WO2002031554A1 - Optical fiber array and method of manufacturing the array - Google Patents

Optical fiber array and method of manufacturing the array Download PDF

Info

Publication number
WO2002031554A1
WO2002031554A1 PCT/JP2001/008951 JP0108951W WO0231554A1 WO 2002031554 A1 WO2002031554 A1 WO 2002031554A1 JP 0108951 W JP0108951 W JP 0108951W WO 0231554 A1 WO0231554 A1 WO 0231554A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
groove
bare
substrate
height
Prior art date
Application number
PCT/JP2001/008951
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Matsumoto
Masashi Fukuyama
Original Assignee
Ngk Insulators,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators,Ltd. filed Critical Ngk Insulators,Ltd.
Publication of WO2002031554A1 publication Critical patent/WO2002031554A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement

Definitions

  • the present invention relates to an optical fiber array and a method for manufacturing the same. More specifically, the present invention relates to an optical fiber array used in the field of optical fiber communication and optical fiber sensors, in which optical fibers are aligned and fixed in V-grooves, and a method of manufacturing the same.
  • Background art
  • FIG. 4 (a) and 4 (b) show an example of a conventional optical fiber array
  • FIG. 4 (a) is a side view
  • FIG. 4 (b) is a CC cross section of FIG. 4 (a). See the cross-sectional view in the direction of the arrow.
  • the V-groove 42 is formed in the V-groove portion 8 of the V-groove substrate 46 of the optical fiber array 40, and the bare optical fiber portion 41 of the multi-core, for example, 16-core optical fiber 48 is formed. Each is arranged on the V groove 42.
  • the upper lid substrate 44 is placed on the V-groove substrate 46 so as to sandwich the optical fiber bare portion 1 arranged in a line, and is fixed with an adhesive.
  • the rear end portion 45 of the upper cover substrate is subjected to a curved surface processing so as not to damage the bare optical fiber portion 41.
  • the bare optical fiber 41 is sandwiched between the V-groove substrate 46 and the upper lid substrate 44, and is fixed at three points.
  • the optical fiber coating portion is provided together with the bare optical fiber portion 41.
  • the V-groove 42 there is a flat part 4 that is the lower part on which the optical fiber coating part 43 is mounted, and a step part 2 that connects the flat part 4 and the V-groove 8. are doing.
  • Such a conventional optical fiber array 40 has the following problems.
  • the rear end portion 49 of the V-groove substrate 46 is in a sharply standing state, and the stress of the adhesive is small.
  • the portion where the stress fluctuates rapidly and the stress becomes large almost coincides with the edge 6 of the V groove 42.
  • the generation of scratches due to the edge 6 of the V-groove 42 may also occur during the manufacture of the optical fiber array 40 (when mounting the bare optical fiber portion 41 in the V-groove 42).
  • the stress on the bare optical fiber portion 41 at the edge 6 of the V-shaped groove 42 due to the lateral stress can be reduced even if the ribbon fiber is used, even if it is not shifted in the lateral direction during the manufacturing operation. There may be a case where the error is inevitably caused by a pitch error.
  • the pitch between the fibers in the bare optical fiber portion 41 tends to shift, so that the bare optical fiber portion 41 cannot be arranged so as to be in contact with the V groove 42 from the beginning.
  • the bare optical fiber portion 41 floats from the V groove 42. From this state, the bare optical fiber 41 is pressed by the upper lid substrate 44, so that the bare optical fiber 41 is arranged in the V groove 42.
  • the optical fibers are within a predetermined range (within the width of the V groove) on the V groove. It is very difficult to recognize whether or not is located.
  • the lines that appear at the edges of the V-groove, the lines that appear at the bottom of the V-groove, and the lines that appear at the optical fiber itself are very narrow. Since many are arranged at intervals, it is difficult to recognize accurately.
  • the tip of the optical fiber and the end face of the V-groove will be at the time of assembly. Does not coincide with the longitudinal direction, and it is still difficult to accurately determine whether the optical fiber is located within a predetermined range on the V-groove.
  • FIG. 7 is a diagram showing an example of a conventional optical fiber array, and is a front view (an optical fiber bare portion side) showing a state in which an optical fiber fits into a V-groove during a manufacturing process.
  • the left side shows a state before the bare optical fiber is pressed by the upper lid substrate
  • the right side shows a state where the bare optical fiber is pressed by the upper lid substrate.
  • This misalignment is caused by the position of the optical fiber jumping out of the V-groove when viewed from the front end face (the end face opposite to the flat surface of the V-groove). It is easy to occur because there is no right and left regulation in
  • the present invention has been made in view of the above-mentioned conventional problems (1) to (6), and has an object to prevent local stress concentration on an optical fiber.
  • the present inventors have conducted various studies on the structure and manufacturing method of an optical fiber array in order to achieve the above object, and as a result, it has been found that the following means can solve the conventional problems.
  • the bare optical fiber is inside the V-groove and is held down by the upper lid substrate, the bare optical fiber is surely set in the V-groove, and in the process, the bare optical fiber becomes the opening edge of the V-groove. It does not hit and does not damage the optical fiber.
  • Such a state can be realized by appropriately setting the dimensions of the step portion of the optical fiber array.
  • An optical fiber array according to the present invention includes a V-groove having a V-groove on which an optical fiber bare portion is disposed, a flat portion on which an optical fiber coating portion is disposed, and a step connecting the V-groove and the flat portion.
  • the height H3 from the reference plane A to the top of the V-groove upper surface part of the V-groove part is defined as the reference plane A as the reference plane A, and the height H3 in the optical fiber coating part arranged on the plane part from the reference plane A is It is preferable to have a stepped portion that is higher than the height H4 up to the lower end of the optical fiber.
  • the lower end of the optical fiber in the optical fiber coating portion is the portion of the optical fiber portion in the coated optical fiber. Refers to the lower end.
  • the height from the reference surface A to the V-groove upper surface is constant in any of the V-grooves.
  • the height up to the top of the V-groove can be referred to as the height H3.
  • the length Z of the bare optical fiber that is not in contact with the V-groove is preferably about 20 mm or less.
  • the optical fiber array of the present invention can be suitably used for a half-pitch optical fiber array in which optical fiber coating portions are laminated in two stages. Further, the optical fiber array is suitably used as an optical fiber array having an upper cover substrate for holding bare optical fibers arranged in the V-groove. The rear end of the upper lid substrate is preferably formed in an R shape.
  • the V-groove has a V-groove having a bare optical fiber portion, a flat portion having an optical fiber coating portion disposed thereon, and a step portion connecting the V-groove portion and the flat portion.
  • a method for manufacturing an optical fiber array comprising: a V-groove substrate; and an upper cover substrate for holding the optical fiber bare portion disposed in the V-groove, wherein the bare optical fiber has a V-groove at a rear end of the V-groove.
  • a method for manufacturing an optical fiber array characterized in that the V-groove substrate and the upper lid substrate are solidified with an adhesive while not in contact with the V-groove, and the optical fiber bare portion is fixed and aligned in the V-groove.
  • FIG. 1 (a) to 1 (d) are views showing an embodiment of an optical fiber array according to the present invention.
  • FIG. 1 (a) is a side view
  • FIG. 1 (b) is a view showing FIG. 1 (a).
  • FIG. 1 (c) is a cross-sectional view in the direction of arrow BB in FIG. 1 (a).
  • FIG. 1D is a perspective view of a single V-groove substrate constituting the optical fiber array.
  • 2 (a) and 2 (b) are views showing another embodiment of the optical fiber array according to the present invention.
  • FIG. 2 (a) is a side view
  • FIG. 2 (b) is a front view ( Optical fiber coating part entrance side).
  • FIGS. 3 (a) and 3 (b) show still another embodiment of the optical fiber array according to the present invention.
  • FIG. 3 (a) is a side view
  • FIG. 3 (b) is a front view. This is the figure (the optical fiber coating part entrance side).
  • FIG. 4 (a) and 4 (b) are views showing an example of a conventional optical fiber array
  • FIG. 4 (a) is a side view
  • FIG. 4 (b) is a cross-sectional arrow of FIG. 4 (a). It is sectional drawing of a viewing direction.
  • FIG. 5 is a diagram showing an example of a conventional optical fiber array, and is a front view (on the bare optical fiber side) in the middle of a manufacturing process.
  • FIG. 6 is a diagram showing an example of a conventional optical fiber array, and is a front view (the bare optical fiber side) in the middle of a manufacturing process.
  • FIG. 7 is a diagram showing an example of a conventional optical fiber array, and is a front view (an optical fiber bare portion side) showing a state in which an optical fiber fits into a V-groove during a manufacturing process.
  • FIG. 8 is a view showing one embodiment of the optical fiber array according to the present invention, and is a front view (an optical fiber bare portion side) showing a state in which the optical fiber is accommodated in the V-groove during the manufacturing process.
  • FIG. 9 (a) to 9 (e) are views showing an embodiment of the optical fiber array according to the present invention
  • FIG. 9 (a) is a side view
  • FIG. 9 (e) is a state in the middle of a manufacturing process.
  • FIG. 9B is a side view showing a state in which an optical fiber is placed on the V-groove substrate
  • FIG. 9B is a cross-sectional view of one V-groove shown in FIG.
  • FIG. 9C is a cross-sectional view of the other V-groove in FIG. 9E taken in the direction of the DD section
  • FIG. 9D is a perspective view of a single V-groove substrate constituting the optical fiber array.
  • FIG. 10 is a view showing another embodiment of the optical fiber array according to the present invention, showing a state in the middle of the manufacturing process before mounting the upper cover substrate, and showing a state in which the optical fiber is mounted on the V-groove substrate. It is a side view.
  • FIG. 11 is a view showing still another embodiment of the optical fiber array according to the present invention, which shows a state in the middle of the manufacturing process before mounting the upper lid substrate, and shows a state in which the optical fiber is mounted on the V-groove substrate.
  • An optical fiber array according to the present invention includes a V-groove having a V-groove in which an optical fiber bare portion is disposed, a flat portion in which an optical fiber coating portion is disposed, and a step connecting the V-groove and the flat portion.
  • the height H 1 has a step portion that is higher than the height H 2 from the reference plane A to the center of the optical fiber bare portion disposed in the V groove, and preferably, the step portion is
  • the height H3 from the reference plane A to the top surface of the V-groove of the V-groove is higher than the height H4 from the reference plane A to the lower end of the optical fiber in the optical fiber coating placed on the flat surface. It is a difference part.
  • FIG. 10 is a view showing one embodiment of the optical fiber array according to the present invention, and is a side view showing a state in the middle of the manufacturing process before mounting the upper lid substrate.
  • the height HI is determined by using the plane portion 104 of the V-groove substrate 106 as a reference plane A. It is the height from the reference plane A to the center CL of the optical fiber coating portion 103 arranged on the plane portion 104 (that is, the center of the coated optical fiber 101a).
  • the height H4 is the height from the reference plane A to the lower end of the coated optical fiber 101a in the optical fiber coating 103 arranged on the plane portion 104.
  • the heights H l and H 4 correspond to the optical fiber coating 103 arranged on the flat section 104. The height does not change even after the bare optical fiber portion 101 is pressed by the upper lid substrate.
  • the heights H2 and H3 shown below are the heights related to the V-groove portion 107 of the V-groove substrate 106, but the flat portion 104 remains the reference plane A.
  • the height H3 is a height from the reference plane A to the top of the V-groove upper surface portion 100 of the V-groove portion 107.
  • the V-groove upper surface portion 100 is formed of a horizontal surface, and in any of the V-groove portions 107, the reference surface A is a flat surface portion 104.
  • the height from the top surface of the V-groove 100 is constant, and the height H 3 can be said to be the height from the reference plane A to the top surface of the V-groove of the V-groove.
  • the height H3 is the height from the reference plane A to the uppermost portion of the upper surface of the V groove in the V groove.
  • the V-groove upper surface portion 100 is the upper surface of the V-groove in the V-groove portion 107, and indicates the plane of the V-groove portion 107 when the V-groove is not formed.
  • the height H3 does not change even after the bare optical fiber portion 101 is pressed by the upper lid substrate.
  • the height H2 is a height from the reference plane A to the center of the bare optical fiber portion 101 arranged in the V groove of the V groove portion 107.
  • FIG. 10 shows a state in which the bare optical fiber portion 101 is not pressed by the upper lid substrate. At this time, the bare optical fiber portion 101 is floating from the V-groove, and By pressing the portion 101, the bare optical fiber portion 101 is placed in close contact with the V-groove. Accordingly, the height H2 changes after the bare optical fiber portion 101 is pressed by the upper lid substrate.
  • the height H2 in the present invention is the height H2 after the optical fiber bare portion 101 is pressed by the upper cover substrate, not being manufactured.
  • the height H1 is higher than the height H2. It should be understood that this condition is fulfilled even if it is essential and is not indicated each time.
  • FIG. 1 (a) to 1 (d) are diagrams showing an embodiment of an optical fiber array according to the present invention, and FIG. 1 (a) is a side view.
  • Fig. 1 (b) is an AA cross section of Fig. 1 (a).
  • FIG. 1 (c) is a cross-sectional view in the direction of the arrow, and
  • FIG. 1 (c) is a cross-sectional view in the direction of the arrow BB in FIG.
  • FIG. 1D is a perspective view of only the V-groove substrate. Note that the rear ends of the V-groove rear end, the upper lid substrate rear end, and the like refer to the ends closer to the optical fiber coating portion.
  • the optical fiber array 10 includes an upper cover substrate 14 and a V-groove substrate 16, and an optical fiber 18 is inserted.
  • a plurality of V-grooves 12 are formed in the V-groove portion 7 of the V-groove substrate 16, and the bare optical fiber portions 11 are arranged in each of the V-grooves 12 one by one.
  • the V-groove substrate 16 has a flat portion 3 on which the optical fiber covering portion 13 is mounted.
  • the V-groove portion 7 and the flat portion 3 are connected via the step portion 1 to form a V-groove substrate 16.
  • the V-groove rear end 19 refers to a portion where two surfaces of the V-groove 12 that draw a V-shape in a cross section meet the surface of the step portion 1 and the vicinity thereof.
  • the height HI is defined as the center of the optical fiber coating 13 disposed on the plane 3 with the plane 3 as the reference plane A, that is, the center of the bare optical fiber stored in the optical fiber coating 13.
  • the height H2 refers to the height from the plane portion 3 as the reference plane A to the center of the bare optical fiber portion 11 arranged on the V groove 12.
  • the upper lid substrate 14 is a member for holding the bare optical fiber 11 arranged in the V groove 12 of the V groove substrate 16.
  • the optical fiber array of the present invention is characterized in that the bare optical fiber 11 arranged in the V-groove 12 is not in contact with the V-groove 12 at the rear end 19 of the V-groove. This is because the height HI from the reference plane A to the center of the optical fiber coating 13 arranged on the plane part 3 is set on the V groove 12 with the plane part 3 of the V-groove substrate 16 as the reference plane A. This is realized by making the height to the center of the placed optical fiber bare portion 11 higher than H2.
  • the difference between the height HI and the height H2 (hereinafter also referred to as ⁇ ) is generally about 5 to 100 m, so that the bending radius r of the bare optical fiber is not reduced, and 11 is preferable because it can be lifted from the V-groove 12 at the rear end 19 of the V-groove.
  • is 100 / i.
  • it is larger than m, the bending radius r of the bare portion of the optical fiber naturally becomes large, resulting in an increase in loss, which is not preferable. More preferably, it is 20 to 50 m. '
  • the difference between the height HI and the height H2, that is, the effect of preventing stress concentration caused by ⁇ also varies depending on the length Z of the bare optical fiber that is not in contact with the V-groove.
  • the length Z of the bare optical fiber that is not in contact with the V-groove is the length of the bare optical fiber from the optical fiber coating that enters the V-groove and comes into contact with the V-groove. (Hereinafter also referred to as relaxation length Z). '
  • the terminus of the V-groove means a portion where the V-groove ends, that is, a portion adjacent to the step portion.
  • AU when the length from the point at which the bare portion of the optical fiber placed on the V-groove leaves the V-groove to the end of the V-groove is, AU varies depending on the size of, but the reason described later In some cases, it is desirable to be within the range of 0.5 to 1.Omm, so it is preferable to increase the bending radius r of the bare part of the optical fiber in order to secure a certain amount of floating AU from the V groove. Absent. In other words, it is not preferable to make the relaxation length Z longer than a certain value.
  • the relaxation length is preferably approximately 20 mm or less, more preferably 10 mm or less, and even more preferably 3 to 5 mm.
  • the lifting AU of the bare optical fiber from the V-groove at the end of the V-groove and the bending radius r of the bare optical fiber are expressed by the following equations. .
  • the condition that ⁇ is the smallest is the difference between the height HI and the height H2 at the maximum relaxation length ⁇ of 20 mm.
  • the ⁇ is the smallest at 5 m and the AL is 0.5 mm, where r is about 20 cm, and the lifting of the bare optical fiber from the V-groove at the V-groove end is about 0.007. m, but even in this case the optical fiber Since the bare part is not pressed against the edge of the V-groove, stress concentration can be avoided, and the bare part of the optical fiber is less likely to be scratched.
  • the relaxation length Z is long, the amount of the adhesive increases, and the stress exerted on the entire optical fiber by the adhesive increases. Therefore, it is not preferable that the relaxation length Z is long for this reason.
  • the rear end 15 of the upper lid substrate is provided with the V-groove 1 of the V-groove substrate 16 so that the bare optical fiber 11 does not come into contact with the V-groove 12 at the rear end 19 of the V-groove. It is also characterized by being positioned above 2.
  • the height HI is higher than the height H 2, so that the bare optical fiber 11 comes out of the optical fiber coating 13.
  • the bare optical fiber 11 comes out of the optical fiber coating 13.
  • the cross-sectional view at the rear end 19 of the V-groove is in the state shown in Fig. 1 (c), and the bare optical fiber 11 is not in contact with the edge 5 of the V-groove 12.
  • the conventional problem that is, the edge 5 of the V-shaped groove 12 does not damage the bare optical fiber 11. For example, even if the adhesive stress is concentrated on the optical fiber due to an environmental change, or the optical fiber is displaced, the bare optical fiber portion 11 is not damaged by the edge 5 of the V groove 12.
  • the rear end portion 15 of the upper lid substrate is located on the V-groove and is preferably formed as shown in FIG. 1A, that is, when the optical fiber is bare, Even if a stress that causes the portion 11 to bend upward is generated, no scratch is generated. Furthermore, the periphery of the bare optical fiber 11 is covered with an adhesive in a state where the floating ⁇ U of the bare optical fiber from the V-groove is secured at the end of the V-groove. At the end 19, more specifically, at the edge 5 of the V-groove 12, stress concentration on the bare optical fiber 11 cannot occur, resulting in a highly reliable optical fiber array 10.
  • the bare optical fiber when fixing the upper lid substrate and the V-groove substrate using two types of adhesives, first place the bare optical fiber in the V-groove, then temporarily fix the upper lid substrate on the V-groove with a jig, The first adhesive is injected from the surface, the first adhesive is filled in the entire upper lid substrate, and then cured. Then, the second adhesive is applied between the upper lid substrate and the optical fiber coating portion storage substrate. Inject from the open section, and store the optical fiber coating section and the optical fiber coating section. Hardening is performed after the entire space is filled. At this time, if the first adhesive is stopped at the rear end of the upper lid substrate and the back is used as the second adhesive, the bare optical fiber is arranged on the V-groove.
  • the first adhesive that has flowed out of the outside V-groove often reaches the inside V-groove at the end of the V-groove, and the front end surface
  • the V-groove is closed before the first adhesive that flows more, and bubbles remain here.
  • the settings of the lower-stage optical fibers are set as described above. In this way, both the lower and upper bare optical fibers are mounted in the V-groove without contacting the rear end of the V-groove, and the bare optical fiber disposed in the V-groove is connected to the V-groove at the rear end of the V-groove. Do not touch.
  • FIG. 9 (a) to 9 (e) show another embodiment of the optical fiber array according to the present invention.
  • FIG. 9 (a) is a side view
  • FIG. 9 (e) is a view showing a state during the manufacturing process, in which an optical fiber is placed on a V-groove substrate.
  • 9 (b) and 9 (c) are cross-sectional views taken along the line DD in FIG. 9 (e).
  • FIG. 9D is a perspective view of only the V-groove substrate.
  • an optical fiber array 80 includes an upper lid substrate 94 and a V-groove substrate 86, and an optical fiber 88 is inserted therein.
  • a plurality of V-grooves 82 are formed in the V-groove portion 87 of the V-groove substrate 86, and each V-groove 82 has one optical fiber bare portion 81.
  • the V-groove substrate 86 has a flat portion 84 on which the optical fiber coating portion 83 is mounted.
  • the V-groove portion 87 and the flat portion 84 are connected via a step portion 92 to form a V-groove substrate 86.
  • the height H3 refers to the height of the V-groove portion 87 up to the V-groove upper surface portion 90 with the flat portion 84 as the reference plane A.
  • the height H4 refers to the flat portion 84 as the reference surface A.
  • the upper lid substrate 94 is a member for holding the bare optical fiber 81 disposed in the V-groove 82 of the V-groove substrate 86.
  • the bare optical fiber 81 is slightly inside the V-groove 82 as shown in FIG.
  • the height H 3 from the reference plane A to the V-groove upper surface 90 of the V-groove part 87 is defined as the reference plane A with the plane part 84 of the V-groove substrate 86 as the reference plane A.
  • the V-groove can restrain the optical fiber, so that the optical fiber in the V-groove is hard to come off before pressing the bare optical fiber with the upper cover substrate, and Even if there is an optical fiber that is out of the V-groove, it is easy to find out, and the effect of preventing a decrease in the yield that occurs when the bare optical fiber is manufactured without being arranged in the V-groove can be prevented. Therefore, the bare optical fiber does not rest on the V-groove, but is fixed on the upper surface of the V-groove (the upper surface of the V-groove). It is possible to avoid such a problem that the bare portion of the optical fiber is damaged by hitting the bare portion.
  • a multi-core optical fiber for example, in a 12-core optical fiber, one optical fiber fits in a V-groove, and when only one fiber does not fit in a V-groove, it fits in a V-groove. Since the optical fiber is restricted by the V-groove and it is difficult to go outside, move the entire optical fiber sideways so that the last optical fiber that does not enter the V-groove enters. Thus, all the optical fibers can be easily arranged in the V-groove. Such work may be performed at the tip of the bare optical fiber on the V-groove (the front end of the optical fiber array, that is, on the side opposite to the flat surface).
  • the optical fiber is guided using the V-groove as a guide. What is necessary is just to move to a predetermined position. Since the tip of the optical fiber is removed by polishing, even if the tip (end of the optical fiber) of the optical fiber is damaged in the above-mentioned operation (movement to the side of the optical fiber), there is no problem as a product.
  • the upper optical fiber When applied to a half-pitch optical fiber array in which ripon fibers are stacked in two layers, the upper optical fiber is not in the V-groove before being pressed by the upper lid substrate, but the lower optical fiber is When the bare optical fiber 81 in the optical fiber array 80 is in the state of the bare optical fiber 81, the lower optical fiber acts as a guide for the upper optical fiber. Both optical fibers easily fit into the V-groove. Since the optical fiber is circular, there is no sharp edge like the opening edge of the V-groove, and even if the upper and lower stages of the optical fiber are rubbed against each other in the V-groove while rubbing, they can damage the optical fiber. Absent.
  • FIG. 11 shows still another embodiment of the optical fiber array according to the present invention.
  • the optical fiber array 130 is in a manufacturing process and shows a state before the optical fibers are pressed by the upper cover substrate.
  • the optical fiber array 80 is different from the optical fiber array 80 shown in FIGS. 9A to 9E in that the V-groove upper surface 110 of the V-groove 117 is inclined.
  • the V-groove is formed horizontally. As can be seen from Fig. 11, when viewed from the side, the deviation of the bare optical fiber portion 1 1 1 is prevented over the entire V-groove.
  • the optical fiber bare part 111 is in the V-groove, in other words, from the flat part 111 which is the reference plane A to the groove upper part 110
  • the height H3 from the top to the top is higher than the height H4 from the reference plane A to the lower end of the optical fiber covering section 113 located on the plane section 114 that is the reference plane A.
  • the displacement of the bare optical fiber 1 1 1 can be prevented.
  • Such an optical fiber array 130 is excellent in that the bare optical fiber portion 111 does not come into contact with the edge of the V-groove at the rear end of the V-groove, and is hardly damaged.
  • the optical fiber array of the present invention will be described in more detail based on the examples including the manufacturing method. It is important to note that the bare optical fiber has a V-groove at the rear end of the V-groove. In this state, the V-groove substrate and the upper lid substrate are solidified with an adhesive in a state where they are not in contact with each other, and the bare optical fiber portions are fixed and aligned in the V-grooves. Even if various stresses are applied to the optical fiber in the product, the probability that the optical fiber is damaged and breaks can be reduced.
  • the step portion in order to accurately position the optical fiber coating portion, the step portion is formed in two steps, and in order to reduce the influence of the stress of the adhesive, the upper surface portion of the optical fiber bare portion is formed.
  • an optical fiber array 20 having a half-pitch (12.7 ⁇ m) of 48 cores using two 24 core ribbons was produced.
  • V-grooves 48 cores ⁇ 5 groups of 240 cores V-grooves were ground on a 50 ⁇ 50 mm wafer by a micro grinder. The depth of the V-groove was set so that the upper end of the bare optical fiber 21 protruded 5 mm, so that the bare optical fiber 21 was in two-point contact with the V-groove.
  • a step groove orthogonal to the V groove was machined with a slicer.
  • the depth of the first step 22 from B is 0.14 mm
  • the depth of the second step 28, that is, the vertical distance from the flat part 53 to the right is 0.17 mm.
  • the vertical distance from the reference plane B to the center of the bare optical fiber portion 21 arranged in the V-groove was 0.03 mm.
  • an optical fiber covering part storage substrate 27 positioned at the second step part 28 is prepared, placed on the flat part 53 of the V-groove substrate 26, and accurately aligned in the lateral direction and adhered. Fixed.
  • the length of the V-groove of the V-groove substrate 26 is 4 mm
  • the length of the flat portion 53 in the longitudinal direction is 3 mm
  • the open portion 5 between the V-groove portion and the flat portion 53 is formed.
  • Each chip was cut so that the length in the longitudinal direction of 5 was 5 mm, the width of the V-groove substrate 26 and the width of the optical fiber coating portion storage substrate 27 were 9 mm.
  • the width of the upper lid substrate 24 is set to 8.7 mm, which is 0.3 mm smaller than the width of the V-groove substrate 26, and the length of the upper lid substrate 24 is set so that the rear end of the upper lid substrate is positioned on the V-groove.
  • the length was 3.5 mm, which was 0.5 mm smaller than the length of the V groove. That is, the length in the horizontal direction from the rearmost end of the rear end of the V-groove to the rearmost end of the rear end of the upper lid substrate was set to 0.5 mm.
  • optical fiber array 20 was assembled.
  • the lower part of the optical fiber coating part (also called a tape fiber) 23 b with a thickness of 3 mm was formed by bonding and fixing the V-groove substrate 26 and the optical fiber coating part storage substrate 27.
  • the tape fiber 23 b was inserted into the second step portion 28 until the tape fiber 23 b hit.
  • each bare optical fiber (also called a bare fiber) 21 of the tape fiber 23 b is placed on each V groove. Is done.
  • the tape fiber 23b was temporarily fixed outside the optical fiber array 20. At this time, the bare fibers 21 are arranged every other V-groove.
  • the upper tape fiber 23 a having a thickness of 0.3 mm is inserted along the wall on one side of the optical fiber coating portion storage groove 25 on the opposite side to the above to the same position as the lower one, The tape fiber 23a was temporarily fixed. As a result, in the same way as above, The bare fiber 21 is placed in the first place.
  • the upper lid substrate 24 was set on the upper part of the V groove, and a load was applied by a jig. If the upper lid substrate 24 is pressed against the side wall of the optical fiber coating portion storage substrate 27, the position in the longitudinal direction and the parallelism are naturally determined.
  • the upper lid substrate 24, the optical fiber coating portion storage substrate 27, and the V-groove substrate 26 were fixed using two types of adhesives.
  • the upper lid substrate 24 is temporarily fixed on the V-groove with a jig, the first adhesive is injected from the front end face, and the entire upper lid substrate 24 is After one adhesive was filled, it was cured.
  • a second adhesive is injected from an open portion between the upper lid substrate 24 and the optical fiber coating portion storage substrate 27, and the optical fiber coating portion storage substrate 27 and the optical fiber coating portion 23a Hardening was performed after the entire space was filled, including the gap with 3b. Thereafter, the end face was polished to complete the optical fiber array 20.
  • the final dimensions are as shown in Fig. 2 (a) and Fig. 2 (b).
  • a standard optical fiber array 30 shown in FIGS. 3 (a) and 3 (b) was produced.
  • the second embodiment differs from the first embodiment in that a single-stage optical fiber is used instead of two-stage optical fibers.
  • the bending radius of the optical fiber does not become small, so the distance (corresponding to the open portion 56) until the bare fiber 31 coming out of the tape fiber 33 fits in the V groove is set in two stages.
  • the pitch error of the tape fiber 33 is about 0.1 mm, so in order to alleviate the error of 0.05 mm on each side, the actual value is 3 mm. did.
  • the bending radius of the optical fiber was not too small, and good characteristics were obtained.
  • an optical fiber coating unit receiving substrate 37 corresponding to the flat portion 54 of the V-groove substrate 36 is prepared, placed on the flat portion 54 of the V-groove substrate 36, They were glued and fixed in the correct length direction.
  • the dimensions shown in FIGS. 3 (a) and 3 (b) are obtained by using a die sintering machine, for example, setting the width of the V-groove substrate 36 to 7.0 mm. Each chip was cut.
  • the width of the upper lid substrate 34 is set to 6.7 mm, which is 0.3 mm smaller than the width of the V-groove substrate 36, and the length of the upper lid substrate 34 is It was 3.5 mm, which is 0.5 mm smaller than the length of the V-groove so as to be positioned. That is, the length in the horizontal direction from the rearmost end of the rear end of the V-groove to the rearmost end of the rear end of the upper lid substrate was set to 0.5 mm in the horizontal direction.
  • Assembling is performed by attaching a 3 mm-thick tape fiber 33 to the V-groove substrate 36 and the optical fiber coating portion storage substrate 37 by bonding and fixing the optical fiber coating portion storage groove 35 (the space inside the optical fiber coating portion storage substrate 37). Along the wall until the second step 38 was reached. In this state, the tape fiber 33 was temporarily fixed outside the optical fiber array 30.
  • the upper lid substrate 34, the optical fiber coating portion storage substrate 37, and the V-groove substrate 36 were fixed using two types of adhesives as described below.
  • the upper lid substrate 34 is temporarily fixed on the V-groove with a jig, the first adhesive is injected from the front end face, and the first adhesive is applied to the entire upper lid substrate 34. After the agent was filled, it was cured. Next, a second adhesive is injected from an open portion between the upper lid substrate 34 and the optical fiber coating portion storage substrate 37, including a gap between the optical fiber coating portion storage substrate 37 and the optical fiber coating portion 33, After curing was performed after filling the entirety, the end face was polished to complete the optical fiber array 30. The final dimensions are as shown in Figs. 3 (a) and 3 (b).
  • Example 3 An optical fiber array was produced in the same manner as in Example 1 except that the upper cover substrate was not used.
  • the difference from the first embodiment in the assembling is that after placing the bare optical fiber on the V-groove substrate, a Teflon fiber holding substrate is used instead of the upper cover substrate.
  • the fiber holding substrate and jig were used to fix the bare optical fiber while holding it down, and the adhesive was cured. Since the fiber holding substrate is made of fluororesin such as tetrafluoroethylene, it easily peels off from the adhesive and comes off the V-groove substrate.
  • the fiber holding substrate was installed so as to be located on the front end side at the rear end of the V-groove of the V-groove substrate, and the bare optical fiber was lifted off the V-groove at the end of the V-groove. The adhesive was cured in this state.
  • the fixed optical fiber bare part may be damaged, so the dummy fiber holding board is installed again and fixed, and then the end face polishing is performed. Got the product.
  • an optical fiber array which prevents stress concentration on an optical fiber, hardly causes problems such as characteristic deterioration, and has excellent reliability, and a method for manufacturing the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

An optical fiber array (10), comprising a V-grooved substrate (16) having a V-groove part (7) with V-grooves (12) for disposing optical fiber bare parts (11) therein, a flat part (3) for disposing optical fiber covered parts (13) thereon, and a step part (1) for connecting the V-groove part (7) to the flat part (3), wherein, with the flat part (3) used as a reference plane (A), a height (H1) from the reference plane (A) to the center of the optical fiber covered parts (13) disposed on the flat part (3) is higher than a height (H2) from the reference plane (A) to the center of the optical fiber bare parts (11) disposed in the V-grooves (12), whereby a stress concentration to optical fibers can be prevented, the problems such as deterioration of characteristics become hard to occur, and a reliability can be increased.

Description

明 細 書 光ファイバアレイ及びその製造方法 技術分野  Description Optical fiber array and method for manufacturing the same
本発明は、 光ファイバアレイ、 及び、 その製造方法に関する。 より詳細には、 光ファイバ通信や光ファイバセンサ分野で使用され、 V溝に光ファイバを整列さ せて固定する光ファイバアレイ、 及び、 その製造方法に関する。 背景技術  The present invention relates to an optical fiber array and a method for manufacturing the same. More specifically, the present invention relates to an optical fiber array used in the field of optical fiber communication and optical fiber sensors, in which optical fibers are aligned and fixed in V-grooves, and a method of manufacturing the same. Background art
近年、 光ファイバの高密度化に伴い、 平面導波路 (P L C) の多芯化が進んで いる。 この多芯化に伴って、 導波路素子の大型化を回避し、 更に高密度化を図る ため、 従来の標準的な導波路ピッチを短縮化する方向で、 P L Cの開発が進めら れている。 そして、 このような光ファイバの高密度化、 導波路ピッチの短縮化に 合わせて、 光ファイバと他の光学部品との接続を目的とした光ファイバアレイや 、 光ファイバ同士を接続する MTコネクタ等において、 光ファイバ間ピッチも短 縮する方向で開発が進んでおり、 その中で如何に高い信頼性を保持するかが課題 となっている。  In recent years, with the densification of optical fibers, the use of multi-core planar waveguides (PLCs) has been increasing. With the increase in the number of cores, PLCs are being developed to reduce the conventional standard waveguide pitch in order to avoid increasing the size of the waveguide element and further increase the density. . In line with the increase in the density of optical fibers and the reduction in waveguide pitch, optical fiber arrays for connecting optical fibers to other optical components, MT connectors for connecting optical fibers, etc. In this regard, the development of optical fiber pitches is also shrinking, and the challenge is how to maintain high reliability.
図 4 ( a ) 、 図 4 ( b ) は、 従来の光ファイバアレイの一例を示す図で、 図 4 ( a ) は側面図であり、 図 4 ( b ) は図 4 ( a ) の C C断面矢視方向の断面図で める。  4 (a) and 4 (b) show an example of a conventional optical fiber array, FIG. 4 (a) is a side view, and FIG. 4 (b) is a CC cross section of FIG. 4 (a). See the cross-sectional view in the direction of the arrow.
光ファイバアレイ 4 0の V溝基板 4 6の V溝部 8には V溝 4 2が形成されてお り、 多芯の、 例えば、 1 6芯の光ファイバ 4 8の光ファイバ裸部 4 1がそれぞれ V溝 4 2上に配置される。 上蓋基板 4 4は、 整列して配置された光ファイバ裸部 1を中に挟むようにして、 V溝基板 4 6にのせられ接着剤により固定される。 上蓋基板後端部 4 5には光ファイバ裸部 4 1を傷つけないように曲面加工が施さ れている。 図 4 ( b ) に示されるように、 光ファイバ裸部 4 1は、 V溝基板 4 6 及び上蓋基板 4 4に挟まれ、 3点にて固定されている。 このような光ファイバ裸部 4 1を V溝 4 2に搭載し、 整列させるための V溝基 板 4 6を備える光ファイバアレイ 4 0では、 光ファイバ裸部 4 1とともに光ファ ィバ被覆部 4 3も搭載するため、 V溝 4 2部分の他に、 光ファイバ被覆部 4 3を 搭載する下部である平面部 4、 及び、 平面部 4と V溝部 8とを接続する段差部 2 を有している。 The V-groove 42 is formed in the V-groove portion 8 of the V-groove substrate 46 of the optical fiber array 40, and the bare optical fiber portion 41 of the multi-core, for example, 16-core optical fiber 48 is formed. Each is arranged on the V groove 42. The upper lid substrate 44 is placed on the V-groove substrate 46 so as to sandwich the optical fiber bare portion 1 arranged in a line, and is fixed with an adhesive. The rear end portion 45 of the upper cover substrate is subjected to a curved surface processing so as not to damage the bare optical fiber portion 41. As shown in FIG. 4 (b), the bare optical fiber 41 is sandwiched between the V-groove substrate 46 and the upper lid substrate 44, and is fixed at three points. In such an optical fiber array 40 having the V-groove substrate 46 for mounting the bare optical fiber portion 41 in the V-groove 42 and aligning the same, the optical fiber coating portion is provided together with the bare optical fiber portion 41. In addition to the V-groove 42, there is a flat part 4 that is the lower part on which the optical fiber coating part 43 is mounted, and a step part 2 that connects the flat part 4 and the V-groove 8. are doing.
このような従来の光ファィバァレイ 4 0においては、 以下のような問題を抱え ていた。  Such a conventional optical fiber array 40 has the following problems.
図 4 ( a ) 、 図 4 ( b ) に示される光ファイバアレイ 4 0においては、 V溝基 板 4 6の V溝後端部 4 9はシャープに立った状態であり、 接着剤の応力が急激に 変動し応力が大きくなる部位と、 V溝 4 2のエッジ 6がほぼ一致している。  In the optical fiber array 40 shown in FIGS. 4 (a) and 4 (b), the rear end portion 49 of the V-groove substrate 46 is in a sharply standing state, and the stress of the adhesive is small. The portion where the stress fluctuates rapidly and the stress becomes large almost coincides with the edge 6 of the V groove 42.
( 1 ) そのため、 横方向の光ファイバ 4 8への動きがあった場合の支点と上下方 向の支点がほぼ一致することになることから、 光ファイバ裸部 4 1と V溝 4 2の エッジ 6とが当接する点 Pに応力が集中し、 光ファイバ裸部 4 1に傷がつくおそ れがあった。  (1) Since the fulcrum when the lateral optical fiber 48 is moved and the fulcrum in the upward and downward directions almost coincide, the edge of the bare optical fiber 41 and the edge of the V groove 42 Stress concentrated at the point P where the abutment 6 contacted, and the bare optical fiber 41 could be damaged.
傷は微少であってもついていると、 長期の使用による環境変化 (温度 ·湿度変 動等) で光ファイバ 4 8に曲げ応力がかかった場合に、 この傷を起点に損失増加 や最悪の場合には断線等を引き起こす懸念を含んでいる。 又、 特に段差部 2が 9 0度の角度を有する場合には、 V溝 4 2のエッジ 6と光ファイバ裸部 4 1とが接 する距離も短いため、 この部分にこれらの応力が集中し、 問題が発生する可能性 が大きかった。  Even if the scratches are small, if the optical fiber 48 is subjected to bending stress due to environmental changes (temperature and humidity fluctuations, etc.) due to long-term use, the damage will increase from the scratches and in the worst case. Include concerns about disconnections. In particular, when the step portion 2 has an angle of 90 degrees, the distance at which the edge 6 of the V groove 42 contacts the bare optical fiber portion 41 is short, and these stresses concentrate on this portion. The potential for problems was high.
上記 (1 ) の問題発生を防止するため、 段差部に傾斜を設けた V溝基板を用い た光ファイバアレイが提案されている。 このような光ファイバアレイにおいては 、 接着剤部分を徐々に拡大するように形成することで、 発生する応力が徐々に大 きくなるというきれいな応力分布を持たせることにより、 上記 (1 ) の問題を回 避しょうとしていた。  In order to prevent the problem (1) from occurring, there has been proposed an optical fiber array using a V-groove substrate having an inclined step portion. In such an optical fiber array, the problem of the above (1) can be solved by forming the adhesive portion so as to gradually expand so as to have a clean stress distribution in which the generated stress gradually increases. I was trying to evacuate.
( 2 ) しかしながら、 段差部の傾斜角を大きくすると、 段差部が長くなり、 全体 としての接着剤量が増大するため、 今度は、 その増加した接着剤分の応力が増え てしまうという矛盾した問題を抱えることになる。 又、 段差部 2において V溝 4 2のエッジ 6がシャープに立っていることによる 問題は、 ゴム砥石や部分的なパフ研磨等で曲面 Rを形成する方法によって回避す ベく検討されている。 (2) However, if the inclination angle of the step portion is increased, the step portion becomes longer, and the amount of adhesive as a whole increases, so that this time there is a contradictory problem that the stress of the increased adhesive increases. You will have In addition, the problem that the edge 6 of the V-groove 42 stands sharp at the step portion 2 has been studied to be avoided by a method of forming a curved surface R by a rubber grindstone or partial puff polishing.
( 3 ) しかしながら、 V溝 4 2の深さは 1 0 0〜1 5 0 m程度であるため、 作 業は困難で、 且つ、 曲面 Rが部分的に取れなかったりして、 V溝 4 2の加工品質 が不安定である問題があつた。  (3) However, since the depth of the V-groove 42 is about 100 to 150 m, the work is difficult, and the curved surface R cannot be partially removed. There was a problem that the machining quality was unstable.
V溝 4 2のエッジ 6による傷の発生は、 光ファイバアレイ 4 0の製造時 (光フ アイバ裸部 4 1を V溝 4 2に搭載する作業時) にも起こる可能性がある。  The generation of scratches due to the edge 6 of the V-groove 42 may also occur during the manufacture of the optical fiber array 40 (when mounting the bare optical fiber portion 41 in the V-groove 42).
( 4 ) 光ファイバアレイ 4 0の製造時に、 光ファイバ 4 8の後部 (被覆部側) に おいて下方に向けて不必要な負荷をかけたり (曲げる ·潰す等) 、 光ファイバ裸 部 4 1を横方向 (ファイバ配置方向に対して概ね垂直方向) にずらしたりすると V溝 4 2のエッジ 6に応力が加わることにより傷発生のおそれを招く。  (4) When manufacturing the optical fiber array 40, an unnecessary load is applied downward (bending, crushing, etc.) at the rear (covering side) of the optical fiber 48, or the bare optical fiber 41 If it is shifted laterally (in a direction substantially perpendicular to the fiber arrangement direction), stress will be applied to the edge 6 of the V-groove 42, which may cause damage.
尚、 横方向応力による V溝 4 2のエッジ 6での光ファイバ裸部 4 1への応力は 、 製造時の作業で横方向にずらすことがなくても、 リポンファイバを用いるとリ ボンファイバのピッチ誤差により必然的にかかってしまう場合があり得る。  It should be noted that the stress on the bare optical fiber portion 41 at the edge 6 of the V-shaped groove 42 due to the lateral stress can be reduced even if the ribbon fiber is used, even if it is not shifted in the lateral direction during the manufacturing operation. There may be a case where the error is inevitably caused by a pitch error.
更には、 製造過程において、 以下の問題があった。  Furthermore, there were the following problems in the manufacturing process.
このような光ファイバアレイ 4 0を組み立てるときには、 光ファイバ裸部 4 1 においてファイバ間ピッチがズレ易いために、 光ファイバ裸部 4 1を最初から V 溝 4 2上に接するように配置出来るわけではなく、 先ず、 光ファイバ裸部 4 1は V溝 4 2から浮いた状態になる。 この状態から、 上蓋基板 4 4により光ファイバ 裸部 4 1を押さえつけることにより、 光ファイバ裸部 4 1は V溝 4 2に配置され る。 特に、 光ファイバが多心である光ファイバアレイの場合や、 光ファイバを二 段に積層するハーフピッチ光ファイバアレイの場合には、 V溝上の所定範囲内 ( V溝の幅内) に光ファイバが位置しているか否かを認識するのは非常に困難であ る。 例えば、 上面から組立中の光ファイバアレイを観察しても、 V溝の開口エツ ジで表れる線、 V溝の最底部で表れる線、 更には光ファイバ自体で表れる線、 等 が、 非常に狭い間隔で多数並んでいるので、 正確に認識し難い。 又、 端面前部 ( 平面部とは反対側) 力、ら観察しても、 組立時には光ファイバの先端と V溝の端面 は長手方向に一致しておらず、 V溝上の所定範囲内に光ファイバが位置している か否かを正確に判断することは、 やはり難しい。 When assembling such an optical fiber array 40, the pitch between the fibers in the bare optical fiber portion 41 tends to shift, so that the bare optical fiber portion 41 cannot be arranged so as to be in contact with the V groove 42 from the beginning. First, the bare optical fiber portion 41 floats from the V groove 42. From this state, the bare optical fiber 41 is pressed by the upper lid substrate 44, so that the bare optical fiber 41 is arranged in the V groove 42. In particular, in the case of an optical fiber array having a large number of optical fibers or a half-pitch optical fiber array in which optical fibers are stacked in two layers, the optical fibers are within a predetermined range (within the width of the V groove) on the V groove. It is very difficult to recognize whether or not is located. For example, when observing the optical fiber array being assembled from the top, the lines that appear at the edges of the V-groove, the lines that appear at the bottom of the V-groove, and the lines that appear at the optical fiber itself are very narrow. Since many are arranged at intervals, it is difficult to recognize accurately. In addition, even if the force is observed at the front of the end face (opposite side of the flat part), the tip of the optical fiber and the end face of the V-groove will be at the time of assembly. Does not coincide with the longitudinal direction, and it is still difficult to accurately determine whether the optical fiber is located within a predetermined range on the V-groove.
( 5 ) 従って、 図 5に示すように、 光ファイバ裸部 4 1が V溝 4 2の真上に配置 されていない場合には、 図 6に示すように、 上蓋基板 4 4により光ファイバ裸部 4 1を押さえつけても、 光ファイバ裸部 4 1が V溝 4 2上にのらずに、 光フアイ バ裸部が V溝上面部 7 0 (V溝 4 2の上面部) にのつた状態で固定されてしまう おそれがあった。  (5) Therefore, as shown in FIG. 5, when the optical fiber bare portion 41 is not arranged directly above the V-groove 42, as shown in FIG. Even if the part 41 is pressed down, the bare optical fiber part 41 does not rest on the V-groove 42 and the bare optical fiber rests on the V-groove upper part 70 (the upper part of the V-groove 42). Could be fixed by the
( 6 ) 又、 最終的には V溝 4 2に収まったとしても、 図 7に示されるように、 V 溝 4 2の開口エッジ 6 5に光ファイバ裸部 4 1が当たって擦れながら V溝 4 2に 収まり、 光ファイバ裸部 4 1に過度なダメージを与えてしまう等の危険性があつ た。  (6) Even if the optical fiber finally fits in the V-groove 42, as shown in FIG. 7, the bare optical fiber 41 hits the opening edge 65 of the V-groove 42 and rubs the V-groove. 4 and there was a danger that the optical fiber bare part 41 would be excessively damaged.
尚、 図 7は、 従来の光ファイバアレイの一例を示す図であり、 製造工程途中に おいて、 光ファイバが V溝に収まる様子を表す正面図 (光ファイバ裸部側) であ る。 図 7中、 左側が上蓋基板で光ファイバ裸部を押さえる前の状態を表し、 右側 が上蓋基板で光ファイバ裸部を押さえた状態を表す。  FIG. 7 is a diagram showing an example of a conventional optical fiber array, and is a front view (an optical fiber bare portion side) showing a state in which an optical fiber fits into a V-groove during a manufacturing process. In FIG. 7, the left side shows a state before the bare optical fiber is pressed by the upper lid substrate, and the right side shows a state where the bare optical fiber is pressed by the upper lid substrate.
光ファイバアレイの組立は、 2 5 0 mピッチのものでさえ、 最大 2 5 0 m の開口幅の V溝上に φ 1 2 5 i mの光ファイバを配置した上で、 上蓋基板により V溝に押さえつけ、 固定する必要がある。 多心の光ファイバで、 この作業を行う のは配置すること自体が容易な作業ではなく、 又、 一度配置した光ファイバも、 光ファイバアレイに取りつける光ファイバ (ケーブル) は数 mあって、 この光フ アイパが動かされることにより応力が働いたり、 光ファイバ自体に巻き癖がつい ていることにより働く力等により、 V溝基板に光ファイバを搭載した後でも、 上 蓋基板により固定するまでの間の作業や上蓋基板で押さえつける作業等において 、 ズレて V溝から外れてしまう場合もある。  For the assembly of the optical fiber array, even with a 250 m pitch, place the φ125 im optical fiber on the V groove with an opening width of up to 250 m, and press down the V groove with the upper lid substrate , Need to be fixed. With multi-core optical fibers, this work is not easy to arrange, and even once the optical fibers are arranged, there are several meters of optical fibers (cables) to be attached to the optical fiber array. Even after the optical fiber is mounted on the V-groove substrate, the stress is applied by moving the optical fiber or the force is applied by the curl of the optical fiber itself. In the interim work or the work to press down on the upper lid substrate, etc., there is a case that the work slips out of the V groove.
このズレは、 配置の状態が、 前端面 (V溝の平面部とは反対側の端面) からみ て、 左右方向の位置が V溝と合っていて、 V溝から上方に光ファイバが飛び出し た状態において、 左右の規制がないことから発生し易い。  This misalignment is caused by the position of the optical fiber jumping out of the V-groove when viewed from the front end face (the end face opposite to the flat surface of the V-groove). It is easy to occur because there is no right and left regulation in
特に、 リボンファイバにおいては、 一般的に 2 5 0 mピッチであるが、 実際 にはピッチが広い場合が多く、 光ファイバが V溝上に配置されない危険性が、 よ り高い。 例えば、 より具体的には、 ピッチが 260 m程度になってしまってい るとすれば、 12心リポンファイバの第 1ファイバと第 12ファイバのピッチは 、 260X 11 = 2860 mとなる。 光ファイバアレイの V溝は、 正確に 25 0X 11 = 2750 なので、 2860— 2750=110 m、 ピッチがズ レてしまい、 V溝内に光ファイバが収まり難い。 リポンファイバ全体を正確に位 置合わせしたとしても、 第 IV溝と第 12 V溝では 110 2 = 55 の位置 ズレが生じてしまっていることになる。 このため、 リポンファイバの場合は、 V 溝から光ファイバが外れる可能性が、 より高い。 In particular, in the case of ribbon fiber, the pitch is generally 250 m. In many cases, the pitch is wide, and there is a higher risk that the optical fiber will not be placed on the V-groove. For example, more specifically, if the pitch is about 260 m, the pitch between the first fiber and the twelfth fiber of the 12-fiber ribbon fiber is 260 × 11 = 2860 m. Since the V-groove of the optical fiber array is exactly 250 × 11 = 2750, the pitch is shifted by 2860-2750 = 110 m, making it difficult for the optical fiber to fit in the V-groove. Even if the entire repone fiber is accurately aligned, the position deviation of 110 2 = 55 occurs in the IV groove and the 12 V groove. Therefore, in the case of a repone fiber, there is a higher possibility that the optical fiber will come off the V-groove.
上記したように、 光ファイバアレイどうし、 又は、 光コネクタ、 あるいは、 光 導波路部品と接続するために使用される光ファイバアレイにおいては、 製造時に 、 光ファイバが V溝上に配置されない等の不良を引き起こさず、 且つ、 光フアイ バを傷つけることがなく、 更に又、 製造工程中及び製造後の環境変化によって、 光ファイバに種々の応力がかかった場合にも、 より傷がつき難く、 長期にわたつ て、 断線や光の減衰量増加を招き難い、 信頼性の高い光ファイバアレイが求めら れていた。 . 発明の開示  As described above, in an optical fiber array used to connect optical fiber arrays, optical connectors, or optical waveguide components, defects such as that optical fibers are not arranged in V-grooves during manufacturing. It does not cause damage to the optical fiber, and does not damage the optical fiber.Furthermore, even if various stresses are applied to the optical fiber due to environmental changes during and after the manufacturing process, the optical fiber is less likely to be damaged, and will not be damaged for a long time. Therefore, there has been a demand for a highly reliable optical fiber array that does not easily cause disconnection or increase in light attenuation. . DISCLOSURE OF THE INVENTION
本発明は、 上記した従来の問題 (1) 〜 (6) に鑑みてなされたものであり、 その目的とするところは、 光ファイバへの局所的応力集中が防止されていて、 製 造時に特別な作業を行わなくても、 又、 作製した製品に対して特別な取扱を行わ なくても、 歩留まりが高く、 特性劣化等の問題を起こし難い優れた光ファイバァ レイ、 及び、 その製造方法を提供することにある。  The present invention has been made in view of the above-mentioned conventional problems (1) to (6), and has an object to prevent local stress concentration on an optical fiber. Provide an optical fiber array with high yield and low risk of problems such as deterioration of characteristics, and a method of manufacturing the optical fiber array, without performing complicated operations and without special handling of the manufactured product. Is to do.
本発明者らは、 上記の目的を達成するために、 光ファイバアレイの構造や製造 方法について種々検討した結果、 次の手段によって、 従来の問題を解決出来るこ とが導かれた。  The present inventors have conducted various studies on the structure and manufacturing method of an optical fiber array in order to achieve the above object, and as a result, it has been found that the following means can solve the conventional problems.
(A) 先ず、 上蓋基板により光ファイバを押さえる前の状態、 及び、 上蓋基板に より光ファイバを押さえた状態において、 僅かでも V溝後端部から光ファイバ裸 部が浮いていれば、 上記の (1 ) 〜 (4 ) の問題が回避出来ることをつきとめた 。 即ち、 光ファイバ裸部が V溝後端部に当たっていなければ、 製造時も、 作製し た製品にも、 V溝のエッジに局所的な応力集中がかかることはあり得ず、 傷発生 の懸念は払拭される。 このような光フアイバ裸部が少しでも V溝後端部から離れ ている状態は、 光ファイバアレイの段差部の寸法を適正に設定することにより実 現することが出来る。 (A) First, in the state before the optical fiber is held down by the upper lid substrate and in the state where the optical fiber is held down by the upper lid substrate, barely bare the optical fiber from the rear end of the V-groove. It has been found that if the part is floating, the above problems (1) to (4) can be avoided. In other words, if the bare optical fiber does not hit the rear end of the V-groove, local stress concentration cannot be applied to the edge of the V-groove at the time of manufacturing or the manufactured product, and there is a concern that scratches may occur. Is dispelled. Such a state in which the bare fiber portion is at least slightly away from the rear end of the V-groove can be realized by appropriately setting the dimensions of the step portion of the optical fiber array.
(B) 次いで、 上記 (A) に加えて、 上蓋基板により光ファイバ裸部を押さえる 前の状態において、 少しでも光ファイバ裸部が V溝の内に入っていれば、 上記の (B) Next, in addition to the above (A), if the bare optical fiber is slightly inside the V-groove in the state before the bare optical fiber is pressed by the upper lid substrate,
( 5 ) 、 ( 6 ) の問題が回避出来ることをつきとめた。 即ち、 光ファイバ裸部の 底部の一部でも V溝の開口部上面より下側にあれば、 仮に横にズレた状態 (図 8 に示すように仮に V溝基板の V溝部が存在しなければ V溝と当接せず光ファイバ 裸部 8 1 aで示される状態) であっても、 光ファイバ裸部は V溝に当たり、 光フ アイバ裸部が V溝の外に出難く、 あるいは、 光ファイバ裸部が V溝の外に出たと しても、 その光ファイバ裸部のみが V溝上面にのって、 曲がった状態になるので 、 肉眼でも認識出来、 発見し易く、 歩留まり低下を未然に防ぐことが出来る。 少 しでも光ファイバ裸部が V溝の内に入っている状態で上蓋基板で押さえれば、 確 実に光ファイバ裸部が V溝に設置され、 その過程で光ファイバ裸部が V溝の開口 エッジ当たることもなく、 光ファイバにダメージを与えることがない。 このよう な状態は、 光ファイバァレイの段差部の寸法を適正に設定することにより実現す ることが出来る。 It has been found that the problems (5) and (6) can be avoided. In other words, even if a part of the bottom of the bare optical fiber is below the upper surface of the opening of the V-groove, if it is shifted laterally (if there is no V-groove of the V-groove substrate as shown in Fig. 8) The bare optical fiber does not come into contact with the V-groove and the bare optical fiber hits the V-groove and the bare optical fiber hardly comes out of the V-groove. Even if the bare fiber goes out of the V-groove, only the bare optical fiber is placed on the top of the V-groove and bends, so it can be recognized by the naked eye, easy to find, and lowering the yield. Can be prevented. If at least the bare optical fiber is inside the V-groove and is held down by the upper lid substrate, the bare optical fiber is surely set in the V-groove, and in the process, the bare optical fiber becomes the opening edge of the V-groove. It does not hit and does not damage the optical fiber. Such a state can be realized by appropriately setting the dimensions of the step portion of the optical fiber array.
より詳細には、 以下に示す手段である。  More specifically, the following means.
即ち、 本発明によれば、 次の光ファイバアレイが提供される。 本発明の光ファ ィパアレイは、 光ファイバ裸部が配置される V溝を有する V溝部と、 光ファイバ 被覆部が配置される平面部と、 V溝部と平面部とを接続する段差部とからなる V 溝基板を備えた光ファイバアレイであって、 平面部を基準面 Aとして、 基準面 A から平面部に当接して配置される光ファイバ被覆部中心までの高さ H Iが、 基準 面 Aから V溝に配置される光ファイバ裸部中心までの高さ H 2より高くなる段差 部を有することを特徴とする光ファイバアレイである。 ここで、 高さ H Iと、 高 さ H 2との差が、 概ね 5〜1 0 0 mであることが好ましい。 That is, according to the present invention, the following optical fiber array is provided. An optical fiber array according to the present invention includes a V-groove having a V-groove on which an optical fiber bare portion is disposed, a flat portion on which an optical fiber coating portion is disposed, and a step connecting the V-groove and the flat portion. An optical fiber array provided with a V-groove substrate, wherein a height HI from the reference plane A to the center of the optical fiber coating portion arranged in contact with the flat section is defined as a reference plane A, and An optical fiber array having a stepped portion that is higher than the height H2 to the center of the bare optical fiber disposed in the V-groove. Where height HI and height It is preferable that the difference from the height H2 is approximately 5 to 100 m.
本発明においては、 平面部を基準面 Aとして、 基準面 Aから V溝部の V溝上面 部の最上部までの高さ H 3が、 基準面 Aから平面部に配置される光ファイバ被覆 部内の光ファイバ下端までの高さ H 4より高くなる段差部を有することが好まし レ^ 尚、 ここで、 光ファイバ被覆部内の光ファイバ下端とは、 被覆された光ファ ィバにおける光ファイバ部分の下端を指す。 又、 '多くの楊合、 V溝上面部は水平 な面で構成されるため、 V溝部の何れにおいても基準面 Aから V溝上面までの高 さは一定であり、 基準面 Aから V溝部の V溝上面部までの高さを高さ H 3という ことが出来る。  In the present invention, the height H3 from the reference plane A to the top of the V-groove upper surface part of the V-groove part is defined as the reference plane A as the reference plane A, and the height H3 in the optical fiber coating part arranged on the plane part from the reference plane A is It is preferable to have a stepped portion that is higher than the height H4 up to the lower end of the optical fiber. Here, the lower end of the optical fiber in the optical fiber coating portion is the portion of the optical fiber portion in the coated optical fiber. Refers to the lower end. In addition, since most of the V-grooves are composed of horizontal surfaces, the height from the reference surface A to the V-groove upper surface is constant in any of the V-grooves. The height up to the top of the V-groove can be referred to as the height H3.
本発明の光ファイバアレイにおいては、 V溝に接していない光ファイバ裸部の 長さ Zが、 概ね 2 0 mm以下であることが好ましい。  In the optical fiber array of the present invention, the length Z of the bare optical fiber that is not in contact with the V-groove is preferably about 20 mm or less.
又、 本発明の光ファイバアレイは、 光ファイバ被覆部を二段に積層するハ一フ ピッチ光ファイバアレイに好適に用いることが可能である。 更に、 V溝に配置さ れる光ファイバ裸部を押さえるための上蓋基板を備えた光ファイバアレイとして も好適に用いられる。 その上蓋基板の後端部は、 R状に形成されていることが好 ましい。  Further, the optical fiber array of the present invention can be suitably used for a half-pitch optical fiber array in which optical fiber coating portions are laminated in two stages. Further, the optical fiber array is suitably used as an optical fiber array having an upper cover substrate for holding bare optical fibers arranged in the V-groove. The rear end of the upper lid substrate is preferably formed in an R shape.
又、 本発明によれば、 光ファイバ裸部を配置する V溝を有する V溝部と、 光フ ァィバ被覆部を配置する平面部と、 V溝部と平面部とを接続する段差部とからな る V溝基板と、 V溝に配置される光ファイバ裸部を押さえるための上蓋基板とを 備えた光ファイバアレイの製造方法であって、 光ファイバ裸部が、 V溝の後端部 において V溝と接触していない状態で、 V溝基板と上蓋基板とを接着剤で固化し て、 光ファイバ裸部を V溝に固定して整列させることを特徴とする光ファイバァ レイの製造方法が提供される。 図面の簡単な説明  Further, according to the present invention, the V-groove has a V-groove having a bare optical fiber portion, a flat portion having an optical fiber coating portion disposed thereon, and a step portion connecting the V-groove portion and the flat portion. What is claimed is: 1. A method for manufacturing an optical fiber array comprising: a V-groove substrate; and an upper cover substrate for holding the optical fiber bare portion disposed in the V-groove, wherein the bare optical fiber has a V-groove at a rear end of the V-groove. A method for manufacturing an optical fiber array, characterized in that the V-groove substrate and the upper lid substrate are solidified with an adhesive while not in contact with the V-groove, and the optical fiber bare portion is fixed and aligned in the V-groove. You. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) 〜 (d ) は、 本発明に係る光ファイバアレイの一実施形態を示す図 で、 図 1 ( a) は、 側面図であり、 図 1 ( b) は、 図 1 ( a ) の AA断面矢視方 向の断面図であり、 図 1 ( c ) は、 図 1 ( a ) の B B断面矢視方向の断面図であ り、 図 1 (d) は、 光ファイバアレイを構成する V溝基板単体の斜視図である。 図 2 (a) (b) は、 本発明に係る光ファイバアレイの他の一実施例を示す図 で、 図 2 (a) は、 側面図であり、 図 2 (b) は、 正面図 (光ファイバ被覆部揷 入側) である。 1 (a) to 1 (d) are views showing an embodiment of an optical fiber array according to the present invention. FIG. 1 (a) is a side view, and FIG. 1 (b) is a view showing FIG. 1 (a). ) Is a cross-sectional view in the direction of arrow AA, and FIG. 1 (c) is a cross-sectional view in the direction of arrow BB in FIG. 1 (a). FIG. 1D is a perspective view of a single V-groove substrate constituting the optical fiber array. 2 (a) and 2 (b) are views showing another embodiment of the optical fiber array according to the present invention. FIG. 2 (a) is a side view, and FIG. 2 (b) is a front view ( Optical fiber coating part entrance side).
図 3 (a) (b) は、 本発明に係る光ファイバアレイの更に他の一実施例を示 す図で、 図 3 (a) は、 側面図であり、 図 3 (b) は、 正面図 (光ファイバ被覆 部揷入側) である。  FIGS. 3 (a) and 3 (b) show still another embodiment of the optical fiber array according to the present invention. FIG. 3 (a) is a side view and FIG. 3 (b) is a front view. This is the figure (the optical fiber coating part entrance side).
図 4 (a) (b) は、 従来の光ファイバアレイの一例を示す図で、 図 4 (a) は、 側面図であり、 図 4 (b) は、 図 4 (a) の CC断面矢視方向の断面図であ る。  4 (a) and 4 (b) are views showing an example of a conventional optical fiber array, FIG. 4 (a) is a side view, and FIG. 4 (b) is a cross-sectional arrow of FIG. 4 (a). It is sectional drawing of a viewing direction.
図 5は、 従来の光ファイバアレイの一例を示す図であり、 製造工程途中におけ る正面図 (光ファイバ裸部側) である。  FIG. 5 is a diagram showing an example of a conventional optical fiber array, and is a front view (on the bare optical fiber side) in the middle of a manufacturing process.
図 6は、 従来の光ファイバアレイの一例を示す図であり、 製造工程途中におけ る正面図 (光ファイバ裸部側) である。  FIG. 6 is a diagram showing an example of a conventional optical fiber array, and is a front view (the bare optical fiber side) in the middle of a manufacturing process.
図 7は、 従来の光ファイバアレイの一例を示す図であり、 製造工程途中におい て、 光ファイバが V溝に収まる様子を表す正面図 (光ファイバ裸部側) である。 図 8は、 本発明に係る光ファイバアレイの一実施形態を示す図であり、 製造ェ 程途中において、 光ファイバが V溝に収まる様子を表す正面図 (光ファイバ裸部 側) である。  FIG. 7 is a diagram showing an example of a conventional optical fiber array, and is a front view (an optical fiber bare portion side) showing a state in which an optical fiber fits into a V-groove during a manufacturing process. FIG. 8 is a view showing one embodiment of the optical fiber array according to the present invention, and is a front view (an optical fiber bare portion side) showing a state in which the optical fiber is accommodated in the V-groove during the manufacturing process.
図 9 (a) 〜 (e) は、 本発明に係る光ファイバアレイの一実施形態を示す図 で、 図 9 (a) は、 側面図であり、 図 9 (e) は製造工程途中の状態を表し、 V 溝基板に光ファイバをのせた状態を示す側面図であり、 図 9 (b) は図 9 (e) の一の V溝における DD断面矢視方向の断面図であり、 図 9 (c) は図 9 (e) の他の V溝における DD断面矢視方向の断面図であり、 図 9 (d) は、 光フアイ パアレイを構成する V溝基板単体の斜視図である。  9 (a) to 9 (e) are views showing an embodiment of the optical fiber array according to the present invention, FIG. 9 (a) is a side view, and FIG. 9 (e) is a state in the middle of a manufacturing process. FIG. 9B is a side view showing a state in which an optical fiber is placed on the V-groove substrate, and FIG. 9B is a cross-sectional view of one V-groove shown in FIG. FIG. 9C is a cross-sectional view of the other V-groove in FIG. 9E taken in the direction of the DD section, and FIG. 9D is a perspective view of a single V-groove substrate constituting the optical fiber array.
図 10は、 本発明に係る光ファイバアレイの他の一実施形態を示す図で、 上蓋 基板をのせる前の製造工程途中の状態を表し、 V溝基板に光ファイバをのせた状 態を示す側面図である。 図 1 1は、 本発明に係る光ファイバアレイの更に他の一実施形態を示す図で、 上蓋基板をのせる前の製造工程途中の状態を表し、 V溝基板に光ファイバをのせ た状態を示す側面図である。 発明を実施するための最良の形態 FIG. 10 is a view showing another embodiment of the optical fiber array according to the present invention, showing a state in the middle of the manufacturing process before mounting the upper cover substrate, and showing a state in which the optical fiber is mounted on the V-groove substrate. It is a side view. FIG. 11 is a view showing still another embodiment of the optical fiber array according to the present invention, which shows a state in the middle of the manufacturing process before mounting the upper lid substrate, and shows a state in which the optical fiber is mounted on the V-groove substrate. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の光ファイバアレイ及びその製造方法について、 実施の形態を 具体的に説明するが、 本発明は、 これらに限定されて解釈されるものではなく、 本発明の範囲を逸脱しない限りにおいて、 当業者の知識に基づいて、 種々の変更 、 修正、 改良を加え得るものである。  Hereinafter, embodiments of the optical fiber array and the method of manufacturing the same according to the present invention will be specifically described, but the present invention is not construed as being limited thereto, and is not limited to the scope of the present invention. In the above, various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art.
本発明の光ファイバアレイは、 光ファイバ裸部が配置される V溝を有する V溝 部と、 光ファイバ被覆部が配置される平面部と、 V溝部と平面部とを接続する段 差部とからなる V溝基板を備えた光ファイバアレイである。 本発明の光ファイバ アレイにおいては、 平面部を基準面 A (以下、 基準面 Aを単に基準面ともいう) として、 基準面 Aから平面部に当接して配置される光ファイバ被覆部中心までの 高さ H 1が、 基準面 Aから V溝に配置される光フ 7ィバ裸部中心までの高さ H 2 より高くなる段差部を有することが肝要であり、 好ましくは、 その段差部は、 基 準面 Aから V溝部の V溝上面部までの高さ H 3が、 基準面 Aから平面部に配置さ れる光ファイバ被覆部内の光ファイバ下端までの高さ H 4より高くなるような段 差部である。  An optical fiber array according to the present invention includes a V-groove having a V-groove in which an optical fiber bare portion is disposed, a flat portion in which an optical fiber coating portion is disposed, and a step connecting the V-groove and the flat portion. An optical fiber array with a V-groove substrate made of In the optical fiber array of the present invention, the plane portion is defined as a reference surface A (hereinafter, the reference surface A is also simply referred to as the reference surface), and the distance from the reference surface A to the center of the optical fiber covering portion arranged in contact with the flat portion is set. It is essential that the height H 1 has a step portion that is higher than the height H 2 from the reference plane A to the center of the optical fiber bare portion disposed in the V groove, and preferably, the step portion is The height H3 from the reference plane A to the top surface of the V-groove of the V-groove is higher than the height H4 from the reference plane A to the lower end of the optical fiber in the optical fiber coating placed on the flat surface. It is a difference part.
ここで、 先ず、 図 1 0を参照して、 高さ H 1〜H 4を説明する。 図 1 0は、 本 発明に係る光ファイバアレイの一実施形態を示す図であり、 上蓋基板をのせる前 の製造工程途中の状態を表す側面図である。 例えば、 V溝基板 1 0 6に光フアイ ノ 1 0 8をのせた光ファイバアレイ 1 2 0において、 高さ H Iは、 V溝基板 1 0 6の平面部 1 0 4を基準面 Aとして、 この基準面 Aから平面部 1 0 4に配置され る光ファイバ被覆部 1 0 3の中心 C L (即ち、 被覆された光ファイバ 1 0 1 aの 中心) までの高さである。 高さ H 4は、 基準面 Aから平面部 1 0 4に配置される 光ファイバ被覆部 1 0 3内の被覆された光ファイバ 1 0 1 aの下端までの高さで ある。 高さ H l、 H 4は、 平面部 1 0 4に配置される光ファイバ被覆部 1 0 3に おいて規定される高さであるから、 上蓋基板で光ファイバ裸部 1 0 1を押さえつ けた後も、 その高さは変わらない。 Here, first, the heights H1 to H4 will be described with reference to FIG. FIG. 10 is a view showing one embodiment of the optical fiber array according to the present invention, and is a side view showing a state in the middle of the manufacturing process before mounting the upper lid substrate. For example, in an optical fiber array 120 in which an optical fiber 108 is placed on a V-groove substrate 106, the height HI is determined by using the plane portion 104 of the V-groove substrate 106 as a reference plane A. It is the height from the reference plane A to the center CL of the optical fiber coating portion 103 arranged on the plane portion 104 (that is, the center of the coated optical fiber 101a). The height H4 is the height from the reference plane A to the lower end of the coated optical fiber 101a in the optical fiber coating 103 arranged on the plane portion 104. The heights H l and H 4 correspond to the optical fiber coating 103 arranged on the flat section 104. The height does not change even after the bare optical fiber portion 101 is pressed by the upper lid substrate.
次に示す高さ H 2、 H 3は、 V溝基板 1 0 6の V溝部 1 0 7に係る高さである が、 平面部 1 0 4を基準面 Aとすることには変わりがない。 高さ H 3は、 基準面 Aから V溝部 1 0 7の V溝上面部 1 0 0の最上部までの高さである。 図 1 0に示 す光ファイバアレイ 1 2 0においては、 V溝上面部 1 0 0は水平な面で構成され ており、 V溝部 1 0 7の何れにおいても基準面 Aたる平面部 1 0 4から V溝上面 部 1 0 0までの高さは一定であり、 高さ H 3は基準面 Aから V溝部の V溝上面部 までの高さということが出来るが、 後述する実施形態のように、 V溝上面部が傾 斜した面で構成されている場合には、 高さ H 3は、 基準面 Aから V溝部の V溝上 面部の最上部までの高さである。 V溝上面部 1 0 0とは、 V溝部 1 0 7において V溝の上面であり、 仮に V溝が形成されないとした場合の V溝部 1 0 7の平面を 指す。 高さ H 3も、 上蓋基板で光ファイバ裸部 1 0 1を押さえつけた後に、 その 高さは変わらない。  The heights H2 and H3 shown below are the heights related to the V-groove portion 107 of the V-groove substrate 106, but the flat portion 104 remains the reference plane A. The height H3 is a height from the reference plane A to the top of the V-groove upper surface portion 100 of the V-groove portion 107. In the optical fiber array 120 shown in FIG. 10, the V-groove upper surface portion 100 is formed of a horizontal surface, and in any of the V-groove portions 107, the reference surface A is a flat surface portion 104. The height from the top surface of the V-groove 100 is constant, and the height H 3 can be said to be the height from the reference plane A to the top surface of the V-groove of the V-groove. When the upper surface of the groove is formed by an inclined surface, the height H3 is the height from the reference plane A to the uppermost portion of the upper surface of the V groove in the V groove. The V-groove upper surface portion 100 is the upper surface of the V-groove in the V-groove portion 107, and indicates the plane of the V-groove portion 107 when the V-groove is not formed. The height H3 does not change even after the bare optical fiber portion 101 is pressed by the upper lid substrate.
高さ H 2は、 基準面 Aから V溝部 1 0 7の V溝に配置される光ファイバ裸部 1 0 1の中心までの高さである。 図 1 0では、 上蓋基板で光ファイバ裸部 1 0 1を 押さえつけていない状態を示しているが、 このとき、 光ファイバ裸部 1 0 1は V 溝から浮いており、 上蓋基板で光ファイバ裸部 1 0 1を押さえつけることにより 、 光ファイバ裸部 1 0 1が V溝に密着して配置される。 従って、 高さ H 2は、 上 蓋基板で光ファイバ裸部 1 0 1を押さえつけた後に、 その高さが変わる。 本発明 における高さ H 2とは、 製造途中でない、 上蓋基板で光ファイバ裸部 1 0 1を押 さえつけた後の高さ H 2である。  The height H2 is a height from the reference plane A to the center of the bare optical fiber portion 101 arranged in the V groove of the V groove portion 107. FIG. 10 shows a state in which the bare optical fiber portion 101 is not pressed by the upper lid substrate. At this time, the bare optical fiber portion 101 is floating from the V-groove, and By pressing the portion 101, the bare optical fiber portion 101 is placed in close contact with the V-groove. Accordingly, the height H2 changes after the bare optical fiber portion 101 is pressed by the upper lid substrate. The height H2 in the present invention is the height H2 after the optical fiber bare portion 101 is pressed by the upper cover substrate, not being manufactured.
尚、 以下に示す実施の形態において、 高さ H 3と高さ H 4との関係のみに言及 している場合があるが、 本発明においては、 高さ H 1が高さ H 2より高いことが 肝要であって、 都度示さない場合においても、 この条件は満たされていると理解 されるべきである。  In the following embodiments, only the relationship between the height H3 and the height H4 may be referred to, but in the present invention, the height H1 is higher than the height H2. It should be understood that this condition is fulfilled even if it is essential and is not indicated each time.
図 1 ( a ) 〜図 1 ( d ) は、 本発明に係る光ファイバアレイの一実施形態を示 す図であり、 図 1 ( a ) は側面図である。 図 1 ( b ) は、 図 1 ( a ) の AA断面 矢視方向の断面図、 図 1 (c) は、 図 1 (a) の BB断面、 即ち、 V溝後端部に おける矢視方向の断面図である。 図 1 (d) は V溝基板のみの斜視図である。 尚 、 V溝後端部、 上蓋基板後端部等での後端部とは、 それぞれにおいて光ファイバ 被覆部に近い側の端部をいう。 1 (a) to 1 (d) are diagrams showing an embodiment of an optical fiber array according to the present invention, and FIG. 1 (a) is a side view. Fig. 1 (b) is an AA cross section of Fig. 1 (a). FIG. 1 (c) is a cross-sectional view in the direction of the arrow, and FIG. 1 (c) is a cross-sectional view in the direction of the arrow BB in FIG. FIG. 1D is a perspective view of only the V-groove substrate. Note that the rear ends of the V-groove rear end, the upper lid substrate rear end, and the like refer to the ends closer to the optical fiber coating portion.
図 1 (a) において、 光ファイバアレイ 10は、 上蓋基板 14と V溝基板 16 とからなり、 光ファイバ 18が揷入されている。 V溝基板 16の V溝部 7には、 複数の V溝 12が形成され、 各々の V溝 12には光ファイバ裸部 11が 1本ずつ 整列されて配置される。 V溝基板 16には、 平面部 3があり、 ここには光フアイ バ被覆部 13が搭載される。 V溝部 7と平面部 3とが段差部 1を介して接続され て、 V溝基板 16を構成している。  In FIG. 1A, the optical fiber array 10 includes an upper cover substrate 14 and a V-groove substrate 16, and an optical fiber 18 is inserted. A plurality of V-grooves 12 are formed in the V-groove portion 7 of the V-groove substrate 16, and the bare optical fiber portions 11 are arranged in each of the V-grooves 12 one by one. The V-groove substrate 16 has a flat portion 3 on which the optical fiber covering portion 13 is mounted. The V-groove portion 7 and the flat portion 3 are connected via the step portion 1 to form a V-groove substrate 16.
V溝後端部 19とは、 断面において V字を描く V溝 12の 2つの面が段差部 1 の面と出会う部分、 及びその近傍をいう。 又、 高さ HIとは、 平面部 3を基準面 Aとして、 平面部 3に配置された光ファイバ被覆部 13の中心、 即ち、 光フアイ バ被覆部 13に格納された光ファイバ裸部の中心までの高さをいい、 高さ H2と は、 平面部 3を基準面 Aとして、 V溝 12上に配置された光ファイバ裸部 11の 中心までの高さをいう。  The V-groove rear end 19 refers to a portion where two surfaces of the V-groove 12 that draw a V-shape in a cross section meet the surface of the step portion 1 and the vicinity thereof. The height HI is defined as the center of the optical fiber coating 13 disposed on the plane 3 with the plane 3 as the reference plane A, that is, the center of the bare optical fiber stored in the optical fiber coating 13. The height H2 refers to the height from the plane portion 3 as the reference plane A to the center of the bare optical fiber portion 11 arranged on the V groove 12.
上蓋基板 14は、 V溝基板 16の V溝 12に配置された光ファイバ裸部 11を 押さえるための部材である。  The upper lid substrate 14 is a member for holding the bare optical fiber 11 arranged in the V groove 12 of the V groove substrate 16.
本発明の光ファイバアレイにおいては、 V溝 12に配置される光ファイバ裸部 11が、 V溝後端部 19において V溝 12と接触していないことに特徴がある。 これは、 V溝基板 16の平面部 3を基準面 Aとして、 基準面 Aから、 その平面部 3に配置された光ファイバ被覆部 13の中心までの高さ HIが、 V溝 12上に配 置された光ファイバ裸部 11の中心までの高さ H 2より高くすることによって実 現される。 この高さ HIと高さ H2との差 (以下、 ΔΗともいう) は、 概ね 5〜 100 mであることが、 光ファイバ裸部の曲げ半径 rが小さくならずに、 且つ 、 光ファイバ裸部 11を V溝後端部 19において V溝 12から浮かすことが出来 るので好ましい。 厶 Hが 5 m未満であると光ファイバ裸部において V溝のエツ ジに局所的応力集中が起きないという実際の効果が得難く、 又、 ΔΗが 100 /i mより大きいと当然ながら光ファイバ裸部の曲げ半径 rが大きくなって損失の増 加を招くので好ましくない。 より好ましくは 20〜 50 mである。' The optical fiber array of the present invention is characterized in that the bare optical fiber 11 arranged in the V-groove 12 is not in contact with the V-groove 12 at the rear end 19 of the V-groove. This is because the height HI from the reference plane A to the center of the optical fiber coating 13 arranged on the plane part 3 is set on the V groove 12 with the plane part 3 of the V-groove substrate 16 as the reference plane A. This is realized by making the height to the center of the placed optical fiber bare portion 11 higher than H2. The difference between the height HI and the height H2 (hereinafter also referred to as ΔΗ) is generally about 5 to 100 m, so that the bending radius r of the bare optical fiber is not reduced, and 11 is preferable because it can be lifted from the V-groove 12 at the rear end 19 of the V-groove. If the length H is less than 5 m, it is difficult to obtain the actual effect that local stress concentration does not occur at the edge of the V-groove in the bare portion of the optical fiber, and ΔΗ is 100 / i. If it is larger than m, the bending radius r of the bare portion of the optical fiber naturally becomes large, resulting in an increase in loss, which is not preferable. More preferably, it is 20 to 50 m. '
上記した高さ HIと高さ H 2との差、 即ち、 ΔΗがもたらす応力集中防止効果 は、 V溝に接していない光ファイバ裸部の長さ Zによっても異なってくる。 V溝 に接していない光ファィパ裸部の長さ Zとは、 光フアイバ被覆部から出た光ファ ィバ裸部が V溝に進入し V溝に接するまでの光ファィバ裸部の長さのことを示す (以下、 緩和長 Zともいう) 。 '  The difference between the height HI and the height H2, that is, the effect of preventing stress concentration caused by ΔΗ also varies depending on the length Z of the bare optical fiber that is not in contact with the V-groove. The length Z of the bare optical fiber that is not in contact with the V-groove is the length of the bare optical fiber from the optical fiber coating that enters the V-groove and comes into contact with the V-groove. (Hereinafter also referred to as relaxation length Z). '
緩和長 Zが長いと、 光ファイバ裸部の曲げ半径 rが大きくなり、 曲げによる損 失増大のおそれは低減するが、 曲げが緩やかすぎて V溝終端部での光ファイバ裸 部の V溝からの浮き△ Uが非常に小さくなり、 上記した応力集中防止効果が低下 する。 V溝終端部とは、 V溝の終わる部分、 即ち、 段差部と隣接した部分をいう 。 より厳密には、 V溝上に配置された光ファイバ裸部が V溝を離れる点から V溝 終端部までの長さを としたときに、 AUは、 の大きさによっても変わる が、 後述する理由により は 0. 5〜1. Ommの範囲内であることが望まし いため、 一定以上の V溝からの浮き AUを確保するためには、 光ファイバ裸部の 曲げ半径 rを大きくすることは好ましくない。 換言すれば、 緩和長 Zを一定以上 長くすることは好ましくない。 緩和長は概ね 20mm以下であることが好ましく 、 より好ましくは 10mm以下であり、 更に好ましくは 3〜5mmである。  If the relaxation length Z is long, the bending radius r of the bare optical fiber increases, and the risk of loss increase due to bending is reduced.However, the bending is too gentle and the V-groove of the bare optical fiber at the V-groove terminal ends. △ becomes very small, and the above-described effect of preventing stress concentration is reduced. The terminus of the V-groove means a portion where the V-groove ends, that is, a portion adjacent to the step portion. Strictly speaking, when the length from the point at which the bare portion of the optical fiber placed on the V-groove leaves the V-groove to the end of the V-groove is, AU varies depending on the size of, but the reason described later In some cases, it is desirable to be within the range of 0.5 to 1.Omm, so it is preferable to increase the bending radius r of the bare part of the optical fiber in order to secure a certain amount of floating AU from the V groove. Absent. In other words, it is not preferable to make the relaxation length Z longer than a certain value. The relaxation length is preferably approximately 20 mm or less, more preferably 10 mm or less, and even more preferably 3 to 5 mm.
V溝終端部での光ファイバ裸部の V溝からの浮き AU、 及び、 光ファイバ裸部 の曲げ半径 rは次式で表される。 .  The lifting AU of the bare optical fiber from the V-groove at the end of the V-groove and the bending radius r of the bare optical fiber are expressed by the following equations. .
△ U=r— (r 2-AL2) 1/2 △ U = r— (r 2 -AL 2 ) 1/2
r= ( (Z/2) 2+ (ΔΗ/2) 2) /ΔΗ 本発明において、 最も Δυが小さくなる条件は、 緩和長 Ζが最も大きい 20m mで高さ HIと高さ H2との差 ΔΗが最も小さい 5 mで、 ALが 0. 5mmの 塲合であり、 このとき rは約 20 cmで、 V溝終端部での光ファイバ裸部の V溝 からの浮き Δυは約 0. 007 mと極小さくなるが、 この場合でも光ファイバ 裸部が V溝のエッジに圧接していないので応力集中は回避出来、 光ファイバ裸部 に傷はっき難くなる。 r = ((Z / 2) 2 + (ΔΗ / 2) 2 ) / ΔΗ In the present invention, the condition that Δυ is the smallest is the difference between the height HI and the height H2 at the maximum relaxation length Ζ of 20 mm. The ΔΗ is the smallest at 5 m and the AL is 0.5 mm, where r is about 20 cm, and the lifting of the bare optical fiber from the V-groove at the V-groove end is about 0.007. m, but even in this case the optical fiber Since the bare part is not pressed against the edge of the V-groove, stress concentration can be avoided, and the bare part of the optical fiber is less likely to be scratched.
又、 緩和長 Zが長いと接着剤量が増加して光フアイバァレイ全体に与える接着 剤による応力が増加するので、 この理由からも緩和長 Zが長いことは好ましくな い。  On the other hand, if the relaxation length Z is long, the amount of the adhesive increases, and the stress exerted on the entire optical fiber by the adhesive increases. Therefore, it is not preferable that the relaxation length Z is long for this reason.
本発明においては、 更に、 光ファイバ裸部 1 1が V溝後端部 1 9において V溝 1 2と接しないように、 上蓋基板後端部 1 5が、 V溝基板 1 6の V溝 1 2上に位 置していることにも特徴がある。  Further, in the present invention, the rear end 15 of the upper lid substrate is provided with the V-groove 1 of the V-groove substrate 16 so that the bare optical fiber 11 does not come into contact with the V-groove 12 at the rear end 19 of the V-groove. It is also characterized by being positioned above 2.
このような光ファイバアレイ 1 0においては、 図 1 ( a ) に示すように、 高さ H Iが高さ H 2より高いため、 光ファイバ裸部 1 1は、 光ファイバ被覆部 1 3か ら出て、 V溝後端部 1 9に当接せずに V溝 1 2に搭載されることになる。 V溝後 端部 1 9における断面図は、 図 1 ( c ) の様な状態となっており、 V溝 1 2のェ ッジ 5には光ファイバ裸部 1 1が接触しておらず、 従来の問題であった、 V溝 1 2のエッジ 5によって光ファイバ裸部 1 1が傷つくということがなくなる。 例え ば、 環境変化に伴う接着剤応力の光ファイバへの集中や、 光ファイバのズレ等が 起きても、 光ファイバ裸部 1 1は V溝 1 2のエッジ 5により傷つかない。  In such an optical fiber array 10, as shown in FIG. 1 (a), the height HI is higher than the height H 2, so that the bare optical fiber 11 comes out of the optical fiber coating 13. As a result, it is mounted in the V-groove 12 without contacting the rear end 19 of the V-groove. The cross-sectional view at the rear end 19 of the V-groove is in the state shown in Fig. 1 (c), and the bare optical fiber 11 is not in contact with the edge 5 of the V-groove 12. The conventional problem, that is, the edge 5 of the V-shaped groove 12 does not damage the bare optical fiber 11. For example, even if the adhesive stress is concentrated on the optical fiber due to an environmental change, or the optical fiber is displaced, the bare optical fiber portion 11 is not damaged by the edge 5 of the V groove 12.
又、 上蓋基板後端部 1 5が、 V溝上に位置していて、 好ましくは図 1 ( a ) の ように: 状に形成されている、 即ち、 曲面で構成されていると、 光ファイバ裸部 1 1が上方向に曲げられるような応力が発生しても傷が発生することがない。 更に、 V溝終端部で光ファィパ裸部の V溝からの浮き Δ Uが確保された状態で 光ファイバ裸部 1 1周辺は接着剤で覆われるので、 これが保護層となって、 V溝 後端部 1 9において、 より詳細には V溝 1 2のエッジ 5において、 光ファイバ裸 部 1 1への応力集中は起こり得ず、 信頼性の高い光ファイバアレイ 1 0となる。 例えば、 接着剤を二種類用いて上蓋基板と V溝基板とを固定する場合に、 先ず、 光ファイバ裸部を V溝に配置後、 上蓋基板を治具にて V溝上に仮固定し、 前端面 より第一の接着剤を注入し、 上蓋基板全体に第一の接着剤が充填された後、 硬化 させ、 次いで、 第二の接着剤を上蓋基板と光ファイバ被覆部収納基板との間の開 放部より注入し、 光ファイバ被覆部収納基板と光ファイバ被覆部 2 3 a · 2 3 b との間隙を含み、 全体に充填された後に硬化を行う。 このときに、 第一の接着剤 を上蓋基板後端部で止め、 その後ろを第二の接着剤とした場合には、 V溝上には 光ファイバ裸部が配置されているため、 特に、 光ファイバ裸部下部と V溝で閉空 間が形成されるため、 第二の接着剤が第一の接着剤に向けて充填されても空気が 抜け難いため気泡として残ってしまう。 従って、 第一の接着剤を V溝全長にわた り充填し硬化させてから第二の接着剤を充填させる必要がある。 しかしながら、 このとき、 V溝上に配置された光ファイバ裸部が V溝を離れる点から V溝終端部 までの長さ Δ Lを長く取ると、 多芯光フアイバに対応した複数の V溝の内側と外 側とにおいて第一の接着剤が流れる速度が異なることから、 多くの場合に外側の V溝から流れ出た第一の接着剤が V溝終端部において内側の V溝に廻り込み、 前 端面より流れてくる第一の接着剤より先に V溝を塞いでしまい、 ここに気泡が残 つてしまう。 これを回避するためには、 上記したように、 は0. 5〜1. 0 mmの範囲内であることが好ましい。 Also, when the rear end portion 15 of the upper lid substrate is located on the V-groove and is preferably formed as shown in FIG. 1A, that is, when the optical fiber is bare, Even if a stress that causes the portion 11 to bend upward is generated, no scratch is generated. Furthermore, the periphery of the bare optical fiber 11 is covered with an adhesive in a state where the floating ΔU of the bare optical fiber from the V-groove is secured at the end of the V-groove. At the end 19, more specifically, at the edge 5 of the V-groove 12, stress concentration on the bare optical fiber 11 cannot occur, resulting in a highly reliable optical fiber array 10. For example, when fixing the upper lid substrate and the V-groove substrate using two types of adhesives, first place the bare optical fiber in the V-groove, then temporarily fix the upper lid substrate on the V-groove with a jig, The first adhesive is injected from the surface, the first adhesive is filled in the entire upper lid substrate, and then cured. Then, the second adhesive is applied between the upper lid substrate and the optical fiber coating portion storage substrate. Inject from the open section, and store the optical fiber coating section and the optical fiber coating section. Hardening is performed after the entire space is filled. At this time, if the first adhesive is stopped at the rear end of the upper lid substrate and the back is used as the second adhesive, the bare optical fiber is arranged on the V-groove. Since a closed space is formed between the lower part of the bare fiber and the V-groove, even if the second adhesive is filled toward the first adhesive, it is difficult for air to escape and remains as air bubbles. Therefore, it is necessary to fill and cure the first adhesive over the entire length of the V-groove before filling with the second adhesive. However, at this time, if the length ΔL from the point where the bare optical fiber disposed on the V-groove leaves the V-groove to the end of the V-groove is long, the inside of the plurality of V-grooves corresponding to the multi-core optical fiber is required. Since the flow rate of the first adhesive is different between the outside and the outside, the first adhesive that has flowed out of the outside V-groove often reaches the inside V-groove at the end of the V-groove, and the front end surface The V-groove is closed before the first adhesive that flows more, and bubbles remain here. To avoid this, as described above, is preferably in the range of 0.5 to 1.0 mm.
又、 製造時においても、 図 1 (c) に示す断面の状態であれば、 横方向のズレ (作業やリポンピッチ誤差による) に対しての許容範囲が大きくなり、 且つ、 下 方への応力に対しても許容が生まれるので、 傷発生の懸念は低減される。  Also, at the time of manufacturing, if the cross-section shown in Fig. 1 (c), the allowable range for lateral displacement (due to errors in work and Ripon pitch) is large, and the stress in the downward direction can be reduced. The tolerance for scratches is reduced because tolerance is also created.
リポンファイバを二段に積層するハーフピッチ光ファイバアレイに適用する場 合には、 下段の光ファイバの設定を、 上記の様にしておく。 こうすれば、 下段 ' 上段の光フアイバ裸部ともに、 V溝後端部に当接することなく V溝に搭載され、 V溝に配置される光ファイバ裸部が V溝後端部において V溝と接触しない。  When applying to a half-pitch optical fiber array in which repone fibers are stacked in two stages, the settings of the lower-stage optical fibers are set as described above. In this way, both the lower and upper bare optical fibers are mounted in the V-groove without contacting the rear end of the V-groove, and the bare optical fiber disposed in the V-groove is connected to the V-groove at the rear end of the V-groove. Do not touch.
図 9 (a) 〜図 9 (e) に、 本発明に係る光ファイバアレイの他の実施形態を 示す。 図 9 (a) は側面図であり、 図 9 (e) は製造工程途中の状態を表す図で あり、 V溝基板に光ファイバをのせた状態を示している。 図 9 (b) 及び図 9 ( c) は、 図 9 (e) の DD断面矢視方向の断面図である。 図 9 (d) は V溝基板 のみの斜視図である。  9 (a) to 9 (e) show another embodiment of the optical fiber array according to the present invention. FIG. 9 (a) is a side view, and FIG. 9 (e) is a view showing a state during the manufacturing process, in which an optical fiber is placed on a V-groove substrate. 9 (b) and 9 (c) are cross-sectional views taken along the line DD in FIG. 9 (e). FIG. 9D is a perspective view of only the V-groove substrate.
図 9 (a) において、 光ファイバアレイ 80は、 上蓋基板 94と V溝基板 86 とからなり、 光ファイバ 88が挿入されている。 V溝基板 86の V溝部 87には 、 複数の V溝 82が形成され、 各々の V溝 82には光ファイバ裸部 81が 1本ず つ整列されて配置される。 V溝基板 8 6には、 平面部 8 4があり、 ここには光フ アイパ被覆部 8 3が搭載される。 V溝部 8 7と平面部 8 4とが段差部 9 2を介し て接続されて、 V溝基板 8 6を構成している。 In FIG. 9A, an optical fiber array 80 includes an upper lid substrate 94 and a V-groove substrate 86, and an optical fiber 88 is inserted therein. A plurality of V-grooves 82 are formed in the V-groove portion 87 of the V-groove substrate 86, and each V-groove 82 has one optical fiber bare portion 81. Are arranged. The V-groove substrate 86 has a flat portion 84 on which the optical fiber coating portion 83 is mounted. The V-groove portion 87 and the flat portion 84 are connected via a step portion 92 to form a V-groove substrate 86.
高さ H 3とは、 平面部 8 4を基準面 Aとして、 V溝部 8 7の V溝上面部 9 0ま での高さをいい、 高さ H 4とは、 平面部 8 4を基準面 Aとして、 平面部 8 4に配 置された光ファイバ被覆部 8 3の光ファイバ下端 9 8、 即ち、 光ファイバ被覆部 The height H3 refers to the height of the V-groove portion 87 up to the V-groove upper surface portion 90 with the flat portion 84 as the reference plane A. The height H4 refers to the flat portion 84 as the reference surface A. The lower end 98 of the optical fiber covering portion 83 of the optical fiber covering portion 83 arranged on the flat portion 84, that is, the optical fiber covering portion
8 3に格納された光ファイノ 裸部の下端までの高さをいう。 83 Refers to the height of the bare optical fiber stored in 3 to the lower end.
上蓋基板 9 4は、 V溝基板 8 6の V溝 8 2に配置された光ファイバ裸部 8 1を 押さえるための部材である。  The upper lid substrate 94 is a member for holding the bare optical fiber 81 disposed in the V-groove 82 of the V-groove substrate 86.
光ファイバアレイ 8 0においては、 図 9 ( e ) に示されるような上蓋基板によ り光ファイバ裸部 8 1を押さえる前の状態において、 図 9 ( b ) 及び図 9 ( c ) に示す例のように、 少しでも光ファイバ裸部 8 1が V溝 8 2の内に入っていると ころに特徴がある。 これは、 V溝基板 8 6の平面部 8 4を基準面 Aとして、 基準 面 Aから、 V溝部 8 7の V溝上面部 9 0までの高さ H 3を、 平面部 8 4を基準面 Aとして、 その平面部 8 4に配置された光ファイバ被覆部 8 3の光ファイバ下端 In the optical fiber array 80, before the optical fiber bare portion 81 is pressed by the upper cover substrate as shown in FIG. 9 (e), the example shown in FIG. 9 (b) and FIG. 9 (c) The feature is that the bare optical fiber 81 is slightly inside the V-groove 82 as shown in FIG. The height H 3 from the reference plane A to the V-groove upper surface 90 of the V-groove part 87 is defined as the reference plane A with the plane part 84 of the V-groove substrate 86 as the reference plane A. The lower end of the optical fiber of the optical fiber coating 83 placed on the flat surface 84
9 8までの高さ H 4より高くすることによって実現される。 Heights up to 98 are achieved by being higher than H4.
この高さ H 3が高さ H 4より高いことによって、 V溝が光ファイバを拘束し得 るので上蓋基板で光ファイバ裸部を押さえつける前に V溝に入った光ファイバが 外れ難く、 又、 仮に V溝から外れている光ファイバがあつたとしても発見し易く 、 光ファイバ裸部が V溝に配置されずに作製されて生じる歩留まり低下を防止出 来るという効果が導かれる。 従って、 光ファイバ裸部が V溝上にのらずに、 V溝 上面部 (V溝の上面部) にのつた状態で固定されたり、 V溝に収まる過程で、 V 溝の開口エッジに光ファイバ裸部が当たる等で光ファイバ裸部にダメージを与え てしまう、 といった問題を回避出来る。  Since the height H3 is higher than the height H4, the V-groove can restrain the optical fiber, so that the optical fiber in the V-groove is hard to come off before pressing the bare optical fiber with the upper cover substrate, and Even if there is an optical fiber that is out of the V-groove, it is easy to find out, and the effect of preventing a decrease in the yield that occurs when the bare optical fiber is manufactured without being arranged in the V-groove can be prevented. Therefore, the bare optical fiber does not rest on the V-groove, but is fixed on the upper surface of the V-groove (the upper surface of the V-groove). It is possible to avoid such a problem that the bare portion of the optical fiber is damaged by hitting the bare portion.
又、 多心の光ファイバにおいて、 例えば、 1 2心の光ファイバにおいて、 1 1 本の光ファイバは V溝に収まり、 1本だけが V溝に入らない状態の場合において 、 V溝に収まっている光ファイバは V溝で拘束され外に出難いため、 V溝に入つ ていない最後の光ファイバが入るように、 光ファイバ全体を横に移動させること により、 容易に、 全ての光ファイバを V溝に配置することが出来る。 このような 作業は、 V溝にのった光ファイバ裸部の先端 (光ファイバアレイの前端側即ち平 面部とは反対側) で行えばよく、 その後は、 V溝をガイドとして、 光ファイバを 所定の位置まで移動させればよい。 この光ファイバの先端部は研磨により除去さ れるので、 仮に上記作業 (光ファイバの横への移動) で光ファイバの先端部に傷 等が発生したとしても、 製品としての問題は生じない。 Also, in a multi-core optical fiber, for example, in a 12-core optical fiber, one optical fiber fits in a V-groove, and when only one fiber does not fit in a V-groove, it fits in a V-groove. Since the optical fiber is restricted by the V-groove and it is difficult to go outside, move the entire optical fiber sideways so that the last optical fiber that does not enter the V-groove enters. Thus, all the optical fibers can be easily arranged in the V-groove. Such work may be performed at the tip of the bare optical fiber on the V-groove (the front end of the optical fiber array, that is, on the side opposite to the flat surface). Thereafter, the optical fiber is guided using the V-groove as a guide. What is necessary is just to move to a predetermined position. Since the tip of the optical fiber is removed by polishing, even if the tip (end of the optical fiber) of the optical fiber is damaged in the above-mentioned operation (movement to the side of the optical fiber), there is no problem as a product.
リポンファイバを二段に積層するハーフピッチ光ファイバアレイに適用する場 合には、 上蓋基板で押さえる前は、 上段の光ファイバは V溝に収まった状態では ないが、 下段の光ファイバが上記した光ファイバアレイ 8 0における光ファイバ 裸部 8 1の状態になることにより、 この下段の光ファイバが上段の光ファイバに 対するガイドの働きを務めるので、 横方向のズレが生じていても、 上下段の光フ アイバともに、 V溝に収まり易い。 光ファイバは円形なので、 V溝の開口エッジ の様に鋭角部分がなく、 横にズレた状態から上下段の光ファイバどうしが擦れな がら V溝に収まっても、 光ファイバにダメージを与えることがない。  When applied to a half-pitch optical fiber array in which ripon fibers are stacked in two layers, the upper optical fiber is not in the V-groove before being pressed by the upper lid substrate, but the lower optical fiber is When the bare optical fiber 81 in the optical fiber array 80 is in the state of the bare optical fiber 81, the lower optical fiber acts as a guide for the upper optical fiber. Both optical fibers easily fit into the V-groove. Since the optical fiber is circular, there is no sharp edge like the opening edge of the V-groove, and even if the upper and lower stages of the optical fiber are rubbed against each other in the V-groove while rubbing, they can damage the optical fiber. Absent.
図 1 1に、 本発明に係る光ファイバアレイの更に他の実施形態を示す。 図 1 1 において、 光ファイバアレイ 1 3 0は、 製造過程にあり、 上蓋基板で光ファイバ を押さえつける前の状態を表している。 図 9 ( a ) 〜図 9 ( e ) に示す光フアイ パアレイ 8 0とは、 V溝部 1 1 7の V溝上面部 1 1 0が傾斜している点において 異なる。 光ファイバアレイ 1 3 0では、 V溝は水平に形成されており、. 図 1 1か ら理解されるように、 側面方向からみて、 V溝部全体で光ファイバ裸部 1 1 1の ズレを防止しているわけではないが、 一部分でも光ファイバ裸部 1 1 1が V溝に 入っている状態であれば、 換言すれば、 基準面 Aである平面部 1 1 4から 溝上 面部 1 1 0の最上部までの高さ H 3が、 基準面 Aから、 その基準面 Aである平面 部 1 1 4に配置された光ファイバ被覆部 1 1 3の光ファイバ下端までの高さ H 4 より高くなつていれば、 光ファイバ裸部 1 1 1のズレは防止出来る。 このような 光ファイバアレイ 1 3 0は、 V溝後端部において、 光ファイバ裸部 1 1 1が V溝 のエッジと当接せず、 傷つき難い点において優れている。 以下に、 本発明の光ファイバアレイについて、 製造方法も含み実施例に基づい てより具体的に説明するが、 肝要なことは、 光ファイバ裸部が、 V溝の後端部に おいて V溝と接触していない状態で、 V溝基板と上蓋基板とを接着剤で固化して 、 光ファイバ裸部を V溝に固定して整列させることであり、 こうすることによつ て、 作製した製品において光ファイバに種々の応力がかかっても、 光ファイバが 傷つき断線に至る確率を低減出来る。 FIG. 11 shows still another embodiment of the optical fiber array according to the present invention. In FIG. 11, the optical fiber array 130 is in a manufacturing process and shows a state before the optical fibers are pressed by the upper cover substrate. The optical fiber array 80 is different from the optical fiber array 80 shown in FIGS. 9A to 9E in that the V-groove upper surface 110 of the V-groove 117 is inclined. In the optical fiber array 130, the V-groove is formed horizontally. As can be seen from Fig. 11, when viewed from the side, the deviation of the bare optical fiber portion 1 1 1 is prevented over the entire V-groove. However, if at least a part of the optical fiber bare part 111 is in the V-groove, in other words, from the flat part 111 which is the reference plane A to the groove upper part 110 The height H3 from the top to the top is higher than the height H4 from the reference plane A to the lower end of the optical fiber covering section 113 located on the plane section 114 that is the reference plane A. , The displacement of the bare optical fiber 1 1 1 can be prevented. Such an optical fiber array 130 is excellent in that the bare optical fiber portion 111 does not come into contact with the edge of the V-groove at the rear end of the V-groove, and is hardly damaged. Hereinafter, the optical fiber array of the present invention will be described in more detail based on the examples including the manufacturing method. It is important to note that the bare optical fiber has a V-groove at the rear end of the V-groove. In this state, the V-groove substrate and the upper lid substrate are solidified with an adhesive in a state where they are not in contact with each other, and the bare optical fiber portions are fixed and aligned in the V-grooves. Even if various stresses are applied to the optical fiber in the product, the probability that the optical fiber is damaged and breaks can be reduced.
尚、 本実施例では、 光ファイバ被覆部の位置決めを精度よく行うために、 段差 部を二段にしていて、 且つ、 接着剤の応力の影響を低減するため、 光ファイバ裸 部の上面部を開放した形を採用しているが、 いうまでもなく、 本発明はこれらの 実施例に限られるものではない。  In this embodiment, in order to accurately position the optical fiber coating portion, the step portion is formed in two steps, and in order to reduce the influence of the stress of the adhesive, the upper surface portion of the optical fiber bare portion is formed. Although an open form is adopted, it goes without saying that the present invention is not limited to these embodiments.
(実施例 1 )  (Example 1)
図 2 ( a ) 、 図 2 ( b ) に示す、 2 4芯リポンを 2本使用した 4 8芯のハーフ ピッチ (1 2 7 x m) の光ファイバアレイ 2 0を作製した。  As shown in FIGS. 2 (a) and 2 (b), an optical fiber array 20 having a half-pitch (12.7 × m) of 48 cores using two 24 core ribbons was produced.
材料としては、 P L Cが石英導波路 (熱膨張係数: 5 X 1 0—7ノで) であり、 基板が石英又は S iなので、 熱膨張が小さく、 且つ市場で安価に入手出来るガラ ス材料であるパイレックス (商品名:コ一二ング社製、 熱膨張係数: 3 2 . 5 X 1 0— 7/°C) を用いた。 The material, PLC quartz waveguide: a (thermal expansion coefficient at 5 X 1 0- 7 Bruno), the substrate because quartz or S i, low thermal expansion, and at a low cost available glass materials on the market there Pyrex (trade name: U-learning Co., thermal expansion coefficient:. 3 2 5 X 1 0- 7 / ° C) was used.
先ず、 5 0 X 5 0 mmのウェハ一に 4 8芯 X 5群の 2 4 0芯 V溝をマイクログ ラインダ一で研削加工した。 V溝の深さは、 光ファイバ裸部 2 1の上端が 5〃m 出る設定とし、 確実に光ファイバ裸部 2 1が V溝に 2点接触するようにした。  First, 48 cores × 5 groups of 240 cores V-grooves were ground on a 50 × 50 mm wafer by a micro grinder. The depth of the V-groove was set so that the upper end of the bare optical fiber 21 protruded 5 mm, so that the bare optical fiber 21 was in two-point contact with the V-groove.
V溝に直交する段差溝をスライサ一にて加工した。 図 2に示す V溝部に V溝を 加工する前の平面部、 即ち、 図 1 ( d) に示す V溝基板のみの斜視図における V 溝上面部 6 0相当面、 を基準面 Bとして、 基準面 Bから一段目の段差部 2 2の深 さは 0 . 1 4 mmとし、 二段目の段差部 2 8の深さ、 即ち、 平面部 5 3までの垂 直方向距離は 0 . 1 7 mmとした。 このとき、 基準面 Bから V溝に配列した光フ アイバ裸部 2 1の中心までの垂直方向距離は 0 . 0 3 mmであった。  A step groove orthogonal to the V groove was machined with a slicer. The flat surface before machining the V-groove in the V-groove shown in FIG. 2, that is, the V-groove upper surface 60 equivalent surface in the perspective view of only the V-groove substrate shown in FIG. The depth of the first step 22 from B is 0.14 mm, and the depth of the second step 28, that is, the vertical distance from the flat part 53 to the right is 0.17 mm. And At this time, the vertical distance from the reference plane B to the center of the bare optical fiber portion 21 arranged in the V-groove was 0.03 mm.
次いで、 二段目の段差部 2 8で位置決めされる光ファイバ被覆部収納基板 2 7 を準備し、 V溝基板 2 6の平面部 5 3上に載置し、 横方向に正確に合わせて接着 固定した。 次に、 ダイシンダマシンにより、 V溝基板 2 6の V溝の長さが 4 mm 、 平面部 5 3の長手方向の長さが 3 mm、 V溝部と平面部 5 3の間である開放部 5 5の長手方向の長さが 5 mm、 V溝基板 2 6の幅及び光ファイバ被覆部収納基 板 2 7の幅が 9 mmとなるよう、 各チップに切断加工した。 Next, an optical fiber covering part storage substrate 27 positioned at the second step part 28 is prepared, placed on the flat part 53 of the V-groove substrate 26, and accurately aligned in the lateral direction and adhered. Fixed. Next, using a die sintering machine, the length of the V-groove of the V-groove substrate 26 is 4 mm, the length of the flat portion 53 in the longitudinal direction is 3 mm, and the open portion 5 between the V-groove portion and the flat portion 53 is formed. Each chip was cut so that the length in the longitudinal direction of 5 was 5 mm, the width of the V-groove substrate 26 and the width of the optical fiber coating portion storage substrate 27 were 9 mm.
又、 上蓋基板 2 4の幅は、 V溝基板 2 6の幅より 0 . 3 mm小さい 8 . 7 mm とし、 上蓋基板 2 4の長さは、 V溝上に上蓋基板後端部が位置するように V溝の 長さより 0 . 5 mm小さい 3 . 5 mmとした。 即ち、 水平方向に V溝後端部の最 後端から上蓋基板後端部の最後端までの水平方向の長さが 0 . 5 mmとなるよう にした。  The width of the upper lid substrate 24 is set to 8.7 mm, which is 0.3 mm smaller than the width of the V-groove substrate 26, and the length of the upper lid substrate 24 is set so that the rear end of the upper lid substrate is positioned on the V-groove. The length was 3.5 mm, which was 0.5 mm smaller than the length of the V groove. That is, the length in the horizontal direction from the rearmost end of the rear end of the V-groove to the rearmost end of the rear end of the upper lid substrate was set to 0.5 mm.
次いで、 光ファイバアレイ 2 0の組立を行った。  Next, the optical fiber array 20 was assembled.
組立は、 先ず、 厚み 3 mmの下段の光ファイバ被覆部 (テ一プファイバと もいう) 2 3 bを、 V溝基板 2 6と光ファイバ被覆部収納基板 2 7との接着固定 により形成された光ファイバ被覆部収納溝 2 5 (光ファイバ被覆部収納基板 2 7 の内側空間) の片側の壁に沿わせて、 二段目段差部 2 8にテープファイバ 2 3 b が当たるまで挿入した。 ここで、 光ファイバ被覆部収納溝 2 5と V溝の相対位置 を合わせておけば、 テープファイバ 2 3 bにおけるそれぞれの光ファイバ裸部 ( 裸ファイバともいう) 2 1がそれぞれの V溝上に配置される。 この状態で、 光フ アイバアレイ 2 0外部でテープファイバ 2 3 bを仮止めした。 このとき、 裸ファ ィバ 2 1は V溝の一つおきに配置される。  First, the lower part of the optical fiber coating part (also called a tape fiber) 23 b with a thickness of 3 mm was formed by bonding and fixing the V-groove substrate 26 and the optical fiber coating part storage substrate 27. Along the wall on one side of the optical fiber coating portion storage groove 25 (the space inside the optical fiber coating portion storage substrate 27), the tape fiber 23 b was inserted into the second step portion 28 until the tape fiber 23 b hit. Here, if the relative positions of the optical fiber sheath storage groove 25 and the V groove are aligned, each bare optical fiber (also called a bare fiber) 21 of the tape fiber 23 b is placed on each V groove. Is done. In this state, the tape fiber 23b was temporarily fixed outside the optical fiber array 20. At this time, the bare fibers 21 are arranged every other V-groove.
ここで、 平面部 5 3から厚み 0 . 3 mmの下段のテープファイバ 2 3 bの中心 までの高さ H Iは、 0 . 3ノ 2 = 0 . 1 5 mmである。 又、 平面部 5 3から V溝 上に配置された光ファイバ裸部 2 1の中心までの高さ H 2は、 0. 1 7 0 . 0 3 = 0 . 1 4mmである。 即ち、 高さ H 1の方が高さ H 2より 1 0 m高い。 従 つて、 光ファイバ裸部 2 1は V溝の後端部において V溝と接触しないで V溝に搭 載され得る。 "  Here, the height HI from the flat portion 53 to the center of the lower tape fiber 23b of 0.3 mm in thickness is 0.3 no 2 = 0.15 mm. The height H2 from the flat portion 53 to the center of the bare optical fiber 21 disposed on the V-groove is 0.170.03 = 0.14 mm. That is, the height H1 is 10 m higher than the height H2. Therefore, the bare optical fiber 21 can be mounted on the V-groove at the rear end of the V-groove without making contact with the V-groove. "
次に、 厚み 0 . 3 mmの上段のテープファイバ 2 3 aを、 上記と逆側の光ファ ィパ被覆部収納溝 2 5の片側の壁に沿わせて、 下段と同じ位置まで挿入し、 テ一 プファイバ 2 3 aを仮止めした。 これにより、 上記と同様にして、 空いた V溝上 に裸ファイバ 2 1が配置される。 Next, the upper tape fiber 23 a having a thickness of 0.3 mm is inserted along the wall on one side of the optical fiber coating portion storage groove 25 on the opposite side to the above to the same position as the lower one, The tape fiber 23a was temporarily fixed. As a result, in the same way as above, The bare fiber 21 is placed in the first place.
次いで、 上蓋基板 2 4を V溝の上部に設置し、 治具により荷重をかけた。 上蓋 基板 2 4は、 光ファイバ被覆部収納基板 2 7の側壁に押し当てるようにすれば、 長手方向の位置と平行は自然に決定される。  Next, the upper lid substrate 24 was set on the upper part of the V groove, and a load was applied by a jig. If the upper lid substrate 24 is pressed against the side wall of the optical fiber coating portion storage substrate 27, the position in the longitudinal direction and the parallelism are naturally determined.
次に、 以下に示すように二種類からなる接着剤を用いて、 上蓋基板 2 4及び光 ファイバ被覆部収納基板 2 7と、 V溝基板 2 6とを固定した。  Next, as shown below, the upper lid substrate 24, the optical fiber coating portion storage substrate 27, and the V-groove substrate 26 were fixed using two types of adhesives.
先ず、 光ファイバ裸部 2 1を V溝に配置後、 上蓋基板 2 4を治具にて V溝上に 仮固定し、 前端面より第一の接着剤を注入し、 上蓋基板 2 4全体に第一の接着剤 が充填された後、 硬化させた。 次いで、 第二の接着剤を上蓋基板 2 4と光フアイ バ被覆部収納基板 2 7との間の開放部より注入し、 光ファイバ被覆部収納基板 2 7と光ファイバ被覆部 2 3 a · 2 3 bとの間隙を含み、 全体に充填された後に硬 化を行った。 その後、 端面を研磨して、 光ファイバアレイ 2 0を完成した。 尚、 最終の寸法は、 図 2 ( a ) 、 図 2 ( b ) に示す通りである。  First, after placing the bare optical fiber 21 in the V-groove, the upper lid substrate 24 is temporarily fixed on the V-groove with a jig, the first adhesive is injected from the front end face, and the entire upper lid substrate 24 is After one adhesive was filled, it was cured. Next, a second adhesive is injected from an open portion between the upper lid substrate 24 and the optical fiber coating portion storage substrate 27, and the optical fiber coating portion storage substrate 27 and the optical fiber coating portion 23a Hardening was performed after the entire space was filled, including the gap with 3b. Thereafter, the end face was polished to complete the optical fiber array 20. The final dimensions are as shown in Fig. 2 (a) and Fig. 2 (b).
(実施例 2 )  (Example 2)
図 3 ( a ) 、 図 3 ( b ) に示す標準型光ファイバアレイ 3 0を作製した。 この実施例 2が実施例 1と相違するのは、 光ファイバを二段重ねにせず、 一段 の光ファイバを用いた点である。  A standard optical fiber array 30 shown in FIGS. 3 (a) and 3 (b) was produced. The second embodiment differs from the first embodiment in that a single-stage optical fiber is used instead of two-stage optical fibers.
'以下、 上記の実施例 1と相違する点を中心として説明する。  'Hereafter, the description will be made focusing on the differences from the first embodiment.
一段の場合には、 光ファイバの曲げ半径が小さくならないので、 テープフアイ バ 3 3から出た裸ファイバ 3 1が V溝に収まるまでの距離 (開放部 5 6に相当) を二段の楊合に比べ短く出来るが、 一般にテープファイバ 3 3のピッチ誤差が 0 . 1 mm程度存在するので、 片側 0 . 0 5 mmづつの誤差を緩和するために、 こ の実.施例 2では、 3 mmとした。 その結果、 光ファイバの曲げ半径は小さくなり すぎず良好な特性を得た。  In the case of one stage, the bending radius of the optical fiber does not become small, so the distance (corresponding to the open portion 56) until the bare fiber 31 coming out of the tape fiber 33 fits in the V groove is set in two stages. In general, the pitch error of the tape fiber 33 is about 0.1 mm, so in order to alleviate the error of 0.05 mm on each side, the actual value is 3 mm. did. As a result, the bending radius of the optical fiber was not too small, and good characteristics were obtained.
実施例 2においては、 V溝基板 3 6の平面部 5 4に対応する光ファイバ被覆部 収納基板 3 7を準備し、 V溝基板 3 6の平面部 5 4上に載置し、 横方向及び長さ 方向を正確に合わせて接着固定した。 次に、 ダイシンダマシンにより、 V溝基板 3 6の幅を 7 . 0 mmとする等、 図 3 ( a ) 、 図 3 ( b ) に示す寸法となるよう 、 各チップに切断加工した。 In the second embodiment, an optical fiber coating unit receiving substrate 37 corresponding to the flat portion 54 of the V-groove substrate 36 is prepared, placed on the flat portion 54 of the V-groove substrate 36, They were glued and fixed in the correct length direction. Next, the dimensions shown in FIGS. 3 (a) and 3 (b) are obtained by using a die sintering machine, for example, setting the width of the V-groove substrate 36 to 7.0 mm. Each chip was cut.
又、 実施例 1と同様に、 上蓋基板 34の幅は、 V溝基板 36の幅より 0. 3m m小さい 6. 7mmとし、 上蓋基板 34の長さは、 V溝上に上蓋基板後端部が位 置するように V溝の長さより 0. 5mm小さい 3. 5mmとした。 即ち、 水平方 向に V溝後端部の最後端から上蓋基板後端部の最後端までの水平方向の長さが 0 . 5mmとなるようにした。  Further, as in the first embodiment, the width of the upper lid substrate 34 is set to 6.7 mm, which is 0.3 mm smaller than the width of the V-groove substrate 36, and the length of the upper lid substrate 34 is It was 3.5 mm, which is 0.5 mm smaller than the length of the V-groove so as to be positioned. That is, the length in the horizontal direction from the rearmost end of the rear end of the V-groove to the rearmost end of the rear end of the upper lid substrate was set to 0.5 mm in the horizontal direction.
次いで、 光ファイバアレイの組立を行った。  Next, the optical fiber array was assembled.
組立は、 厚み 3mmのテープファイバ 33を、 V溝基板 36と光ファイバ 被覆部収納基板 37との接着固定により形成された光ファイバ被覆部収納溝 35 (光ファイバ被覆部収納基板 37の内側空間) の壁に沿わせて、 二段目段差部 3 8に当たるまで挿入した。 この状態で、 光ファイバアレイ 30外部でテープファ ィパ 33を仮止めした。  Assembling is performed by attaching a 3 mm-thick tape fiber 33 to the V-groove substrate 36 and the optical fiber coating portion storage substrate 37 by bonding and fixing the optical fiber coating portion storage groove 35 (the space inside the optical fiber coating portion storage substrate 37). Along the wall until the second step 38 was reached. In this state, the tape fiber 33 was temporarily fixed outside the optical fiber array 30.
ここで、 平面部 54から厚み 0. 3 mmのテープファイバ 33の中心までの高 さ HIは、 0. 3/2 = 0. 15mmである。 又、 平面部 54から V溝上に配置 された光ファイバ裸部 31までの高さ H 2は、 実施例 1と同様に 0. 17— 0. 03 = 0. 14mmである。 即ち、 高さ H 1の方が高さ H 2より 10 m高い。 従って、 光ファイバ裸部 31は V溝の後端部において V溝と接触しないで V溝に 搭載され得る。  Here, the height HI from the flat portion 54 to the center of the 0.3 mm thick tape fiber 33 is 0.3 / 2 = 0.15 mm. The height H2 from the flat portion 54 to the bare optical fiber portion 31 arranged on the V-groove is 0.17-0.03 = 0.14 mm as in the first embodiment. That is, the height H1 is 10 m higher than the height H2. Therefore, the bare optical fiber 31 can be mounted on the V-groove at the rear end of the V-groove without making contact with the V-groove.
次に、 以下に示すように二種類からなる接着剤を用いて、 上蓋基板 34及び光 ファイバ被覆部収納基板 37と、 V溝基板 36とを固定した。  Next, the upper lid substrate 34, the optical fiber coating portion storage substrate 37, and the V-groove substrate 36 were fixed using two types of adhesives as described below.
先ず、 光ファイバ裸部 31を V溝に配置後、 上蓋基板 34を治具にて V溝上に 仮固定し、 前端面より第一の接着剤を注入し、 上蓋基板 34全体に第一の接着剤 が充填された後、 硬化させた。 次いで、 第二の接着剤を上蓋基板 34と光フアイ バ被覆部収納基板 37との間の開放部より注入し、 光ファイバ被覆部収納基板 3 7と光ファイバ被覆部 33との間隙を含み、 全体に充填された後に硬化を行った その後、 端面を研磨して、 光ファイバアレイ 30を完成した。 尚、 最終の寸法 は、 図 3 (a) 、 図 3 (b) に示す通りである。  First, after placing the bare optical fiber portion 31 in the V-groove, the upper lid substrate 34 is temporarily fixed on the V-groove with a jig, the first adhesive is injected from the front end face, and the first adhesive is applied to the entire upper lid substrate 34. After the agent was filled, it was cured. Next, a second adhesive is injected from an open portion between the upper lid substrate 34 and the optical fiber coating portion storage substrate 37, including a gap between the optical fiber coating portion storage substrate 37 and the optical fiber coating portion 33, After curing was performed after filling the entirety, the end face was polished to complete the optical fiber array 30. The final dimensions are as shown in Figs. 3 (a) and 3 (b).
(実施例 3 ) 上蓋基板を用いないこと以外は、 実施例 1と同様にして光ファイバァレイを作 製した。 (Example 3) An optical fiber array was produced in the same manner as in Example 1 except that the upper cover substrate was not used.
組立において実施例 1と異なるところは、 V溝基板に光ファイバ裸部を配置し た後に上蓋基板の代わりにテフロン製のファイバ押さえ基板を用いる点にある。 ファイバ押さえ基板と治具により、 光ファイバ裸部を押さえたまま固定し接着剤 を硬化させた。 フアイバ押さえ基板は四フッ化工チレン等のフッ素樹脂製なので 接着剤から容易に剥がれ V溝基板より外れる。 フアイバ押さえ基板は V溝基板の V溝後端部において前端側に位置するように設置し、 V溝終端部で光ファイバ裸 部を V溝から浮かすようにした。 この状態で接着剤を硬化させた。  The difference from the first embodiment in the assembling is that after placing the bare optical fiber on the V-groove substrate, a Teflon fiber holding substrate is used instead of the upper cover substrate. The fiber holding substrate and jig were used to fix the bare optical fiber while holding it down, and the adhesive was cured. Since the fiber holding substrate is made of fluororesin such as tetrafluoroethylene, it easily peels off from the adhesive and comes off the V-groove substrate. The fiber holding substrate was installed so as to be located on the front end side at the rear end of the V-groove of the V-groove substrate, and the bare optical fiber was lifted off the V-groove at the end of the V-groove. The adhesive was cured in this state.
又、 最後の端面を研磨する工程においては、 上蓋基板がないと固定した光ファ ィバ裸部が傷つくおそれがあるため、 ダミーのファイバ押さえ基板を再度設置し て固定してから端面研磨を行い、 製品を得た。 産業上の利用可能性  In addition, in the step of polishing the last end face, if there is no upper cover substrate, the fixed optical fiber bare part may be damaged, so the dummy fiber holding board is installed again and fixed, and then the end face polishing is performed. Got the product. Industrial applicability
以上説明したように、 本発明によれば、 光ファイバへの応力集中が防止され、 特性劣化等の問題が生じ難く信頼性に優れる光フアイバァレイ及びその製造方法 を提供することが出来る。  As described above, according to the present invention, it is possible to provide an optical fiber array which prevents stress concentration on an optical fiber, hardly causes problems such as characteristic deterioration, and has excellent reliability, and a method for manufacturing the same.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光ファイバ裸部が配置される V溝を有する V溝部と、 光ファイバ被覆部が 配置される平面部と、 前記 V溝部と前記平面部とを接続する段差部とからなる V 溝基板を備えた光ファィパァレイであつて、 1. A V-groove substrate including a V-groove having a V-groove in which an optical fiber bare portion is disposed, a flat portion in which an optical fiber coating portion is disposed, and a step portion connecting the V-groove and the flat portion. The optical fiber array provided
前記平面部を基準面 Aとして、 前記基準面 Aから前記平面部に当接して配置さ れる光ファイバ被覆部中心までの高さ H 1が、 前記基準面 Aから前記 V溝に配置 される光ファイバ裸部中心までの高さ H 2より高くなる前記段差部を有すること を特徴とする光ファイバアレイ。  The height H1 from the reference surface A to the center of the optical fiber coating portion disposed in contact with the flat portion with the flat portion as the reference surface A is a light beam arranged from the reference surface A to the V-groove. An optical fiber array comprising the stepped portion having a height higher than H2 to a center of a bare fiber portion.
2 . 前記高さ H Iと前記高さ H 2との差が、 略 5乃至 1 0 0 x mである請求項 1に記載の光ファイバアレイ。  2. The optical fiber array according to claim 1, wherein a difference between the height HI and the height H2 is approximately 5 to 100 x m.
3 . 前記基準面 Aから前記 V溝部の V溝上面部の最上部までの高さ H 3が、 前 記基準面 Aから前記平面部に配置される光ファイバ被覆部内の光ファイバ下端ま での高さ H 4より高くなる前記段差部を有する請求項 1又は 2に記載の光フアイ バアレイ。  3. The height H3 from the reference plane A to the top of the V-groove upper surface of the V-groove is the height from the reference plane A to the lower end of the optical fiber in the optical fiber coating disposed on the flat surface. 3. The optical fiber array according to claim 1, comprising the stepped portion having a height higher than H4.
4. 前記 V溝に接していない前記光ファイバ裸部の長さ Zが、 略 2 O mm以下 である請求項 1〜 3の何れか一項に記載の光ファイバアレイ。  4. The optical fiber array according to any one of claims 1 to 3, wherein the length Z of the bare optical fiber that is not in contact with the V groove is approximately 2 Omm or less.
5 . 光ファイバ被覆部を二段に積層するハーフピッチ光ファイバアレイに用い られる請求項 1〜4の何れか一項に記載の光ファイバアレイ。  5. The optical fiber array according to any one of claims 1 to 4, wherein the optical fiber array is used for a half-pitch optical fiber array in which optical fiber coating portions are stacked in two stages.
6 . 前記 V溝に配置される光ファイバ裸部を押さえる上蓋基板を備えた請求項 1〜 5の何れか一項に記載の光ファイバアレイ。  6. The optical fiber array according to any one of claims 1 to 5, further comprising an upper cover substrate for holding the bare optical fiber disposed in the V groove.
7 . 前記上蓋基板の後端部が、 R状に形成されている請求項 6に記載の光ファ ィバアレイ。  7. The optical fiber array according to claim 6, wherein a rear end of the upper cover substrate is formed in an R shape.
8 . 光ファイバ裸部を配置する V溝を有する V溝部と、 光ファイバ被覆部を配 置する平面部と、 前記 V溝部と前記平面部とを接続する段差部とからなる V溝基 板と、 前記 V溝に配置される光ファイノ裸部を押さえるための上蓋基板とを備え た光フアイバァレイの製造方法であつて、  8. A V-groove substrate having a V-groove having a V-groove for disposing the bare optical fiber portion, a flat portion for disposing the optical fiber coating portion, and a step portion connecting the V-groove portion and the flat portion. A method for manufacturing an optical fiber array comprising: an upper lid substrate for holding a bare optical fin in the V-groove;
前記光ファイバ裸部が、 前記 V溝の後端部において V溝と接触していない状態 で、 前記 V溝基板と前記上蓋基板とを接着剤で固化して、 光ファイバ裸部を V溝 に固定して整列させることを特徴とする光ファイバァレイの製造方法。 The bare optical fiber is not in contact with the V groove at the rear end of the V groove A method for manufacturing an optical fiber array, comprising: solidifying the V-groove substrate and the upper lid substrate with an adhesive; and fixing and aligning the bare optical fiber portion in the V-groove.
PCT/JP2001/008951 2000-10-12 2001-10-11 Optical fiber array and method of manufacturing the array WO2002031554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-312430 2000-10-12
JP2000312430 2000-10-12

Publications (1)

Publication Number Publication Date
WO2002031554A1 true WO2002031554A1 (en) 2002-04-18

Family

ID=18792023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008951 WO2002031554A1 (en) 2000-10-12 2001-10-11 Optical fiber array and method of manufacturing the array

Country Status (1)

Country Link
WO (1) WO2002031554A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540424A (en) * 2020-12-07 2021-03-23 中国科学院半导体研究所 Optical fiber array and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926520A2 (en) * 1997-12-26 1999-06-30 Ngk Insulators, Ltd. Optical fiber array
EP0943941A1 (en) * 1998-03-19 1999-09-22 Ngk Insulators, Ltd. Optical fiber array and production method thereof
JP2000009958A (en) * 1998-06-24 2000-01-14 Sumitomo Electric Ind Ltd Optical fiber connector and optical coupling element
EP1004912A2 (en) * 1998-11-25 2000-05-31 Sumitomo Electric Industries, Ltd. A fiber optic connector and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926520A2 (en) * 1997-12-26 1999-06-30 Ngk Insulators, Ltd. Optical fiber array
EP0943941A1 (en) * 1998-03-19 1999-09-22 Ngk Insulators, Ltd. Optical fiber array and production method thereof
JP2000009958A (en) * 1998-06-24 2000-01-14 Sumitomo Electric Ind Ltd Optical fiber connector and optical coupling element
EP1004912A2 (en) * 1998-11-25 2000-05-31 Sumitomo Electric Industries, Ltd. A fiber optic connector and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112540424A (en) * 2020-12-07 2021-03-23 中国科学院半导体研究所 Optical fiber array and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP1664871B1 (en) Optical ferrule
US6219484B1 (en) Metal coated optical fiber array module
US11880072B2 (en) Optical ferrules with waveguide inaccessible space
US9766411B2 (en) Optical interface devices and methods employing optical fibers and a support member having a bend section
JP3821971B2 (en) Fiber optic array
CN101988978A (en) Optical fiber connecting part and optical module using the same
JPH11174274A (en) Optical fiber array and manufacture of die
JPH11281823A (en) Arraying method for optical fiber and optical fiber array device
JP2018180197A (en) Optical component
US6795634B2 (en) Optical fiber block having holding sub-block
US20030142922A1 (en) Passive alignment of fiber optic array
TWI654456B (en) Waveguide termination module and termination method
US6282351B1 (en) Optical module and a method of fabricating the same
US6160937A (en) Optical fiber array
WO2002031554A1 (en) Optical fiber array and method of manufacturing the array
JP3191797B2 (en) Optical fiber connector and method of manufacturing the same
WO2002079831A1 (en) Optical fiber array and method of manufacturing the optical fiber array
JP3989316B2 (en) Optical fiber connection method and optical fiber connection structure
EP0943942B1 (en) Optical fiber array
JP2000329971A (en) Optical fiber array
JPWO2002086567A1 (en) Optical fiber array
CN221303618U (en) Optical fiber array and silicon optical module
CN112352173B (en) Optical path bending connector and optical path bending connector assembly
CN103901552B (en) The joints of optical fibre
JP5398409B2 (en) Optical connector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase