WO2002031824A1 - Information recorder/reproducer - Google Patents

Information recorder/reproducer Download PDF

Info

Publication number
WO2002031824A1
WO2002031824A1 PCT/JP2001/008869 JP0108869W WO0231824A1 WO 2002031824 A1 WO2002031824 A1 WO 2002031824A1 JP 0108869 W JP0108869 W JP 0108869W WO 0231824 A1 WO0231824 A1 WO 0231824A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
information recording
collimating
lens
recording medium
Prior art date
Application number
PCT/JP2001/008869
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Saimi
Keiichi Matsuzaki
Hidenori Wada
Seiji Nishino
Daisuke Ogata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2002031824A1 publication Critical patent/WO2002031824A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1378Separate aberration correction lenses; Cylindrical lenses to generate astigmatism; Beam expanders

Definitions

  • the present invention relates to an information recording / reproducing apparatus for recording information on an information recording medium such as an optical disk and reproducing the information recorded on the information recording medium.
  • Optical discs such as CDs (CompactDisk) and DVDs (DigitAlversatiElDisk) are known as large-capacity information recording media.
  • CDs CompactDisk
  • DVDs DigitalAlversatiElDisk
  • large-capacity information recording media In recent years, with an increase in the amount of information to be recorded on an information recording medium, an information recording medium having a larger capacity is required.
  • an optical spot formed by light irradiated to the information recording medium when recording information on the information recording medium and when reproducing the information recorded on the information recording medium. It is necessary to increase the information recording density by reducing the size of the data. In order to reduce the light spot, attempts have been made to make the laser light of the radiation source shorter.
  • the wavelength of light emitted from a radiation light source (for example, a semiconductor laser) used in an information recording / reproducing apparatus for recording information on an information recording medium or reproducing the information recorded on the information medium depends on individual differences (due to manufacturing differences). Deviations from the design values due to changes in Z or temperature. The aberration caused by such a wavelength shift is called chromatic difference.
  • the wavelength dependence of the refractive index of an optical material (chromatic dispersion of the optical material) increases as the wavelength decreases. Therefore, when the wavelength of the radiation light source is shortened, chromatic aberration becomes a problem.
  • the chromatic dispersion is about three times that when the wavelength is infrared (780 nm) and red (650 nm).
  • the aberration caused by this chromatic dispersion causes the optical disc
  • the focus of the light spot generated on the laser is shifted. This is called chromatic aberration.
  • JP-A-2000-193388 As one conventional technique for solving such a problem, a technique disclosed in JP-A-2000-193388 is known.
  • the chromatic aberration of the entire optical system is corrected by arranging an optical element for correcting chromatic aberration composed of two lenses per group in the optical path of the optical system.
  • the present invention has been made in view of such problems, and provides an easily designed information recording / reproducing apparatus for recording or reproducing information on a high-density information recording medium.
  • the purpose is to do. Disclosure of the invention
  • An information recording / reproducing apparatus is an information recording / reproducing apparatus that records information on an information recording medium having a transparent substrate and a recording layer and reproduces the information recorded on the information recording medium, and emits light.
  • Light converging means for converging light wherein the collimating means is configured such that the substantially collimated light is substantially a plane wave regardless of a wavelength shift of the light emitted by the radiation light source.
  • Chromatic aberration is corrected, and the light converging means is corrected for chromatic aberration so that a light spot is formed on the recording layer regardless of a wavelength shift of the light emitted from the radiation light source.
  • the collimating unit may be included in a fixed optical system, and the light converging unit and the information recording medium may be included in a movable optical system.
  • the radiation light source may emit light having an anisotropic distribution
  • the collimating means may include a light distribution converting means for converting the light of the anisotropic distribution into light having a substantially isotropic distribution.
  • the light distribution conversion means may include a plurality of prisms.
  • the light distribution conversion means may include a plurality of cylindrical lenses.
  • the light converging unit may include a spherical aberration correcting unit that corrects a spherical aberration caused by a change in a thickness of the transparent substrate of the information recording medium.
  • FIG. 1 is a diagram showing a configuration of an information recording / reproducing device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a configuration of an information recording / reproducing device 200 according to Embodiment 2 of the present invention.
  • FIG. 3 is a diagram showing a configuration of an information recording / reproducing device 300 according to Embodiment 3 of the present invention.
  • FIG. 4 is a diagram showing a configuration of an information recording / reproducing device 400 according to Embodiment 4 of the present invention.
  • FIG. 5 is a diagram showing a configuration of an information recording / reproducing device 500 according to Embodiment 5 of the present invention.
  • FIG. 1 shows a configuration of an information recording / reproducing apparatus 100 according to Embodiment 1 of the present invention.
  • the information recording / reproducing apparatus 100 records information on the information recording medium 106 or reproduces information recorded on the information recording medium 106.
  • the information recording / reproducing device 100 is composed of a radiation light source 101, a beam splitter 103, a collimating lens 102, an objective lens 105, a hologram 107, and a photodetector 1. 0 and 8.
  • the information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
  • the radiation light source 101 is, for example, a semiconductor laser that emits blue-violet laser light.
  • the center wavelength of the laser light is 407 ⁇ 20 nm.
  • the collimating lens 102 is designed so that defocus does not occur due to a wavelength shift within this wavelength band.
  • the collimating lens 102 is composed of two laminated lenses.
  • the collimating lens 102 is formed by joining a biconvex lens formed of a material having a high refractive index and a concave lens formed of a material having a low refractive index.
  • High refractive index materials are typically highly dispersed.
  • Low refractive index materials typically have low dispersion.
  • the collimating lens 102 corrects for chromatic aberration by utilizing the difference in dispersion between the high refractive index material and the low refractive index material.
  • Examples of the material having a high refractive index include, but are not limited to, SK5, VC78, VC79, and BK7.
  • Examples of the material having a low refractive index include, but are not limited to, FD15.
  • the objective lens 105 has a two-group, three-lens configuration. Specifically, a two-piece lens 110 including a concave lens formed of a low refractive index material and a convex lens formed of a high refractive index material, and a plano-convex front lens formed of a high refractive index material It consists of 11 and 11.
  • the objective lens 105 is corrected for chromatic aberration by utilizing the difference in dispersion between these high-refractive-index materials and low-refractive-index materials.
  • Examples of the material having a high refractive index include, but are not limited to, SK5, VC78, VC79, and BK7.
  • the material having a low refractive index includes, for example, FD15, but is not limited thereto.
  • the objective lens 105 has a three-dimensional structure such that the distance between the objective lens 105 and the information recording medium 106 is constant during recording or reproducing information on the information recording medium 106. It is controlled to follow the movement.
  • the plano-convex front lens 1 11 has a flat surface on the side facing the information recording medium 106 and the opposite side (ie, (On the side of the lens 110) is arranged to be aspherical. The advantages of this arrangement are as follows.
  • the first advantage is that, since one surface is flat, the aspherical optical axis of the other surface is not restricted by the manufacturing conditions when the plano-convex front lens 111 is manufactured. Therefore, when the aspherical shape of the plano-convex front lens 111 is manufactured by using a method such as injection or compression, high precision is not required for positioning the mold. Making both surfaces of the front lens aspherical will improve the performance of the designed lens. However, such front-end lenses are not easy to manufacture, and manufacturing errors have a large effect on lens performance. A front lens with one flat surface has less restrictions on manufacturing conditions than a case of manufacturing a front lens with two aspheric surfaces, and the effect of manufacturing errors on lens performance is small. For this reason, the performance of an actually manufactured lens can be made higher than that of a front lens having both aspheric surfaces.
  • the second advantage is that control of the objective lens 105 is facilitated.
  • the air layer thickness between the objective lens 105 and the information recording medium 106 becomes constant, and the flow of air during rotation of the information recording medium 106 becomes substantially uniform. Therefore, since no Yang force or the like acts on the objective lens 105, it is not necessary to apply an excessive force to the objective lens 105 in order to keep the distance between the objective lens 105 and the information recording medium 106 constant.
  • the numerical aperture N A of the objective lens 105 was set between 0.80 and 0.92.
  • An objective lens having such a high NA cannot be composed of one aspherical lens.
  • the objective lens 105 is composed of three lenses in two groups, a two-piece lens 110 and a front lens 111.
  • the photodetector 108 performs focus servo detection using a detection method called a spot size detection method (SSD: Spot Size Detection).
  • SSD Spot Size Detection
  • the wavelength of the laser light emitted from the radiation light source 101 is shifted
  • the light spot formed on the photodetector 108 by the ⁇ first-order light beams diffracted by the hologram 107 moves symmetrically with respect to the focus point. Accordingly, even if the diffraction angle of the ⁇ first-order light beam in the hologram 107 changes due to the wavelength shift, no error occurs in the detection support signal.
  • the detection of the tracking error signal by the photodetector 108 also employs a method that does not cause an error due to the wavelength shift. The operation of the information recording / reproducing device 100 will be described.
  • the radiation light source 101 emits light modulated according to the information.
  • the light passes through the beam splitter 103 and becomes parallel light by the collimating lens 102.
  • the parallel light passes through the objective lens 105 and then the transparent substrate 113 to form a light spot on the recording layer 114.
  • the state of the recording layer 114 where the light spot is formed changes according to the information (for example, the crystal state changes).
  • information is recorded on the recording layer 114 as a change in the state of the recording layer 114.
  • the radiation light source 101 When reproducing information recorded on the information recording medium 106, the radiation light source 101 emits unmodulated light.
  • the light emitted by the radiation light source 101 passes through the beam splitter 103 and becomes parallel light by the collimating lens 102.
  • the parallel light passes through the objective lens 105 and then through the transparent substrate 113 to form a light spot on the recording layer 114.
  • light forming a light spot is reflected at a reflectance according to the state of the recording layer 114.
  • the light reflected by the recording layer 114 passes through the transparent substrate 113, the objective lens 105, and the collimator lens 102 again. Thereafter, the light is reflected 90 ° by the beam splitter 103 and enters the hologram 107.
  • the hologram 107 diffracts the incident light into ⁇ first-order light beams, and the diffracted light enters the photodetector 108.
  • the photodetector 108 extracts an information signal indicating information recorded on the information recording medium 106 and a servo signal for tracking.
  • Beam splitter 103 and collimating lens 102 It functions as collimating means 1 15 which makes the light approximately parallel.
  • the collimating means 115 is configured such that chromatic aberration caused by the chromatic dispersion of the beam splitter 103 and chromatic aberration caused by the chromatic dispersion of the collimating lens 102 are canceled as a whole.
  • the collimating means 115 the chromatic aberration of the beam splitter 103 and the collimating lens 102 is corrected as a whole. Thereby, the light substantially collimated by the collimating means 115 becomes a substantially plane wave regardless of the wavelength shift of the radiation light source 101.
  • the term ⁇ planar wave '' means that the wavefront is not a perfect plane, but the deterioration of the characteristics of the optical system caused by the wavefront does not cause a problem in the design of an ordinary optical system.
  • the collimating means 1 15 is included in the fixed optical system (fixed portion) 116.
  • the objective lens 105 converges the light substantially collimated by the collimating means 115 so that the converged light passes through the transparent substrate 113 to form a light spot on the recording layer 114.
  • the objective lens 105 has a constant distance between the objective lens 105 and the information recording medium 106 during the recording or reproduction of information on the information recording medium 106.
  • the information recording medium 106 is controlled so as to follow the three-dimensional movement. That is, the objective lens 105 and the information recording medium 106 are included in the movable optical system (movable part) 117.
  • the objective lens 105 has the chromatic aberration due to the power and chromatic dispersion of the objective lens 105, the chromatic aberration due to the chromatic dispersion of the transparent substrate 113, and the chromatic dispersion of the recording layer 114.
  • the resulting chromatic aberration is configured to be canceled as a whole.
  • the objective lens (light focusing means) 105 the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole.
  • the objective lens (light focusing means) can be used regardless of the wavelength shift of the light emitted from the radiation light source 101.
  • An optical spot is formed on the recording layer 114 by the light converged at 105.
  • the collimating means 115 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration, they are designed independently. be able to.
  • the distance between the collimating means 115 and the objective lens (light converging means) 105 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, the accuracy of chromatic aberration correction of each optical system can be improved, and the overall optical performance of the information recording / reproducing device 100 is improved (chromatic aberration is reduced).
  • FIG. 2 shows a configuration of an information recording / reproducing apparatus 200 according to Embodiment 2 of the present invention.
  • the same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the information recording / reproducing device 200 differs from the information recording / reproducing device 100 (FIG. 1) according to the first embodiment in that the beam splitter 103 and the hologram 107 are replaced.
  • a beam splitter 210 composed of a polarization hologram 208 and a four-wavelength plate 209 is provided, and instead of the photodetector 108, a photodetector 211 and a photodetector 212 are provided. 2 1 3 is provided.
  • the light emitted from the radiation light source 101 is transmitted through the beam splitter 210 without diffracting, and is collimated by the collimating lens 102.
  • the light passes through the objective lens 105 and the transparent substrate 113 and converges on the recording layer 114.
  • the light reflected by the recording layer 114 passes through the transparent substrate 113, the objective lens 105 and the collimating lens 102 again, and enters the beam splitter means 207.
  • the light that has entered the beam splitting means 207 is rotated by 90 ° by the human / 4 wavelength plate 209, and is diffracted by the polarization hologram 208 into ⁇ first-order light beams.
  • the beam splitting means 207 corresponds to the embodiment 1 shown in FIG. It has a function combining the function of the beam splitter 103 and the function of the hologram 107.
  • the polarization hologram 208, the human four-wave plate 209, and the collimating lens 102 function as collimating means 214 for collimating the light emitted by the radiation light source 101.
  • the collimator means 214 has a chromatic difference caused by the chromatic dispersion of the polarization hologram 208, a chromatic aberration caused by the chromatic dispersion of the ⁇ / 4 wavelength plate 209, and a chromatic dispersion of the collimator lens 102. Chromatic aberration is canceled as a whole.
  • the beam splitter means 2 07 and the collimating lens 102 are corrected for chromatic aberration as a whole.
  • the light substantially collimated by the collimating means 214 becomes a substantially plane wave regardless of the wavelength shift of the radiation light source 101.
  • the collimating means 2 14 is included in the fixed optical system (fixed portion) 210.
  • the objective lens 105 transmits the light substantially collimated by the collimating means 2 14 so that the converged light passes through the transparent substrate 113 to form a light spot on the recording layer 114. It functions as light converging means for converging.
  • the objective lens 105 may have the same configuration as in the first embodiment. That is, the objective lens 105 is configured so that the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole.
  • the objective lens (light focusing means) 105 the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole.
  • the objective lens (light) can be emitted regardless of the wavelength shift of the light emitted from the radiation light source 101.
  • Converging means A light spot is formed on the recording layer 114 by the light converged at 105.
  • the objective lens 105 and the information recording medium 106 are included in a movable optical system (movable part) 211.
  • the collimating means 214 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration, they are designed independently. can do.
  • the distance between the collimating means 214 and the objective lens (light converging means) 105 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, the accuracy of chromatic aberration correction of each optical system can be improved, and the overall optical performance of the information recording / reproducing apparatus 200 can be improved.
  • FIG. 3 shows a configuration of an information recording / reproducing device 300 according to the third embodiment of the present invention.
  • the same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the information recording / reproducing device 300 is composed of a radiation light source 101, a beam splitter 303, a collimating lens 302, a light distribution conversion means 304, an objective lens 105, and a hologram 100. 7 and a photodetector 108.
  • the information recording / reproducing apparatus 300 records information on the information recording medium 106 or reproduces information recorded on the information recording medium 106.
  • the information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
  • the light distribution conversion means 304 is used to correct the anisotropic distribution of light when a light source emitting light having an anisotropic distribution such as a semiconductor laser is used as the radiation light source 101. .
  • the distribution of light emitted by a semiconductor laser differs between a direction parallel to the active layer of the semiconductor laser and a direction perpendicular to the active layer. Usually, there is a 2-3 times difference in the light divergence angle between the direction parallel to the active layer of the semiconductor laser and the direction perpendicular to the active layer. That is, light emitted from a radiation light source using a semiconductor laser or the like has an anisotropic distribution. If such anisotropic distribution of light is not corrected, the shape of the light spot formed on the information recording medium will be elliptical, which will adversely affect high-density recording and reproduction, and also impair the light use efficiency.
  • a light source emitting light having an anisotropic distribution such as a semiconductor laser is used as the radiation light source 101.
  • the light distribution conversion means 304 is composed of two prisms, and functions as an anamorphic optical system for correcting the distribution of the light beam in a one-dimensional direction.
  • Light distribution conversion The means 304 may be composed of three or more prisms.
  • the light distribution conversion means 304 is configured to correct chromatic aberration caused by the chromatic dispersion of the prism.
  • Light having an anisotropic distribution emitted from the radiation light source 101 passes through the beam splitter 303, the collimating lens 302, and the light distribution conversion means 304, and is substantially isotropically distributed. Is converted into a parallel light having The light converted by the light distribution conversion means 304 enters the objective lens 105.
  • the term “having an isotropic distribution” means that the distribution of light is not completely isotropic, but the deterioration of the characteristics of the optical system caused by the distribution is not a problem in the design of an ordinary optical system. It means that.
  • the collimating lens 302 and the beam splitter 103 can have the same configuration as the collimating lens 102 and the beam splitter 103 of the first embodiment, for example.
  • the beam splitter 303, the collimating lens 302, and the light distribution correcting means 304 function as collimating means 305 for substantially collimating the light emitted from the radiation light source.
  • the collimator means 304 is caused by the chromatic aberration caused by the chromatic dispersion of the beam splitter 303, the chromatic aberration caused by the chromatic dispersion of the collimator lens 302, and the chromatic dispersion of the light distribution conversion means 304
  • the chromatic aberration is configured to be canceled as a whole.
  • the beam splitter 303, the collimating lens 302, and the light distribution conversion unit 304 of the collimating unit 305 are chromatic aberration corrected as a whole.
  • the light substantially collimated by the collimating means 305 becomes substantially a plane wave regardless of the wavelength shift of the radiation light source 101.
  • the collimator 310 is included in the fixed optical system (fixed part) 310.
  • the collimated light substantially collimated by the collimating means 105 enters the objective lens 105 and then to the transparent substrate 113 to form a light spot on the recording layer 114.
  • the objective lens 105 functions as a light converging unit that converges the substantially collimated light so that the converged light passes through the transparent substrate 113 and forms a light spot on the recording layer 114.
  • the objective lens 105 may have, for example, the same configuration as in the first embodiment. In the objective lens (light focusing means) 105, the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole.
  • the objective lens Light converging means
  • the light converged at 105 forms a light spot on the recording layer 114 '.
  • the objective lens 105 and the information recording medium 106 are included in a movable optical system (movable part) 311.
  • the collimating means 300 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration. Can be designed. For example, since the distance between the collimating means 304 and the objective lens (light focusing means) 105 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, it is possible to improve the accuracy of the chromatic aberration correction of each optical system, and the overall optical performance of the information recording / reproducing apparatus 300 is improved. (Embodiment 4)
  • Embodiment 4 shows another example of the light distribution conversion means.
  • FIG. 4 shows a configuration of an information recording / reproducing device 400 according to Embodiment 4 of the present invention.
  • the same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the information recording / reproducing device 400 includes a radiation light source 101, a beam splitter 410, a collimating lens 402, a light distribution converting means 404, an objective lens 105, and a hologram. 107 and a photodetector 108.
  • a radiation light source 101 for example, a blue-violet semiconductor laser emitting light with anisotropic distribution is used.
  • the information recording / reproducing device 400 records information on the information recording medium 106, The information recorded on the recording medium 106 is reproduced.
  • the information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
  • the light distribution conversion means 404 is composed of two groups and three cylindrical lenses, and functions as an anamorphic optical system for correcting the distribution of a light beam in a one-dimensional direction.
  • the light distribution conversion means 404 includes a concave cylindrical lens 405 and a convex cylindrical lens 406.
  • the concave cylindrical lens 405 is formed by joining a concave cylindrical lens formed of a material having a low refractive index and a convex cylindrical lens formed of a material having a high refractive index.
  • the light distribution conversion means 404 may be composed of a plurality of cylindrical lenses.
  • Such a light distribution conversion means 404 is configured to correct chromatic aberration caused by chromatic dispersion of the cylindrical lens, and converts light having an anisotropic distribution to a substantially isotropic distribution. Can be.
  • the light distribution conversion means 404 performs chromatic aberration correction by utilizing the difference in dispersion between the high refractive index material and the low refractive index material.
  • High refractive index materials include, but are not limited to, SK5, VC78, VC79, BK7, and the like. Examples of the material having a low refractive index include FD15, but are not limited thereto.
  • Light having an anisotropic distribution emitted from the radiation light source 101 passes through the beam splitter 403, the collimating lens 402 and the light distribution conversion means 404, and substantially distributes an isotropic distribution. Is converted into a parallel light.
  • the light converted by the light distribution conversion means 404 enters the objective lens 105.
  • the collimating lens 402 and the beam splitter 403 can have, for example, the same configurations as the collimating lens 102 and the beam splitter 103 of the first embodiment, respectively.
  • the beam splitter 403, the collimating lens 402, and the light distribution correcting means 404 function as a collimating means 407 for substantially collimating the light emitted from the radiation light source.
  • the collimating means 407 is caused by the chromatic dispersion of the beam splitter 403 Chromatic aberration, chromatic aberration due to chromatic dispersion of the collimating lens 402, and chromatic aberration due to chromatic dispersion of the light distribution conversion unit 404 are configured to be canceled as a whole.
  • the beam splitter 403, the collimating lens 402, and the light distribution converting means 404 are chromatic aberration corrected as a whole.
  • the light collimated by the collimator 407 becomes substantially a plane wave regardless of the wavelength shift of the radiation light source 101.
  • the collimating means 407 is included in the fixed optical system (fixed part) 410.
  • the collimated light substantially collimated by the collimating means 407 enters the objective lens 105 and then to the transparent substrate 113, and forms a light spot on the recording layer 114.
  • the objective lens 105 functions as a light converging unit that converges the substantially collimated light so that the converged light passes through the transparent substrate 113 and forms a light spot on the recording layer 114.
  • the objective lens 105 may have, for example, the same configuration as in the first embodiment.
  • the objective lens (light focusing means) 105 the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole. Accordingly, as long as the light substantially collimated by the collimating means 407 is substantially a plane wave, regardless of the wavelength shift of the light emitted from the radiation light source 101, the objective lens (light focusing Means) A light spot is formed on the recording layer 114 by the light converged at 105.
  • the objective lens 105 and the information recording medium 106 are included in a movable optical system (movable part) 411.
  • the collimating means 407 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration, they are independently controlled. Can be designed.
  • the distance between the collimating means 407 and the objective lens (light converging means) 105 can be set arbitrarily, which increases the degree of freedom in designing the entire optical system.
  • the accuracy of chromatic aberration correction of each optical system can be improved, and the overall optical performance of the information recording / reproducing device 400 can be improved. (Embodiment 5)
  • FIG. 5 shows a configuration of an information recording / reproducing device 500 according to the fifth embodiment of the present invention.
  • the same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the information recording / reproducing device 500 includes a radiation light source 101, a beam splitter 503, a collimating lens 502, a spherical aberration correcting means 504, an objective lens 505, It includes a hologram 107 and a photodetector 509.
  • the information recording / reproducing device 500 records information on the information recording medium 106 or reproduces information recorded on the information recording medium 106.
  • the information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
  • the beam splitter 503 and the collimating lens 502 function as collimating means 514 for substantially collimating the light emitted from the radiation light source.
  • the collimating lens 502 and the beam splitter 503 may have the same configuration as the collimating lens 102 and the beam splitter 103 of the first embodiment, for example.
  • the chromatic aberration of the beam splitter 503 and the collimating lens 502 is corrected as a whole.
  • the light substantially collimated by the collimating means 5 14 substantially becomes a plane wave regardless of the wavelength shift of the radiation light source 101.
  • the collimating means 5 14 is included in the fixed optical system (fixed portion) 5 12.
  • the transparent substrate 113 of the information recording medium 106 is manufactured by, for example, an injection molding method.
  • the thickness of the transparent substrate 113 changes depending on the molding conditions and the like.
  • the spherical surface changes when the thickness of the transparent substrate changes by about 1.
  • Aberration occurs about 1 ⁇ ⁇ ⁇ .
  • the maximum allowable wavefront aberration is 4 O mA
  • the maximum allowable spherical aberration is It is known to be about 2 ⁇ ⁇ .
  • the spherical aberration correcting means 504 has a function of correcting spherical aberration caused by a change in the thickness of the transparent substrate caused by molding conditions and the like.
  • the correction of the spherical aberration is performed by changing the distance between the biconvex lens 507 and the convex lens 508. More specifically, the light emitted from the radiation light source 101 passes through the beam splitter 503 and then the collimating lens 502 to become parallel light. The parallel light passes through the spherical aberration correcting means 504, the objective lens 505, and the transparent substrate 113 to form an optical spot on the recording layer 114. The light reflected by the recording layer 114 passes again through the transparent substrate 113, the objective lens 505, the spherical aberration correcting means 504 and the collimating lens 502, and the beam splitter 1503.
  • the hologram 107 diffracts the incident light into ⁇ first-order light beams, and the diffracted light enters the photodetector 509.
  • the photodetector 509 in addition to the information signal indicating the information recorded on the information recording medium 106 and the support signal for tracking, the distance between the biconvex lens 507 and the convex lens 508 is increased. And a spherical aberration correction signal for determining the distance are extracted. Based on the spherical aberration correction signal, control means (not shown) changes the distance between the biconvex lens 507 and the convex lens 508 to correct the spherical aberration.
  • spherical aberration correcting means 504 is used to correct spherical aberration due to a change in the thickness of the transparent substrate 113.
  • the spherical aberration correction means 504 is a biconvex lens 507 and a convex lens 508 in which a convex lens and a biconvex lens are joined.
  • the configuration of the spherical aberration correcting means 504 is not limited to the above configuration.
  • the spherical aberration correcting means 504 and the objective lens 505 are substantially collimated so that the converged light passes through the transparent substrate 113 to form a light spot on the recording layer 114.
  • the objective lens 505 is connected to the information recording medium 106 so that the distance from the information recording medium 106 becomes constant while information is recorded or reproduced on the information recording medium 106.
  • the distance between the biconvex lens 507 and the convex lens 508 of the spherical aberration correction means 504 is adjusted according to the thickness of the transparent substrate 113 of the information recording medium 106.
  • the light converging means 5 15 is caused by the chromatic aberration caused by the chromatic dispersion of the biconvex lens 507 and the convex lens 508 in the spherical aberration correcting means 504, and by the power and chromatic dispersion of the objective lens 505.
  • the chromatic aberration, the chromatic aberration caused by the chromatic dispersion of the transparent substrate 113, and the chromatic aberration caused by the chromatic dispersion of the recording layer 114 are cancelled as a whole.
  • the chromatic aberration of the spherical aberration correcting means 504, the objective lens 505, and the information recording medium 106 is corrected as a whole.
  • the light converging means 5 15 converges regardless of the wavelength shift of the light emitted from the radiation light source 101.
  • a light spot is formed on the recording layer 114 by the emitted light.
  • the spherical aberration correction means 504, the objective lens 505, and the information recording medium 106 are included in a movable optical system (movable part) 5 13.
  • the objective lens 505 includes a plano-convex lens 510 and a front lens 511.
  • a plano-convex lens 510 When such an objective lens 505 is used, when the wavelength of the light emitted from the radiation light source 101 is shifted by about 1 nm, about 1 ⁇ is generated in spherical aberration.
  • the spherical aberration correcting means 504 is configured to also correct such spherical aberration generated in the objective lens 505.
  • the collimating means 514 and the light converging means 515 are each independently corrected for chromatic aberration, so that each of them must be designed independently. Can be.
  • An information recording / reproducing apparatus includes: a radiation light source that emits light; collimating means that substantially collimates the light emitted by the radiation light source; And light converging means for converging the light that has been substantially collimated so as to form light. Since each of the collimating means and the light converging means is independently corrected for chromatic aberration irrespective of the wavelength shift of the light emitted from the radiation light source, the optical system of the information recording / reproducing apparatus can be independently designed. Further, it becomes possible to improve the accuracy of the chromatic aberration correction of each optical system, thereby improving the optical performance of the entire information recording / reproducing apparatus.

Abstract

An information recorder/reproducer (100) comprising a radiation light source (101) emitting light, means (115) for substantially collimating the light emitted from the radiation light source (101), and means (105) for converging the substantially collimated light to form a light spot on a recording layer (114) through a transparent substrate (113), wherein the collimate means (115) is subjected to chromatic aberration correction such that the substantially collimated light is substantially a plane wave regardless of shift in the wavelength of light emitted from the radiation light source (101), and the light converging means (105) is subjected to chromatic aberration correction such that a light spot is formed on the recording layer (114) regardless of shift in the wavelength of light emitted from the radiation light source (101).

Description

技術分野 Technical field
本発明は、 光ディスク等の情報記録媒体に情報を記録し、 情報記録媒体に記録 された情報を再生するための情報記明録再生装置に関する。 背景技術 書  The present invention relates to an information recording / reproducing apparatus for recording information on an information recording medium such as an optical disk and reproducing the information recorded on the information recording medium. Background art
大容量な情報記録媒体として、 CD (Comp a c t D i s k) および DV D (D i g i t a l Ve r s a t i l e D i s k) 等の光ディスクが知られ ている。 近年、 情報記録媒体に記録されるべき情報量の増大に伴い、 さらに容量 の大きい情報記録媒体が求められている。 情報記録媒体を大容量にするためには、 情報記録媒体に情報を記録する際および情報記録媒体に記録された情報を再生す る際に情報記録媒体に照射される光により形成される光スポッ卜を小さくするこ とにより、 情報の記録密度を高くする必要がある。 光スポットを小さくするため に、 放射光源のレ一ザ光を短波長にすることが試みられている。  Optical discs such as CDs (CompactDisk) and DVDs (DigitAlversatiElDisk) are known as large-capacity information recording media. In recent years, with an increase in the amount of information to be recorded on an information recording medium, an information recording medium having a larger capacity is required. In order to increase the capacity of an information recording medium, an optical spot formed by light irradiated to the information recording medium when recording information on the information recording medium and when reproducing the information recorded on the information recording medium. It is necessary to increase the information recording density by reducing the size of the data. In order to reduce the light spot, attempts have been made to make the laser light of the radiation source shorter.
情報記録媒体に情報を記録する、 または情報媒体に記録された情報を再生する ための情報記録再生装置に用いられる放射光源 (例えば、 半導体レーザ) が発す る光の波長は、 個体差 (製造上のばらつき) および Zまたは温度変化に起因して、 設計値からずれることがある。 このような波長のずれによって生じる収差は色収 差と呼ばれる。 光学材料の屈折率の波長依存性 (光学材料の色分散) は、 波長が 短くなるほど大きくなる。 従って、 放射光源の波長を短くすると、 色収差が問題 になる。 例えば、 波長が赤外 (780 nm) および赤色 (650 nm) である場 合に比べて、 波長が青紫 (407 nm) である場合、 色分散は約 3倍となること が知られている。 この色分散に起因する収差が発生することによって、 光デイス ク上に生成する光スポッ卜の焦点がずれる。 これを色収差と称する。 The wavelength of light emitted from a radiation light source (for example, a semiconductor laser) used in an information recording / reproducing apparatus for recording information on an information recording medium or reproducing the information recorded on the information medium depends on individual differences (due to manufacturing differences). Deviations from the design values due to changes in Z or temperature. The aberration caused by such a wavelength shift is called chromatic difference. The wavelength dependence of the refractive index of an optical material (chromatic dispersion of the optical material) increases as the wavelength decreases. Therefore, when the wavelength of the radiation light source is shortened, chromatic aberration becomes a problem. For example, it is known that when the wavelength is blue-violet (407 nm), the chromatic dispersion is about three times that when the wavelength is infrared (780 nm) and red (650 nm). The aberration caused by this chromatic dispersion causes the optical disc The focus of the light spot generated on the laser is shifted. This is called chromatic aberration.
このような問題を解決する 1つの従来技術として、 特開 2 0 0 0— 1 9 3 8 8 号公報に開示される技術が知られている。 この技術では、 1群 2枚のレンズで構 成された色収差補正用光学素子を光学系の光路中に配置することによって、 光学 系全体が色収差補正される。  As one conventional technique for solving such a problem, a technique disclosed in JP-A-2000-193388 is known. In this technique, the chromatic aberration of the entire optical system is corrected by arranging an optical element for correcting chromatic aberration composed of two lenses per group in the optical path of the optical system.
しかしながら、 上記構成の情報記録再生装置では、 色収差補正を行うために光 学系全体の特性を考慮する必要があり設計が困難である。  However, in the information recording / reproducing apparatus having the above configuration, it is necessary to consider the characteristics of the entire optical system in order to perform chromatic aberration correction, and thus it is difficult to design.
従って、 本発明は、 このような課題を考慮してなされたものであって、 高密度 化された情報記録媒体に情報を記録または再生するための、 設計の容易な情報記 録再生装置を提供することを目的とする。 発明の開示  Accordingly, the present invention has been made in view of such problems, and provides an easily designed information recording / reproducing apparatus for recording or reproducing information on a high-density information recording medium. The purpose is to do. Disclosure of the invention
本発明による情報記録再生装置は、 透明基板および記録層を有する情報記録媒 体に情報を記録し、 前記情報記録媒体に記録された前記情報を再生する情報記録 再生装置であって、 光を発する放射光源と、 前記放射光源が発する前記光を略平 行化するコリメート手段と、 収束された光が前記透明基板を透過して前記記録層 に光スポットを形成するように前記略平行化された光を収束させる光収束手段と を含み、 前記コリメ一ト手段は、 前記放射光源が発する前記光の波長のずれに閧 わらず、 前記略平行化された光が実質的に平面波であるように色収差補正されて おり、 前記光収束手段は、 前記放射光源が発する前記光の波長のずれに関わらず、 前記記録層に光スポッ卜が形成されるように色収差補正されており、 これにより 上記目的を達成する。  An information recording / reproducing apparatus according to the present invention is an information recording / reproducing apparatus that records information on an information recording medium having a transparent substrate and a recording layer and reproduces the information recorded on the information recording medium, and emits light. A radiation light source; collimating means for substantially collimating the light emitted by the radiation light source; and the collimating means so that the converged light passes through the transparent substrate to form a light spot on the recording layer. Light converging means for converging light, wherein the collimating means is configured such that the substantially collimated light is substantially a plane wave regardless of a wavelength shift of the light emitted by the radiation light source. Chromatic aberration is corrected, and the light converging means is corrected for chromatic aberration so that a light spot is formed on the recording layer regardless of a wavelength shift of the light emitted from the radiation light source. To achieve the target.
前記コリメート手段は固定光学系に含まれ、 前記光収束手段および前記情報記 録媒体は可動光学系に含まれてもよい。  The collimating unit may be included in a fixed optical system, and the light converging unit and the information recording medium may be included in a movable optical system.
前記放射光源は非等方分布の光を発し、 前記コリメ一ト手段は、 前記非等方分 布の光を実質的に等方分布の光に変換する光分布変換手段を含んでもよい。 前記光分布変換手段は複数のプリズムを含んでもよい。 The radiation light source may emit light having an anisotropic distribution, and the collimating means may include a light distribution converting means for converting the light of the anisotropic distribution into light having a substantially isotropic distribution. The light distribution conversion means may include a plurality of prisms.
前記光分布変換手段は複数のシリンドリカルレンズを含んでもよい。  The light distribution conversion means may include a plurality of cylindrical lenses.
前記光収束手段は、 前記情報記録媒体の前記透明基板の厚さの変化によって生 じる球面収差を補正する球面収差補正手段を含んでもよい。 図面の簡単な説明  The light converging unit may include a spherical aberration correcting unit that corrects a spherical aberration caused by a change in a thickness of the transparent substrate of the information recording medium. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1による情報記録再生装置 1 0 0の構成を示す図 である。  FIG. 1 is a diagram showing a configuration of an information recording / reproducing device 100 according to Embodiment 1 of the present invention.
図 2は、 本発明の実施の形態 2による情報記録再生装置 2 0 0の構成を示す図 である。  FIG. 2 is a diagram showing a configuration of an information recording / reproducing device 200 according to Embodiment 2 of the present invention.
図 3は、 本発明の実施の形態 3による情報記録再生装置 3 0 0の構成を示す図 である。  FIG. 3 is a diagram showing a configuration of an information recording / reproducing device 300 according to Embodiment 3 of the present invention.
図 4は、 本発明の実施の形態 4による情報記録再生装置 4 0 0の構成を示す図 である。  FIG. 4 is a diagram showing a configuration of an information recording / reproducing device 400 according to Embodiment 4 of the present invention.
図 5は、 本発明の実施の形態 5による情報記録再生装置 5 0 0の構成を示す図 である。 発明を実施するための最良の形態  FIG. 5 is a diagram showing a configuration of an information recording / reproducing device 500 according to Embodiment 5 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
図 1は、 本発明の実施の形態 1の情報記録再生装置 1 0 0の構成を示す。 情報 記録再生装置 1 0 0は、 情報記録媒体 1 0 6に情報を記録し、 または情報記録媒 体 1 0 6に記録された情報を再生する。  FIG. 1 shows a configuration of an information recording / reproducing apparatus 100 according to Embodiment 1 of the present invention. The information recording / reproducing apparatus 100 records information on the information recording medium 106 or reproduces information recorded on the information recording medium 106.
情報記録再生装置 1 0 0は、 放射光源 1 0 1と、 ビ一ムスプリッ夕一 1 0 3と、 コリメートレンズ 1 0 2と、 対物レンズ 1 0 5と、 ホログラム 1 0 7と、 光検出 器 1 0 8とを含む。  The information recording / reproducing device 100 is composed of a radiation light source 101, a beam splitter 103, a collimating lens 102, an objective lens 105, a hologram 107, and a photodetector 1. 0 and 8.
情報記録媒体 1 0 6は、 透明基板 1 1 3と記録層 1 1 4とを含む。 透明基板 1 13としてポリ力一ポネート基板 (屈折率 n=l. 58) を用いた。 The information recording medium 106 includes a transparent substrate 113 and a recording layer 114. Transparent substrate 1 As the substrate 13, a poly-one-ponate substrate (refractive index n = l. 58) was used.
放射光源 101は、 例えば青紫のレーザ光を発する半導体レーザである。 その レーザ光の中心波長は、 407士 20 nmである。 コリメ一トレンズ 102は、 この波長帯域内で波長のずれによるデフォーカスの発生が生じないように設計さ れている。  The radiation light source 101 is, for example, a semiconductor laser that emits blue-violet laser light. The center wavelength of the laser light is 407 × 20 nm. The collimating lens 102 is designed so that defocus does not occur due to a wavelength shift within this wavelength band.
コリメートレンズ 102は、 2枚貼り合わせのレンズから構成されている。 コ リメ一トレンズ 102は、 高屈折率の材料から形成された両凸レンズおよび低屈 折率の材料から形成された凹レンズを接合することにより構成される。 高屈折率 の材料は典型的には高分散である。 低屈折率の材料は典型的には低分散である。 コリメートレンズ 102は、 これら高屈折率の材料と低屈折率の材料との間の分 散の差を利用することによって、 色収差補正される。 高屈折率の材料には、 例え ば、 SK5、 VC 78、 VC79、 BK 7等が挙げられるが、 これらに限定され ない。 低屈折率の材料には、 例えば FD 15等が挙げられるが、 これに限定され ない。  The collimating lens 102 is composed of two laminated lenses. The collimating lens 102 is formed by joining a biconvex lens formed of a material having a high refractive index and a concave lens formed of a material having a low refractive index. High refractive index materials are typically highly dispersed. Low refractive index materials typically have low dispersion. The collimating lens 102 corrects for chromatic aberration by utilizing the difference in dispersion between the high refractive index material and the low refractive index material. Examples of the material having a high refractive index include, but are not limited to, SK5, VC78, VC79, and BK7. Examples of the material having a low refractive index include, but are not limited to, FD15.
対物レンズ 105は、 2群 3枚のレンズ構成を有する。 詳細には、 低屈折率の 材料から形成された凹レンズと高屈折率の材料から形成された凸レンズを含む 2 枚貼り合わせのレンズ 110と、 高屈折率の材料から形成された平凸先玉レンズ 1 11とから構成されている。 対物レンズ 105は、 これら高屈折率の材料と低 屈折率の材料との間の分散の差を利用することによって、 色収差補正される。 高 屈折率の材料には、 例えば、 SK5、 VC78、 VC79、 BK7等が挙げられ るが、 これらに限定されない。 低屈折率の材料には、 例えば FD 15等が挙げら れるが、 これに限定されない。  The objective lens 105 has a two-group, three-lens configuration. Specifically, a two-piece lens 110 including a concave lens formed of a low refractive index material and a convex lens formed of a high refractive index material, and a plano-convex front lens formed of a high refractive index material It consists of 11 and 11. The objective lens 105 is corrected for chromatic aberration by utilizing the difference in dispersion between these high-refractive-index materials and low-refractive-index materials. Examples of the material having a high refractive index include, but are not limited to, SK5, VC78, VC79, and BK7. The material having a low refractive index includes, for example, FD15, but is not limited thereto.
対物レンズ 105は、 情報記録媒体 106への情報の記録または再生中に、 対 物レンズ 105と情報記録媒体 106との間の距離が一定になるように、 情報記 録媒体 106の 3次元的な動きに追従するように制御される。 平凸先玉レンズ 1 11は、 情報記録媒体 106と対面する側が平面であり、 その反対側 (すなわち レンズ 110の側) は非球面となるように配置される。 このように配置する利点 は以下の通りである。 The objective lens 105 has a three-dimensional structure such that the distance between the objective lens 105 and the information recording medium 106 is constant during recording or reproducing information on the information recording medium 106. It is controlled to follow the movement. The plano-convex front lens 1 11 has a flat surface on the side facing the information recording medium 106 and the opposite side (ie, (On the side of the lens 110) is arranged to be aspherical. The advantages of this arrangement are as follows.
第 1の利点は、 一方の面が平面であるため、 他方の面の非球面の光軸は、 平凸 先玉レンズ 111を作製する際の製造条件の制約を受けないことである。 従って、 インジェクション、 コンプレツシヨン等の方法を用いて平凸先玉レンズ 111の 非球面形状を作製する場合、 金型の位置合わせに高い精度が必要でない。 先玉レ ンズの両面を非球面にすると、 設計上のレンズの性能は向上する。 しかしながら、 そのような先玉レンズは製造が容易でなく、 製造上の誤差がレンズ性能に及ぼす 影響は大きい。 一面が平面である先玉レンズは、 両面が非球面である先玉レンズ を製造する場合に比べて、 製造条件の制約が軽減され、 製造上の誤差がレンズ性 能に及ぼす影響は小さい。 このため、 実際に製造されたレンズの性能を両面が非 球面である先玉レンズよりも高くすることができる。  The first advantage is that, since one surface is flat, the aspherical optical axis of the other surface is not restricted by the manufacturing conditions when the plano-convex front lens 111 is manufactured. Therefore, when the aspherical shape of the plano-convex front lens 111 is manufactured by using a method such as injection or compression, high precision is not required for positioning the mold. Making both surfaces of the front lens aspherical will improve the performance of the designed lens. However, such front-end lenses are not easy to manufacture, and manufacturing errors have a large effect on lens performance. A front lens with one flat surface has less restrictions on manufacturing conditions than a case of manufacturing a front lens with two aspheric surfaces, and the effect of manufacturing errors on lens performance is small. For this reason, the performance of an actually manufactured lens can be made higher than that of a front lens having both aspheric surfaces.
第 2の利点は、 対物レンズ 105の制御が容易になることである。 対物レンズ 105と情報記録媒体 106との間の空気層厚が一定となり、 情報記録媒体 10 6の回転中の空気の流れが実質的に一様となる。 従って、 対物レンズ 105に楊 力等が作用しないので、 対物レンズ 105と情報記録媒体 106との間の距離を 一定に保っために、 過剰な力を対物レンズ 105に加える必要はない。  The second advantage is that control of the objective lens 105 is facilitated. The air layer thickness between the objective lens 105 and the information recording medium 106 becomes constant, and the flow of air during rotation of the information recording medium 106 becomes substantially uniform. Therefore, since no Yang force or the like acts on the objective lens 105, it is not necessary to apply an excessive force to the objective lens 105 in order to keep the distance between the objective lens 105 and the information recording medium 106 constant.
対物レンズ 105の開口数 N A (Nume r i c a l Ap e r t u r e) は、 0. 80〜0. 92の間に設定された。 このような高い NAを有する対物レンズ は、 1枚の非球面レンズで構成することができない。 色収差を補正するために、 対物レンズの材料として分散の異なる硝材を用いる必要がある。 そのため、 対物 レンズ 105は、 2枚貼り合わせのレンズ 110と先玉レンズ 111との 2群 3 枚のレンズから構成されている。  The numerical aperture N A of the objective lens 105 was set between 0.80 and 0.92. An objective lens having such a high NA cannot be composed of one aspherical lens. In order to correct chromatic aberration, it is necessary to use glass materials having different dispersion as the material of the objective lens. Therefore, the objective lens 105 is composed of three lenses in two groups, a two-piece lens 110 and a front lens 111.
光検出器 108は、 スポットサイズ検出方式 (SSD : S po t S i z e De t e c t i on) と呼ばれる検出方法を用いてフォーカスサーボ検出を行う。 この方法では、 放射光源 101が発するレーザ光の波長にずれが生じた場合に、 ホログラム 1 0 7で回折する ± 1次光ビームが光検出器 1 0 8に形成する光スポ ッ卜は、 フォーカス点に対して対称に移動する。 これにより、 波長のずれに起因 してホログラム 1 0 7における ± 1次光ビームの回折角度が変化した場合でも、 検出サ一ポ信号に誤差が生じない。 光検出器 1 0 8によるトラッキング誤差信号 の検出にも、 波長のずれに起因する誤差が生じない方法が採用されている。 情報記録再生装置 1 0 0の動作を説明する。 The photodetector 108 performs focus servo detection using a detection method called a spot size detection method (SSD: Spot Size Detection). In this method, when the wavelength of the laser light emitted from the radiation light source 101 is shifted, The light spot formed on the photodetector 108 by the ± first-order light beams diffracted by the hologram 107 moves symmetrically with respect to the focus point. Accordingly, even if the diffraction angle of the ± first-order light beam in the hologram 107 changes due to the wavelength shift, no error occurs in the detection support signal. The detection of the tracking error signal by the photodetector 108 also employs a method that does not cause an error due to the wavelength shift. The operation of the information recording / reproducing device 100 will be described.
情報記録媒体 1 0 6に情報を記録する場合、 放射光源 1 0 1は、 その情報に従 つて変調された光を発する。 光は、 ビームスプリツター 1 0 3を透過して、 コリ メートレンズ 1 0 2で平行光になる。 この平行光は、 対物レンズ 1 0 5、 次いで 透明基板 1 1 3を透過し、 記録層 1 1 4に光スポットを形成する。 光スポットが 形成される部分の記録層 1 1 4の状^が、 その情報に応じて変化する (例えば、 結晶状態が変化する) 。 これにより記録層 1 1 4には、 記録層 1 1 4の状態の変 化として情報が記録される。  When information is recorded on the information recording medium 106, the radiation light source 101 emits light modulated according to the information. The light passes through the beam splitter 103 and becomes parallel light by the collimating lens 102. The parallel light passes through the objective lens 105 and then the transparent substrate 113 to form a light spot on the recording layer 114. The state of the recording layer 114 where the light spot is formed changes according to the information (for example, the crystal state changes). As a result, information is recorded on the recording layer 114 as a change in the state of the recording layer 114.
情報記録媒体 1 0 6に記録された情報を再生する場合、 放射光源 1 0 1は、 変 調されない光を発する。 放射光源 1 0 1が発した光は、 ビームスプリツター 1 0 3を透過して、 コリメ一トレンズ 1 0 2で平行光になる。 この平行光は、 対物レ ンズ 1 0 5、 次いで透明基板 1 1 3を透過して、 記録層 1 1 4に光スポッ卜を形 成する。 記録層 1 1 4において、 光スポットを形成する光は、 記録層 1 1 4の状 態に応じた反射率で反射される。 記録層 1 1 4で反射した光は、 再び透明基板 1 1 3、 対物レンズ 1 0 5およびコリメートレンズ 1 0 2を透過する。 その後、 光 は、 ビームスプリッタ一 1 0 3で 9 0 ° 反射されて、 ホログラム 1 0 7に入射す る。 ホログラム 1 0 7は、 入射した光を ± 1次光ビームに回折させて、 その回折 光が光検出器 1 0 8に入射する。 光検出器 1 0 8において、 情報記録媒体 1 0 6 に記録された情報を示す情報信号と、 トラッキングのためのサーポ信号とが取り 出される。  When reproducing information recorded on the information recording medium 106, the radiation light source 101 emits unmodulated light. The light emitted by the radiation light source 101 passes through the beam splitter 103 and becomes parallel light by the collimating lens 102. The parallel light passes through the objective lens 105 and then through the transparent substrate 113 to form a light spot on the recording layer 114. In the recording layer 114, light forming a light spot is reflected at a reflectance according to the state of the recording layer 114. The light reflected by the recording layer 114 passes through the transparent substrate 113, the objective lens 105, and the collimator lens 102 again. Thereafter, the light is reflected 90 ° by the beam splitter 103 and enters the hologram 107. The hologram 107 diffracts the incident light into ± first-order light beams, and the diffracted light enters the photodetector 108. The photodetector 108 extracts an information signal indicating information recorded on the information recording medium 106 and a servo signal for tracking.
ビームスプリッタ一 1 0 3とコリメートレンズ 1 0 2とは、 放射光源が発する 光を略平行化するコリメ一ト手段 1 1 5として機能する。 コリメート手段 1 1 5 は、 ビ一ムスプリッ夕一 1 0 3の色分散に起因する色収差と、 コリメートレンズ 1 0 2の色分散に起因する色収差とが、 全体としてキャンセルされるように構成 される。 Beam splitter 103 and collimating lens 102 It functions as collimating means 1 15 which makes the light approximately parallel. The collimating means 115 is configured such that chromatic aberration caused by the chromatic dispersion of the beam splitter 103 and chromatic aberration caused by the chromatic dispersion of the collimating lens 102 are canceled as a whole.
このように、 コリメート手段 1 1 5は、 ビームスプリッ夕ー 1 0 3とコリメ一 トレンズ 1 0 2とが全体として色収差補正されている。 これにより、 コリメ一卜 手段 1 1 5によって略平行化された光は、 放射光源 1 0 1の波長のずれに関わら ず、 実質的に平面波となる。 なお、 実質的に 「平面波である」 とは、 波面が完全 な平面ではないものの、 そのことに起因する光学系の特性の低下が通常の光学系 の設計において問題にならない程度であることをいう。 コリメ一ト手段 1 1 5は、 固定光学系 (固定部分) 1 1 6に含まれる。  As described above, in the collimating means 115, the chromatic aberration of the beam splitter 103 and the collimating lens 102 is corrected as a whole. Thereby, the light substantially collimated by the collimating means 115 becomes a substantially plane wave regardless of the wavelength shift of the radiation light source 101. The term `` planar wave '' means that the wavefront is not a perfect plane, but the deterioration of the characteristics of the optical system caused by the wavefront does not cause a problem in the design of an ordinary optical system. . The collimating means 1 15 is included in the fixed optical system (fixed portion) 116.
対物レンズ 1 0 5は、 収束された光が透明基板 1 1 3を透過して記録層 1 1 4 に光スポットを形成するように、 コリメート手段 1 1 5によって略平行化された 光を収束させる光収束手段として機能する。 上述したように、 対物レンズ 1 0 5 は、 情報記録媒体 1 0 6への情報の記録または再生中に、 対物レンズ 1 0 5と情 報記録媒体 1 0 6との間の距離が一定になるように、 情報記録媒体 1 0 6の 3次 元的な動きに追従するように制御される。 すなわち、 対物レンズ 1 0 5と情報記 録媒体 1 0 6とは、 可動光学系 (可動部分) 1 1 7に含まれる。 従って、 対物レ ンズ 1 0 5は、 対物レンズ 1 0 5のパワーおよび色分散に起因する色収差と、 透 明基板 1 1 3の色分散に起因する色収差と、 記録層 1 1 4の色分散に起因する色 収差とが、 全体としてキャンセルされるように構成される。  The objective lens 105 converges the light substantially collimated by the collimating means 115 so that the converged light passes through the transparent substrate 113 to form a light spot on the recording layer 114. Functions as light converging means. As described above, the objective lens 105 has a constant distance between the objective lens 105 and the information recording medium 106 during the recording or reproduction of information on the information recording medium 106. As described above, the information recording medium 106 is controlled so as to follow the three-dimensional movement. That is, the objective lens 105 and the information recording medium 106 are included in the movable optical system (movable part) 117. Therefore, the objective lens 105 has the chromatic aberration due to the power and chromatic dispersion of the objective lens 105, the chromatic aberration due to the chromatic dispersion of the transparent substrate 113, and the chromatic dispersion of the recording layer 114. The resulting chromatic aberration is configured to be canceled as a whole.
このように、 対物レンズ (光収束手段) 1 0 5は、 対物レンズ 1 0 5と情報記 録媒体 1 0 6とが全体として色収差補正されている。 これにより、 コリメート手 段 1 1 5によって略平行化された光が実質的に平面波でありさえすれば、 放射光 源 1 0 1が発する光の波長のずれに関わらず、 対物レンズ (光収束手段) 1 0 5 で収束された光によって記録層 1 1 4に光スポッ卜が形成される。 本発明の実施の形態 1の情報記録再生装置 1 0 0では、 コリメート手段 1 1 5 および対物レンズ (光収束手段) 1 0 5がそれぞれ独立に色収差補正されている ため、 各々を独立に設計することができる。 例えば、 コリメ一卜手段 1 1 5と対 物レンズ (光収束手段) 1 0 5との間の距離を任意に設定することができるので、 光学系全体の設計の自由度が増す。 さらに、 各々の光学系の色収差補正の精度を 上げることが可能になり、 情報記録再生装置 1 0 0の全体の光学的性能が向上す る (色収差が低減される) 。 As described above, in the objective lens (light focusing means) 105, the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole. Thus, as long as the light substantially collimated by the collimating means 115 is substantially a plane wave, the objective lens (light focusing means) can be used regardless of the wavelength shift of the light emitted from the radiation light source 101. An optical spot is formed on the recording layer 114 by the light converged at 105. In the information recording / reproducing apparatus 100 according to the first embodiment of the present invention, since the collimating means 115 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration, they are designed independently. be able to. For example, since the distance between the collimating means 115 and the objective lens (light converging means) 105 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, the accuracy of chromatic aberration correction of each optical system can be improved, and the overall optical performance of the information recording / reproducing device 100 is improved (chromatic aberration is reduced).
(実施の形態 2 ) (Embodiment 2)
図 2は、 本発明の実施の形態 2の情報記録再生装置 2 0 0の構成を示す。 実施 の形態 1による情報記録再生装置 1 0 0の構成要素と同一の構成要素には同一の 参照符号を付し、 これらについての詳細な説明は省略する。  FIG. 2 shows a configuration of an information recording / reproducing apparatus 200 according to Embodiment 2 of the present invention. The same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
実施の形態 2による情報記録再生装置 2 0 0が実施の形態 1による情報記録再 生装置 1 0 0 (図 1 ) と異なる点は、 ビームスプリッ夕ー 1 0 3およびホログラ ム 1 0 7の代わりに、 偏光ホログラム 2 0 8とぇノ4波長板 2 0 9とから構成さ れているビームスプリツ夕一手段 2 0 7を備え、 光検出器 1 0 8の代わりに光検 出器 2 1 2および 2 1 3を備えている点である。  The information recording / reproducing device 200 according to the second embodiment differs from the information recording / reproducing device 100 (FIG. 1) according to the first embodiment in that the beam splitter 103 and the hologram 107 are replaced. In addition, a beam splitter 210 composed of a polarization hologram 208 and a four-wavelength plate 209 is provided, and instead of the photodetector 108, a photodetector 211 and a photodetector 212 are provided. 2 1 3 is provided.
情報記録再生装置 2 0 0において、 放射光源 1 0 1が発した光は、 ビ一ムスプ リツ夕一手段 2 0 7を回折することなく透過し、 コリメ一トレンズ 1 0 2で平行 光にされ、 対物レンズ 1 0 5および透明基板 1 1 3を透過して、 記録層 1 1 4に' 収束する。 記録層 1 1 4で反射された光は、 再度透明基板 1 1 3、 対物レンズ 1 0 5およびコリメ一トレンズ 1 0 2を透過し、 ビ一ムスプリッター手段 2 0 7に 入射する。 ビームスプリツ夕一手段 2 0 7に入射した光は、 人/ 4波長板2 0 9 で 9 0 ° 偏光の向きが回転され、 偏光ホログラム 2 0 8で ± 1次光ビームに回折 される。 ± 1次光ビームのそれぞれが、 光検出器 2 1 2および 2 1 3に光スポッ トを形成する。 ビームスプリツ夕一手段 2 0 7は、 図 1に示される実施の形態 1 のビームスプリツター 1 0 3の機能とホログラム 1 0 7の機能とを合わせた機能 を有する。 In the information recording / reproducing apparatus 200, the light emitted from the radiation light source 101 is transmitted through the beam splitter 210 without diffracting, and is collimated by the collimating lens 102. The light passes through the objective lens 105 and the transparent substrate 113 and converges on the recording layer 114. The light reflected by the recording layer 114 passes through the transparent substrate 113, the objective lens 105 and the collimating lens 102 again, and enters the beam splitter means 207. The light that has entered the beam splitting means 207 is rotated by 90 ° by the human / 4 wavelength plate 209, and is diffracted by the polarization hologram 208 into ± first-order light beams. Each of the ± primary light beams forms a light spot on photodetectors 2 12 and 2 13. The beam splitting means 207 corresponds to the embodiment 1 shown in FIG. It has a function combining the function of the beam splitter 103 and the function of the hologram 107.
偏光ホログラム 2 0 8と、 人 4波長板2 0 9と、 コリメ一卜レンズ 1 0 2と は、 放射光源 1 0 1が発する光を略平行化するコリメ一ト手段 2 1 4として機能 する。 コリメート手段 2 1 4は、 偏光ホログラム 2 0 8の色分散に起因する色収 差と、 λ / 4波長板 2 0 9の色分散に起因する色収差と、 コリメートレンズ 1 0 2の色分散に起因する色収差とが、 全体としてキヤンセルされるように構成され ている。  The polarization hologram 208, the human four-wave plate 209, and the collimating lens 102 function as collimating means 214 for collimating the light emitted by the radiation light source 101. The collimator means 214 has a chromatic difference caused by the chromatic dispersion of the polarization hologram 208, a chromatic aberration caused by the chromatic dispersion of the λ / 4 wavelength plate 209, and a chromatic dispersion of the collimator lens 102. Chromatic aberration is canceled as a whole.
このように、 コリメート手段 2 1 4は、 ビームスプリッタ一手段 2 0 7とコリ メートレンズ 1 0 2とが全体として色収差補正されている。 これにより、 コリメ ート手段 2 1 4によって略平行化された光は、 放射光源 1 0 1の波長のずれに関 わらず、 実質的に平面波となる。 コリメート手段 2 1 4は、 固定光学系 (固定部 分) 2 1 0に含まれる。  As described above, in the collimating means 2 14, the beam splitter means 2 07 and the collimating lens 102 are corrected for chromatic aberration as a whole. Thus, the light substantially collimated by the collimating means 214 becomes a substantially plane wave regardless of the wavelength shift of the radiation light source 101. The collimating means 2 14 is included in the fixed optical system (fixed portion) 210.
対物レンズ 1 0 5は、 収束された光が透明基板 1 1 3を透過して記録層 1 1 4 に光スポットを形成するように、 コリメ一卜手段 2 1 4によって略平行化された 光を収束させる光収束手段として機能する。 対物レンズ 1 0 5は、 実施の形態 1 と同様の構成であり得る。 すなわち、 対物レンズ 1 0 5は、 対物レンズ 1 0 5と 情報記録媒体 1 0 6とが全体として色収差補正されるように構成される。  The objective lens 105 transmits the light substantially collimated by the collimating means 2 14 so that the converged light passes through the transparent substrate 113 to form a light spot on the recording layer 114. It functions as light converging means for converging. The objective lens 105 may have the same configuration as in the first embodiment. That is, the objective lens 105 is configured so that the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole.
このように、 対物レンズ (光収束手段) 1 0 5は、 対物レンズ 1 0 5と情報記 録媒体 1 0 6とが全体として色収差補正されている。 これにより、 コリメ一卜手 段 2 1 4によって略平行化された光が実質的に平面波でありさえすれば、 放射光 源 1 0 1が発する光の波長のずれに関わらず、 対物レンズ (光収束手段) 1 0 5 で収束された光によって記録層 1 1 4に光スポットが形成される。 対物レンズ 1 0 5と情報記録媒体 1 0 6とは、 可動光学系 (可動部分) 2 1 1に含まれる。 本発明の実施の形態 2では、 コリメ一ト手段 2 1 4および対物レンズ (光収束 手段) 1 0 5とがそれぞれ独立に色収差補正されているため、 各々を独立に設計 することができる。 例えば、 コリメート手段 2 1 4と対物レンズ (光収束手段) 1 0 5との間の距離を任意に設定することができるので、 光学系全体の設計の自 由度が増す。 さらに、 各々の光学系の色収差補正の精度を上げることが可能にな り、 情報記録再生装置 2 0 0の全体の光学的性能が向上する。 As described above, in the objective lens (light focusing means) 105, the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole. Thus, as long as the light substantially collimated by the collimating means 2 14 is substantially a plane wave, the objective lens (light) can be emitted regardless of the wavelength shift of the light emitted from the radiation light source 101. Converging means) A light spot is formed on the recording layer 114 by the light converged at 105. The objective lens 105 and the information recording medium 106 are included in a movable optical system (movable part) 211. In the second embodiment of the present invention, since the collimating means 214 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration, they are designed independently. can do. For example, since the distance between the collimating means 214 and the objective lens (light converging means) 105 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, the accuracy of chromatic aberration correction of each optical system can be improved, and the overall optical performance of the information recording / reproducing apparatus 200 can be improved.
(実施の形態 3 ) (Embodiment 3)
図 3は、 本発明の実施の形態 3の情報記録再生装置 3 0 0の構成を示す。 実施 の形態 1による情報記録再生装置 1 0 0の構成要素と同一の構成要素には同一の 参照符号を付し、 これらについての詳細な説明は省略する。  FIG. 3 shows a configuration of an information recording / reproducing device 300 according to the third embodiment of the present invention. The same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
情報記録再生装置 3 0 0は、 放射光源 1 0 1と、 ビームスプリッター 3 0 3と、 コリメートレンズ 3 0 2と、 光分布変換手段 3 0 4と、 対物レンズ 1 0 5と、 ホ ログラム 1 0 7と、 光検出器 1 0 8とを含む。  The information recording / reproducing device 300 is composed of a radiation light source 101, a beam splitter 303, a collimating lens 302, a light distribution conversion means 304, an objective lens 105, and a hologram 100. 7 and a photodetector 108.
情報記録再生装置 3 0 0は、 情報記録媒体 1 0 6に情報を記録し、 または情報 記録媒体 1 0 6に記録された情報を再生する。 情報記録媒体 1 0 6は、 透明基板 1 1 3と記録層 1 1 4とを含む。  The information recording / reproducing apparatus 300 records information on the information recording medium 106 or reproduces information recorded on the information recording medium 106. The information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
光分布変換手段 3 0 4は、 放射光源 1 0 1に半導体レーザ等の非等方分布を有 する光を発する光源を用いた場合に、 光の非等方分布を補正するために用いられ る。 半導体レーザが発する光の分布は、 半導体レーザの活性層に平行な方向と活 性層に垂直な方向との間で異なっている。 通常、 半導体レーザの活性層に平行な 方向と活性層に垂直な方向との間の光の広がり角には 2〜 3倍の差がある。 すな わち、 半導体レーザ等を用いた放射光源が発する光は、 非等方分布を有する。 こ のような光の非等方分布を補正しない場合、 情報記録媒体に形成される光スポッ 卜の形状は楕円となり、 高密度記録再生に悪影響がある上に、 光の利用効率も悪 くなつてしまう。  The light distribution conversion means 304 is used to correct the anisotropic distribution of light when a light source emitting light having an anisotropic distribution such as a semiconductor laser is used as the radiation light source 101. . The distribution of light emitted by a semiconductor laser differs between a direction parallel to the active layer of the semiconductor laser and a direction perpendicular to the active layer. Usually, there is a 2-3 times difference in the light divergence angle between the direction parallel to the active layer of the semiconductor laser and the direction perpendicular to the active layer. That is, light emitted from a radiation light source using a semiconductor laser or the like has an anisotropic distribution. If such anisotropic distribution of light is not corrected, the shape of the light spot formed on the information recording medium will be elliptical, which will adversely affect high-density recording and reproduction, and also impair the light use efficiency. Would.
光分布変換手段 3 0 4は、 2枚のプリズムから構成されており、 1次元の方向 に光ビームの分布を補正するアナモフィック光学系として機能する。 光分布変換 手段 3 0 4は、 3枚以上のプリズムから構成されてもよい。 光分布変換手段 3 0 4は、 プリズムの色分散に起因する色収差を補正するように構成されている。 放射光源 1 0 1が発した非等方分布を有する光は、 ビ一ムスプリッ夕一 3 0 3、 コリメートレンズ 3 0 2および光分布変換手段 3 0 4を透過し、 実質的に等方分 布を有する平行光に変換される。 光分布変換手段 3 0 4で変換された光が、 対物 レンズ 1 0 5に入射する。 なお、 実質的に 「等方分布を有する」 とは、 光の分布 が完全に等方ではないものの、 そのことに起因する光学系の特性の低下が通常の 光学系の設計において問題にならない程度であることをいう。 コリメートレンズ 3 0 2およびビ一ムスプリッタ一 3 0 3はそれぞれ、 例えば、 実施の形態 1のコ リメ一トレンズ 1 0 2およびビ一ムスプリッタ一 1 0 3と同様の構成であり得る。 ビ一ムスプリッ夕一 3 0 3と、 コリメ一トレンズ 3 0 2と、 光分布補正手段 3 0 4とは、 放射光源が発する光を略平行化するコリメ一ト手段 3 0 5として機能 する。 コリメート手段 3 0 5は、 ビームスプリツ夕一 3 0 3の色分散に起因する 色収差と、 コリメートレンズ 3 0 2の色分散に起因する色収差と、 光分布変換手 段 3 0 4の色分散に起因する色収差とが、 全体としてキャンセルされるように構 成される。 The light distribution conversion means 304 is composed of two prisms, and functions as an anamorphic optical system for correcting the distribution of the light beam in a one-dimensional direction. Light distribution conversion The means 304 may be composed of three or more prisms. The light distribution conversion means 304 is configured to correct chromatic aberration caused by the chromatic dispersion of the prism. Light having an anisotropic distribution emitted from the radiation light source 101 passes through the beam splitter 303, the collimating lens 302, and the light distribution conversion means 304, and is substantially isotropically distributed. Is converted into a parallel light having The light converted by the light distribution conversion means 304 enters the objective lens 105. The term “having an isotropic distribution” means that the distribution of light is not completely isotropic, but the deterioration of the characteristics of the optical system caused by the distribution is not a problem in the design of an ordinary optical system. It means that. The collimating lens 302 and the beam splitter 103 can have the same configuration as the collimating lens 102 and the beam splitter 103 of the first embodiment, for example. The beam splitter 303, the collimating lens 302, and the light distribution correcting means 304 function as collimating means 305 for substantially collimating the light emitted from the radiation light source. The collimator means 304 is caused by the chromatic aberration caused by the chromatic dispersion of the beam splitter 303, the chromatic aberration caused by the chromatic dispersion of the collimator lens 302, and the chromatic dispersion of the light distribution conversion means 304 The chromatic aberration is configured to be canceled as a whole.
このように、 コリメート手段 3 0 5は、 ビ一ムスプリッ夕一 3 0 3と、 コリメ —トレンズ 3 0 2と、 光分布変換手段 3 0 4とが全体として色収差補正されてい る。 これにより、 コリメ一ト手段 3 0 5によって略平行化された光は、 放射光源 1 0 1の波長のずれに関わらず、 実質的に平面波となる。 コリメート手段 3 0 5 は、 固定光学系 (固定部分) 3 1 0に含まれる。  As described above, the beam splitter 303, the collimating lens 302, and the light distribution conversion unit 304 of the collimating unit 305 are chromatic aberration corrected as a whole. Thus, the light substantially collimated by the collimating means 305 becomes substantially a plane wave regardless of the wavelength shift of the radiation light source 101. The collimator 310 is included in the fixed optical system (fixed part) 310.
コリメート手段 3 0 5で略平行化された平行光は、 対物レンズ 1 0 5、 次いで 透明基板 1 1 3に入射し、 記録層 1 1 4に光スポットを形成する。 対物レンズ 1 0 5は、 収束された光が透明基板 1 1 3を透過して記録層 1 1 4に光スポットを 形成するように、 略平行化された光を収束させる光収束手段として機能する。 対 物レンズ 1 0 5は、 例えば実施の形態 1と同様の構成であり得る。 対物レンズ (光収束手段) 1 0 5は、 対物レンズ 1 0 5と情報記録媒体 1 0 6 とが全体として色収差補正されている。 これにより、 コリメ一ト手段 3 0 5によ つて略平行化された光が実質的に平面波でありさえすれば、 放射光源 1 0 1が発 する光の波長のずれに関わらず、 対物レンズ (光収束手段) 1 0 5で収束された 光によって記録層 1 1 4'に光スポットが形成される。 対物レンズ 1 0 5と情報記 録媒体 1 0 6とは、 可動光学系 (可動部分) 3 1 1に含まれる。 The collimated light substantially collimated by the collimating means 105 enters the objective lens 105 and then to the transparent substrate 113 to form a light spot on the recording layer 114. The objective lens 105 functions as a light converging unit that converges the substantially collimated light so that the converged light passes through the transparent substrate 113 and forms a light spot on the recording layer 114. . The objective lens 105 may have, for example, the same configuration as in the first embodiment. In the objective lens (light focusing means) 105, the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole. As a result, as long as the light substantially collimated by the collimating means 105 is substantially a plane wave, regardless of the wavelength shift of the light emitted from the radiation light source 101, the objective lens ( Light converging means) The light converged at 105 forms a light spot on the recording layer 114 '. The objective lens 105 and the information recording medium 106 are included in a movable optical system (movable part) 311.
本発明の実施の形態 3の情報記録再生装置 3 0 0では、 コリメ一ト手段 3 0 5 および対物レンズ (光収束手段) 1 0 5がそれぞれ独立に色収差補正されている ため、 各々を独立に設計することができる。 例えば、 コリメ一卜手段 3 0 5と対 物レンズ (光収束手段) 1 0 5との間の距離を任意に設定することができるので、 光学系全体の設計の自由度が増す。 さらに、 各々の光学系の色収差補正の精度を 上げることが可能になり、 情報記録再生装置 3 0 0の全体の光学的性能が向上す る。 (実施の形態 4 )  In the information recording / reproducing apparatus 300 according to the third embodiment of the present invention, the collimating means 300 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration. Can be designed. For example, since the distance between the collimating means 304 and the objective lens (light focusing means) 105 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, it is possible to improve the accuracy of the chromatic aberration correction of each optical system, and the overall optical performance of the information recording / reproducing apparatus 300 is improved. (Embodiment 4)
実施の形態 3では、 非等方分布を有する光を等方分布の光に変換する光分布変 換手段 3 0 4を説明した。 実施の形態 4では、 光分布変換手段の他の例が示され る。  In the third embodiment, the light distribution conversion means 304 that converts light having anisotropic distribution into light having isotropic distribution has been described. Embodiment 4 shows another example of the light distribution conversion means.
図 4は、 本発明の実施の形態 4の情報記録再生装置 4 0 0の構成を示す。 実施 の形態 1による情報記録再生装置 1 0 0の構成要素と同一の構成要素には同一の 参照符号を付し、 これらについての詳細な説明は省略する。  FIG. 4 shows a configuration of an information recording / reproducing device 400 according to Embodiment 4 of the present invention. The same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
情報記録再生装置 4 0 0は、 放射光源 1 0 1と、 ビームスプリッ夕一 4 0 3と、 コリメートレンズ 4 0 2と、 光分布変換手段 4 0 4と、 対物レンズ 1 0 5と、 ホ ログラム 1 0 7と、 光検出器 1 0 8とを含む。 放射光源 1 0 1には、 例えば非等 方分布の光を発する青紫半導体レーザを用いる。  The information recording / reproducing device 400 includes a radiation light source 101, a beam splitter 410, a collimating lens 402, a light distribution converting means 404, an objective lens 105, and a hologram. 107 and a photodetector 108. As the radiation light source 101, for example, a blue-violet semiconductor laser emitting light with anisotropic distribution is used.
情報記録再生装置 4 0 0は、 情報記録媒体 1 0 6に情報を記録し、 または情報 記録媒体 1 0 6に記録された情報を再生する。 情報記録媒体 1 0 6は、 透明基板 1 1 3と記録層 1 1 4とを含む。 The information recording / reproducing device 400 records information on the information recording medium 106, The information recorded on the recording medium 106 is reproduced. The information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
光分布変換手段 4 0 4は、 2群 3枚のシリンドリカルレンズから構成されてお り、 1次元の方向の光ビームの分布を補正するアナモフィック光学系として機能 する。 光分布変換手段 4 0 4は、 凹シリンドリカルレンズ 4 0 5と、 凸シリンド リカルレンズ 4 0 6から構成される。 凹シリンドリカルレンズ 4 0 5は、 低屈折 率の材料から形成された凹シリンドリカルレンズと高屈折率の材料から形成され た凸シリンドリカルレンズとが接合されることによって構成される。 凸シリンド リカルレンズ 4 0 6には、 高屈折率の材料から形成される凸シリンドリカルレン ズを用いる。 光分布変換手段 4 0 4は、 複数のシリンドリカルレンズから構成さ れてもよい。 このような光分布変換手段 4 0 4は、 シリンドリカルレンズの色分 散に起因する色収差を補正するように構成されており、 非等方分布を有する光を 実質的に等方分布に変換することができる。 光分布変換手段 4 0 4では、 これら 高屈折率の材料と低屈折率の材料との間の分散の差を利用することによって、 色 収差補正を行う。 高屈折率の材料には、 例えば、 S K 5、 V C 7 8、 V C 7 9、 B K 7等が挙げられるが、 これらに限定されない。 低屈折率の材料には、 例えば F D 1 5等が挙げられるが、 これに限定されない。  The light distribution conversion means 404 is composed of two groups and three cylindrical lenses, and functions as an anamorphic optical system for correcting the distribution of a light beam in a one-dimensional direction. The light distribution conversion means 404 includes a concave cylindrical lens 405 and a convex cylindrical lens 406. The concave cylindrical lens 405 is formed by joining a concave cylindrical lens formed of a material having a low refractive index and a convex cylindrical lens formed of a material having a high refractive index. As the convex cylindrical lens 406, a convex cylindrical lens formed of a material having a high refractive index is used. The light distribution conversion means 404 may be composed of a plurality of cylindrical lenses. Such a light distribution conversion means 404 is configured to correct chromatic aberration caused by chromatic dispersion of the cylindrical lens, and converts light having an anisotropic distribution to a substantially isotropic distribution. Can be. The light distribution conversion means 404 performs chromatic aberration correction by utilizing the difference in dispersion between the high refractive index material and the low refractive index material. High refractive index materials include, but are not limited to, SK5, VC78, VC79, BK7, and the like. Examples of the material having a low refractive index include FD15, but are not limited thereto.
放射光源 1 0 1が発した非等方分布を有する光は、 ビームスプリッタ一 4 0 3、 コリメ一トレンズ 4 0 2および光分布変換手段 4 0 4を透過し、 実質的に等方分 布を有する平行光に変換される。 光分布変換手段 4 0 4で変換された光が、 対物 レンズ 1 0 5に入射する。 コリメ一トレンズ 4 0 2およびビームスプリッター 4 0 3はそれぞれ、 例えば、 実施の形態 1のコリメートレンズ 1 0 2およびビーム スプリツター 1 0 3と同様の構成であり得る。  Light having an anisotropic distribution emitted from the radiation light source 101 passes through the beam splitter 403, the collimating lens 402 and the light distribution conversion means 404, and substantially distributes an isotropic distribution. Is converted into a parallel light. The light converted by the light distribution conversion means 404 enters the objective lens 105. The collimating lens 402 and the beam splitter 403 can have, for example, the same configurations as the collimating lens 102 and the beam splitter 103 of the first embodiment, respectively.
ビームスプリツ夕一 4 0 3と、 コリメートレンズ 4 0 2と、 光分布補正手段 4 0 4とは、 放射光源が発する光を略平行化するコリメート手段 4 0 7として機能 する。 コリメ一ト手段 4 0 7は、 ビ一ムスプリッター 4 0 3の色分散に起因する 色収差と、 コリメートレンズ 4 0 2の色分散に起因する色収差と、 光分布変換手 段 4 0 4の色分散に起因する色収差とが、 全体としてキャンセルされるように構 成される。 The beam splitter 403, the collimating lens 402, and the light distribution correcting means 404 function as a collimating means 407 for substantially collimating the light emitted from the radiation light source. The collimating means 407 is caused by the chromatic dispersion of the beam splitter 403 Chromatic aberration, chromatic aberration due to chromatic dispersion of the collimating lens 402, and chromatic aberration due to chromatic dispersion of the light distribution conversion unit 404 are configured to be canceled as a whole.
このように、 コリメート手段 4 0 7は、 ビームスプリツター 4 0 3と、 コリメ —トレンズ 4 0 2と、 光分布変換手段 4 0 4とが全体として色収差補正されてい る。 これにより、 コリメート手段 4 0 7によって略平行化された光は、 放射光源 1 0 1の波長のずれに関わらず、 実質的に平面波となる。 コリメ一ト手段 4 0 7 は、 固定光学系 (固定部分) 4 1 0に含まれる。  As described above, in the collimating means 407, the beam splitter 403, the collimating lens 402, and the light distribution converting means 404 are chromatic aberration corrected as a whole. Thus, the light collimated by the collimator 407 becomes substantially a plane wave regardless of the wavelength shift of the radiation light source 101. The collimating means 407 is included in the fixed optical system (fixed part) 410.
コリメ一卜手段 4 0 7で略平行化された平行光は、 対物レンズ 1 0 5、 次いで 透明基板 1 1 3に入射し、 記録層 1 1 4に光スポットを形成する。 対物レンズ 1 0 5は、 収束された光が透明基板 1 1 3を透過して記録層 1 1 4に光スポットを 形成するように、 略平行化された光を収束させる光収束手段として機能する。 対 物レンズ 1 0 5は、 例えば実施の形態 1と同様の構成であり得る。  The collimated light substantially collimated by the collimating means 407 enters the objective lens 105 and then to the transparent substrate 113, and forms a light spot on the recording layer 114. The objective lens 105 functions as a light converging unit that converges the substantially collimated light so that the converged light passes through the transparent substrate 113 and forms a light spot on the recording layer 114. . The objective lens 105 may have, for example, the same configuration as in the first embodiment.
対物レンズ (光収束手段) 1 0 5は、 対物レンズ 1 0 5と情報記録媒体 1 0 6 とが全体として色収差補正されている。 これにより、 コリメート手段 4 0 7によ つて略平行化された光が実質的に平面波でありさえすれば、 放射光源 1 0 1が発 する光の波長のずれに関わらず、 対物レンズ (光収束手段) 1 0 5で収束された 光によって記録層 1 1 4に光スポッ卜が形成される。 対物レンズ 1 0 5と情報記 録媒体 1 0 6とは、 可動光学系 (可動部分) 4 1 1に含まれる。  In the objective lens (light focusing means) 105, the chromatic aberration of the objective lens 105 and the information recording medium 106 is corrected as a whole. Accordingly, as long as the light substantially collimated by the collimating means 407 is substantially a plane wave, regardless of the wavelength shift of the light emitted from the radiation light source 101, the objective lens (light focusing Means) A light spot is formed on the recording layer 114 by the light converged at 105. The objective lens 105 and the information recording medium 106 are included in a movable optical system (movable part) 411.
本発明の実施の形態 4の情報記録再生装置 4 0 0では、 コリメ一卜手段 4 0 7 および対物レンズ (光収束手段) 1 0 5がそれぞれ独立に色収差補正されている ため、 各々を独立に設計する.ことができる。 例えば、 コリメート手段 4 0 7と対 物レンズ (光収束手段) 1 0 5との間の距離を任意に設定することができるので、 光学系全体の設計の自由度が増す。 さらに、 各々の光学系の色収差補正の精度を 上げることが可能になり、 情報記録再生装置 4 0 0の全体の光学的性能が向上す る。 (実施の形態 5 ) In the information recording / reproducing apparatus 400 according to the fourth embodiment of the present invention, since the collimating means 407 and the objective lens (light converging means) 105 are independently corrected for chromatic aberration, they are independently controlled. Can be designed. For example, the distance between the collimating means 407 and the objective lens (light converging means) 105 can be set arbitrarily, which increases the degree of freedom in designing the entire optical system. Further, the accuracy of chromatic aberration correction of each optical system can be improved, and the overall optical performance of the information recording / reproducing device 400 can be improved. (Embodiment 5)
図 5は、 本発明の実施の形態 5の情報記録再生装置 5 0 0の構成を示す。 実施 の形態 1による情報記録再生装置 1 0 0の構成要素と同一の構成要素には同一の 参照符号を付し、 これらについての詳細な説明は省略する。  FIG. 5 shows a configuration of an information recording / reproducing device 500 according to the fifth embodiment of the present invention. The same components as those of the information recording / reproducing apparatus 100 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
情報記録再生装置 5 0 0は、 放射光源 1 0 1と、 ビ一ムスプリッター 5 0 3と、 コリメ一卜レンズ 5 0 2と、 球面収差補正手段 5 0 4と、 対物レンズ 5 0 5と、 ホログラム 1 0 7と、 光検出器 5 0 9とを含む。  The information recording / reproducing device 500 includes a radiation light source 101, a beam splitter 503, a collimating lens 502, a spherical aberration correcting means 504, an objective lens 505, It includes a hologram 107 and a photodetector 509.
情報記録再生装置 5 0 0は、 情報記録媒体 1 0 6に情報を記録し、 または情報 記録媒体 1 0 6に記録された情報を再生する。 情報記録媒体 1 0 6は、 透明基板 1 1 3と記録層 1 1 4とを含む。  The information recording / reproducing device 500 records information on the information recording medium 106 or reproduces information recorded on the information recording medium 106. The information recording medium 106 includes a transparent substrate 113 and a recording layer 114.
ビームスプリッター 5 0 3と、 コリメートレンズ 5 0 2とは、 放射光源が発す る光を略平行化するコリメ一卜手段 5 1 4として機能する。 コリメ一トレンズ 5 0 2およびビームスプリッ夕一 5 0 3はそれぞれ、 例えば、 実施の形態 1のコリ メートレンズ 1 0 2およびビ一ムスプリッ夕一 1 0 3と同様の構成であり得る。 コリメート手段 5 1 4は、 ビームスプリッター 5 0 3とコリメートレンズ 5 0 2とが全体として色収差補正されている。 これにより、 コリメ一ト手段 5 1 4に よって略平行化された光は、 放射光源 1 0 1の波長のずれに関わらず、 実質的に 平面波となる。 コリメート手段 5 1 4は、 固定光学系 (固定部分) 5 1 2に含ま れる。  The beam splitter 503 and the collimating lens 502 function as collimating means 514 for substantially collimating the light emitted from the radiation light source. The collimating lens 502 and the beam splitter 503 may have the same configuration as the collimating lens 102 and the beam splitter 103 of the first embodiment, for example. In the collimating means 5 14, the chromatic aberration of the beam splitter 503 and the collimating lens 502 is corrected as a whole. Thus, the light substantially collimated by the collimating means 5 14 substantially becomes a plane wave regardless of the wavelength shift of the radiation light source 101. The collimating means 5 14 is included in the fixed optical system (fixed portion) 5 12.
情報記録媒体 1 0 6の透明基板 1 1 3は、 例えばインジヱクシヨン成形法を用 いて作製される。 透明基板 1 1 3の厚さは、 成形時の条件等によって変化する。 放射光源に波長 4 0 7 nmの光を発する半導体レーザを用い、 対物レンズに N A = 0 . 8 5である高 N Aを有する対物レンズを用いる場合、 透明基板の厚さが約 1 変化すると、 球面収差が約 1 Ο ηι λ発生する。 情報の記録または再生にお いて、 許容可能な波面収差は最大 4 O m Aであり、 一方許容可能な球面収差は最 大約 2 Ο πιλであることが知られている。 球面収差を許容可能な範囲に抑えるた めには、 透明基板の厚さの変化を約 2 m内に抑える必要があるが、 実際の製造 工程においてこのような高い精度を確保するのは困難である。 従って、 球面収差 補正手段 5 0 4は、 成形時の条件等によって生じる透明基板の厚さの変化によつ て生じる球面収差を補正する機能を有する。 The transparent substrate 113 of the information recording medium 106 is manufactured by, for example, an injection molding method. The thickness of the transparent substrate 113 changes depending on the molding conditions and the like. When a semiconductor laser that emits light with a wavelength of 407 nm is used as the radiation source and an objective lens with a high NA of NA = 0.85 is used as the objective lens, the spherical surface changes when the thickness of the transparent substrate changes by about 1. Aberration occurs about 1 Ο ηι λ. In recording or reproducing information, the maximum allowable wavefront aberration is 4 O mA, while the maximum allowable spherical aberration is It is known to be about 2 Ο πιλ. In order to keep spherical aberration within an acceptable range, it is necessary to keep the change in the thickness of the transparent substrate within about 2 m, but it is difficult to secure such high accuracy in the actual manufacturing process. is there. Therefore, the spherical aberration correcting means 504 has a function of correcting spherical aberration caused by a change in the thickness of the transparent substrate caused by molding conditions and the like.
次に球面収差の補正の方法を説明する。 球面収差の補正は、 これら両凸レンズ 5 0 7と凸レンズ 5 0 8との間の距離を変化させることによって行われる。 より 詳細には、 放射光源 1 0 1が発した光は、 ビームスプリツター 5 0 3、 次いでコ リメ一トレンズ 5 0 2を透過して平行光になる。 平行光は、 球面収差補正手段 5 0 4、 対物レンズ 5 0 5および透明基板 1 1 3を透過して、 記録層 1 1 4に光ス ポットを形成する。 記録層 1 1 4で反射した光は、 再度透明基板 1 1 3、 対物レ ンズ 5 0 5、 球面収差補正手段 5 0 4およびコリメートレンズ 5 0 2を透過し、 ビ一ムスプリッタ一 5 0 3で 9 0 ° 反射されて、 ホログラム 1 0 7に入射する。 ホログラム 1 0 7は、 入射した光を ± 1次光ビームに回折させて、 その回折光が 光検出器 5 0 9に入射する。 光検出器 5 0 9において、 情報記録媒体 1 0 6に記 録された情報を示す情報信号およびトラッキングのためのサ一ポ信号に加えて、 両凸レンズ 5 0 7と凸レンズ 5 0 8との間の距離を決定するための球面収差補正 信号とが取り出される。 球面収差補正信号に基づいて、 制御手段 (図示せず) が 両凸レンズ 5 0 7と凸レンズ 5 0 8との間の距離を変化させて、 球面収差を補正 する。  Next, a method of correcting spherical aberration will be described. The correction of the spherical aberration is performed by changing the distance between the biconvex lens 507 and the convex lens 508. More specifically, the light emitted from the radiation light source 101 passes through the beam splitter 503 and then the collimating lens 502 to become parallel light. The parallel light passes through the spherical aberration correcting means 504, the objective lens 505, and the transparent substrate 113 to form an optical spot on the recording layer 114. The light reflected by the recording layer 114 passes again through the transparent substrate 113, the objective lens 505, the spherical aberration correcting means 504 and the collimating lens 502, and the beam splitter 1503. Is reflected at 90 ° and enters the hologram 107. The hologram 107 diffracts the incident light into ± first-order light beams, and the diffracted light enters the photodetector 509. In the photodetector 509, in addition to the information signal indicating the information recorded on the information recording medium 106 and the support signal for tracking, the distance between the biconvex lens 507 and the convex lens 508 is increased. And a spherical aberration correction signal for determining the distance are extracted. Based on the spherical aberration correction signal, control means (not shown) changes the distance between the biconvex lens 507 and the convex lens 508 to correct the spherical aberration.
球面収差の発生を検出し、 両凸レンズ 5 0 7と凸レンズ 5 0 8との間の距離を 調整するための、 球面収差補正信号を生成し、 球面収差補正手段 5 0 4を制御す ることができる任意の構成が情報記録再生装置 5 0 0に用いられ得ることを理解 されたい。  It is possible to detect the occurrence of spherical aberration, generate a spherical aberration correction signal for adjusting the distance between the biconvex lens 507 and the convex lens 508, and control the spherical aberration correction means 504. It should be understood that any possible configuration can be used for the information recording / reproducing device 500.
透明基板 1 1 3の厚さの変化による球面収差を補正するために、 実施の形態 5 では球面収差補正手段 5 0 4を用いる。 球面収差補正手段 5 0 4は、 両凸レンズ 5 0 7および凸レンズと両凸レンズとが接合された凸レンズ 5 0 8から構成され ている。 球面収差補正手段 5 0 4の構成は、 上記構成に限定されない。 In the fifth embodiment, spherical aberration correcting means 504 is used to correct spherical aberration due to a change in the thickness of the transparent substrate 113. The spherical aberration correction means 504 is a biconvex lens 507 and a convex lens 508 in which a convex lens and a biconvex lens are joined. The configuration of the spherical aberration correcting means 504 is not limited to the above configuration.
球面収差補正手段 5 0 4と、 対物レンズ 5 0 5は、 収束された光が透明基板 1 1 3を透過して記録層 1 1 4に光スポットを形成するように、 略平行化された光 を収束させる光収束手段 5 1 5として機能する。 上述したように、 対物レンズ 5 0 5は、 情報記録媒体 1 0 6への情報の記録または再生中に、 情報記録媒体 1 0 6との距離が一定になるように、 情報記録媒体 1 0 6の 3次元的な動きに追従す る。 また、 球面収差補正手段 5 0 4の両凸レンズ 5 0 7と凸レンズ 5 0 8との間 の距離が、 情報記録媒体 1 0 6の透明基板 1 1 3の厚さに応じて調整される。 光 収束手段 5 1 5は、 球面収差補正手段 5 0 4における両凸レンズ 5 0 7および凸 レンズ 5 0 8の色分散に起因する色収差と、 対物レンズ 5 0 5のパヮ一および色 分散に起因する色収差と、 透明基板 1 1 3の色分散に起因する色収差と、 記録層 1 1 4の色分散に起因する色収差とが、 全体としてキャンセルされるように構成 される。  The spherical aberration correcting means 504 and the objective lens 505 are substantially collimated so that the converged light passes through the transparent substrate 113 to form a light spot on the recording layer 114. Function as light converging means 5 15 for converging light. As described above, the objective lens 505 is connected to the information recording medium 106 so that the distance from the information recording medium 106 becomes constant while information is recorded or reproduced on the information recording medium 106. Follows the three-dimensional movement of. The distance between the biconvex lens 507 and the convex lens 508 of the spherical aberration correction means 504 is adjusted according to the thickness of the transparent substrate 113 of the information recording medium 106. The light converging means 5 15 is caused by the chromatic aberration caused by the chromatic dispersion of the biconvex lens 507 and the convex lens 508 in the spherical aberration correcting means 504, and by the power and chromatic dispersion of the objective lens 505. The chromatic aberration, the chromatic aberration caused by the chromatic dispersion of the transparent substrate 113, and the chromatic aberration caused by the chromatic dispersion of the recording layer 114 are cancelled as a whole.
光収束手段 5 1 5は、 球面収差補正手段 5 0 4と、 対物レンズ 5 0 5と、 情報 記録媒体 1 0 6とが全体として色収差補正されている。 これにより、 コリメート 手段 5 1 4によって略平行化された光が実質的に平面波でありさえすれば、 放射 光源 1 0 1が発する光の波長のずれに関わらず、 光収束手段 5 1 5で収束された 光によって記録層 1 1 4に光スポッ卜が形成される。 球面収差補正手段 5 0 4と、 対物レンズ 5 0 5と、 情報記録媒体 1 0 6とは、 可動光学系 (可動部分) 5 1 3 に含まれる。  In the light converging means 5 15, the chromatic aberration of the spherical aberration correcting means 504, the objective lens 505, and the information recording medium 106 is corrected as a whole. Thus, as long as the light substantially collimated by the collimating means 5 14 is substantially a plane wave, the light converging means 5 15 converges regardless of the wavelength shift of the light emitted from the radiation light source 101. A light spot is formed on the recording layer 114 by the emitted light. The spherical aberration correction means 504, the objective lens 505, and the information recording medium 106 are included in a movable optical system (movable part) 5 13.
対物レンズ 5 0 5は、 実施の形態 1〜4とは異なり、 平凸レンズ 5 1 0と先玉 レンズ 5 1 1から構成されている。 このような対物レンズ 5 0 5を用いた場合、 放射光源 1 0 1が発する光の波長が約 1 nmずれると、 球面収差が約 1 Ο πι λ発 生する。 球面収差補正手段 5 0 4は、 対物レンズ 5 0 5において発生するこのよ うな球面収差をも補正するように構成されている。 本発明の実施の形態 5の情報記録再生装置 5 0 0では、 コリメ一卜手段 5 1 4 および光収束手段 5 1 5がそれぞれ独立に色収差補正されているため、 各々を独 立に設計することができる。 例えば、 コリメート手段 5 1 4と光収束手段 5 1 5 の間の距離を任意に設定することができるので、 光学系全体の設計の自由度が増 す。 さらに、 各々の光学系の色収差補正の精度を上げることが可能になり、 情報 記録再生装置 5 0 0の全体の光学的性能が向上する。 産業上の利用の可能性 Unlike the first to fourth embodiments, the objective lens 505 includes a plano-convex lens 510 and a front lens 511. When such an objective lens 505 is used, when the wavelength of the light emitted from the radiation light source 101 is shifted by about 1 nm, about 1Οπιλ is generated in spherical aberration. The spherical aberration correcting means 504 is configured to also correct such spherical aberration generated in the objective lens 505. In the information recording / reproducing apparatus 500 of the fifth embodiment of the present invention, the collimating means 514 and the light converging means 515 are each independently corrected for chromatic aberration, so that each of them must be designed independently. Can be. For example, since the distance between the collimating means 5 14 and the light converging means 5 15 can be set arbitrarily, the degree of freedom in designing the entire optical system increases. Further, it becomes possible to improve the accuracy of the chromatic aberration correction of each optical system, and the overall optical performance of the information recording / reproducing apparatus 500 is improved. Industrial applicability
本発明の情報記録再生装置は、 光を発する放射光源と、 放射光源が発する光を 略平行化するコリメ一ト手段と、 略平行化された光が透明基板を透過して記録層 に光スポットを形成するように略平行化された光を収束させる光収束手段とを含 む。 コリメート手段および光収束手段の各々が、 独立して、 放射光源が発する光 の波長のずれに関わらず色収差補正されているので、 情報記録再生装置の光学系 を独立に設計することができる。 さらに各々の光学系の色収差補正の精度を上げ ることが可能になり、 情報記録再生装置全体の光学的性能が向上する。  An information recording / reproducing apparatus according to the present invention includes: a radiation light source that emits light; collimating means that substantially collimates the light emitted by the radiation light source; And light converging means for converging the light that has been substantially collimated so as to form light. Since each of the collimating means and the light converging means is independently corrected for chromatic aberration irrespective of the wavelength shift of the light emitted from the radiation light source, the optical system of the information recording / reproducing apparatus can be independently designed. Further, it becomes possible to improve the accuracy of the chromatic aberration correction of each optical system, thereby improving the optical performance of the entire information recording / reproducing apparatus.

Claims

請求の範囲 The scope of the claims
1 . 透明基板および記録層を有する情報記録媒体に情報を記録し、 前記情報記録 媒体に記録された前記情報を再生する情報記録再生装置であって、 1. An information recording / reproducing apparatus which records information on an information recording medium having a transparent substrate and a recording layer, and reproduces the information recorded on the information recording medium,
光を発する放射光源と、  A radiation source that emits light,
前記放射光源が発する前記光を略平行化するコリメー卜手段と、  Collimating means for substantially collimating the light emitted by the radiation light source,
収束された光が前記透明基板を透過して前記記録層に光スポットを形成するよ うに前記略平行化された光を収束させる光収束手段と  Light converging means for converging the substantially collimated light so that the converged light passes through the transparent substrate to form a light spot on the recording layer;
を含む、 情報記録再生装置であって、  An information recording / reproducing device, comprising:
前記コリメ一ト手段は、 前記放射光源が発する前記光の波長のずれに関わらず、 前記略平行化された光が実質的に平面波であるように色収差補正されており、 前記光収束手段は、 前記放射光源が発する前記光の波長のずれに関わらず、 前 記記録層に光スポッ卜が形成されるように色収差補正されている、 情報記録再生  The collimating means has been corrected for chromatic aberration so that the substantially collimated light is substantially a plane wave, irrespective of a shift in the wavelength of the light emitted from the radiation light source. Chromatic aberration correction is performed so that a light spot is formed on the recording layer regardless of a wavelength shift of the light emitted from the radiation light source.
2 . 前記コリメート手段は固定光学系に含まれ、 前記光収束手段および前記情報 記録媒体は可動光学系に含まれる、 請求の範囲第 1項に記載の情報記録再生装置。 2. The information recording / reproducing apparatus according to claim 1, wherein the collimating unit is included in a fixed optical system, and the light converging unit and the information recording medium are included in a movable optical system.
3 . 前記放射光源は非等方分布の光を発し、 前記コリメート手段は、 前記非等方 分布の光を実質的に等方分布の光に変換する光分布変換手段を含む、 請求の範囲 第 1項に記載の情報記録再生装置。 3. The radiation light source emits anisotropically distributed light, and the collimating unit includes a light distribution converting unit that converts the anisotropically distributed light into a substantially isotropically distributed light. The information recording / reproducing device according to item 1.
4 . 前記光分布変換手段は複数のプリズムを含む、 請求の範囲第 3項に記載の情 報記録再生装置。 4. The information recording / reproducing apparatus according to claim 3, wherein the light distribution conversion unit includes a plurality of prisms.
5 . 前記光分布変換手段は複数のシリンドリカルレンズを含む、 請求の範囲第 3 項に記載の情報記録再生装置。 5. The third aspect, wherein the light distribution conversion unit includes a plurality of cylindrical lenses. An information recording / reproducing apparatus according to the item.
6 . 前記光収束手段は、 前記情報記録媒体の前記透明基板の厚さの変化によって 生じる球面収差を補正する球面収差補正手段を含む、 請求の範囲第 1項に記載の 6. The method according to claim 1, wherein the light converging unit includes a spherical aberration correcting unit configured to correct a spherical aberration caused by a change in a thickness of the transparent substrate of the information recording medium.
PCT/JP2001/008869 2000-10-10 2001-10-09 Information recorder/reproducer WO2002031824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-308752 2000-10-10
JP2000308752A JP2004234697A (en) 2000-10-10 2000-10-10 Information recording and reproducing device

Publications (1)

Publication Number Publication Date
WO2002031824A1 true WO2002031824A1 (en) 2002-04-18

Family

ID=18789010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008869 WO2002031824A1 (en) 2000-10-10 2001-10-09 Information recorder/reproducer

Country Status (2)

Country Link
JP (1) JP2004234697A (en)
WO (1) WO2002031824A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145433A (en) * 1984-08-08 1986-03-05 Mitsubishi Electric Corp Optical head for optical disc device
JPH02257115A (en) * 1989-03-30 1990-10-17 Konica Corp Optical system for recording and reproducing of optical information medium
JPH08184753A (en) * 1994-12-28 1996-07-16 Konica Corp Optical system for optical disk
JPH09251662A (en) * 1996-03-15 1997-09-22 Sony Corp Recording medium recording and reproducing device and recording medium recording and reproducing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145433A (en) * 1984-08-08 1986-03-05 Mitsubishi Electric Corp Optical head for optical disc device
JPH02257115A (en) * 1989-03-30 1990-10-17 Konica Corp Optical system for recording and reproducing of optical information medium
JPH08184753A (en) * 1994-12-28 1996-07-16 Konica Corp Optical system for optical disk
JPH09251662A (en) * 1996-03-15 1997-09-22 Sony Corp Recording medium recording and reproducing device and recording medium recording and reproducing method

Also Published As

Publication number Publication date
JP2004234697A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US6721259B1 (en) Optical head and recording/reproducing device
EP1184856B1 (en) Optical pickup comprising an aberration correction element
EP1202259A2 (en) Objective lens, light converging optical system, optical pickup apparatus, and recording/reproducing apparatus
JPH10283668A (en) Optical pickup for dvd, which is interchangeable with cd-r, using hologram type ring lens
US6744568B2 (en) Objective lens, method for correcting manufacturing error thereof, and optical pick-up device using the same
JP2006073076A (en) Object optical system for optical recording medium, and optical pickup device using the same
JP2001093179A (en) Optical pickup
US8098562B2 (en) Objective lens comprising a diffraction structure for distributing light in to light of different diffraction orders, optical pickup device, and optical information recording or reproduction apparatus having same
JP4621964B2 (en) Optical pickup device, recording / reproducing device, and correction method of spherical aberration fluctuation in optical pickup device
US20090009886A1 (en) Optical pickup and optical disk device having this pickup
JP2006127714A (en) Objective optical system and optical pickup apparatus
KR100833242B1 (en) Object lens device with high numerical aperture and optical pickup device adopting the same
JP3826819B2 (en) Optical pickup device
KR20050046575A (en) Optical pickup device and optical system used for the same
JP2005332463A (en) Objective optical system for optical recording medium and optical pickup device using same
US7710848B2 (en) Optical pickup apparatus
JP2002236252A (en) Objective lens, coupling lens, condensing optical system, optical pickup device and recording and reproducing device
KR20050030226A (en) Scanning device including an objective lens formed of two materials
JP2000028917A (en) Pickup device for recording and reproducing of optical information recording medium, objective lens, and design method for objective lens
JP4437731B2 (en) Optical pickup optical system and optical pickup device using the same
JP4400326B2 (en) Optical pickup optical system, optical pickup device, and optical disk drive device
JP2001143301A (en) Optical pickup device and objective for optical pickup device
JP4958022B2 (en) Optical pickup device
JP5013237B2 (en) Coupling lens, optical pickup device, recording device, and reproducing device
WO2002031824A1 (en) Information recorder/reproducer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP