • Example 12 A pellet of the propylene block copolymer obtained in Example 1-2 and a Cleton G 1652 (a trade name of butadiene hydrogen, a styrene-hydrogenated butadiene copolymer) Addition rate 90% or more Styrene content 29 wt%, triblock, diblock structure, menoleto flow rate 1.3 g / 10 min.) The same operation as in Example 1 was performed. The results are shown in Table 2.
  • Ethylene-propylene rubber Styrene content 0%, melt tip-rate 3g / min Izot Neck-in External haze (%) -30 ° C (KJ / m 2 ) (cm) Appearance 40 ° C li circumference FB3 ⁇ 4 Reinforcement 1 N.B 2.6 o 8 2 8 8 Reinforcement 2 N.B 3 8 o 7 1 R 0 l3 ⁇ 4y class uii 3 N.B 4. .9 o U ⁇ ⁇ o Q
  • the mechanism of the effect of suppressing the pread of low-molecular-weight materials after molding by transparency is not clear, the mechanism of blending the aromatic vinyl compound-hydrogenated conjugated diene compound copolymer is not clear. This is probably because the compatibility between the copolymer block copolymer and the aromatic vinyl compound monohydrogenated conjugated gen compound copolymer is good. Particularly, in the case of an aromatic vinyl compound monohydrogenated conjugated gen compound copolymer having a jib mouth type block type structure, it has good compatibility with the low molecular weight propylene-ethylene copolymer component to be bridged. Therefore, it is considered that these bleeds are suppressed.
  • the resin composition of the present invention is excellent in flexibility, low-temperature impact resistance, and moldability, has excellent transparency after molding, and effectively suppresses low molecular weight components after molding. It can be suitably used in various fields in which conventional thermoplastic elastomers are used.
  • film applications include wrap film, shrink film, storage film, film for sealant, sizing film, adhesive tape, masking film, agricultural film, and medical use. Sheets such as stationery sheets, occlusal sheets, desk mats, agricultural sheets, waterproof sheets, interior skin materials for automobile parts, colum, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A resin composition comprising (1) 100 parts by weight of a propylene block copolymer which is composed of 1 to 70 wt% of a component eluted at 100 °C or above and 99 to 30 wt% of a component eluted at lower than 100 °C as determined by the temperature raising elution fractionation method with the higher -temperature eluted component being constituted of 100 to 90 mole % of propylene monomer units and 0 to 10 mole % of ethylene monomer units and the lower-temperature eluted component being constituted of 90 to 50 mole % of propylene monomer units and 10 to 50 mole % of ethylene monomer units, satisfies the relationship: log((Mw/Mn) x MFR0.33)= 0.57 to 1.5 [wherein MFR is melt mass flow rate of the copolymer; and Mw and Mn are weight- and number-average molecular weights of the copolymer respectively as determined by gel permeation chromatography, and has a weight-average molecular weight (Mw) of 80,000 to 1,500,000, and (2) 1 to 100 parts by weight of a copolymer comprising 5 to 25 wt% of aromatic vinyl units and 95 to 75 wt% of conjugated diene units which are at least partially hydrogenated.

Description

明 細 書 樹脂組成物 技術分野  Description Resin composition Technical field
本発明は、 柔軟性、 低温衝撃性が優れ、 成形加工性が良好で、 か つ成形加工後の低分子量物のプリ一ドを抑制した、 透明性の優れた 樹脂組成物に関する。 背景技術  The present invention relates to a resin composition which is excellent in flexibility, low-temperature impact resistance, good in moldability, and suppresses the pread of a low molecular weight product after molding, and has excellent transparency. Background art
従来より、 結晶性ポリ プロピレンの柔軟性の改良方法として、 結 晶性ポリプロピレンにエチレン一プロピレン共重合体ゴム、 ェチレ ンーブテン共重合体ゴム、 プロピレン—ブテン共重合体、 低密度、 直鎖状低密度ポリエチレン等の改質剤をプレン ドする方法が一般的 に知られている。 しかしながら、 このような改質剤をブレン ドする 方法では、 柔軟性と透明性を同時に満足することはできなかった。 Conventionally, as a method for improving the flexibility of crystalline polypropylene, crystalline polypropylene has been added to ethylene-propylene copolymer rubber, ethylene-butene copolymer rubber, propylene-butene copolymer, low-density, and linear low-density. A method of blending a modifier such as polyethylene is generally known. However, such a method of blending a modifier could not satisfy both flexibility and transparency at the same time.
—方、 第 1段階においてプロピレンの重合を、 第 2段階にプロピ レンとェチレンの共重合を行う二段階重合法等の重合段階で柔軟性 を付与する方法は、 上記プレン ド法で得られたものと比較して透明 性は良好であるが、 得られる重合体粒子の粘着性を少なくするため に、 メルトマスフローレー トを低く したり、 分子量分布を狭くする 必要があるので、 結果と して成形性に問題があり、 改良が望まれて いた。 On the other hand, a method for imparting flexibility in the polymerization stage such as a two-stage polymerization method in which propylene is polymerized in the first stage and propylene and ethylene are copolymerized in the second stage is obtained by the above-mentioned blend method. Although the transparency is better than that of the polymer particles, it is necessary to lower the melt mass flow rate and narrow the molecular weight distribution in order to reduce the tackiness of the obtained polymer particles. There was a problem with moldability, and improvement was desired.
これらの問題点に関し、 すでに本発明者等は、 特開平 8 — 1 3 4 3 2 4号公報において、 特定のプロピレン系プロック共重合体にス チレン一エチレン一ブタジエン—スチレン共重合体 ( S E B S ) 、 スチレン一エチレン—プロピレンースチレン共重合体 ( S E P S ) を配合するこ とにより、 柔軟性、 透明性、 耐衝撃性が改良された樹 脂組成物を提案している。 しかしながら、 上記特開平 8 - 1 3 4 3 2 4号公報において使用している特定のプロピレン系プロック共重 合体は、 メルトマスフローレー トに対して分子量分布が狭いため、 成形加工性という点では十分に満足できるものではなかった。 Regarding these problems, the present inventors have already disclosed in Japanese Patent Application Laid-Open No. Hei 8-134324 a specific propylene block copolymer as a styrene-ethylene-butadiene-styrene copolymer (SEBS). , By blending styrene-ethylene-propylene-styrene copolymer (SEPS), we have proposed a resin composition with improved flexibility, transparency, and impact resistance. However, the specific propylene block copolymer used in the above-mentioned Japanese Patent Application Laid-Open No. 8-134324 has a narrow molecular weight distribution with respect to the melt mass flow rate, and thus is not sufficiently moldable. Was not satisfactory.
また、 本発明者等は、 特開平 1 1 — 2 4 0 9 8 7号公報において. 低結晶性ポリ プロピレンに S E B S、 S E P Sを配合することによ り、 柔軟性、 耐熱性に優れ、 かつ、 成形加工後のブリー ドを抑制し た透明性に優れた樹脂組成物を提案している。 しかしながら、 上記 特開平 1 1 一 2 4 0 9 8 7号公報において提案した樹脂組成物では- 柔軟性において若干の改良の余地があり、 低温衝撃性においては、 十分に満足できるものではなかった。  Further, the present inventors have disclosed in Japanese Patent Application Laid-Open No. 11-24987. By blending SEBS and SEPS with low-crystalline polypropylene, flexibility and heat resistance are excellent, and We have proposed a resin composition that suppresses bleed after molding and has excellent transparency. However, the resin composition proposed in the above-mentioned Japanese Patent Application Laid-Open No. 11-24097 has some room for improvement in flexibility, and was not sufficiently satisfactory in low-temperature impact resistance.
発明の開示 Disclosure of the invention
したがって、 本発明は、 柔軟性、 透明性、 低温衝撃性が優れ、 成 形性が良好でかつ、 低分子量物のブリー ドを抑制した樹脂組成物を 提供することを目的とする。  Therefore, an object of the present invention is to provide a resin composition which is excellent in flexibility, transparency, and low-temperature impact property, has good moldability, and suppresses bleeding of low molecular weight substances.
本発明者らは、 上記の問題を解決するために研究を重ねた結果、 特定の成分よりなるプロ ピレン系ブロック共重合体と、 特定の芳香 族ビニルー共役ジェン系共重合体との樹脂組成物が、 柔軟性、 透明 性、 低分子量物のプリ一ドを抑制するこ とができ、.しかも低温衝撃 性と成形性を両立させることができることを見出し、 本発明を完成 するに至った。  The inventors of the present invention have conducted studies to solve the above-mentioned problems, and as a result, have found that a resin composition of a propylene-based block copolymer composed of a specific component and a specific aromatic vinyl-conjugated gen-based copolymer is used. However, they have found that flexibility, transparency, and low molecular weight compounds can be suppressed, and that both low-temperature impact resistance and moldability can be achieved, and the present invention has been completed.
すなわち、 本発明は、 ( 1 ) 昇温溶離分別法により測定される 1 0 0 °C以上の溶出成分が 1〜 7 0重量%、 1 0 0 °C未満の溶出成 分が 9 9〜 3 0重量%であり、 かつ、 該 1 0 0 °C以上の溶出成分の プロ ピレンに基づく単量体単位が 1 0 0〜 9 0モル%、 エチレンに 基づく単量体単位が 0〜 1 0モル%、 該 1 0 0 °C未満の溶出成分の プロピレンに基づく単量体単位が 9 0〜 5 0モル%、 エチレンに基 づく単量体単位が 1 0〜 5 0モル%である共重合体であって、 該共 重合体のメル トマスフ口一レイ ト (M F R) と、 ゲルパーミ エ一シ ヨ ンクロマ トグラフィ ーにより測定される重量平均分子量 (Mw) と数平均分子量 (M n) の比 (MwZMn) とから算出される 1 o g ( (M w/M n ) X M F R °· 33) が 0. 5 7〜; L . 5ヽ M w が 8万〜 1 5 0万であるプロピレン系ブロック共重合体 1 0 0重 量部 That is, the present invention provides: (1) 1 to 70% by weight of eluted components at 100 ° C. or higher, which are measured by a temperature-rise elution fractionation method; The content is 99 to 30% by weight, and the monomer unit based on propylene of the elution component at 100 ° C. or higher is 100 to 90% by mole, and the monomer unit based on ethylene. 0 to 10 mol%, 90 to 50 mol% of a propylene-based monomer unit of the elution component below 100 ° C, and 10 to 50 mol of an ethylene-based monomer unit. % Of the copolymer, the weight-average molecular weight (Mw) and the number-average molecular weight (Mw) of the copolymer measured by melt-mass mouth rate (MFR), gel permeation chromatography. n) (MwZMn) and 1 og ((Mw / Mn) XMFR ° 33 ) is 0.57 ~; L.5 ヽ Mw is 80,000 ~ 150,000 Propylene block copolymer 100 parts by weight
( 2 ) 芳香族ビニル化合物に基づく単量体単位が 5〜 2 5重量%、 少なく とも一部が水素添加された共役ジェン化合物に基づく単量体 単位が 9 5〜 7 5重量%である芳香族ビニルー共役ジェン系共重合 体 1〜; L 0 0重量部  (2) Fragrance in which the monomer unit based on an aromatic vinyl compound is 5 to 25% by weight, and the monomer unit based on at least a partially conjugated diene compound is 95 to 75% by weight. Aromatic vinyl-conjugated diene copolymer 1-; L 00 parts by weight
からなることを特徵とする樹脂組成物を提供するものである。 発明を実施するための最良の形態 And a resin composition characterized by comprising: BEST MODE FOR CARRYING OUT THE INVENTION
本発明において昇温溶離分別法とは、 J o u r n a l o f A p p l i e d P o l y m e r S c i e n c e ;  In the present invention, the elevated temperature elution fractionation method is referred to as JournalofAppliedPolymeerScienec;
A p p l i e d P o l y m e r S y m p o s i u m 4 5、 1 - 2 4 ( 1 9 9 0 ) に詳細に記述されている方法である。 詳述す ると、 まず、 高温の高分子溶液を、 珪藻土の充塡剤を充填したカラ ムに導入し、 カラム温度を徐々に低下させることにより、 充塡剤表 面に融点の高い成分から順に結晶化させ、 次に力ラム温度を徐々に 上昇させることにより、 融点の低い成分から順に溶出させて溶出ポ リマ一成分を分取する方法である。 The method is described in detail in A pplied Polymer Symposium 45, 1-24 (1990). More specifically, first, a high-temperature polymer solution is introduced into a column filled with a diatomaceous earth filler, and the column temperature is gradually reduced, so that components having a high melting point appear on the surface of the filler. Crystallize in order and then gradually raise the ram temperature to elute the components in order from the one with the lowest melting point This is a method of separating one component of lima.
なお、 本発明において昇温溶離分別法による値は、 実施例で示し たように、 測定装置としてセンシュ一科学社製 S S C _ 7 3 0 0型 を用い、 溶媒 : o—ジクロ口ベンゼン、 流速 : 2. 5 m 1 /m i n - 昇温速度 : 4 °CZH r、 カラム : 0 3 O mm X 3 O O mmの条件で 測定した、 溶出温度と溶出成分の積算重量割合と関係を表わした溶 出曲線から導かれる値である。  In the present invention, as shown in the examples, the values obtained by the temperature rising elution fractionation method are as follows: SSC_730 type manufactured by Sensh-Ichi Kagaku Co., Ltd., solvent: o-dichlorobenzene, flow rate: 2.5 m 1 / min-Heating rate: 4 ° CZH r, Column: 0 3 O mm X 3 OO mm The elution curve showing the relationship between the elution temperature and the cumulative weight ratio of the elution components. Is a value derived from
本発明で用いるプロピレン系ブロック共重合体は、 上記測定条件 で昇温溶離分別した場合における、 1 0 o °c以上の溶出成分 (以下. 高温溶出成分と略す) が 1〜 7 0重量%、 1 0 0 °C未満の溶出成分 The propylene-based block copolymer used in the present invention has an elution component of 10 ° C. or more (hereinafter abbreviated as “high-temperature elution component”) in an amount of 1 to 70% by weight when separated by heating and elution under the above measurement conditions. Elution components below 100 ° C
(以下、 低温溶出成分と略す) が 9 9〜 3 0重量%である。 (Hereinafter abbreviated as low-temperature elution component) is 99 to 30% by weight.
上記高温溶出成分が 1重量%より少なく、 低温溶出成分が 9 9重 量%を超える場合、 プロピレン系ブロック共重合体粒子が粘着し易 く なり、 製造が困難となる。 一方、 高温溶出成分の割合が 7 0重量 %を超え、 低温溶出成分が 3 0重量%未満の場合、 得られる樹脂組 成物の柔軟性、 透明性、 低温衝撃性が低下し、 本発明の目的の組成 物を得ることができない。 高温溶出成分、 低温溶出成分の割合は、 柔軟性、 透明性、 低温衝撃性等を勘案すると、 高温溶出成分 3〜 When the amount of the high-temperature eluting component is less than 1% by weight and the amount of the low-temperature eluting component exceeds 99% by weight, the propylene-based block copolymer particles are likely to stick, and the production becomes difficult. On the other hand, when the proportion of the high-temperature eluting component exceeds 70% by weight and the low-temperature eluting component is less than 30% by weight, the flexibility, transparency and low-temperature impact resistance of the obtained resin composition are reduced. The desired composition cannot be obtained. The proportion of high-temperature eluting components and low-temperature eluting components is 3 to 3 for high-temperature eluting components, considering flexibility, transparency, low-temperature impact resistance, etc.
6 0重量%、 低温溶出成分 9 7 ~ 4 0重量%が好ま しく、 高温溶出 成分 5〜 5 0重量%、 低温溶出成分 9 5〜 5 0重量%がさらに好ま しい。 60% by weight, low-temperature-eluting components 97 to 40% by weight are preferable, and high-temperature-eluting components 5 to 50% by weight, and low-temperature-eluting components 95 to 50% by weight are more preferable.
また、 本発明において、 上記高温溶出成分のプロピレンに基づく 単量体単位は 1 0 0〜 9 0モル%、 好ま しく は 1 0 0〜 9 5モル% であり、 エチレンに基づく単量体単位は 0〜 1 0モル%、 好ま しく は 0〜 5モル%である。 上記高温溶出成分は、 上記割合を満足すれ ば、 プロピレン単独重合体、 プロピレン一エチレン共重合体、 もし く はプロピレン単独重合体とプロピレンーェチレン共重合体の混合 物でもよい。 In the present invention, the monomer unit based on propylene of the high-temperature eluting component is 100 to 90 mol%, preferably 100 to 95 mol%, and the monomer unit based on ethylene is It is 0 to 10 mol%, preferably 0 to 5 mol%. If the above-mentioned high-temperature eluting component satisfies the above ratio, propylene homopolymer, propylene-ethylene copolymer, Alternatively, a mixture of a propylene homopolymer and a propylene-ethylene copolymer may be used.
一方、 上記低温溶出成分のプロ ピレンに基づく単量体単位は 9 0 〜 5 0モル%、 好ましく は 8 5〜 5 0モル%であり、 エチレンに基 づく単量体単位は 1 0〜 5 0モル%、 好ま しく は 1 5〜 5 0モル% であることが、 本発明の目的を達成するために必要である。  On the other hand, the monomer unit based on propylene of the low-temperature eluting component is 90 to 50 mol%, preferably 85 to 50 mol%, and the monomer unit based on ethylene is 10 to 50 mol%. Mole%, preferably 15 to 50 mol% is necessary to achieve the object of the present invention.
すなわち、 プロピレンに基づく単量体単位が 9 0モル%を超え、 エチレンに基づく単量体単位が 1 0モル%未満である場合、 得られ る樹脂組成物の柔軟性、 低温衝撃性が十分でなく なり好ま しく ない 一方、 プロピレンに基づく単量体単位が 5 0モル%未満で、 ェチレ ンに基づく単量体単位が 5 0モル%を超える場合、 得られる樹脂組 成物の透明性が十分でなく なり好ま しく ない。 上記低温溶出成分は 上記割合を満足すれば、 プロピレン一エチレン共重合体、 プロピレ ン単独重合体とプロピレン—ェチレン共重合体の混合物でもよい。 さ らに、 本発明で用いるプロピレン系ブロック共重合体の M F R と、 ゲルパ一ミエ一シヨ ン . クロマ トグラフによる重量平均分子量 (Mw) と数平均分子量 (Mn) との比で表される分子量分布 (Mw/Mn) とから算出される l o g ( (Mw/M n ) x  That is, when the monomer unit based on propylene exceeds 90 mol% and the monomer unit based on ethylene is less than 10 mol%, the flexibility and low-temperature impact resistance of the obtained resin composition are sufficient. On the other hand, when the monomer unit based on propylene is less than 50 mol% and the monomer unit based on ethylene exceeds 50 mol%, the transparency of the obtained resin composition is sufficient. I don't like it. The low-temperature eluting component may be a propylene-ethylene copolymer or a mixture of a propylene homopolymer and a propylene-ethylene copolymer as long as the above ratio is satisfied. Furthermore, the MFR of the propylene-based block copolymer used in the present invention and the molecular weight distribution represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) determined by gel permeation / chromatography. Log ((Mw / M n) x calculated from (Mw / Mn)
MF R°' 33) は、 0. 5 7〜 1. 5の範囲にならなければならない 1 o g ( (Mw/M n ) x M F R。· 33) 力く 0 · 5 7未満であると きは、 分子量分布が狭いか、 あるいは M F Rが小さすぎるため、 メ ルトフラクチャ一、 シャークスキンといつた外観不良が生じやすく また、 成形法と して製膜法を用いるとネックインが生じやすく なる といった成形性が悪化するため好ま しく ない。 また、 MF R ° '33 ) must be in the range of 0.5 7 to 1.5 1 og ((Mw / M n) x MFR. 33 ) If it is less than 0.57 In addition, the molecular weight distribution is too narrow, or the MFR is too small, so that the appearance of defects such as melt fracture and sharkskin tends to occur. Also, if the film forming method is used as the molding method, neck-in is likely to occur. It is not preferable because the sex becomes worse. Also,
l o g ( (Mw/Mn ) x M F R °· 33) が 1. 5を超えるときは、 分子量分布が広すぎるか、 あるいは MF Rが大きすぎるため、 得ら れる樹脂組成物において低分子量物が多くなり、 ブリ一ドを抑制す るのが困難になる。 If log ((Mw / Mn) x MFR ° 33 ) exceeds 1.5, the molecular weight distribution is too wide or the MFR is too large, and In the resin composition to be produced, the amount of low molecular weight substances increases, and it becomes difficult to suppress bleeding.
上記 l o g ( (Mw/M n ) x M F R °- 33) は、 得られる樹脂組 成物のプリ一ド状態を勘案すると、 好ま しく は 0 . 6 0〜 1 . 4、 更に好ましく は 0 . 6 5〜: L . 3である。 The log... ((Mw / M n) x MFR ° - 33) , when considering the pre-one de state of the resulting resin sets Narubutsu, is favored properly 0 6 0-1 4, more preferably 0 6 5 to: L.3.
また、 本発明で用いるプロピレン系プロック共重合体の重量平均 分子量 (Mw) は、 8万〜 1 5 0万である必要がある、 重量平均分 子量が 8万未満の場合は、 上記 1 o g ( (Mw/M n ) X  Further, the weight average molecular weight (Mw) of the propylene block copolymer used in the present invention needs to be 80,000 to 150,000. When the weight average molecular weight is less than 80,000, the above 1 og is used. ((Mw / M n) X
M F R °' 33) が 0 . 5 7〜 : 1 . 5 の範囲にある場合でも、 溶融張力 が低下し、 成形性が低下してしまうので好ま しく ない。 また、 重量 平均分子量が 1 5 0万を超える場合には、 分子量が大きすぎるため. 成形機に負荷がかかり実用的でない。 Even when MFR ° '33 ) is in the range of 0.57 to: 1.5, it is not preferable because the melt tension is reduced and the formability is reduced. On the other hand, if the weight average molecular weight exceeds 150,000, the molecular weight is too large.
本発明で用いるプロピレン系ブロック共重合体は、 ポリプロピレ ン成分及びプロピレン—エチレンランダム共重合体成分が一分子鎖 中に配列したいわゆるプロック共重合体の分子鎖及び Z又はポリプ ロピレン成分及びプロピレン一エチレンランダム共重合体成分のそ れぞれ単独よりなる分子鎖とが、 ミ クロに混合されているものが、 良好な透明性を得るために好ま しい。  The propylene-based block copolymer used in the present invention includes a so-called block copolymer molecular chain in which a polypropylene component and a propylene-ethylene random copolymer component are arranged in one molecular chain, Z or polypropylene component, and propylene-ethylene copolymer. It is preferable that the random copolymer component is mixed with a molecular chain composed of each single component in a micro form in order to obtain good transparency.
本発明で使用するプロピレン系プロック共重合体には、 本発明の 効果を阻害しない限り、 エチレン、 プロピレン以外の α —ォレフィ ンに基づく単量体単位が、 少量、 例えば 5 モル%以下の範囲で含ま れていてもよい。  As long as the effects of the present invention are not impaired, the propylene block copolymer used in the present invention contains a small amount of monomer units based on α-olefins other than ethylene and propylene, for example, in a range of 5 mol% or less. May be included.
本発明で用いるプロピレン系ブロック重合体の製造方法は、 本発 明の要件を満たす限り、 特に限定されるものではないが、 例えば、 以下の方法により好適に得ることができる。  The method for producing the propylene-based block polymer used in the present invention is not particularly limited as long as it satisfies the requirements of the present invention. For example, it can be suitably obtained by the following method.
すなわち、 下記触媒成分 〔 a〕 、 〔b〕 、 〔 c〕 〔 a〕 チタン化合物 That is, the following catalyst components [a], [b], [c] [A] Titanium compound
〔b〕 有機アルミニゥム化合物  [B] Organic aluminum compound
〔 c〕 有機ゲイ素化合物  [C] Organic gay compound
の存在下にプロピレンを重合した後、 プロピレンとエチレンとのラ ンダム共重合を下記の条件で行う方法である。 Is a method in which propylene is polymerized in the presence of water and then random copolymerization of propylene and ethylene is performed under the following conditions.
上記チタン化合物 〔 a〕 は、 ォレフィ ンの重合に使用される公知 のチタン化合物が何ら制限なく使用できる。 中でも、 プロピレンの 重合に使用した場合に高立体規則性の重合体を高収率で得ることの できるチタン化合物が好ま しい。 これらチタン化合物は、 担持型チ 夕ン化合物と三塩化チタン化合物とに大別される。 担持型チタン化 合物の製法は、 公知の方法が何ら制限なく採用される。 例えば、 特 開昭 5 6 — 1 5 5 2 0 6号公報、 同 5 6 - 1 3 6 8 0 6号公報、 同 As the titanium compound [a], a known titanium compound used for polymerization of an olefin can be used without any limitation. Among them, a titanium compound that can obtain a highly stereoregular polymer in a high yield when used for the polymerization of propylene is preferable. These titanium compounds are roughly classified into a supported titanium compound and a titanium trichloride compound. As a method for producing the supported titanium compound, a known method is employed without any limitation. For example, Japanese Unexamined Patent Publication Nos. Sho 56-155206, JP-A 56-136806, JP
5 7 - 3 4 1 0 3号公報、 同 5 8 — 8 7 0 6号公報、 同 5 8 - 8 3 0 0 6号公報、 同 5 8 _ 1 3 8 7 0 8号公報、 同 5 8 — 1 8 3 7 0 9号公報、 同 5 9 — 2 0 6 4 0 8号公報、 同 5 9 — 2 1 9 3 1 1号 公報、 同 6 0 — 8 1 2 0 8号公報、 同 6 0 _ 8 1 2 0 9号公報、 同5 7-3 4 1 0 3 Publication, 5-8 7 06 Publication, 5-8 3 0 6 Publication, 5 1 8 13 8 7 08 Publication, 5 8 — 1 8 3 7 0 9 and 5 9 — 2 0 6 4 8 and 5 9 — 2 9 3 11 1 and 6 0 — 8 1 2 8 and 6 No. 0 _ 8 1 2 0 9
6 0 - 1 8 6 5 0 8号公報、 同 6 0 — 1 9 2 7 0 8号公報、 同 6 1 - 2 1 1 3 0 9号公報、 同 6 1 _ 2 7 1 3 0 4号公報、 同 6 2 - 1 5 2 0 9号公報、 同 6 2 - 1 1 7 0 6号公報、 同 6 2 — 7 2 7 0 2 号公報、 同 6 2 — 1 0 4 8 1 0号公報等に示されている方法が採用 される。 具体的には、 例えば四塩化チタ ンを塩化マグネシウムのよ うなマグネシゥム化合物と共粉砕する方法、 アルコール、 エーテル. エステル、 ケ ト ン又はアルデヒ ド等の電子供与体の存在下にハロゲ ン化チタンとマグネシウム化合物とを共粉砕する方法、 又は溶媒中 でハロゲン化チタン、 マグネシウム化合物及び電子供与体を接触さ せる方法が挙げられる。 また、 三塩化チタン化合物としては、 公知の "、 β ァ又は(5— 三塩化チタンが挙げられる。 これらの三塩化チタン化合物の調製方 法は、 例えば、 特開昭 4 7 - 3 4 4 7 8号公報、 同 5 0 _ 1 2 6 5 9 0号公報、 同 5 0 — 1 1 4 3 9 4号公報、 同 5 0 - 9 3 8 8 8号 公報、 同 5 0 — 1 2 3 0 9 1号公報、 同 5 0 — 7 4 5 9 4号公報、 同 5 0 _ 1 0 4 1 9 1号公報、 同 5 0 _ 9 8 4 8 9号公報、 同 5 1 - 1 3 6 6 2 5号公報、 同 5 2 _ 3 0 8 8 8号公報、 同 5 2 _ 3 5 2 8 3号公報等に示されている方法が採用される。 No. 6 0-1 8 6 5 08, No. 60 — 1 927 08, No. 6 1-2 1 1 3 09, No. 6 _ 2 7 1 3 0 4 No. 62-152 009, No. 62-117 106, No. 62-7272, No. 62-104080, etc. The method shown in is adopted. Specifically, for example, a method in which titanium tetrachloride is co-ground with a magnesium compound such as magnesium chloride, and a method in which titanium halide is mixed with titanium halide in the presence of an electron donor such as alcohol, ether, ester, ketone or aldehyde. Examples include a method of co-milling a magnesium compound and a method of bringing a titanium halide, a magnesium compound and an electron donor into contact with each other in a solvent. Examples of the titanium trichloride compound include known ", βa and (5-titanium trichloride. The method for preparing these titanium trichloride compounds is described in, for example, Japanese Patent Application Laid-Open No. 47-34447. No. 8, No. 50 _ 1 265 0 90, No. 50 — 1 1 4 3 9 4 No., No. 50-9 3 888 No., No. 50 — 1 230 No. 91, No. 50 — No. 7 4 5 9 4 No., No. 50 _ 1041 191 No., No. 50 _ 9 8 489 No. 5, No. 5-1 3 6 6 The methods disclosed in JP-A Nos. 25-52, 52-308888, 52-325283, etc. are adopted.
次に有機アルミニゥム化合物 〔 b〕 は、 ォレフィ ンの重合に使用 される公知の化合物が何ら制限なく採用される。 例えば、 ト リメチ ルアルミ ニウム、 ト リェチルアルミ ニウム、 ト リ ー n —プロピルァ ルミ 二ゥム、 ト リ 一 n —ブチルアルミ ニウム、 ト リ 一 i ーブチルァ ルミ二ゥム、 ト リ ー n —へキシルアルミ ニウム、 ト リ 一 n —ォクチ ルアルミニウム、 ト リ 一 n —デシルアルミ ニウム等の ト リアルキル アルミニウム類 ; ジェチルアルミニウムモノ クロライ ド、 ジェチル アルミニウムプロマイ ド等のジェチルアルミ ニウムモノハラィ ド類 メチルアルミ ニウムセスキク口ライ ド、 ェチルアルミ ニウムセスキ クロライ ド、 ェチルアルミ ニウムジクロライ ド等のアルキルアルミ 二ゥムハライ ド類などが挙げられる。 他にもモノエトキシジェチル アルミニウム、 ジェ トキシモノエチルアルミ ニゥム等のアルキルァ ルコキシアルミ ニウム類を用いることができる。  Next, as the organic aluminum compound [b], a known compound used for polymerization of the olefin is employed without any limitation. For example, trimethylaluminum, triethylaluminum, tri-n-propyl aluminum, tri-n-butyl aluminum, tri-i-butyl aluminum, tri-n-hexyl aluminum, Tri-n-octyl aluminum, tri-n-trialkylaluminums such as decylaluminum; getylaluminum monohalides such as getylaluminum monochloride, getylaluminum promide, etc. And alkylaluminum halides such as chloride and ethylaluminum dichloride. In addition, alkyl alkoxy aluminums such as monoethoxy getyl aluminum and ethoxy monoethyl aluminum can be used.
さらに、 有機ゲイ素化合物 〔 c〕 は、 ォレフィ ンの立体規則性改 良に使用される公知の化合物が何ら制限なく採用されるが、 ゲイ素 原子に直結した原子が 3級炭素である鎖状炭化水素であるか、 また は 2級炭素である環状炭化水素などの嵩高い置換基を有する有機ケ ィ素化合物が、 得られるポリプロピレン成分の立体規則性をより高 く し、 良好な耐熱性を発現するため好ま しい。 具体的にはジ t —ブ チルジメ トキシシラ ン、 t —ブチルェチルジメ トキシシラン、 ジ t 一ア ミルジメ トキシシラン、 ジシクロペンチルジメ トキシシラ ン、 ジシクロへキシルジメ トキシシラ ン、 t ーブチルメチルジメ トキシ シラ ン、 t 一プチルェチルジメ トキシシラ ン、 シクロペンチルメチ ルジメ トキシシラ ン、 シク ロペンチルェチルジメ トキシシラ ン、 シ クロペンチルイソブチルジメ トキシシラ ン、 シクロへキシルメチル ジメ トキシシラン、 シクロへキシルェチルジメ トキシシラン、 シク 口へキシルイソプチルジメ トキシシラ ン等の有機ケィ素化合物を挙 げることができる。 中でも t —ブチルェチルジメ トキシシラ ン、 ジ シクロペンチルジメ トキシシラ ンが特に好ま しい。 またこれらの有 機ゲイ素化合物は複数種を同時に用いるこ と も可能である。 Further, as the organic gay compound (c), a known compound used for improving the stereoregularity of the olefin is used without any limitation, but a chain-like structure in which the atom directly connected to the gay atom is tertiary carbon. An organosilicon compound having a bulky substituent such as a cyclic hydrocarbon which is a hydrocarbon or a secondary carbon can increase the stereoregularity of the resulting polypropylene component. Combination is preferred because it exhibits good heat resistance. Specifically, di-t-butyldimethoxysilane, t-butylethyldimethoxysilane, di-t-amyldimethoxysilane, dicyclopentyldimethoxysilane, dicyclohexyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylmethyldimethoxysilane, t-butylethyldimethoxysilane , Cyclopentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylisobutyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldimethoxysilane, organic hexylisobutyldimethoxysilane, etc. Can be listed. Among them, t-butylethyldimethoxysilane and dicyclopentyldimethoxysilane are particularly preferred. It is also possible to use a plurality of these organic gay compounds at the same time.
本発明で用いられるチタ ン化合物 〔 a〕 、 有機アルミ ニウム化合 物 〔b〕 、 有機ゲイ素化合物 〔 c〕 の組み合わせは、  The combination of the titanium compound (a), the organic aluminum compound (b) and the organic gay compound (c) used in the present invention is as follows:
( 1 ) 三塩化チタ ン化合物 - ト リ アルキルアルミ 二ゥム—有機ゲイ 素化合物  (1) Titanium trichloride compound-trialkylaluminum
( 2 ) 担持型チタ ン化合物 - ト リ アルキルアルミ ニゥム一有機ゲイ 素化合物  (2) Supported titanium compounds-trialkylaluminum-organic silicon compounds
及び、 . as well as, .
( 3 ) 担持型チタ ン化合物一三塩化チタ ン化合物一 ト リ アルキルァ ルミ ニゥム一有機ケィ素化合物  (3) Titanium compound supported-Titanium trichloride compound-Trialkylaluminum-Organic silicon compound
であるこ とが好ま しい。 特に、 他の製造条件との組み合わせにおい て、 本発明のプロピレン系プロッ ク共重合体の構成を満足するため には、 ( 1 ) の組み合わせが好ま しい。 It is preferable that In particular, in order to satisfy the constitution of the propylene block copolymer of the present invention in combination with other production conditions, the combination of (1) is preferable.
本発明においては、 上記の各成分の存在下における本重合に先立 ち、 前記チタ ン化合物 〔 a〕 と有機アルミ ニウム化合物 〔b〕 、 及 び必要に応じて有機ケィ素化合物 〔 C〕 の存在下で 一才レフィ ン の予備重合を行う ことが、 得られるプロピレン系ブロ ック共重合体 の低分子量成分の生成量を低減し、 成形品とした場合のベタツキを 抑えることができるために好適である。 In the present invention, prior to the main polymerization in the presence of each of the above components, the titanium compound [a], the organic aluminum compound [b], and Pre-polymerization of one-year-old olefins in the presence of an organic silicon compound [C], if necessary, reduces the amount of low-molecular-weight components in the resulting propylene-based block copolymer and reduces This is preferable because stickiness in the case of a product can be suppressed.
さ らに前記成分に加えて、 下記式で示されるヨウ素化合物 〔 e〕 R - I  Further, in addition to the above components, an iodine compound represented by the following formula [e] R-I
(但し、 Rはョゥ素原子又は炭素数 1〜 7 のアルキル基又はフェ二 ル基である。 )  (However, R is an iodine atom or an alkyl group having 1 to 7 carbon atoms or a phenyl group.)
の存在下で a—ォレフィ ンの予備重合を行う と、 得られるプロピレ ン系ブ口ック共重合体の低分子量成分の生成量をより一層低減し、 成形体と した場合のベタツキをさ らに抑えることができるため、 よ り好ま しい態様となる。 When prepolymerization of a-olefin is performed in the presence of styrene, the amount of low-molecular-weight components produced in the resulting propylene-based block copolymer is further reduced, and the stickiness of a molded article is further reduced. This is a more preferable mode.
上記ヨウ素化合物 〔 e〕 を具体的に例示すると、 ヨウ素、 ヨウ化 メチル、 ヨウ化工チル、 ヨウィヒプロピル、 ヨウ化ブチル、 ョ一 ドベ ンゼン、 p —ヨウ化トルエン等が挙げられる。 中でも、 特にヨウ化 メチル、 ヨウ化工チルは好適である。  Specific examples of the above-mentioned iodine compound [e] include iodine, methyl iodide, thiol iodide, iopropyl, butyl iodide, benzene, p-toluene iodide and the like. Among them, methyl iodide and thiol iodide are particularly preferred.
本発明の予備重合で使用される前記 〔 a〕 及び 〔b〕 、 さ らに必 要に応じて使用される 〔 c〕 及び/又は 〔 e〕 の各触媒成分の量は 、 触媒成分の種類、 重合の条件に応じて異なるため、 これらの各条 件に応じて最適の使用量を適宜採用すればよい。 一般的に好適に使 用される範囲を例示すれば下記の通りである。  The amount of each of the catalyst components (a) and (b) used in the prepolymerization of the present invention and (c) and / or (e) used as necessary depends on the type of the catalyst component. Since it varies depending on the conditions of polymerization, the optimal amount may be appropriately used according to each of these conditions. An example of a generally preferred range is as follows.
予備重合に使用される有機アルミニウム化合物 〔b〕 の使用割合 は、 チタン化合物 〔 a〕 に対して A 1 / T i (モル比) で 0 . 1〜 1 0 0、 好ま しく は 0 . 1〜 2 0 の範囲が好適である。  The ratio of the organoaluminum compound [b] used in the prepolymerization is 0.1 to 100, preferably 0.1 to 100, in terms of A1 / Ti (molar ratio) with respect to the titanium compound [a]. A range of 20 is preferred.
また、 必要に応じて使用される有機ゲイ素化合物 〔 c〕 は、 チタ ン化合物 〔 a〕 に対して 〔 c〕 / T i (モル比) で 0 . 0 1〜 1 0 0、 好ま しく は 0 . 0 1〜 1 0の範囲が好適であり、 必要に応 じて使用されるヨウ素化合物 〔 e〕 の使用割合は、 チタン化合物 〔 a〕 に対して I / T i (モル比) で 0 . 1 〜 1 0 0、 好ま しく は 0 . 5〜 5 0の範囲が好適である。 Further, the organic gay compound [c] used as needed is 0.01 to 1 in terms of [c] / Ti (molar ratio) with respect to the titanium compound [a]. 100, preferably 0.01 to 10 is preferable, and the proportion of the iodine compound [e] used as necessary is I / T with respect to the titanium compound [a]. The i (molar ratio) is preferably in the range of 0.1 to 100, preferably 0.5 to 50.
前記触媒成分の存在下に —才レフィ ンを重合する予備重合量は. 予備重合条件によつて異なるが、 一般に 0 . 1〜 5 0 0 g / g · T i化合物、 好ま しく は 1〜: L 0 0 g Z g · T i化合物の範囲であ れば十分である。 また予備重合で使用する —ォレフィ ンは、 プロ ピレン単独でもよく、 該プロピレン系ブロック共重合体の物性に悪 影響を及ばさない範囲で、 例えば 5モル%以下のプロピレン以外の α —ォレフィ ン、 例えば、 エチレン、 1 —ブテン、 1 一ペンテン、 1 —へキセン、 4 —メチルペンテン一 1等とプロピレンとの混合物 でもよい。 また、 予備重合を多段階に行い、 各段階で異なる α—才 レフィ ンを予備重合させることもでき、 各予備重合の段階で水素を 共存させることも可能である。  In the presence of the catalyst component, the amount of prepolymerization for polymerizing the olefin is dependent on the prepolymerization conditions, but is generally from 0.1 to 500 g / g · Ti compound, preferably from 1 to: It is sufficient to be in the range of L 0 0 g Z g · Ti compound. The olefin used in the prepolymerization may be propylene alone, and may be, for example, 5 mol% or less of an α-olefin other than propylene, as long as it does not adversely affect the physical properties of the propylene-based block copolymer. For example, a mixture of ethylene, 1-butene, 1-pentene, 1-hexene, 4-methylpentene-11 and propylene may be used. In addition, the prepolymerization can be performed in multiple stages, and different α-olefins can be prepolymerized in each stage, and hydrogen can coexist in each prepolymerization stage.
該予備重合は通常スラ リー重合を適用させるのが好ま しく、 溶媒 と して、 へキサン、 ヘプタ ン、 シクロへキサン、 ベンゼン、 トルェ ンなどの飽和脂肪族炭化水素及び芳香族炭化水素を、 単独又は混合 して用いることができる。 該予備重合温度は、 _ 2 0〜 1 0 0 °C、 特に 0〜 6 0 °Cの範囲が好ま しい。 予備重合時間は、 予備重合温度 及び予備重合での重合量に応じ適宜決定すればよい。 予備重合にお ける圧力は限定されるものではないが、 スラ リー重合の場合は、 一 般に大気圧〜 0 . 5 M P a程度である。 該予備重合は、 回分、 半回 分、 連続のいずれの方法で行ってもよい。  For the prepolymerization, slurry polymerization is usually preferably applied, and a saturated aliphatic hydrocarbon and an aromatic hydrocarbon such as hexane, heptane, cyclohexane, benzene and toluene are used alone as a solvent. Alternatively, they can be used as a mixture. The prepolymerization temperature is preferably in the range of −20 to 100 ° C., particularly preferably 0 to 60 ° C. The pre-polymerization time may be appropriately determined according to the pre-polymerization temperature and the amount of polymerization in the pre-polymerization. The pressure in the prepolymerization is not limited, but in the case of slurry polymerization, it is generally from atmospheric pressure to about 0.5 MPa. The prepolymerization may be carried out in any of batch, semi-batch and continuous methods.
本発明において本重合は、 前記した触媒成分、 または前記予備重 合で得られた触媒含有予備重合体の存在下で、 先ずプロピレンの重 合が行われ、 次にプロピレン一エチレンのランダム共重合する態様 が好適である。 また、 各触媒成分は予備重合時に添加されたものを そのままの状態で使用することもできるが、 チタン化合物以外は本 重合時に新たに添加して調節するのが好ま しい。 In the present invention, the present polymerization is carried out by first polymerizing propylene in the presence of the above-mentioned catalyst component or the catalyst-containing prepolymer obtained by the above prepolymer. An embodiment in which the copolymerization is carried out and then random copolymerization of propylene-ethylene is performed is preferable. The catalyst components added during the prepolymerization can be used as they are, but it is preferable to add and adjust the components other than the titanium compound during the main polymerization.
本発明の本重合で使用される前記 〔 a〕 、 〔b〕 、 〔 c〕 の各触 媒成分の量及び重合条件は、 触媒成分の種類に応じて異なるため、 これらの触媒成分の種類に応じて最適の使用量及び重合条件を予め 決定すればよい。 好適に使用される触媒成分の量及び重合条件を例 示すれば下記の通りである。  The amount of each of the catalyst components (a), (b), and (c) used in the main polymerization of the present invention and the polymerization conditions vary depending on the type of the catalyst component. The optimum use amount and polymerization conditions may be determined in advance. Examples of the amounts of the catalyst components and the polymerization conditions suitably used are as follows.
本重合で用いられる有機アルミニウム化合物 〔b〕 は、 前記の化 合物が何ら制限なく使用できる。 本重合で用いる有機アルミニゥム 化合物の使用量は、 触媒中のチタン原子に対し、 A 1 Z T i (モル 比) で、 ;!〜 1 0 0 0、 好ま しく は 2〜 5 0 0である。  As the organoaluminum compound [b] used in the main polymerization, the above compounds can be used without any limitation. The amount of the organic aluminum compound used in the main polymerization is A 1 Z Ti (molar ratio) with respect to the titanium atom in the catalyst; ~ 100, preferably 2 ~ 500.
本重合で用いられる有機ゲイ素化合物 〔 c〕 は、 前記の化合物が 何ら制限なく使用できる。 本重合で用いる有機ゲイ素化合物の使用 量は、 触媒中のチタン原子に対し、 S i / T i (モル比) で  As the organic gay compound [c] used in the main polymerization, the above compounds can be used without any limitation. The amount of the organic gay compound used in the main polymerization is S i / T i (molar ratio) with respect to the titanium atom in the catalyst.
0 . 0 0 1〜 1 0 0 0、 好ま しく は 0 . 1〜 5 0 0である。  0.001 to 100, preferably 0.1 to 500.
上記本重合は、 まず、 プロピレンの重合が実施される。 プロピレ ンの重合は、 プロピレン単独、 または本発明の要件を満足する範囲 内でのプロピレンとプロピレン以外の α—ォレフイ ンとの混合物の 重合を実施すればよい。 プロピレン重合の代表的な条件を例示する と、 重合温度は、 8 0 °C以下、 更に 2 0〜 7 0 °Cの範囲から採用す ることが好適である。 また必要に応じて分子量調節剤として水素を 共存させることもできる。 更にまた、 重合はプロピレン自身を溶媒 とするスラ リ一重合、 気相重合、 溶液重合等の何れの方法でもよい, プロセスの簡略性及び反応速度、 また生成する共重合体の粒子性状 を勘案すると、 プロピレン自身を溶媒とするスラ リ一重合が好ま し い態様である。 重合形式は回分式、 半回分式、 連続式のいずれの方 法でもよい。 更に重合を水素濃度、 重合温度等の条件の異なる 2段 以上に分けて行うこともできる。 In the above main polymerization, propylene is firstly polymerized. The polymerization of propylene may be carried out by polymerizing propylene alone or a mixture of propylene and α-olefin other than propylene within a range satisfying the requirements of the present invention. When typical conditions of propylene polymerization are exemplified, the polymerization temperature is preferably employed at 80 ° C. or lower, and more preferably in the range of 20 to 70 ° C. If necessary, hydrogen can be allowed to coexist as a molecular weight regulator. Furthermore, the polymerization may be any method such as slurry polymerization using propylene itself as a solvent, gas phase polymerization, solution polymerization, etc., simplicity of the process and reaction rate, and particle properties of the produced copolymer. In consideration of this, slurry polymerization using propylene itself as a solvent is a preferred embodiment. The polymerization system may be any of a batch system, a semi-batch system, and a continuous system. Further, the polymerization can be carried out in two or more stages under different conditions such as hydrogen concentration and polymerization temperature.
次に、 プロピレンとエチレンとのランダム共重合が行われる。 プ ロピレンとエチレンのランダム共重合は、 プロピレン自身を溶媒と するスラ リ一重合の場合には、 前記プロピレン重合に引き続いてェ チレンガスを供給することで、 また気相重合の場合はプロピレンと ェチレンの混合ガスを供給することで実施される。  Next, random copolymerization of propylene and ethylene is performed. In the random copolymerization of propylene and ethylene, in the case of slurry polymerization using propylene itself as a solvent, an ethylene gas is supplied following the propylene polymerization, and in the case of gas phase polymerization, propylene and ethylene are mixed. This is performed by supplying a mixed gas.
プロピレンとエチレンのランダム共重合の重合温度は、 8 0 °C以 下、 好ま しく は、 2 0〜 7 0 °Cの範囲から採用される。 また、 必要 に応じて分子量調節剤と して水素を用いることもでき、 その際の水 素濃度は多段階に変化させて重合を実施することもできる。  The polymerization temperature of the random copolymerization of propylene and ethylene is not more than 80 ° C, and preferably is in the range of 20 to 70 ° C. If necessary, hydrogen can be used as a molecular weight regulator, and the polymerization can be carried out by changing the hydrogen concentration at that time in multiple stages.
プロピレン重合に続くエチレンとプロピレンのランダム共重合に おいて、 特定の触媒を選択することにより、 目的とする分子量分布- 結晶性分布等を有するプロピレン系プロック共重合体を 1段階で製 造することもでき、 あるいはエチレンとプロピレンのランダム共重 合を多段で行い、 各段階で水素濃度及びェチレン濃度等の重合条件 を変化させる方法によつて製造することも可能である。 かかる多段 共重合において、 前記した高温溶出成分、 低温溶出成分の割合を、 重合条件によつて適宜調節して共重合が実施される。  In the random copolymerization of ethylene and propylene following propylene polymerization, a specific catalyst is selected to produce a propylene block copolymer having the desired molecular weight distribution and crystallinity distribution in one step. Alternatively, it can be produced by a method in which random copolymerization of ethylene and propylene is performed in multiple stages, and polymerization conditions such as hydrogen concentration and ethylene concentration are changed in each stage. In such multi-stage copolymerization, copolymerization is carried out by appropriately adjusting the ratio of the high-temperature eluting component and the low-temperature eluting component according to the polymerization conditions.
プロピレンとエチレンのランダム共重合は回分式、 半回分式、 連 続式のいずれの方法でもよく、 重合を多段階に分けて実施すること もできる。 また、 本工程の重合は、 スラ リ一重合、 気相重合、 溶液 重合のいずれの方法を採用してもよい。  The random copolymerization of propylene and ethylene may be any of a batch system, a semi-batch system, and a continuous system, and the polymerization may be carried out in multiple stages. Further, the polymerization in this step may employ any method of slurry polymerization, gas phase polymerization, and solution polymerization.
特に本発明のプロピレン系プロック共重合体を得るためには、 プ ロピレンの重合に続いてスラ リー重合によりプロピレンとエチレン のランダム共重合を行うことが好ま しい。 In particular, to obtain the propylene block copolymer of the present invention, It is preferred to carry out random copolymerization of propylene and ethylene by slurry polymerization following polymerization of propylene.
本重合の終了後の重合系からモノマ一を蒸発させ、 本発明のプロ ピレン系ブロック共重合体を得ることができる。 このプロピレン系 ブロック共重合体は、 炭素数 7以下の炭化水素で公知の洗浄、 たと えば向流洗浄、 を行う ことができる。  The monomer can be evaporated from the polymerization system after completion of the main polymerization to obtain the propylene-based block copolymer of the present invention. The propylene-based block copolymer can be subjected to known washing, for example, countercurrent washing, with a hydrocarbon having 7 or less carbon atoms.
本発明に使用するプロピレン系プロック共重合体には、 酸化防止 剤、 熱安定剤、 塩素捕捉剤等の市販の添加剤を添加して混合した後- 押出機でペレツ トにして用いてもよい。 また、 上記添加剤に加えて 有機過酸化物も添加し、 本発明の要件を満足する範囲で分子量の調 節を行ってもよい。  The propylene block copolymer used in the present invention may be used after adding and mixing commercially available additives such as an antioxidant, a heat stabilizer, and a chlorine scavenger, and then pelletizing with an extruder. . In addition, an organic peroxide may be added in addition to the above additives to adjust the molecular weight within a range that satisfies the requirements of the present invention.
本発明において、 上記プロピレン系ブ口ック共重合体のメルトマ スフ口一レー トと分子量とを制御する方法としては、 重合時に少量 の水素を共存させることにより、 メノレ トマスフローレ一 トと分子量 をある程度調整し、 次いで有機過酸化物により、 メルトマスフロー レー トと分子量を所定の範囲に調節する方法が好ま しい。  In the present invention, as a method for controlling the melt mass rate and the molecular weight of the propylene-based block copolymer, a small amount of hydrogen is allowed to coexist at the time of polymerization to reduce the molecular weight and the molecular weight of the propylene-based copolymer. It is preferable to adjust the melt mass flow rate and the molecular weight within a predetermined range by adjusting the melt mass flow rate and the molecular weight to some extent with an organic peroxide.
特に、 重合時に少量の水素を共存させて得られる重合体のメルト マスフローレー トを 0. 0 0 1〜: L 0 g / 1 0 m i n以下、 より好 ま しく は 0. 0 0 l〜 5 g / l 0 m i n、 さらに好ま しく は  In particular, the polymer obtained by allowing a small amount of hydrogen to coexist during the polymerization has a melt mass flow rate of 0.001 to: L 0 g / 10 min or less, more preferably 0.01 to 5 g. / l 0 min, more preferably
0. 0 0 1〜 3 g Z 1 0 m i n以下に一旦調整し、 これを有機過酸 化物と溶融混練して、 メルトマスフ口一レー トと分子量とを所定の 範囲に調節する方法が好ま しい。  A method of once adjusting the viscosity to 0.01 to 3 g Z 10 min or less, melting and kneading the mixture with an organic peroxide, and adjusting the melt mass mouth opening rate and the molecular weight to a predetermined range is preferable.
本発明に使用するプロピレン系プロック共重合体を分解する際に 使用する有機過酸化物としては、 公知の化合物を何等制限なく用い ることができるが、 代表的な物を例示すると、 例えば、 メチルェチ ルケ トンパーォキサイ ド、 メチルイソプチルケ トンパ一ォキサイ ド. シクロへキサノ ンパーォキサイ ド等のケ トンパ一ォキサイ ド ; イソ ブチリルバ一ォキサイ ド、 ラウロイルパ一ォキサイ ド、 ベンゾィル パ一ォキサイ ド等のジァシルパ一ォキサイ ド ; ジイソプロピルベン ゼンハイ ドロパ一ォキサイ ド等のハイ ドロパ一ォキサイ ド ; ジク ミ ルパ一オキサイ ド、 2 , 5 _ジメチルー 2 , 5 —ジ一 ( t —プチル パーォキシ) へキサン、 1 , 3 _ビス一 ( t ーブチルバ一ォキシ一 イソプロピル) 一ベンゼン、 ジ— t —プチルパーオキサイ ド、 2 , 5 —ジメチル一 2 , 5 —ジ一 ( t —ブチルバ一ォキシ) 一へキサン - 3等のジアルキルパ一ォキサイ ド ; 1 , 1 —ジー t —ブチルバ一 ォキシ一 3 , 3 , 5 — ト リメチルシクロへキサン、 2 , 2 —ジ一 ( t -ブチルパーォキシ) 一ブタン等のパ一ォキシケタール t _ ブチルバ一ォキシーピバレー ト、 t ーブチルバ一ォキシベンゾエー ト等のアルキルパーエステル ; t 一プチルパ一ォキシイソプロピル カーボネー ト等のパーカーボネー ト類等を挙げることができる。 上記したプロピレン系プロック共重合体と有機過酸化物の混練は. 一般的には、 プロピレン系ブ口ック共重合体の融点且つ有機過酸化 物の分解温度以上の温度で公知の混練装置を使用して行われる。 例 えば、 スク リ ユー押出機、 バンバリ一ミキサ一、 ミキシングロール 等を用いて、 1 6 0 〜 3 3 0 °C、 好ま しく は、 1 7 0 〜 3 0 0 °Cで 混練する方法を採用することができる。 また、 溶融混練は、 窒素ガ スなどの不活性ガス気流下で行う こともできる。 なお、 溶融混練前 に公知の混合装置、 例えば、 タンブラ一、 ヘンシェルミキサー等を 使用して予備混練を行う こともできる。 As the organic peroxide to be used when decomposing the propylene block copolymer used in the present invention, known compounds can be used without any limitation. Representative examples include, for example, methyl ether. Luque Tonpeoxyde, Methyl Isobutyl Ketone Tonpeoxide. Ketone peroxides such as cyclohexanone peroxide; isobutylyl peroxide, lauroyl peroxide, benzoyl peroxide, etc .; diacyl peroxides such as diisopropylbenzenhydroxide, etc. Dicumyl peroxide, 2,5-dimethyl-2-, 5-di- (t-butylperoxy) hexane, 1,3-bis- (t-butylvinyloxy-isopropyl) -benzene, di-t-butyl Diperoxides, such as ruperoxide, 2,5-dimethyl-1,2,5-di- (t-butyl-hydroxy) 1-hexane-3; 1,1, -di-t-butyl-oxy 1,3,3 , 5 — trimethylcyclohexane, 2, 2 — dioxy (t-butylperoxy) monobutane It can be mentioned Pakabone bets such as t one Puchirupa one O carboxymethyl isopropyl Kabone preparative like; le t _ Buchiruba one Okishipibare, alkyl peresters such as t Buchiruba one Okishibenzoe bets. The above-mentioned kneading of the propylene block copolymer and the organic peroxide is carried out. Generally, a known kneading apparatus is used at a temperature not lower than the melting point of the propylene block copolymer and the decomposition temperature of the organic peroxide. Done using. For example, a method of kneading at 160 to 330 ° C, preferably 170 to 300 ° C using a screw extruder, a Banbury mixer, a mixing roll, or the like is employed. can do. Further, the melt-kneading can be performed under a stream of an inert gas such as nitrogen gas. Prior to melt-kneading, preliminary kneading can also be performed using a known mixing device, for example, a tumbler, Henschel mixer or the like.
一方、 本発明で用いる下記芳香族ビニルー水添共役ジェン系共重 合体は、 特に、 該プロピレン系ブロック共重合体の透明性を維持し ながら、 柔軟性、 低温衝撃性に優れ、 また、 後記する成形加工後の 低分子量ブリ ー ド物の抑制効果に優れた樹脂組成物を得るために重 要である。 On the other hand, the following aromatic vinyl-hydrogenated conjugated diene copolymer used in the present invention is particularly excellent in flexibility and low-temperature impact resistance while maintaining the transparency of the propylene-based block copolymer. After molding This is important for obtaining a resin composition having an excellent effect of suppressing low molecular weight bleed products.
すなわち、 上記芳香族ビニル-水添共役ジェン系共重合体の芳香 族ビニル化合物の単量体単位は 5〜 2 5重量%であり、 好ま しく は 8〜2 0重量%である。 芳香族ビニル化合物に基づく単量体単位が 5重量%未満では、 成形加工時にプロッキングを生じ好ま しく ない, 一方、 芳香族ビニル化合物に基づく単量体単位が 2 5重量%を超え た場合、 透明性が低下するばかりか、 柔軟性の改良効果が低下する ので好ま しく ない。  That is, the monomer unit of the aromatic vinyl compound of the aromatic vinyl-hydrogenated conjugated gen-based copolymer is 5 to 25% by weight, preferably 8 to 20% by weight. If the monomer unit based on the aromatic vinyl compound is less than 5% by weight, blocking occurs during molding, which is not preferable. On the other hand, if the monomer unit based on the aromatic vinyl compound exceeds 25% by weight, It is not preferred because not only the transparency is lowered but also the effect of improving flexibility is lowered.
上記ビニル芳香族系化合物としては、 スチレン、 o —メチルスチ レン、 ρ —メ チルスチレンや ρ _ t —ブチルスチレン等のアルキル スチレン、 p —メ トキシスチレン、 ビュルナフタ レン等が挙げられ. 中でもスチレンが特に好ま しい。  Examples of the vinyl aromatic compound include styrene, o-methylstyrene, alkyl styrene such as ρ-methylstyrene and ρ_t-butylstyrene, p-methoxystyrene, and bulnaphthalene. Among them, styrene is particularly preferred. New
本発明において、 少なく とも一部が水素添加された共役ジェン (以下、 水添共役ジェンという) 化合物に基づく単量体単位は、 共 重合体中の共役ジェン部分の二重結合の少なく とも一部が水素添加 されていれば、 特に制限されないが、 透明性を考慮すると、 共役ジ ェン部分の二重結合の 8 0 %以上が水素添加されて飽和されている ことが好ま しい。 逆に、 共役ジェン部分の二重結合が水素添加され ていないと、 本発明で用いるプロピレン系プロック共重合体との相 溶性が悪く、 透明性が損なわれてしまうため好ま しく ない。  In the present invention, at least a part of the double bond of the conjugated gen moiety in the copolymer is a monomer unit based on a conjugated gen at least partially hydrogenated (hereinafter referred to as a hydrogenated conjugated gen) compound. Is not particularly limited as long as it is hydrogenated, but considering transparency, it is preferable that 80% or more of the double bonds in the conjugated gen part be hydrogenated and saturated. Conversely, if the double bond of the conjugated gen moiety is not hydrogenated, the compatibility with the propylene block copolymer used in the present invention is poor and transparency is impaired, which is not preferred.
上記共役ジェン化合物としては、 ブタジエン、 イソプレン、 ピぺ リ レン、 メチルペン夕ジェン、 フエニルブタジエン、 3, 4 ージメ チル一 1, 3 —へキサジェン、 4, 5 _ジメ チルー 1, 3 —ォクタ ジェン等のうちから 1種以上が挙げられ、 中でもブタジエン及びィ ソプレンが特に好ま しい。 本発明に用いられる芳香族ビニルー水添共役ジェン系共重合体は. 上記規定を満足するものであれば特に限定されず、 上巿されている 公知のものも使用することができる。 Examples of the conjugated diene compounds include butadiene, isoprene, pyrylene, methylpentenediene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-dimethyl-1,3-octadiene, and the like. Among them, at least one kind is mentioned, but butadiene and isoprene are particularly preferred. The aromatic vinyl-hydrogenated conjugated diene copolymer used in the present invention is not particularly limited as long as it satisfies the above-mentioned rules, and the above-mentioned known ones can also be used.
上市されている芳香族ビニルー水添共役ジェン系共重合体を具体 的に例示すると、 たとえば、 シヱル社製ク レイ ト ン G 1 6 5 7、 ク ラ レ社製セプトン 2 0 4 3 、 ノヽィブラ一 H V S— 3、 日本合成ゴム 社製ダイナ口ン 1 3 2 0 P等が挙げられる。  Specific examples of commercially available aromatic vinyl-hydrogenated conjugated gen-based copolymers include, for example, Clayton G1657 manufactured by Shile, Septon 2043 manufactured by Kuraray, and Nubra® (1) HVS-3, and DynaPin 1320 P manufactured by Nippon Synthetic Rubber Co., Ltd.
本発明で用いる芳香族ビニルー水添共役ジェン系共重合体におけ る芳香族ビニル化合物と水素添加された共役ジェン化合物との共重 合形態は、 成形加工後に低分子量物のブリー ドを抑制して、 透明性 を維持することを勘案すると、 次に示す共重合体が好ましい。  The copolymerization form of the aromatic vinyl compound and the hydrogenated conjugated gen compound in the aromatic vinyl-hydrogenated conjugated gen-based copolymer used in the present invention suppresses the bleeding of low molecular weight products after molding. In view of maintaining transparency, the following copolymers are preferred.
すなわち、 Aを芳香族ビュル化合物に基づく重合体ブロック、 B を水素添加された共役ジェン化合物に基づく重合体プロックとした 場合において、 A— Bブロック共重合体 (以下、 ジブロックタイプ ともいう) 、 及び A— B— Aブロック共重合体 (以下、 ト リ プロッ クタイプともいう) 、 またはそれら共重合体の混合物であることが 好ま しい。  That is, when A is a polymer block based on an aromatic butyl compound and B is a polymer block based on a hydrogenated conjugated gen compound, an AB block copolymer (hereinafter also referred to as a diblock type) And A—B—A block copolymers (hereinafter also referred to as triblock types), or a mixture of these copolymers is preferable.
一方、 本発明の樹脂組成物において、 特に優れた透明性を得るこ とを勘案すると、 芳香族ビニルー共役ジェン系共重合体における芳 香族ビニル化合物と水素添加された共役ジェンの共重合体の形態は- 次に示す共重合体であることが好ま しい。  On the other hand, in consideration of obtaining particularly excellent transparency in the resin composition of the present invention, the copolymer of the aromatic vinyl compound and the hydrogenated conjugated gen in the aromatic vinyl-conjugated gen-based copolymer is considered. The form is preferably a copolymer shown below.
すなわち、 Aを芳香族ビニル化合物に基づく重合体ブロック、 C を水素添加された共役ジェン化合物と芳香族ビニル化合物のランダ ム重合体プロック、 Dは芳香族ビュル化合物と水素添加された共役 ジェン化合物との重合体プロックであって、 芳香族ビニル化合物に 基づく単量体単位が漸増するテ一パーブ口ックと した場合において. A— Cブロック共重合体、 A— C— Aブロック共重合体、 A— C— Dブロック共重合体 (以下、 これらをランダムブロックタイプとも いう) 、 またはそれら共重合体の混合物であることが好ま しい。 A is a polymer block based on an aromatic vinyl compound; C is a random polymer block of a hydrogenated conjugated gen compound and an aromatic vinyl compound; and D is a conjugated gen compound hydrogenated with an aromatic butyl compound. In the case of a polymer block, the monomer unit based on the aromatic vinyl compound is gradually increased. A-C block copolymer, A-C-A block copolymer, A-C-D block copolymer (hereinafter also referred to as random block type), or a mixture of these copolymers I like it.
前記芳香族ビニルー水添共役ジェン系共重合体成分は、 2 3 0 °C - 2 . 1 6 k g荷重 ( 2 1 . 1 8 N ) で測定されるメルトマスフロー レー ト力 0 . 1〜 2 0 g / 1 0分のものが好適に使用される。  The aromatic vinyl-hydrogenated conjugated diene copolymer component has a melt mass flow rate force of 0.1 to 20 measured at a load of 230 ° C-2.16 kg (2.1.18 N). The one with g / 10 minutes is preferably used.
上記芳香族ビニルー水添共役ジェン系共重合体の製造方法は、 特 に限定されず、 従来公知の方法により、 製造すればよい。 通常は、 芳香族ビニル化合物と共役ジェン化合物とを共重合した後に、 共重 合体中の共役ジェン部分の二重結合を水素添加する方法が採用され 本発明の樹脂組成物は、 ( 1 ) プロピレン系ブロック共重合体 1 The method for producing the aromatic vinyl-hydrogenated conjugated copolymer is not particularly limited, and may be produced by a conventionally known method. Usually, a method of copolymerizing an aromatic vinyl compound and a conjugated diene compound and then hydrogenating the double bond of the conjugated diene part in the copolymer is adopted. The resin composition of the present invention comprises (1) propylene Block copolymer 1
0 0重量部、 ( 2 ) 芳香族ビニルー水添共役ジェン系共重合体 1〜 1 0 0重量部好ま しく は 3〜 8 0重量部である。 芳香族ビニル—水 添共役ジェン系共重合体が 1重量部未満では透明性及び柔軟性の改 良効果が十分ではなく、 また、 1 0 0重量部を超えると粘着性が増 すため、 成形体を重ねる場合、 特にフィ ルム · シー トを巻物で得る 場合に、 激しく ブロッキングを生じるため好ましく ない。 100 parts by weight, (2) aromatic vinyl-hydrogenated conjugated diene copolymer 1 to 100 parts by weight, preferably 3 to 80 parts by weight. If the amount of the aromatic vinyl-hydrogenated conjugated gen-based copolymer is less than 1 part by weight, the effect of improving the transparency and flexibility is not sufficient, and if it exceeds 100 parts by weight, the adhesiveness increases, so molding is performed. It is not preferable when the body is piled up, especially when a film sheet is obtained by a scroll, because violent blocking occurs.
また、 本発明の樹脂組成物には、 本発明の効果を損なわない範囲 で、 本発明の樹脂組成物 1 0 Q重量部に対して、 本発明で規定する プロピレン系ブロック共重合体以外のプロピレン系重合体を 0〜 4 0重量部、 好ま しく は 0 ~ 3 0重量部添加することが可能である。 該プロ ピレン系重合体と して、 プロ ピレン単独重合体、 プロピレン の 9 0 %モル以上とプロピレン以外の α —才レフィ ン、 例えば、 ェ チレン、 1 ーブテン、 1 一ペンテン、 1 一へキセン、 1 —ヘプテン. Further, the resin composition of the present invention may contain propylene other than the propylene-based block copolymer defined in the present invention, based on 10 Q parts by weight of the resin composition of the present invention, as long as the effects of the present invention are not impaired. It is possible to add 0 to 40 parts by weight, preferably 0 to 30 parts by weight, of the polymer. Examples of the propylene-based polymer include a propylene homopolymer, 90% mol or more of propylene and an α-olefin other than propylene, for example, ethylene, 1-butene, 1-pentene, 1-hexene, 1 — Heptene.
1 ーメチルー 1 一ペンテン等の 1種以上の 1 0モル%以下とのラン ダム共重合体が好適に使用できる。 1-Methyl-1 Run with at least 10 mol% of one or more such as one pentene Dam copolymers can be suitably used.
さ らに、 本発明の樹脂組成物には、 本発明の効果を損なわない範 囲で、 上記樹脂組成物 1 0 0重量部に対して、 前記以外の樹脂を 1 〜 3 0重量部、 好ま しく は 2〜 2 0重量部添加して改質を行う こと も可能である。 使用する樹脂としては、 高密度ポリエチレン (H D P E) 、 低密度ポリエチレン (L D P E) 、 ェチレンと炭素数 4〜 Further, the resin composition of the present invention preferably contains 1 to 30 parts by weight of a resin other than those described above with respect to 100 parts by weight of the resin composition as long as the effects of the present invention are not impaired. Alternatively, it is also possible to carry out the reforming by adding 2 to 20 parts by weight. The resin used is high density polyethylene (HDPE), low density polyethylene (LDPE), ethylene and carbon number 4 ~
1 0の α;—才レフィ ンとの共重合によりなる線状ポリエチレン ( L L D P E) 、 エチレン酢酸ビニル共重合 (E V A) 、 エチレンメタ ク リ レー ト (E MMA) 等のポリェチレン系樹脂、 エチレン · プロ ピレン共重合体 (E P R, E P DM) 、 エチレン * ブテン _ 1共重 合体 (E B M) 、 プロ ピレン · ブテン— 1共重合体 (P B M) 等の ォレフィ ン系軟質樹脂、 スチレン · ブタジエンプロック共重合体Polyethylene resins such as linear polyethylene (LLDPE), ethylene vinyl acetate copolymer (EVA), and ethylene methacrylate (EMMA), which are copolymerized with 10 α; Orylene-based soft resins such as pyrene copolymer (EPR, EPDM), ethylene * butene_1 copolymer (EBM), propylene / butene-1 copolymer (PBM), styrene / butadiene block copolymer
( S B R) 、 石油樹脂、 ロジン樹脂、 水素添加テルペン樹脂等公知 のものが制限無く使用するこ とができる。 Known materials such as (SBR), petroleum resin, rosin resin, and hydrogenated terpene resin can be used without limitation.
また、 本発明の樹脂組成物には、 公知の添加剤、 例えば、 酸化防 止剤、 光安定剤、 帯電防止剤、 滑剤、 銅害防止剤、 難燃剤、 造形剤. 顔料等を配合することができる。  The resin composition of the present invention may contain known additives such as antioxidants, light stabilizers, antistatic agents, lubricants, copper damage inhibitors, flame retardants, molding agents, and pigments. Can be.
本発明の樹脂組成物は、 特に制限なく公知の方法で製造されるが. 一般には前記した各成分を配合した後に、 混合及び溶融混練するこ とにより得られる。 溶融混練の方法はと く に限定されないが、 例え ば、 スク リ ユー押出機、 ノ'ンバリ 一 ミ キサー、 ミ キシングロールな どを用いて、 1 6 0〜 3 0 0 °C、 好ま しく は、 1 8 0〜 2 7 0 °Cの 温度下に行うのがよい。 また、 この溶融混練は、 窒素ガスなどの不 活性ガス気流下で行う こともできる。 なお、 溶融混練前に公知の混 合装置、 例えば、 タンブラ一、 ヘンシェルミキサー等が何ら制限無 く使用することができる。 さ らに、 本発明においては、 上記樹脂組成物は、 必要に応じて各 成分を配合した後に混合を行い、 溶融混練なしで直接成形機に投入 し成形することにより、 成形体を得ることも可能である。 The resin composition of the present invention is produced by a known method without any particular limitation. Generally, the resin composition is obtained by blending the above-mentioned components, followed by mixing and melt-kneading. The method of melt-kneading is not particularly limited, but, for example, using a screw extruder, a non-amber mixer, a mixing roll, or the like, preferably at 160 to 300 ° C. It is preferable to perform the reaction at a temperature of 180 to 270 ° C. Further, the melting and kneading can be performed under a flow of an inert gas such as a nitrogen gas. Before the melt-kneading, a known mixing device such as a tumbler or a Henschel mixer can be used without any limitation. Further, in the present invention, a molded article may be obtained by mixing the components of the resin composition as necessary after mixing, and directly putting the mixture into a molding machine without melt-kneading and molding. It is possible.
以下、 本発明を実施例及び比較例をあげて説明するが、 本発明は これらの実施例に限定されるものではない。  Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.
以下に、 実施例において用いた測定方法について説明する。  Hereinafter, the measurement method used in the examples will be described.
1 ) ポリプロピレン成分の測定  1) Measurement of polypropylene component
(株) センシュ一科学社製、 S S C— 7 3 0 0型を用い、 以下の 測定条件により行った。  The measurement was performed under the following measurement conditions using an SSC-7300 model manufactured by Senshu Ichigaku Co., Ltd.
溶媒 ; o—ジクロ口ベンゼン  Solvent: o-dichlorobenzene
流速 ; 2. 5 m 1 / m i n  Flow velocity; 2.5 m1 / min
昇温速度 ; 4. 0 °C / H r  Heating rate: 4.0 ° C / Hr
サンプル濃度 ; 0. 7 w t %  Sample concentration; 0.7 w t%
サンプル注入量 ; 1 0 0 m 1  Sample injection volume; 100 m 1
検出器 ; 赤外検出器、 波長 3. 1 4 m  Detector: Infrared detector, wavelength 3.14 m
カラム ; 0 3 O mm x 3 O O mm  Column: 0 3 O mm x 3 O O mm
充 剤 ; C h r o m o s o r b P 3 0〜 6 0 m e s h カラム冷却速度 ; 2. 0 °C / H r  Packing agent; Chromosorb P30 to 60m column Cooling rate of column; 2.0 ° C / Hr
2 ) プロピレン及びエチレンに基づく単量体単位の測定  2) Measurement of monomer units based on propylene and ethylene
J E O L G S X - 2 7 0を用い、 13C— NMRスぺク トロメ一 ターを用いて測定した。 The measurement was performed using 13 C-NMR spectrometer using JEOLGSX-270.
3 ) メノレ トマスフ口一レイ ト (M F R) の測定  3) Measurement of Menole Tomasof Mouth Rate (MFR)
A S TM D— 1 2 3 8 に準拠し、 2 3 0 °C、 2. 1 6 k g荷重 ( 2 1. 1 8 N) で測定した。  Measured at 230 ° C and 2.16 kg load (2.1.18 N) in accordance with ASTM D-123.
4 ) 重量平均分子量及び、 分子量分布  4) Weight average molecular weight and molecular weight distribution
G P C (ゲルパ一ミ ューシヨ ンクロマ トグラフィ ー) 法により測 定した。 センシ 科学社製 S S C— 7 1 0 0 により o—ジクロロ ベンゼンを溶媒と して 1 3 5 °Cで行った。 使用したカラムは S h o d e x製 U T 8 0 7 8 0 6 Mである。 校正曲線は標準試料として. 重量平均分子量が 9 5 0 2 9 0 0 1万、 5万、 4 9. 8万、Measured by GPC (gel permeation chromatography) Specified. The measurement was performed at 135 ° C with o-dichlorobenzene as a solvent using SSC-7100 manufactured by Sensi Kagaku. The column used was Shodex UT 807806 M. The calibration curve is used as a standard sample. The weight-average molecular weight is 95,900,000, 50,000, 49,000,
2 7 0万、 4 9 0万のポ リ スチレンを用いて作成した。 It was made using 2.7 million and 4.90 million polystyrene.
5 ) 曲げ弾性率  5) Flexural modulus
J I S K 7 2 0 3に準拠した。  Compliant with JISK 7203.
6 ) アイゾッ ト衝撃値 (ノ ッチ付、 _ 3 0 °C)  6) Izod impact value (notched, _30 ° C)
J I S K 7 1 1 0 に準拠した。  Compliant with JIS K 7110.
7 ) 透明性 (ヘイズ値)  7) Transparency (haze value)
J I S K 6 7 1 4に準拠した。  Compliant with JIS K6714.
8 ) 溶融張力 (メ ノレトテンシ ョ ン)  8) Melt tension (methylen tension)
東洋精機株式会社のキヤ ピログラフ 1 Bを用い、 オリ フィ ス (L = 2 0 mm D = 2 mm) 、 1 9 0 °C、 押出速度 5 mm/m i n 卷取速度 1 0 m/m i nで溶融張力 (メ ル トテンシ ョ ン) を測定し o  Using Toyo Seiki Co., Ltd. Capillograph 1B, melt tension at orifice (L = 20 mm D = 2 mm), 190 ° C, extrusion speed 5 mm / min, winding speed 10 m / min (Melt tension) o
製造例 1 一 1  Production example 1 1 1
(予備重合)  (Preliminary polymerization)
攪拌機を備えた内容積 1 リ ッ トルのガラス製ォ一 トク レーブ反応 器を窒素ガスで十分に置換した後、 ヘプタン 4 0 0 ミ リ リ ッ トルを 装入した。 反応器内温度を 2 0 °Cに保ち、 ジシクロペンチルジメ ト キシシラ ン 4. 2 ミ リ モル、 ヨ ウ化工チル 2 1. 5 ミ リ モル、 ト リ ェチルアルミニウム 2 1. 5 ミ リモル、 及び三塩化チタン (丸紅ソ ルべィ化学社製) 2 1. 5 ミ リモルを加えた後、 プロピレンを三塩 化チタン 1 g当たり 3 gとなるように 3 0分間連続的に反応器に導 入した。 なお、 この間の温度は 2 0 °Cに保持した。 プロピレンの供 給を停止した後、 反応器内を窒素ガスで十分に置換し、 得られたチ 夕ン含有ポリブロピレンを精製へプタンで 4回洗浄した。 分析の結 果、 三塩化チタン l g当たり 2 . 9 gのプロピレンが重合されてい た。 After a 1-liter glass autoclave reactor equipped with a stirrer was sufficiently replaced with nitrogen gas, 400 milliliters of heptane was charged. The temperature in the reactor was kept at 20 ° C, and dicyclopentyldimethoxysilane, 4.2 mmol, thiol iodide, 21.5 mmol, triethylaluminum, 21.5 mmol, and Titanium trichloride (manufactured by Marubeni Solvay Chemical Co., Ltd.) After adding 21.5 millimoles, propylene was continuously introduced into the reactor for 30 minutes at 3 g per 1 g of titanium trichloride. did. The temperature during this period was kept at 20 ° C. Propylene supply After the supply was stopped, the inside of the reactor was sufficiently replaced with nitrogen gas, and the obtained polypropylene containing titanium was washed four times with purified heptane. As a result of the analysis, 2.9 g of propylene was polymerized per gram of titanium trichloride.
(本重合)  (Main polymerization)
N 2 置換を施した 3 0 0 リ ツ トルの重合装置に、 液体プロピレン を 1 0 O k g、 ト リェチルアルミニウムを 8 5 . 0 ミ リモル、 ジシ クロペンチルジメ トキシシラ ン 4 2 . 5 ミ リモル、 水素を気相中の 濃度が 2 . 5 モル%になるように加え、 ォ一 トク レーブの内温を 5 5 °Cに昇温した。 次にエチレンを気相中の濃度が 1 . 0 モル%に なるように供給した後、 予備重合で得られたチタン含有ボリプロピ レンを三塩化チタンとして 8 . 5 ミ リモル加え、 5 5 °Cで 2 0分間 のプロピレンの重合を行った (工程 1 ) 。 次にエチレンを、 気相中 のエチレンガス濃度をガスクロマ トグラフで確認しながら 1 0モル %となるように供給し、 1 2 0分間の重合を行った (工程 2 ) 。 未反応モノマ一をパージし、 ポリマーを得た。 得られたポリマ一 は 7 0 °Cで 1時間乾燥した。 得られたパウダーのメルトフローレ一 トは 0 . 3 2 g / 1 0 m i nであった。 次に酸化防止剤 〔ィルガノ ックス 1 0 1 0 (チバ · スペシャルティ ' ケミカルズ社製) 〕 0 . 2重量部、 熱安定剤 〔P— E P Q (チバ · スペシャルティ · ケミ カ ルズ社製) 〕 0 . 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和化学 工業社製) 〕 0 . 2重量部、 を添加して混合した後、 5 0 m m 押 出機を用い 2 5 0 °Cで押出してペレツ トを得た。 結果を第 1表に示 した。  In a 300 liter N 2 -substituted polymerization apparatus, 100 kg of liquid propylene, 85.0 millimoles of triethylaluminum, 42.5 millimoles of dicyclopentyl dimethoxysilane, Hydrogen was added so that the concentration in the gas phase became 2.5 mol%, and the internal temperature of the autoclave was raised to 55 ° C. Next, ethylene was supplied so that the concentration in the gas phase became 1.0 mol%, and 8.5 mmol of titanium-containing propylene obtained as a result of prepolymerization was added as titanium trichloride. Polymerization of propylene was carried out for 20 minutes (step 1). Next, ethylene was supplied at a concentration of 10 mol% while confirming the ethylene gas concentration in the gas phase by gas chromatography, and polymerization was carried out for 120 minutes (step 2). The unreacted monomer was purged to obtain a polymer. The obtained polymer was dried at 70 ° C. for 1 hour. The melt flow rate of the obtained powder was 0.32 g / 10 min. Next, an antioxidant [Ilganox 101 (Ciba Specialty Chemicals)] 0.2 parts by weight, heat stabilizer [P-EPQ (Ciba Specialty Chemicals)] 0.1 Parts by weight, chlorine scavenger [DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.)], 0.2 parts by weight, and then extruded at 250 ° C using a 50 mm extruder to pelletize. I got it. The results are shown in Table 1.
製造例 1 一 2  Production example 1 1 2
製造例 1 にて得られたポリマ— 1 0 k gに、 酸化防止剤 〔ィルガ ノ ックス 1 0 1 0 (チノ ' スペシャルティ ' ケミカルズ社製) 〕 0. 2重量部、 熱安定剤 〔P— E P Q (チバ ' スペシャルティ . ケ ミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和 化学工業社製) 〕 0. 2重量部、 有機過酸化物と して 1 , 3 —ビス - ( t —ブチルバ一ォキシイソプロピル) ベンゼンを 0. 0 3重量 部添加して、 混合した後、 5 O mm 0押出機を用い 2 5 0 °Cで押出 してペレツ トを得た。 結果を第 1表に示した。 10 kg of the polymer obtained in Production Example 1 was added to an antioxidant [IRGA Knox 10 10 (Chino Specialty Chemicals) 0.2 parts by weight, heat stabilizer [P-EPQ (Ciba Specialty Chemicals)] 0.1 part by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry Co., Ltd.)] 0.2 parts by weight, and 0.3 parts by weight of 1,3-bis- (t-butylvinyloxyisopropyl) benzene as an organic peroxide are added. After mixing, the mixture was extruded at 250 ° C. using a 5 O mm 0 extruder to obtain a pellet. The results are shown in Table 1.
製造例 1 一 3  Production Example 1 1 3
製造例 1 にて得られたポリマー 1 0 k gに、 酸化防止剤 〔ィルガ ノ ッ クス 1 0 1 0 (チバ · スペシャルティ ' ケミ カルズ社製) 〕 0. 2重量部、 熱安定剤 〔P— E P Q (チバ · スペシャルティ . ケ ミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和 化学工業社製) 〕 0. 2重量部、 有機過酸化物として 1 , 3 — ビス - ( t —ブチルバ一ォキシイソプロ ピル) ベンゼンを 0. 1重量部 添加して、 混合した後、 5 0 mm ø押出機を用い 2 5 0 °Cで押出し てペレツ トを得た。 結果を第 1表に示した。  To 10 kg of the polymer obtained in Production Example 1 was added 0.2 parts by weight of an antioxidant [ILGANOX 10100 (Ciba Specialty 'Chemicals Co., Ltd.)], 2 parts by weight, a heat stabilizer [P—EPQ (Ciba Specialty Chemicals) 0.1 parts by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry)] 0.2 parts by weight, 1,3-bis as organic peroxide -0.1 parts by weight of (t-butylvinyloxypropyl) benzene was added, mixed, and then extruded at 250 ° C using a 50 mm extruder to obtain a pellet. The results are shown in Table 1.
製造例 2  Production Example 2
製造例 1の本重合の工程 1 において、 気相中の水素濃度を 1. 5 モル%、 プロピレンの重合時間を 3 0分間とし、 工程 2 において気 相中のエチレンガス濃度が 1 5. 0モル%を維持するようにェチレ ンを供給して 1 2 0分間のランダム共重合を行った以外は製造例 1 と同様の操作を行つた。 得られたパウダーのメルトフローレ一 トは 0. 0 5 g / 1 O m i nであった。 得られたポリマーに 1 0 k gに. 酸化防止剤 〔ィルガノ ッ クス 1 0 1 0 (チバ ' スペシャルティ · ケ ミ カルズ社製) 〕 0. 2重量部、 熱安定剤 〔P _ E P Q (チバ · ス ぺシャルティ · ケミカルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和化学工業社製) 〕 0. 2重量部、 有機過酸化物と して 1, 3 — ビス _ ( t —ブチルバ一ォキシィソプロ ピル) ベンゼ ンを 0. 0 3重量部添加して、 混合した後、 5 O mm 0押出機を用 い 2 5 0 °Cで押出してペレツ トを得た。 結果を第 1表に示した。 In Step 1 of the main polymerization in Production Example 1, the hydrogen concentration in the gas phase was 1.5 mol%, the polymerization time of propylene was 30 minutes, and the ethylene gas concentration in the gas phase was 15.0 mol in Step 2. %, And the same operation as in Production Example 1 was performed except that ethylene was supplied and random copolymerization was performed for 120 minutes. The melt flow rate of the obtained powder was 0.05 g / 1 O min. Add 10 kg to the obtained polymer. Antioxidant [Ilganox 10100 (Ciba 'Specialty Chemicals)] 0.2 parts by weight, heat stabilizer [P_EPQ (Cibas (Charty Chemicals) 0.1 parts by weight, chlorine scavenger [D HT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.)] 0.2 parts by weight, and 0.03 parts by weight of 1,3-bis_ (t-butylvinyloxyisopropyl) benzene as an organic peroxide are added. After mixing, the mixture was extruded at 250 ° C. using a 5 O mm 0 extruder to obtain a pellet. The results are shown in Table 1.
製造例 3 — 1  Production Example 3 — 1
製造例 1の工程 1 において、 気相中の水素濃度を 2. 0モル%と し、 エチレンガス濃度を 0. 5モル%に維持するように供給して、 プロピレン重合時間を 1 0分間とし、 工程 2 において気相中のェチ レンガス濃度が 1 4. 0モル%を維持するようにエチレンを供給し て 1 2 0分間の重合を行った以外は製造例 1 と同様の操作を行った。 得られたパウダーのメル トフローレ一 トは、 0. 1 5 g / 1 0 m i nであった。 得られたポリ マーに 1 0 k gに、 酸化防止剤 〔ィ ルガノ ッ クス 1 0 1 0 (チバ · スペシャルティ ' ケミ カルズ社製) 〕 0. 2重量部、 熱安定剤 〔P— E P Q (チバ ' スペシャルティ ' ケ ミ カルズ社製)'〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和 化学工業社製) 〕 0. 2重量部、 有機過酸化物と して 1 , 3 —ビス ― ( t —ブチルバ一ォキシイソプロ ピル) ベンゼンを 0. 0 3重量 部添加して、 混合した後、 5 0 mm ø押出機を用い 2 5 0 °Cで押出 してペレツ トを得た。 結果を第 1表に示した。  In step 1 of Production Example 1, the hydrogen concentration in the gas phase was set to 2.0 mol%, the ethylene gas concentration was supplied so as to be maintained at 0.5 mol%, and the propylene polymerization time was set to 10 minutes. In step 2, the same operation as in Production Example 1 was performed except that ethylene was supplied and polymerization was performed for 120 minutes so that the concentration of ethylene gas in the gas phase was maintained at 14.0 mol%. The melt flow rate of the obtained powder was 0.15 g / 10 min. The obtained polymer was added to 10 kg in an amount of 0.2% by weight of an antioxidant [Ilganox 11010 (Ciba Specialty Chemicals)], 0.2 parts by weight, and a heat stabilizer [P-EPQ (Ciba). Specialty 'Chemicals')' 0.1 parts by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry)] 0.2 parts by weight, 1,3-bis as organic peroxide -(T-Butyloxypropyl) benzene was added in an amount of 0.03 part by weight, mixed, and extruded at 250 ° C using a 50 mm ø extruder to obtain a pellet. The results are shown in Table 1.
製造例 3 — 2  Production Example 3 — 2
製造例 3にて得られたポリマ一 1 0 k gに、 酸化防止剤 〔ィルガ ノ ッ クス 1 0 1 0 (チバ · スペシャルティ ' ケミ カルズ社製) 〕 0. 2重量部、 熱安定剤 〔P— E P Q (チバ · スペシャルティ ' ケ ミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T— 4 A (協和 化学工業社製) 〕 Q . 2重量部、 有機過酸化物と して 1 , 3 _ビス 一 ( t 一ブチルバ一ォキシイソプロピル) ベンゼンを 0. 0 7重量 部添加して、 混合した後、 5 O mm 0押出機を用い 2 5 0 °Cで押出 してペレツ トを得た。 結果を第 1表に示した。 To 10 kg of the polymer obtained in Production Example 3 was added 0.2 parts by weight of an antioxidant [ILGANOX 10100 (Ciba Specialty 'Chemicals Co., Ltd.)] and 2 parts by weight of a heat stabilizer [P- EPQ (Ciba Specialty Chemicals) 0.1 parts by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry Co., Ltd.)] Q. 2 parts by weight, organic peroxide 1, 0.07 weight of 3_bis- (t-butyl-hydroxy-isopropyl) benzene After adding and mixing, a pellet was obtained by extruding at 250 ° C. using a 5 Omm 0 extruder. The results are shown in Table 1.
製造例 4  Production Example 4
製造例 2の本重合の工程 1 においてプロピレンの重合時間を 9 0 分間とした以外は製造例 1 と同様の操作を行った。 得られたパウダ 一のメノレトフローレ一 トは、 0. 0 9 g/ 1 0 m i nであった。 得 られたポリマー 1 0 k gに、 酸化防止剤 〔ィルガノ ックス 1 0 1 0 (チバ . スペシャルティ . ケミ カルズ社製) 〕 0. 2重量部、 熱安 定剤 〔 P _ E P Q (チバ · スペシャルティ , ケミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和化学工業社製) 〕 0. 2重量部、 有機過酸化物と して 1 , 3 —ビス一 ( t —ブチルバ —ォキシイソプロピル) ベンゼンを 0. 0 2重量部添加して、 混合 した後、 5 0 mm ø押出機を用い 2 5 0 °Cで押出してべレッ トを得 た。 結果を第 1表に示した。  The same operation as in Production Example 1 was performed except that the polymerization time of propylene was changed to 90 minutes in Step 1 of the main polymerization in Production Example 2. The resulting maleole flow rate was 0.09 g / 10 min. To 10 kg of the obtained polymer, 0.2 parts by weight of an antioxidant [Ilganox 110 (Ciba Specialty Chemicals)], 0.2 parts by weight, a thermal stabilizer [P_EPQ (Ciba Specialty, Chemi-Chem) 0.1% by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry Co., Ltd.)] 0.2 parts by weight, 1,3-bis (t-butylamine) as an organic peroxide —Oxyisopropyl) Benzene was added in an amount of 0.02 parts by weight, mixed, and then extruded at 250 ° C. using a 50 mm 押出 extruder to obtain a beret. The results are shown in Table 1.
製造例 5  Production Example 5
製造例 1の本重合の工程 1 において水素を気相中の濃度が 1. 0 モル になるように加えた以外は製造例 1 と同様の操作を行つた。 得られたパウダーのメノレ トフ口一レー トは、 0. 0 7 g / 1 0 m i nであった。 得られたポリマーに 1 0 k gに、 酸化防止剤 〔ィ ルガノ ックス 1 0 1 0 (チバ ' スペシャルティ ' ケミ カルズ社製) 〕 0. 2重量部、 熱安定剤 〔 P— E P Q (チバ · スぺシャルティ · ケ ミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T— 4 A (協和 化学工業社製) 〕 0. 2重量部、 有機過酸化物と して 1 , 3 — ビス - ( t —プチルパ一ォキシイソプロピル) ベンゼンを 0. 0 6重量 部添加して、 混合した後、 5 O mm 0押出機を用い 2 5 0 °Cで押出 してペレツ トを得た。 結果を第 1表に示した。 比較製造例 1 The same operation as in Production Example 1 was performed except that hydrogen was added in Step 1 of the main polymerization in Production Example 1 so that the concentration in the gas phase became 1.0 mol. The resulting powder had a mouth-to-mouth mouth rate of 0.07 g / 10 min. To 10 kg of the obtained polymer, 0.2 parts by weight of an antioxidant [Irganox 11010 (Ciba 'Specialty' Chemicals)], 0.2 parts by weight, a heat stabilizer [P-EPQ (Ciba 0.1% by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry Co., Ltd.)] 0.2 parts by weight, 1, 3-bis as organic peroxide After adding and mixing 0.06 parts by weight of (t-butylpropylisopropyl) benzene, the mixture was extruded at 250 ° C. using a 5 mm0 extruder to obtain a pellet. The results are shown in Table 1. Comparative Production Example 1
製造例 1の工程において、 水素を添加せずにプロピレン系プロッ ク共重合体を重合した。 得られたパウダーのメルトフ口一レー トは In the process of Production Example 1, a propylene-based block copolymer was polymerized without adding hydrogen. Melt toe rate of powder obtained is
0. 0 1 g / 1 0 m i n以下であった。 得られたポリマーに酸化防 止剤 〔ィルガノ ッ クス 1 0 1 0 (チバ · スペシャルティ ' ケミ カル ズ社製) 〕 0. 2重量部、 熱安定剤 〔 P - E P Q (チバ · スぺシャ ルティ · ケミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和化学工業社製) 〕 Q . 2重量部、 有機過酸化物と して、 1, 3 — ビス一 ( t ーブチルバ一ォキシイソプロピル) 一ベンゼン を 0. 2重量部添加して造粒を行つた以外は製造例 1 と同様の操作 を行った。 結果を第 1表に示した。 0.01 g / 1 0 min or less. An antioxidant [Ilganox 101 (Ciba Specialty 'Chemicals Co., Ltd.)] 0.2 parts by weight, a heat stabilizer [P-EPQ (Ciba Specialty) Chemicals)] 0.1 parts by weight, chlorine scavenger [DHT-4A (Kyowa Chemical Industry)] Q. 2 parts by weight, 1,3-bis (t) as organic peroxide The same operation as in Production Example 1 was performed except that granulation was carried out by adding 0.2 parts by weight of -benzene-hydroxypropyl) -benzene. The results are shown in Table 1.
比較製造例 2  Comparative Production Example 2
製造例 2の本重合の工程 1 において 1 2 0分間、 工程 2 において 2 0分間の重合にした以外は、 製造例 2 と同様の操作を行った。 得 られたパウダーのメルトフ口一レー トは、 0. 1 5 g/ 1 0 m i n であった。 得られたポリマ一に酸化防止剤 〔ィルガノ ックス 1 0 1 0 (チバ · スペシャルティ · ケミ カルズ社製) 〕 0. 2重量部、 熱 安定剤 〔P— E P Q (チバ♦ スペシャルティ · ケミ カルズ社製) 〕 0. 1重量部、 塩素捕捉剤 〔D H T - 4 A (協和化学工業社製) 〕 0. 2重量部、 有機過酸化物と して、 1, 3 — ビス一 ( t 一ブチル パーォキシイソプロピル) —ベンゼンを 0. 0 1重量部添加して 造粒を行った以外は製造例 2 と同様の操作を行った。 結果を第 1表 に不した。  The same operation as in Production Example 2 was performed, except that the polymerization was carried out for 120 minutes in Step 1 of the main polymerization in Production Example 2 and for 20 minutes in Step 2. The melt powder mouth rate of the obtained powder was 0.15 g / 10 min. Antioxidant [Ilganox 101 (Ciba Specialty Chemicals)] 0.2 parts by weight, heat stabilizer [P-EPQ (Ciba Specialty Chemicals)] ] 0.1 part by weight, chlorine scavenger [DHT-4A (manufactured by Kyowa Chemical Industry Co., Ltd.)] 0.2 part by weight, 1,3-bis (t-butyl peroxy) as an organic peroxide Isopropyl) —The same operation as in Production Example 2 was performed except that granulation was performed by adding 0.01 part by weight of benzene. The results are not shown in Table 1.
実施例 1〜 3  Examples 1-3
製造例 1 一 1、 1 — 2、 1 一 3 にて得られたプロピレン系プロッ ク共重合体のぺレツ トとスチレン—水素添加ィソプレン共重合体で あるクラレ製セプトン 2 0 4 3 (商品名 : イソプレンの水素添加率 9 0 %以上、 スチレン含量 1 3 w t %、 ト リ ブロック、 ジブロック タイプ メルトフローレー ト 4 g Z l O分) を第 2表に示す割合で 混合した後、 5 0 m m 0押出機にて溶融混練し、 5 0 ト ン射出成形 機にてシリ ンダー温度 2 3 0 °C、 金型温度 4 0 °Cの条件で、 曲げ試 験片、 アイゾッ ト衝撃試験片、 及び 4 0 m m 0 Tダイ押出機にてシ リ ンダ一温度 2 5 0 °C、 ロール温度 4 0 °Cの条件で、 厚み 3 0 0 μ mのヘーズ測定用シー トを作成した。 得られたシ一 トの外観評価を 良好なものを〇、 メルトフラクチャ—が発生して外観が不良なもの を Xで評価した。 また、 成形性の指標と してネックィ ンの評価を得 られたシー ト幅を測定して下記の方法にて求めた。 Production Example 11 The pellets of the propylene-based block copolymer obtained in 1-1, 1--2, and 113 and the styrene-hydrogenated isoprene copolymer A Kuraray-made Septon 204 (brand name: isoprene hydrogenation rate of 90% or more, styrene content of 13 wt%, triblock, diblock type melt flow rate 4 g ZIO content) After mixing at the ratios shown in the table, the mixture was melted and kneaded with a 50 mm 0 extruder, and a 50-ton injection molding machine was used at a cylinder temperature of 230 ° C and a mold temperature of 40 ° C. Bending test piece, Izod impact test piece, and a thickness of 300 μm with a cylinder temperature of 250 ° C and a roll temperature of 40 ° C using a 40 mm 0 T die extruder. A sheet for measuring haze was created. The sheets evaluated as good were evaluated for appearance, and those evaluated as poor when melt fracture occurred and evaluated as X. The sheet width at which neck ine was evaluated as an index of formability was measured and determined by the following method.
ネッ クイ ン ( c m ) =ダイス幅 ( 4 0 c m ) —フィ ルム幅 また、 ブリ一ドの評価は、 得られたシー トの成形直後の外部ヘイ ズと 4 0。C、 2週間エージングした後の外部ヘイズの差により評価 した。 結果を第 2表に示す。  Net In (cm) = Die Width (40cm) —Film Width The evaluation of the bleed was the external haze of the obtained sheet immediately after molding and 40. C, evaluated by the difference in external haze after aging for 2 weeks. The results are shown in Table 2.
実施例 4  Example 4
製造例 2 にて得られたプロピレン系プロック共重合体を用い、 実 施例 1で使用したスチレン一水素添加ィソプレン共重合体を第 2表 に示す割合で混合した以外は、 実施例 1 と同様の操作を行った。 結 果を第 2表に示す。  Same as Example 1 except that the propylene block copolymer obtained in Production Example 2 was used, and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. Table 2 shows the results.
実施例 5、 6  Examples 5, 6
製造例 3 — 1、 3 — 2 にて得られたプロピレン系ブロック共重合 体樹脂を用い、 実施例 1で使用したスチレンー水素添加ィソプレン 共重合体を第 2表に示す割合で混合した以外は、 実施例 1 と同様の 操作を行った。 結果を第 2表に示す。  Except that the propylene-based block copolymer resin obtained in Production Example 3-1, 3-2 was used, and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed in the proportions shown in Table 2, The same operation as in Example 1 was performed. The results are shown in Table 2.
実施例 7 製造例 4 にて得られたプロピレン系プロック共重合体を用い、 実 施例 1で使用したスチレンー水素添加ィソプレン共重合体を第 2表 に示す割合で混合した以外は、 実施例 1 と同様の操作を行った。 結 果を第 2表に示す。 Example 7 Same as Example 1 except that the propylene block copolymer obtained in Production Example 4 was used and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. The operation was performed. Table 2 shows the results.
実施例 8  Example 8
製造例 5 にて得られたプロピレン系プロック共重合体を用い、 実 施例 1で使用したスチレン一水素添加ィソプレン共重合体を第 2表 に示す割合で混合した以外は、 実施例 1 と同様の操作を行った。 結 果を第 2表に示す。  Same as Example 1 except that the propylene block copolymer obtained in Production Example 5 was used, and the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. Table 2 shows the results.
実施例 9  Example 9
製造例 1 — 2 にて得られたプロピレン系ブロック共重合体のぺレ ッ トとスチレン—水素添加ブタジェン共重合体であるシヱル製ク レ ィ ト ン G 1 6 5 7 (商品名 : ブタジェンの水素添加率 9 0 %以上 (ゴム構造 : エチレン一プチレ ン) 、 スチレン含量 1 3 w t %、 ト リ ブロック、 ジブロックタイプ、 メノレ ト フローレー ト 8 g / 1 0分) を第 2表に示す割合で混合した以外は、 実施例 1 と同様の操作を行 つた。 結果を第 2表に示す。  A pellet of the propylene-based block copolymer obtained in Production Examples 1-2 and a styrene-hydrogenated butadiene copolymer, Cleton G 1657 (trade name: Table 2 shows the hydrogenation rate of 90% or more (rubber structure: ethylene-butylene), styrene content of 13 wt%, triblock, diblock type, menoleto flow rate of 8 g / 10 minutes) The same operation as in Example 1 was performed except that the components were mixed. The results are shown in Table 2.
実施例 1 0  Example 10
製造例 1 一 2 にて得られたプロピレン系ブロック共重合体のぺレ ッ トとスチレン—水素添加ブ夕ジェン共重合体である日本合成ゴム 製ダイナロン 1 3 2 0 P (商品名 : ブ夕ジェンの水素添加率 9 0 % 以上、 スチレン含量 1 0 w t %、 ランダムプロック構造、 メルトフ 口一レー ト 3 . 5 g Z 1 0分) を第 2表に示す割合で混合した以外 は、 実施例 1 と同様の操作を行った。 結果を第 2表に示す。  Production Example 12 Nippon Synthetic Rubber Dynallon 132 0 P, a pellet of the propylene-based block copolymer obtained in 1-2 and a styrene-hydrogenated benzene copolymer, trade name: The hydrogenation rate of benzene was 90% or more, the styrene content was 10% by weight, the random block structure, Meltoff mouth rate 3.5 g Z 10 minutes) were mixed at the ratios shown in Table 2. The same operation as in 1 was performed. The results are shown in Table 2.
実施例 1 1  Example 1 1
製造例 1 一 2 にて得られたプロピレン系ブ口ック共重合体のペレ ッ トとスチレン—水素添加ビニル · イソプレン共重合体であるクラ レ製ハイブラ一 H V S— 3 (商品名 : ビニル ' イソプレンの水素添 加率 8 0 %以上、 スチレン含量 2 0 w t %、 ト リプロック構造 メ ルトフ口一レー ト 6 g Z l O分) を第 2表に示す割合で混合した以 外は、 実施例 1 と同様の操作を行った。 結果を第 2表に示す。 Production Example 1 Pellet of the propylene-based block copolymer obtained in 1-2 Kuraray HVS-3 (trade name: vinyl 'isoprene, hydrogenation rate of at least 80%, styrene content of 20% by weight, triblock structure) The same operation as in Example 1 was carried out, except that the melt (6 g of Zol) was mixed at the ratio shown in Table 2. The results are shown in Table 2.
比較例 1  Comparative Example 1
比較製造例 1 にて得られたプロピレン系ブロック共重合体を用い. 実施例 1で使用したスチレン—水素添加ィソプレン共重合体を第 2 表に示す割合で混合した以外は、 実施例 1 と同様の操作を行った。 結果を第 2表に示す。  Using the propylene-based block copolymer obtained in Comparative Production Example 1. Same as Example 1 except that the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. The results are shown in Table 2.
比較例 2  Comparative Example 2
比較製造例 2 にて得られたプロピレン系ブロック共重合体を用い 実施例 1 1で使用したスチレン—水素添加ィソプレン共重合体を第 2表に示す割合で混合した以外は、 実施例 1 と同様の操作を行った, 結果を第 2表に示す。  Same as Example 1 except that the propylene-based block copolymer obtained in Comparative Production Example 2 was used and the styrene-hydrogenated isoprene copolymer used in Example 11 was mixed at the ratio shown in Table 2. Table 2 shows the results.
比較例 3  Comparative Example 3
製造例 1 ― 2 にて得られたプロピレン系プロック共重合体を用い. 実施例 1で使用したスチレンー水素添加ィソプレン共重合体を第 2 表に示す割合で混合した以外は、 実施例 1 と同様の操作を行った。 結果を第 2表に示す。  Using the propylene block copolymer obtained in Production Example 1-2. Same as Example 1 except that the styrene-hydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2. Was performed. The results are shown in Table 2.
比較例 4  Comparative Example 4
製造例 1 一 2 にて得られたプロピレン系プロック共重合体を用い. 実施例 1で使用したスチレン一水素添加ィソプレン共重合体を第 2 表に示す割合で混合した以外は、 実施例 1 と同様の操作を行った。 結果を第 2表に示す。  Production Example 1 The propylene block copolymer obtained in 1-2 was used. Except that the styrene monohydrogenated isoprene copolymer used in Example 1 was mixed at the ratio shown in Table 2, the same as in Example 1 was used. The same operation was performed. The results are shown in Table 2.
比較例 5 製造例 1 一 2 にて得られたプロピレン系プロック共重合体のペレ ッ トと、 スチレン—水素添加ブタジェン共重合体であるシヱル製ク レイ ト ン G 1 6 5 2 (商品名 : ブタジェンの水素添加率 9 0 %以上 スチレン含量 2 9 w t %、 ト リ ブロ ッ ク、 ジブロ ッ ク構造、 メノレ ト フローレー ト 1. 3 g/ 1 0分) を第 2表に示す割合で混合した以 外は、 実施例 1 と同様の操作を行った。 結果を第 2表に示す。 Comparative Example 5 Production Example 12 A pellet of the propylene block copolymer obtained in Example 1-2 and a Cleton G 1652 (a trade name of butadiene hydrogen, a styrene-hydrogenated butadiene copolymer) Addition rate 90% or more Styrene content 29 wt%, triblock, diblock structure, menoleto flow rate 1.3 g / 10 min.) The same operation as in Example 1 was performed. The results are shown in Table 2.
比較例 6  Comparative Example 6
バナジゥム触媒を使用して製造した M F Rが 1. 8 g Z 1 0 m i nでエチレン単位が 8 8モル%のエチレン一プロピレンゴム (E P R スチレン含量 0 %) 1 0重量部、 M F R力く 3. 0 g / 1 0 m i nのラ ンダムポリ プロピレン (エチレン含量 3モル%) を 1 0 0重量部の割合でプレン ドした以外は、 実施例 1 と同様の操作 を行った。 結果を第 2表に示す。 Banajiumu catalyst MFR of 1. 8 g Z 1 0 mi n at ethylene unit 8 8 mole percent ethylene one propylene rubber (EPR styrene content 0%) was prepared using 1 0 part by weight, MFR Chikaraku 3.0 The same operation as in Example 1 was performed, except that 100 parts by weight of random polypropylene (ethylene content: 3 mol%) of g / 10 min was blended. The results are shown in Table 2.
第 1表一 1 Table 1
高温溶出成分 低温溶出成分 重 生  High temperature elution component Low temperature elution component
プロピレン エチレン プロピレン エチレン Propylene ethylene Propylene ethylene
1 (g-pp/g-cat) (%) 3里 3里 (%) 無 as 1 (g-pp / g-cat) (%) 3 ri 3 ri (%) None as
(mol%) (mol%) (mol%) (mol%) 觀列 1—1 4500 8.0 97.5 2.5 92.0 76.0 24.0  (mol%) (mol%) (mol%) (mol%) Observation 1-1 4500 8.0 97.5 2.5 92.0 76.0 24.0
4500 8.0 97.5 2.5 92.0 76.0 240 4500 8.0 97.5 2.5 92.0 76.0 240
4500 8.0 97.5 2.5 92.0 76.0 24.0 爾 112 4900 16.0 97.0 2.0 840 66.3 33.7 調列 3 - 1 4600 9.0 98.6 1.4 91.0 66.9 33.1 調列 3— 2 4600 9.0 98.6 1.4 91.0 66.9 33.1 4500 8.0 97.5 2.5 92.0 76.0 24.0 Energy 112 4900 16.0 97.0 2.0 840 66.3 33.7 Keying 3-1 4600 9.0 98.6 1.4 91.0 66.9 33.1 Keying 3 2 4600 9.0 98.6 1.4 91.0 66.9 33.1
5000 40.8 97.3 2.7 59.2 73.2 26.7 5000 40.8 97.3 2.7 59.2 73.2 26.7
4900 8.2 98.1 1.9 91.8 75.6 24.4 ^ ι 4200 10.6 96.5 3.5 89.4 76.4 23.6
Figure imgf000033_0001
2 3500 82.0 99.2 0.8 18 70.3 29.7
4900 8.2 98.1 1.9 91.8 75.6 24.4 ^ ι 4200 10.6 96.5 3.5 89.4 76.4 23.6
Figure imgf000033_0001
2 3500 82.0 99.2 0.8 18 70.3 29.7
第 1表一 2 Table 1 I 2
Figure imgf000034_0001
Figure imgf000034_0001
式 (X) : l og ( (Mw/Mn) XMFR0- 33) Formula (X): l og (( Mw / Mn) XMFR 0 - 33)
第 2表一 1 Table 2 1
Figure imgf000035_0001
Figure imgf000035_0001
*1 セプトン 2043: (A_B)、(A- B-A)タイプ、スチレン^ *13%、メルトフ口-レ-ト 4g/10分 * 1 Septon 2043: (A_B), (A-B-A) type, Styrene ^ * 13%, Melt mouth-rate 4g / 10min
*2 クレイト Ϊ1657 (A-B) (A-B-A)タイプ、スチレン ^¾3%、メルトフ口-レ-ト 8g/10分 氺 3 ダイナロン 1320P (A"C)、 (A~C- A)、 (A"C- D)タイプ、スチレン ^*10% * 2 Krait Ϊ1657 (AB) (ABA) type, Styrene ^ ¾3%, Melt mouth-rate 8g / 10min 氺 3 Dynalone 1320P (A "C), (A ~ C-A), (A" C- D) type, styrene ^ * 10%
メルトフ口-レ-ト 3. 5g/10分  Meltov mouth-rate 3.5g / 10min
*4ハイブラ一 HVS - 3 (A- B)、(A- B- A)タイプ、スチレン ¾*20%、メルトフ口-レ-ト 1. 5g/10分 *5 クレイト Ϊ1652 (A - B)、(A_B- A)タイプ、スチレン鎮 9%、メルトフ口-レ-ト 1. 3g/10分 * 4 HYBRA HVS-3 (A-B), (A-B-A) type, styrene ¾ * 20%, melt-off mouth-rate 1.5 g / 10 min. * 5 Krait Ϊ1652 (A-B), (A_B-A) type, styrene 9%, melt-off mouth-rate 1.3g / 10min
*6 エチレン一プロピレンゴム:スチレン含量 0 %、メルトフ口-レ-ト 3g/分 アイゾッ卜 ネックイン 外部ヘイズ (%) -30°C (KJ/m2) (cm) 外観 40°C li周 FB¾ 势綱 1 N. B 2. 6 o 8 2 8 8 势綱 2 N. B 3. 8 o 7 1 R 0 l¾ y綱 uii 3 N. B 4. . 9 o U δ■ o Q* 6 Ethylene-propylene rubber: Styrene content 0%, melt tip-rate 3g / min Izot Neck-in External haze (%) -30 ° C (KJ / m 2 ) (cm) Appearance 40 ° C li circumference FB¾ Reinforcement 1 N.B 2.6 o 8 2 8 8 Reinforcement 2 N.B 3 8 o 7 1 R 0 l¾y class uii 3 N.B 4. .9 o U δ ■ o Q
Hi綱 4 N. B 3. 8 o O . 9 1 n o 截纖 5 N. B 3 6 o O . ΰ Q 1 n U, 9 翁糊 6 N. B 4 4 o 7 Q 1 o Hi rope 4 N.B 3.8 o O. 9 1 n o Fiber 5 N.B 36 o O. ΰ Q 1 nU, 9 Okina 6 N.B 4 4 o 7 Q 1 o
Ιϋ liϋiί|列 7 B 3 9 o 0. Q y Q  列 liϋiί | row 7 B 3 9 o 0. Q y Q
o y, y o y, y
NT R U . o , 0 0 Q 爐 1 4 1 7. o o NT R U. O, 0 0 Q furnace 1 4 1 7. o o
翁棚 10 N R 4 5 o 6. 2 9. 8 翁細 11 N R 4 3 o 6. 0 1 0. 3 Okinabe 10 N R 4 5 o 6.2.9.8 Okinabe 11 N R 4 3 o 6.0 1 0.3
N R 7 1 X 1 1. 4 1 5. 3 賺例 2 2. 3 2. 9 o 6. 3 7. 3 膽例 3 N. B 4. 1 〇 7. 2 1 8. 9 職例 4 N. B ' 4. 2 X 水 7  NR 7 1 X 1 1. 4 1 5.3 Note example 2 2. 3 2.9 o 6.3 7.3 Example 3 N. B 4.1 〇 7.2 1 8.9 Job example 4 N. B '4.2 X water 7
J:瞧 5 N. B 3. 6 〇 1 9. 3 2 2. 1 雌例 6 N. B 4. 2 〇 2 1. 3 . 2 4. 27 J:t ¾列 4は、激しいブロッキングのため、外部ヘイズ力, きず。 J: 瞧 5 N.B 3.6 〇1 9.3 22.1 Female example 6 N.B 4.2 〇2 1.3.2.4.227 J: t ¾ row 4 due to severe blocking , External haze force, flaw.
産業上の利用可能性 Industrial applicability
本発明において、 芳香族系ビニル化合物 -水添共役ジェン化合物 共重合体の配合による、 透明性の、 成形加工後の低分子量物のプリ 一 ドを抑制する効果の機構は明らかではないが、 プロピレン系ブ口 ック共重合体と芳香族系ビニル化合物一水添共役ジェン化合物共重 合体の相溶性が良いためであると考えられる。 特にジブ口ックタイ プゃ ト リ ブロックタイプ構造を有する芳香族系ビニル化合物一水添 共役ジェン化合物共重合体の場合は、 ブリ一 ドする低分子量プロピ レン—ェチレン共重合体成分と相溶性が良いためこれらのブリー ド 物を抑制するものと考えられる。  In the present invention, although the mechanism of the effect of suppressing the pread of low-molecular-weight materials after molding by transparency is not clear, the mechanism of blending the aromatic vinyl compound-hydrogenated conjugated diene compound copolymer is not clear. This is probably because the compatibility between the copolymer block copolymer and the aromatic vinyl compound monohydrogenated conjugated gen compound copolymer is good. Particularly, in the case of an aromatic vinyl compound monohydrogenated conjugated gen compound copolymer having a jib mouth type block type structure, it has good compatibility with the low molecular weight propylene-ethylene copolymer component to be bridged. Therefore, it is considered that these bleeds are suppressed.
一方、 ランダムブロックタイプ構造を有する芳香族系ビュル化合 物一水添共役ジェン化合物共重合体の場合は、 プロピレン系プロッ ク共重合体中に微分散するものと考えられ、 そのため、 優れた透明 性、 柔軟性を有することができるものと考えられる。  On the other hand, in the case of an aromatic-based compound and a hydrogenated conjugated-gen compound copolymer having a random block type structure, it is considered that they are finely dispersed in a propylene-based block copolymer, and therefore, excellent transparency is obtained. It is thought that it can have flexibility.
本発明の樹脂組成物は、 優れた柔軟性、 低温衝撃性、 成形性に優 れ、 しかも、 成形加工後の透明性が優れ、 又、 成形後の低分子量成 分をも効果的に抑制することが可能であり、 従来の熱可塑性エラス トマ一が用いられている種々の分野に好適に用いることができる。 例えば、 フィ ルム用途と してはラ ップフィ ルム、 シュ リ ンクフィ ル ム、 ス ト ツチレフイ ルム、 シ一ラン ト用フィ ルム、 サイジングフィ ルム、 粘着テープ、 マスキングフィ ルム、 農業用フィ ルム、 医療用 フィ ルム、 バンソゥコゥ用フィ ルム、 表面保護フイ ルム、 化粧フィ ルム等、 シー トとしては文具シー ト、 咬合シー ト、 デスクマッ ト、 農業用シー ト、 防水シー ト、 自動車部品における内装表皮材、 コル ゲー ト、 ウィ ン ドモール、 エアダク トホース、 ゥェザス ト リ ップ、 電線被覆材等、 壁紙、 床材、 成形体としては化粧箱、 化粧袋、 包装 箱、 包装袋、 食品容器、 雑貨部品、 玩具等に好適に用いることがで きる。 また、 射出分野において自動車部品におけるバンパー、 マツ ドガ一 ド、 ホーンパッ ト、 ランプパッキン類、 また、 家電分野にお いては、 各種パッキン類、 掃除機等の車輪、 バンパー、 ホース等の 各成形部品、 0 A機器の各種成形部品等に好適に用いることができ >。 The resin composition of the present invention is excellent in flexibility, low-temperature impact resistance, and moldability, has excellent transparency after molding, and effectively suppresses low molecular weight components after molding. It can be suitably used in various fields in which conventional thermoplastic elastomers are used. For example, film applications include wrap film, shrink film, storage film, film for sealant, sizing film, adhesive tape, masking film, agricultural film, and medical use. Sheets such as stationery sheets, occlusal sheets, desk mats, agricultural sheets, waterproof sheets, interior skin materials for automobile parts, colum, etc. Gates, wind moldings, air duct hoses, jewelry strips, wire coverings, etc., wallpaper, flooring, molded articles as decorative boxes, decorative bags, and packaging It can be suitably used for boxes, packaging bags, food containers, miscellaneous goods parts, toys and the like. Also, in the injection field, bumpers, matsudogs, horn pads, and lamp packings for automobile parts. 0 Can be suitably used for various molded parts of A equipment.

Claims

請求の範囲 The scope of the claims
1. ( 1 ) 昇温溶離分別法により測定される 1 0 0 °c以上の溶出成 分が 1〜 7 0重量%、 1 0 0 °C未満の溶出成分が 9 9〜 3 0重量% であり、 かつ、 該 1 0 0 °C以上の溶出成分のプロピレンに基づく単 量体単位が 1 0 0〜 9 0モル%、 エチレンに基づく単量体単位が 0〜 1 0モル%、 該 1 0 0 °C未満の溶出成分のプロピレンに基づく 単量体単位が 9 0〜 5 0モル%、 エチレンに基づく単量体単位が 1 0〜 5 0モル%である共重合体であって、 該共重合体のメルトマ スフ口一レイ ト (M F R) と、 ゲルパ一 ミ エ一シ ョ ンクロマ トグラ フィ 一により測定される重量平均分子量 (Mw) と数平均分子量1. (1) 1 to 70% by weight of eluted components at 100 ° C or more and 99 to 30% by weight of eluted components below 100 ° C as measured by the temperature-elution fractionation method And 100 to 90 mol% of a monomer unit based on propylene of the eluted component at 100 ° C. or higher, 0 to 10 mol% of a monomer unit based on ethylene, A copolymer having 90 to 50 mol% of a monomer unit based on propylene and 10 to 50 mol% of a monomer unit based on ethylene as an elution component at a temperature lower than 0 ° C, Weight average molecular weight (Mw) and number average molecular weight of polymer measured by gel melt chromatography (MFR), gel permeation chromatography
(M n ) の比 (M w/M n ) とから算出される 1 o g ( (M wZ M n ) x M F R。. 33) 力 0. 5 7〜: 1. 5、 Mwが 8万〜 1 5 0万 であるプロピレン系ブロック共重合体 1 0 0重量部 The ratio of (M n) (M w / M n) and 1 is calculated from og ((M wZ M n) x MFR .. 33) force 0. 5 7~: 1. 5, Mw is 80000-1 100,000 parts by weight of propylene-based block copolymer
( 2 ) 芳香族ビニル化合物に基づく単量体単位が 5〜 2 5重量%、 少なく とも一部が水素添加された共役ジェン化合物に基づく単量体 単位が 9 5〜 7 5重量%である芳香族ビニル—水添共役ジェン系共 重合体 1〜 1 0 Q重量部  (2) Fragrance in which the monomer unit based on an aromatic vinyl compound is 5 to 25% by weight, and the monomer unit based on at least a partially conjugated diene compound is 95 to 75% by weight. Aromatic vinyl-hydrogenated conjugated diene copolymer 1 to 10 Q parts by weight
からなることを特徴とする樹脂組成物。 A resin composition comprising:
2. 芳香族ビュル-水添共役ジェン系共重合体の構造が、 A _ Bブ ロック共重合体、 A _ B— Aブロック共重合体 (ただし、 Aは芳香 族ビニル化合物に基づく重合体プロック、 Bは少なく とも一部が水 素添加された共役ジェン化合物に基づく重合体ブロック) 、 または これら共重合体の混合物である請求の範囲第 1項に記載の樹脂組成 物。 2. The structure of the aromatic butyl-hydrogenated conjugated copolymer is A_B block copolymer or A_B—A block copolymer (where A is a polymer block based on an aromatic vinyl compound). 2. The resin composition according to claim 1, wherein B is a polymer block based on a conjugated gen compound to which at least a part of hydrogen has been added, or a mixture of these copolymers.
3 . 芳香族ビニルー水添共役ジェン系共重合体の構造が、 A— Cプ ロック共重合体、 A— C一 Aブロック共重合体、 A— C— Dブロッ ク共重合体 (ただし、 Aは芳香族ビニル化合物に基づく重合体プロ ック、 Cは少なく とも一部が水素添加された共役ジェン化合物と芳 香族ビニル化合物とのランダム重合体プロック、 Dは芳香族ビニル 化合物と少なく とも一部が水素添加された共役ジェン化合物との重 合体プロックにおいて、 芳香族ビニル化合物に基づく単量体単位が 漸増するテ一パーブロックであるブロック共重合体) 、 またはこれ ら共重合体の混合物である請求の範囲第 1項に記載の樹脂組成物。 3. The structure of the aromatic vinyl-hydrogenated conjugated gen-based copolymer is as follows: A—C block copolymer, A—C—A block copolymer, A—C—D block copolymer (A Is a polymer block based on an aromatic vinyl compound, C is a random polymer block of a conjugated gen compound at least partially hydrogenated and an aromatic vinyl compound, and D is at least one block of an aromatic vinyl compound. Block copolymer, which is a taper block in which the monomer unit based on an aromatic vinyl compound gradually increases in a polymer block with a hydrogenated conjugated diene compound) or a mixture of these copolymers 2. The resin composition according to claim 1.
PCT/JP2001/009151 2000-10-19 2001-10-18 Resin composition WO2002032996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-318693 2000-10-19
JP2000318693 2000-10-19

Publications (1)

Publication Number Publication Date
WO2002032996A1 true WO2002032996A1 (en) 2002-04-25

Family

ID=18797280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009151 WO2002032996A1 (en) 2000-10-19 2001-10-18 Resin composition

Country Status (1)

Country Link
WO (1) WO2002032996A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531565A (en) * 2015-04-22 2018-01-02 日本瑞翁株式会社 Laminated glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134324A (en) * 1994-11-15 1996-05-28 Tokuyama Corp Resin composition
JPH1160888A (en) * 1997-08-27 1999-03-05 Tokuyama Corp Flame-retardant soft resin composition
JPH11240987A (en) * 1997-12-25 1999-09-07 Tokuyama Corp Resin composition
EP0982328A1 (en) * 1998-08-25 2000-03-01 Tokuyama Corporation Propylene resin compositions, process for the preparation thereof, and use thereof.
JP2001049060A (en) * 1999-08-09 2001-02-20 Tokuyama Corp Propylenic resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134324A (en) * 1994-11-15 1996-05-28 Tokuyama Corp Resin composition
JPH1160888A (en) * 1997-08-27 1999-03-05 Tokuyama Corp Flame-retardant soft resin composition
JPH11240987A (en) * 1997-12-25 1999-09-07 Tokuyama Corp Resin composition
EP0982328A1 (en) * 1998-08-25 2000-03-01 Tokuyama Corporation Propylene resin compositions, process for the preparation thereof, and use thereof.
JP2001049060A (en) * 1999-08-09 2001-02-20 Tokuyama Corp Propylenic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107531565A (en) * 2015-04-22 2018-01-02 日本瑞翁株式会社 Laminated glass

Similar Documents

Publication Publication Date Title
US8389634B2 (en) Polymer compositions comprising a low-viscosity, homogeneously branched ethylene α-olefin extender
US6268063B1 (en) Propylene resin composition, process for the preparation thereof, and use thereof
EP2006314B1 (en) Propylene random block copolymer, resin compositions containing the copolymer, and moldings of both
JP4688247B2 (en) Propylene resin composition, production method and use thereof
JP5020524B2 (en) PROPYLENE POLYMER COMPOSITION, MOLDED COMPOSITION COMPRISING THE COMPOSITION, PELLET COMPRISING PROPYLENE POLYMER COMPOSITION, MODIFICATOR FOR THERMOPLASTIC POLYMER, METHOD FOR PRODUCING THERMOPLASTIC POLYMER COMPOSITION
JP5330637B2 (en) PROPYLENE POLYMER COMPOSITION, MOLDED ARTICLE COMPRISING THE COMPOSITION, AND METHOD FOR PRODUCING PROPYLENE POLYMER COMPOSITION
JP4414513B2 (en) Propylene-based resin composition and method for producing the same
EP2615135A1 (en) Soft heterophasic polyolefin composition having low content of p-xylene solubles and hexane solubles
JP2008163157A (en) Blow-molding polyolefin composition
JP5506985B2 (en) PROPYLENE POLYMER COMPOSITION, MOLDED ARTICLE COMPRISING THE COMPOSITION, AND METHOD FOR PRODUCING PROPYLENE POLYMER COMPOSITION
EP2615136B1 (en) Heterophasic polyolefin composition having improved stiffness and impact strength
US20070287804A1 (en) Thermoplastic elastomer composition and laminate
JP2002201322A (en) Propylene resin composition
JP2001011259A (en) Polypropylene resin composition
JP2012148806A (en) Pull-open cap member
JP2001181360A (en) Propylene block copolymer
JP4748827B2 (en) Soft film for stretch film
WO1999011708A1 (en) Polyolefin resin compositions
JP4382186B2 (en) Soft polypropylene resin composition
WO2002032996A1 (en) Resin composition
JP4759235B2 (en) Polypropylene-based laminated film
JP2002194176A (en) Resin composition
JP4244433B2 (en) Polyolefin-based laminated stretch film
JP2001172465A (en) Propylene-based resin composition and method for producing the same
JPH1149866A (en) Crosslinked flexible polyolefin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642