WO2002024731A2 - Regulation de proteine humaine de type fgd1 - Google Patents

Regulation de proteine humaine de type fgd1 Download PDF

Info

Publication number
WO2002024731A2
WO2002024731A2 PCT/EP2001/011009 EP0111009W WO0224731A2 WO 2002024731 A2 WO2002024731 A2 WO 2002024731A2 EP 0111009 W EP0111009 W EP 0111009W WO 0224731 A2 WO0224731 A2 WO 0224731A2
Authority
WO
WIPO (PCT)
Prior art keywords
fgdl
polypeptide
protein
polynucleotide
seq
Prior art date
Application number
PCT/EP2001/011009
Other languages
English (en)
Other versions
WO2002024731A3 (fr
Inventor
Sophia Kossida
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to AU2001293839A priority Critical patent/AU2001293839A1/en
Publication of WO2002024731A2 publication Critical patent/WO2002024731A2/fr
Publication of WO2002024731A3 publication Critical patent/WO2002024731A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to the area of regulation of Rho/Rac guanine nucleotide exchange factors. More particularly, the invention relates to the regulation of human FGDl-like protein.
  • Faciogenital dysplasia (FGDY; MIM 305400), or Aarskog syndrome, is an X-linked developmental disorder that causes malformations in specific skeletal structures, including elements of the face, the cervical vertebrae, and the distal extremities. Orrico et al, FEBS Lett. 478, 216-20, 2000; Gorski et al, Dev. Dyn. 218, 573-86,
  • FGDl the gene responsible for faciogenital dysplasia, encodes a guanine nucleotide exchange factor that specifically activates Cdc42, a member of the Rho (Ras homology) family of p21 GTPases.
  • Cdc42 Rho (Ras homology) family of p21 GTPases.
  • Cdc42 Rho (Ras homology) family of p21 GTPases.
  • FGDl also activates the stress- activated protein kinase/c-Jun N-terminal kinase signaling cascade, a pathway that regulates cell growth and differentiation. Nagata et al, J. Biol. Chem. 273, 15453- 57, 1998.
  • amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO: 2, and
  • Yet another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
  • a test compound is contacted with a FGDl-like protein polypeptide comprising an amino acid sequence selected from the group consisting of:
  • amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO: 2, and
  • a test compound which binds to the FGDl-like protein polypeptide is thereby identified as a potential agent for decreasing extracellular matrix degradation.
  • the agent can work by decreasing the activity of the FGDl-like protein.
  • Another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
  • a test compound is contacted with a polynucleotide encoding a FGDl-like protein polypeptide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1, and
  • a test compound which binds to the polynucleotide is identified as a potential agent for decreasing extracellular matrix degradation.
  • the agent can work by decreasing the amount of the FGDl-like protein through interacting with the FGDl-like protein mRNA.
  • Another embodiment of the invention is a method of screening for agents which regulate extracellular matrix degradation.
  • a test compound is contacted with a test compound.
  • FGDl-like protein polypeptide comprising an amino acid sequence selected from the group consisting of:
  • amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO: 2, and
  • a FGDl-like protein activity of the polypeptide is detected.
  • a test compound which increases FGD 1 -like protein activity of the polypeptide relative to FGD 1 -like protein activity in the absence of the test compound is thereby identified as a potential agent for increasing extracellular matrix degradation.
  • a test compound which decreases FGDl-like protein activity of the polypeptide relative to FGDl-like protein activity in the absence of the test compound is thereby identified as a potential agent for decreasing extracellular matrix degradation.
  • Even another embodiment of the invention is a method of screening for agents which decrease extracellular matrix degradation.
  • a test compound is contacted with a FGDl-like protein product of a polynucleotide which comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1, and
  • Binding of the test compound to the FGDl-like protein product is detected.
  • a test compound which binds to the FGDl-like protein product is thereby identified as a potential agent for decreasing extracellular matrix degradation.
  • Still another embodiment of the invention is a method of reducing extracellular matrix degradation.
  • a cell is contacted with a reagent which specifically binds to a polynucleotide encoding a FGDl-like protein polypeptide or the product encoded by the polynucleotide, wherein the polynucleotide comprises a nucleotide sequence selected from the group consisting of:
  • nucleotide sequences which are at least about 50% identical to the nucleotide sequence shown in SEQ ID NO: 1, and
  • FGDl-like protein activity in the cell is thereby decreased.
  • the invention thus provides a human FGDl-like protein which can be used to identify test compounds which may act, for example, as agonists or antagonists of the protein's biological activity.
  • Fig. 1 shows the DNA-sequence encoding a FGDl-like protein polypeptide (SEQ ID NO: 1).
  • Fig. 2 shows the amino acid sequence deduced from the DNA-sequence of Fig.l (SEQ ID NO: 2).
  • Fig. 3 shows the amino acid sequence of the protein identified by trembl Accession No. Ul 1690 (SEQ ID NO: 3).
  • Fig. 4 shows the BLASTP alignment of human FGDl-like protein (SEQ ID NO: 2) with the protein identified with trembl Accession No. U11690 (SEQ ID NO: 3).
  • the invention relates to an isolated polynucleotide encoding a FGDl-like protein polypeptide and being selected from the group consisting of:
  • amino acid sequences which are at least about 50% identical to the amino acid sequence shown in SEQ ID NO: 2, and the amino acid sequence shown in SEQ ID NO: 2.
  • Human FGDl-like protein comprises the amino acid sequence shown in SEQ ID NO: 2.
  • a coding sequence for human FGDl-like protein is shown in SEQ ID NO: l.
  • Human FGDl-like protein is 30% identical over 432 amino acids to the protein identified with trembl Accession No. U11690 and annotated as "putative Rho/Rac guanine nucleotide exchange factor (faciogenital dysplasia protein)" (Fig. 4).
  • Human FGDl-like protein of the invention is expected to be useful in therapeutic methods to treat cancer and obesity. Human FGDl-like protein also can be used to screen for human FGDl-like protein agonists and antagonists.
  • Human FGDl-like polypeptides according to the invention comprise at least 6, 10,
  • An FGDl- like polypeptide of the invention therefore can be a portion of an FGDl-like protein, a full-length FGDl-like protein protein, or a fusion protein comprising all or a portion of an FGDl-like protein protein.
  • FGDl-like polypeptide variants which are biologically active, e.g., retain an activity of a Rho/Rac guanine nucleotide exchange factor, also are FGDl-like polypeptides.
  • naturally or non-naturally occurring FGDl-like polypeptide variants have amino acid sequences which are at least about 31, 35, 40, 45, 50, 55, 60, 65, or 70, preferably about 75, 80, 85, 90, 96, 96, or 98% identical to the amino acid sequence shown in SEQ ID NO: 2 or a fragment thereof. Percent identity between a putative FGDl-like polypeptide variant and an amino acid sequence of
  • SEQ ID NO: 2 is determined using the Blast2 alignment program (Blosum62, Expect 10, standard genetic codes).
  • Variations in percent identity can be due, for example, to amino acid substitutions, insertions, or deletions.
  • Amino acid substitutions are defined as one for one amino acid replacements. They are conservative in nature when the substituted amino acid has similar structural and/or chemical properties. Examples of conservative replacements are substitution of a leucine with an isoleucine or valine, an aspartate with a glutamate, or a threonine with a serine.
  • Amino acid insertions or deletions are changes to or within an amino acid sequence. They typically fall in the range of about 1 to 5 amino acids. Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity of an FGDl-like polypeptide can be found using computer programs well known in the art, such as DNASTAR software.
  • Fusion proteins are useful for generating antibodies against FGDl-like polypeptide amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins which interact with portions of an FGDl- like polypeptide. Protein affinity chromatography or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and also can be used as drug screens.
  • An FGDl-like polypeptide fusion protein comprises two polypeptide segments fused together by means of a peptide bond.
  • the first polypeptide segment comprises at least 6, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 275, 400, 425, or 430 contiguous amino acids of SEQ ID NO: 2 or of a biologically active variant, such as those described above.
  • the first polypeptide segment also can comprise full-length FGDl-like protein protein.
  • the second polypeptide segment can be a full-length protein or a protein fragment.
  • Proteins commonly used in fusion protein construction include ⁇ -galactosidase, ⁇ - glucuronidase, green fluorescent protein (GFP), autofluorescent proteins, including blue fluorescent protein (BFP), glutathione-S-transferase (GST), luciferase, horseradish peroxidase (HRP), and chloramphenicol acetyltransferase (CAT).
  • epitope tags are used in fusion protein constructions, including histidine (His) tags, FLAG tags, influenza hemagglutinin (HA) tags, Myc tags, VSV- G tags, and thioredoxin (Trx) tags.
  • fusion constructions can include maltose binding protein (MBP), S-tag, Lex a DNA binding domain (DBD) fusions, GAL4 DNA binding domain fusions, and herpes simplex virus (HSV) BP16 protein fusions.
  • MBP maltose binding protein
  • DBD Lex a DNA binding domain
  • GAL4 DNA binding domain fusions GAL4 DNA binding domain fusions
  • HSV herpes simplex virus
  • a fusion protein also can be engineered to contain a cleavage site located between the FGDl-like polypeptide-encoding sequence and the heterologous protein sequence, so that the FGDl-like polypeptide can be cleaved and purified away from the heterologous moiety.
  • a fusion protein can be synthesized chemically, as is known in the art.
  • a fusion protein is produced by covalently linking two polypeptide segments or by standard procedures in the art of molecular biology.
  • Recombinant DNA methods can be used to prepare fusion proteins, for example, by making a DNA construct which comprises coding sequences selected from SEQ ID NO: 1 in proper reading frame with nucleotides encoding the second polypeptide segment and expressing the DNA construct in a host cell, as is known in the art.
  • Many kits for constructing fusion proteins are available from companies such as Promega Corporation (Madison, WI), Stratagene (La Jolla, CA), CLONTECH (Mountain View, CA), Santa Cruz
  • Species homologs of human FGDl-like polypeptide can be obtained using FGDl- like polypeptide polynucleotides (described below) to make suitable probes or primers for screening cDNA expression libraries from other species, such as mice, monkeys, or yeast, identifying cDNAs which encode homologs of FGDl-like polypeptide, and expressing the cDNAs as is known in the art.
  • An FGDl-like polynucleotide can be single- or double-stranded and comprises a coding sequence or the complement of a coding sequence for an FGDl-like polypeptide.
  • a coding sequence for human FGDl-like protein is shown in SEQ ID NO: l.
  • nucleotide sequences encoding human FGDl-like polypeptides as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, or 98% identical to the nucleotide sequence shown in SEQ ID NO: 1 or its complement also are FGDl-like polynucleotides. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2.
  • Complementary DNA (cDNA) molecules, species homologs, and variants of FGDl- like polynucleotides which encode biologically active FGDl-like polypeptides also are FGDl-like polynucleotides.
  • Variants and homologs of the FGDl-like polynucleotides described above also are FGDl-like polynucleotides.
  • homologous FGDl-like polynucleotide sequences can be identified by hybridization of candidate polynucleotides to known FGDl-like polynucleotides under stringent conditions, as is known in the art.
  • homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.
  • Species homologs of the FGDl-like polynucleotides disclosed herein also can be identified by making suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, or yeast. Human variants of
  • FGDl-like polynucleotides can be identified, for example, by screening human cDNA expression libraries. It is well known that the T m of a double-stranded DNA decreases by 1-1.5°C with every 1% decrease in homology (Bonner et al, J. Mol. Biol. 81, 123 (1973). Variants of human FGDl-like polynucleotides or FGDl-like polynucleotides of other species can therefore be identified by hybridizing a putative homologous FGDl-like polynucleotide with a polynucleotide having a nucleotide sequence of SEQ ID NO: 1 or the complement thereof to form a test hybrid. The melting temperature of the test hybrid is compared with the melting temperature of a hybrid comprising polynucleotides having perfectly complementary nucleotide sequences, and the number or percent of basepair mismatches within the test hybrid is calculated.
  • FGDl-like polynucleotides which hybridize to FGDl-like polynucleotides or their complements following stringent hybridization and/or wash conditions also are FGDl-like polynucleotides.
  • Stringent wash conditions are well known and under- stood in the art and are disclosed, for example, in Sambrook et al, MOLECULAR
  • T m of a hybrid between an FGDl-like polynucleotide having a nucleotide sequence shown in SEQ ID NO: 1 or the complement thereof and a polynucleotide sequence which is at least about 50, preferably about 75, 90, 96, or 98% identical to one of those nucleotide sequences can be calculated, for example, using the equation of Bolton and McCarthy, Proc. Natl. Acad. Sci. U.S.A. 48, 1390 (1962):
  • Stringent wash conditions include, for example, 4X SSC at 65°C, or 50% formamide,
  • An FGDl-like polynucleotide can be isolated free of other cellular components such as membrane components, proteins, and lipids.
  • Polynucleotides can be made by a cell and isolated using standard nucleic acid purification techniques, or synthesized using an amplification technique, such as the polymerase chain reaction (PCR), or by using an automatic synthesizer. Methods for isolating polynucleotides are routine and are known in the art. Any such technique for obtaining a polynucleotide can be used to obtain isolated FGDl-like polynucleotides. For example, restriction enzymes and probes can be used to isolate polynucleotide fragments which comprises FGDl- like nucleotide sequences. Isolated polynucleotides are in preparations which are free or at least 70, 80, or 90% free of other molecules.
  • Human FGDl-like protein cDNA molecules can be made with standard molecular biology techniques, using FGDl-like mRNA as a template. Human FGDl-like protein cDNA molecules can thereafter be replicated using molecular biology techniques known in the art and disclosed in manuals such as Sambrook et al. (1989). An amplification technique, such as PCR, can be used to obtain additional copies of polynucleotides of the invention, using either human genomic DNA or cDNA as a template.
  • FGDl-like polynucleotides can be synthesized using synthetic chemistry techniques to synthesize synthetic chemistry techniques.
  • the degeneracy of the genetic code allows alternate nucleotide sequences to be synthesized which will encode an FGDl-like polypeptide having, for example, an amino acid sequence shown in SEQ ID NO: 2 or a biologically active variant thereof.
  • PCR-based methods can be used to extend the nucleic acid sequences disclosed herein to detect upstream sequences such as promoters and regulatory elements.
  • restriction-site PCR uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, PCR Methods Applic. 2, 318-322, 1993). Genomic DNA is first amplified in the presence of a primer to a linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
  • Inverse PCR also can be used to amplify or extend sequences using divergent primers based on a known region (Triglia et al, Nucleic Acids Res. 16, 8186, 1988).
  • Primers can be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Madison, Minn.), to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 68-72°C.
  • the method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.
  • capture PCR involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom et al, PCR Methods Applic. 1, 111-119, 1991).
  • multiple restriction enzyme digestions and ligations also can be used to place an engineered double-stranded sequence into an unknown fragment of the DNA molecule before performing PCR.
  • PCR, nested primers, and PROMOTERFINDER libraries can be used to walk genomic DNA (CLONTECH, Palo Alto, Calif.). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.
  • libraries that have been size-selected to include larger cDNAs Randomly-primed libraries are preferable, in that they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA.
  • Genomic libraries can be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • capillary electrophoresis systems can be used to analyze the size or confirm the nucleotide sequence of PCR or sequencing products.
  • capillary sequencing can employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera.
  • Output/light intensity can be converted to electrical signal using appropriate software (e.g. GENOTYPER and Sequence NAVIGATOR, Perkin Elmer), and the entire process from loading of samples to computer analysis and electronic data display can be computer controlled.
  • Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample.
  • Human FGDl-like polypeptides can be obtained, for example, by purification from human cells, by expression of FGDl-like polynucleotides, or by direct chemical synthesis.
  • Human FGDl-like polypeptides can be purified from any cell which expresses the protein, including host cells which have been transfected with FGDl-like protein expression constructs. Craniofacial tissues, kidney, spleen, and embryonic carcinoma may be sources of human FGDl-like protein.
  • a purified FGDl-like polypeptide is separated from other compounds which normally associate with the FGDl-like polypeptide in the cell, such as certain proteins, carbohydrates, or lipids, using methods well-known in the art. Such methods include, but are not limited to, size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis.
  • a preparation of purified FGDl-like polypeptides is at least 80% pure; preferably, the preparations are 90%, 95%, or 99% pure. Purity of the preparations can be assessed by any means known in the art, such as SDS-polyacrylamide gel electrophoresis.
  • the polynucleotide can be inserted into an expression vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
  • Methods which are well known to those skilled in the art can be used to construct expression vectors containing sequences encoding FGDl-like polypeptides and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described, for example, in Sambrook et al. (1989) and in Ausubel et al, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, N.Y., 1989.
  • a variety of expression vector/host systems can be utilized to contain and express sequences encoding an FGDl-like polypeptide.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors, insect cell systems infected with virus expression vectors (e.g., baculo virus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids), or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with virus expression vectors (e.g., baculo virus), plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV
  • control elements or regulatory sequences are those non-translated regions of the vector — enhancers, promoters, 5' and 3' untranslated regions ⁇ which interact with host cellular proteins to carry out transcription and translation. Such elements can vary in their strength and specificity. Depending on the vector system ,and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, can be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT phagemid (Stratagene, LaJolla, Calif.) or pSPORTl plasmid (Life Technologies) and the like can be used. The baculovirus polyhedrin promoter can be used in insect cells. Promoters or enhancers derived from the genomes of plant cells
  • vectors e.g., heat shock, RUBISCO, and storage protein genes
  • plant viruses e.g., viral promoters or leader sequences
  • promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of a nucleotide sequence encoding an FGDl-like polypeptide, vectors based on SV40 or
  • EBV can be used with an appropriate selectable marker.
  • a number of expression vectors can be selected depending upon the use intended for the FGDl-like polypeptide. For example, when a large quantity of an FGDl-like polypeptide is needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified can be used. Such vectors include, but are not limited to, multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene). In a BLUESCRIPT vector, a sequence encoding the FGDl-like polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of ⁇ -galactosidase so that a hybrid protein is produced.
  • BLUESCRIPT a sequence encoding the FGDl-like polypeptide can be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of ⁇ -galactosidase so that a hybrid protein is produced.
  • pIN vectors Van Heeke & Schuster, J. Biol. Chem. 264, 5503-5509, 1989
  • pGEX vectors Promega, Madison, Wis.
  • GST glutathione S-transferase
  • fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione.
  • Proteins made in such systems can be designed to include heparin, thrombin, or factor Xa protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
  • yeast Saccharomyces cerevisiae a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH can be used.
  • constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH.
  • sequences encoding FGDl-like polypeptides can be driven by any of a number of promoters.
  • viral promoters such as the 35S and 19S promoters of CaMN can be used alone or in combination with the omega leader sequence from TMV (Takamatsu, EMBO J. 6,
  • plant promoters such as the small subunit of
  • RUBISCO or heat shock promoters can be used (Coruzzi et al, EMBO J. 3, 1671-1680, 1984; Broglie et al, Science 224, 838-843, 1984; Winter et al, Results
  • An insect system also can be used to express an FGDl-like polypeptide.
  • Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae.
  • Sequences encoding FGDl-like polypeptides can be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter.
  • Successful insertion of FGDl-like polypeptides will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein.
  • the recombinant viruses can then be used to infect S. frugiperda cells or Trichoplusia larvae in which FGDl-like polypeptides can be expressed (Engelhard et al, Proc. Nat. Acad. Sci. 91, 3224-3227, 1994).
  • a number of viral-based expression systems can be used to express FGDl-like polypeptides in mammalian host cells.
  • sequences encoding FGDl-like polypeptides can be ligated into an adenovirus transcription translation complex comprising the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome can be used to obtain a viable virus which is capable of expressing an FGD1- like polypeptide in infected host cells (Logan & Shenk, Proc. Natl. Acad. Sci. 81,
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, can be used to increase expression in mammalian host cells.
  • RSV Rous sarcoma virus
  • HACs Human artificial chromosomes
  • 6M to 10M are constructed and delivered to cells via conventional delivery methods (e.g. , liposomes, polycationic amino polymers, or vesicles).
  • Specific initiation signals also can be used to achieve more efficient translation of sequences encoding FGDl-like polypeptides. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding an FGDl-like polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals (including the
  • ATG initiation codon should be provided.
  • the initiation codon should be in the correct reading frame to ensure translation of the entire insert.
  • Exogenous translational elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used (see Scharf et al, Results Probl. Cell Differ. 20, 125-162, 1994).
  • a host cell strain can be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed FGDl-like polypeptide in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a "prepro" form of the polypeptide also can be used to facilitate correct insertion, folding and/or function.
  • Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC; 10801 University Boulevard, Manassas, VA 20110-2209) and can be chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • Stable expression is preferred for long-term, high-yield production of recombinant proteins.
  • cell lines which stably express FGDl-like polypeptides can be transformed using expression vectors which can contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells can be allowed to grow for 1-2 days in an enriched medium before they are switched to a selective medium.
  • the purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced FGDl-like protein sequences.
  • Resistant clones of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. See, for example, ANIMAL CELL CULTURE, R.I. Freshney, ed., 1986. Any number of selection systems can be used to recover transformed cell lines.
  • he ⁇ es simplex virus thymidine kinase (Wigler et al, Cell 11, 223-32, 1977) and adenine phosphoribosyltransferase (Lowy et al, Cell 22, 817-23, 1980) genes which can be employed in tk ⁇ or aprf cells, respectively.
  • antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methofrexate (Wigler et al, Proc. Natl. Acad. Sci. 77, 3567-70, 1980)
  • npt confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin et al, J. Mol. Biol. 150,
  • trpB allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman & Mulligan, Proc. Natl. Acad. Sci. 85, 8047-51, 1988).
  • Visible markers such as anthocyanins, ⁇ -glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, can be used to identify transformants and to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes et al, Methods Mol. Biol. 55, 121-131, 1995).
  • marker gene expression suggests that the FGDl-like polynucleotide is also present, its presence and expression may need to be confirmed. For example, if a sequence encoding an FGDl-like polypeptide is inserted within a marker gene sequence, transformed cells containing sequences which encode an FGDl-like polypeptide can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding an FGDl-like polypeptide under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the
  • FGDl-like polynucleotide Alternatively, host cells which contain an FGDl-like polynucleotide and which express an FGDl-like polypeptide can be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip-based technologies for the detection and/or quantification of nucleic acid or protein.
  • the presence of a polynucleotide sequence encoding an FGDl-like polypeptide can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or fragments or fragments of polynucleotides encoding an FGDl-like polypeptide.
  • Nucleic acid amplification-based assays involve the use of oligonucleotides selected from sequences encoding an FGDl-like polypeptide to detect transformants which contain an FGDl-like polynucleotide.
  • a variety of protocols for detecting and measuring the expression of an FGDl-like polypeptide, using either polyclonal or monoclonal antibodies specific for the polypeptide, are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).
  • ELISA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • FACS fluorescence activated cell sorting
  • a two-site, monoclonal-based immunoassay using monoclonal antibodies reactive to two non-interfering epitopes on an FGDl-like polypeptide can be used, or a competitive binding assay can be employed. These and other assays are described in Hampton et al, SEROLOGICAL METHODS: A LABORATORY MANUAL, APS Press, St. Paul, Minn., 1990) and Maddox et al, J. Exp. Med. 158, 1211-1216, 1983
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding FGDl-like polypeptides include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • sequences encoding an FGDl-like polypeptide can be cloned into a vector for the production of an mRNA probe.
  • RNA probes are known in the art, are commercially available, and can be used to synthesize RNA probes in vitro by addition of labeled nucleotides and an appropriate RNA polymerase such as T7, T3, or SP6. These procedures can be conducted using a variety of commercially available kits (Amersham Pharmacia Biotech, Promega, and US Biochemical). Suitable reporter molecules or labels which can be used for ease of detection include radionuclides, enzymes, and fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding an FGDl-like polypeptide can be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the polypeptide produced by a transformed cell can be secreted or contained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode FGDl-like polypeptides can be designed to contain signal sequences which direct secretion of soluble FGDl-like polypeptides through a prokaryotic or eukaryotic cell membrane or which direct the membrane insertion of membrane-bound FGDl-like polypeptide.
  • purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein
  • a domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Co ⁇ ., Seattle, Wash.).
  • Inclusion of cleavable linker sequences such as those specific for Factor Xa or enterokinase (Invitrogen, San Diego, CA) between the purification domain and the FGDl-like polypeptide also can be used to facilitate purification.
  • One such expression vector provides for expression of a fusion protein containing an FGDl-like polypeptide and 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site.
  • the histidine residues facilitate purification by IMAC (immobilized metal ion affinity chromatography, as described in Porath et al, Prot. Exp. Purif 3, 263-281, 1992), while the enterokinase cleavage site provides a means for purifying the FGDl-like polypeptide from the fusion protein.
  • Vectors which contain fusion proteins are disclosed in Kroll et al, DNA Cell Biol. 12, 441-453, 1993.
  • Sequences encoding an FGDl-like polypeptide can be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers et al, Nucl. Acids Res. Symp. Ser. 215-223, 1980; Horn et al Nucl. Acids Res. Symp. Ser. 225-232, 1980).
  • an FGDl-like polypeptide itself can be produced using chemical methods to synthesize its amino acid sequence, such as by direct peptide synthesis using solid-phase techniques (Merrifield, J. Am. Chem. Soc. 85, 2149-2154, 1963; Roberge et al, Science 269, 202-204, 1995). Protein synthesis can be performed using manual techniques or by automation.
  • Automated synthesis can be achieved, for example, using Applied Biosystems 431 A Peptide Synthesizer (Perkin Elmer).
  • fragments of FGDl-like polypeptides can be separately synthesized and combined using chemical methods to produce a full-length molecule.
  • the newly synthesized peptide can be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, PROTEINS: STRUCTURES AND
  • composition of a synthetic FGDl-like polypeptide can be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; see Creighton, supra). Additionally, any portion of the amino acid sequence of the FGDl-like polypeptide can be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins to produce a variant polypeptide or a fusion protein.
  • codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce an RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
  • nucleotide sequences disclosed herein can be engineered using methods generally known in the art to alter FGDl-like polypeptide-encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the polypeptide or mRNA product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides can be used to engineer the nucleotide sequences.
  • site-directed mutagenesis can be used to insert new restriction sites, alter glyco- sylation patterns, change codon preference, produce splice variants, introduce mutations, and so forth.
  • Antibody as used herein includes intact immune-globulin molecules, as well as fragments thereof, such as Fab, F(ab') 2 , and Fv, which are capable of binding an epitope of an FGDl-like polypeptide.
  • Fab fragment antigen binding protein
  • F(ab') 2 fragment antigen binding protein
  • Fv fragment antigen binding protein
  • epitopes which involve non-contiguous amino acids may require more, e.g., at least 15, 25, or 50 amino acids.
  • An antibody which specifically binds to an epitope of an FGDl-like polypeptide can be used therapeutically, as well as in immunochemical assays, such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
  • immunochemical assays such as Western blots, ELISAs, radioimmunoassays, immunohistochemical assays, immunoprecipitations, or other immunochemical assays known in the art.
  • Various immunoassays can be used to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays are well known in the art. Such immunoassays typically involve the measurement of complex formation between an immunogen and an antibody which specifically binds to the immunogen.
  • an antibody which specifically binds to an FGDl-like polypeptide provides a detection signal at least 5-, 10-, or 20-fold higher than a detection signal provided with other proteins when used in an immunochemical assay.
  • antibodies which specifically bind to FGDl-like polypeptides do not detect other proteins in immunochemical assays and can immunoprecipitate an FGDl-like polypeptide from solution.
  • Human FGDl-like polypeptides can be used to immunize a mammal, such as a mouse, rat, rabbit, guinea pig, monkey, or human, to produce polyclonal antibodies.
  • an FGDl-like polypeptide can be conjugated to a carrier protein, such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
  • a carrier protein such as bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin.
  • various adjuvants can be used to increase the immunological response.
  • adjuvants include, but are not limited to, Freund's adjuvant, mineral gels (e.g., aluminum hydroxide), and surface active substances (e.g.
  • BCG Bacilli Calmette- Guerin
  • Corynebacterium parvum are especially useful.
  • Monoclonal antibodies which specifically bind to an FGDl-like polypeptide can be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These techniques include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique (Kohler et al, Nature 256, 495-497, 1985; Kozbor et al, J. Immunol. Methods 81, 31-42, 1985; Cote et al, Proc. Natl. Acad. Sci. 80, 2026-2030, 1983; Cole et al, Mol. Cell Biol. 62, 109-120, 1984).
  • chimeric antibodies the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison et al, Proc. Natl. Acad. Sci. 81, 6851-6855, 1984; Neuberger et al, Nature 312, 604-608, 1984; Takeda et al, Nature 314, 452-454, 1985).
  • Monoclonal and other antibodies also can be "humanized” to prevent a patient from mounting an immune response against the antibody when it is used therapeutically. Such antibodies may be sufficiently similar in sequence to human antibodies to be used directly in therapy or may require alteration of a few key residues.
  • rodent antibodies and human sequences can be minimized by replacing residues which differ from those in the human sequences by site directed mutagenesis of individual residues or by grating of entire complementarity determining regions.
  • humanized antibodies can be produced using recombinant methods, as described in GB2188638B.
  • Antibodies which specifically bind to an FGDl-like polypeptide can contain antigen binding sites which are either partially or fully humanized, as disclosed in U.S. 5,565,332.
  • single chain antibodies can be adapted using methods known in the art to produce single chain antibodies which specifically bind to FGDl-like polypeptides.
  • Antibodies with related specificity, but of distinct idiotypic composition can be generated by chain shuffling from random combinatorial immunoglobin libraries (Burton, Proc. Natl. Acad. Sci. 88, 11120-23, 1991).
  • Single-chain antibodies also can be constructed using a DNA amplification method, such as PCR, using hybridoma cDNA as a template (Thirion et al, 1996, Eur. J. Cancer Prev. 5, 507-11).
  • Single-chain antibodies can be mono- or bispecific, and can be bivalent or tefravalent. Construction of tefravalent, bispecific single-chain antibodies is taught, for example, in Coloma & Morrison, 1997, Nat. Biotechnol. 15, 159-63. Construction of bivalent, bispecific single-chain antibodies is taught in Mallender & Noss, 1994, J Biol. Chem. 269, 199-206.
  • a nucleotide sequence encoding a single-chain antibody can be constructed using manual or automated nucleotide synthesis, cloned into an expression construct using standard recombinant D ⁇ A methods, and introduced into a cell to express the coding sequence, as described below.
  • single-chain antibodies can be produced directly using, for example, filamentous phage technology (Nerhaar et al, 1995, Int. J. Cancer 61, 497-501; ⁇ icholls et al, 1993, J. Immunol. Meth. 165, 81- 91).
  • Antibodies which specifically bind to FGDl-like polypeptides also can be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi et al, Proc. Natl. Acad. Sci. 86, 3833-3837, 1989; Winter et al, Nature 349, 293-299, 1991).
  • chimeric antibodies can be constructed as disclosed in WO 93/03151.
  • Binding proteins which are derived from immunoglobulins and which are multivalent and multispecific, such as the "diabodies" described in WO 94/13804, also can be prepared.
  • Antibodies according to the invention can be purified by methods well known in the art. For example, antibodies can be affinity purified by passage over a column to which an FGDl-like polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
  • Antisense Oligonucleotides can be affinity purified by passage over a column to which an FGDl-like polypeptide is bound. The bound antibodies can then be eluted from the column using a buffer with a high salt concentration.
  • Antisense oligonucleotides are nucleotide sequences which are complementary to a specific DNA or RNA sequence. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form complexes and block either transcription or translation. Preferably, an antisense oligonucleotide is at least 11 nucleotides in length, but can be at least 12, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides long. Longer sequences also can be used. Antisense oligonucleotide molecules can be provided in a DNA construct and introduced into a cell as described above to decrease the level of FGDl-like protein gene products in the cell.
  • Antisense oligonucleotides can be deoxyribonucleotides, ribonucleotides, or a combination of both. Oligonucleotides can be synthesized manually or by an automated synthesizer, by covalently linking the 5' end of one nucleotide with the 3' end of another nucleotide with non-phosphodiester internucleotide linkages such alkylphosphonates, phosphorothioates, phosphorodithioates, alkylphosphonothioates, alkylphosphonates, phosphoramidates, phosphate esters, carbamates, acetamidate, carboxymethyl esters, carbonates, and phosphate triesters. See Brown, Meth. Mol. Biol. 20, 1-8, 1994; Sonveaux, Meth. Mol. Biol. 26, 1-72, 1994; Uhlmann et al,
  • Modifications of FGDl-like protein gene expression can be obtained by designing antisense oligonucleotides which will form duplexes to the control, 5', or regulatory regions of the FGDl-like protein gene. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or chaperons.
  • An antisense oligonucleotide also can be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Antisense oligonucleotides which comprise, for example, 2, 3, 4, or 5 or more stretches of contiguous nucleotides which are precisely complementary to an FGDl-like polynucleotide, each separated by a stretch of contiguous nucleotides which are not complementary to adjacent FGDl-like protein nucleotides, can provide sufficient targeting specificity for FGDl-like mRNA.
  • each stretch of complementary contiguous nucleotides is at least 4, 5, 6, 7, or 8 or more nucleotides in length.
  • Non-complementary intervening sequences are preferably 1, 2, 3, or 4 nucleotides in length.
  • One skilled in the art can easily use the calculated melting point of an antisense-sense pair to determine the degree of mismatching which will be tolerated between a particular antisense oligonucleotide and a particular FGDl- like polynucleotide sequence.
  • Antisense oligonucleotides can be modified without affecting their ability to hybridize to an FGDl-like polynucleotide. These modifications can be internal or at one or both ends of the antisense molecule.
  • intemucleoside phosphate linkages can be modified by adding cholesteryl or diamine moieties with varying numbers of carbon residues between the amino groups and terminal ribose.
  • Modified bases and/or sugars such as arabinose instead of ribose, or a 3', 5 '-substituted oligonucleotide in which the 3' hydroxyl group or the 5' phosphate group are substituted, also can be employed in a modified antisense oligonucleotide.
  • modified oligonucleotides can be prepared by methods well known in the art. See, e.g., Agrawal et al, Trends Biotechnol. 10, 152-158, 1992; Uhlmann et al, Chem.
  • Ribozymes are RNA molecules with catalytic activity. See, e.g., Cech, Science 236, 1532-1539; 1987; Cech, Ann. Rev. Biochem. 59, 543-568; 1990, Cech, Curr. Opin. Struct. Biol. 2, 605-609; 1992, Couture & Stinchcomb, Trends Genet. 12, 510-515,
  • Ribozymes can be used to inhibit gene function by cleaving an RNA sequence, as is known in the art (e.g., Haseloff et al, U.S. Patent 5,641,673).
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples include engineered hammerhead motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of specific nucleotide sequences.
  • the coding sequence of an FGDl-like polynucleotide can be used to generate ribozymes which will specifically bind to mRNA transcribed from the FGDl-like polynucleotide.
  • Methods of designing and constructing ribozymes which can cleave other RNA molecules in trans in a highly sequence specific manner have been developed and described in the art (see Haseloff et al. Nature 334, 585-591, 1988).
  • the cleavage activity of ribozymes can be targeted to specific RNAs by engineering a discrete "hybridization" region into the ribozyme.
  • the hybridization region contains a sequence complementary to the target RNA and thus specifically hybridizes with the target (see, for example, Gerlach et al, EP 321,201).
  • Specific ribozyme cleavage sites within an FGDl-like protein RNA target can be identified by scanning the target molecule for ribozyme cleavage sites which include the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target RNA containing the cleavage site can be evaluated for secondary structural features which may render the target inoperable. Suitability of candidate FGDl-like protein RNA targets also can be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays. Longer complementary sequences can be used to increase the affinity of the hybridization sequence for the target. The hybridizing and cleavage regions of the ribozyme can be integrally related such that upon hybridizing to the target RNA through the complementary regions, the catalytic region of the ribozyme can cleave the target.
  • Ribozymes can be introduced into cells as part of a DNA construct. Mechanical methods, such as microinjection, liposome-mediated fransfection, elecfroporation, or calcium phosphate precipitation, can be used to introduce a ribozyme-containing DNA construct into cells in which it is desired to decrease FGDl-like protein expression. Alternatively, if it is desired that the cells stably retain the DNA construct, the construct can be supplied on a plasmid and maintained as a separate element or integrated into the genome of the cells, as is known in the art.
  • a ribozyme-encoding DNA construct can include transcriptional regulatory elements, such as a promoter element, an enhancer or UAS element, and a transcriptional terminator signal, for controlling transcription of ribozymes in the cells.
  • ribozymes can be engineered so that ribozyme expression will occur in response to factors which induce expression of a target gene. Ribozymes also can be engineered to provide an additional level of regulation, so that destruction of mRNA occurs only when both a ribozyme and a target gene are induced in the cells.
  • genes whose products interact with human FGDl-like protein may represent genes which are differentially expressed in disorders including, but not limited to, cancer and obesity. Further, such genes may represent genes which are differentially regulated in response to manipulations relevant to the progression or treatment of such diseases. Additionally, such genes may have a temporally modulated expression, increased or decreased at different stages of tissue or organism development. A differentially expressed gene may also have its expression modulated under control versus experimental conditions. In addition, the human FGDl-like protein gene or gene product may itself be tested for differential expression.
  • the degree to which expression differs in a normal versus a diseased state need only be large enough to be visualized via standard characterization techniques such as differential display techniques.
  • standard characterization techniques such as differential display techniques.
  • Other such standard characterization techniques by which expression differences may be visualized include but are not limited to, quantitative RT (reverse transcriptase), PCR, and Northern analysis.
  • RNA or, preferably, mRNA is isolated from tissues of interest.
  • RNA samples are obtained from tissues of experimental subjects and from corresponding tissues of control subjects.
  • RNA isolation technique which does not select against the isolation of mRNA may be utilized for the purification of such RNA samples. See, for example, Ausubel et al, ed. dislike CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, Inc. New York, 1987-1993. Large numbers of tissue samples may readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomczynski, U.S. Patent 4,843,155.
  • Transcripts within the collected RNA samples which represent RNA produced by differentially expressed genes are identified by methods well known to those of skill in the art. They include, for example, differential screening (Tedder et al, Proc.
  • the differential expression information may itself suggest relevant methods for the treatment of disorders involving the human FGDl-like protein.
  • treatment may include a modulation of expression of the differentially expressed genes and/or the gene encoding the human FGDl-like protein.
  • the differential expression information may indicate whether the expression or activity of the differentially expressed gene or gene product or the human FGDl-like protein gene or gene product are up-regulated or down-regulated.
  • the invention provides assays for screening test compounds which bind to or modulate the biological activity of an FGDl-like polypeptide or an FGDl-like polynucleotide.
  • a test compound preferably binds to an FGDl-like polypeptide or polynucleotide. More preferably, a test compound decreases or increases FGDl-like by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the test compound.
  • Test compounds can be pharmacologic agents already known in the art or can be compounds previously unknown to have any pharmacological activity.
  • the compounds can be naturally occurring or designed in the laboratory. They can be isolated from microorganisms, animals, or plants, and can be produced recombinantly, or synthesized by chemical methods known in the art. If desired, test compounds can be obtained using any of the numerous combinatorial library methods known in the art, including but not limited to, biological libraries, spatially addressable parallel solid phase or solution phase libraries, synthetic library methods requiring deconvolution, the "one-bead one-compound” library method, and synthetic library methods using affinity chromatography selection.
  • the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer, or small molecule libraries of compounds. See Lam, Anticancer Drug Des. 12, 145, 1997.
  • Test compounds can be screened for the ability to bind to FGDl-like polypeptides or polynucleotides or to affect FGDl-like protein activity or FGDl-like protein gene expression using high throughput screening.
  • high throughput screening many discrete compounds can be tested in parallel so that large numbers of test compounds can be quickly screened.
  • the most widely established techniques utilize 96-well microtiter plates. The wells of the microtiter plates typically require assay volumes that range from 50 to 500 ⁇ l.
  • many instruments, materials, pipettors, robotics, plate washers, and plate readers are commercially available to fit the 96-well format.
  • free format assays or assays that have no physical barrier between samples, can be used.
  • an assay using pigment cells (melanocytes) in a simple homogeneous assay for combinatorial peptide libraries is described by Jayawickreme et al, Proc. Natl. Acad. Sci. U.S.A. 19, 1614-18 (1994).
  • the cells are placed under agarose in petri dishes, then beads that carry combinatorial compounds are placed on the surface of the agarose.
  • the combinatorial compounds are partially released the compounds from the beads. Active compounds can be visualized as dark pigment areas because, as the compounds diffuse locally into the gel matrix, the active compounds cause the cells to change colors.
  • Chelsky placed a simple homogenous enzyme assay for carbonic anhydrase inside an agarose gel such that the enzyme in the gel would cause a color change throughout the gel. Thereafter, beads carrying combinatorial compounds via a photolinker were placed inside the gel and the compounds were partially released by UV-light. Compounds that inhibited the enzyme were observed as local zones of inhibition having less color change.
  • test samples are placed in a porous matrix.
  • One or more assay components are then placed within, on top of, or at the bottom of a matrix such as a gel, a plastic sheet, a filter, or other form of easily manipulated solid support.
  • the test compound is preferably a small molecule which binds to and occupies, for example, the active site of the FGDl-like polypeptide, such that normal biological activity is prevented.
  • small molecules include, but are not limited to, small peptides or peptide-like molecules.
  • either the test compound or the FGDl-like polypeptide can comprise a detectable label, such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
  • a detectable label such as a fluorescent, radioisotopic, chemiluminescent, or enzymatic label, such as horseradish peroxidase, alkaline phosphatase, or luciferase.
  • Detection of a test compound which is bound to the FGDl-like polypeptide can then be accomplished, for example, by direct counting of radio- emmission, by scintillation counting, or by determining conversion of an appropriate substrate to a detectable product.
  • binding of a test compound to an FGDl-like polypeptide can be determined without labeling either of the interactants.
  • a micro- physiometer can be used to detect binding of a test compound with an FGDl-like polypeptide.
  • a microphysiometer e.g., CytosensorTM
  • LAPS light- addressable potentiometric sensor
  • Determining the ability of a test compound to bind to an FGDl-like polypeptide also can be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA) (Sjolander & Urbaniczky, Anal. Chem. 63, 2338-2345, 1991, and Szabo et al, Curr. Opin. Struct. Biol. 5, 699-705, 1995).
  • BIA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcoreTM). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
  • an FGDl-like polypeptide can be used as a "bait protein" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent 5,283,317; Zervos et al, Cell 72, 223-232, 1993; Madura et al, J. Biol. Chem. 268, 12046-12054, 1993; Bartel et al, BioTechniques 14, 920-924, 1993; Iwabuchi et al, Oncogene 8, 1693-1696, 1993; and Brent W094/10300), to identify other proteins which bind to or interact with the FGDl-like polypeptide and modulate its activity.
  • the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
  • the assay utilizes two different DNA constructs.
  • polynucleotide encoding an FGDl-like polypeptide can be fused to a polynucleotide encoding the DNA binding domain of a known transcription factor (e.g., GAL-4).
  • a DNA sequence that encodes an unidentified protein (“prey" or "sample” can be fused to a polynucleotide that codes for the activation domain of the known transcription factor.
  • the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ), which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected, and cell colonies containing the functional transcription factor can be isolated and used to obtain the DNA sequence encoding the protein which interacts with the FGD 1 -like polypeptide.
  • a reporter gene e.g., LacZ
  • either the FGDl-like polypeptide (or polynucleotide) or the test compound can be bound to a solid support.
  • Suitable solid supports include, but are not limited to, glass or plastic slides, tissue culture plates, microtiter wells, tubes, silicon chips, or particles such as beads (including, but not limited to, latex, polystyrene, or glass beads).
  • any method known in the art can be used to attach the polypeptide (or polynucleotide) or test compound to a solid support, including use of covalent and non-covalent linkages, passive absorption, or pairs of binding moieties attached respectively to the polypeptide (or polynucleotide) or test compound and the solid support.
  • Test compounds are preferably bound to the solid support in an array, so that the location of individual test compounds can be tracked. Binding of a test compound to an FGDl-like polypeptide (or polynucleotide) can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and microcentrifuge tubes.
  • the FGDl-like polypeptide is a fusion protein comprising a domain that allows the FGDl-like polypeptide to be bound to a solid support.
  • glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and the non-adsorbed FGDl-like polypeptide; the mixture is then incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components. Binding of the interactants can be determined either directly or indirectly, as described above. Alternatively, the complexes can be dissociated from the solid support before binding is determined.
  • an FGDl- like polypeptide (or polynucleotide) or a test compound can be immobilized utilizing conjugation of biotin and streptavidin.
  • Biotinylated FGDl-like polypeptides (or polynucleotides) or test compounds can be prepared from biotin-NHS(N- hydroxy succinimide) using techniques well known in the art (e.g., biotinylation kit,
  • antibodies which specifically bind to an FGDl-like polypeptide, polynucleotide, or a test compound, but which do not interfere with a desired binding site, such as the active site of the FGDl-like polypeptide, can be derivatized to the wells of the plate. Unbound target or protein can be trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies which specifically bind to the FGDl-like polypeptide or test compound, enzyme-linked assays which rely on detecting an activity of the FGDl-like polypeptide, and SDS gel electrophoresis under non-reducing conditions.
  • Screening for test compounds which bind to an FGDl-like polypeptide or polynucleotide also can be carried out in an intact cell. Any cell which comprises an FGDl-like polypeptide or polynucleotide can be used in a cell-based assay system.
  • An FGDl-like polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above. Binding of the test compound to an FGDl-like polypeptide or polynucleotide is determined as described above.
  • Test compounds can be tested for the ability to increase or decrease the biological activity of a human FGDl-like polypeptide.
  • Biological activity can be measured, for example, as described in Zheng et al, 1966.
  • Assays can be carried out after contacting either a purified FGDl-like polypeptide, a cell membrane preparation, or an intact cell with a test compound.
  • a test compound which decreases a biological activity of an FGDl-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for decreasing FGDl-like protein activity.
  • a test compound which increases a biological activity of a human FGDl-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% is identified as a potential therapeutic agent for increasing human FGDl-like protein activity.
  • test compounds which increase or decrease FGDl-like protein gene expression are identified.
  • An FGDl-like polynucleotide is contacted with a test compound, and the expression of an RNA or polypeptide product of the
  • FGDl-like polynucleotide is determined.
  • the level of expression of appropriate mRNA or polypeptide in the presence of the test compound is compared to the level of expression of mRNA or polypeptide in the absence of the test compound.
  • the test compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or polypeptide is greater in the presence of the test compound than in its absence, the test compound is identified as a stimulator or enhancer of the mRNA or polypeptide expression. Alternatively, when expression of the mRNA or polypeptide is less in the presence of the test compound than in its absence, the test compound is identified as an inhibitor of the mRNA or polypeptide expression.
  • the level of FGDl-like mRNA or polypeptide expression in the cells can be determined by methods well known in the art for detecting mRNA or polypeptide. Either qualitative or quantitative methods can be used.
  • the presence of polypeptide products of an FGDl-like polynucleotide can be determined, for example, using a variety of techniques known in the art, including immunochemical methods such as radioimmunoassay, Western blotting, and immunohistochemistry.
  • polypeptide synthesis can be determined in vivo, in a cell culture, or in an in vitro translation system by detecting incorporation of labeled amino acids into an FGD1- like polypeptide. Such screening can be carried out either in a cell-free assay system or in an intact cell.
  • Any cell which expresses an FGDl-like polynucleotide can be used in a cell- based assay system.
  • the FGDl-like polynucleotide can be naturally occurring in the cell or can be introduced using techniques such as those described above.
  • 293 cells can be used.
  • compositions of the invention can comprise, for example, an FGDl-like polypeptide, FGDl-like polynucleotide, ribozymes or antisense oligonucleotides, antibodies which specifically bind to an FGDl-like polypeptide, or mimetics, agonists, antagonists, or inhibitors of an FGDl-like polypeptide activity.
  • the compositions can be administered alone or in combination with at least one other agent, such as stabilizing compound, which can be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water.
  • the compositions can be administered to a patient alone, or in combination with other agents, drugs or hormones.
  • compositions of the invention can be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, infra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, parenteral, topical, sublingual, or rectal means.
  • Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.
  • compositions for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores.
  • Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin and collagen.
  • disintegrating or solubilizing agents can be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Dragee cores can be used in conjunction with suitable coatings, such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • suitable coatings such as concentrated sugar solutions, which also can contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures.
  • Dyestuffs or pigments can be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i. e. , dosage.
  • Push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol.
  • Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers.
  • the active compounds can be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.
  • compositions suitable for parenteral administration can be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline.
  • Aqueous injection suspensions can contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
  • suspensions of the active compounds can be prepared as appropriate oily injection suspensions.
  • Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
  • Non-lipid polycationic amino polymers also can be used for delivery.
  • the suspension also can contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
  • penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
  • compositions of the present invention can be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.
  • the pharmaceutical composition can be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms.
  • the preferred preparation can be a lyophilized powder which can contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.
  • compositions After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. Such labeling would include amount, frequency, and method of admini- stration.
  • Human FGDl-like protein can be regulated to treat cancer.
  • Cancer is a disease fundamentally caused by oncogenic cellular transformation. There are several hallmarks of transformed cells that distinguish them from their normal counterparts and underlie the pathophysiology of cancer. These include uncontrolled cellular proliferation, unresponsiveness to normal death-inducing signals (immortalization), increased cellular motility and invasiveness, increased ability to recruit blood supply through induction of new blood vessel formation (angiogenesis), genetic instability, and dysregulated gene expression. Various combinations of these aberrant physiologies, along with the acquisition of drug-resistance frequently lead to an intractable disease state in which organ failure and patient death ultimately ensue.
  • Genes or gene fragments identified through genomics can readily be expressed in one or more heterologous expression systems to produce functional recombinant proteins.
  • proteins are characterized in vitro for their biochemical properties and then used as tools in high-throughput molecular screening programs to identify chemical modulators of their biochemical activities.
  • Agonists and/or antagonists of target protein activity can be identified in this manner and subsequently tested in cellular and in vivo disease models for anti-cancer activity. Optimization of lead compounds with iterative testing in biological models and detailed pharmacokinetic and toxicological analyses form the basis for drug development and subsequent testing in humans.
  • Human FGDl-like protein can be regulated to treat obesity.
  • Obesity and overweight are defined as an excess of body fat relative to lean body mass.
  • An increase in caloric intake or a decrease in energy expenditure or both can bring about this imbalance leading to su ⁇ lus energy being stored as fat.
  • Obesity is associated with important medical morbidities and an increase in mortality.
  • the causes of obesity are poorly understood and may be due to genetic factors, environmental factors or a combination of the two to cause a positive energy balance.
  • anorexia and cachexia are characterized by an imbalance in energy intake versus energy expenditure leading to a negative energy balance and weight loss.
  • Agents that either increase energy expenditure and/or decrease energy intake, abso ⁇ tion or storage would be useful for treating obesity, overweight, and associated comorbidities.
  • Agents that either increase energy intake and/or decrease energy expenditure or increase the amount of lean tissue would be useful for treating cachexia, anorexia and wasting disorders.
  • This gene, translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity, overweight, anorexia, cachexia, wasting disorders, appetite suppression, appetite enhancement, increases or decreases in satiety, modulation of body weight, and/or other eating disorders such as bulimia.
  • this gene translated proteins and agents which modulate this gene or portions of the gene or its products are useful for treating obesity/overweight-associated comorbidities including hypertension, type 2 diabetes, coronary artery disease, hyperlipidemia, stroke, gallbladder disease, gout, osteoarthritis, sleep apnea and respiratory problems, some types of cancer including endometrial, breast, prostate, and colon cancer, thrombolic disease, polycystic ovarian syndrome, reduced fertility, complications of pregnancy, menstrual irregularities, hirsutism, stress incontinence, and depression.
  • obesity/overweight-associated comorbidities including hypertension, type 2 diabetes, coronary artery disease, hyperlipidemia, stroke, gallbladder disease, gout, osteoarthritis, sleep apnea and respiratory problems, some types of cancer including endometrial, breast, prostate, and colon cancer, thrombolic disease, polycystic ovarian syndrome, reduced fertility, complications of pregnancy, menstrual irregularities, hirsu
  • This invention further pertains to the use of novel agents identified by the screening assays described above. Accordingly, it is within the scope of this invention to use a test compound identified as described herein in an appropriate animal model.
  • an agent identified as described herein e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, ribozyme, or an FGDl-like polypeptide binding molecule
  • an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
  • an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
  • this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
  • a reagent which affects FGDl-like protein activity can be administered to a human cell, either in vitro or in vivo, to reduce FGDl-like protein activity.
  • the reagent preferably binds to an expression product of a human FGDl-like protein gene. If the expression product is a protein, the reagent is preferably an antibody.
  • an antibody can be added to a preparation of stem cells which have been removed from the body. The cells can then be replaced in the same or another human body, with or without clonal propagation, as is known in the art.
  • the reagent is delivered using a liposome.
  • the liposome is stable in the animal into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour, and even more preferably for at least about 24 hours.
  • a liposome comprises a lipid composition that is capable of targeting a reagent, particularly a polynucleotide, to a particular site in an animal, such as a human.
  • the lipid composition of the Uposome is capable of targeting to a specific organ of an animal, such as the lung, liver, spleen, heart brain, lymph nodes, and skin.
  • a liposome useful in the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver its contents to the cell.
  • the transfection efficiency of a liposome is about 0.5 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, more preferably about 1.0 ⁇ g of DNA per 16 nmole of liposome delivered to about 10 6 cells, and even more preferably about 2.0 ⁇ g of DNA per 16 nmol of liposome delivered to about 10 6 cells.
  • a liposome is between about 100 and
  • 500 nm more preferably between about 150 and 450 nm, and even more preferably between about 200 and 400 nm in diameter.
  • Suitable liposomes for use in the present invention include those liposomes standardly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes include liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene glycol.
  • a liposome comprises a compound capable of targeting the liposome to a particular cell type, such as a cell-specific ligand exposed on the outer surface of the liposome.
  • a liposome with a reagent such as an antisense oligonucleotide or ribozyme can be achieved using methods which are standard in the art (see, for example, U.S. Patent 5,705,151).
  • a reagent such as an antisense oligonucleotide or ribozyme
  • from about 0.1 ⁇ g to about 10 ⁇ g of polynucleotide is combined with about 8 nmol of liposomes, more preferably from about 0.5 ⁇ g to about 5 ⁇ g of polynucleotides are combined with about 8 nmol liposomes, and even more preferably about 1.0 ⁇ g of polynucleotides is combined with about 8 nmol liposomes.
  • antibodies can be delivered to specific tissues in vivo using receptor-mediated targeted delivery.
  • Receptor-mediated DNA delivery techniques are taught in, for example, Findeis et al. Trends in Biotechnol. 11, 202-05 (1993); Chiou et al, GENE THERAPEUTICS: METHODS AND APPLICATIONS OF DIRECT GENE TRANSFER (J.A. Wolff, ed.) (1994); Wu & Wu, J. Biol. Chem. 263, 621-24 (1988); Wu et al, J. Biol. Chem. 269, 542-46 (1994); Zenke et al, Proc. Natl Acad. Sci. USA. 87, 3655-59 (1990); Wu et al, J. Biol. Chem. 266, 338-42 (1991).
  • a therapeutically effective dose refers to that amount of active ingredient which increases or decreases FGDl-like protein activity relative to the FGDl-like protein activity which occurs in the absence of the therapeutically effective dose.
  • the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs.
  • the animal model also can be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • Therapeutic efficacy and toxicity e.g., ED 50 (the dose therapeutically effective in 50% of the population) and LD 50 (the dose lethal to 50% of the population), can be determined by standard pharmaceutical procedures in cell cultures or experimental animals.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD S Q/ED S Q.
  • compositions which exhibit large therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED 5 Q with little or no toxicity.
  • the dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
  • the exact dosage will be determined by the practitioner, in light of factors related to the subject that requires freatment. Dosage and administration are adjusted to provide sufficient levels of the active ingredient or to maintain the desired effect. Factors which can be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions can be administered every 3 to 4 days, every week, or once every two weeks depending on the half-life and clearance rate of the particular formulation.
  • Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
  • polynucleotides encoding the antibody can be constructed and introduced into a cell either ex vivo or in vivo using well- established techniques including, but not limited to, transferrin-polycation-mediated DNA transfer, fransfection with naked or encapsulated nucleic acids, liposome- mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, elecfroporation, "gene gun,” and DEAE- or calcium phosphate-mediated fransfection.
  • Effective in vivo dosages of an antibody are in the range of about 5 ⁇ g to about
  • effective in vivo dosages are in the range of about 100 ng to about 200 ng, 500 ng to about 50 mg, about 1 ⁇ g to about 2 mg, about 5 ⁇ g to about 500 ⁇ g, and about 20 ⁇ g to about 100 ⁇ g of DNA.
  • the reagent is preferably an antisense oligonucleotide or a ribozyme.
  • Polynucleotides which express antisense oligonucleotides or ribozymes can be introduced into cells by a variety of methods, as described above.
  • a reagent reduces expression of an FGDl-like protein gene or the activity of an FGDl-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent.
  • the effectiveness of the mechanism chosen to decrease the level of expression of an FGDl-like protein gene or the activity of an FGDl-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent.
  • the effectiveness of the mechanism chosen to decrease the level of expression of an FGDl-like protein gene or the activity of an FGDl-like polypeptide by at least about 10, preferably about 50, more preferably about 75, 90, or 100% relative to the absence of the reagent.
  • FGDl-like protein gene or the activity of an FGDl-like polypeptide can be assessed using methods well known in the art, such as hybridization of nucleotide probes to FGDl-like protein-specific mRNA, quantitative RT-PCR, immunologic detection of an FGDl-like polypeptide, or measurement of FGDl-like protein activity.
  • any of the pharmaceutical compositions of the invention can be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy can be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents can act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • Any of the therapeutic methods described above can be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.
  • Human FGDl-like protein also can be used in diagnostic assays for detecting diseases and abnormalities or susceptibility to diseases and abnormalities related to the presence of mutations in the nucleic acid sequences which encode the protein. For example, differences can be determined between the cDNA or genomic sequence encoding FGDl-like protein in individuals afflicted with a disease and in normal individuals. If a mutation is observed in some or all of the afflicted individuals but not in normal individuals, then the mutation is likely to be the causative agent of the disease.
  • Sequence differences between a reference gene and a gene having mutations can be revealed by the direct DNA sequencing method.
  • cloned DNA segments can be employed as probes to detect specific DNA segments.
  • the sensitivity of this method is greatly enhanced when combined with PCR.
  • a sequencing primer can be used with a double-stranded PCR product or a single-stranded template molecule generated by a modified PCR.
  • the sequence determination is performed by conventional procedures using radiolabeled nucleotides or by automatic sequencing procedures using fluorescent tags.
  • DNA sequence differences can be carried out by detection of alteration in electrophoretic mobility of DNA fragments in gels with or without denaturing agents. Small sequence deletions and insertions can be visualized, for example, by high resolution gel electrophoresis. DNA fragments of different sequences can be distinguished on denaturing formamide gradient gels in which the mobilities of different DNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see, e.g., Myers et al, Science 230, 1242, 1985). Sequence changes at specific locations can also be revealed by nuclease protection assays, such as RNase and S 1 protection or the chemical cleavage method (e.g., Cotton et al, Proc. Natl.
  • the detection of a specific DNA sequence can be performed by methods such as hybridization, RNase protection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes and Southern blotting of genomic DNA.
  • direct methods such as gel-electrophoresis and DNA sequencing, mutations can also be detected by in situ analysis.
  • Altered levels of an FGDl-like protein also can be detected in various tissues.
  • Assays used to detect levels of the receptor polypeptides in a body sample, such as blood or a tissue biopsy, derived from a host are well known to those of skill in the art and include radioimmunoassays, competitive binding assays, Western blot analysis, and ELISA assays.
  • the polynucleotide of SEQ ID NO: 1 is inserted into the expression vector pCEV4 and the expression vector pCEV4-FGDl-like protein polypeptide obtained is transfected into human embryonic kidney 293 cells. From these cells extracts are obtained and FGDl-like protein activity is measured in an assay in which 2 pmol of HaRas or Rapl A loaded with [3H]GDP (3,000 cpm-pmol) are incubated with 1 ⁇ g of the cell extract in 50 ⁇ l of a reaction buffer containing 20 mM Tris/HCl, pH 7.4,
  • Pichia pastoris expression vector pPICZB (Invitrogen, San Diego, CA) is used to produce large quantities of recombinant human FGDl-like polypeptides in yeast.
  • the FGDl-like protein-encoding DNA sequence is derived from SEQ ID NO: 1.
  • the DNA sequence is modified by well known methods in such a way that it contains at its 5 '-end an initiation codon and at its 3 '-end an enterokinase cleavage site, a His6 reporter tag and a termination codon.
  • the modified DNA sequence is ligated into pPICZB.
  • This expression vector is designed for inducible expression in Pichia pastoris, driven by a yeast promoter. The resulting pPICZ/md-His6 vector is used to transform the yeast.
  • the yeast is cultivated under usual conditions in 5 liter shake flasks and the recombinantly produced protein isolated from the culture by affinity chromatography (Ni-NTA-Resin) in the presence of 8 M urea.
  • the bound polypeptide is eluted with buffer, pH 3.5, and neutralized. Separation of the polypeptide from the His6 reporter tag is accomplished by site-specific proteolysis using enterokinase (Invitrogen, San
  • Purified FGDl-like polypeptides comprising a glutathione-S-transferase protein and absorbed onto glutathione-derivatized wells of 96-well microtiter plates are contacted with test compounds from a small molecule library at pH 7.0 in a physiological buffer solution.
  • Human FGDl-like polypeptides comprise the amino acid sequence shown in SEQ ID NO: 2.
  • the test compounds comprise a fluorescent tag. The samples are incubated for 5 minutes to one hour. Control samples are incubated in the absence of a test compound.
  • the buffer solution containing the test compounds is washed from the wells. Binding of a test compound to an FGDl-like polypeptide is detected by fluorescence measurements of the contents of the wells. A test compound which increases the fluorescence in a well by at least 15% relative to fluorescence of a well in which a test compound is not incubated is identified as a compound which binds to an FGDl- like polypeptide.
  • test compound is administered to a culture of human cells fransfected with an FGDl-like protein expression construct and incubated at 37°C for 10 to 45 minutes.
  • a culture of the same type of cells which have not been fransfected is incubated for the same time without the test compound to provide a negative control.
  • RNA is isolated from the two cultures as described in Chirgwin et al, Biochem. 18, 5294-99, 1979).
  • Northern blots are prepared using 20 to 30 ⁇ g total RNA and hybridized with a 3 P-labeled FGDl-like protein-specific probe at 65° C in Express- hyb (CLONTECH).
  • the probe comprises at least 11 contiguous nucleotides selected from the complement of SEQ ID NO: 1.
  • a test compound which decreases the FGDl-like protein-specific signal relative to the signal obtained in the absence of the test compound is identified as an inhibitor of FGDl-like protein gene expression.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne des réactifs permettant de réguler une protéine humaine de type FGD1, ainsi que des réactifs qui se lient à des produits de gène humain de type FGD1, qui peuvent jouer un rôle dans la prévention, l'amélioration ou la correction de dysfonctionnements ou de maladies comprenant, entre autres, le cancer et l'obésité.
PCT/EP2001/011009 2000-09-25 2001-09-24 Regulation de proteine humaine de type fgd1 WO2002024731A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001293839A AU2001293839A1 (en) 2000-09-25 2001-09-24 Regulation of human fgd1-like protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23498300P 2000-09-25 2000-09-25
US60/234,983 2000-09-25

Publications (2)

Publication Number Publication Date
WO2002024731A2 true WO2002024731A2 (fr) 2002-03-28
WO2002024731A3 WO2002024731A3 (fr) 2002-07-25

Family

ID=22883574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/011009 WO2002024731A2 (fr) 2000-09-25 2001-09-24 Regulation de proteine humaine de type fgd1

Country Status (2)

Country Link
AU (1) AU2001293839A1 (fr)
WO (1) WO2002024731A2 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074617A2 (fr) * 1999-07-29 2001-02-07 Helix Research Institute Amorces pour la synthèse de cADN de pleine longueur et leur utilisation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074617A2 (fr) * 1999-07-29 2001-02-07 Helix Research Institute Amorces pour la synthèse de cADN de pleine longueur et leur utilisation

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBL [Online] EBI, Hinxton UK; 22 February 2000 (2000-02-22) ISOGAI ET AL.: "Homo sapiens cDNA FLJ11183 fis, clone PLACE1007488, weakly similar to" Database accession no. AK002045 XP002196275 *
DATABASE EMBL [Online] EBI, Hinxton, UK; 14 March 2000 (2000-03-14) OHARA ET AL.: "Homo sapiens mRNA for KIAA1362 protein, partial cds." Database accession no. AB037783 XP002196276 -& NAGASE ET AL.: "Prediction of the coding sequences of unidentified human genes. XVI." DNA RESEARCH, vol. 7, 28 February 2000 (2000-02-28), pages 65-73, XP002196269 *
DATABASE GENSEQ [Online] Derwent; 26 June 2001 (2001-06-26) OTA ET AL.: "Human cDNA sequence SEQ ID NO:12971 from patent EP1074617" Database accession no. AAH15014 XP002196274 *
DATABASE GENSEQ [Online] Derwent; 26 June 2001 (2001-06-26) OTA ET AL.: "Protein Seq Id: 12972 from patent EP1074617" Database accession no. AAB93568 XP002196273 *
OLSON M F: "Guanine nucleotide exchange factors for the Rho GTPases: A role in human disease?" JOURNAL OF MOLECULAR MEDICINE (BERLIN), vol. 74, no. 10, 1996, pages 563-571, XP002196272 ISSN: 0946-2716 *
PASTERIS N GERMAN ET AL: "Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: A putative Rho/Rac guanine nucleotide exchange factor." CELL, vol. 79, no. 4, 1994, pages 669-678, XP002196270 ISSN: 0092-8674 *
ZHENG YI ET AL: "The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 52, 1996, pages 33169-33172, XP002196271 ISSN: 0021-9258 cited in the application *

Also Published As

Publication number Publication date
WO2002024731A3 (fr) 2002-07-25
AU2001293839A1 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US20020160394A1 (en) Regulation of transthyretin to treat obesity
US20040043470A1 (en) Regulation of human histone deacetylase
WO2002030970A2 (fr) Regulation de l'histone deacetylase humaine
US20050214908A1 (en) Regulation of human transketolase-like enzyme
US6821745B2 (en) Regulation of human pyroglutamyl peptidase-like enzyme
US20040175815A1 (en) Regulation of human p78-like serube/threonine kinase
US20040029245A1 (en) Regulation of human serine-palmitoyltransferase-like enzyme
US20030175941A1 (en) Regulation of human serine racemase enzyme
WO2002032938A2 (fr) Regulation de la proteine humaine de type pgc-1
WO2002033080A2 (fr) Regulation du recepteur humain membranaire liant la netrine unc5h-1
WO2001072833A2 (fr) Regulation de recepteur humain de type ephrine
WO2001090318A2 (fr) Regulation de l'enzyme similaire a la polyamine oxydase humaine
WO2002024731A2 (fr) Regulation de proteine humaine de type fgd1
WO2001072955A2 (fr) Regulation de la proteine humaine apparentee a nedd1
WO2001073077A2 (fr) Regulation de serine racemase humaine
EP1272521A2 (fr) Regulation de la proteine humaine apparentee a oatp2
WO2002038761A2 (fr) Regulation d'une proteine du type transport d'anions organiques
WO2001073017A2 (fr) Regulation de la proteine humaine apparentee au facteur d'adp-ribosylation
WO2001075075A2 (fr) Regulation d'une enzyme humaine de type tyrosine phosphatase
WO2002033100A2 (fr) Regulation de l'adénylate cyclase humaine type iv
US20030049670A1 (en) Regulation of human leucine aminopeptidase-like enzyme
WO2001073016A2 (fr) Regulation de proteines associees a des pointes humaines
WO2001072843A2 (fr) Regulation de genes humains lies a c-myb
WO2001073056A2 (fr) Regulation de l'enzyme humaine analogue a oxoprolinase
WO2001073073A2 (fr) Regulation d'enzymes apparentees a des proteases neutres humaines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP