WO2002026656A1 - Composition de soutenement pour fracturation de puits de gaz et de petrole - Google Patents

Composition de soutenement pour fracturation de puits de gaz et de petrole Download PDF

Info

Publication number
WO2002026656A1
WO2002026656A1 PCT/US2001/042184 US0142184W WO0226656A1 WO 2002026656 A1 WO2002026656 A1 WO 2002026656A1 US 0142184 W US0142184 W US 0142184W WO 0226656 A1 WO0226656 A1 WO 0226656A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
pellet
proppant
coating
pellets
Prior art date
Application number
PCT/US2001/042184
Other languages
English (en)
Inventor
Robert A. Youngman
Patrick R. Okell
Syed Akbar
Original Assignee
Fairmount Minerals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairmount Minerals Ltd filed Critical Fairmount Minerals Ltd
Priority to AU2002211812A priority Critical patent/AU2002211812A1/en
Publication of WO2002026656A1 publication Critical patent/WO2002026656A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open

Definitions

  • the present invention relates to proppant pellets prepared by using alumina- silica containing waste materials from industrial processes.
  • the proppant pellets may be resin coated.
  • the present invention further relates to a method for the manufacture of proppant pellets.
  • proppants are used to maintain the fracture in a propped condition.
  • proppant particles under high closure stress tend to fragment and disintegrate.
  • silica sand the most common proppant, is not normally employed due to its propensity to disintegrate.
  • the resulting fines from this disintegration migrate and plug the interstitial flow passages in the propped interval. These migratory fines drastically reduce the permeability of the propped fracture. Since closure stress varies directly with depth, this means that sand is not a useful proppant material at depths greater than about 5,000 feet.
  • Sintered bauxite or high grade alumina have been used as proppant materials at well depths greater than 20,000 feet, but these high strength proppants have much higher densities than sand and therefore require high viscosity pumping fluids or high pumping rates. Larger pumping equipment is required, and wear rates on fluid carrying equipment is accelerated. In addition, the raw materials used to make the proppant materials are more costly.
  • Proppants of intermediate density are known, and work well in the intermediate depths and pressures, i.e., 7,000 to 14,000 feet (5,000 - 10,000 psi).
  • Proppant pellets having a specific gravity of less than 3.4 g/cm 3 have been made from diaspore clay, bauxite, and/or alumina.
  • Eufala bauxite a bauxitic-kaolin material
  • a proppant with a density of less than 3.0 g/cm 3 has been used to prepare a proppant with a density of less than 3.0 g/cm 3 .
  • a method of making ceramic microspheres for use as proppants from water-soluble salts, mineral compositions or organometallic complexes, and ultrafine bauxite or alumina-containing particles.
  • a low density proppant has been prepared from kaolin clay and amorphous to microcrystalline silica. The raw materials used to make all these intermediate proppants are costly, and a less expensive proppant material is desired. Resin coated particles have been used in efforts to improve the stability of proppants at high closure stresses.
  • Sand or other substrates have been coated with an infusible resin such as an epoxy or phenolic resin. These materials are superior to sand at intermediate stress levels. However, at high temperature and high stress levels, the resin coated particles still show a decrease in permeability.
  • a process is known for coating particulates with an infusible resin for use as proppants in fracturing operations.
  • the particulates include sand, nut shells, glass beads and aluminum pellets.
  • the resins include urea-aldehyde resins, phenol- aldehyde resins, epoxy resins, furfuryl alcohol resins and polyester or alkyd resins.
  • the resin coating may be applied by mixing the particles with a melted resin and subsequently cooling the mixture, or dissolving the resin in a solvent, applying it to the particles, and evaporating the solvent.
  • Coupling agents may be added to the system to improve the strength of the resin-substrate bond.
  • Proppants comprising sand particles with a precured phenol formaldehyde resin coating have been used for propping fractures in subterranean formations.
  • resin coated sands have proven satisfactory in numerous applications, concern exists over their use under high closure stresses. For example, some self consolidating resin coated particles of the prior art do not develop their full strength until the resin coating has cured in the formation. In the event of rapid closure of the fracture, the proppant could be crushed before the resin cured, resulting in decreased permeability.
  • This problem is alleviated by the use of a dual resin coated particle having a reinforcing agent interspersed at the inner resin/outer resin boundary, as described in U.S. Pat. No. 5,422,183 assigned to Santrol, Inc, incorporated herein by reference as if fully written out below.
  • the present invention utilizes spent ceramic media from petroleum refining operations, where the media provides a catalytic function during "cracking" of the hydrocarbons, while drawing out impurities from the crude oil as it passes through a packed column of ceramic beads.
  • These beads are manufactured by Englehard Corporation, WR Grace and Akzo Nobel as well as other Far Eastern producers and are variously known as fluid cracking catalyst, e-cats, and equilibrium catalyst (hereinafter referred to as "fluid cracking catalyst” or "FCC").
  • FCC fluid cracking catalyst
  • the use of catalytic ceramic media for removing impurities from petroleum products is a long established art.
  • the catalytic media can be regenerated after use as a cracking catalyst several times but eventually is spent, and is discarded as waste material.
  • the present invention uses the FCC as a base material for remanufacturmg larger ceramic spheres, which can be used in the hydraulic fracturing of subterranean oil and gas bearing formations.
  • the present invention provides a spherical ceramic proppant pellet comprising spent fluid cracking catalyst particles, wherein the pellet is formed by reducing the median particle size of the catalyst; mixing the catalyst particles with water and a binder to form spherical pellets; and sintering the pellets.
  • the present invention also provides a method for preparing a spherical
  • ceramic proppant pellet the method comprising the steps of providing spent fluid cracking catalyst particles; reducing the particle size of the catalyst particles; mixing the catalyst particles with water and a binder to form spherical pellets; and sintering the pellets.
  • the present invention further provides a proppant composition comprising spent fluid cracking catalyst, wherein the spent fluid cracking catalyst comprises from about 25 to about 80 weight percent synthetic silica, and from about 20 to about 75 weight percent alumina.
  • the spent fluid cracking catalyst may optionally further comprise at least one of:
  • FIG. 1 is a graphical representation of the conductivity of an FCC ceramic proppant and a commercial lightweight ceramic proppant at various closure pressures.
  • the present invention utilizes fluid cracking catalyst, a material rich in alumina and silica, as a ceramic feedstock for producing proppant pellets.
  • the catalyst material is formed into pellets and sintered using conventional methods.
  • Spent fluid cracking catalysts exist as ceramic beads comprising calcined mixtures of silica (SiO2), alumina (A12O3), with minor amounts of antimony, copper, nickel, vanadium, lead, rare earth metals, sulfates, sulfides, and trace amounts of other components.
  • silica SiO2
  • A12O3 alumina
  • antimony copper
  • nickel vanadium
  • lead rare earth metals
  • Zeolite sometimes called molecular sieve, has a well-defined lattice structure. Its basic building blocks are silica and alumina tetrahedra. Typical zeolites also contain counterions such as sodium, and ammonium ions. Zeolites employed in the manufacture of the FCC catalyst are synthetic versions of naturally occurring zeolites called faujasites. Zeolites with applications to FCC are Type X, Type Y, and ZSM-5. Both X and Y zeolites have essentially the same crystalline structure. The major difference is that the X zeolite has a lower silica/alumina ratio than the Y zeolite. Virtually all of today's catalysts contain Y zeolite or variations thereof.
  • ultrastable Y aluminum-deficient zeolite
  • Zeolites are sometimes ion exchanged with rare earth components in order to increase catalytic activity and thermal stability.
  • Rare earth is a generic ' name for fourteen metallic elements of the lanthanide series, including lanthanum and cerium.
  • the matrix component of the FCC can also have catalytic activity.
  • Alumina is normally the source for the matrix component.
  • Most FCCs contain an amorphous alumina matrix, but some catalyst suppliers incorporate a form of alumina that has a ' crystalline structure.
  • the filler component is a clay incorporated into the catalyst to dilute its activity.
  • Kaolin [AU/OH ⁇ Si j O j ] is the most common clay used in the FCC catalyst.
  • One FCC catalyst manufacturer used kaoline clay as a skeleton to grow the zeolite in situ.
  • the binder serves as a "glue” to hold the zeolite, matrix and filler together.
  • the functions of the filler and the binder are to provide physical integrity and mechanical strength. They impact such characteristics of the FCC as density, attrition resistance, and particle size distribution.
  • Spent fluid cracking catalyst also contains a number of metal contaminants, including nickel, vanadium, iron, antimony and copper. These contaminants originate largely from the heavy, high-molecular weight fraction of the FCC feed. The quantity of these metals on the FCC is determined by their levels in the petroleum feedstock and the catalyst addition rate. Essentially, all these metals in the feed are deposited on the catalyst. Much of the iron on the FCC comes from metal scale from piping. Another component of spent fluid cracking catalyst is coke, which is carbon that is deposited on the catalyst during cracking.
  • the catalyst loses its activity and selectivity.
  • Fresh catalyst is added to the reactor unit continually to replace the catalyst lost by attrition and to maintain catalyst activity.
  • part of the catalyst inventory is periodically withdrawn from the unit to control the catalyst level in the regenerator.
  • This spent catalyst provides a low cost feedstock that is rich in alumina and silica, and according to the invention is remanufactured to produce larger ceramic spheres.
  • the ceramic spheres can be used as proppants in the hydraulic fracturing of subterranean oil and gas bearing formations.
  • Spent fluid cracking catalysts suitable for the proppant of the present invention therefore primarily contain silica and alumina, and may further contain sodium or other counterions, rare earth elements, carbon, metals such as typically found in petroleum feedstocks, and other contaminants.
  • the ratio of silica to alumina is a critical factor in the ultimate performance of the proppant product, but can be quite variable in fluid cracking catalysts.
  • silica to alumina weight ratio is quite common in FCCs.
  • Preferred useful ratios by weight of silica to alumina for use as a feedstock material for proppants according to the present invention are about 2: 1 to more preferably about
  • Spent fluid cracking catalyst suitable for use as a feedstock material comprise
  • weight percent silica preferably 40 to 60, weight percent silica, and even
  • Suitable fluid cracking catalyst for use according to the present invention comprise 20-75 weight percent alumina, preferably 30 to 60 weight percent alumina, and even more preferably 45 to 55 weight percent alumina.
  • alumina or silica can be added, such as clay or silica gel, to adjust the silica: alumina weight ratio to 1:1 to 2:1.
  • the spherical ceramic proppant pellets of the present invention are prepared by a method comprising the steps of providing spent fluid cracking catalyst particles, reducing the particle size of the catalyst particles, mixing the catalyst particles with water and a binder to form spherical pellets, and sintering the pellets.
  • the pellets are preferably screened to provide a suitable median particle size.
  • Reduction of the particle size of the FCC particles is preferably accomplished by conventional ball milling techniques, including either wet or dry ball milling.
  • the median particle size of the FCC particles after reduction is preferably about 1 to about 10 microns, and more preferably about 2 to about 6 microns, as measured by laser diffraction.
  • the comminuted FCC particles are then mixed with water and a binder.
  • Suitable binders include, but are not limited to, polyvinyl acetate, methyl cellulose, and polymethylmethacrylate.
  • the amount of water used is preferably 25-45 percent by weight of fluid cracking catalyst, but will vary depending on the composition of ' the FCC.
  • the amount of binder used is preferably about 0.1% to 0.5% by weight, preferably about 0.2 to 0.25%, but will depend on particle size distribution and shape.
  • a Eirich mixer is used, such as an Eirich RVO2.
  • the pellet size is determined by mixer run time. A mix time of 45 seconds to 80 seconds is usually sufficient in the particular equipment used to form well rounded substantially spherical pellets in the size range of 1 mm to 420 microns. After spherical pellets form, the pellets are dried at relatively low temperatures of from about 120 to about 150 °C. After drying, the pellets are sufficiently tough to undergo the stress of pneumatic handling and sintering.
  • Sintering is preferably accomplished using a rotary kiln, although other conventional sintering methods may be used. Pellets are sintered at a temperature of about 1,300°C to about 1,500°C. The temperature along the kiln will vary but most preferably a temperature of about 1,500°C is attained for a dwell time of at least about 30 minutes. Sintering causes a reduction of up to 20% in particle size as well as an increase in density in the component products.
  • a finished proppant particle according to the process described above may have a density in the range of about 2 to about 2.7 gm/cm 3 , depending upon the source FCC and actual sintering temperature. Preferably, the density of the finished proppant particle is from about 2.45 gm/cm 3 to about 2.65 gm/cm 3 .
  • a typical product size is 20/40 mesh, which indicates that 90 weight percent of its pellets are between 0.0167 inches and 0.0331 inches in size. Preferably, 90 weight percent of the pellets are between 0.0232 inches and 0.0331 inches in size.
  • EXAMPLE 1 Spent FCC particles were ball milled to a 4-6 micron median particle size, as measured by laser diffraction. Ten pounds of milled material having a dried, free flowing form was fed to a pellet forming mixer device, specifically an Eirich RVO2. To the test batch, 25% to 45% by weight of water and liquid polyvinyl acetate (PVA) was added in the amount of 0.3% by liquid volume. The addition of PVA added green strength for subsequent sintering.
  • PVA polyvinyl acetate
  • the spherical pellets were sintered in a rotary kiln at a temperature of between 1,325 °C to 1,500 °C for about 30 minutes. After sintering, the pellets were screened to 20/40 mesh.
  • pellets so formed are surprisingly similar in performance to existing ceramic proppant pellets, albeit with slightly lower crush resistance and lower conductivity with respect to brine and hydrocarbons, as shown in FIG. 1.
  • Crush Data were generated at 7,500 psi, according to standard API RP 60 procedures. Crush data, shown in Table 2, indicate a slight decline in crush strength over current lightweight ceramics, but the proppants prepared according to the present invention have performance approximating existing commercial proppant products, and are suitable for commercial use.
  • crush resistance and conductivity of the proppant products prepared according to the present invention will equal or exceed that of commercial lightweight ceramic proppants, with manufacturing scaleup.
  • the Krumbein roundness and sphericity of the FCC derived ceramic proppants are approximately 0.9 and are equivalent to commercial lightweight ceramic proppants.
  • Additional proppant pellets were prepared from spent FCC catalyst according to the above described procedure, with 24 hour wet milling in a ball mill, drying and pressing into pellets. Sintering was conducted at 1300°C, 1400°C or 1500°C for 10 minutes. A final density of 99.6% of theoretical was achieved. X- ray diffraction indicated that the pellets contained about 50 to about 60 mol % cristobalite and about 40 to about 50 mol% mullite.
  • proppant pellets comprising spent fluid cracking catalyst utilize waste materials from the petroleum refining process which would otherwise be costly to dispose of or reclaim.
  • the proppant pellets of the present invention are lightweight, low density materials with crush strength and conductivity
  • the utility of the FCC ceramic proppant of the present invention can be extended into high stress applications by coating the proppant with a resin coating.
  • the resin coating may be cured or curable.
  • the FCC ceramic proppant pellets are coated with a resin dissolved in a solvent which is then
  • the FCC ceramic proppant pellets are mixed with a melted resin which is then cooled, coating the pellets. The resin coating is then cured. Alternately, the resin coating is curable, but not substantially cured prior to use. In this embodiment, the resin is cured after injection into the well formation by techniques known in the art.
  • FCC ceramic proppant pellets are covered with an inner coating of a fusible, curable resin and an outer coating of a substantially cured resin.
  • the resin coated particle can be used as a self-consolidating proppant, and is compatible with the fracturing fluid.
  • the proppant pellet may further comprise an additional coating of a substantially cured resin which is located on the exterior of the substrate and inside the inner coating. Such particles exhibit enhanced properties such as improved fractionating fluid compatibility.
  • Resins suitable for the inner and outer coatings are generally any resins capable of being coated on the substrate and then being cured to a higher degree of polymerization.
  • resins include phenol-aldehyde resins of both the resole and novolac type, urea-aldehyde resins, melamine-aldehyde resins, epoxy resins and furfuryl alcohol resins and copolymers of such resins.
  • the resins must form a solid non-tacky coating at ambient temperatures. This is required so that the coated particles remain free flowing and so that they do not agglomerate under normal storage conditions.
  • the preferred resins are the phenol-formaldehyde resins. These resins include true thermosetting phenolic resins of the resole type and phenolic novolac resins that may be rendered heat reactive by the addition of catalyst and formaldehyde. Such resins with softening points of 185 °F to 290 °F are acceptable.
  • the inner and outer coatings can be formed starting with the same or different type of resins. For example, the inner coating could be produced from a novolac and the outer coat from a resole. Regardless of the type of resin used, the outer resin must be curable at conditions that leave the inner coating curable, i.e., fusible and heat reactive.
  • a coupling agent as subsequently described is preferably incorporated during
  • manufacture into the resin that is to be used as the inner coating and may optionally also be incorporated into the resin that is to be used as the outer coating.
  • the coupling agent which has a functional group reactive in the resin system is added in an amount ranging from about OJ to 10% by weight of the resin. The preferred range is from about 0J to 3% by weight of the resin.
  • the coupling agent is incorporated into the resin under the normal reaction conditions used for the formation of the phenol-formaldehyde resin.
  • the coupling agent is added to the resin after the phenol formaldehyde condensation reaction has occurred and the resin has been dehydrated to the final free phenol and melt viscosity range.
  • a preferred resin of the inner coating is a phenolic novolac resin.
  • phenolic novolac resins manufactured by Georgia Pacific known as 99NO7
  • OxyChem known as 24-715.
  • the GP-099N07 resin has a softening point range of 85 °F-100 °F.
  • the OxyChem 24-715 exhibits a softening point range of 70 °F-87 °F.
  • Hexamethylenetetramine is the preferred material for this function as it serves as both a catalyst and a source of formaldehyde.
  • the coupling agent to be employed is chosen based on the resin to be used.
  • the coupling agents include amino, epoxy, and ureido organo silanes.
  • Epoxy modified gamma-glycidoxypropyltrimethoxysilane has given excellent results when used in the amount of 0.50 -1.00% based on the weight of the resin.
  • the use of coupling agents as incorporated into the resin and as applied directly to the particulate substrate is discussed in Graham et al, U.S. Pat. No.
  • the outer coating of resin is formed from a heat curable resin coating formed over the inner resin. As stated previously, this outer resin must be curable at conditions that do not completely cure the inner coating thus leaving the inner coating curable.
  • the preferred resins for the outer coating are of the resole type. Particularly suitable is a fast curing resole resin manufactured by Georgia Pacific known as 102N68. Resole resins generally are provided dissolved in a methanol and water solution as is Georgia Pacific 102N68. The resin exhibits an extremely fast cure having a 150 °C hot plate cure time of 30 seconds or less.
  • the preferred resole should be in a solution of water and methanol as the solvent system.
  • the inner and outer resin coatings may be formed by a variety of methods. - For example, the solvent coating process described in U.S. Pat. No. 3,929,191, to Graham et al. , incorporated herein by reference as if fully written out below.
  • the improved high strength particles of this embodiment of the invention are coated in a multi-step process.
  • a phenol-formaldehyde resin inner coat is formed over the particulate substrate.
  • an outer coating is formed. The outer coating is then cured at conditions that leave the inner resin curable.
  • the first or inner coating of resin may be formed on the particulate substrate by first coating the heated substrate with a phenol-formaldehyde novolac resin. This coating is carried out by preheating the particulate substrate to a temperature above the melting point of the particular resin used.
  • the particulate substrate is heated to 350 °F to 500 °F. prior to resin addition.
  • the heated substrate is charged to a mixer or muller where generally from about 1 % to about 6%, by weight of substrate, resin is added.
  • the preferred amount of resin based on the weight of substrate is about 2% .
  • the substrate and melted resin are allowed to mix in the muller for a time sufficient to insure the formation of a uniform coating of resin on the particulate, usually about 10 to about 30 seconds.
  • a time sufficient to insure the formation of a uniform coating of resin on the particulate, usually about 10 to about 30 seconds.
  • hexamemylenetetramine is added to the substrate resin mixture.
  • the preferred amount of hexamethylenetetramine is about 13% by weight of the resin.
  • water is added to quench the reaction of the inner resin coating. The amount of water added and the timing of its addition is adjusted to quench the curing of the inner resin while maintaining sufficient heat in the proppant to cure the outer coating that is added next.
  • the outer resin is then coated over the inner resin and allowed to substantially cure.
  • Substantially cured is to be interpreted as meaning that the cross-linking reaction of the resin is substantially complete and that at typical downhole temperatures only minimal additional curing takes place.
  • the outer coating is the preferred resole, its addition is preferably carried out by adding it as a solution in a water/methanol mixture comprising between 15-30% methanol and 5-15% water. The preferred mixture is 6% water and 25% methanol.
  • the FCC ceramic proppant pellet is coated with a substantially cured inner resin coating and an outer resin coating which may be heat curable, fully cured, or of intermediate nature.
  • a reinforcing agent may be interspersed at the inner resin coating/outer resin coating boundary. Suitable resins include those described above in the previous embodiment.
  • a key to the increased strength of the resin coated particles of this embodiment is the addition of a reinforcing agent in the boundary region between the inner and outer resin coatings.
  • the reinforcing agents are preferably added after coating the particle with the inner resin coating but before the inner coating is cured.
  • Suitable reinforcing agents include materials known to act as reinforcing agents in typical engineering resins and composite materials. Common to all suitable reinforcing agents is the requirement that they be of a particle size calculated to give the required properties.
  • various mineral fillers including fumed silicas, silica four, talc, clays, mica, asbestos, calcium carbonate, calcium sulfate, metals and wollastanite are suitable.
  • the size of such reinforcing agents is typically less than 300 mesh.
  • Reinforcing materials of a fibrous or rod like nature should be less than about 0.006 inches and preferably about 0.002 inches in length. Of these, silica flour ground to about 325 mesh is preferred.
  • Another type of reinforcing agent with utility in the present invention are impact modifiers used in engineering resins and composite materials.
  • examples of such materials include polyisobutylene, ethylene-vinyl acetate copolymers, ethylene- propylene copolymers and other rubbery materials.
  • core shell impact modifiers having a rubbery core with a graft polymerized crystalline shell. To obtain the proper particle size cryogenic grinding of the rubbery materials is useful.
  • the coated or uncoated free flowing FCC ceramic proppant pellet particles produced as described above may be used as proppants, gravel or fluid loss agents in hydraulic fracturing, frac packing and gravel packs.
  • the application will determine the choice of whether the proppant pellet is resin coated or not, and whether the coatings are cured or curable. For example, a curable coating may be indicated for gravel packing, while in fracturing a substantially cured outer coating may be preferred to prevent interaction with the frac fluid.
  • the fracturing fluid may be an oil base, water base, acid, emulsion, foam or other fluid.
  • the fracturing fluid may contain several additives such as viscosity builders, drag reducers, fluid loss additives, , corrosion inhibitors, cross linkers and the like, known in the art.
  • Injection of the fluid is typically continued until a fracture of the desired geometry is obtained.
  • the fracture at the well bore is at least 2.5 times the diameter of the largest proppant pellet.
  • a carrier fluid having the proppant suspended therein is then pumped into the fracture.
  • the temperature of the carrier fluid during pumping operations will be low so as to prevent premature curing of the outer resin coat.
  • the carrier fluid bleeds off into the formation and deposits the proppant pellets in the fracture.
  • the process is controlled by fluid loss agents which are small aggregate particles which temporarily slow the fluid loss to the formation.
  • the well is shut in with pressure maintained on the formation.
  • the fracture walls close in on the proppant and apply an overburden stress thereto. Deeper wells exert higher closure stress and require stronger proppants.
  • Some curable resin coated proppants do not develop their full strength until the resin ⁇ coating has cured in the formation. In the event of rapid closure of the fracture, the proppant could be crushed before the resin cures, resulting in decreased permeability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne une granule sphérique de céramique d'aluminosilicate formée à partir d'un catalyseur de céramique usé. Plus particulièrement, l'invention se rapporte à une granule sphérique de céramique formée à partir d'un catalyseur fluide usé de craquage. On obtient ces granules en broyant les particules catalytiques, en les agglomérant en granules sphériques, puis en frittant lesdites granules. Le produit final est utilisé comme agent de soutènement dans la fracturation de puits de gaz et de pétrole.
PCT/US2001/042184 2000-09-28 2001-09-18 Composition de soutenement pour fracturation de puits de gaz et de petrole WO2002026656A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002211812A AU2002211812A1 (en) 2000-09-28 2001-09-18 Proppant composition for gas and oil-well fracturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23629200P 2000-09-28 2000-09-28
US60/236,292 2000-09-28

Publications (1)

Publication Number Publication Date
WO2002026656A1 true WO2002026656A1 (fr) 2002-04-04

Family

ID=22888918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/042184 WO2002026656A1 (fr) 2000-09-28 2001-09-18 Composition de soutenement pour fracturation de puits de gaz et de petrole

Country Status (2)

Country Link
AU (1) AU2002211812A1 (fr)
WO (1) WO2002026656A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022914A1 (fr) * 2002-09-03 2004-03-18 Bj Services Company Procede de traitement de formations souterraines a l'aide de materiaux particulaires de ceramique poreuse
US7426961B2 (en) 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US7490667B2 (en) 2006-10-02 2009-02-17 Fairmount Minerals, Inc. Proppants with soluble composite coatings
EP2192094A1 (fr) 2008-11-27 2010-06-02 Services Pétroliers Schlumberger Compositions de résine aqueuses et procédés de réparation du ciment
WO2012021373A1 (fr) 2010-08-12 2012-02-16 Conocophillips Company Matériau à libération contrôlée
US9033040B2 (en) 2011-12-16 2015-05-19 Baker Hughes Incorporated Use of composite of lightweight hollow core having adhered or embedded cement in cementing a well
US9429006B2 (en) 2013-03-01 2016-08-30 Baker Hughes Incorporated Method of enhancing fracture conductivity
US9920607B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Methods of improving hydraulic fracture network
US9920610B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using diverter and proppant mixture
US9919966B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using phthalic and terephthalic acids and derivatives thereof in well treatment operations
US9938811B2 (en) 2013-06-26 2018-04-10 Baker Hughes, LLC Method of enhancing fracture complexity using far-field divert systems
US10041327B2 (en) 2012-06-26 2018-08-07 Baker Hughes, A Ge Company, Llc Diverting systems for use in low temperature well treatment operations
CN110564400A (zh) * 2019-09-24 2019-12-13 中石化石油工程技术服务有限公司 利用油基钻屑热解析残渣烧结的压裂支撑剂及其制备方法
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network
CN113429950A (zh) * 2021-07-08 2021-09-24 西南石油大学 一种促进裂缝封堵层转化的高强度支撑材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427068A (en) * 1982-02-09 1984-01-24 Kennecott Corporation Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4440866A (en) * 1980-07-07 1984-04-03 A/S Niro Atomizer Process for the production of sintered bauxite spheres
US4668645A (en) * 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition
US4879181A (en) * 1982-02-09 1989-11-07 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4944905A (en) * 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440866A (en) * 1980-07-07 1984-04-03 A/S Niro Atomizer Process for the production of sintered bauxite spheres
US4427068A (en) * 1982-02-09 1984-01-24 Kennecott Corporation Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4879181A (en) * 1982-02-09 1989-11-07 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4427068B1 (fr) * 1982-02-09 1992-03-24 Carbo Ceramics Inc
US4879181B1 (en) * 1982-02-09 1994-01-11 Carbo Ceramics Inc. Sintered spherical pellets containing clay as a major component useful for gas and oil well proppants
US4944905A (en) * 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4668645A (en) * 1984-07-05 1987-05-26 Arup Khaund Sintered low density gas and oil well proppants from a low cost unblended clay material of selected composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004022914A1 (fr) * 2002-09-03 2004-03-18 Bj Services Company Procede de traitement de formations souterraines a l'aide de materiaux particulaires de ceramique poreuse
GB2408279A (en) * 2002-09-03 2005-05-25 Bj Services Co Method of treating subterranean formations with porous ceramic particulate materials
GB2408279B (en) * 2002-09-03 2006-12-20 Bj Services Co Method of treating subterranean formations with porous ceramic particulate materials
US7426961B2 (en) 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US7713918B2 (en) 2002-09-03 2010-05-11 Bj Services Company Porous particulate materials and compositions thereof
US7490667B2 (en) 2006-10-02 2009-02-17 Fairmount Minerals, Inc. Proppants with soluble composite coatings
EP2192094A1 (fr) 2008-11-27 2010-06-02 Services Pétroliers Schlumberger Compositions de résine aqueuses et procédés de réparation du ciment
US8967254B2 (en) 2008-11-27 2015-03-03 Schlumberger Technology Corporation Aqueous resin compositions and methods for cement repair
WO2012021373A1 (fr) 2010-08-12 2012-02-16 Conocophillips Company Matériau à libération contrôlée
US9033040B2 (en) 2011-12-16 2015-05-19 Baker Hughes Incorporated Use of composite of lightweight hollow core having adhered or embedded cement in cementing a well
US10041327B2 (en) 2012-06-26 2018-08-07 Baker Hughes, A Ge Company, Llc Diverting systems for use in low temperature well treatment operations
US9920607B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Methods of improving hydraulic fracture network
US9920610B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using diverter and proppant mixture
US9919966B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using phthalic and terephthalic acids and derivatives thereof in well treatment operations
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network
US9429006B2 (en) 2013-03-01 2016-08-30 Baker Hughes Incorporated Method of enhancing fracture conductivity
US9938811B2 (en) 2013-06-26 2018-04-10 Baker Hughes, LLC Method of enhancing fracture complexity using far-field divert systems
CN110564400A (zh) * 2019-09-24 2019-12-13 中石化石油工程技术服务有限公司 利用油基钻屑热解析残渣烧结的压裂支撑剂及其制备方法
CN110564400B (zh) * 2019-09-24 2022-07-12 中石化石油工程技术服务有限公司 利用油基钻屑热解析残渣烧结的压裂支撑剂及其制备方法
CN113429950A (zh) * 2021-07-08 2021-09-24 西南石油大学 一种促进裂缝封堵层转化的高强度支撑材料及制备方法

Also Published As

Publication number Publication date
AU2002211812A1 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US6372678B1 (en) Proppant composition for gas and oil well fracturing
US5837656A (en) Well treatment fluid compatible self-consolidating particles
US5422183A (en) Composite and reinforced coatings on proppants and particles
US7244492B2 (en) Soluble fibers for use in resin coated proppant
US4518039A (en) Method for treating subterranean formations
US7160844B2 (en) Proppants and their manufacture
US4732920A (en) High strength particulates
EP0308257B1 (fr) Particules céramiques revêtues de novolaque
US4717594A (en) High strength particulates
CA2302688C (fr) Agent de soutenement composite, milieu de filtration composite et leurs procedes de production et d'utilisation
US4439489A (en) Particles covered with a cured infusible thermoset film and process for their production
WO2002026656A1 (fr) Composition de soutenement pour fracturation de puits de gaz et de petrole
CA2680930C (fr) Particules revetues a basse temperature pouvant etre utilisees en tant qu'agents de soutenement ou dans des massifs filtrants et leurs procedes de production et d'utilisation
US8420578B2 (en) Low-density ceramic proppant and its production method
AU2005313226B2 (en) Low-quality particulates and methods of making and using improved low-quality particulates
US20080135246A1 (en) Sintered spherical pellets useful for gas and oil well proppants
EP2243810A1 (fr) Matière sous forme de particules possédant de multiples revêtements durcissables, et ses procédes de production et d'utilisation
WO2009134159A1 (fr) Céramiques résistantes de faible densité
CA2718659A1 (fr) Particules enrobees a basse temperature pour servir d'agents de soutenement ou dans des massifs de gravier, methode de fabrication et d'utilisation connexes
CA2574506A1 (fr) Carotte pour agents de soutenement, et leur methode de fabrication
MXPA00002532A (en) Composite proppant, composite filtration media and methods for making and using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP