WO2002021187A1 - Object lens system, observing device equipped with the object lens system, and exposure system equipped with the observing device - Google Patents

Object lens system, observing device equipped with the object lens system, and exposure system equipped with the observing device Download PDF

Info

Publication number
WO2002021187A1
WO2002021187A1 PCT/JP2001/007715 JP0107715W WO0221187A1 WO 2002021187 A1 WO2002021187 A1 WO 2002021187A1 JP 0107715 W JP0107715 W JP 0107715W WO 0221187 A1 WO0221187 A1 WO 0221187A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
objective lens
lens system
less
suppressed
Prior art date
Application number
PCT/JP2001/007715
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Nagayama
Ayako Nakamura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002524747A priority Critical patent/JPWO2002021187A1/en
Publication of WO2002021187A1 publication Critical patent/WO2002021187A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system

Definitions

  • the present invention relates to an objective lens system, an observation device provided with the objective lens system, and an exposure device provided with the observation device.
  • the present invention particularly relates to an objective lens system suitable for an observation apparatus mounted on an exposure apparatus used in one step of lithography for manufacturing a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin film magnetic head. It is. Background art
  • an exposure apparatus for exposing a circuit pattern on a wafer includes an alignment apparatus for aligning a pattern of a mask with each exposure area of a wafer on which a circuit pattern is already formed.
  • this type of alignment apparatus has been disclosed in Japanese Patent Application Laid-Open No. 4-65603 (and corresponding US Pat. Nos. 5,493,403, 5,657,129, and 5,995,234).
  • Japanese Unexamined Patent Publication (Kokai) No. 4-273246 (and corresponding US Pat. No. 6,141,107)
  • an alignment apparatus of an off-axis type and an imaging type is known. Have been.
  • the detection system of this imaging type alignment device is also called an FIA (Field Image Alignment) system.
  • the alignment mark (wafer mark) on the wafer is illuminated with light with a wide wavelength bandwidth emitted from a light source such as an octogen lamp. Then, an enlarged image of the wafer mark is formed on the image sensor via the imaging optical system, and the position of the wafer mark is detected by performing image processing on the obtained image signal.
  • the FIA system uses broadband illumination, so the photo on the wafer There is an advantage that the influence of thin film interference on the resist layer is reduced.
  • aberrations remain to a small extent through manufacturing processes such as processing, assembly, and adjustment. If the aberration remains in the imaging optical system, the contrast of the wafer mark image on the imaging surface is reduced, or the wafer mark image is distorted, and a mark position detection error occurs. In recent years, with the miniaturization of circuit pattern line width, high-precision alignment has been required.
  • the aberration that is asymmetrical to the optical axis has a large effect on the detection of the wafer mark image.
  • an asymmetric lateral aberration occurs in the optical axis at the pupil such as coma aberration
  • the wafer mark image formed on the imaging surface is measured with a position shift compared to the case of ideal imaging.
  • the shape of the wafer mark pitch, duty ratio, step, etc.
  • the degree of the influence of coma aberration on the wafer mark image changes variously.
  • the amount of displacement of the measurement position will also change variously.
  • symmetric aberrations such as spherical aberration occur in the optical axis, the back focus position changes every time the shape of the wafer mark changes.
  • the low-order component of the wavefront aberration can be corrected by optical adjustment, but the high-order component of the wavefront aberration is difficult to correct by optical adjustment.
  • the surface accuracy of the imaging optical system of the alignment device particularly the optical components used for the objective lens, is discussed.
  • a method has been proposed to reduce high-order components of wavefront aberration remaining in the imaging optical system by setting a predetermined standard. That is, according to the method disclosed in this publication, the surface accuracy of an optical component is evaluated by the RMS (root mean square: root mean square) value of the wavefront aberration with respect to the reference surface, and all the optical components constituting the objective lens are evaluated.
  • the average value of the RMS values of all the components of the wavefront aberration of the surface is set to be equal to or less than 0.01 ⁇ (where ⁇ is the central wavelength of the light used).
  • the RMS value of the wavefront aberration of each optical surface used for calculating the average value is the RMS value of the component obtained by subtracting the correctable power component and the negative component from the measured wavefront aberration.
  • the present applicant has disclosed in Japanese Patent Application Laid-Open No. H11-125255, a method for evaluating the surface accuracy of an optical surface, which measures a wavefront aberration with respect to a reference surface of a test surface, and measures the measured wavefront aberration.
  • the ass residue is obtained by removing the ass component from the above, and the ass residue is fitted with a rotating aspheric surface about the optical axis to remove the rotating aspherical component from the ass residue to obtain a rotating aspheric residue.
  • a wavefront aberration of a surface to be measured with respect to a reference surface is measured, an ass component is removed from the measured wavefront aberration to obtain an ass residue, and the ass residue is non-rotated with respect to the optical axis.
  • a quadratic-quadratic curve component is removed from the cross-sectional curve to obtain a secondary-quadratic residue.
  • the present applicant has proposed in Japanese Patent Application Laid-Open No. 2000-12491 a method for evaluating the imaging performance of an optical system by expressing wavefront aberration by Zernike's polynomial.
  • the transmitted wavefront aberration (wavefront aberration measured based on the transmitted light) of the optical system is separated into a rotationally symmetric component, an odd-numbered symmetric component, and an even-numbered symmetric component with respect to the center of the pupil.
  • the imaging performance of the optical system is evaluated based on each component. Specifically, the imaging performance of the optical system is evaluated based on the RMS values of each separated component.
  • the wavefront aberration due to the refractive index distribution is separated into a power component, a negative component, a rotationally symmetric component after removing the power component, a tilt component, a random component, and the like, and the power component is equivalent to the radius of curvature error of the optical system. It discloses that there is.
  • the present applicant has disclosed in Japanese Patent Application Laid-Open No. 8-55505 that the wavefront aberration due to the refractive index distribution of an optical member is measured, and the measured wavefront aberration is converted into a rotationally symmetric component and a non-rotationally symmetric component with respect to the optical axis.
  • this publication separates the measured wavefront aberration into a rotationally symmetric component and a non-rotationally symmetric component with respect to the optical axis before or after correcting the power component, and further separates the rotationally symmetric component into second and fourth order components.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an objective lens system capable of favorably suppressing the remaining higher order wavefront aberration components, and a method of manufacturing the same.
  • a first invention of the present invention includes, in order from the object side, a first lens group having a positive refractive power, and a second lens group having a negative refractive power,
  • the center thickness of the lens closest to the object side in one lens group is d1
  • a design step of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of decentering coma aberration for each wavelength;
  • the wavefront aberration of each surface with respect to the reference surface is a wavefront aberration representing surface accuracy of each surface, and is a phase shift of the processed surface with respect to the reference surface when the processed surface is measured using an interferometer. is there.
  • the wavefront difference due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and Provided is an objective lens system characterized in that wavefront aberration of each surface of each optical member with respect to a reference surface is suppressed.
  • an imaging optical system including the objective lens system according to the first aspect or the objective lens system according to the fourth aspect, wherein an object image formed via the imaging optical system is observed.
  • An observation device characterized by the following.
  • an observation apparatus including an imaging optical system including an objective lens system, and observing an object image formed through the imaging optical system.
  • the wavefront aberration due to the refractive index distribution of each optical member other than the objective lens system in the imaging optical system is suppressed, and Provided is an observation device characterized in that wavefront aberration of each surface of an optical member with respect to a reference surface is suppressed.
  • an observation apparatus including an imaging optical system including an objective lens system, and observing an object image formed through the imaging optical system.
  • the imaging optical system includes an optical member disposed in an optical path between the objective lens system and the object image,
  • the refractive index of each optical member among all the optical members arranged in the optical path between the objective lens system and the object image Provided is an observation apparatus, wherein wavefront aberration due to distribution is suppressed, and wavefront aberration of each surface of each optical member with respect to a reference surface is suppressed.
  • the imaging optical system forms one or a plurality of intermediate images
  • the object image is not an intermediate image but a final image.
  • the objective lens system is manufactured by using the manufacturing method of the second aspect.
  • the observation device is manufactured by:
  • the observation apparatus according to the fifth, sixth, or seventh aspect and a projection optical system for projecting and exposing a mask pattern onto a photosensitive substrate.
  • An exposure apparatus is provided.
  • an eleventh aspect of the present invention there is provided a method for manufacturing an observation apparatus for observing an object image formed via an imaging optical system including an objective lens system,
  • a design step of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of decentering coma aberration for each wavelength;
  • an observation apparatus for observing an object image formed via an imaging optical system including an objective lens system
  • each surface of each optical member with respect to a reference surface A manufacturing process for manufacturing each of the optical members while suppressing wavefront aberration,
  • the objective lens is corrected. And a method for optically adjusting the lens system.
  • an observation apparatus manufactured by using the manufacturing method of the twenty-second aspect, and a projection optical system for projecting and exposing a mask pattern onto a photosensitive substrate.
  • An exposure apparatus is provided.
  • FIG. 1 is a view schematically showing a configuration of an observation apparatus and an exposure apparatus provided with the observation apparatus according to the embodiment of the present invention.
  • FIG. 2 is a diagram showing a lens configuration of the objective lens of Example 1 included in the FIA-based alignment device that is the observation device of the present embodiment.
  • FIG. 3 is a diagram illustrating various aberrations of the objective lens of the first example.
  • FIG. 4 is a diagram showing a lens configuration of an objective lens of Example 2 included in the FIA system alignment device of the present embodiment.
  • FIG. 5 is a diagram illustrating various aberrations of the objective lens of the second example.
  • FIG. 6 is a diagram showing RMS values of higher-order spherical aberration components generated when the center thickness of each lens and the air gap of each lens constituting the objective lens system of the first embodiment are changed. .
  • FIG. 7 shows the RMS value of the high-order coma aberration component of the wavefront aberration generated when each lens constituting the objective lens system of the first embodiment is decentered along the direction orthogonal to the optical axis.
  • FIG. 8 shows the shortest wavelength (530 nm) of the used light among the wavefront aberrations generated when each lens constituting the objective lens system of the first embodiment is decentered along the direction orthogonal to the optical axis.
  • FIG. 9 is a diagram illustrating an absolute value of a difference between a coma aberration component and an RMS value.
  • FIG. 9 is a flowchart showing a manufacturing flow of each optical member constituting the objective lens system of the present embodiment.
  • FIG. 10 is a diagram schematically showing a configuration of an interferometer device for measuring a wavefront aberration due to a distribution of a refractive index of an optical member.
  • FIG. 11 is a diagram schematically showing a configuration of an interferometer device for measuring a wavefront aberration of an optical surface of each optical member with respect to a reference surface.
  • FIG. 12 is a diagram showing a modification of the flowchart of FIG.
  • FIG. 13 is a flowchart showing a flow of assembling and optically adjusting each optical member constituting the objective lens system of the present embodiment.
  • FIG. 14 shows the overall configuration of the objective lens system of the present embodiment assembled.
  • FIG. 15 is a diagram schematically showing a configuration of an interferometer device for measuring a wavefront aberration remaining in the assembled objective lens system.
  • FIG. 16 is a diagram showing a modified example of the interferometer device of FIG.
  • FIG. 17 shows the wavefront aberration corresponding to the actual polished surface in Table 7 in a contour diagram of 0.05 ⁇ .
  • FIG. 18 is an exaggerated three-dimensional view of the undulation of the actual polished surface in Table 7.
  • FIG. 19 shows the wavefront aberration corresponding to the 30 plane in Table 7 by a contour map of 0.05 ⁇ .
  • FIG. 20 is an exaggerated three-dimensional view of the swell of the 30 plane in Table 7.
  • FIG. 21 shows the wavefront aberration corresponding to the 30th higher-order coma composite surface in Table 7 by a contour map of 0.005 ⁇ .
  • FIG. 22 is an exaggerated three-dimensional view of the undulation of the 3S higher-order coma composite surface shown in Table 7.
  • FIG. 23 is a flowchart of a method for obtaining a semiconductor device as a micro device using the exposure apparatus of the present embodiment.
  • FIG. 24 shows an example of using the exposure apparatus of the present embodiment.
  • 5 is a flowchart of a method for obtaining an indicator element.
  • the objective lens system of the present invention includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, and satisfies the following conditional expression (1).
  • d l is the center thickness of the lens L1 disposed closest to the object side in the first lens group G1.
  • D O is an air-equivalent distance along the optical axis between the object-side surface of the lens L1 disposed closest to the object and the object.
  • Conditional expression (1) defines an appropriate range for the ratio of the center thickness of the lens L1 to the WD (work distance) of the objective lens system.
  • a prism as a light beam deflecting means is arranged in the optical path between the lens surface closest to the object and the object surface. Is done. Therefore, the required WD is required to secure enough space to place the prism.
  • correction of spherical aberration is mainly performed by the lens L 1 arranged closest to the object side, and this lens L 1 has the largest power (refractive power). If the center thickness d l of the lens L 1 increases while maintaining the power required for the spherical aberration, the radius of curvature of the surface of the lens L 1 decreases.
  • the objective lens system of the present invention is required to have a sufficiently small high-order spherical aberration caused by a change in the center thickness of each lens and the air gap of each lens.
  • R 1 is the Abbe number of the lens on the object side of the pair of lenses arranged closest to the image in the second lens group G2.
  • Re 2 is the Abbe number of the lens on the image side of the pair of lenses.
  • Conditional expressions (2) to (4) specify the conditions necessary for favorably correcting axial chromatic aberration of the entire objective lens system.
  • the axial chromatic aberration be properly corrected over the entire wavelength range of the used light.
  • the difference in coma aberration for each wavelength generated due to the eccentricity of each lens component is sufficiently small.
  • the pair of lenses disposed closest to the image in the second lens group G2 is a lens component that emits an on-axis light beam as parallel light in the infinity objective lens system.
  • conditional expressions (2) to (4) it is possible to satisfactorily correct axial chromatic aberration and to suppress chromatic coma even when decentered.
  • the pair of lenses be configured as a cemented lens.
  • D is the center thickness of the lens component (including the cemented lens) with the largest negative refractive power.
  • L is the distance along the optical axis between the image side surface of the lens closest to the image side in the second lens group G2 and the object, that is, the total length of the objective lens system.
  • Conditional expression (5) is based on the relationship between the center thickness of the lens component having the largest negative refractive power and the objective lens. An appropriate range is specified for the ratio to the overall length of the strain.
  • a prism as a light beam deflecting means is disposed in the optical path between the lens surface closest to the object and the object surface. Is done. As a result, the total length L of the objective lens system is restricted due to the restriction of the WD for arranging the prism.
  • the lens unit L4 is a lens component having the largest negative refractive power and mainly corrects coma.
  • conditional expression (5) If the value falls outside the range of the conditional expression (5), the negative refracting power of the lens unit L4 becomes weak, and it becomes difficult to correct necessary coma. As described above, by satisfying conditional expression (5), the higher-order spherical aberration generated due to the change of the center thickness of each lens and the air gap of each lens, and the higher-order spherical aberration generated by the eccentricity of each lens component The amount of coma can be suppressed well, and the coma can be corrected well.
  • the remaining wavefront is designed by designing at least one of the differences between the higher-order component of the wavefront aberration generated by the optical adjustment of the objective lens system and the decentering coma aberration for each wavelength. Higher-order aberration components, and thus the entire wavefront aberration, can be favorably suppressed.
  • the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and the wavefront aberration of each surface of each optical member with respect to the reference plane is suppressed, so that each optical member is manufactured.
  • an object formed via an imaging optical system including the objective lens system of the present invention In an observation apparatus for observing an image, a wavefront aberration component remaining in the objective lens system and, consequently, in the imaging optical system can be favorably suppressed. Further, in the exposure apparatus provided with the observation device of the present invention, for example, the mask and the photosensitive substrate can be aligned with high accuracy with respect to the projection optical system using the observation device to perform favorable exposure. Furthermore, in the method for manufacturing a micro device using the exposure apparatus of the present invention, a good micro device can be manufactured through a good exposure step.
  • the present invention is described by expressing wavefront aberration by Zernike polynomial. Therefore, the following is a description of the fundamental matters regarding the expression of the wavefront aberration and its components by Zernike polynomials.
  • polar coordinates are used as the coordinate system
  • Zernike cylindrical functions are used as the orthogonal function system.
  • the phase shift between the reflected light from the reference Fizeau spherical surface and the reflected light from the optical surface is determined. Measured as wavefront aberration. Also, when measuring the transmitted wavefront aberration of the objective lens system, the reflected light from the reference Fizeau plane (Fizeau flat) is collected once by the objective lens system, reflected by the reflective spherical surface, and returned to the Fizeau plane again. The phase shift with the returned light is measured as wavefront aberration. In either case, the measurement result of the interferometer is represented by the same wavefront aberration function, but the surface measurement directly represents the surface shape error.
  • the most common Fizeau interferometer is described as an example, but an interferometer that can perform the same phase difference measurement, such as a Twyman-Green interferometer, a Mach-Zehnder interferometer, or a shearing interferometer, is used.
  • a wavefront splitting type wavefront aberration measuring device using a microlens array which has been actively developed in recent years, may be used.
  • the deviation from the reference plane may be measured using a three-dimensional measuring device that directly measures the lens surface by a contact method and measures a three-dimensional structure.
  • the polar coordinates are defined on the exit pupil plane, and the obtained wavefront aberration W is expressed as W ( ⁇ , ⁇ ).
  • W ⁇ , ⁇
  • / 0 is a normalized pupil half-pupil in which the radius of the exit pupil is normalized to 1
  • is a radial angle in polar coordinates.
  • W (p, ⁇ ) ⁇ Cn Z n (p, ⁇ )
  • the evaluation method based on the wavefront aberration W in the prior art used the maximum-minimum difference (PV value) of all the components W of the wavefront difference and the RMS value as the evaluation index.
  • PV value maximum-minimum difference
  • RMS value the maximum-minimum difference
  • Performance may not be achieved. Therefore, in the present invention, each component of the wavefront aberration W is considered.
  • the wavefront aberration W can be classified into a rotationally symmetric component, an odd symmetric component, and an even symmetric component.
  • the rotationally symmetric component is a term that does not include 6 » that is, a rotationally symmetric component in which the value at a certain coordinate and the value at a coordinate obtained by rotating the coordinate by an arbitrary angle around the center of the pupil are equal.
  • An odd symmetric component is a term that includes a trigonometric function that is an odd multiple of the radial angle 0, such as sin0 (or cos0), sin3 ⁇ (or cos3), that is, the value at a certain coordinate and its value.
  • the even symmetric component is a term including a trigonometric function that is an even multiple of the radial angle 0, such as sin20 (or cos2 0), sin4 ⁇ (or cos4 ⁇ ), that is, a value at a certain coordinate, It is an even-symmetric component whose value is the same as the value of the coordinates rotated by an even number of 360 ° around the center of the pupil.
  • the components of the wavefront aberration W do not include the terms related to the expansion coefficients C1 to C4 as error components generated at the time of measurement by the interferometer.
  • the first term related to the expansion coefficient C 1 is a constant term.
  • the second and third terms related to the expansion coefficients C 2 and C 3 are the tilt components (X and Y directions).
  • the fourth term related to the deployment coefficient C4 is a power component.
  • the rotationally symmetric component Wrot, the odd symmetric component Wodd, and the even symmetric component Wevn of the wavefront aberration W are expressed by the following equations (7) to (9), respectively.
  • each component considered in the embodiment described later that is, all components W, rotationally symmetric component Wrot, rotationally symmetric high-order component Wroth, non-rotationally symmetric component Wrnd, non-rotationally symmetric component after ass correction Wrndmas, ass correction
  • High-order aberration component Wmassacoma is expressed as follows.
  • Wmascoma W— C 5-C 6 -C 7 -C 8
  • Wmassacoma W— C 5 -C 6-C 7-C 8-C 9
  • the component W is a component obtained by correcting the tilt component and the power component from the wavefront aberration of each surface with respect to the reference surface.
  • the rotationally symmetric higher-order component Wroth is the rotationally symmetric component second-order fourth-order residual obtained by removing the quadratic-quadratic curve component from the rotationally symmetric component Wr 01.
  • the non-rotationally symmetric component Wrndmas after the ass correction is the non-rotationally symmetric component after the ass component has been corrected from all components W.
  • the gas correction Wmas is a component obtained by correcting the gas component from all the components W.
  • the ass and low-order spherical aberration correction Wmassa are components obtained by correcting the ass component and the low-order spherical aberration component from all the components W.
  • the as and low-order coma aberration correction W mascoma is a component obtained by correcting the as-component and the low-order coma component from all the components W.
  • the ass component is a wavefront aberration component proportional to the square of the distance from the optical axis on a certain meridional surface, and a wavefront aberration component proportional to the square of the distance from the optical axis on a surface orthogonal to the meridional surface. This is the component with the largest difference.
  • Non-rotationally symmetric component after phase correction
  • FIG. 1 is a view schematically showing a configuration of an observation apparatus and an exposure apparatus provided with the observation apparatus according to the embodiment of the present invention.
  • the present invention is applied to a FIA-based alignment device as an observation device for detecting the position of a photosensitive substrate in an exposure device.
  • the Z axis is parallel to the optical axis of the projection optical system PL of the exposure apparatus, and the X axis is perpendicular to the paper plane of FIG. 1 in a plane perpendicular to the Z axis, and the Z axis is perpendicular to the Z axis.
  • the Y-axis is set in a direction perpendicular to the plane of FIG.
  • the illustrated exposure apparatus includes an exposure illumination system (not shown) for uniformly illuminating a reticle R as a mask (projection master) with appropriate exposure light.
  • the reticle R is supported on the reticle stage 1 substantially parallel to the XY plane, and a circuit pattern to be transferred is formed in the pattern area PA.
  • the light illuminated by the exposure illumination system and transmitted through the reticle R reaches the wafer W via the projection optical system PL, and a pattern image of the reticle R is formed on the wafer W.
  • the wafer W is c Z stage 2 2, which is substantially parallel to the support to the XY plane on a Z stage 2 2 via the Wehahoru da 2 1, the stage control system 2 4, the optical axis of the projection optical system PL It is configured to be driven along.
  • the Z stage 22 is supported on the XY stage 23.
  • the XY stage 23 is also configured to be driven two-dimensionally in the XY plane perpendicular to the optical axis of the projection optical system PL by the stage control system 24.
  • the stage control system 24 As described above, in the exposure apparatus, prior to the projection exposure, it is necessary to optically align the pattern area PA on the reticle R with each of the exposure areas on the ⁇ : [: C W. It is necessary. Therefore, an X-axis position and a Y-axis position of a wafer mark WM in a reference coordinate system, which is an alignment mark formed of a pattern (eg, a step pattern) formed on the wafer W, are detected, and the alignment is performed based on the position information. Is performed.
  • the FIA-based alignment device shown in FIG. 1 includes a light source 3 for supplying alignment light AL as illumination light having a wide wavelength bandwidth.
  • a light source such as a halogen lamp can be used.
  • the wavelength band of the alignment light is, for example, 530 nm to 800 nm.
  • the alignment light AL from the light source 3 enters a light guide 4 such as an optical fiber via a relay optical system (not shown), and propagates through the inside.
  • the alignment light A L emitted from the exit end of the light guide 4 is restricted via, for example, an illumination aperture stop 27 having a circular opening, and then enters a condenser lens 29.
  • the alignment light A L via the condenser lens 29 is once condensed, and then enters the illumination relay lens 5 via an illumination field stop (not shown).
  • the alignment light AL converted into parallel light via the illumination relay lens 5 passes through the half prism 6 and then enters the objective lens 7.
  • the alignment light AL condensed by the objective lens 7 is reflected by the reflecting surface of the reflecting prism 8 downward in the figure, and then illuminates the wafer mark WM formed on the wafer W.
  • the illumination optical system is configured to illuminate the wafer mark WM by epi-illumination.
  • the reflected light (including the diffracted light) from the wafer mark WM with respect to the illumination light enters the half prism 6 via the reflecting prism 8 and the objective lens 7.
  • the light reflected upward in the drawing at the half prism 6 forms an image of the wafer mark WM on the index plate 12 via the second objective lens 11.
  • the light from this mark image is relay lens
  • the light enters the XY-branch half prism 15 via the system (13, 14) and the image forming aperture stop 30 arranged in a position optically substantially common to the illumination aperture stop 27 in the optical path.
  • the light reflected by the XY branch half prism 15 is incident on the CCD 16 for Y direction, and the light transmitted through the XY branch half prism 15 is incident on the CCD 17 for X direction.
  • reflecting prism 8, objective lens 7, half prism 6, second objective lens 11, indicator plate 12, relay lens system (13, 14), imaging aperture stop 30, and half prism 15 Constitutes an imaging optical system for forming a mark image based on reflected light from the wafer mark WM with respect to the illumination light.
  • a mark image is formed on the imaging surface of the Y-direction CCD 16 and the X-direction CCD 17 together with the index pattern image of the index plate 12.
  • Output signals from the Y-direction CCD 16 and the X-direction CCD 17 are supplied to a signal processing system 18. Further, the position information of the wafer mark WM obtained by the signal processing (waveform processing) in the signal processing system 18 is supplied to the main control system 25.
  • the main control system 25 detects the X-direction position and the Y-direction position of the wafer W based on the position information of the wafer mark WM from the signal processing system 18, and responds to the detected X-direction position and Y-direction position of W.
  • a stage control signal is output to the stage control system 24.
  • the stage control system 24 appropriately drives the XY stage 23 according to the stage control signal to perform the alignment of the wafer W.
  • the CCD 16 for the Y direction, the CCD 17 for the X direction, the signal processing system 18, and the main control system 25 transmit the wafer W based on the position information of the mark image formed via the imaging optical system. It constitutes a photoelectric detecting means for detecting the position.
  • FIG. 2 is a diagram showing a lens configuration of the objective lens of Example 1 included in the FIA-based alignment device that is the observation device of the present embodiment.
  • the objective lens 7 of the first embodiment includes, in order from the object side (that is, the wafer mark WM side), a first lens group G1 having a positive refractive power and a negative refractive power.
  • Second lens group G 2 It is composed of
  • the first lens group G 1 includes, in order from the object side, a biconvex lens L 1, a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side.
  • It is composed of a cemented lens L2 formed by bonding and a cemented lens L3 formed by bonding a biconvex lens and a biconcave lens.
  • the second lens group G2 includes, in order from the object side, a cemented lens L4 formed by bonding a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a biconcave lens. It is composed of a cemented lens L5 formed by bonding L51 and a biconvex lens L52. Note that a reflecting prism 8 is arranged in the optical path between the objective lens 7 and the wafer mark WM.
  • Table 1 below shows values of specifications of the objective lens of the first example.
  • f is the focal length of the objective lens
  • NA is the object side numerical aperture of the objective lens
  • d O is the air along the optical axis between the most object side lens surface and the object surface of the objective lens. The converted distances are shown respectively.
  • the surface number is the order of the surfaces from the wafer side along the direction in which the light beam travels from the object surface, i.e., plane 8 to the image surface
  • r is the radius of curvature (mm) of each surface
  • d is The on-axis spacing of each surface, that is, the surface spacing (mm)
  • Li is the Abbe number.
  • the distance from the object surface (wafer surface) to the object-side surface of the lens L1 is 48.5 mm, and the thickness is 28 mm and the refractive index is 1.56 8 8 3
  • the glass block (corresponding to the reflective prism 8) with Abbe number 56.05 is arranged.
  • Table 1 and (2) below the distance from the object plane to the object-side surface of the lens L1 is shown in terms of air equivalent length.
  • the following aberrations in FIGS. 3 and 5 show aberrations of the optical system including the glass block. Table 1
  • FIG. 3 is a diagram showing various aberrations of the objective lens of the first example.
  • FN ⁇ is the F-number
  • Y is the image height
  • e is the e-line (wavelength 546.1 nm)
  • C is the C line (wavelength 656.3 nm)
  • A is the A line ( The wavelength is 78.2 nm).
  • a solid line indicates a sagittal image plane
  • a broken line indicates a meridional image plane.
  • FIG. 4 is a diagram showing a lens configuration of the objective lens of Example 2 included in the FIA-based alignment device that is the observation device of the present embodiment.
  • the objective lens 7 of the second embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. It is configured.
  • the first lens group G1 is composed of, in order from the object side, a biconvex lens Ll, a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side. It is composed of a cemented lens L2 and a cemented lens L3 formed by laminating a bifocal lens and a biconcave lens.
  • the second lens group G2 includes, in order from the object side, a cemented lens L4 formed by bonding a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a biconcave lens. It is composed of a cemented lens L5 formed by bonding L51 and a biconvex lens L52. Note that a reflecting prism 8 is arranged in the optical path between the objective lens 7 and the wafer mark WM.
  • Table 2 below gives data of the specifications of the objective lens of the second example.
  • f is the focal length of the objective
  • NA is the object-side numerical aperture of the objective
  • d0 is the objective. The air-equivalent distance along the optical axis between the lens surface closest to the object side of the lens and the object surface is shown.
  • FIG. 5 is a diagram showing various aberrations of the objective lens of the second example.
  • F NO is the F number
  • Y is the image height
  • e is the e-line (wavelength 546.1 nm)
  • C is the C line (wavelength 656.3 nra)
  • A is the A line ( The wavelength is 78.2 nm).
  • a solid line indicates a sagittal image plane
  • a broken line indicates a meridional image plane.
  • the objective lens of the second embodiment similarly to the first embodiment, the objective lens of the second embodiment has excellent correction of various aberrations including chromatic aberration at the design level, and has excellent imaging performance. Understand.
  • the objective lens system that is, the objective lens 7 of the present embodiment
  • a method for manufacturing the observation device that is, the FIA-based alignment device
  • aberrations in an objective lens system and the like are caused by non-uniformity of the refractive index distribution of an optical material (glass material) and a polished surface error.
  • optical material glass material
  • a polished surface error even if there is no non-uniformity of the refractive index distribution and no polished surface error, errors in the center thickness and air gap of each lens and errors in the eccentricity of lens components in the direction perpendicular to the optical axis will occur during manufacturing. appear.
  • the objective lens system is designed such that the higher order components of wavefront aberration and the eccentric coma for each wavelength, which are generated by the optical adjustment of the objective lens system, are not more than predetermined values.
  • each of the constituent elements of the objective lens 7 is The RMS (root mean square) value of the higher order spherical aberration component of the wavefront aberration generated when the center thickness of the lens and the air spacing of each lens are changed by d (mm), respectively, is (30 ⁇ d ⁇ NA 6 ) ⁇ ⁇ 1 or less.
  • the RMS value of the higher order spherical aberration component is obtained based on the 16th term of the Zernike polynomial.
  • FIG. 6 is a diagram showing RMS values of higher-order spherical aberration components generated when the center thickness of each lens and the air gap of each lens constituting the objective lens system of the first embodiment are changed.
  • the vertical axis indicates RM S values of higher-order spherical aberration component generated is in multiples of (d ⁇ ⁇ 6) ⁇ ⁇ 1.
  • the RMS value of the higher-order spherical aberration component partially exceeds (30 ⁇ d ⁇ NA 6 ) ⁇ ⁇ 1, but the RMS value of the first embodiment is In the objective lens 7 (Example in FIG.
  • the RMS value of the higher-order spherical aberration component is set to (30 ⁇ d ⁇ NA 6 ) ⁇ ⁇ 1 or less throughout.
  • the RMS value of the higher-order spherical aberration component is set to (30 ⁇ d ⁇ NA 6 ) ⁇ ⁇ 1 or less throughout.
  • each lens constituting the objective lens 7 is The RMS value of the higher-order coma difference component of the wavefront aberration that occurs when the beam is decentered by s (mm) along the direction is set to (50 ⁇ s ⁇ NA 5 ) ⁇ ⁇ 1 or less.
  • the RMS value of the higher-order coma aberration component is obtained based on the 14th term of the Zernike polynomial.
  • FIG. 7 shows RMS values of higher-order coma aberration components among wavefront aberrations generated when each lens constituting the objective lens system of the first embodiment is decentered along a direction orthogonal to the optical axis.
  • FIG. 7 the vertical axis, RM S values of high-order coma aberration components generated indicates a has many times the (s ⁇ ⁇ 5) ⁇ ⁇ 1. If you see FIG.
  • the decentering coma aberration of the shortest wavelength of the used light is used among the wavefront aberrations generated when each lens constituting the objective lens 7 is decentered by s (mm) along the direction orthogonal to the optical axis.
  • the absolute value of the difference between the RMS value of the component and the RMS value of the decentered coma component of the longest wavelength of the used light is set to (50 ⁇ s ⁇ NA 3 ) ⁇ ⁇ 1 or less.
  • the absolute value of the difference between the RMS value of the eccentric coma component of the shortest wavelength of the used light and the RMS value of the eccentric coma component of the longest wavelength of the used light is obtained based on the seventh term of the Zernike polynomial. .
  • FIG. 8 shows the shortest wavelength (530 nm) of the used light among the wavefront aberrations that occur when each lens constituting the objective lens system of the first embodiment is decentered along the direction orthogonal to the optical axis.
  • FIG. 9 is a diagram showing an absolute value of a difference between an RMS value of an eccentric coma aberration component and an RMS value of an eccentric coma aberration component of the longest wavelength (800 nm) of light used.
  • the vertical axis represents the absolute value of the difference between the RMS value of the shortest wavelength eccentric coma component of the used light and the RMS value of the longest wavelength eccentric coma component of the used light (s-NA 3 ) ⁇ Indicates how many times ⁇ 1 is. Referring to FIG.
  • the difference between the RMS value of the decentered coma component of the shortest wavelength of the used light and the RMS value of the decentered coma aberration component of the longest wavelength of the used light is shown. Is set to (50 ⁇ s ⁇ NA 3 ) ⁇ ⁇ 1 or less throughout.
  • FIG. 9 is a flowchart showing a manufacturing flow of each optical member constituting the objective lens system of the present embodiment.
  • a block glass material (blanks) for forming each optical member is manufactured (S11).
  • the homogeneity of the refractive index of the manufactured block glass material is inspected (S12).
  • the distribution of the refractive index of the block glass material is measured using the interferometer shown in FIG.
  • a block glass material 103 as a test object is set at a predetermined position in a sample case 102 filled with oil 101.
  • the emission light from the interferometer unit 105 controlled by the control system 104 is incident on a Fizeau flat (Fiso one plane) 106 supported on the Fizeau stage 106a.
  • a Fizeau flat Fiso one plane
  • the light reflected by the Fizeau flat 106 becomes reference light and returns to the interferometer unit 105.
  • the light transmitted through the Fizeau flat 106 becomes measurement light and is incident on the test object 103 in the sample case 102.
  • the light transmitted through the test object 103 is reflected by the reflection plane 107 and returns to the interferometer unit 105 via the test object 103 and the Fizeau flat 106.
  • a standard regarding the refractive index homogeneity of the optical member is set.
  • the PV value (peak to valley: difference between maximum and minimum) of the wavefront aberration due to the refractive index distribution of each optical member is set to 0.005 ⁇ or less.
  • is the wavelength of the measurement light of the wavefront aberration.
  • 632.8 nm because a He-Ne laser is used.
  • is 632.8 nm in other standards described later.
  • each optical member For each optical member that does not pass the inspection in accordance with the above-mentioned standard regarding refractive index homogeneity, it is discarded by sorting, or production of block glass material is attempted again to improve quality.
  • each optical member is polished to reduce the surface accuracy of the optical surface to a standard value (S13).
  • S13 standard value
  • the following four standards are provided in parallel with respect to the surface accuracy of the optical surface of each optical member constituting the objective lens system.
  • the first standard for the surface accuracy of the optical surface of each optical member is that the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is 0.001. It is set to ⁇ or less. Also, the RMS value of the rotationally symmetric component Wrot of all components W is set to 0.005 ⁇ or less. In addition, the RMS value of the rotationally symmetric component second-order and fourth-order residual Wroth obtained by removing the second-order and fourth-order curve components from the rotationally symmetric component Wrot is set to 0.003 ⁇ or less.
  • the RMS value of the non-rotationally symmetric component Wrndmas after correcting the negative component from all components W is set to 0.005 ⁇ or less.
  • the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is set to 0. 010 ⁇ or less.
  • the longitudinal RMS value of the longitudinal aberration component W of all components W is set to 0.0007 ⁇ or less.
  • the RMS value of the longitudinal height of the high order component W of all components W is set to 0.005 ⁇ or less.
  • the RMS value of the transverse aberration component W of all components W is set to 0.005 ⁇ or less.
  • all ingredients Lateral aberration high-order component of W The RMS value of the W lateral height is set to 0.003 ⁇ or less.
  • the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is set to 0. It is set to 0 1 0 ⁇ or less. Also, the RMS value of the component Wmas after correcting the negative component from all the components W is set to 0.008 ⁇ or less. Further, the RMS value of the component Wmas sa after correcting the ass component and the low-order spherical aberration component from all the components is set to 0.005 ⁇ or less. The RMS value of the high-order aberration component W massacoma of all components W is set to 0.003 ⁇ or less.
  • the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is set to 0. It is set to 0 1 0 ⁇ or less.
  • the value of the expansion coefficient C9 of the ninth term when the wavefront aberration is represented by Zernike polynomials is set to 0.009 ⁇ or less. Further, the values of the expansion coefficients C10 to C36 of the 10th to 36th terms are set to 0.005? Or less, respectively.
  • the surface accuracy of the polished optical member is inspected using an interferometer (S14). Specifically, the surface accuracy of the optical surface of each optical member is measured using the interferometer shown in FIG. In FIG. 11, light emitted from the interferometer unit 112 controlled by the control system 111 enters the Fizeau lens 113 supported on the Fizeau stage 113a. Here, the light reflected on the reference surface (one Fize surface) of the Fizeau lens 1 13 becomes the reference light, and returns to the interferometer unit 1 12. On the other hand, the light transmitted through the Fizeau lens 113 becomes measurement light and is incident on the optical surface of the lens 114 to be measured.
  • the measurement light reflected from the optical surface to be inspected of the lens to be inspected 1 14 returns to the interferometer unit 1 12 via the Fizeo-lens 1 13. In this way, based on the phase shift between the reference light and the measurement light returned to the interferometer unit 112, the wavefront aberration of the test optical surface of the test lens 114 with respect to the reference surface is measured.
  • FIG. 11 shows the Fizeau lens 113 as a single lens, the actual Fizeau lens is composed of a plurality of lenses (lens groups).
  • each optical component that does not pass the inspection for example, according to the 4th standard, try additional polishing or change the polishing process and try a new polishing.
  • a coating is applied to the optical surface of each optical member (S15).
  • each optical member constituting the objective lens system of the present embodiment is completed (S16).
  • an optical surface inspection (S15 ') by an interferometer can be performed.
  • FIG. 13 is a flowchart showing a flow of assembling and optically adjusting each optical member constituting the objective lens system of the present embodiment.
  • FIG. 14 is a diagram showing the overall configuration of the assembled objective lens system of the present embodiment.
  • the lens components L1 to L5 are incorporated in the lens barrel MT while being held by the corresponding lens chambers LC1 to LC5.
  • a separating ring SA is provided between the lens chamber L C3 holding the lens component L 3 and the lens chamber L C holding the lens component L 4.
  • the lens barrel MT is provided with, for example, an eccentricity adjusting screw V S5 for adjusting the eccentricity of the lens component L5.
  • eccentricity adjusting screws V S1 to V S4 for adjusting the eccentricity of the other lens components L 1 to L 4 are also provided as necessary.
  • each lens component is inserted into each lens chamber as a hardware, and the eccentricity is adjusted so that there is no eccentricity to each lens chamber (S21). Then, each lens component is incorporated into the lens barrel while being held by the lens chamber (S22).
  • the transmitted wavefront aberration (wavefront aberration based on the transmitted light) of the objective lens system is measured using an interferometer, and an inspection is performed in accordance with the later-described standard (S23). Specifically, the wavefront aberration remaining in the assembled objective lens system is measured using the interferometer shown in FIG. In FIG.
  • the light emitted from the interferometer unit 152 controlled by the control system 151 enters the Fizeau flat 153 supported on the Fizeau stage 153a.
  • the light reflected by the Fizeau flat 15 3 becomes the reference light, and returns to the interferometer unit 15 2.
  • the light transmitted through the Fizeau flat 153 becomes measurement light, and enters the objective lens system 154, which is the test optical system.
  • Measurement light transmitted through the optical system under test 15 4 is reflected
  • the light enters the reflective spherical unit 156 via a parallel flat plate 155 having an optical path length corresponding to the prism 8.
  • the measurement light reflected by the reflective spherical unit 156 returns to the interferometer unit 152 via the parallel flat plate 155, the test optical system 154 and the Fizeau flat 153. In this way, based on the phase shift between the reference light and the measurement light returned to the interferometer unit 152, the wavefront aberration remaining in the objective lens system 154, which is the test optical system, is measured.
  • the objective lens system 154 and the reflecting spherical unit 156 are provided by interposing a parallel plane plate 155 having an optical path length corresponding to the reflecting prism 8. Are arranged along a linear optical axis.
  • a reflecting prism 161 having a shape corresponding to the reflecting prism 8 can be provided instead of the parallel plane plate 1555.
  • the objective lens system 154 and the reflecting spherical unit 156 cannot be arranged along the linear optical axis due to the deflecting action of the reflecting prism 161.
  • a support 162 for the objective lens system 15 4 and the reflecting prism 16 1 is required, and the objective lens system 15 4, the reflecting prism 16 1 and the reflecting spherical unit 15 6 Alignment is more difficult than with the interferometer device of Fig. 15.
  • the reflecting prism 16 1 and the support 16 2 are actually used parts, the manufacturing error of the reflecting prism 16 1 and the mounting error on the support 16 2 May occur. In this case, it is possible to adjust the wavefront aberration generated by these errors (adjustment of low-order aberration components).
  • low-order spherical aberration is slightly generated due to an error in the optical path length of the reflecting prism, or when the reflecting prism is tilted or the entire reflecting prism is tilted, low-order coma aberration is reduced. May occur slightly.
  • Such aberrations are preferably corrected by adjusting the objective lens system.
  • the following three standards are concurrently provided for the optical performance of the objective lens system.
  • the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration remaining in the objective lens system is set to 0.012 ⁇ or less.
  • the RMS value of the rotationally symmetric component Wrot of all components W is set to 0.007 ⁇ or less.
  • the RMS value of the rotational symmetric component W roth obtained by removing the quadratic and quartic curve components from the rotationally symmetric component Wrot is set to 0.005 ⁇ or less.
  • the RMS value of the non-rotationally symmetric component Wrndmas after correcting the gas component from all components W is set to 0.005 ⁇ or less.
  • the RMS value of all components W after correcting the tilt component and the power component from the remaining wavefront aberration is set to 0.012 ⁇ or less.
  • the longitudinal RMS value of the longitudinal aberration component W of all components W is set to 0.008 ⁇ or less.
  • the RMS value of the vertical order high order component W of all components W is set to 0.006 ⁇ or less.
  • the RMS value of the transverse aberration component W of all the components W is set to 0.005 ⁇ or less.
  • the RMS value of the lateral component W lateral height of all components W is set to 0.004 ⁇ or less.
  • the RMS value of all the components W after correcting the tilt component and the power component from the remaining wavefront aberration is set to 0.012 ⁇ or less.
  • the RMS value of the component Wmas after correcting the negative component from all the components W is set to be equal to or less than 0.010 ⁇ .
  • the RMS value of the component Wmassa after correcting the positive component and the low-order spherical aberration component from all the components W is set to 0.008 ⁇ or less.
  • the RMS value of the high-order aberration component Wmassacoma of all components W is set to 0.0007 ⁇ or less.
  • the RMS value of all components W after correcting the tilt component and power component from the remaining wavefront aberration is set to 0.012 ⁇ or less.
  • the value of the expansion coefficient C9 in the ninth term is set to 0.009 ⁇ or less.
  • the values of the expansion coefficients C10 to C36 in the tenth to thirty-sixth terms are set to 0.008 ⁇ or less, respectively.
  • This auxiliary standard is an auxiliary standard for the above-mentioned first to third standards. In other words, in the above-described inspection step S23, the power of performing the inspection in accordance with one standard arbitrarily selected from the first to third standards regarding the optical performance of the objective lens system is set. It is preferable to satisfy the above at the same time.
  • the standard regarding the optical performance of the objective lens system ie, the performance If the inspection fails (indicated by NG in the figure) in the light of the standards selected arbitrarily from the first to third standards and, if necessary, auxiliary standards, as shown in Fig. 14 Adjust the eccentricity by changing the spacing ring SA and the eccentricity adjusting screw VS5 (S24). In this way, after assembling the components as necessary (S22), the transmitted wavefront aberration of the objective lens system is measured, and the inspection is performed according to the standard (S23). As a result, when the inspection is passed in accordance with the standard regarding the optical performance of the objective lens system (indicated by ⁇ K in the figure), the adjustment of the objective lens system and, consequently, the manufacture of the objective lens system are completed (S25).
  • each optical member other than the objective lens system such as the lens of the second objective lens 11, the lenses of the relay lens system (13, 14), the reflecting prism 8, the half prism 6 and 15, etc.
  • the diameter of the light beam passing therethrough is substantially smaller than in each optical member constituting the objective lens system.
  • a standard is set as a target value for the optical performance of the imaging optical system including the objective lens system.
  • the longitudinal RMS value after correcting the tilt component and the power component from the wavefront aberration remaining in the imaging optical system after optical adjustment is set to 0.012 ⁇ or less.
  • the RMS value next to the transverse aberration component W after correcting the tilt component and the power component from the remaining wavefront aberration is set to 0.006 ⁇ or less.
  • Table 3 shows the relationship between the surface accuracy of each surface of each optical member constituting the objective lens system of the first embodiment and the performance of the objective lens system.
  • Table 3 shows that the Zernike coefficient ⁇ corresponds to the ⁇ term.
  • the surface accuracy of each surface is calculated using the expansion coefficients C1 to C3 of the first to third terms when the wavefront aberration of each surface with respect to the reference surface is expressed by Zernike polynomials.
  • Objective lens performance is the performance of the objective lens system that is expected to be calculated based on the accuracy of each surface, and the wavefront aberration remaining in the objective lens system is expressed in terms of Zelke's polynomial, as defined in Items 1 to 36.
  • the objective lens standard corresponds to the auxiliary standard for the optical performance of the objective lens system, and the expansion coefficient C1 of the first to 36th terms when the wavefront aberration remaining in the objective lens system is expressed by a Zernike polynomial
  • Table 4 below corresponds to Table 3 and verifies the validity of the first to third standards regarding the optical performance of the objective lens system. Therefore, Table 3 shows the values of each expansion coefficient, while Table 4 shows the RMS value of each wavefront aberration component included in the first to third standards related to the optical performance of the objective lens system. Is shown.
  • the component indicates each wavefront aberration component included in the first to third standards regarding the optical performance of the objective lens system.
  • the objective lens performance is the performance of the objective lens system that is predicted by calculation based on the accuracy of each surface, and the expected RMS value of each component of the wavefront aberration remaining in the objective lens system is ⁇
  • Objective lens standards 1 to 3 correspond to the first to third standards regarding the optical performance of the objective lens system, and the allowable RMS value of each component of the wavefront aberration remaining in the objective lens system is ⁇ .
  • Table 5 shows the relationship between the performance of the three prototype objective lens systems according to the conventional standard and the performance of the objective lens system of the first embodiment according to the present invention.
  • the Zernike coefficient n indicates that it corresponds to the n-th term.
  • the wavefront aberration remaining in the three prototype objective lens systems manufactured according to the conventional standard so that the RMS value of all components of the wavefront aberration of each surface with respect to the reference surface is 0.01 or less Is expressed by a Zernike polynomial
  • the wavefront aberration remaining in the objective lens system of the first embodiment manufactured in accordance with the standard for the refractive index homogeneity and the fourth standard for the surface accuracy is represented by the first to 36th terms when the wavefront aberration is represented by Zelke's polynomial.
  • Table 6 below is a table corresponding to Table 5, where the three prototype objective lens systems and the objective lens system of the first embodiment satisfy the first to third standards regarding performance. It is to verify that. Therefore, while Table 5 shows the values of each expansion coefficient, Table 6 shows the RMS value of each wavefront aberration component included in the first to third standards regarding the optical performance of the objective lens system. I have.
  • the component indicates each wavefront aberration component included in the first to third standards regarding the optical performance of the objective lens system.
  • High-order aberration component 0.011 0.010 0.011 0.002 Referring to Table 6, manufacture according to the conventional standard so that the RMS values of all components of the wavefront aberration with respect to the reference surface of each surface are not more than 0.01 ⁇ . Also, it can be seen that the first to third standards of the present embodiment regarding the performance of the objective lens system are not satisfied. On the other hand, by manufacturing according to the standard regarding the refractive index homogeneity and the standard regarding the surface accuracy of the present embodiment, the first to third standards of the present embodiment regarding the performance of the objective lens system must be satisfied. I understand.
  • Table 7 below shows the fourth standard for the surface accuracy of the present embodiment, and the conventional singular surface that causes the RMS value of all the components of the wavefront aberration to be less than 0.01 ⁇ but causes performance degradation. The relationship is shown. In Table 7, it is shown that the Zernike coefficient ⁇ corresponds to the ⁇ term.
  • the actual polished surface corresponds to the surface actually polished according to the conventional technology so that the RMS value of all the components of the wavefront aberration is equal to or less than 0.1 ⁇ ⁇ , and when the wavefront aberration is expressed by Zernike polynomial
  • the 30 surface corresponds to the surface where the RMS value of all the components of the wavefront aberration is less than 0.01 ⁇ but only the 10th term of the Zernike polynomial is large, and the wavefront aberration is expressed by the Zernike polynomial
  • the RMS value of all components of the wavefront aberration is less than 0.01 ⁇ , but the 10th and 14th terms of the Zernike polynomials are generated by almost the same amount.
  • FIG. 17 shows the wavefront aberration corresponding to the actual polished surface shown in Table 7 in a contour diagram of 0.005 ⁇ .
  • FIG. 18 is an exaggerated three-dimensional view of the undulation of the actual polished surface in Table 7.
  • FIG. 19 shows the wavefront aberration corresponding to surface 30 in Table 7 in a contour diagram of 0.005 ⁇ .
  • FIG. 20 is an exaggerated three-dimensional view of the swell of 30 surfaces in Table 7.
  • FIG. 21 shows the wavefront aberration corresponding to the 30th higher-order coma composite surface in Table 7 as a contour map of 0.005 ⁇ .
  • FIG. 22 is an exaggerated three-dimensional view of the undulation of the 30th higher-order coma composite surface in Table 7.
  • Table 8 is a table corresponding to Table 7, and shows a relationship between the first to third standards relating to the surface accuracy of the present embodiment and the surface accuracy of the conventional singular surface. Therefore, Table 7 shows the values of each expansion coefficient, while Table 8 shows the RMS value of each wavefront aberration component included in the first to third standards for surface accuracy. .
  • the components indicate the wavefront difference components included in the first to third standards for the surface accuracy.
  • Surface accuracy standards are the first to third standards for surface accuracy.
  • Table 9 below shows the effect of one singular surface in Table 7 on the wavefront aberration of the objective lens system.
  • the components are the first criteria for the performance of the objective lens system.
  • Each wavefront aberration component included in the first to third standards is shown.
  • the coefficient is shown as
  • the generated surface is shown as a non-bonded surface with a refractive index of 1.7 (average value). I have.
  • the objective lens system including one lens exceeds the allowable value of the non-rotational component after the first correction of the first standard.
  • the objective lens system that actually contains one polished surface is below the permissible values of all the components of the second standard, but the objective lens system that contains one 30-plane or 30 higher-order coma composite surface has the second tolerance. It exceeds the allowable value of the standard lateral aberration component and the allowable value of the higher order lateral aberration component.
  • the values are lower than the allowable values for all components. In any case, it can be seen that the performance of the objective lens system is greatly deteriorated only by including one singular surface.
  • Table 10 below shows the relationship between the first to third standards for surface accuracy and the fourth standard for surface accuracy.
  • the component indicates each wavefront aberration component included in the first to third standards for the surface accuracy.
  • the objective lens system satisfies the standards arbitrarily selected from the first to third standards and the auxiliary standard for the objective lens system performance Can be satisfied. Furthermore, by manufacturing optical members other than the objective lens system of the imaging optical system in accordance with the standard corresponding to the optical members of the objective lens system, and performing necessary optical adjustments in the assembled imaging optical system, It can meet the standards regarding the performance of the imaging optical system.
  • a single singular surface may generate a wavefront aberration that occupies most of the standard value related to the performance of the objective lens system.
  • Table 7 shows the Zernike data for this type of singular surface, and Table 8 shows the RMS values for each component.
  • This kind of singular surface has a special shape with a large deviation from a true sphere, as shown in FIGS. 18, 20 and 22.
  • Table 9 shows that this kind of It shows how a single singular surface in the objective lens system affects the transmitted wavefront aberration of the objective lens system.
  • the presence of one singular surface causes an aberration of 80% or more of the standard value for the performance of the objective lens system. Therefore, if even one such polished surface is generated, it is highly likely that the standard for the performance of the objective lens system cannot be finally satisfied.
  • unique surfaces such as the 30th surface and the 30th higher-order coma composite surface, only one surface generates aberration exceeding the standard value for the performance of the objective lens system. A singular surface with such a tendency may actually occur, and in such a case, it is considered that an objective lens system that does not satisfy the performance standards will be manufactured.
  • each lens is inserted into the lens chamber with the eccentricity being driven, and each lens chamber into which the lens is inserted is mirrored.
  • the components generated by the mechanical presser mechanism are generally in the order of the coefficients, such as the Zernike coefficient tilt components C2 and C3, the focus component C4, and the positive component C5 and C6. It is thought that they are lined up from the larger one. If the tilt component is within the tolerance, it is already folded and there is no problem.
  • the focus component, the positive component, the coma aberration component, and the spherical aberration component can be corrected by adjusting the distance between the optical members and the eccentricity.
  • the gas component can be corrected by an adjustment mechanism using a cylindrical surface. Therefore, the aberration components that need to be considered by the mechanical mechanism are the 30 components of Cernike coefficients C10 and C11, the higher order components of C12 and C13, and the C14 and C14 components. And higher-order coma components of C15. It is necessary to pay close attention to the generation of these aberration components when assembling them into the lens chamber. However, the generation of these aberration components is ignored in objective lens systems with relatively small diameters (for example, effective diameters of 50 mm or less). It can be kept as small as possible and can be neglected if a smaller mechanism is adopted as needed.
  • the objective lens system performance predicted by calculation based on each surface accuracy satisfies the auxiliary standard of the present embodiment. It is on the street.
  • the cancellation effect of the non-rotationally symmetric component when the lens is incorporated is estimated to be about 0.5.
  • the offset effect will be described. If the number of lenses used in the optical system is large, the non-rotationally symmetric component of the Zernike generated in each lens is offset to some extent by the rotation adjustment of each lens in the plane perpendicular to the optical axis.
  • one of the lenses is By rotating in the plane perpendicular to the optical axis, wavefront aberration can be reduced.
  • an offset effect is expected to be about 0.5.
  • the relationship between the amount of each component included in the standard and the amount of low-order aberration or high-order aberration does not correspond one-to-one.
  • no matter which of the four standards for surface accuracy is adopted it must be set so as to satisfy the standard for the performance of the final objective lens system.
  • By setting a standard for surface accuracy in this way the generation of waviness components on the polished surface is actually reduced. If the standard regarding the surface accuracy is not set, the above-mentioned singular surface is generated, and the standard regarding the performance of the objective lens system and eventually the standard regarding the performance of the imaging optical system cannot be satisfied.
  • the method for estimating the transmitted wavefront aberration of the objective lens system from the Zernike coefficients of each surface is shown below.
  • the Zernike coefficients are standardized for the effective diameter of each lens. Therefore, it is necessary to convert to the beam diameter actually used. Since the surface has already been fitted with the Zellnike function, the radius is reduced at the center of the optical axis and Finding the perfect Zernike coefficient is a radius! It is easily possible by calculating 0 and converting it by the ratio of luminous flux diameter / effective diameter.
  • the ⁇ -V value (peak to valley: difference between maximum and minimum) of the wavefront aberration due to the refractive index distribution of each optical member is suppressed to 0.05 ⁇ or less. From the results of the investigation, it was found that it is possible to supply an optical material that satisfies such accuracy regarding refractive index homogeneity for optical members with a relatively small diameter (for example, an effective diameter of 60 mm or less). .
  • the refractive index distribution of the optical member shows a gentle distribution shape, and there is little local undulation.
  • an aberration component generated due to a low-order refractive index distribution is a component that can be corrected by adjusting the optical system, and is represented by a Zernike coefficient. Then, it corresponds to the expansion coefficient C2 in the second term to the expansion coefficient C9 in the ninth term. Therefore, it is considered that if the standard for the refractive index homogeneity of the present embodiment is satisfied, there is no substantial adverse effect on the performance of the final objective lens system.
  • the second standard is the most effective because it conforms to the standard for the performance of the final imaging optical system.
  • numerical values for such components have no function in software and are not displayed, so they must be calculated from Zernike coefficients.
  • longitudinal aberration contributes to variations in the focus position when detecting the positions of various marks, and lateral aberration causes a measurement error in the horizontal direction when detecting the positions of various marks.
  • the performance of the imaging optical system as hardware is generally high. Is more desirable. For example, if no aberration occurs ideally, there is no error factor in the imaging optical system including the objective lens system, and only the influence of the shape error of the alignment mark formed on the wafer remains.
  • the exposure apparatus is electrically, mechanically, or optically connected to each optical member, each stage, and the like in the present embodiment shown in FIG. 1 so as to achieve the functions described above.
  • the mask is illuminated by the illumination system IL (illumination step), and the transfer pattern formed on the mask is projected onto the photosensitive substrate using the projection optical system PL including the projection optical modules PM1 to PM5.
  • a micro device semiconductor element, liquid crystal display element, thin film magnetic head, etc.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the wafer of the lot.
  • the image of the pattern on the mask is transmitted through the projection optical system (projection optical module) to each shot on the wafer of the lot. It is sequentially exposed and transferred to the area.
  • the photoresist on the one lot of wafers is developed, and then in step 300, etching is performed on the one lot of wafers using the resist pattern as a mask. Putter on the mask A circuit pattern corresponding to the pattern is formed in each shot area on each wafer.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput.
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a liquid crystal display element as a microdepth can be obtained.
  • a so-called optical lithography method in which a mask pattern is transferred and exposed to a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment.
  • a photosensitive substrate eg, a glass substrate coated with a resist
  • One step is performed.
  • a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate.
  • the exposed substrate is subjected to a developing process, an etching process, a reticle peeling process, etc., to form a predetermined pattern on the substrate, and the process proceeds to the next color filter forming process 402. .
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G,
  • a color filter is formed by arranging a plurality of sets of three stripe filters B in the horizontal scanning line direction.
  • a cell assembling step 403 is performed.
  • a liquid crystal panel liquid crystal
  • a liquid crystal is used by using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. Assemble the cell).
  • a liquid crystal is interposed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Inject to manufacture liquid crystal panels (liquid crystal cells).
  • each component such as an electric circuit and a pack light for performing the display operation of the assembled liquid crystal panel (liquid crystal cell) is attached.
  • a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
  • the wavefront aberration is represented by a Zernike polynomial, but without using a Zernike polynomial as disclosed in Japanese Patent Application Laid-Open No. H11-125125, for example. Wavefront aberration can also be expressed.
  • the present invention is applied to the FIA-based alignment device for detecting the position of the wafer mark.
  • the present invention is not limited to this.
  • the present invention can be applied to an overlay accuracy measuring device and an inter-pattern dimension measuring device disclosed in, for example, US Pat.
  • an objective lens system capable of favorably suppressing the remaining higher order wavefront aberration components can be realized at a design level. Further, in the present invention, by designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of eccentric coma aberration for each wavelength, the remaining higher order Components can be suppressed well.
  • the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and the wavefront aberration of each surface of each optical member with respect to the reference plane is suppressed, and each optical member is By manufacturing the same, high-order wavefront aberration components remaining in the objective lens system can be favorably suppressed. Therefore, in the observation apparatus for observing an object image formed via the imaging optical system including the objective lens system of the present invention, the objective lens system and, consequently, the higher order components of the wavefront aberration remaining in the imaging optical system are excellent. Can be suppressed.
  • the mask and the photosensitive substrate can be positioned with high accuracy with respect to the projection optical system using the observation device, and good exposure can be performed. Further, in the microdevice manufacturing method using the exposure apparatus of the present invention, a good microdevice can be manufactured through a good exposure process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)

Abstract

A method of producing an object lens system capable of satisfactorily minimizing remaining wave front aberration higher-order components. The method of producing an object lens system (7) comprises the step of producing respective optical members constituting an object lens system by minimizing, in order to minimize wave front aberration higher-order components remaining in an object lens system, the wave front aberration, due to a refractive index distribution, of respective optical members, and wave front aberration, with respect to a reference plane, of respective planes of respective optical members, and the step of optically adjusting an object lens system for the purpose of correcting aberration remaining in an assembled objective lens system.

Description

明 細 書 対物レンズ系、 該対物レンズ系を備えた観察装置、  Description Objective lens system, observation apparatus equipped with the objective lens system,
および該観察装置を備えた露光装置 技術分野  And exposure apparatus having the observation device
本発明は、 対物レンズ系、 該対物レンズ系を備えた観察装置、 および該観察装 置を備えた露光装置に関する。 本発明は、 特に、 半導体素子、 撮像素子、 液晶表 示素子、 薄膜磁気へッド等のマイクロデバイスを製造するリソグラフィ一工程で 用いる露光装置に搭載される観察装置に好適な対物レンズ系に関するものである。 背景技術  The present invention relates to an objective lens system, an observation device provided with the objective lens system, and an exposure device provided with the observation device. The present invention particularly relates to an objective lens system suitable for an observation apparatus mounted on an exposure apparatus used in one step of lithography for manufacturing a micro device such as a semiconductor device, an imaging device, a liquid crystal display device, and a thin film magnetic head. It is. Background art
一般に、 半導体素子等のデバイスの製造に際して、 感光材料の塗布されたゥェ ハ (またはガラスプレート等の基板) 上に複数層の回路パターンを重ねて形成す る。 このため、 回路パターンをウェハ上に露光するための露光装置には、 マスク のパターンと既に回路パターンの形成されているウェハの各露光領域との位置合 わせ (ァライメント) を行うためのァライメント装置が備えられている。  Generally, when manufacturing a device such as a semiconductor element, a circuit pattern of a plurality of layers is formed on a wafer (or a substrate such as a glass plate) coated with a photosensitive material. For this reason, an exposure apparatus for exposing a circuit pattern on a wafer includes an alignment apparatus for aligning a pattern of a mask with each exposure area of a wafer on which a circuit pattern is already formed. Provided.
従来、 この種のァライメント装置として、 特開平 4— 65603号 (およびこ れに対応する米国特許第 5, 493, 403号、 第 5, 657, 129号、 およ び第 5, 995, 234号) 公報、 特開平 4— 273246号 (およびこれに対 応する米国特許第 6, 141, 107号) 公報等に開示されているように、 ォ フ ·ァクシス方式で且つ撮像方式のァライメント装置が知られている。 この撮像 方式のァライメント装置の検出系は、 F I A (Field Image Alignment)系とも呼 ばれている。 F I A系では、 八ロゲンランプ等の光源から射出される波長帯域幅 の広い光で、 ウェハ上のァライメントマーク (ウェハマーク) を照明する。 そし て、 結像光学系を介してウェハマークの拡大像を撮像素子上に形成し、 得られた 撮像信号を画像処理することによりウェハマークの位置検出を行う。  Conventionally, this type of alignment apparatus has been disclosed in Japanese Patent Application Laid-Open No. 4-65603 (and corresponding US Pat. Nos. 5,493,403, 5,657,129, and 5,995,234). As disclosed in Japanese Unexamined Patent Publication (Kokai) No. 4-273246 (and corresponding US Pat. No. 6,141,107), an alignment apparatus of an off-axis type and an imaging type is known. Have been. The detection system of this imaging type alignment device is also called an FIA (Field Image Alignment) system. In the FIA system, the alignment mark (wafer mark) on the wafer is illuminated with light with a wide wavelength bandwidth emitted from a light source such as an octogen lamp. Then, an enlarged image of the wafer mark is formed on the image sensor via the imaging optical system, and the position of the wafer mark is detected by performing image processing on the obtained image signal.
上述のように、 F I A系では広帯域照明を用いているので、 ウェハ上のフォト レジスト層での薄膜干渉の影響が低減されるという利点がある。 しかしながら、 従来の F I A系の結像光学系では、 加工、 組立、 調整等の製造工程を介して、 僅 かながら収差が残存する。 結像光学系に収差が残存していると、 撮像面上でのゥ ェハマーク像のコントラストが低下したり、 ウェハマーク像に歪みが生じたりし て、 マーク位置の検出誤差が発生する。 近年、 回路パターンの線幅の微細化に伴 い、 高精度のァライメントが必要とされるようになってきている。 As mentioned above, the FIA system uses broadband illumination, so the photo on the wafer There is an advantage that the influence of thin film interference on the resist layer is reduced. However, in conventional FIA imaging optics, aberrations remain to a small extent through manufacturing processes such as processing, assembly, and adjustment. If the aberration remains in the imaging optical system, the contrast of the wafer mark image on the imaging surface is reduced, or the wafer mark image is distorted, and a mark position detection error occurs. In recent years, with the miniaturization of circuit pattern line width, high-precision alignment has been required.
なお、 光学系に残存する収差のうち、 特にコマ収差のような光軸に非対称な収 差がウェハマーク像の検出に及ぼす影響は大きく、 像面上で光軸に関して対称な コマ収差や、 偏心コマ収差のように瞳において光軸に非対称な横収差が発生して いると、 撮像面上に形成されるウェハマーク像は、 理想結像の場合に比べて位置 ずれして計測される。 また、 ウェハマークの形状 (ピッチ、 デュ一ティ比、 段差 等) が変わった場合や、 ウェハマークがデフォーカスした場合には、 ウェハマ一 ク像に対するコマ収差の影響の度合いが様々に変化し、 その計測位置のずれ量も 様々に変化することになる。 また、 球面収差のような光軸に対称な収差が発生し ていると、 ウェハマークの形状が変化する度にバックフォーカス位置が変化して しまう。  Of the aberrations remaining in the optical system, especially the aberration that is asymmetrical to the optical axis, such as coma, has a large effect on the detection of the wafer mark image. If an asymmetric lateral aberration occurs in the optical axis at the pupil such as coma aberration, the wafer mark image formed on the imaging surface is measured with a position shift compared to the case of ideal imaging. In addition, when the shape of the wafer mark (pitch, duty ratio, step, etc.) changes, or when the wafer mark is defocused, the degree of the influence of coma aberration on the wafer mark image changes variously. The amount of displacement of the measurement position will also change variously. In addition, if symmetric aberrations such as spherical aberration occur in the optical axis, the back focus position changes every time the shape of the wafer mark changes.
一般に、 半導体素子の製造工程毎にウェハマークの形状が異なるため、 コマ収 差が残存した光学系でウェハのァライメント (位置合わせ) を行うと、 いわゆる プロセスオフセットが発生する。 そこで、 上述のような残存コマ収差を補正する ために、 本出願人は、 特開平 8— 1 9 5 3 3 6号 (およびこれに対応する米国特 許第 5, 6 8 0 , 2 0 0号および米国特許第 5 , 7 5 4 , 2 9 9号) 公報におい て、 対物レンズに後続する光学系においてコマ収差を補正する手法を提案してい る。 しかしながら、 特開平 8— 1 9 5 3 3 6号公報に開示された手法では、 補正 可能なコマ収差は低次のコマ収差のみであり、 高次のコマ収差の補正を行うこと は困難である。 このように、 一般に、 波面収差の低次成分は光学調整により補正 可能であるが、 波面収差の高次成分は光学調整により補正することが困難である そこで、 本出願人は、 特開平 1 1— 2 9 7 6 0 0号公報において、 ァライメン ト装置の結像光学系、 特にその対物レンズに使用される光学部品の面精度につい て所定の規格を設定することにより結像光学系に残存する波面収差の高次成分を 低減する手法を提案している。 すなわち、 この公報に開示された手法では、 光学 部品の面精度を基準面に対する波面収差の R M S (root mean square: 自乗平均 平方根あるいは平方自乗平均) 値で評価し、 対物レンズを構成するすべての光学 面の波面収差の全成分の RM S値の平均値が 0 . 0 1 λ ( λは使用する光の中心 波長) 以下になるように設定している。 なお、 平均値の算定に使用される各光学 面の波面収差の RM S値は、 計測された波面収差から補正可能なパワー成分およ びァス成分を差し引いた成分の R M S値である。 In general, since the shape of a wafer mark is different in each manufacturing process of a semiconductor device, when a wafer is aligned (aligned) with an optical system in which a frame difference remains, a so-called process offset occurs. Therefore, in order to correct the residual coma as described above, the present applicant has disclosed in Japanese Patent Application Laid-Open No. Hei 8-195336 (and corresponding US Pat. No. 5,680,200). And U.S. Pat. Nos. 5,754,299) propose a method of correcting coma in an optical system following an objective lens. However, in the method disclosed in Japanese Patent Application Laid-Open No. 8-1953336, only low-order coma can be corrected, and it is difficult to correct high-order coma. . As described above, in general, the low-order component of the wavefront aberration can be corrected by optical adjustment, but the high-order component of the wavefront aberration is difficult to correct by optical adjustment. — In Japanese Patent Publication No. 297600, the surface accuracy of the imaging optical system of the alignment device, particularly the optical components used for the objective lens, is discussed. A method has been proposed to reduce high-order components of wavefront aberration remaining in the imaging optical system by setting a predetermined standard. That is, according to the method disclosed in this publication, the surface accuracy of an optical component is evaluated by the RMS (root mean square: root mean square) value of the wavefront aberration with respect to the reference surface, and all the optical components constituting the objective lens are evaluated. The average value of the RMS values of all the components of the wavefront aberration of the surface is set to be equal to or less than 0.01 λ (where λ is the central wavelength of the light used). The RMS value of the wavefront aberration of each optical surface used for calculating the average value is the RMS value of the component obtained by subtracting the correctable power component and the negative component from the measured wavefront aberration.
また、 本出願人は、 特開平 1 1— 1 2 5 5 1 2号公報において、 光学面の面精 度の評価方法として、 被検面の基準面に対する波面収差を測定し、 測定した波面 収差からァス成分を除去してァス残渣を求め、 このァス残渣を光軸に関する回転 非球面によってフィッティングすることによりァス残渣から回転非球面成分を除 去して回転非球面残渣を求め、 この回転非球面残渣に基づいて被検面の面精度を 評価する方法を提案している。 また、 この公報には、 被検面の基準面に対する波 面収差を測定し、 測定した波面収差からァス成分を除去してァス残渣を求め、 こ のァス残渣を光軸に関する回転非球面によってフィッティングし、 回転非球面の 光軸を含む断面曲線を半径についての 2次 4次曲線によってフィッティングする ことにより断面曲線から 2次 4次曲線成分を除去して 2次 4次残渣を求め、 この 2次 4次残渣に基づいて被検面の面精度を評価する方法が開示されている。 さらに、 本出願人は、 特開 2 0 0 0— 1 2 4 9 1号公報において、 波面収差を ツェルニケ (Zernike) の多項式で表現して光学系の結像性能を評価する手法を 提案している。 この公報に開示された手法では、 光学系の透過波面収差 (透過光 に基づいて計測された波面収差) を瞳の中心に関する回転対称成分と奇数対称成 分と偶数対称成分とに分離し、 分離した各成分に基づいて光学系の結像性能を評 価している。 具体的には、 分離した各成分の RM S値に基づいて、 光学系の結像 性能を評価している。  Further, the present applicant has disclosed in Japanese Patent Application Laid-Open No. H11-125255, a method for evaluating the surface accuracy of an optical surface, which measures a wavefront aberration with respect to a reference surface of a test surface, and measures the measured wavefront aberration. The ass residue is obtained by removing the ass component from the above, and the ass residue is fitted with a rotating aspheric surface about the optical axis to remove the rotating aspherical component from the ass residue to obtain a rotating aspheric residue. We have proposed a method for evaluating the surface accuracy of the test surface based on this rotating aspheric residue. Also, in this publication, a wavefront aberration of a surface to be measured with respect to a reference surface is measured, an ass component is removed from the measured wavefront aberration to obtain an ass residue, and the ass residue is non-rotated with respect to the optical axis. By fitting with a spherical surface and fitting a cross-sectional curve including the optical axis of the rotating aspheric surface with a quadratic-quadratic curve with respect to the radius, a quadratic-quadratic curve component is removed from the cross-sectional curve to obtain a secondary-quadratic residue. A method for evaluating the surface accuracy of a test surface based on the secondary and quaternary residues is disclosed. Furthermore, the present applicant has proposed in Japanese Patent Application Laid-Open No. 2000-12491 a method for evaluating the imaging performance of an optical system by expressing wavefront aberration by Zernike's polynomial. I have. According to the method disclosed in this publication, the transmitted wavefront aberration (wavefront aberration measured based on the transmitted light) of the optical system is separated into a rotationally symmetric component, an odd-numbered symmetric component, and an even-numbered symmetric component with respect to the center of the pupil. The imaging performance of the optical system is evaluated based on each component. Specifically, the imaging performance of the optical system is evaluated based on the RMS values of each separated component.
また、 本出願人は、 特開平 6— 3 0 8 7 1 7号 (およびこれに対応する米国特 許第 5, 6 9 6 , 6 2 4号、 米国特許第 5 , 6 9 9 , 1 8 3号、 米国特許第 5, 7 0 2 , 4 9 5号、 米国特許第 5 , 7 0 3 , 7 1 2号、 および米国特許第 5, 7 1 9 , 6 9 8号) 公報において、 光学部材の屈折率の均質性を波面収差の測定に より評価する方法を提案している。 この公報では、 屈折率分布による波面収差を、 パワー成分、 ァス成分、 パワー成分除去後の回転対称成分、 傾斜成分、 ランダム 成分等に分離し、 パヮー成分が光学系の曲率半径誤差と等価であることを開示し ている。 In addition, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 6-30871 (and corresponding US Pat. Nos. 5,696,624, and US Pat. Nos. 5,699,18). No. 3, US Patent 5, No. 72,495, U.S. Pat. No. 5,703,712, and U.S. Pat. No. 5,719,698) disclose the homogeneity of the refractive index of the optical member. We propose a method to evaluate by measuring the wavefront aberration. In this publication, the wavefront aberration due to the refractive index distribution is separated into a power component, a negative component, a rotationally symmetric component after removing the power component, a tilt component, a random component, and the like, and the power component is equivalent to the radius of curvature error of the optical system. It discloses that there is.
さらに、 本出願人は、 特開平 8— 5 5 0 5号公報において、 光学部材の屈折率 分布による波面収差を測定し、 測定した波面収差を光軸に関する回転対称成分と 非回転対称成分とに分離して、 光学部材の屈折率の均質性を評価する方法を提案 している。 加えて、 この公報は、 測定した波面収差をパワー成分補正前またはパ ヮ一成分補正後に光軸に関する回転対称成分と非回転対称成分とに分離し、 回転 対称成分をさらに 2次及び 4次成分補正して、 光学部材の屈折率の均質性を評価 する方法を提案している。  Furthermore, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 8-55505 that the wavefront aberration due to the refractive index distribution of an optical member is measured, and the measured wavefront aberration is converted into a rotationally symmetric component and a non-rotationally symmetric component with respect to the optical axis. We propose a method to separate and evaluate the homogeneity of the refractive index of optical members. In addition, this publication separates the measured wavefront aberration into a rotationally symmetric component and a non-rotationally symmetric component with respect to the optical axis before or after correcting the power component, and further separates the rotationally symmetric component into second and fourth order components. We have proposed a method to evaluate the homogeneity of the refractive index of the optical member by making corrections.
従来技術において、 たとえば F I A系の対物レンズに対して特開平 1 1一 2 9 7 6 0 0号公報に開示された手法を適用することにより、 量産される F I A系の 結像光学系の平均的な結像性能 (波面収差性能) を確実に向上させることができ た。 しかしながら、 たとえば対物レンズを構成するすべての光学面について計測 される波面収差の全成分の R M S値が 0 . 0 1 λの規格を満たしたとしても、 そ の中に特別な収差を発生する特異面 (その詳細は実施形態において詳述する) が 1つでも存在すると、 結像光学系の所要の規格を満たすことができないという不 都合があった。  In the prior art, for example, by applying the method disclosed in Japanese Patent Application Laid-Open No. 11-297600 to an FIA-based objective lens, the average of the mass-produced FIA-based imaging optical system is improved. The imaging performance (wavefront aberration performance) was improved without fail. However, even if, for example, the RMS values of all the components of the wavefront aberration measured for all the optical surfaces that make up the objective lens satisfy the standard of 0.01 λ, a singular surface that generates a special aberration within it (Details of which will be described in detail in the embodiment), there is a disadvantage that the required standard of the imaging optical system cannot be satisfied.
また、 光学系の設計によっては、 各光学面の面精度を向上させても、 光学調整 による収差の追い込み動作により高次収差成分が新たに発生し、 最終的に性能の 向上を期待することのできないという不都合があった。 さらに、 各光学面の研磨 精度を向上させても、 光学部材を形成するガラス (光学材料) に屈折率分布があ ると、 透過波面収差は悪化してしまうという不都合があつた。 発明の開示 本発明は、 前述の課題に鑑みてなされたものであり、 残存する波面収差高次成 分を良好に抑えることのできる対物レンズ系およびその製造方法を提供すること を目的とする。 Also, depending on the design of the optical system, even if the surface accuracy of each optical surface is improved, a higher-order aberration component is newly generated by the operation of driving in the aberration by the optical adjustment, and it is expected that the performance will eventually be improved. There was an inconvenience of not being able to do so. Furthermore, even if the polishing accuracy of each optical surface is improved, if the glass (optical material) forming the optical member has a refractive index distribution, there is a disadvantage that the transmitted wavefront aberration is worsened. Disclosure of the invention The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an objective lens system capable of favorably suppressing the remaining higher order wavefront aberration components, and a method of manufacturing the same.
また、 本発明の対物レンズ系を含む結像光学系に残存する波面収差高次成分を 良好に抑えることのできる観察装置およびその製造方法を提供することを目的と する。  It is another object of the present invention to provide an observation apparatus capable of favorably suppressing higher-order wavefront aberration components remaining in an imaging optical system including an objective lens system according to the present invention, and a method of manufacturing the same.
さらに、 本発明の観察装置を備え、 たとえば投影光学系に対してマスクと感光 性基板とを高精度に位置合わせして良好な露光を行うことのできる露光装置を提 供することを目的とする。  It is still another object of the present invention to provide an exposure apparatus including the observation apparatus of the present invention, for example, capable of performing high-precision exposure by aligning a mask and a photosensitive substrate with high accuracy with respect to a projection optical system.
また、 本発明の露光装置を用いて、 良好なマイクロデバイスを製造することの できるマイクロデバイス製造方法を提供することを目的とする。  It is another object of the present invention to provide a microdevice manufacturing method capable of manufacturing a good microdevice using the exposure apparatus of the present invention.
前記課題を解決するために、 本発明の第 1発明では、 物体側から順に、 正の屈 折力を有する第 1レンズ群と、 負の屈折力を有する第 2レンズ群とを備え、 前記第 1レンズ群中において最も物体側に配置されたレンズの中心厚を d 1と し、 前記最も物体側に配置されたレンズの物体側の面と物体との間の光軸に沿つ た空気換算距離を d 0としたとき、  In order to solve the above problem, a first invention of the present invention includes, in order from the object side, a first lens group having a positive refractive power, and a second lens group having a negative refractive power, The center thickness of the lens closest to the object side in one lens group is d1, and the air conversion along the optical axis between the object side surface of the lens closest to the object side and the object. When the distance is d 0,
d 1 X d 0 < 0 . 2  d 1 X d 0 <0. 2
の条件を満足することを特徴とする対物レンズ系を提供する。  And an objective lens system that satisfies the following condition:
本発明の第 2発明では、 対物レンズ系の製造方法において、  According to a second aspect of the present invention, in the method for manufacturing an objective lens system,
前記対物レンズ系の光学調整により発生する波面収差高次成分および波長毎の 偏心コマ収差の差の少なくとも一方を抑えて前記対物レンズ系を設計する設計ェ 程と、  A design step of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of decentering coma aberration for each wavelength;
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする対物レンズ系の製造方 法を提供する。  Adjusting the optical system of the objective lens system in order to correct aberrations remaining in the assembled objective lens system.
本発明の第 3発明では、 対物レンズ系の製造方法において、  According to a third aspect of the present invention, in the method for manufacturing an objective lens system,
前記対物レンズ系に残存する波面収差高次成分を抑えるために、 前記対物レン ズ系を構成する各光学部材の屈折率分布による波面収差を抑えるとともに、 前記 各光学部材の各面の基準面に対する波面収差を抑えて、 前記各光学部材をそれぞ れ製造する製造工程と、 In order to suppress high-order components of wavefront aberration remaining in the objective lens system, while suppressing the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system, A manufacturing process of manufacturing each of the optical members, while suppressing a wavefront aberration of each surface of each optical member with respect to a reference surface;
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする対物レンズ系の製造方 法を提供する。 ここで、 各面の基準面に対する波面収差とは、 各面の面精度を表 現する波面収差であって、 干渉計を用いて加工面を計測したときの加工面の基準 面に対する位相ずれである。  Adjusting the optical system of the objective lens system in order to correct aberrations remaining in the assembled objective lens system. Here, the wavefront aberration of each surface with respect to the reference surface is a wavefront aberration representing surface accuracy of each surface, and is a phase shift of the processed surface with respect to the reference surface when the processed surface is measured using an interferometer. is there.
本発明の第 4発明では、 光学調整の後に対物レンズ系に残存する波面収差を抑 えるために、 前記対物レンズ系を構成する各光学部材の屈折率分布による波面収 差が抑えられ、 且つ前記各光学部材の各面の基準面に対する波面収差が抑えられ ていることを特徴とする対物レンズ系を提供する。  According to the fourth aspect of the present invention, in order to suppress the wavefront aberration remaining in the objective lens system after the optical adjustment, the wavefront difference due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and Provided is an objective lens system characterized in that wavefront aberration of each surface of each optical member with respect to a reference surface is suppressed.
本発明の第 5発明は、 第 1発明の対物レンズ系または第 4発明の対物レンズ系 を含む結像光学系を備え、 該結像光学系を介して形成された物体像を観察するこ とを特徴とする観察装置を提供する。  According to a fifth aspect of the present invention, there is provided an imaging optical system including the objective lens system according to the first aspect or the objective lens system according to the fourth aspect, wherein an object image formed via the imaging optical system is observed. An observation device characterized by the following.
本発明の第 6発明は、 対物レンズ系を含む結像光学系を備え、 該結像光学系を 介して形成された物体像を観察する観察装置において、  According to a sixth aspect of the present invention, there is provided an observation apparatus including an imaging optical system including an objective lens system, and observing an object image formed through the imaging optical system.
光学調整の後に前記結像光学系に残存する波面収差を抑えるために、 前記結像 光学系中の前記対物レンズ系以外の各光学部材の屈折率分布による波面収差が抑 えられ、 且つ前記各光学部材の各面の基準面に対する波面収差が抑えられている ことを特徴とする観察装置を提供する。  In order to suppress the wavefront aberration remaining in the imaging optical system after the optical adjustment, the wavefront aberration due to the refractive index distribution of each optical member other than the objective lens system in the imaging optical system is suppressed, and Provided is an observation device characterized in that wavefront aberration of each surface of an optical member with respect to a reference surface is suppressed.
本発明の第 7発明では、 対物レンズ系を含む結像光学系を備え、 該結像光学系 を介して形成された物体像を観察する観察装置において、  According to a seventh aspect of the present invention, there is provided an observation apparatus including an imaging optical system including an objective lens system, and observing an object image formed through the imaging optical system.
前記結像光学系は、 前記対物レンズ系と前記物体像との間の光路中に配置され る光学部材を備え、  The imaging optical system includes an optical member disposed in an optical path between the objective lens system and the object image,
光学調整の後に前記結像光学系に残存する波面収差を抑えるために、 前記対物 レンズ系と前記物体像との間の光路中に配置される全ての光学部材中の各光学部 材の屈折率分布による波面収差が抑えられ、 且つ前記各光学部材の各面の基準面 に対する波面収差が抑えられていることを特徴とする観察装置を提供する。 なお、 本発明の第 6発明および第 7発明において、 結像光学系が 1つまたは複 数の中間像を形成する場合には、 上記の物体像は中間像ではなく最終像であるこ とが望ましい。 In order to suppress the wavefront aberration remaining in the imaging optical system after the optical adjustment, the refractive index of each optical member among all the optical members arranged in the optical path between the objective lens system and the object image Provided is an observation apparatus, wherein wavefront aberration due to distribution is suppressed, and wavefront aberration of each surface of each optical member with respect to a reference surface is suppressed. In the sixth and seventh aspects of the present invention, when the imaging optical system forms one or a plurality of intermediate images, it is preferable that the object image is not an intermediate image but a final image. .
本発明の第 8発明では、 対物レンズ系を含む結像光学系を介して形成された物 体像を観察する観察装置の製造方法において、 前記対物レンズ系を第 2発明の製 造方法を用いて製造することを特徴とする観察装置の製造方法を提供する。 本発明の第 9発明では、 第 5発明、 第 6発明または第 7発明の観察装置と、 マ スクのパターンを感光性基板上へ投影露光するための投影光学系とを備えている ことを特徴とする露光装置を提供する。  According to an eighth aspect of the present invention, in a method for manufacturing an observation apparatus for observing an object image formed through an imaging optical system including an objective lens system, the objective lens system is manufactured by using the manufacturing method of the second aspect. To provide a method for manufacturing an observation device, characterized in that the observation device is manufactured by: According to a ninth aspect of the present invention, there is provided the observation apparatus according to the fifth, sixth, or seventh aspect, and a projection optical system for projecting and exposing a mask pattern onto a photosensitive substrate. An exposure apparatus is provided.
本発明の第 1 0発明では、 第 9発明の露光装置を用いて前記マスクのパターン を前記感光性基板へ露光する露光工程と、  In the tenth aspect of the present invention, an exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus of the ninth aspect,
前記露光された基板を現像する現像工程とを含むことを特徴とするマイクロデ バイスの製造方法を提供する。  And a developing step of developing the exposed substrate.
本発明の第 1 1発明では、 対物レンズ系を含む結像光学系を介して形成された 物体像を観察する観察装置の製造方法において、  According to an eleventh aspect of the present invention, there is provided a method for manufacturing an observation apparatus for observing an object image formed via an imaging optical system including an objective lens system,
前記対物レンズ系の光学調整により発生する波面収差高次成分および波長毎の 偏心コマ収差の差の少なくとも一方を抑えて前記対物レンズ系を設計する設計ェ 程と、  A design step of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of decentering coma aberration for each wavelength;
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする観察装置の製造方法を 提供する。  Adjusting the optical system of the objective lens system to correct aberrations remaining in the assembled objective lens system.
本発明の第 1 2発明では、 対物レンズ系を含む結像光学系を介して形成された 物体像を観察する観察装置の製造方法において、  According to a twelfth aspect of the present invention, there is provided a method of manufacturing an observation apparatus for observing an object image formed via an imaging optical system including an objective lens system,
前記対物レンズ系に残存する波面収差高次成分を抑えるために、 前記対物レン ズ系を構成する各光学部材の屈折率分布による波面収差を抑えるとともに、 前記 各光学部材の各面の基準面に対する波面収差を抑えて、 前記各光学部材をそれぞ れ製造する製造工程と、  In order to suppress high-order wavefront aberration components remaining in the objective lens system, while suppressing the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system, each surface of each optical member with respect to a reference surface A manufacturing process for manufacturing each of the optical members while suppressing wavefront aberration,
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする観察装置の製造方法を 提供する。 In order to correct aberrations remaining in the assembled objective lens system, the objective lens is corrected. And a method for optically adjusting the lens system.
本発明の第 1 3発明では、 第 1 2発明の製造方法を用いて製造された観察装置 と、 マスクのパターンを感光性基板上へ投影露光するための投影光学系とを備え ていることを特徴とする露光装置を提供する。  According to a thirteenth aspect of the present invention, there is provided an observation apparatus manufactured by using the manufacturing method of the twenty-second aspect, and a projection optical system for projecting and exposing a mask pattern onto a photosensitive substrate. An exposure apparatus is provided.
本発明の第 1 4発明では、 第 1 3発明の露光装置を用いて前記マスクのパター ンを前記感光性基板へ露光する露光工程と、  In a fourteenth aspect of the present invention, an exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus of the thirteenth aspect,
前記露光された基板を現像する現像工程とを含むことを特徴とするマイクロデ バイスの製造方法を提供する。 図面の簡単な説明  And a developing step of developing the exposed substrate. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態にかかる観察装置および該観察装置を備えた露光 装置の構成を概略的に示す図である。  FIG. 1 is a view schematically showing a configuration of an observation apparatus and an exposure apparatus provided with the observation apparatus according to the embodiment of the present invention.
第 2図は、 本実施形態の観察装置である F I A系ァライメント装置に含まれる 第 1実施例の対物レンズのレンズ構成を示す図である。  FIG. 2 is a diagram showing a lens configuration of the objective lens of Example 1 included in the FIA-based alignment device that is the observation device of the present embodiment.
第 3図は、 第 1実施例の対物レンズの諸収差を示す図である。  FIG. 3 is a diagram illustrating various aberrations of the objective lens of the first example.
第 4図は、 本実施形態の F I A系ァライメント装置に含まれる第 2実施例の対 物レンズのレンズ構成を示す図である。  FIG. 4 is a diagram showing a lens configuration of an objective lens of Example 2 included in the FIA system alignment device of the present embodiment.
第 5図は、 第 2実施例の対物レンズの諸収差を示す図である。  FIG. 5 is a diagram illustrating various aberrations of the objective lens of the second example.
第 6図は、 第 1実施例の対物レンズ系を構成する各レンズの中心厚および各レ ンズの空気間隔をそれぞれ変化させたときに発生する高次球面収差成分の R M S 値を示す図である。  FIG. 6 is a diagram showing RMS values of higher-order spherical aberration components generated when the center thickness of each lens and the air gap of each lens constituting the objective lens system of the first embodiment are changed. .
第 7図は、 第 1実施例の対物レンズ系を構成する各レンズを光軸と直交する方 向に沿って偏心させたときに発生する波面収差のうち高次コマ収差成分の RM S 値を示す図である。  FIG. 7 shows the RMS value of the high-order coma aberration component of the wavefront aberration generated when each lens constituting the objective lens system of the first embodiment is decentered along the direction orthogonal to the optical axis. FIG.
第 8図は、 第 1実施例の対物レンズ系を構成する各レンズを光軸と直交する方 向に沿って偏心させたときに発生する波面収差のうち使用光の最短波長 (5 3 0 n m) の偏心コマ収差成分の RM S値と使用光の最長波長 (8 0 0 n m) の偏心 コマ収差成分の R M S値との差の絶対値を示す図である。 FIG. 8 shows the shortest wavelength (530 nm) of the used light among the wavefront aberrations generated when each lens constituting the objective lens system of the first embodiment is decentered along the direction orthogonal to the optical axis. RMS value of the decentered coma component of) and the eccentricity of the longest wavelength (800 nm) of the used light FIG. 9 is a diagram illustrating an absolute value of a difference between a coma aberration component and an RMS value.
第 9図は、 本実施形態の対物レンズ系を構成する各光学部材の製造フロ一を示 すフ口一チヤ一卜である。  FIG. 9 is a flowchart showing a manufacturing flow of each optical member constituting the objective lens system of the present embodiment.
第 1 0図は、 光学部材の屈折率の分布による波面収差を計測するための干渉計 装置の構成を概略的に示す図である。  FIG. 10 is a diagram schematically showing a configuration of an interferometer device for measuring a wavefront aberration due to a distribution of a refractive index of an optical member.
第 1 1図は、 各光学部材の光学面の基準面に対する波面収差を計測するための 干渉計装置の構成を概略的に示す図である。  FIG. 11 is a diagram schematically showing a configuration of an interferometer device for measuring a wavefront aberration of an optical surface of each optical member with respect to a reference surface.
第 1 2図は、 第 9図のフローチャートの変形例を示す図である。  FIG. 12 is a diagram showing a modification of the flowchart of FIG.
第 1 3図は、 本実施形態の対物レンズ系を構成する各光学部材の組み込みおよ び光学調整フローを示すフローチャートである。  FIG. 13 is a flowchart showing a flow of assembling and optically adjusting each optical member constituting the objective lens system of the present embodiment.
第 1 4図は、 組み立てられた本実施形態の対物レンズ系の全体構成を示す図で める。  FIG. 14 shows the overall configuration of the objective lens system of the present embodiment assembled.
第 1 5図は、 組み立てられた対物レンズ系に残存する波面収差を計測するため の干渉計装置の構成を概略的に示す図である。  FIG. 15 is a diagram schematically showing a configuration of an interferometer device for measuring a wavefront aberration remaining in the assembled objective lens system.
第 1 6図は、 第 1 5図の干渉計装置の変形例を示す図である。  FIG. 16 is a diagram showing a modified example of the interferometer device of FIG.
第 1 7図は、 第 7表の実際研磨面に対応する波面収差を 0 . 0 0 5 λの等高線 図で示している。  FIG. 17 shows the wavefront aberration corresponding to the actual polished surface in Table 7 in a contour diagram of 0.05 λ.
第 1 8図は、 第 7表の実際研磨面のうねりを誇張して三次元的に示す図である。 第 1 9図は、 第 7表の 3 0面に対応する波面収差を 0 . 0 0 5 λの等高線図で 示している。  FIG. 18 is an exaggerated three-dimensional view of the undulation of the actual polished surface in Table 7. FIG. 19 shows the wavefront aberration corresponding to the 30 plane in Table 7 by a contour map of 0.05 λ.
第 2 0図は、 第 7表の 3 0面のうねりを誇張して三次元的に示す図である。 第 2 1図は、 第 7表の 3 0高次コマ複合面に対応する波面収差を 0 . 0 0 5 λ の等高線図で示している。  FIG. 20 is an exaggerated three-dimensional view of the swell of the 30 plane in Table 7. FIG. 21 shows the wavefront aberration corresponding to the 30th higher-order coma composite surface in Table 7 by a contour map of 0.005λ.
第 2 2図は、 第 7表の 3 S高次コマ複合面のうねりを誇張して三次元的に示す 図である。  FIG. 22 is an exaggerated three-dimensional view of the undulation of the 3S higher-order coma composite surface shown in Table 7.
第 2 3図は、 本実施形態の露光装置を用いてマイクロデバイスとしての半導体 デバイスを得る際の手法のフローチャートである。  FIG. 23 is a flowchart of a method for obtaining a semiconductor device as a micro device using the exposure apparatus of the present embodiment.
第 2 4図は、 本実施形態の露光装置を用い 示素子を得る際の手法のフローチヤ一トである。 発明を実施するための最良の形態 FIG. 24 shows an example of using the exposure apparatus of the present embodiment. 5 is a flowchart of a method for obtaining an indicator element. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の対物レンズ系は、 正屈折力の第 1レンズ群 G 1と負屈折力の第 2レン ズ群 G 2とを備え、 次の条件式 (1 ) を満足する。  The objective lens system of the present invention includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, and satisfies the following conditional expression (1).
d 1 / d 0 < 0 . 2 ( 1 )  d 1 / d 0 <0. 2 (1)
ここで、 d lは、 第 1レンズ群 G 1中において最も物体側に配置されたレンズ L 1の中心厚である。 また、 d Oは、 最も物体側に配置されたレンズ L 1の物体 側の面と物体との間の光軸に沿つた空気換算距離である。  Here, d l is the center thickness of the lens L1 disposed closest to the object side in the first lens group G1. D O is an air-equivalent distance along the optical axis between the object-side surface of the lens L1 disposed closest to the object and the object.
条件式 ( 1 ) は、 対物レンズ系の WD (ワークディスタンス) に対するレンズ L 1の中心厚の比について適切な範囲を規定している。 後述するように、 本発明 の対物レンズ系を F I A系ァライメント装置のような観察装置に適用する場合、 最も物体側のレンズ面と物体面との間の光路中に光束偏向手段としてのプリズム が配置される。 そのため、 プリズムを配置するのに充分なスペースを確保するた めに、 所要の WDが必要となる。  Conditional expression (1) defines an appropriate range for the ratio of the center thickness of the lens L1 to the WD (work distance) of the objective lens system. As will be described later, when the objective lens system of the present invention is applied to an observation device such as an FIA system alignment device, a prism as a light beam deflecting means is arranged in the optical path between the lens surface closest to the object and the object surface. Is done. Therefore, the required WD is required to secure enough space to place the prism.
また、 本発明の対物レンズ系においては、 最も物体側に配置されたレンズ L 1 により球面収差の補正を主に行っており、 このレンズ L 1は最も大きなパヮ一 (屈折力) を有する。 この球面収差に必要なパワーを保ったままレンズ L 1の中 心厚 d lが大きくなると、 レンズ L 1の面の曲率半径が小さくなる。 一方、 後述 するように、 本発明の対物レンズ系では、 各レンズの中心厚および各レンズの空 気間隔の変化に伴って発生する高次球面収差量が十分に小さいことが要求される。 レンズ L 1の中心厚 d 1が大きくなることによりその曲率半径が小さくなると、 レンズ 1に入射する光線とレンズ面の法線との角度が大きくなり、 空気間隔誤 差により発生する高次球面収差が大きくなつてしまう。 以上、 条件式 (1 ) を満 たすことにより、 所要の WDを確保しながら球面収差の良好な補正を行い、 且つ 偏心しても高次球面収差の発生を良好に抑えることができる。  Further, in the objective lens system of the present invention, correction of spherical aberration is mainly performed by the lens L 1 arranged closest to the object side, and this lens L 1 has the largest power (refractive power). If the center thickness d l of the lens L 1 increases while maintaining the power required for the spherical aberration, the radius of curvature of the surface of the lens L 1 decreases. On the other hand, as will be described later, the objective lens system of the present invention is required to have a sufficiently small high-order spherical aberration caused by a change in the center thickness of each lens and the air gap of each lens. If the radius of curvature is reduced by increasing the center thickness d 1 of the lens L 1, the angle between the ray incident on the lens 1 and the normal to the lens surface increases, resulting in higher-order spherical aberration caused by an air gap error. Becomes bigger. As described above, by satisfying conditional expression (1), it is possible to satisfactorily correct spherical aberration while securing the required WD, and to suppress the occurrence of higher-order spherical aberration even when decentered.
また、 本発明の対物レンズ系において、 次の条件式 (2 ) 〜 (4 ) を満足する ことが好ましい。 I レ 1—レ 2 |く 15 (2) In the objective lens system according to the present invention, it is preferable that the following conditional expressions (2) to (4) are satisfied. I Re 1—Re 2 | Ku 15 (2)
V 1<40 (3)  V 1 <40 (3)
ソ 2<40 (4)  S 2 <40 (4)
ここで、 リ 1は、 第 2レンズ群 G 2中において最も像側に配置された一対のレ ンズのうち物体側のレンズのアッベ数である。 また、 リ 2は、 一対のレンズのう ち像側のレンズのアッベ数である。  Here, R 1 is the Abbe number of the lens on the object side of the pair of lenses arranged closest to the image in the second lens group G2. Re 2 is the Abbe number of the lens on the image side of the pair of lenses.
条件式 (2) 〜 (4) は、 対物レンズ系全体の軸上色収差を良好に補正するの に必要な条件を規定している。 本発明の対物レンズ系では、 使用光の波長域全体 に亘つて軸上色収差が良好に補正されていることが要求される。 また、 後述する ように、 各レンズ成分の偏心に伴って発生する波長毎のコマ収差の差が十分に小 さいことが要求される。 第 2レンズ群 G 2中において最も像側に配置された一対 のレンズは、 無限遠系の本対物レンズ系において軸上の光束が平行光となって射 出されるレンズ成分である。  Conditional expressions (2) to (4) specify the conditions necessary for favorably correcting axial chromatic aberration of the entire objective lens system. In the objective lens system of the present invention, it is required that the axial chromatic aberration be properly corrected over the entire wavelength range of the used light. In addition, as will be described later, it is required that the difference in coma aberration for each wavelength generated due to the eccentricity of each lens component is sufficiently small. The pair of lenses disposed closest to the image in the second lens group G2 is a lens component that emits an on-axis light beam as parallel light in the infinity objective lens system.
したがつて、 この一対のレンズへの入射光線および射出光線の像高依存性が最 も小さく、 色コマ収差が他のレンズ成分に比して発生しにくい。 以上、 条件式 (2) 〜 (4) を満たすことにより、 軸上色収差を良好に補正し、 且つ偏心して も色コマ収差の発生を良好に抑えることができる。 なお、 本発明の効果をさらに 良好に発揮するには、 条件式 (2) の上限値を 10に設定することが好ましい。 また、 偏心時の色コマ収差の発生をさらに良好に抑えるために、 一対のレンズを 接合レンズとして構成することが好ましい。  Therefore, the image height dependence of the incident light beam and the exit light beam on the pair of lenses is the smallest, and chromatic coma is less likely to occur than other lens components. As described above, by satisfying conditional expressions (2) to (4), it is possible to satisfactorily correct axial chromatic aberration and to suppress chromatic coma even when decentered. In order to achieve the effect of the present invention more favorably, it is preferable to set the upper limit of conditional expression (2) to 10. Further, in order to further suppress the occurrence of chromatic coma upon decentering, it is preferable that the pair of lenses be configured as a cemented lens.
また、 本発明の対物レンズ系において、 次の条件式 (5) を満足することが好 ましい。  In the objective lens system according to the present invention, it is preferable that the following conditional expression (5) is satisfied.
D/L<0. 17 (5)  D / L <0.17 (5)
ここで、 Dは、 負屈折力の最も大きいレンズ成分 (接合レンズを含む) の中心 厚である。 また、 Lは、 第 2レンズ群 G 2中において最も像側に配置されたレン ズの像側の面と物体との間の光軸に沿った距離すなわち対物レンズ系の全長であ る。  Here, D is the center thickness of the lens component (including the cemented lens) with the largest negative refractive power. L is the distance along the optical axis between the image side surface of the lens closest to the image side in the second lens group G2 and the object, that is, the total length of the objective lens system.
条件式 (5) は、 最も大きい負屈折力を有するレンズ成分の中心厚と対物レン ズ系の全長との比について適切な範囲を規定している。 前述したように、 本発明 の対物レンズ系を F I A系ァライメント装置のような観察装置に適用する場合、 最も物体側のレンズ面と物体面との間の光路中に光束偏向手段としてのプリズム が配置される。 その結果、 プリズムを配置するための WDの制約から、 対物レン ズ系の全長 Lにも制約が生じる。 Conditional expression (5) is based on the relationship between the center thickness of the lens component having the largest negative refractive power and the objective lens. An appropriate range is specified for the ratio to the overall length of the strain. As described above, when the objective lens system of the present invention is applied to an observation device such as an FIA-based alignment device, a prism as a light beam deflecting means is disposed in the optical path between the lens surface closest to the object and the object surface. Is done. As a result, the total length L of the objective lens system is restricted due to the restriction of the WD for arranging the prism.
また、 後述するように、 本発明の対物レンズ系では、 各レンズ成分の偏心に伴 つて発生する高次コマ収差量が十分に小さいことが要求される。 後述する各実施 例に即して説明すると、 最も像側のレンズ群 L 5の偏心による高次収差発生量が 小さくなるようにレンズ群 L 5に入射する光束の入射高を低くし、 光線とレンズ 面の法線との角度ができるだけ小さくなるように構成すると、 レンズ群 L 4の中 心厚 Dは増加する。 ここで、 レンズ群 L 4は、 最も大きな負屈折力を有するレン ズ成分であり、 コマ収差の補正を主に行っている。 条件式 (5 ) の範囲を逸脱す ると、 レンズ群 L 4の負屈折力が弱くなり、 必要なコマ収差の補正が困難となる。 以上、 条件式 (5 ) を満たすことにより、 各レンズの中心厚および各レンズの空 気間隔の変化に伴って発生する高次球面収差量、 および各レンズ成分の偏心に伴 つて発生する高次コマ収差量を良好に抑え、 且つコマ収差の補正を良好に行うこ とができる。  Further, as described later, in the objective lens system of the present invention, it is required that the amount of high-order coma aberration generated due to the eccentricity of each lens component is sufficiently small. Explaining in accordance with each embodiment described later, the incident height of the light beam incident on the lens unit L5 is reduced so that the amount of high-order aberration generated by the eccentricity of the lens unit L5 closest to the image side is reduced. When the angle with respect to the normal to the lens surface is made as small as possible, the center thickness D of the lens unit L4 increases. Here, the lens unit L4 is a lens component having the largest negative refractive power and mainly corrects coma. If the value falls outside the range of the conditional expression (5), the negative refracting power of the lens unit L4 becomes weak, and it becomes difficult to correct necessary coma. As described above, by satisfying conditional expression (5), the higher-order spherical aberration generated due to the change of the center thickness of each lens and the air gap of each lens, and the higher-order spherical aberration generated by the eccentricity of each lens component The amount of coma can be suppressed well, and the coma can be corrected well.
以上のように、 本発明では、 上述の基本構成において各条件式を満足すること により、 残存する波面収差高次成分を良好に抑えることのできる対物レンズ系を 設計レベルで実現することができる。 また、 本発明では、 対物レンズ系の光学調 整により発生する波面収差高次成分および波長毎の偏心コマ収差の差の少なくと も一方を抑えて対物レンズ系を設計することにより、 残存する波面収差高次成分 ひいては全体の波面収差を良好に抑えることができる。 さらに、 本発明では、 対 物レンズ系を構成する各光学部材の屈折率分布による波面収差を抑えるとともに、 各光学部材の各面の基準面に対する波面収差を抑えて、 各光学部材をそれぞれ製 造することにより、 対物レンズ系に残存する波面収差高次成分ひいては波面収差 を良好に抑えることができる。  As described above, according to the present invention, by satisfying the conditional expressions in the above-described basic configuration, it is possible to realize, at a design level, an objective lens system capable of favorably suppressing the remaining higher order components of the wavefront aberration. In the present invention, the remaining wavefront is designed by designing at least one of the differences between the higher-order component of the wavefront aberration generated by the optical adjustment of the objective lens system and the decentering coma aberration for each wavelength. Higher-order aberration components, and thus the entire wavefront aberration, can be favorably suppressed. Further, in the present invention, the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and the wavefront aberration of each surface of each optical member with respect to the reference plane is suppressed, so that each optical member is manufactured. By doing so, it is possible to satisfactorily suppress high-order components of the wavefront aberration remaining in the objective lens system, and hence the wavefront aberration.
したがって、 本発明の対物レンズ系を含む結像光学系を介して形成された物体 像を観察する観察装置では、 対物レンズ系に、 ひいては結像光学系に残存する波 面収差成分を良好に抑えることができる。 また、 本発明の観察装置を備えた露光 装置では、 たとえば観察装置を用いて投影光学系に対してマスクと感光性基板と を高精度に位置合わせして良好な露光を行うことができる。 さらに、 本発明の露 光装置を用いたマイクロデバイス製造方法では、 良好な露光工程を介して良好な マイクロデバイスを製造することができる。 Therefore, an object formed via an imaging optical system including the objective lens system of the present invention In an observation apparatus for observing an image, a wavefront aberration component remaining in the objective lens system and, consequently, in the imaging optical system can be favorably suppressed. Further, in the exposure apparatus provided with the observation device of the present invention, for example, the mask and the photosensitive substrate can be aligned with high accuracy with respect to the projection optical system using the observation device to perform favorable exposure. Furthermore, in the method for manufacturing a micro device using the exposure apparatus of the present invention, a good micro device can be manufactured through a good exposure step.
ところで、 後述する実施形態では、 波面収差をツェルニケの多項式で表わすこ とによって本発明を説明している。 そこで、 以下、 波面収差およびその各成分の ツェルニケ多項式による表現について基本的な事項を説明する。 ツェル二ケ多項 式の表現では、 座標系として極座標を用い、 直交関数系としてツェルニケの円筒 関数を用いる。  By the way, in embodiments described later, the present invention is described by expressing wavefront aberration by Zernike polynomial. Therefore, the following is a description of the fundamental matters regarding the expression of the wavefront aberration and its components by Zernike polynomials. In the representation of the Zernike polynomial, polar coordinates are used as the coordinate system, and Zernike cylindrical functions are used as the orthogonal function system.
後述の実施形態において説明しているように、 光学面の面精度を干渉計を用い て計測する際には、 基準となるフィゾー球面からの反射光と光学面からの反射光 との位相ズレが波面収差として計測される。 また、 対物レンズ系の透過波面収差 を計測する際には、 基準となるフィゾー平面 (フィゾーフラット) からの反射光 と、 対物レンズ系にて一旦集光し反射球面にて反射され再びフィゾー平面に戻つ た光との位相ズレが波面収差として計測される。 いずれの場合も、 干渉計の計測 結果としては同様の波面収差関数で表わされるが、 面計測の場合はそのまま面形 状誤差を表わす。 ここでは、 最も一般的なフィゾー干渉計を例にとって説明して いるが、 同様の位相差計測が可能な干渉計、 例えばトワイマン ·グリーン干渉計 やマッハツェンダー干渉計、 シヤリング干渉計等を用いてもよいし、 近年開発が 盛んなマイクロレンズアレイによる波面分割型の波面収差測定器を用いてもよい。 また、 直接レンズ面を接触式で測定し、 3次元構造を測定する 3次元測定器を用 いて、 基準面からのずれを測定しても構わない。  As described in an embodiment described later, when measuring the surface accuracy of an optical surface using an interferometer, the phase shift between the reflected light from the reference Fizeau spherical surface and the reflected light from the optical surface is determined. Measured as wavefront aberration. Also, when measuring the transmitted wavefront aberration of the objective lens system, the reflected light from the reference Fizeau plane (Fizeau flat) is collected once by the objective lens system, reflected by the reflective spherical surface, and returned to the Fizeau plane again. The phase shift with the returned light is measured as wavefront aberration. In either case, the measurement result of the interferometer is represented by the same wavefront aberration function, but the surface measurement directly represents the surface shape error. Here, the most common Fizeau interferometer is described as an example, but an interferometer that can perform the same phase difference measurement, such as a Twyman-Green interferometer, a Mach-Zehnder interferometer, or a shearing interferometer, is used. Alternatively, a wavefront splitting type wavefront aberration measuring device using a microlens array, which has been actively developed in recent years, may be used. Alternatively, the deviation from the reference plane may be measured using a three-dimensional measuring device that directly measures the lens surface by a contact method and measures a three-dimensional structure.
まず、 射出瞳面上に極座標を定め、 得られた波面収差 Wを、 W ( ρ, Θ ) とし て表わす。 ここで、 /0は射出瞳の半径を 1に規格化した規格化瞳半怪であり、 Θ は極座標の動径角である。 次いで、 波面収差 W ( ρ , Θ ) を、 ツェルニケの円筒 関数系 Ζ η ( ρ , Θ ) を用いて、 次の式 (6 ) に示すように展開する。 W (p, Θ) =∑ Cn Z n (p, Θ) First, the polar coordinates are defined on the exit pupil plane, and the obtained wavefront aberration W is expressed as W (ρ, Θ). Here, / 0 is a normalized pupil half-pupil in which the radius of the exit pupil is normalized to 1, and Θ is a radial angle in polar coordinates. Next, the wavefront aberration W (ρ, Θ) is developed as shown in the following equation (6) using the Zernike cylindrical function system Ζη (ρ, Θ). W (p, Θ) = ∑ Cn Z n (p, Θ)
=C 1 · Z 1 (p, Θ) +C 2 · Z 2 (p, Θ)  = C 1Z 1 (p, Θ) + C 2Z 2 (p, Θ)
- - - · +Cn · Z n (p, Θ) (6) ここで、 Cnは展開係数である。 以下、 ツェルニケの円筒関数系 Zn (p, Θ) のうち、 第 1項〜第 36項にかかる円筒関数系 Ζ 1〜Ζ 36は、 次に示す通 りである。  ---· + Cn · Zn (p, Θ) (6) where Cn is an expansion coefficient. Hereinafter, of the Zernike cylindrical function system Zn (p, Θ), the cylindrical function systems Ζ1 to Ζ36 relating to the first to the 36th terms are as follows.
η Ζ η (ρ, θ) η Ζ η (ρ, θ)
1 1  1 1
2 ρ cos θ  2 ρ cos θ
3 ίθ sin 6*  3 ίθ sin 6 *
4 2 ρ2- 1 4 2 ρ 2 - 1
5 ρ 2cos 2 θ 5 ρ 2 cos 2 θ
6 ,o2sin2 θ 6, o 2 sin2 θ
7 (3 ρ2- 2) pcos 0 7 (3 ρ 2 - 2) pcos 0
8 (3 ρ2- 2) ρ sine 8 (3 ρ 2 - 2) ρ sine
9 6 ρに 6 ρ2+ 1 9 6 ρ to 6 ρ 2 + 1
10 ρ 3cos 3 θ 10 ρ 3 cos 3 θ
11 ρ 3sin 3 θ 11 ρ 3 sin 3 θ
12 (4 ρ2- 3) p2cos 2 θ 12 (4 ρ 2 - 3) p 2 cos 2 θ
13 (4 ρ2- 3) p2sin2 θ 13 (4 ρ 2 - 3) p 2 sin2 θ
14 (10 ρ4- 1 2 ρ2+ 3) pcos θ 14 (10 ρ 4 - 1 2 ρ 2 + 3) pcos θ
15 ( 1 0 ρ4- 1 2 2+ 3) psin^ 15 (1 0 ρ 4 - 1 2 2 + 3) psin ^
16 20 ρ6- 30 ρ + 1 2 ιθ2- 1 16 20 ρ 6 - 30 ρ + 1 2 ιθ 2 - 1
17 p4cos 4 θ 17 p 4 cos 4 θ
18 P4sin4 θ 18 P 4 sin4 θ
19 (5 ρ2-4) p3cos 3 θ 19 (5 ρ 2 -4) p 3 cos 3 θ
20 (5 !θ2— 4) p3sin3 θ 20 (5! Θ 2 — 4) p 3 sin3 θ
21 (1 5 ί)4- 20 ρ2+ 6) ,o2cos2 θ 22 : (1 5 p4- 20 /02+ 6 ) p2sin2 Θ 21 (1 5 ί) 4 - 20 ρ 2 + 6), o 2 cos2 θ 22: (1 5 p 4 - 20/0 2 + 6) p 2 sin2 Θ
23 : ( 35 |06- 60 p4+ 30 p -4) p cos Θ 23: (35 | 0 6 - 60 p 4 + 30 p -4) p cos Θ
24 : ( 35 p6- 60 p + 30 p'-4) psinO 24: (35 p 6 - 60 p + 30 p'-4) psinO
25: 70 p8- 140 p6+ 90 p -20 p2+ l 25: 70 p 8 - 140 p 6 + 90 p -20 p 2 + l
26: p "cos 5 Θ  26: p "cos 5 Θ
27: p5sin5 Θ 27: p 5 sin5 Θ
28 : (6 p2- 5) p4cos4 Θ 28: (6 p 2 - 5 ) p 4 cos4 Θ
29 : (6 p2- 5) p4sin4 Θ 29: (6 p 2 - 5 ) p 4 sin4 Θ
30 : ( 1 p - 30 p2+ 1 0) p3cos30 30: (1 p-30 p 2 + 10) p 3 cos30
31 : (21 p4- 30 p2+ 1 0) p3sin3 Θ 31: (21 p 4 - 30 p 2 + 1 0) p 3 sin3 Θ
32 : ( 56 p6- 1 04 p4+ 60 p2- 10) p2cos2 Θ 32: (56 p 6 - 1 04 p 4 + 60 p 2 - 10) p 2 cos2 Θ
33 : (56 p6- l 04 p4+ 60 i)z- 10) p2sin2 Θ 33: (56 p 6 -l 04 p 4 + 60 i) z -10) p 2 sin2 Θ
34 : (126 p8- 280 p6+ 2 10 p - 60 p2+ 5) pcos0 34: (126 p 8 - 280 p 6 + 2 10 p - 60 p 2 + 5) pcos0
35 : (126 p 8— 280 /06+ 2 10 ί) 4— 60 /02+ 5) psin0 35: (126 p 8 — 280/0 6 + 2 10 ί) 4 — 60/0 2 + 5) psin0
36 : 252 ,ο10- 630 ί)8+ 560 ρ6- 2 1 0 /04+ 30 ,o2- l 36: 252, ο 10 - 630 ί) 8 + 560 ρ 6 - 2 1 0/0 4 + 30, o 2 - l
既に述べたように、 従来技術における波面収差 Wに基づく評価手法は、 波面収 差の全成分 Wの最大最小の差 (P— V値) や RMS値を評価指標として用いてい た。 しかしながら、 波面収差の全成分 Wの P— V値や RMS値による評価では同 じ値となる場合でも、 各項の展開係数 C l、 02, · · · ·の組み合わせによつ ては、 所望の性能を達成することができない場合がある。 したがって、 本発明で は、 波面収差 Wの各成分について考える。  As described above, the evaluation method based on the wavefront aberration W in the prior art used the maximum-minimum difference (PV value) of all the components W of the wavefront difference and the RMS value as the evaluation index. However, even if the evaluation is made to be the same value by the P-V value and the RMS value of all the components W of the wavefront aberration, depending on the combination of the expansion coefficients C1, 02, Performance may not be achieved. Therefore, in the present invention, each component of the wavefront aberration W is considered.
まず、 波面収差 Wを、 回転対称成分と奇数対称成分と偶数対称成分とに分類す ることができる。 ここで、 回転対称成分とは、 6»を含まない項、 すなわち、 ある 座標での値と、 その座標を瞳の中央を中心として任意の角度だけ回転した座標で の値とが等しい回転対称な成分である。 また、 奇数対称成分とは、 sin0 (また は cos0)、 sin3 Θ (または cos 3 ) などの、 動径角 0の奇数倍の 3角関数を 含む項、 すなわち、 ある座標での値と、 その座標を瞳の中央を中心として 3 6 0° の奇数分の 1だけ回転した座標での値とが等しい奇数対称な成分である。 さ らに、 偶数対称成分とは、 sin20 (または cos2 0)、 sin4 Θ (または cos4 Θ) などの、 動径角 0の偶数倍の 3角関数を含む項、 すなわち、 ある座標での値 と、 その座標を瞳の中央を中心として 360 ° の偶数分の 1だけ回転した座標で の値とが等しい偶数対称な成分である。 First, the wavefront aberration W can be classified into a rotationally symmetric component, an odd symmetric component, and an even symmetric component. Here, the rotationally symmetric component is a term that does not include 6 », that is, a rotationally symmetric component in which the value at a certain coordinate and the value at a coordinate obtained by rotating the coordinate by an arbitrary angle around the center of the pupil are equal. Component. An odd symmetric component is a term that includes a trigonometric function that is an odd multiple of the radial angle 0, such as sin0 (or cos0), sin3 Θ (or cos3), that is, the value at a certain coordinate and its value. It is an odd-numbered symmetric component whose coordinates are the same as those at coordinates rotated by an odd fraction of 360 ° around the center of the pupil. Sa Furthermore, the even symmetric component is a term including a trigonometric function that is an even multiple of the radial angle 0, such as sin20 (or cos2 0), sin4 Θ (or cos4 Θ), that is, a value at a certain coordinate, It is an even-symmetric component whose value is the same as the value of the coordinates rotated by an even number of 360 ° around the center of the pupil.
さらに、 波面収差 Wの全成分に、 干渉計の計測時に発生する誤差成分として、 展開係数 C 1〜C4にかかる各項を含めないことにする。 ここで、 展開係数 C 1 にかかる第 1項は、 定数項である。 また、 展開係数 C 2および C 3にかかる第 2 項および第 3項は、 チルト成分 (X方向および Y方向) である。 さらに、 展開係 数 C 4にかかる第 4項は、 パワー成分である。 この場合、 波面収差 Wの回転対称 成分 Wrot、 奇数対称成分 Wodd、 及び偶数対称成分 Wevn は、 それぞれ次の式 (7) 〜 (9) で表される。 以下、 表現の簡素化のために、 原則として第 n項の 展開係数 Cnをもって第 n項を表すこととする。 すなわち、 以下の式 (7) 〜 (9) および各成分の表現において、 Cr^iCn * Z nを意味するものとする。 Wrot (ρ, Θ) =C 9+C 16 + C 2 5 + C 36 (7)  Furthermore, all the components of the wavefront aberration W do not include the terms related to the expansion coefficients C1 to C4 as error components generated at the time of measurement by the interferometer. Here, the first term related to the expansion coefficient C 1 is a constant term. The second and third terms related to the expansion coefficients C 2 and C 3 are the tilt components (X and Y directions). Further, the fourth term related to the deployment coefficient C4 is a power component. In this case, the rotationally symmetric component Wrot, the odd symmetric component Wodd, and the even symmetric component Wevn of the wavefront aberration W are expressed by the following equations (7) to (9), respectively. In the following, for simplicity of expression, the n-th term is expressed in principle by the expansion coefficient Cn of the n-th term. That is, in the following expressions (7) to (9) and expressions of each component, it means Cr ^ iCn * Zn. Wrot (ρ, Θ) = C 9 + C 16 + C 25 + C 36 (7)
Wodd (p, Θ) =C 7 +C 8+C 1 0 +C 1 1 +C 14 + C 15  Wodd (p, Θ) = C 7 + C 8 + C 10 + C 11 + C 14 + C 15
+C 19+C 20 +C 23+C 24+C 26  + C 19 + C 20 + C 23 + C 24 + C 26
+ C 27 + C 30 +C 3 1 +C 34 + C 35 (8) Wevn (p, Θ) =C 5 + C 6+C 12 + C 1 3 +C 1 7 +C 18  + C 27 + C 30 + C 31 + C 34 + C 35 (8) Wevn (p, Θ) = C 5 + C 6 + C 12 + C 13 + C 17 + C 18
+C 2 1 +C 22 +C 28+C 29 +C 32  + C 2 1 + C 22 + C 28 + C 29 + C 32
+ C 33 (9)  + C 33 (9)
こうして、 後述の実施形態において検討される各成分、 すなわち、 全成分 W、 回転対称成分 Wrot、 回転対称高次成分 Wroth、 非回転対称成分 Wrnd、 ァス補正 後非回転対称成分 Wrndmas、 ァス補正後非回転対称高次成分 Wrndmash、 縦収差 成分 W縦、 縦収差高次成分 W縦高、 横収差成分 W横、 横収差高次成分 W横高、 ァ ス補正 Wmas、 ァスと低次球面収差補正 Wmassa、 ァスと低次コマ収差補正 W mascoina> 高次収差成分 Wmassacomaは、 次のように表される。  Thus, each component considered in the embodiment described later, that is, all components W, rotationally symmetric component Wrot, rotationally symmetric high-order component Wroth, non-rotationally symmetric component Wrnd, non-rotationally symmetric component after ass correction Wrndmas, ass correction Non-rotationally symmetric high-order component Wrndmash, Longitudinal aberration component W Longitudinal, Longitudinal aberration high-order component W Longitudinal height, Lateral aberration component W Horizontal, High-order lateral aberration component W Lateral height, Correction Wmas, Low-order spherical surface Aberration correction Wmassa, as well as low-order coma aberration correction W mascoina> High-order aberration component Wmassacoma is expressed as follows.
全成分: W=Wrot+Wodd + Wevn  All components: W = Wrot + Wodd + Wevn
回転対称成分: Wrot (式 (7) を参照) 回転対称高次成分 (回転対称成分 2次 4次残差): Wroth=Wrot— C 9 非回転対称成分: Wrnd=Wodd + Wevn Rotationally symmetric component: Wrot (see equation (7)) Rotationally symmetric higher-order components (rotationally symmetric components 2nd and 4th-order residuals): Wroth = Wrot— C 9 Non-rotationally symmetric components: Wrnd = Wodd + Wevn
ァス補正後非回転対称成分: Wrndmas=Wrnd— C 5 -C 6  Non-rotationally symmetric component after phase correction: Wrndmas = Wrnd— C 5 -C 6
ァス補正後非回転対称高次成分: Wrndmash=Wrndmas— C 7 -C 8 縦収差成分: 縦= 1"(^ + 6¥11- 5—€ 6  Non-rotationally symmetric high-order component after ass correction: Wrndmash = Wrndmas— C 7 -C 8 Longitudinal aberration component: Longitudinal = 1 ”(^ + 6 ¥ 11-5— € 6
縦収差高次成分: W縦高- W縦一 C 9  Longitudinal aberration higher order component: W vertical height-W vertical one C9
横収差成分: W横 =Wodd (式 ( 8 ) を参照)  Lateral aberration component: W transverse = Wodd (see equation (8))
横収差高次成分: W横高-W横一 C 7— C 8  Lateral aberration higher order component: W side height-W side one C7—C8
ァス補正: Wmas=W— C 5— C 6  Correction: Wmas = W— C 5— C 6
ァスと低次球面収差補正: Wmassa=W— C 5— C 6— C 9  And low order spherical aberration correction: Wmassa = W— C 5— C 6— C 9
ァスと低次コマ収差補正: Wmascoma=W— C 5-C 6 -C 7 -C 8 高次収差成分: Wmassacoma=W— C 5 -C 6-C 7-C 8-C 9 なお、 全成分 Wは、 各面の基準面に対する波面収差からチルト成分およびパヮ —成分を補正した後の成分である。 また、 回転対称高次成分 Wrothは、 回転対称 成分 Wr 01 から 2次 4次曲線成分を除去した回転対称成分 2次 4次残差である。 さらに、 ァス補正後非回転対称成分 Wrndmas は、 全成分 Wからァス成分を補正 した後の非回転対称成分である。  And low-order coma aberration correction: Wmascoma = W— C 5-C 6 -C 7 -C 8 High-order aberration component: Wmassacoma = W— C 5 -C 6-C 7-C 8-C 9 The component W is a component obtained by correcting the tilt component and the power component from the wavefront aberration of each surface with respect to the reference surface. The rotationally symmetric higher-order component Wroth is the rotationally symmetric component second-order fourth-order residual obtained by removing the quadratic-quadratic curve component from the rotationally symmetric component Wr 01. Furthermore, the non-rotationally symmetric component Wrndmas after the ass correction is the non-rotationally symmetric component after the ass component has been corrected from all components W.
また、 ァス補正 Wmas は、 全成分 Wからァス成分を補正した後の成分である。 さらに、 ァスと低次球面収差補正 Wmassa は、 全成分 Wからァス成分および低次 球面収差成分を補正した後の成分である。 また、 ァスと低次コマ収差補正 W mascoma は、 全成分 Wからァス成分および低次コマ収差成分を補正した後の成分 である。 ここで、 ァス成分とは、 あるメリディォナル面で光軸からの距離の 2乗 に比例する波面収差成分と、 それに直交する面における光軸からの距離の 2乗に 比例する波面収差成分との差が最も大きくなる成分である。  Further, the gas correction Wmas is a component obtained by correcting the gas component from all the components W. Further, the ass and low-order spherical aberration correction Wmassa are components obtained by correcting the ass component and the low-order spherical aberration component from all the components W. The as and low-order coma aberration correction W mascoma is a component obtained by correcting the as-component and the low-order coma component from all the components W. Here, the ass component is a wavefront aberration component proportional to the square of the distance from the optical axis on a certain meridional surface, and a wavefront aberration component proportional to the square of the distance from the optical axis on a surface orthogonal to the meridional surface. This is the component with the largest difference.
また、 各波面収差成分の自乗平均平方根 (RMS値) を RWrot のごとく前に Rを付けてあらわし、 ツェルニケ多項式の各項毎の RMS値も同様に RCnのごとく 前に Rを付けてあらわすとき、 以下に示す関係が成立する。  Also, when the root mean square (RMS value) of each wavefront aberration component is expressed with R before RWrot, and the RMS value for each term of the Zernike polynomial is similarly expressed with R before RCn, The following relationship is established.
回転対称成分: (RWrot) 2 = (RC 9) 2 + (RC 1 6) 2 + (RC 25) 2 + (RC 36) 2 奇数対称成分: Rotationally symmetric components: (RWrot) 2 = (RC 9) 2 + (RC 16) 2 + (RC 25) 2 + (RC 36) 2 Odd symmetric component:
(RWodd) 2 = (RC 7) 2 + (RC 8 ) 2 + (RC 10) 2 + (RC 1 1) 2 (RWodd) 2 = (RC 7) 2 + (RC 8) 2 + (RC 10) 2 + (RC 1 1) 2
+ (RC 1 ) 2 + (RC 1 5) 2 + (RC 1 9) 2 + (RC 20) 2 + (RC 23) 2 + (RC 24) 2 + (RC 26) 2 + (RC 27) 2 + (RC 30) 2 + (RC 3 1) 2 + (RC 34) 2 + (RC 3 5) 2 偶数対称成分: + (RC 1) 2 + (RC 15) 2 + (RC 19) 2 + (RC 20) 2 + (RC 23) 2 + (RC 24) 2 + (RC 26) 2 + (RC 27) 2 + (RC 30) 2 + (RC 3 1) 2 + (RC 34) 2 + (RC 3 5) 2 Even symmetric components:
(RWevn) 2 = (RC 5) 2 + (RC 6) 2 + (RC 1 2) 2 + (RC 13) 2 (RWevn) 2 = (RC 5) 2 + (RC 6) 2 + (RC 1 2) 2 + (RC 13) 2
+ (RC 17) 2 + (RC 1 8) 2 + (RC 2 1) 2 + (RC 22) 2 + (RC 28) 2 + (RC 29) 2 + (RC 32) 2 + (RC 3 3) 2 全成分: (RW) 2 = (RWrot) 2 + (RWodd) 2 + (RWevn) 2 + (RC 17) 2 + ( RC 1 8) 2 + (RC 2 1) 2 + (RC 22) 2 + (RC 28) 2 + (RC 29) 2 + (RC 32) 2 + (RC 3 3) 2 All components: (RW) 2 = (RWrot) 2 + (RWodd) 2 + (RWevn) 2
回転対称成分: (RWrot) 2 Rotationally symmetric component: (RWrot) 2
回転対称成分高次 (2次 4次残差): Rotationally symmetric components higher order (second order fourth order residual):
(R Wroth) 2 = (RWrot) 2 - (RC 9) 2 (R Wroth) 2 = (RWrot) 2- (RC 9) 2
非回転対称成分: (RWrnd) 2 = (RWodd) 2 + (RWevn) 2 Non-rotationally symmetric component: (RWrnd) 2 = (RWodd) 2 + (RWevn) 2
ァス補正後非回転対称成分: Non-rotationally symmetric component after phase correction:
(RWrndmas) 2 = (RWrnd) - (RC 5 ) 2 - (RC 6 ) 2 (RWrndmas) 2 = (RWrnd)-(RC 5) 2- (RC 6) 2
ァス補正後非回転対称高次成分: Non-rotationally symmetric higher-order components after phase correction:
(RWrndmash) 2 = (RWrndmas) 2 - (RC 7) 2 — (RC 8) 2 (RWrndmash) 2 = (RWrndmas) 2- (RC 7) 2 — (RC 8) 2
縦収差成分: Longitudinal aberration component:
(RW縦) 2 = (RWrot) 2 + (RWevn) 2 — (RC 5 ) 2 — (RC 6 ) 2 縦収差高次成分: (RW縦高) 2 = (RW縦) 2 — (RC 9) 2 (RW vertical) 2 = (RWrot) 2 + (RWevn) 2 — (RC 5) 2 — (RC 6) 2 Longitudinal aberration higher order component: (RW vertical) 2 = (RW vertical) 2 — (RC 9) Two
横収差成分: (RW横) 2 = (R Wodd) 2 Lateral aberration component: (RW side) 2 = (R Wodd) 2
横収差高次成分: (RW横高) 2 = (RW横) 2 — (RC 7) 2 — (RC 8) 2 ァス補正: (RWmas) 2 = (RW) 2 — (RC 5 ) 2 — (RC 6 ) 2 Lateral aberration higher order component: (RW lateral height) 2 = (RW lateral) 2 — (RC 7) 2 — (RC 8) 2 Error correction: (RWmas) 2 = (RW) 2 — (RC 5) 2 — (RC 6) 2
ァスと低次球面収差補正: And low-order spherical aberration correction:
(RWmas s a) 2 = (RW) 2 — (RC 5 ) 2 — (RC 6 ) 2 — (RC 9 ) 2 ァスと低次コマ収差補正: (RWmascoma) 2 = (RW) 2 - (RC 5 ) 2 - (RC 6 ) 2 - (RC 7 ) 2 (RWmas sa) 2 = (RW) 2 — (RC 5) 2 — (RC 6) 2 — (RC 9) 2 fs and low order coma correction: (RWmascoma) 2 = (RW) 2- (RC 5) 2- (RC 6) 2- (RC 7) 2
一 (RC 8 ) 2 One (RC 8) 2
高次収差成分: Higher order aberration components:
(RWmassacoma) 2 = (RW) 2 - (RC 5 ) 2 - (RC 6 ) 2 - (RC 7 ) 2 (RWmassacoma) 2 = (RW) 2- (RC 5) 2- (RC 6) 2- (RC 7) 2
一 (RC 8 ) 2 — (RC 9 ) 2 本発明の実施形態を、 添付図面に基づいて説明する。 (RC 8) 2 — (RC 9) 2 An embodiment of the present invention will be described with reference to the accompanying drawings.
第 1図は、 本発明の実施形態にかかる観察装置および該観察装置を備えた露光 装置の構成を概略的に示す図である。 本実施形態では、 露光装置において感光性 基板の位置検出を行うための観察装置としての F I A系ァライメント装置に本発 明を適用している。 第 1図では、 露光装置の投影光学系 P Lの光軸に対して平行 に Z軸が、 Z軸に垂直な平面内において第 1図の紙面に平行な方向に X軸が、 Z 軸に垂直な平面内において第 1図の紙面に垂直な方向に Y軸がそれぞれ設定され ている。  FIG. 1 is a view schematically showing a configuration of an observation apparatus and an exposure apparatus provided with the observation apparatus according to the embodiment of the present invention. In the present embodiment, the present invention is applied to a FIA-based alignment device as an observation device for detecting the position of a photosensitive substrate in an exposure device. In FIG. 1, the Z axis is parallel to the optical axis of the projection optical system PL of the exposure apparatus, and the X axis is perpendicular to the paper plane of FIG. 1 in a plane perpendicular to the Z axis, and the Z axis is perpendicular to the Z axis. The Y-axis is set in a direction perpendicular to the plane of FIG.
図示の露光装置は、 適当な露光光でマスク (投影原版) としてのレチクル Rを 均一に照明するための露光用照明系 (不図示) を備えている。 レチクル Rはレチ クルステージ 1上において X Y平面とほぼ平行に支持されており、 そのパターン 領域 P Aには転写すべき回路パターンが形成されている。 露光用照明系に照明さ れてレチクル Rを透過した光は投影光学系 P Lを介してウェハ Wに達し、 ウェハ W上にはレチクル Rのパターン像が形成される。 なお、 ウェハ Wは、 ウェハホル ダ 2 1を介して Zステージ 2 2上において X Y平面とほぼ平行に支持されている c Zステージ 2 2は、 ステージ制御系 2 4によって、 投影光学系 P Lの光軸に沿つ て駆動されるように構成されている。 The illustrated exposure apparatus includes an exposure illumination system (not shown) for uniformly illuminating a reticle R as a mask (projection master) with appropriate exposure light. The reticle R is supported on the reticle stage 1 substantially parallel to the XY plane, and a circuit pattern to be transferred is formed in the pattern area PA. The light illuminated by the exposure illumination system and transmitted through the reticle R reaches the wafer W via the projection optical system PL, and a pattern image of the reticle R is formed on the wafer W. Incidentally, the wafer W is c Z stage 2 2, which is substantially parallel to the support to the XY plane on a Z stage 2 2 via the Wehahoru da 2 1, the stage control system 2 4, the optical axis of the projection optical system PL It is configured to be driven along.
さらに、 Zステージ 2 2は、 X Yステージ 2 3上に支持されている。 X Yステ —ジ 2 3は、 同じくステージ制御系 2 4によって、 投影光学系 P Lの光軸に対し て垂直な X Y平面内において二次元的に駆動されるように構成されている。 前述 したように、 露光装置では、 投影露光に先立って、 レチクル R上のパターン領域 P Aとゥ: [:ハ W上の各露光領域とを光学的に位置合わせ (ァライメント) する必 要がある。 そこで、 ウェハ W上に形成されたパ夕一ン (たとえば段差パターン) からなるァライメントマークすなわちウェハマーク WMの基準座標系における X 方向位置および Y方向位置を検出し、 その位置情報に基づいてァライメントが行 われる。 Further, the Z stage 22 is supported on the XY stage 23. The XY stage 23 is also configured to be driven two-dimensionally in the XY plane perpendicular to the optical axis of the projection optical system PL by the stage control system 24. As described above, in the exposure apparatus, prior to the projection exposure, it is necessary to optically align the pattern area PA on the reticle R with each of the exposure areas on the ゥ: [: C W. It is necessary. Therefore, an X-axis position and a Y-axis position of a wafer mark WM in a reference coordinate system, which is an alignment mark formed of a pattern (eg, a step pattern) formed on the wafer W, are detected, and the alignment is performed based on the position information. Is performed.
なお、 ウェハマーク WMは、 X方向および Y方向にそれぞれ周期性を有する互 いに独立した 2つの一次元マークであっても、 X方向および Y方向に周期性を有 する二次元マークであってもよい。 第 1図に示す F I A系ァライメント装置は、 波長帯域幅の広い照明光としてのァライメント光 A Lを供給するための光源 3を 備えている。 光源 3として、 たとえばハロゲンランプのような光源を使用するこ とができる。 本実施形態では、 ァライメント光の波長帯域をたとえば 5 3 0 n m 〜8 0 0 n mとしている。 光源 3からのァライメント光 A Lは、 図示を省略した リレー光学系を介して、 たとえば光ファイバ一のようなライトガイド 4に入射し、 その内部を伝搬する。 ライトガイド 4の射出端から射出されたァライメント光 A Lは、 たとえば円形の開口部を有する照明開口絞り 2 7を介して制限された後、 コンデンサーレンズ 2 9に入射する。  Note that the wafer mark WM is a two-dimensional mark having periodicity in the X and Y directions, even if it is two independent one-dimensional marks having periodicity in the X and Y directions, respectively. Is also good. The FIA-based alignment device shown in FIG. 1 includes a light source 3 for supplying alignment light AL as illumination light having a wide wavelength bandwidth. As the light source 3, for example, a light source such as a halogen lamp can be used. In the present embodiment, the wavelength band of the alignment light is, for example, 530 nm to 800 nm. The alignment light AL from the light source 3 enters a light guide 4 such as an optical fiber via a relay optical system (not shown), and propagates through the inside. The alignment light A L emitted from the exit end of the light guide 4 is restricted via, for example, an illumination aperture stop 27 having a circular opening, and then enters a condenser lens 29.
コンデンサ一レンズ 2 9を介したァライメン卜光 A Lは、 一旦集光された後、 照明視野絞り (不図示) を介して照明リレーレンズ 5に入射する。 照明リレーレ ンズ 5を介して平行光となったァライメント光 A Lは、 ハーフプリズム 6を透過 した後、 対物レンズ 7に入射する。 対物レンズ 7で集光されたァライメント光 A Lは、 反射プリズム 8の反射面で図中下方に反射された後、 ウェハ W上に形成さ れたウェハマーク WMを照明する。 このように、 光源 3、 ライトガイド 4、 照 明開口絞り 2 7、 コンデンサーレンズ 2 9、 照明視野絞り (不図示)、 照明リレ 一レンズ 5、 ハーフプリズム 6、 対物レンズ 7および反射プリズム 8は、 ウェハ マーク WMを落射照明するためめ照明光学系を構成している。  The alignment light A L via the condenser lens 29 is once condensed, and then enters the illumination relay lens 5 via an illumination field stop (not shown). The alignment light AL converted into parallel light via the illumination relay lens 5 passes through the half prism 6 and then enters the objective lens 7. The alignment light AL condensed by the objective lens 7 is reflected by the reflecting surface of the reflecting prism 8 downward in the figure, and then illuminates the wafer mark WM formed on the wafer W. Thus, the light source 3, light guide 4, illumination aperture stop 27, condenser lens 29, illumination field stop (not shown), illumination relay lens 5, half prism 6, objective lens 7, and reflection prism 8 The illumination optical system is configured to illuminate the wafer mark WM by epi-illumination.
照明光に対するウェハマーク WMからの反射光 (回折光を含む) は、 反射プリ ズム 8および対物レンズ 7を介して、 ハーフプリズム 6に入射する。 ハーフプリ ズム 6で図中上方に反射された光は、 第 2対物レンズ 1 1を介して、 指標板 1 2 上にウェハマーク WMの像を形成する。 このマーク像からの光は、 リレーレンズ 系 (13, 14) およびその光路中において照明開口絞り 27と光学的にほぼ共 役な位置に配置された結像開口絞り 30を介して、 XY分岐ハーフプリズム 15 に入射する。 そして、 XY分岐ハーフプリズム 15で反射された光は Y方向用 C CD 16に、 XY分岐ハーフプリズム 1 5を透過した光は X方向用 CCD 17に 入射する。 The reflected light (including the diffracted light) from the wafer mark WM with respect to the illumination light enters the half prism 6 via the reflecting prism 8 and the objective lens 7. The light reflected upward in the drawing at the half prism 6 forms an image of the wafer mark WM on the index plate 12 via the second objective lens 11. The light from this mark image is relay lens The light enters the XY-branch half prism 15 via the system (13, 14) and the image forming aperture stop 30 arranged in a position optically substantially common to the illumination aperture stop 27 in the optical path. The light reflected by the XY branch half prism 15 is incident on the CCD 16 for Y direction, and the light transmitted through the XY branch half prism 15 is incident on the CCD 17 for X direction.
このように、 反射プリズム 8、 対物レンズ 7、 ハーフプリズム 6、 第 2対物レ ンズ 1 1、 指標板 12、 リレーレンズ系 (1 3, 14)、 結像開口絞り 30、 お よびハーフプリズム 1 5は、 照明光に対するウェハマーク WMからの反射光に基 づいてマーク像を形成するための結像光学系を構成している。 こうして、 Y方向 用 CCD 16および X方向用 CCD 17の撮像面には、 マーク像が指標板 12の 指標パターン像とともに形成される。 Y方向用 CCD 16および X方向用 CCD 17からの出力信号は、 信号処理系 18に供給される。 さらに、 信号処理系 18 において信号処理 (波形処理) により得られたウェハマーク WMの位置情報は、 主制御系 25に供給される。  Thus, reflecting prism 8, objective lens 7, half prism 6, second objective lens 11, indicator plate 12, relay lens system (13, 14), imaging aperture stop 30, and half prism 15 Constitutes an imaging optical system for forming a mark image based on reflected light from the wafer mark WM with respect to the illumination light. Thus, a mark image is formed on the imaging surface of the Y-direction CCD 16 and the X-direction CCD 17 together with the index pattern image of the index plate 12. Output signals from the Y-direction CCD 16 and the X-direction CCD 17 are supplied to a signal processing system 18. Further, the position information of the wafer mark WM obtained by the signal processing (waveform processing) in the signal processing system 18 is supplied to the main control system 25.
主制御系 25は、 信号処理系 18からのウェハマーク WMの位置情報に基づい てウェハ Wの X方向位置および Y方向位置を検出し、 検出したゥヱハ Wの X方向 位置および Y方向位置に応じたステージ制御信号をステージ制御系 24に出力す る。 ステージ制御系 24は、 ステージ制御信号にしたがって XYステージ 23を 適宜駆動し、 ウェハ Wのァライメントを行う。 このように、 Y方向用 CCD 16、 X方向用 CCD 17、 信号処理系 18、 および主制御系 25は、 結像光学系を介 して形成されたマーク像の位置情報に基づいてウェハ Wの位置を検出するための 光電検出手段を構成している。  The main control system 25 detects the X-direction position and the Y-direction position of the wafer W based on the position information of the wafer mark WM from the signal processing system 18, and responds to the detected X-direction position and Y-direction position of W. A stage control signal is output to the stage control system 24. The stage control system 24 appropriately drives the XY stage 23 according to the stage control signal to perform the alignment of the wafer W. As described above, the CCD 16 for the Y direction, the CCD 17 for the X direction, the signal processing system 18, and the main control system 25 transmit the wafer W based on the position information of the mark image formed via the imaging optical system. It constitutes a photoelectric detecting means for detecting the position.
[第 1実施例] [First embodiment]
第 2図は、 本実施形態の観察装置である F I A系ァライメント装置に含まれる 第 1実施例の対物レンズのレンズ構成を示す図である。 第 1実施例の対物レンズ 7は、 第 2図に示すように、 物体側 (すなわちウェハマ一ク WM側) から順に、 正の屈折力を有する第 1レンズ群 G 1と、 負の屈折力を有する第 2レンズ群 G 2 とから構成されている。 ここで、 第 1レンズ群 G 1は、 物体側から順に、 両凸レ ンズ L 1、 物体側に凸面を向けた負メニスカスレンズと両凸レンズと物体側に凹 面を向けた負メニスカスレンズとの貼り合わせからなる接合レンズ L 2、 および 両凸レンズと両凹レンズとの貼り合わせからなる接合レンズ L 3から構成されて いる。 FIG. 2 is a diagram showing a lens configuration of the objective lens of Example 1 included in the FIA-based alignment device that is the observation device of the present embodiment. As shown in FIG. 2, the objective lens 7 of the first embodiment includes, in order from the object side (that is, the wafer mark WM side), a first lens group G1 having a positive refractive power and a negative refractive power. Second lens group G 2 It is composed of Here, the first lens group G 1 includes, in order from the object side, a biconvex lens L 1, a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side. It is composed of a cemented lens L2 formed by bonding and a cemented lens L3 formed by bonding a biconvex lens and a biconcave lens.
また、 第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた正メニス カスレンズと物体側に凸面を向けた負メニスカスレンズとの貼り合わせからなる 接合レンズ L 4、 および両凹レンズ L 5 1と両凸レンズ L 5 2との貼り合わせか らなる接合レンズ L 5から構成されている。 なお、 対物レンズ 7とウェハマーク WMとの間の光路中には、 反射プリズム 8が配置されている。  The second lens group G2 includes, in order from the object side, a cemented lens L4 formed by bonding a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a biconcave lens. It is composed of a cemented lens L5 formed by bonding L51 and a biconvex lens L52. Note that a reflecting prism 8 is arranged in the optical path between the objective lens 7 and the wafer mark WM.
次の第 1表に、 第 1実施例の対物レンズの諸元の値を掲げる。 第 1表において、 f は対物レンズの焦点距離を、 N Aは対物レンズの物体側開口数を、 d Oは対物 レンズの最も物体側のレンズ面と物体面との間の光軸に沿った空気換算距離をそ れぞれ表している。 また、 面番号は物体面であるゥェ八面から像面への光線の進 行する方向に沿ったウェハ側からの面の順序を、 rは各面の曲率半径 (mm) を、 dは各面の軸上間隔すなわち面間隔 (mm) を、 nは d線 (波長 λ = 5 8 7 . 6 n m) に対する屈折率を、 リはアッベ数をそれぞれ示している。 なお、 各実施例 において、 物体面 (ウェハ面) からレンズ L 1の物体側の面までの間隔は 4 8 . 5 mmであり、 その間隔中に厚さ 2 8 mm、 屈折率 1 . 5 6 8 8 3、 アッベ数 5 6 . 0 5のガラスブロック (反射プリズム 8に対応) が配置されている。 以下の 第 1表および (2 ) においては、 物体面からレンズ L 1の物体側の面までの間隔 を空気換算長で示している。 また、 以下の収差第 3図および 5では、 このガラス プロックを含めた光学系の収差を示している。 第 1 表  Table 1 below shows values of specifications of the objective lens of the first example. In Table 1, f is the focal length of the objective lens, NA is the object side numerical aperture of the objective lens, and d O is the air along the optical axis between the most object side lens surface and the object surface of the objective lens. The converted distances are shown respectively. Also, the surface number is the order of the surfaces from the wafer side along the direction in which the light beam travels from the object surface, i.e., plane 8 to the image surface, r is the radius of curvature (mm) of each surface, and d is The on-axis spacing of each surface, that is, the surface spacing (mm), n is the refractive index for the d-line (wavelength λ = 57.67.6 nm), and Li is the Abbe number. In each embodiment, the distance from the object surface (wafer surface) to the object-side surface of the lens L1 is 48.5 mm, and the thickness is 28 mm and the refractive index is 1.56 8 8 3 The glass block (corresponding to the reflective prism 8) with Abbe number 56.05 is arranged. In Table 1 and (2) below, the distance from the object plane to the object-side surface of the lens L1 is shown in terms of air equivalent length. The following aberrations in FIGS. 3 and 5 show aberrations of the optical system including the glass block. Table 1
(主要諸元)  (Main specifications)
f = 3 0 . 0 mm f = 30.0 mm
NA= 0 . 3 (光学部材諸元) NA = 0.3 (Optical component specifications)
面番号 r d n ソ Surface number r d n
(ウェハ面) 38.3  (Wafer surface) 38.3
1 201.94 5.0 1.74443
Figure imgf000025_0001
ンズ L 1)
1 201.94 5.0 1.74443
Figure imgf000025_0001
L 1)
2 -37.92 0.1 2 -37.92 0.1
3 151.01 4.0 1.71700 ンズ L 2) 3 151.01 4.0 1.71700 nds L 2)
4 29.52 9.5 1.49782 82.52 4 29.52 9.5 1.49782 82.52
5 -27.11 3.0 1.61266 44.41  5 -27.11 3.0 1.61266 44.41
6 -87.01 0.2  6 -87.01 0.2
7 31.19 8.5 1.49782 3)  7 31.19 8.5 1.49782 3)
CO /ンズ L CO / L
8 -32.63 4.0 1.52682 51.35 8 -32.63 4.0 1.52682 51.35
9 167.46 1.5  9 167.46 1.5
 One
10 28.49 8.0 1. 9782 ンズ L 4) 10 28.49 8.0 1.9782
11 114.92 10.7 1.67163 38.80 11 114.92 10.7 1.67163 38.80
12 15.00 7.0  12 15.00 7.0
13 -15.44 6.2 1.65128
Figure imgf000025_0002
ンズ L 5)
13 -15.44 6.2 1.65128
Figure imgf000025_0002
(L5)
14 331.20 10.8 1.71736 29.46 14 331.20 10.8 1.71736 29.46
15 -27.17  15 -27.17
(条件式対応値) (Values for conditional expressions)
d 1 = 5. 0 mm (レンズし 1) d 1 = 5.0 mm (lens 1)
d 0 = 2 8/1. 5 6 8 8 3 + (4 8. 5 - - 2 8) / 1 d 0 = 2 8 / 1.5 6 8 8 3 + (4 8.5--28) / 1
3 8. 347 mm  3 8.347 mm
D= 1 8. 7 mm (レンズ L 4)  D = 18.7 mm (Lens L 4)
L= 1 2 7 mm  L = 1 2 7 mm
( 1) d l d 0 = 0. 1 3  (1) d l d 0 = 0.13
(2) 1 v 1 - v 2 | = 8. 7 2 (3) レ 1 = 38. 18 (レンズ L 51) (2) 1 v 1-v 2 | = 8.7 2 (3) D 1 = 38.18 (Lens L 51)
(4) v 2 = 29. 46 (レンズし 52)  (4) v 2 = 29.46 (lens 52)
(5) D/L=0. 147 第 3図は、 第 1実施例の対物レンズの諸収差を示す図である。 各収差図におい て、 FN〇は Fナンパ一を、 Yは像高を、 eは e線 (波長 546. 1 nm) を C は C線 (波長 656. 3 nm) を、 Aは A線 (波長 768. 2 nm) をそれぞれ 示している。 また、 非点収差を示す収差図において、 実線はサジタル像面を示し、 破線はメリディォナル像面を示している。 各収差図から明らかなように、 第 1実 施例の対物レンズは、 設計レベルにおいて、 色収差を含む諸収差が良好に補正さ れ、 優れた結像性能を有することがわかる。  (5) D / L = 0.147 FIG. 3 is a diagram showing various aberrations of the objective lens of the first example. In each aberration diagram, FN〇 is the F-number, Y is the image height, e is the e-line (wavelength 546.1 nm), C is the C line (wavelength 656.3 nm), and A is the A line ( The wavelength is 78.2 nm). Further, in the aberration diagram showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. As is clear from the aberration diagrams, it can be seen that the objective lens of the first embodiment has excellent imaging performance at the design level in which various aberrations including chromatic aberration are well corrected.
[第 2実施例] [Second embodiment]
第 4図は、 本実施形態の観察装置である F I A系ァライメント装置に含まれる 第 2実施例の対物レンズのレンズ構成を示す図である。 第 2実施例の対物レンズ 7は、 第 4図に示すように、 物体側から順に、 正の屈折力を有する第 1レンズ群 G1と、 負の屈折力を有する第 2レンズ群 G 2とから構成されている。 ここで、 第 1レンズ群 G1は、 物体側から順に、 両凸レンズ L l、 物体側に凸面を向けた 負メニスカスレンズと両凸レンズと物体側に凹面を向けた負メニスカスレンズと の貼り合わせからなる接合レンズ L 2、 および両 ΰレンズと両凹レンズとの貼り 合わせからなる接合レンズ L 3から構成されている。  FIG. 4 is a diagram showing a lens configuration of the objective lens of Example 2 included in the FIA-based alignment device that is the observation device of the present embodiment. As shown in FIG. 4, the objective lens 7 of the second embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. It is configured. Here, the first lens group G1 is composed of, in order from the object side, a biconvex lens Ll, a negative meniscus lens having a convex surface facing the object side, a biconvex lens, and a negative meniscus lens having a concave surface facing the object side. It is composed of a cemented lens L2 and a cemented lens L3 formed by laminating a bifocal lens and a biconcave lens.
また、 第 2レンズ群 G 2は、 物体側から順に、 物体側に凸面を向けた正メニス カスレンズと物体側に凸面を向けた負メニスカスレンズとの貼り合わせからなる 接合レンズ L 4、 および両凹レンズ L 51と両凸レンズ L 52との貼り合わせか らなる接合レンズ L 5から構成されている。 なお、 対物レンズ 7とウェハマーク WMとの間の光路中には、 反射プリズム 8が配置されている。  The second lens group G2 includes, in order from the object side, a cemented lens L4 formed by bonding a positive meniscus lens having a convex surface facing the object side and a negative meniscus lens having a convex surface facing the object side, and a biconcave lens. It is composed of a cemented lens L5 formed by bonding L51 and a biconvex lens L52. Note that a reflecting prism 8 is arranged in the optical path between the objective lens 7 and the wafer mark WM.
次の第 2表に、 第 2実施例の対物レンズの諸元の値を掲げる。 第 2表において、 f は対物レンズの焦点距離を、 NAは対物レンズの物体側開口数を、 d 0は対物 レンズの最も物体側のレンズ面と物体面との間の光軸に沿った空気換算距離をそ れぞれ表している。 また、 面番号は物体面であるウェハ面から像面への光線の進 行する方向に沿ったウェハ側からの面の順序を、 rは各面の曲率半径 (mm) を、 dは各面の軸上間隔すなわち面間隔 (mm) を、 nは d線 (波長 λ = 587. 6 nm) に対する屈折率を、 リはアッベ数をそれぞれ示している。 第 2 表 Table 2 below gives data of the specifications of the objective lens of the second example. In Table 2, f is the focal length of the objective, NA is the object-side numerical aperture of the objective, and d0 is the objective. The air-equivalent distance along the optical axis between the lens surface closest to the object side of the lens and the object surface is shown. The surface number is the order of the surface from the wafer side along the direction in which the light beam travels from the wafer surface, which is the object surface, to the image surface, r is the radius of curvature (mm) of each surface, and d is each surface Is the on-axis spacing, ie, the plane spacing (mm), n is the refractive index for the d-line (wavelength λ = 587.6 nm), and R is the Abbe number. Table 2
(主要諸元)  (Main specifications)
f = 30. 0 mm  f = 30.0 mm
NA = 0. 3  NA = 0.3
(光学部材諸元) (Optical component specifications)
面番号 r d n V Surface number r d n V
(ゥェ八面) 38.3  (8 sides) 38.3
1 367, .86 5.0 1. ,74443 49.52 (レンズ L 1)  1 367, .86 5.0 1., 74443 49.52 (Lens L 1)
2 - 37, .33 0.1  2-37, .33 0.1
3 89, .88 4.0 1. ,67163 38.80 (レンズ L 2)  3 89, .88 4.0 1., 67163 38.80 (Lens L 2)
4 30, .92 9.5 1. ,49782 82.52  4 30, .92 9.5 1., 49782 82.52
5 -30, .42 3.0 1. ,61266 44.41  5 -30, .42 3.0 1., 61266 44.41
6 -740. .30 0.2  6 -740. .30 0.2
7 34. .75 8.0 1. 49782 82.52 (レンズ L 3)  7 34. .75 8.0 1.49782 82.52 (Lens L 3)
8 -30, .86 4.0 1. 52682 51.35  8 -30, .86 4.0 1.52682 51.35
9 -239. .23 0.2  9 -239. .23 0.2
10 19, .14 8.6 1. 49782 82.52 (レンズ L4)  10 19, .14 8.6 1. 49782 82.52 (Lens L4)
11 68. , 11 5.0 1. 61266 44.41  11 68., 11 5.0 1. 61 266 44.41
12 11. .63 5.5  12 11. .63 5.5
13 -18. .46 10.0 1. 65128 38.18 (レンズ L 5)  13 -18. .46 10.0 1. 65 128 38.18 (Lens L 5)
14 34. .04 10.5 1. 72825 28.34 15 -41.13 (条件式対応値) 14 34. .04 10.5 1. 72825 28.34 15 -41.13 (Value for conditional expression)
d 1 = 5. 0mm (レンズ 1) d 1 = 5.0mm (lens 1)
d 0 = 28/1. 56883 + (48. 5 - 28) /1 d 0 = 28 / 1.56883 + (48.5-28) / 1
= 38. 347 mm  = 38.347 mm
D= 13. 6mm (レンズ L 4) D = 13.6 mm (Lens L 4)
L= 122. lmm L = 122. lmm
(1) d 1/d 0 = 0. 13  (1) d 1 / d 0 = 0.13
(2) I v 1 - v 2 1 =9. 84  (2) I v 1-v 2 1 = 9.84
(3) v 1 = 38. 18 (レンズ L 5 1)  (3) v 1 = 38.18 (Lens L 5 1)
(4) v 2 = 28. 34 (レンズ 52)  (4) v 2 = 28.34 (lens 52)
(5) D/L= 0. 1 1 1 第 5図は、 第 2実施例の対物レンズの諸収差を示す図である。 各収差図におい て、 F NOは Fナンパ一を、 Yは像高を、 eは e線 (波長 546. 1 nm) を C は C線 (波長 656. 3 nra) を、 Aは A線 (波長 768. 2 nm) をそれぞれ 示している。 また、 非点収差を示す収差図において、 実線はサジタル像面を示し、 破線はメリディォナル像面を示している。 各収差図から明らかなように、 第 2実 施例の対物レンズも第 1実施例と同様に、 設計レベルにおいて、 色収差を含む諸 収差が良好に補正され、 優れた結像性能を有することがわかる。  (5) D / L = 0.11 1 FIG. 5 is a diagram showing various aberrations of the objective lens of the second example. In each aberration diagram, F NO is the F number, Y is the image height, e is the e-line (wavelength 546.1 nm), C is the C line (wavelength 656.3 nra), and A is the A line ( The wavelength is 78.2 nm). Further, in the aberration diagram showing astigmatism, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. As is clear from the aberration diagrams, similarly to the first embodiment, the objective lens of the second embodiment has excellent correction of various aberrations including chromatic aberration at the design level, and has excellent imaging performance. Understand.
次に、 本実施形態の対物レンズ系 (すなわち対物レンズ 7) の製造方法、 ひい ては観察装置 (すなわち F I A系ァライメント装置) の製造方法について説明す る。 一般に、 対物レンズ系などにおいて収差が発生する原因として、 光学材料 (硝材) の屈折率分布の不均一性や研磨面誤差などがある。 しかしながら、 仮に 屈折率分布の不均一性や研磨面誤差などがなくても、 製造に際して、 各レンズの 中心厚および空気間隔の誤差、 並びに光軸と直交する方向にレンズ成分が偏心す る誤差が発生する。 対物レンズ系では、 各レンズの中心厚および空気間隔の誤差 によつて主に球面収差が発生し、 偏心誤差によって主にコマ収差が発生する。 ここで、 球面収差およびコマ収差の低次成分は、 光学調整により補正可能であ るが、 球面収差およびコマ収差の高次成分は光学調整による補正が難しい。 また 使用する波長域の中で波長毎に偏心コマ収差が異なると、 色によるコマ収差が残 存し、 これも光学調整による補正が困難である。 この観点から、 光学系自体が設 計レベルにおいて収差が十分に補正されているだけでなく、 光学調整時にレンズ 移動等を行っても、 調整不可能な高次波面収差成分を如何に発生させない設計に なっているかが重要になっている。 そこで、 本実施形態では、 対物レンズ系の光 学調整により発生する波面収差高次成分および波長毎の偏心コマ収差を所定値以 下に抑えて、 対物レンズ系を設計している。 Next, a method for manufacturing the objective lens system (that is, the objective lens 7) of the present embodiment, and further, a method for manufacturing the observation device (that is, the FIA-based alignment device) will be described. In general, aberrations in an objective lens system and the like are caused by non-uniformity of the refractive index distribution of an optical material (glass material) and a polished surface error. However, even if there is no non-uniformity of the refractive index distribution and no polished surface error, errors in the center thickness and air gap of each lens and errors in the eccentricity of lens components in the direction perpendicular to the optical axis will occur during manufacturing. appear. In the objective lens system, errors in the center thickness and air gap of each lens As a result, spherical aberration mainly occurs, and decentering error mainly causes coma. Here, low-order components of spherical aberration and coma can be corrected by optical adjustment, but high-order components of spherical aberration and coma are difficult to correct by optical adjustment. Also, if the decentering coma aberration differs for each wavelength in the wavelength range used, coma due to color remains, which is also difficult to correct by optical adjustment. From this point of view, not only is the optical system itself sufficiently corrected for aberrations at the design level, but it is also designed to prevent the generation of unadjustable high-order wavefront aberration components even if the lens is moved during optical adjustment. Is important. Therefore, in the present embodiment, the objective lens system is designed such that the higher order components of wavefront aberration and the eccentric coma for each wavelength, which are generated by the optical adjustment of the objective lens system, are not more than predetermined values.
具体的には、 対物レンズ 7の物体側の開口数を N Aとし、 使用光の中心波長 (すなわち C線の波長: 656. 3 nm) を λ ΐとしたとき、 対物レンズ 7を構 成する各レンズの中心厚および各レンズの空気間隔をそれぞれ d (mm) だけ変 化させたときに発生する波面収差のうち高次球面収差成分の RMS (root mean square: 自乗平均平方根) 値を (30 · d · NA6) · λ 1以下に設定している。 ここで、 高次球面収差成分の RMS値は、 ツェルニケ多項式の第 16項に基づい て得られる。 Specifically, when the numerical aperture on the object side of the objective lens 7 is NA and the center wavelength of the light used (that is, the wavelength of the C-line: 656.3 nm) is λ, each of the constituent elements of the objective lens 7 is The RMS (root mean square) value of the higher order spherical aberration component of the wavefront aberration generated when the center thickness of the lens and the air spacing of each lens are changed by d (mm), respectively, is (30 · d · NA 6 ) · λ 1 or less. Here, the RMS value of the higher order spherical aberration component is obtained based on the 16th term of the Zernike polynomial.
第 6図は、 第 1実施例の対物レンズ系を構成する各レンズの中心厚および各レ ンズの空気間隔をそれぞれ変化させたときに発生する高次球面収差成分の RMS 値を示す図である。 第 6図において、 縦軸は、 発生する高次球面収差成分の RM S値が (d · ΝΑ6) · λ 1の何倍になっているかを示している。 第 6図を参照 すると、 従来技術にしたがう参考例では、 高次球面収差成分の RMS値が部分的 に (30 · d · NA6) · λ 1を大きく超えているが、 第 1実施例の対物レンズ 7 (第 6図では実施例) では、 高次球面収差成分の RMS値が全体に亘つて (3 0 · d · NA6) · λ 1以下に設定されていることがわかる。 なお、 図示を省略 したが、 第 2実施例の対物レンズ 7においても、 高次球面収差成分の RMS値が 全体に亘つて (30 · d · NA6) · λ 1以下に設定されている。 FIG. 6 is a diagram showing RMS values of higher-order spherical aberration components generated when the center thickness of each lens and the air gap of each lens constituting the objective lens system of the first embodiment are changed. . In Figure 6, the vertical axis indicates RM S values of higher-order spherical aberration component generated is in multiples of (d · ΝΑ 6) · λ 1. Referring to FIG. 6, in the reference example according to the prior art, the RMS value of the higher-order spherical aberration component partially exceeds (30 · d · NA 6 ) · λ1, but the RMS value of the first embodiment is In the objective lens 7 (Example in FIG. 6 ), it can be seen that the RMS value of the higher-order spherical aberration component is set to (30 · d · NA 6 ) · λ1 or less throughout. Although not shown, also in the objective lens 7 of the second embodiment, the RMS value of the higher-order spherical aberration component is set to (30 · d · NA 6 ) · λ1 or less throughout.
また、 本実施形態では、 対物レンズ 7を構成する各レンズを光軸と直交する方 向に沿って s (mm) だけ偏心させたときに発生する波面収差のうち高次コマ収 差成分の RMS値を (50 · s · NA5) · λ 1以下に設定している。 ここで、 高次コマ収差成分の RMS値は、 ツェルニケ多項式の第 14項に基づいて得られ る。 Further, in the present embodiment, each lens constituting the objective lens 7 is The RMS value of the higher-order coma difference component of the wavefront aberration that occurs when the beam is decentered by s (mm) along the direction is set to (50 · s · NA 5 ) · λ1 or less. Here, the RMS value of the higher-order coma aberration component is obtained based on the 14th term of the Zernike polynomial.
第 7図は、 第 1実施例の対物レンズ系を構成する各レンズを光軸と直交する方 向に沿って偏心させたときに発生する波面収差のうち高次コマ収差成分の RMS 値を示す図である。 第 7図において、 縦軸は、 発生する高次コマ収差成分の RM S値が (s · ΝΑ5) · λ 1の何倍になっているを示している。 第 7図を参照す ると、 従来技術にしたがう参考例では、 高次コマ収差成分の RMS値が部分的に (50 · s · ΝΑ5) · λ 1を大きく超えているが、 第 1実施例の対物レンズ 7 (第 7図では実施例) では、 高次コマ収差成分の RMS値が全体に亘つて (5 0 · s · ΝΑ5) · λ 1以下に設定されていることがわかる。 なお、 図示を省略 したが、 第 2実施例の対物レンズ 7においても、 高次コマ収差成分の RMS値が 全体に亘つて (50 · s · ΝΑ5) · λ 1以下に設定されている。 FIG. 7 shows RMS values of higher-order coma aberration components among wavefront aberrations generated when each lens constituting the objective lens system of the first embodiment is decentered along a direction orthogonal to the optical axis. FIG. In Figure 7, the vertical axis, RM S values of high-order coma aberration components generated indicates a has many times the (s · ΝΑ 5) · λ 1. If you see FIG. 7, in the reference example according to the prior art, although the RMS value of the high-order coma aberration component greatly exceeds the partially (50 · s · ΝΑ 5) · λ 1, first embodiment examples in the objective lens 7 (the seventh FIG example), it can be seen that the RMS value of the high-order coma aberration components is set to Wataru connexion (5 0 · s · ΝΑ 5 ) · λ 1 below throughout. Although not shown, in the objective lens 7 in the second embodiment, RMS value of the high-order coma aberration components is set to Wataru connexion (50 · s · ΝΑ 5) · λ 1 below throughout.
さらに、 本実施形態では、 対物レンズ 7を構成する各レンズを光軸と直交する 方向に沿って s (mm) だけ偏心させたときに発生する波面収差のうち使用光の 最短波長の偏心コマ収差成分の R M S値と使用光の最長波長の偏心コマ収差成分 の RMS値との差の絶対値を (50 · s · NA3) · λ 1以下に設定している。 ここで、 使用光の最短波長の偏心コマ収差成分の R M S値と使用光の最長波長の 偏心コマ収差成分の RMS値との差の絶対値は、 ツェルニケ多項式の第 7項に基 づいて得られる。 Further, in the present embodiment, among the wavefront aberrations generated when each lens constituting the objective lens 7 is decentered by s (mm) along the direction orthogonal to the optical axis, the decentering coma aberration of the shortest wavelength of the used light is used. The absolute value of the difference between the RMS value of the component and the RMS value of the decentered coma component of the longest wavelength of the used light is set to (50 · s · NA 3 ) · λ1 or less. Here, the absolute value of the difference between the RMS value of the eccentric coma component of the shortest wavelength of the used light and the RMS value of the eccentric coma component of the longest wavelength of the used light is obtained based on the seventh term of the Zernike polynomial. .
第 8図は、 第 1実施例の対物レンズ系を構成する各レンズを光軸と直交する方 向に沿って偏心させたときに発生する波面収差のうち使用光の最短波長 (530 nm) の偏心コマ収差成分の RMS値と使用光の最長波長 (800 nm) の偏心 コマ収差成分の RMS値との差の絶対値を示す図である。 第 8図において、 縦軸 は、 発生する使用光の最短波長の偏心コマ収差成分の RMS値と使用光の最長波 長の偏心コマ収差成分の RMS値との差の絶対値が (s - NA3) · λ 1の何倍 になっているかを示している。 第 8図を参照すると、 従来技術にしたがう参考例 では、 使用光の最短波長の偏心コマ収差成分の RMS値と使用光の最長波長の偏 心コマ収差成分の RMS値との差の絶対値が部分的に (50 · s · NA3) · λ 1を大きく超えているが、 第 1実施例の対物レンズ 7 (第 8図では実施例) では、 使用光の最短波長の偏心コマ収差成分の RMS値と使用光の最長波長の偏心コマ 収差成分の RMS値との差の絶対値が全体に亘つて (50 * s * NA3) * A l 以下に設定されていることがわかる。 なお、 図示を省略したが、 第 2実施例の対 物レンズ 7においても、 使用光の最短波長の偏心コマ収差成分の RMS値と使用 光の最長波長の偏心コマ収差成分の R M S値との差の絶対値が全体に亘って ( 5 0 · s · NA3) · λ 1以下に設定されている。 FIG. 8 shows the shortest wavelength (530 nm) of the used light among the wavefront aberrations that occur when each lens constituting the objective lens system of the first embodiment is decentered along the direction orthogonal to the optical axis. FIG. 9 is a diagram showing an absolute value of a difference between an RMS value of an eccentric coma aberration component and an RMS value of an eccentric coma aberration component of the longest wavelength (800 nm) of light used. In FIG. 8, the vertical axis represents the absolute value of the difference between the RMS value of the shortest wavelength eccentric coma component of the used light and the RMS value of the longest wavelength eccentric coma component of the used light (s-NA 3 ) · Indicates how many times λ 1 is. Referring to FIG. 8, a reference example according to the prior art is shown. The absolute value of the difference between the RMS value of the decentered coma component of the shortest wavelength of the used light and the RMS value of the decentered coma component of the longest wavelength of the used light is partially (50 · s · NA 3 ) · λ Although it greatly exceeds 1, the RMS value of the shortest wavelength decentered coma component of the used light and the decentered comatic aberration component of the longest wavelength of the used light in the objective lens 7 of the first embodiment (the embodiment in FIG. 8) it can be seen that the absolute value of the difference between the RMS value of is set to Wataru connexion (50 * s * NA 3) * a l or less throughout. Although not shown, also in the objective lens 7 of the second embodiment, the difference between the RMS value of the decentered coma component of the shortest wavelength of the used light and the RMS value of the decentered coma aberration component of the longest wavelength of the used light is shown. Is set to (50 · s · NA 3 ) · λ1 or less throughout.
次いで、 上述のように設計された本実施形態の対物レンズ 7の各光学部材 (す なわち各レンズ) を製造する。 第 9図は、 本実施形態の対物レンズ系を構成する 各光学部材の製造フローを示すフローチャートである。 各光学部材の製造工程で は、 第 9図に示すように、 各光学部材を形成すべきブロック硝材 (ブランクス) を製造する (S 1 1)。 そして、 製造したブロック硝材の屈折率の均質性を検査 する (S 12)。 具体的には、 第 10図に示す干渉計装置を用いてプロック硝材 の屈折率の分布を計測する。 第 10図では、 オイル 101が充填された試料ケー ス 102の中の所定位置に被検物体であるブロック硝材 103を設置する。  Next, each optical member (that is, each lens) of the objective lens 7 of the present embodiment designed as described above is manufactured. FIG. 9 is a flowchart showing a manufacturing flow of each optical member constituting the objective lens system of the present embodiment. In the manufacturing process of each optical member, as shown in FIG. 9, a block glass material (blanks) for forming each optical member is manufactured (S11). Then, the homogeneity of the refractive index of the manufactured block glass material is inspected (S12). Specifically, the distribution of the refractive index of the block glass material is measured using the interferometer shown in FIG. In FIG. 10, a block glass material 103 as a test object is set at a predetermined position in a sample case 102 filled with oil 101.
そして、 制御系 104に制御された干渉計ュニット 105からの射出光が、 フ ィゾーステージ 106 a上に支持されたフィゾーフラット (フィゾ一平面) 10 6に入射する。 ここで、 フィゾーフラット 106で反射された光は参照光となり、 干渉計ュニット 105へ戻る。 一方、 フィゾーフラット 106を透過した光は測 定光となり、 試料ケース 102内の被検物体 103に入射する。 被検物体 103 を透過した光は、 反射平面 107によって反射され、 被検物体 103およびフィ ゾーフラット 106を介して干渉計ユニット 105へ戻る。 こうして、 干渉計ュ ニット 105へ戻った参照光と測定光との位相ずれに基づいて、 各ブロック硝材 103の屈折率分布による波面収差が、 ひいては各光学部材の屈折率分布による 波面収差が計測される。 なお、 屈折率均質性の干渉計による計測に関する詳細に ついては、 たとえば特開平 8— 5505号 (およびこれに対応する米国特許第 6, 181, 469号) 公報を参照することができる。 ここでは、 米国特許第 6, 0 25, 955号および米国特許第 6, 181, 469号をレファレンスとして援 用する。 Then, the emission light from the interferometer unit 105 controlled by the control system 104 is incident on a Fizeau flat (Fiso one plane) 106 supported on the Fizeau stage 106a. Here, the light reflected by the Fizeau flat 106 becomes reference light and returns to the interferometer unit 105. On the other hand, the light transmitted through the Fizeau flat 106 becomes measurement light and is incident on the test object 103 in the sample case 102. The light transmitted through the test object 103 is reflected by the reflection plane 107 and returns to the interferometer unit 105 via the test object 103 and the Fizeau flat 106. In this way, based on the phase shift between the reference light and the measurement light returned to the interferometer unit 105, the wavefront aberration due to the refractive index distribution of each block glass material 103, and thus the wavefront aberration due to the refractive index distribution of each optical member, is measured. You. The details of the measurement of refractive index homogeneity by an interferometer are described in, for example, Japanese Patent Application Laid-Open No. 8-5505 (and corresponding US Pat. No. 181, 469). Here, U.S. Patent No. 6,025,955 and U.S. Patent No. 6,181,469 are incorporated by reference.
本実施形態では、 光学部材の屈折率均質性に関する規格を設けている。 この規 格では、 各光学部材の屈折率分布による波面収差の P— V値 (peak to valley: 最大最小の差) を 0. 005 λ以下に設定している。 ここで、 λは、 波面収差の 計測光の波長であるが、 通常の干渉計装置の場合、 He— Neレーザを使用して いるので、 λ = 632. 8 nmである。 なお、 本実施形態では、 他の干渉計装置 においても He -N eレーザを使用しているので、 後述する他の規格においても λ = 632. 8 nmである。  In the present embodiment, a standard regarding the refractive index homogeneity of the optical member is set. In this standard, the PV value (peak to valley: difference between maximum and minimum) of the wavefront aberration due to the refractive index distribution of each optical member is set to 0.005λ or less. Here, λ is the wavelength of the measurement light of the wavefront aberration. In the case of a normal interferometer, λ = 632.8 nm because a He-Ne laser is used. In the present embodiment, since the He-Ne laser is also used in other interferometer devices, λ is 632.8 nm in other standards described later.
上述の屈折率均質性に関する規格に照らして検査を合格しなかった各光学部材 については、 選別により廃棄するか、 あるいは品質の向上のためにブロック硝材 の製造を再度試みる。 次に、 各光学部材を研磨して、 その光学面の面精度を規格 値まで追い込む (S 13)。 本実施形態では、 対物レンズ系を構成する各光学部 材の光学面の面精度に関して、 次の 4つの規格を並立的に設けている。  For each optical member that does not pass the inspection in accordance with the above-mentioned standard regarding refractive index homogeneity, it is discarded by sorting, or production of block glass material is attempted again to improve quality. Next, each optical member is polished to reduce the surface accuracy of the optical surface to a standard value (S13). In the present embodiment, the following four standards are provided in parallel with respect to the surface accuracy of the optical surface of each optical member constituting the objective lens system.
各光学部材の光学面の面精度に関する第 1の規格では、 各光学部材の各面の基 準面に対する波面収差からチルト成分およびパワー成分を補正した後の全成分 W の RMS値を 0. 010 λ以下に設定している。 また、 全成分 Wの回転対称成分 Wrot の RMS値を 0. 005 λ以下に設定している。 さらに、 回転対称成分 W rotから 2次 4次曲線成分を除去した回転対称成分 2次 4次残差 Wrothの RMS 値を 0. 003 λ以下に設定している。 また、 全成分 Wからァス成分を補正した 後の非回転対称成分 Wrndmasの RMS値を 0. 005 λ以下に設定している。 各光学部材の光学面の面精度に関する第 2の規格では、 各光学部材の各面の基 準面に対する波面収差からチル卜成分およびパヮー成分を補正した後の全成分 W の RMS値を 0. 010 λ以下に設定している。 また、 全成分 Wの縦収差成分 W 縦の RMS値を 0. 007 λ以下に設定している。 さらに、 全成分 Wの縦収差高 次成分 W縦高の RMS値を 0. 005 λ以下に設定している。 また、 全成分 Wの 横収差成分 W横の RMS値を 0. 005 λ以下に設定している。 さらに、 全成分 Wの横収差高次成分 W横高の R M S値を 0 . 0 0 3 λ以下に設定している。 The first standard for the surface accuracy of the optical surface of each optical member is that the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is 0.001. It is set to λ or less. Also, the RMS value of the rotationally symmetric component Wrot of all components W is set to 0.005λ or less. In addition, the RMS value of the rotationally symmetric component second-order and fourth-order residual Wroth obtained by removing the second-order and fourth-order curve components from the rotationally symmetric component Wrot is set to 0.003λ or less. In addition, the RMS value of the non-rotationally symmetric component Wrndmas after correcting the negative component from all components W is set to 0.005 λ or less. In the second standard regarding the surface accuracy of the optical surface of each optical member, the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is set to 0. 010 λ or less. The longitudinal RMS value of the longitudinal aberration component W of all components W is set to 0.0007λ or less. In addition, the RMS value of the longitudinal height of the high order component W of all components W is set to 0.005 λ or less. In addition, the RMS value of the transverse aberration component W of all components W is set to 0.005λ or less. In addition, all ingredients Lateral aberration high-order component of W The RMS value of the W lateral height is set to 0.003λ or less.
各光学部材の光学面の面精度に関する第 3の規格では、 各光学部材の各面の基 準面に対する波面収差からチルト成分およびパワー成分を補正した後の全成分 W の RM S値を 0 . 0 1 0 λ以下に設定している。 また、 全成分 Wからァス成分を 補正した後の成分 Wmas の R M S値を 0 . 0 0 8 λ以下に設定している。 さらに、 全成分からァス成分および低次球面収差成分を補正した後の成分 Wmas s a の R M S値を 0 . 0 0 5 λ以下に設定している。 また、 全成分 Wの高次収差成分 W massacomaの RM S値を 0 . 0 0 3 λ以下に設定している。  In the third standard regarding the surface accuracy of the optical surface of each optical member, the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is set to 0. It is set to 0 1 0 λ or less. Also, the RMS value of the component Wmas after correcting the negative component from all the components W is set to 0.008 λ or less. Further, the RMS value of the component Wmas sa after correcting the ass component and the low-order spherical aberration component from all the components is set to 0.005λ or less. The RMS value of the high-order aberration component W massacoma of all components W is set to 0.003λ or less.
各光学部材の光学面の面精度に関する第 4の規格では、 各光学部材の各面の基 準面に対する波面収差からチルト成分およびパヮ一成分を補正した後の全成分 W の R M S値を 0 . 0 1 0 λ以下に設定している。 また、 波面収差をツェルニケの 多項式で表すときの第 9項の展開係数 C 9の値を 0 . 0 0 9 λ以下に設定してい る。 さらに、 第 1 0項〜第 3 6項の展開係数 C 1 0〜C 3 6の値を 0 . 0 0 5 λ 以下にそれぞれ設定している。  In the fourth standard regarding the surface accuracy of the optical surface of each optical member, the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration with respect to the reference surface of each surface of each optical member is set to 0. It is set to 0 1 0 λ or less. The value of the expansion coefficient C9 of the ninth term when the wavefront aberration is represented by Zernike polynomials is set to 0.009λ or less. Further, the values of the expansion coefficients C10 to C36 of the 10th to 36th terms are set to 0.005? Or less, respectively.
第 9図を参照すると、 研磨した各光学部材の光学面の面精度を、 干渉計を用い て検査する (S 1 4 )。 具体的には、 第 1 1図に示す干渉計装置を用いて各光学 部材の光学面の面精度を計測する。 第 1 1図では、 制御系 1 1 1に制御された干 渉計ュニット 1 1 2からの射出光が、 フィゾーステージ 1 1 3 a上に支持された フィゾーレンズ 1 1 3に入射する。 ここで、 フィゾーレンズ 1 1 3の参照面 (フ ィゾ一面) で反射された光は参照光となり、 干渉計ユニット 1 1 2へ戻る。 一方、 フィゾーレンズ 1 1 3を透過した光は測定光となり、 被検レンズ 1 1 4の被検光 学面に入射する。 被検レンズ 1 1 4の被検光学面で反射された測定光は、 フィゾ —レンズ 1 1 3を介して干渉計ュニット 1 1 2へ戻る。 こうして、 干渉計ュニッ ト 1 1 2へ戻った参照光と測定光との位相ずれに基づいて、 被検レンズ 1 1 4の 被検光学面の基準面に対する波面収差が計測される。 なお、 第 1 1図では、 フィ ゾーレンズ 1 1 3を単レンズで示しているが、 実際のフィゾーレンズは複数のレ ンズ (レンズ群) で構成されている。  Referring to FIG. 9, the surface accuracy of the polished optical member is inspected using an interferometer (S14). Specifically, the surface accuracy of the optical surface of each optical member is measured using the interferometer shown in FIG. In FIG. 11, light emitted from the interferometer unit 112 controlled by the control system 111 enters the Fizeau lens 113 supported on the Fizeau stage 113a. Here, the light reflected on the reference surface (one Fize surface) of the Fizeau lens 1 13 becomes the reference light, and returns to the interferometer unit 1 12. On the other hand, the light transmitted through the Fizeau lens 113 becomes measurement light and is incident on the optical surface of the lens 114 to be measured. The measurement light reflected from the optical surface to be inspected of the lens to be inspected 1 14 returns to the interferometer unit 1 12 via the Fizeo-lens 1 13. In this way, based on the phase shift between the reference light and the measurement light returned to the interferometer unit 112, the wavefront aberration of the test optical surface of the test lens 114 with respect to the reference surface is measured. Although FIG. 11 shows the Fizeau lens 113 as a single lens, the actual Fizeau lens is composed of a plurality of lenses (lens groups).
上述の面精度に関する第 1の規格〜第 4の規格から任意に選択された 1つの規 格、 たとえば第 4の規格に照らして検査を合格しなかった各光学部材については、 追加研磨を試みるか、 あるいは研磨工程を変更して新たな研磨を試みる。 次に、 各光学部材の光学面に、 コ一ティングを施す (S 1 5 )。 こうして、 本実施形態 の対物レンズ系を構成する各光学部材が完成する (S 1 6 )。 なお、 第 1 2図に 示すように、 コーティング (S 1 5 ) の後に、 干渉計による光学面の検査 (S 1 5 ' ) を行うこともできる。 One standard arbitrarily selected from the first to fourth standards for surface accuracy described above For each optical component that does not pass the inspection, for example, according to the 4th standard, try additional polishing or change the polishing process and try a new polishing. Next, a coating is applied to the optical surface of each optical member (S15). Thus, each optical member constituting the objective lens system of the present embodiment is completed (S16). As shown in FIG. 12, after the coating (S15), an optical surface inspection (S15 ') by an interferometer can be performed.
第 1 3図は、 本実施形態の対物レンズ系を構成する各光学部材の組み込みおよ び光学調整フローを示すフローチャートである。 また、 第 1 4図は、 組み立てら れた本実施形態の対物レンズ系の全体構成を示す図である。 第 1 4図において、 各レンズ成分 L 1〜L 5は、 それぞれ対応するレンズ室 L C 1〜; L C 5によって 保持された状態で、 鏡筒 MTに組み込まれている。 なお、 レンズ成分 L 3を保持 するレンズ室 L C 3とレンズ成分 L 4を保持するレンズ室 L C との間には、 間 隔環 S Aが設けられている。 また、 鏡筒 MTには、 たとえばレンズ成分 L 5の偏 心を調整するための偏心調整ねじ V S 5が設けられている。 なお、 図示を省略し たが、 他のレンズ成分 L 1〜L 4の偏心を調整するための偏心調整ねじ V S 1〜 V S 4も必要に応じて設けられている。  FIG. 13 is a flowchart showing a flow of assembling and optically adjusting each optical member constituting the objective lens system of the present embodiment. FIG. 14 is a diagram showing the overall configuration of the assembled objective lens system of the present embodiment. In FIG. 14, the lens components L1 to L5 are incorporated in the lens barrel MT while being held by the corresponding lens chambers LC1 to LC5. It should be noted that a separating ring SA is provided between the lens chamber L C3 holding the lens component L 3 and the lens chamber L C holding the lens component L 4. The lens barrel MT is provided with, for example, an eccentricity adjusting screw V S5 for adjusting the eccentricity of the lens component L5. Although not shown, eccentricity adjusting screws V S1 to V S4 for adjusting the eccentricity of the other lens components L 1 to L 4 are also provided as necessary.
一方、 第 1 3図を参照すると、 金物としての各レンズ室に各レンズ成分を挿入 し、 各レンズ室に対する偏心がないように偏心追い込みを行う (S 2 1 )。 そし て、 各レンズ成分をレンズ室によって保持した状態で鏡筒内に組み込む (S 2 2 )。 この状態で、 干渉計を用いて対物レンズ系の透過波面収差 (透過光に基づ く波面収差) を計測し、 後述する規格に照らして検査を行う (S 2 3 )。 具体的 には、 第 1 5図に示す干渉計装置を用いて、 組み立てられた対物レンズ系に残存 する波面収差を計測する。 第 1 5図では、 制御系 1 5 1に制御された干渉計ュニ ット 1 5 2からの射出光が、 フィゾーステージ 1 5 3 a上に支持されたフィゾー フラット 1 5 3に入射する。 ここで、 フィゾーフラット 1 5 3で反射された光は 参照光となり、 干渉計ュニット 1 5 2へ戻る。  On the other hand, referring to FIG. 13, each lens component is inserted into each lens chamber as a hardware, and the eccentricity is adjusted so that there is no eccentricity to each lens chamber (S21). Then, each lens component is incorporated into the lens barrel while being held by the lens chamber (S22). In this state, the transmitted wavefront aberration (wavefront aberration based on the transmitted light) of the objective lens system is measured using an interferometer, and an inspection is performed in accordance with the later-described standard (S23). Specifically, the wavefront aberration remaining in the assembled objective lens system is measured using the interferometer shown in FIG. In FIG. 15, the light emitted from the interferometer unit 152 controlled by the control system 151 enters the Fizeau flat 153 supported on the Fizeau stage 153a. Here, the light reflected by the Fizeau flat 15 3 becomes the reference light, and returns to the interferometer unit 15 2.
一方、 フィゾーフラット 1 5 3を透過した光は測定光となり、 被検光学系であ る対物レンズ系 1 5 4に入射する。 被検光学系 1 5 4を透過した測定光は、 反射 プリズム 8に対応する光路長を有する平行平面板 1 5 5を介して、 反射球面ュニ ット 1 5 6に入射する。 反射球面ュニット 1 5 6で反射された測定光は、 平行平 面板 1 5 5、 被検光学系 1 5 4およびフィゾーフラット 1 5 3を介して、 干渉計 ュニット 1 5 2へ戻る。 こうして、 干渉計ュニット 1 5 2へ戻った参照光と測定 光との位相ずれに基づいて、 被検光学系である対物レンズ系 1 5 4に残存する波 面収差が計測される。 On the other hand, the light transmitted through the Fizeau flat 153 becomes measurement light, and enters the objective lens system 154, which is the test optical system. Measurement light transmitted through the optical system under test 15 4 is reflected The light enters the reflective spherical unit 156 via a parallel flat plate 155 having an optical path length corresponding to the prism 8. The measurement light reflected by the reflective spherical unit 156 returns to the interferometer unit 152 via the parallel flat plate 155, the test optical system 154 and the Fizeau flat 153. In this way, based on the phase shift between the reference light and the measurement light returned to the interferometer unit 152, the wavefront aberration remaining in the objective lens system 154, which is the test optical system, is measured.
なお、 第 1 5図の干渉計装置では、 反射プリズム 8に対応する光路長を有する 平行平面板 1 5 5を介在させることにより、 対物レンズ系 1 5 4と反射球面ュニ ット 1 5 6とを直線状の光軸に沿って配置している。 しかしながら、 第 1 6図に 示すように、 平行平面板 1 5 5に代えて、 反射プリズム 8に対応する形状の反射 プリズム 1 6 1を設けることもできる。 ただし、 この場合、 反射プリズム 1 6 1 の偏向作用により、 対物レンズ系 1 5 4と反射球面ュニット 1 5 6とを直線状の 光軸に沿って配置することができなくなる。 その結果、 対物レンズ系 1 5 4およ び反射プリズム 1 6 1の支持体 1 6 2が必要になるとともに、 対物レンズ系 1 5 4と反射プリズム 1 6 1と反射球面ュニット 1 5 6との位置合わせが第 1 5図の 干渉計装置よりも困難になる。 但し、 反射プリズム 1 6 1と支持体 1 6 2が、 実 際に最終的に使用する部品である場合には、 反射プリズム 1 6 1の製造誤差およ び支持体 1 6 2への取付け誤差が発生する可能性もある。 この場合には、 これら の誤差により発生する波面収差の調整 (低次収差成分の調整) が可能となる。 例 えば、 反射プリズムの光路長の誤差に伴い、 低次球面収差が僅かに発生する場合、 あるいは反射プリズム各面に倒れが発生したり反射プリズム全体が傾くことに伴 い、 低次コマ収差が僅かに発生する場合がある。 そのような収差は、 対物レンズ 系の調整により補正することが好ましい。  In the interferometer shown in FIG. 15, the objective lens system 154 and the reflecting spherical unit 156 are provided by interposing a parallel plane plate 155 having an optical path length corresponding to the reflecting prism 8. Are arranged along a linear optical axis. However, as shown in FIG. 16, a reflecting prism 161 having a shape corresponding to the reflecting prism 8 can be provided instead of the parallel plane plate 1555. However, in this case, the objective lens system 154 and the reflecting spherical unit 156 cannot be arranged along the linear optical axis due to the deflecting action of the reflecting prism 161. As a result, a support 162 for the objective lens system 15 4 and the reflecting prism 16 1 is required, and the objective lens system 15 4, the reflecting prism 16 1 and the reflecting spherical unit 15 6 Alignment is more difficult than with the interferometer device of Fig. 15. However, if the reflecting prism 16 1 and the support 16 2 are actually used parts, the manufacturing error of the reflecting prism 16 1 and the mounting error on the support 16 2 May occur. In this case, it is possible to adjust the wavefront aberration generated by these errors (adjustment of low-order aberration components). For example, when low-order spherical aberration is slightly generated due to an error in the optical path length of the reflecting prism, or when the reflecting prism is tilted or the entire reflecting prism is tilted, low-order coma aberration is reduced. May occur slightly. Such aberrations are preferably corrected by adjusting the objective lens system.
ところで、 本実施形態では、 対物レンズ系の光学性能に関して、 次の 3つの規 格を並立的に設けている。 対物レンズ系の光学性能に関する第 1の規格では、 対 物レンズ系に残存する波面収差からチルト成分およびパワー成分を補正した後の 全成分 Wの R M S値が 0 . 0 1 2 λ以下に設定されている。 また、 全成分 Wの回 転対称成分 Wrot の RM S値が 0 . 0 0 7 λ以下に設定されている。 さらに、 回 転対称成分 Wrot から 2次 4次曲線成分を除去した回転対称成分 2次 4次残差 W roth の RMS値が 0. 005 λ以下に設定されている。 また、 全成分 Wからァ ス成分を補正した後の非回転対称成分 Wrndmas の RMS値が 0. 005 λ以下 に設定されている。 By the way, in the present embodiment, the following three standards are concurrently provided for the optical performance of the objective lens system. In the first standard regarding the optical performance of the objective lens system, the RMS value of all components W after correcting the tilt component and the power component from the wavefront aberration remaining in the objective lens system is set to 0.012λ or less. ing. Also, the RMS value of the rotationally symmetric component Wrot of all components W is set to 0.007λ or less. In addition, The RMS value of the rotational symmetric component W roth obtained by removing the quadratic and quartic curve components from the rotationally symmetric component Wrot is set to 0.005 λ or less. In addition, the RMS value of the non-rotationally symmetric component Wrndmas after correcting the gas component from all components W is set to 0.005λ or less.
対物レンズ系の光学性能に関する第 2の規格では、 残存する波面収差からチル ト成分およびパワー成分を補正した後の全成分 Wの RMS値が 0. 012 λ以下 に設定されている。 また、 全成分 Wの縦収差成分 W縦の RMS値が 0. 008 λ 以下に設定されている。 さらに、 全成分 Wの縦収差高次成分 W縦高の RMS値が 0. 006 λ以下に設定されている。 また、 全成分 Wの横収差成分 W横の RMS 値が 0. 005 λ以下に設定されている。 さらに、 全成分 Wの横収差高次成分 W 横高の RMS値が 0. 004 λ以下に設定されている。  In the second standard regarding the optical performance of the objective lens system, the RMS value of all components W after correcting the tilt component and the power component from the remaining wavefront aberration is set to 0.012λ or less. Also, the longitudinal RMS value of the longitudinal aberration component W of all components W is set to 0.008 λ or less. In addition, the RMS value of the vertical order high order component W of all components W is set to 0.006λ or less. Further, the RMS value of the transverse aberration component W of all the components W is set to 0.005 λ or less. Further, the RMS value of the lateral component W lateral height of all components W is set to 0.004λ or less.
対物レンズ系の光学性能に関する第 3の規格では、 残存する波面収差からチル ト成分およびパワー成分を補正した後の全成分 Wの RMS値が 0. 012 λ以下 に設定されている。 また、 全成分 Wからァス成分を補正した後の成分 Wmas の R MS値が 0. 010 λ以下に設定されている。 さらに、 全成分 Wからァス成分お よび低次球面収差成分を補正した後の成分 Wmassa の RMS値が 0. 008 λ以 下に設定されている。 また、 全成分 Wの高次収差成分 Wmassacoma の RMS値が 0. 007 λ以下に設定されている。  In the third standard regarding the optical performance of the objective lens system, the RMS value of all the components W after correcting the tilt component and the power component from the remaining wavefront aberration is set to 0.012λ or less. In addition, the RMS value of the component Wmas after correcting the negative component from all the components W is set to be equal to or less than 0.010λ. In addition, the RMS value of the component Wmassa after correcting the positive component and the low-order spherical aberration component from all the components W is set to 0.008λ or less. Also, the RMS value of the high-order aberration component Wmassacoma of all components W is set to 0.0007λ or less.
対物レンズ系の光学性能に関する補助規格では、 残存する波面収差からチルト 成分およびパワー成分を補正した後の全成分 Wの RMS値が 0. 012 λ以下に 設定されている。 第 9項の展開係数 C 9の値が 0. 009 λ以下に設定されてい る。 また、 第 10項〜第 36項の展開係数 C 10〜C 36の値が 0. 008 λ以 下にそれぞれ設定されている。 この補助規格は、 上述の第 1の規格〜第 3の規格 に対する補助的な規格である。 換言すると、 上述の検査ステップ S 23では、 対 物レンズ系の光学性能に関する第 1の規格〜第 3の規格から任意に選択された 1 つの規格に照らして検査を行う力 このとき上述の補助規格も同時に満足するこ とが好ましい。  In the supplementary standard for the optical performance of the objective lens system, the RMS value of all components W after correcting the tilt component and power component from the remaining wavefront aberration is set to 0.012λ or less. The value of the expansion coefficient C9 in the ninth term is set to 0.009λ or less. In addition, the values of the expansion coefficients C10 to C36 in the tenth to thirty-sixth terms are set to 0.008 λ or less, respectively. This auxiliary standard is an auxiliary standard for the above-mentioned first to third standards. In other words, in the above-described inspection step S23, the power of performing the inspection in accordance with one standard arbitrarily selected from the first to third standards regarding the optical performance of the objective lens system is set. It is preferable to satisfy the above at the same time.
第 13図を参照すると、 対物レンズ系の光学性能に関する規格 (すなわち性能 に関する第 1の規格〜第 3の規格から任意に選択された規格および必要に応じて 補助規格) に照らして、 検査に不合格 (図中 N Gで示す) の場合、 第 1 4図に示 す間隔環 S Aの変更や偏心調整ねじ V S 5などによる偏心調整を行う (S 2 4 )。 こうして、 必要に応じて部品組み込み (S 2 2 ) を行った後、 対物レンズ系の透 過波面収差を計測し、 規格に照らして検査を行う (S 2 3 )。 その結果、 対物レ ンズ系の光学性能に関する規格に照らして検査に合格 (図中〇Kで示す) すると、 対物レンズ系の調整が、 ひいては対物レンズ系の製造が完了する (S 2 5 )。 Referring to FIG. 13, the standard regarding the optical performance of the objective lens system (ie, the performance If the inspection fails (indicated by NG in the figure) in the light of the standards selected arbitrarily from the first to third standards and, if necessary, auxiliary standards, as shown in Fig. 14 Adjust the eccentricity by changing the spacing ring SA and the eccentricity adjusting screw VS5 (S24). In this way, after assembling the components as necessary (S22), the transmitted wavefront aberration of the objective lens system is measured, and the inspection is performed according to the standard (S23). As a result, when the inspection is passed in accordance with the standard regarding the optical performance of the objective lens system (indicated by 〇K in the figure), the adjustment of the objective lens system and, consequently, the manufacture of the objective lens system are completed (S25).
同様に、 本実施形態の対物レンズ系に適用した各光学部材の屈折率均質性に関 する規格および各光学部材の光学面の面精度に関する規格を、 本実施形態の観察 装置における結像光学系の対物レンズ系以外の各光学部材 (第 2対物レンズ 1 1 の各レンズ、 リレーレンズ系 (1 3 , 1 4 ) の各レンズ、 反射プリズム 8、 ハー フプリズム 6および 1 5など) に適用して、 結像光学系を製造し、 ひいては観察 装置を製造することができる。 ここで、 結像光学系の対物レンズ系以外の各光学 部材では、 対物レンズ系を構成する各光学部材に比べて、 通過する光束の径が実 質的に小さくなる。 したがって、 結像光学系の対物レンズ系以外の各光学部材に 対しては、 対物レンズ系に適用した上述の規格に準じた規格、 換言すると上述の 規格よりも比較的緩い規格を適用することもできる。  Similarly, the standard regarding the refractive index homogeneity of each optical member applied to the objective lens system of the present embodiment and the standard regarding the surface accuracy of the optical surface of each optical member are described in the imaging optical system in the observation apparatus of the present embodiment. Applied to each optical member other than the objective lens system (such as the lens of the second objective lens 11, the lenses of the relay lens system (13, 14), the reflecting prism 8, the half prism 6 and 15, etc.) It is possible to manufacture an imaging optical system and thus an observation device. Here, in each optical member other than the objective lens system of the imaging optical system, the diameter of the light beam passing therethrough is substantially smaller than in each optical member constituting the objective lens system. Therefore, for each optical member other than the objective lens system of the imaging optical system, it is also possible to apply a standard that conforms to the above-mentioned standard applied to the objective lens system, in other words, a standard that is relatively looser than the above-mentioned standard. it can.
本実施形態では、 対物レンズ系を含む結像光学系の光学性能に関して、 目標値 としての規格を設けている。 この規格では、 光学調整の後に結像光学系に残存す る波面収差からチルト成分およびパワー成分を補正した後の縦収差成分 W縦の R M S値が 0 . 0 1 2 λ以下に設定されている。 また、 残存する波面収差からチル ト成分およびパワー成分を補正した後の横収差成分 W横の RM S値が 0 . 0 0 6 λ以下に設定されている。  In the present embodiment, a standard is set as a target value for the optical performance of the imaging optical system including the objective lens system. According to this standard, the longitudinal RMS value after correcting the tilt component and the power component from the wavefront aberration remaining in the imaging optical system after optical adjustment is set to 0.012 λ or less. . Further, the RMS value next to the transverse aberration component W after correcting the tilt component and the power component from the remaining wavefront aberration is set to 0.006λ or less.
以下、 本実施形態において設定した各規格の妥当性について検証する。 次の第 3表は、 第 1実施例の対物レンズ系を構成する各光学部材の各面の面精度と対物 レンズ系の性能との関係を示している。 第 3表において、 ツェルニケ係数 ηは、 第 η項に対応することを示している。 各面面精度は、 各面の基準面に対する波面 収差をツェルニケの多項式で表すときの第 1項〜第 3 6項の展開係数 C 1〜C 3 6の値を λ (= 632. 8 nm) にかかる係数で示している。 なお、 各面面精度 では、 面精度に関する第 4の規格で許容される最大値が設定されている。 Hereinafter, the validity of each standard set in the present embodiment will be verified. Table 3 below shows the relationship between the surface accuracy of each surface of each optical member constituting the objective lens system of the first embodiment and the performance of the objective lens system. Table 3 shows that the Zernike coefficient η corresponds to the η term. The surface accuracy of each surface is calculated using the expansion coefficients C1 to C3 of the first to third terms when the wavefront aberration of each surface with respect to the reference surface is expressed by Zernike polynomials. The value of 6 is shown as a coefficient on λ (= 632.8 nm). For each surface accuracy, the maximum value allowed by the fourth standard for surface accuracy is set.
対物レンズ性能は、 各面面精度に基づいて計算により予想される対物レンズ系 の性能であって、 対物レンズ系に残存する波面収差をツェルエケの多項式で表す ときの第 1項〜第 36項の展開係数 C 1〜C 36の予想値を λ (=632. 8 η m) にかかる係数で示している。 対物レンズ規格は、 対物レンズ系の光学性能に 関する補助規格に対応し、 対物レンズ系に残存する波面収差をツェル二ケの多項 式で表すときの第 1項〜第 36項の展開係数 C 1〜C 36の許容値を λ (=63 2. 8 nm) にかかる係数で示している。 第 3 表  Objective lens performance is the performance of the objective lens system that is expected to be calculated based on the accuracy of each surface, and the wavefront aberration remaining in the objective lens system is expressed in terms of Zelke's polynomial, as defined in Items 1 to 36. The expected values of the expansion coefficients C1 to C36 are shown by the coefficients on λ (= 632.8 ηm). The objective lens standard corresponds to the auxiliary standard for the optical performance of the objective lens system, and the expansion coefficient C1 of the first to 36th terms when the wavefront aberration remaining in the objective lens system is expressed by a Zernike polynomial The permissible value of ~ C36 is shown by the coefficient concerning λ (= 632.8 nm). Table 3
ツェルニケ係数 各面面精度 対物レンズ性能 対物レンズ規格 Zernike coefficient Each surface accuracy Objective lens performance Objective lens standard
1 0.0000 0.0000 0.0000  1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000  2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000  3 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000  4 0.0000 0.0000 0.0000
5 0.0080 0.0100 0.0100  5 0.0080 0.0100 0.0100
6 0.0080 0.0100 0.0100  6 0.0080 0.0100 0.0100
7 0.0050 0.0079 0.0080  7 0.0050 0.0079 0.0080
8 0.0050 0.0079 0.0080  8 0.0050 0.0079 0.0080
9 0.0090 0.0131 0.0090  9 0.0090 0.0131 0.0090
10 0.0050 0.0046 0.0080  10 0.0050 0.0046 0.0080
11 0.0050 0.0046 0.0080  11 0.0050 0.0046 0.0080
12 0.0050 0.0046 0.0080  12 0.0050 0.0046 0.0080
13 0.0050 0.0046 0.0080  13 0.0050 0.0046 0.0080
14 0.0050 0.0037 0.0080  14 0.0050 0.0037 0.0080
15 0.0050 0.0037 0.0080  15 0.0050 0.0037 0.0080
16 0.0050 0.0088 0.0080 17 0.0050 0.0045 0.0080 16 0.0050 0.0088 0.0080 17 0.0050 0.0045 0.0080
18 0.0050 0.0045 0.0080  18 0.0050 0.0045 0.0080
19 0.0050 0.0044 0.0080  19 0.0050 0.0044 0.0080
20 0.0050 0.0044 0.0080  20 0.0050 0.0044 0.0080
21 0.0050 0.0043 0.0080  21 0.0050 0.0043 0.0080
22 0.0050 0.0043 0.0080  22 0.0050 0.0043 0.0080
23 0.0050 0.0042 0.0080  23 0.0050 0.0042 0.0080
24 0.0050 0.0042 0.0080  24 0.0050 0.0042 0.0080
25 0.0050 0.0083 0.0080  25 0.0050 0.0083 0.0080
26 0.0050 0.0033 0.0080  26 0.0050 0.0033 0.0080
27 0.0050 0.0033 0.0080  27 0.0050 0.0033 0.0080
28 0.0050 0.0031 0.0080  28 0.0050 0.0031 0.0080
29 0.0050 0.0031 0.0080  29 0.0050 0.0031 0.0080
30 0.0050 0.0028 0.0080  30 0.0050 0.0028 0.0080
31 0.0050 0.0028 0.0080  31 0.0050 0.0028 0.0080
32 0.0050 0.0026 0.0080  32 0.0050 0.0026 0.0080
33 0.0050 0.0026 0.0080  33 0.0050 0.0026 0.0080
34 0.0050 0.0024 0.0080  34 0.0050 0.0024 0.0080
35 0.0050 0.0024 0.0080  35 0.0050 0.0024 0.0080
36 0.0050 0.0045 0.0080 第 3表で対物レンズ性能と対物レンズ規格とを比較すると、 各面面精度に基づ いて計算により予想される対物レンズ系の性能における第 9項の展開係数 C 9の 予想値が、 対物レンズ系の光学性能に関する補助規格における第 9項の展開係数 C 9の許容値を大きく上回っているのがわかる。 しかしながら、 第 9項の成分は 低次球面収差成分であって、 光学調整により容易に補正可能である。 したがって、 面精度に関する第 4の規格に照らして光学部材を製造すれば、 対物レンズ系の光 学性能に関する補助規格を満たすことがわかる。 次の第 4表は、 第 3表に対応する表であって、 対物レンズ系の光学性能に関す る第 1の規格〜第 3の規格の妥当性を検証するものである。 したがって、 第 3表 では各展開係数の値を示しているが、 第 4表では対物レンズ系の光学性能に関す る第 1の規格〜第 3の規格に含まれる各波面収差成分の RMS値を示している。 第 4表において、 成分は、 対物レンズ系の光学性能に関する第 1の規格〜第 3の 規格に含まれる各波面収差成分を示している。 面精度は、 各面の基準面に対する 波面収差の各成分の RMS値を λ (=632. 8 nm) にかかる係数で示してい る。 36 0.0050 0.0045 0.0080 Comparing the objective lens performance with the objective lens standard in Table 3, the expected value of the expansion coefficient C9 in the ninth term in the objective lens system performance estimated by calculation based on each surface accuracy However, it can be seen that the allowable value of the expansion coefficient C9 in the ninth term in the supplementary standard on the optical performance of the objective lens system is greatly exceeded. However, the component of the ninth term is a low-order spherical aberration component, and can be easily corrected by optical adjustment. Therefore, if the optical member is manufactured in accordance with the fourth standard for the surface accuracy, it is understood that the auxiliary standard for the optical performance of the objective lens system is satisfied. Table 4 below corresponds to Table 3 and verifies the validity of the first to third standards regarding the optical performance of the objective lens system. Therefore, Table 3 shows the values of each expansion coefficient, while Table 4 shows the RMS value of each wavefront aberration component included in the first to third standards related to the optical performance of the objective lens system. Is shown. In Table 4, the component indicates each wavefront aberration component included in the first to third standards regarding the optical performance of the objective lens system. For surface accuracy, the RMS value of each component of wavefront aberration of each surface with respect to the reference surface is indicated by a coefficient applied to λ (= 632.8 nm).
対物レンズ性能は、 各面面精度に基づいて計算により予想される対物レンズ系 の性能であって、 対物レンズ系に残存する波面収差の各成分の予想 RMS値を λ The objective lens performance is the performance of the objective lens system that is predicted by calculation based on the accuracy of each surface, and the expected RMS value of each component of the wavefront aberration remaining in the objective lens system is λ
(= 632. 8 nm) にかかる係数で示している。 対物レンズ規格 4は、 対物レ ンズ系の光学性能に関する補助規格に対応し、 対物レンズ系に残存する波面収差 の各成分の許容 RMS値を λ (= 632. 8 nm) にかかる係数で示している。 対物レンズ規格 1〜 3は、 対物レンズ系の光学性能に関する第 1の規格〜第 3の 規格に対応し、 対物レンズ系に残存する波面収差の各成分の許容 RMS値を λ(= 632.8 nm). Objective lens standard 4 corresponds to an auxiliary standard for the optical performance of the objective lens system, and shows the allowable RMS value of each component of the wavefront aberration remaining in the objective lens system by a coefficient related to λ (= 632.8 nm). I have. Objective lens standards 1 to 3 correspond to the first to third standards regarding the optical performance of the objective lens system, and the allowable RMS value of each component of the wavefront aberration remaining in the objective lens system is λ.
(= 632. 8 nm) にかかる係数で示している。 第 4 表 (= 632.8 nm). Table 4
成分 面精度 対物レンズ性能 対物レンズ 対物レンズ 規格 4 規格 1〜3 全成分 0.010 0.012 0.015 0.012 回転対称成分 0.005 0.007 0.006 0.007 回転対称 2次 4次残差 0.003 0.005 0.005 0.005 ァス補正後非回転成分 0.007 0.005 0.011 0.005 縦収差成分 0.007 0.008 0.009 0.008 縦収差高次成分 0.005 0.006 0.009 0.006 横収差成分 0.006 0.004 0.008 0.005 横収差高次成分 0.005 0.004 0.008 0.004 ァス補正 0.009 0.010 0.013 0.010 ァスと低次球面収差補正 0.008 0. 008 0. 013 0. 008 高次収差成分 0.008 0. 007 0. 012 0. 007 第 4表で対物レンズ性能と対物レンズ規格 1〜 3とを比較すると、 面精度に関 する第 4の規格に照らして光学部材を製造すれば、 対物レンズ系の光学性能に関 する第 1の規格〜第 3の規格を満たすことがわかる。 Component Surface accuracy Objective lens performance Objective lens Objective lens Standard 4 Standard 1 to 3 All components 0.010 0.012 0.015 0.012 Rotationally symmetric component 0.005 0.007 0.006 0.007 Rotationally symmetric Second-order fourth-order residual 0.003 0.005 0.005 0.005 Non-rotational component after negative correction 0.007 0.005 0.011 0.005 Longitudinal aberration component 0.007 0.008 0.009 0.008 Longitudinal aberration higher order component 0.005 0.006 0.009 0.006 Lateral aberration component 0.006 0.004 0.008 0.005 Lateral aberration higher order component 0.005 0.004 0.008 0.004 Vs. low-order spherical aberration correction 0.009 0.010 0.013 0.010 vs. high-order aberration component 0.008 0.007 0.012 0.007 Table 4 Objective lens performance and objective lens specifications in Table 4. Comparing with 1 to 3, it can be seen that if optical members are manufactured according to the 4th standard for surface accuracy, the 1st to 3rd standards for the optical performance of the objective lens system will be satisfied. .
次の第 5表は、 従来の規格にしたがう 3つの試作対物レンズ系の性能と、 本発 明にしたがう第 1実施例の対物レンズ系の性能との関係を示している。 第 5表に おいて、 ツェルニケ係数 nは、 第 n項に対応することを示している。 試作 1〜3 は、 各面の基準面に対する波面収差の全成分の RMS値が 0. 01え以下になる ように従来の規格にしたがって製造された 3つの試作対物レンズ系に残存する波 面収差をツェルニケの多項式で表すときの第 1項〜第 36項の展開係数 C 1〜C 36の値を λ (=632. 8 nm) にかかる係数で示している。 実施例は、 屈折 率均質性に関する規格および面精度に関する第 4の規格にしたがって製造された 第 1実施例の対物レンズ系に残存する波面収差をツェルエケの多項式で表すとき の第 1項〜第 36項の展開係数 C 1〜C 36の値を λ (=632. 8 nm) にか かる係数で示している。  Table 5 below shows the relationship between the performance of the three prototype objective lens systems according to the conventional standard and the performance of the objective lens system of the first embodiment according to the present invention. In Table 5, the Zernike coefficient n indicates that it corresponds to the n-th term. For prototypes 1 to 3, the wavefront aberration remaining in the three prototype objective lens systems manufactured according to the conventional standard so that the RMS value of all components of the wavefront aberration of each surface with respect to the reference surface is 0.01 or less Is expressed by a Zernike polynomial, the values of the expansion coefficients C1 to C36 of the first to the 36th terms are represented by coefficients relating to λ (= 632.8 nm). In the embodiment, the wavefront aberration remaining in the objective lens system of the first embodiment manufactured in accordance with the standard for the refractive index homogeneity and the fourth standard for the surface accuracy is represented by the first to 36th terms when the wavefront aberration is represented by Zelke's polynomial. The values of the expansion coefficients C1 to C36 of the term are shown as coefficients related to λ (= 632.8 nm).
ツェルニケ係数 試作 1 試作 2 試作 3 実施例 Zernike coefficient Prototype 1 Prototype 2 Prototype 3 Example
1 0.0004 -0.0007 0.0016 0.0001  1 0.0004 -0.0007 0.0016 0.0001
2 -0.0006 -0.0008 -0.0015 -0.0001  2 -0.0006 -0.0008 -0.0015 -0.0001
3 0.0000 0.0003 -0.0001 0.0003  3 0.0000 0.0003 -0.0001 0.0003
4 0.0012 -0.0019 0.0047 0.0002  4 0.0012 -0.0019 0.0047 0.0002
5 -0.0032 0.0017 0.0032 0.0025  5 -0.0032 0.0017 0.0032 0.0025
6 -0.0003 -0.0098 -0.0018 0.0067  6 -0.0003 -0.0098 -0.0018 0.0067
7 0.0039 -0.0133 0.0071 0.0003 ΖΐΟΟΌ 6000 Ό 9000 "0 0200•0 - 9S7 0.0039 -0.0133 0.0071 0.0003 ΖΐΟΟΌ 6000 Ό 9000 "0 0200 • 0-9S
ΠΟΟ ·0 Α800 ·0 - 000 •0 - 9200 "0- ποο ·0 - 2100 Ό 000 •0 - •0 -ΠΟΟ · 0 Α800 · 0-000 • 0-9200 "0- ποο · 0-2100 Ό 000 • 0-• 0-
9100 "0 2100 Ό- 6000 Ό- gooo •0 - n9100 "0 2100 Ό- 6000 Ό- gooo • 0-n
1000 Ό- 刚 0 Ό- 00 "0- ΟΐΟΟ •0 - τε ειοο Ό ΖΟΟΟ ·0 - 0000 Ό 6100 •0 oe1000 Ό- 刚 0 Ό- 00 "0- ΟΐΟΟ • 0-τε ειοο Ό ΖΟΟΟ · 0-0000 Ό 6100 • 0 oe
6100 Ό 1800 ·0 ζζοο Ό 2200 '0_ 6Z6100 Ό 1800 · 0 ζζοο Ό 2200 '0_ 6Z
8100 Ό ,0 9000 •0 2200 •0— %l8100 Ό, 0 9000 • 0 2200 • 0—% l
8000 Ό- ΗΟΟ Ό- ειοο •0 0 •0 118000 Ό- ΗΟΟ Ό- ειοο • 0 0 • 0 11
ΖΟΟΟ ·0 - 8S00 ·0 - 2000 •0- Q900 '0 - 92 000 Ό 6920 Ό 00·0 0800 •0 ΖΟΟΟ 0-8S00 0-2000 • 0-Q900 '0-92 000 Ό 6920 Ό 000 0800 • 0
S200 *0 000 ·0 1800 Ό 2000 •0 u S200 * 0 000 0 1800 Ό 2000 • 0 u
8000 0 00 Ό- ΗΟΟ'Ο 0 •0- u 扇 0 Ό ΙΪΟΟ ·0 SIOO •0 刚 0 •0 u8000 0 00 Ό- ΗΟΟ'Ο 0 • 0- u Fan 0 Ό ΙΪΟΟ · 0 SIOO • 0 刚 0 • 0 u
2100 ·0 - ΙΖΟΟ Ό ζοοο •0 0100 '0 - \l2100 · 0-ΙΖΟΟ Ό ζοοο • 0 0100 '0-\ l
9Ζ00 Ό- 8100 ·0 - 8S00 •0 5000 •0 oz9Ζ00 Ό- 8100 · 0-8S00 • 0 5000 • 0 oz
ΟΖΟΟ Ό ΖΟΟΟ Ό- 5S00 •0 - UQQ •0 61 000 Ό S000 Ό οο •0 0 •0- 81ΟΖΟΟ Ό ΖΟΟΟ Ό- 5S00 • 0-UQQ • 0 61 000 Ό S000 Ό οο • 0 0 • 0- 81
9S00 Ό ηοο ·ο - 6900 •0 mo •0 l\9S00 η ηοο · ο-6900 • 0 mo • 0 l \
6000 Ό- ΐθΐθ Ό ΟΗΟ •0 6110 •0 91 刚 0 "0- 8100 ·0 - 8Ζ00 •0- ζπο •0 - 3ΐ6000 Ό- ΐθΐθ Ό ΟΗΟ • 0 6110 • 0 91 刚 0 "0- 8100 · 0-8Ζ00 • 0- ζπο • 0-3ΐ
8000 'Ο 9Ζ00 Ό- ^800 Ό- ^ΖΟΟΌ- fl8000 'Ο 9Ζ00 Ό- ^ 800 Ό- ^ ΖΟΟΌ- fl
0200 0- 100 ·0 - 9100*0 A900 •0- 刚 0 *0 ZSOO ·0 8刚 ·0 ΖΐΟΟΌ- l\0200 0-100 100-0 9100 * 0 A900 0- 刚 0 * 0 ZSOO 0 8 刚 0 ΖΐΟΟΌ- l \
3100 Ό ζ扇 ·0_ OOO'O- 9600 •0 Π εζοο'ο 0900*0- 9900 •0 - 900 •0- 01 3100 ζ ζ Fan · 0_ OOO'O- 9600 • 0 ζ εζοο'ο 0900 * 0- 9900 • 0-900 • 0-01
8910 Ό 6t0 '0- S800 •0 6 ζεοο'ο 6 '0 - 謹 •0 - ioo •0 8  8910 Ό 6t0 '0- S800 • 0 6 ζεοο'ο 6' 0-Graceful • 0-ioo • 0 8
SULO/lOdt/Ud ム8而 OAV 36 0.0061 -0.0029 0.0074 0.0013 第 5表を参照すると、 各面の基準面に対する波面収差の全成分の RMS値が 0. 0 1 λ以下になるように従来の規格にしたがって製造したとしても、 対物レンズ 系の性能に関する本実施形態の補助規格を満足しない場合があることがわかる。 これに対し、 本実施形態の屈折率均質性に関する規格および面精度に関する規格 にしたがって製造することにより、 対物レンズ系の性能に関する本実施形態の補 助規格を満足することがわかる。 SULO / lOdt / Ud 36 0.0061 -0.0029 0.0074 0.0013 Referring to Table 5, even if the RMS value of all the components of the wavefront aberration of each surface with respect to the reference surface is 0.01 λ or less, even if it is manufactured according to the conventional standard, the objective lens It can be seen that there are cases where the supplementary standard of the present embodiment relating to the performance of the system is not satisfied. On the other hand, it can be seen that by manufacturing according to the standard regarding the refractive index homogeneity and the standard regarding the surface accuracy of the present embodiment, the auxiliary standard of the present embodiment regarding the performance of the objective lens system is satisfied.
次の第 6表は、 第 5表に対応する表であって、 3つの試作対物レンズ系および 第 1実施例の対物レンズ系が性能に関する第 1の規格〜第 3の規格を満足してい ることを検証するものである。 したがって、 第 5表では各展開係数の値を示して いるが、 第 6表では対物レンズ系の光学性能に関する第 1の規格〜第 3の規格に 含まれる各波面収差成分の RMS値を示している。  Table 6 below is a table corresponding to Table 5, where the three prototype objective lens systems and the objective lens system of the first embodiment satisfy the first to third standards regarding performance. It is to verify that. Therefore, while Table 5 shows the values of each expansion coefficient, Table 6 shows the RMS value of each wavefront aberration component included in the first to third standards regarding the optical performance of the objective lens system. I have.
第 6表において、 成分は、 対物レンズ系の光学性能に関する第 1の規格〜第 3 の規格に含まれる各波面収差成分を示している。 試作 1〜3は、 3つの試作対物 レンズ系の性能であって、 残存する波面収差の各成分の RMS値を λ (= 6 3 2. 8 nm) にかかる係数で示している。 実施例は、 第 1実施例の対物レンズ系の性 能であって、 残存する波面収差の各成分の RMS値を λ (=6 3 2. 8 nm) に かかる係数で示している。  In Table 6, the component indicates each wavefront aberration component included in the first to third standards regarding the optical performance of the objective lens system. Prototypes 1 to 3 show the performance of the three prototype objective lens systems, in which the RMS value of each component of the remaining wavefront aberration is indicated by a coefficient related to λ (= 632.2.8 nm). The example is a performance of the objective lens system of the first example, and the RMS value of each component of the remaining wavefront aberration is represented by a coefficient related to λ (= 63.2.8 nm).
成分 試作 1 試作 2 試作 3 実施例 Ingredients Prototype 1 Prototype 2 Prototype 3 Example
全成分 0.011 0.015 0.014 0.004 All components 0.011 0.015 0.014 0.004
回転対称成分 0.006 0.013 0.012 0.002 Rotationally symmetric component 0.006 0.013 0.012 0.002
回転対称 2次 4次残差 0.006 0.009 0.010 0.001 Rotational symmetry 2nd order 4th order residual 0.006 0.009 0.010 0.001
ァス補正後非回転成分 0.009 0.007 0.006 0.003 Non-rotational component after error correction 0.009 0.007 0.006 0.003
縦収差成分 0.009 0.013 0.012 0.002 Longitudinal aberration component 0.009 0.013 0.012 0.002
縦収差高次成分 0.009 0.010 0.010 0.002 横収差成分 0.007 0.006 0.006 0.002 Longitudinal aberration higher order component 0.009 0.010 0.010 0.002 Lateral aberration component 0.007 0.006 0.006 0.002
横収差高次成分 0.006 0.003 0.004 0. 002 Lateral aberration high order component 0.006 0.003 0.004 0.002
ァス補正 0.011 0.014 0.014 0. 003 Error correction 0.011 0.014 0.014 0.003
ァスと低次球面収差補正 0.011 0.012 0.011 0. 003 And low-order spherical aberration correction 0.011 0.012 0.011 0.003
高次収差成分 0.011 0.010 0.011 0. 002 第 6表を参照すると、 各面の基準面に対する波面収差の全成分の RM S値が 0. 01 λ以下になるように従来の規格にしたがって製造しても、 対物レンズ系の性 能に関する本実施形態の第 1の規格〜第 3の規格を満足しないことがわかる。 こ れに対し、 本実施形態の屈折率均質性に関する規格および面精度に関する規格に したがって製造することにより、 対物レンズ系の性能に関する本実施形態の第 1 の規格〜第 3の規格を満足することがわかる。 High-order aberration component 0.011 0.010 0.011 0.002 Referring to Table 6, manufacture according to the conventional standard so that the RMS values of all components of the wavefront aberration with respect to the reference surface of each surface are not more than 0.01 λ. Also, it can be seen that the first to third standards of the present embodiment regarding the performance of the objective lens system are not satisfied. On the other hand, by manufacturing according to the standard regarding the refractive index homogeneity and the standard regarding the surface accuracy of the present embodiment, the first to third standards of the present embodiment regarding the performance of the objective lens system must be satisfied. I understand.
次の第 7表は、 本実施形態の面精度に関する第 4の規格と、 波面収差の全成分 の RMS値が 0. 0 1 λ以下になっているが性能悪化の原因となる従来の特異面 との関係を示している。 第 7表において、 ツェルニケ係数 ηは、 第 η項に対応す ることを示している。 面精度規格は、 本実施形態の面精度に関する第 4の規格に 対応し、 波面収差をツェルニケの多項式で表すときの第 1項〜第 36項の展開係 数 C 1〜C 36の許容値を λ (= 632. 8 nm) にかかる係数で示している。 実際研磨面は、 波面収差の全成分の RMS値が 0. Ο ΐ λ以下になるように従 来技術にしたがって実際に研磨された面に対応し、 その波面収差をツェルニケの 多項式で表すときの第 1項〜第 36項の展開係数 C 1〜C 36の値を λ (=63 2. 8 nm) にかかる係数で示している。 30面は、 波面収差の全成分の RMS 値が 0. 01 λ以下になっているがツェルニケ多項式の第 10項のみ大きく発生 している面に対応し、 その波面収差をツェルニケの多項式で表すときの第 1項〜 第 36項の展開係数 C 1〜C 36の値を λ (= 632. 8 nm) にかかる係数で 示している。 30高次コマ複合面は、 波面収差の全成分の RMS値が 0. 01 λ 以下になっているがツェルニケ多項式の第 10項と第 14項とがほぼ同量だけ発 生している面に対応し、 その波面収差をツェルニケの多項式で表すときの第 1項 〜第 36項の展開係数 C 36の値をぇ (=632. 8 nm) にかかる係数 で示している。 第 7 表 Table 7 below shows the fourth standard for the surface accuracy of the present embodiment, and the conventional singular surface that causes the RMS value of all the components of the wavefront aberration to be less than 0.01 λ but causes performance degradation. The relationship is shown. In Table 7, it is shown that the Zernike coefficient η corresponds to the η term. The surface accuracy standard corresponds to the fourth standard relating to the surface accuracy of the present embodiment, and the allowable values of the expansion coefficients C1 to C36 of the first to the 36th terms when the wavefront aberration is represented by Zernike polynomials λ (= 632.8 nm). The actual polished surface corresponds to the surface actually polished according to the conventional technology so that the RMS value of all the components of the wavefront aberration is equal to or less than 0.1 λ λ, and when the wavefront aberration is expressed by Zernike polynomial The values of the expansion coefficients C1 to C36 in the first to the 36th terms are indicated by coefficients relating to λ (= 632.8 nm). The 30 surface corresponds to the surface where the RMS value of all the components of the wavefront aberration is less than 0.01 λ but only the 10th term of the Zernike polynomial is large, and the wavefront aberration is expressed by the Zernike polynomial The values of the expansion coefficients C1 to C36 in the first to 36th terms are shown by the coefficients related to λ (= 632.8 nm). On the 30th higher-order coma composite surface, the RMS value of all components of the wavefront aberration is less than 0.01 λ, but the 10th and 14th terms of the Zernike polynomials are generated by almost the same amount. Corresponding, the first term when its wavefront aberration is expressed by Zernike polynomial To the 36th term, the value of the expansion coefficient C 36 is indicated by the coefficient of ぇ (= 632.8 nm). Table 7
ツェルニケ係数 面精度規格 実際研磨面 30面 3 Θ高次 Zernike coefficient Surface accuracy standard Actually polished surface 30 surfaces 3 Θ Higher order
コマ複合面  Top composite surface
1 0.0000 0.0000 0. 0000 0.0000  1 0.0000 0.0000 0.0000 0.0000
2 0. 0000 0.0000 0. 0000 0.0000  2 0.0000 0.0000 0.0000 0.0000
3 0. 0000 0. 0000 0. 0000 0.0000  3 0. 0000 0. 0000 0. 0000 0.0000
4 0. 0000 0. 0000 0. 0000 0.0000  4 0.0000 0.0000 0.0000 0.0000
5 0. 0080 0.0013 0. 0000 0.0000  5 0.0080 0.0013 0.0000 0.0000
6 0. 0080 0. 0060 0. 0000 0.0000  6 0.0080 0.0060 0.0000 0.0000
7 0.0050 0.0001 0.0000 0.0000  7 0.0050 0.0001 0.0000 0.0000
8 0. 0050 - 0. 0002 0. 0000 0.0000  8 0.0050-0.0002 0.0000 0.0000
9 0. 0090 0. 0040 0. 0000 0.0000  9 0.0090 0.0040 0.0000 0.0000
10 0.0050 -0. 0018 0. 0284 0.0199  10 0.0050 -0.0018 0.0284 0.0199
11 0.0050 -0. 0004 0. 0000 0.0000  11 0.0050 -0. 0004 0.0000 0.0000
12 0.0050 0. 0041 0.0000 0.0000  12 0.0050 0.0041 0.0000 0.0000
13 0. 0050 0. 0008 0. 0000 0.0000  13 0.0050 0.0008 0.0000 0.0000
14 0. 0050 0. 0011 0. 0000 0.0242  14 0.0050 0.0011 0.0000 0.0242
15 0. 0050 0. 0007 0. 0000 0.0000  15 0.0050 0.0007 0.0000 0.0000
16 0. 0050 -0.0180 0. 0000 0.0000  16 0.0050 -0.0180 0.0000 0.0000
17 0. 0050 0. 0032 0. 0000 0.0000  17 0.0050 0.0032 0.0000 0.0000
18 0. 0050 0. 0057 0. 0000 0.0000  18 0.0050 0.0057 0.0000 0.0000
19 0. 0050 - 0. 0001 0. 0000 0.0000  19 0.0050-0.0001 0.0000 0.0000
20 0. 0050 -0. 0007 0. 0000 0.0000  20 0.0050 -0.0007 0.0000 0.0000
21 0. 0050 0. 0048 0. 0000 0.0000  21 0.0050 0.0048 0.0000 0.0000
22 0. 0050 -0. 0029 0. 0000 0.0000 23 0.0050 0.0012 0.0000 0.0000 22 0.0050 -0.0029 0.0000 0.0000 23 0.0050 0.0012 0.0000 0.0000
24 0.0050 0.0077 0.0000 0. 0000  24 0.0050 0.0077 0.0000 0.0000
25 0.0050 0.0110 0.0000 0. 0000  25 0.0050 0.0110 0.0000 0.0000
26 0.0050 -0.0009 0.0000 0. 0000  26 0.0050 -0.0009 0.0000 0.0000
27 0.0050 -0.0005 0.0000 0. 0000  27 0.0050 -0.0005 0.0000 0.0000
28 0.0050 -0.0036 0.0000 0. 0000  28 0.0050 -0.0036 0.0000 0.0000
29 0.0050 -0.0019 0.0000 0. 0000  29 0.0050 -0.0019 0.0000 0.0000
30 0.0050 0.0002 0.0000 0. 0000  30 0.0050 0.0002 0.0000 0.0000
31 0.0050 -0.0015 0.0000 0. 0000  31 0.0050 -0.0015 0.0000 0.0000
32 0.0050 0.0014 0.0000 0. 0000  32 0.0050 0.0014 0.0000 0.0000
33 0.0050 0.0022 0.0000 0. 0000  33 0.0050 0.0022 0.0000 0.0000
34 0.0050 -0.0209 0.0000 0. 0000  34 0.0050 -0.0209 0.0000 0.0000
35 0.0050 0.0018 0.0000 0. 0000  35 0.0050 0.0018 0.0000 0.0000
36 0.0050 -0.0030 0.0000 0. 0000 なお、 第 17図は、 第 7表の実際研磨面に対応する波面収差を 0. 005 λの 等高線図で示している。 第 18図は、 第 7表の実際研磨面のうねりを誇張して三 次元的に示す図である。 第 19図は、 第 7表の 30面に対応する波面収差を 0. 005 λの等高線図で示している。 第 20図は、 第 7表の 30面のうねりを誇張 して三次元的に示す図である。 第 21図は、 第 7表の 30高次コマ複合面に対応 する波面収差を 0. 005 λの等高線図で示している。 第 22図は、 第 7表の 3 0高次コマ複合面のうねりを誇張して三次元的に示す図である。  36 0.0050 -0.0030 0.0000 0.0000 FIG. 17 shows the wavefront aberration corresponding to the actual polished surface shown in Table 7 in a contour diagram of 0.005λ. FIG. 18 is an exaggerated three-dimensional view of the undulation of the actual polished surface in Table 7. FIG. 19 shows the wavefront aberration corresponding to surface 30 in Table 7 in a contour diagram of 0.005λ. FIG. 20 is an exaggerated three-dimensional view of the swell of 30 surfaces in Table 7. FIG. 21 shows the wavefront aberration corresponding to the 30th higher-order coma composite surface in Table 7 as a contour map of 0.005λ. FIG. 22 is an exaggerated three-dimensional view of the undulation of the 30th higher-order coma composite surface in Table 7.
次の第 8表は、 第 7表に対応する表であって、 本実施形態の面精度に関する第 1の規格〜第 3の規格と従来の特異面の面精度との関係を示している。 したがつ て、 第 7表では各展開係数の値を示しているが、 第 8表では面精度に関する第 1 の規格〜第 3の規格に含まれる各波面収差成分の RMS値を示している。 第 8表 において、 成分は、 面精度に関する第 1の規格〜第 3の規格に含まれる各波面収 差成分を示している。 面精度規格は、 面精度に関する第 1の規格〜第 3の規格に おける各成分の RMS値を λ (= 632. 8 nm) にかかる係数で示している。 実際研磨面は、 第 7表の実際研磨面に対応する波面収差の各成分の RM S値を λ (=632. 8 nm) にかかる係数で示している。 30面は、 第 7表の 30面 に対応する波面収差の各成分の RMS値を λ (=632. 8 nm) にかかる係数 で示している。 3 Θ高次コマ複合面は、 第 7表の 30高次コマ複合面に対応する 波面収差の各成分の RMS値を λ (= 632. 8 nm) にかかる係数で示してい る。 第 8 表 The following Table 8 is a table corresponding to Table 7, and shows a relationship between the first to third standards relating to the surface accuracy of the present embodiment and the surface accuracy of the conventional singular surface. Therefore, Table 7 shows the values of each expansion coefficient, while Table 8 shows the RMS value of each wavefront aberration component included in the first to third standards for surface accuracy. . In Table 8, the components indicate the wavefront difference components included in the first to third standards for the surface accuracy. Surface accuracy standards are the first to third standards for surface accuracy. The RMS value of each component is shown as a coefficient on λ (= 632.8 nm). For the actual polished surface, the RMS value of each component of the wavefront aberration corresponding to the actual polished surface in Table 7 is indicated by a coefficient applied to λ (= 632.8 nm). On the 30th surface, the RMS value of each component of the wavefront aberration corresponding to the 30th surface in Table 7 is indicated by a coefficient applied to λ (= 632.8 nm). 3 Θ Higher-order coma composite surface shows the RMS value of each component of wavefront aberration corresponding to the 30th higher-order coma composite surface in Table 7 as a coefficient related to λ (= 632.8 nm). Table 8
成分 面精度規格 実際研磨面 30面 30高次  Component Surface accuracy standard Actually polished surface 30 surfaces 30 higher order
コマ複合面 全成分 0.0100 0.0103 0.0100 0.0099 回転対称成分 0.0050 0.0080 0.0000 0.0000 回転対称 2次 4次残差 0.0030 0.0078 0.0000 0.0000 ァス補正後非回転成分 0.0050 0.0050 0.0100 0.0099 縦収差成分 0.0070 0.0086 0.0000 0.0000 縦収差高次成分 0.0050 0.0084 0.0000 0.0000 横収差成分 0.0050 0.0052 0.0100 0.0099 横収差高次成分 0.0030 0.0052 0.0100 0.0099 ァス補正 0.0080 0.0100 0.0100 0.0099 ァスと低次球面収差補正 0.0050 0.0098 0.0100 0.0099 高次収差成分 0.0030 0.0098 0.0100 0.0099 第 8表を参照すると、 従来の特異面では、 波面収差の全成分の RMS値が 0. 01 λ以下に抑えられているが、 面精度に関する第 1の規格〜第 3の規格に含ま れる他の各成分の許容値を上回っていることがわかる。  Coma composite plane All components 0.0100 0.0103 0.0100 0.0099 Rotationally symmetric component 0.0050 0.0080 0.0000 0.0000 Rotationally symmetric 4th order residual 0.0030 0.0078 0.0000 0.0000 Non-rotational component after ass correction 0.0050 0.0050 0.0100 0.0099 Longitudinal aberration component 0.0070 0.0086 0.0000 0.0000 Longitudinal aberration high order Component 0.0050 0.0084 0.0000 0.0000 Lateral aberration component 0.0050 0.0052 0.0100 0.0099 Higher transverse aberration component 0.0030 0.0052 0.0100 0.0099 First correction 0.0080 0.0100 0.0100 0.0099 First and lower order spherical aberration correction 0.0050 0.0098 0.0100 0.0099 Higher order aberration component 0.0030 0.0098 0.0100 0.0099 8th Referring to the table, the RMS values of all the components of the wavefront aberration are suppressed to 0.01 λ or less in the conventional singular surface, but each of the other standards included in the first to third standards for surface accuracy It can be seen that the value exceeds the allowable value of the component.
次の第 9表は、 第 7表の 1枚の特異面が対物レンズ系の波面収差に与える影響 を示している。 第 9表において、 成分は、 対物レンズ系の性能に関する第 1の規 格〜第 3の規格に含まれる各波面収差成分を示している。 対物レンズ規格は、 対 物レンズ系の光学性能に関する第 1の規格〜第 3の規格に対応し、 対物レンズ系 に残存する波面収差の各成分の RMS値を λ (= 632. 8 nm) にかかる係数 で示している。 なお、 ここでは、 特異面が発生している面を対物レンズ内にて特 定していないため、 発生面を屈折率 1. 7 (平均的な値である) の非貼り合せ面 として示している。 Table 9 below shows the effect of one singular surface in Table 7 on the wavefront aberration of the objective lens system. In Table 9, the components are the first criteria for the performance of the objective lens system. Each wavefront aberration component included in the first to third standards is shown. The objective lens standards correspond to the first to third standards regarding the optical performance of the objective lens system, and the RMS value of each component of the wavefront aberration remaining in the objective lens system is set to λ (= 632.8 nm). The coefficient is shown as Here, since the surface where the singular surface is generated is not specified in the objective lens, the generated surface is shown as a non-bonded surface with a refractive index of 1.7 (average value). I have.
実際研磨面は、 第 7表の実際研磨面を 1枚含む対物レンズ系に残存する波面収 差の各成分の RMS値を λ (= 632. 8 nm) にかかる係数で示している。 3 面は、 第 7表の 3 Θ面を 1枚含む対物レンズ系に残存する波面収差の各成分の RMS値を λ (= 632. 8 nm) にかかる係数で示している。 30高次コマ複 合面は、 第 7表の 3 Θ高次コマ複合面を 1枚含む対物レンズ系に残存する波面収 差の各成分の RMS値を λ (= 632. 8 nm) にかかる係数で示している。  For the actual polished surface, the RMS value of each component of the wavefront difference remaining in the objective lens system containing one actual polished surface in Table 7 is shown by the coefficient applied to λ (= 632.8 nm). For the three surfaces, the RMS value of each component of the wavefront aberration remaining in the objective lens system including one 3Θ surface in Table 7 is indicated by a coefficient applied to λ (= 632.8 nm). For the 30th higher-order coma composite surface, the RMS value of each component of the wavefront difference remaining in the objective lens system containing one 3 3 higher-order coma composite surface in Table 7 is applied to λ (= 632.8 nm). It is shown by a coefficient.
9 9
成分 面精度規格 実際研磨面 30面 30高次  Component Surface accuracy standard Actually polished surface 30 surfaces 30 higher order
コマ複合面 全成分 0.0120 0. 0103 0.0070 0.0070 回転対称成分 0.0070 0. 0056 0.0000 0.0000 回転対称 2次 4次残差 0.0050 0. 0054 0.0000 0.0000 ァス補正後非回転成分 0.0050 0. 0042 0.0070 0.0070 縦収差成分 0.0080 0. 0060 0.0000 0.0000 縦収差高次成分 0.0060 0. 0059 0.0000 0.0000 横収差成分 0.0050 0. 0036 0.0070 0.0070 横収差高次成分 0.0040 0. 0036 0.0070 0.0070 ァス補正 0.0100 0. 0070 0.0070 0.0070 ァスと低次球面収差補正 0.0080 0. 0069 0.0070 0.0070 高次収差成分 0.0070 0. 0069 0.0070 0.0070 第 9表を参照すると、 実際研磨面を 1枚含む対物レンズ系では第 1の規格の回 転対称 2次 4次残差成分の許容値を上回り、 30面や 3 Θ高次コマ複合面を 1枚 含む対物レンズ系では第 1の規格のァス補正後非回転成分の許容値を上回ってい る。 また、 実際研磨面を 1枚含む対物レンズ系では第 2の規格のすべての成分の 許容値を下回っているが、 30面や 30高次コマ複合面を 1枚含む対物レンズ系 では第 2の規格の横収差成分の許容値および横収差高次成分の許容値を上回って いる。 なお、 第 3の規格については、 すべての成分の許容値を下回っている。 い ずれにしても、 1枚の特異面を含むだけで対物レンズ系の性能が大きく悪化する ことがわかる。 Coma composite plane All components 0.0120 0.0103 0.0070 0.0070 Rotationally symmetric component 0.0070 0.0056 0.0000 0.0000 Rotationally symmetric 4th order residual 0.0050 0.0054 0.0000 0.0000 Non-rotational component after ass correction 0.0050 0.0042 0.0070 0.0070 Longitudinal aberration component 0.0080 0.0060 0.0000 0.0000 Longitudinal aberration higher order component 0.0060 0.0059 0.0000 0.0000 Lateral aberration component 0.0050 0.0036 0.0070 0.0070 Lateral aberration higher order component 0.0040 0.0036 0.0070 0.0070 Absolute correction 0.0100 0.0070 0.0070 0.0070 Absolute and low Second order spherical aberration correction 0.0080 0.006 0.0070 0.0070 Higher order aberration component 0.0070 0.006 0.0070 0.0070 Referring to Table 9, the objective lens system that actually contains one polished surface exceeds the allowable value of the rotationally symmetric second- and fourth-order residual components of the first standard. The objective lens system including one lens exceeds the allowable value of the non-rotational component after the first correction of the first standard. In addition, the objective lens system that actually contains one polished surface is below the permissible values of all the components of the second standard, but the objective lens system that contains one 30-plane or 30 higher-order coma composite surface has the second tolerance. It exceeds the allowable value of the standard lateral aberration component and the allowable value of the higher order lateral aberration component. For the third standard, the values are lower than the allowable values for all components. In any case, it can be seen that the performance of the objective lens system is greatly deteriorated only by including one singular surface.
次の第 10表は、 面精度に関する第 1の規格〜第 3の規格と、 面精度に関する 第 4の規格との関係を示している。 第 10表において、 成分は、 面精度に関する 第 1の規格〜第 3の規格に含まれる各波面収差成分を示している。 面精度規格は、 面精度に関する第 1の規格〜第 3の規格における各成分の RMS値を λ (=63 2. 8 nm) にかかる係数で示している。 ツェルニケ規格は、 面精度に関する第 4の規格から換算された各成分の RMS値を λ (= 632. 8 nm) にかかる係 数で示している。 第 10 表  Table 10 below shows the relationship between the first to third standards for surface accuracy and the fourth standard for surface accuracy. In Table 10, the component indicates each wavefront aberration component included in the first to third standards for the surface accuracy. The surface accuracy standard shows the RMS value of each component in the 1st to 3rd standards related to surface accuracy as a coefficient on λ (= 632.8 nm). In the Zernike standard, the RMS value of each component converted from the fourth standard for surface accuracy is expressed as a coefficient related to λ (= 632.8 nm). Table 10
成分 面精度規格 ツェルニケ規格  Component Surface accuracy standard Zernike standard
全成分 0.0100 0.0100 All components 0.0100 0.0100
回転対称成分 0.0050 0.0050 Rotationally symmetric component 0.0050 0.0050
回転対称 2次 4次残差 0.0030 0.0029 Rotationally symmetric second-order fourth-order residual 0.0030 0.0029
ァス補正後非回転成分 0.0050 0.0073 Non-rotational component after error correction 0.0050 0.0073
縦収差成分 0.0070 0.0067 Longitudinal aberration component 0.0070 0.0067
縦収差高次成分 0.0050 0.0053 Longitudinal aberration higher order component 0.0050 0.0053
横収差成分 0.0050 0.0058 Lateral aberration component 0.0050 0.0058
横収差高次成分 0.0030 0.0052 Lateral aberration higher order component 0.0030 0.0052
ァス補正 0.0080 0.0089 ァスと低次球面収差補正 0. 0050 0. 0079 Error correction 0.0080 0.0089 And low-order spherical aberration correction 0.0005
高次収差成分 0. 0030 0. 0075 第 1 0表を参照すると、 面精度に関する第 1の規格〜第 3の規格と第 4の規格 との間には良好な対応関係が認められるが、 第 1の規格〜第 3の規格の方が概し て第 4の規格よりも精度的に厳しく設定されていることがわかる。 したがって、 上述の説明では、 面精度に関する第 4の規格にしたがう対物レンズ系を例にとつ ているが、 面精度に関する第 1の規格〜第 3の規格から任意に選択された規格に したがう対物レンズ系においても、 所望の性能規格を満足することができる。 すなわち、 本実施形態では、 屈折率均質性に関する規格と面精度に関する第 1 の規格〜第 4の規格から任意に選択された規格とにしたがつて対物レンズ系の光 学部材を製造し、 組み立てられた対物レンズ系において所要の光学調整を行うこ とにより、 対物レンズ系の性能に関する第 1の規格〜第 3の規格から任意に選択 された規格を満たすとともに、 対物レンズ系の性能に関する補助規格を満たすこ とができる。 さらに、 結像光学系の対物レンズ系以外の光学部材を、 対物レンズ 系の光学部材に準じた規格にしたがって製造し、 組み立てられた結像光学系にお いて所要の光学調整を行うことにより、 結像光学系の性能に関する規格を満たす ことができる。 Higher-order aberration component 0.0030 0.0075 Referring to Table 10, a good correspondence is recognized between the first to third standards and the fourth standard regarding surface accuracy. It can be seen that the standards 1 to 3 are set more strictly in terms of accuracy than the fourth standard. Therefore, in the above description, the objective lens system according to the fourth standard for surface accuracy is taken as an example, but the objective system according to a standard arbitrarily selected from the first to third standards for surface accuracy is taken as an example. The lens system can also satisfy a desired performance standard. That is, in the present embodiment, the optical member of the objective lens system is manufactured and assembled according to the standard regarding the refractive index homogeneity and the standard arbitrarily selected from the first to fourth standards regarding the surface accuracy. By performing necessary optical adjustments in the objective lens system specified, the objective lens system satisfies the standards arbitrarily selected from the first to third standards and the auxiliary standard for the objective lens system performance Can be satisfied. Furthermore, by manufacturing optical members other than the objective lens system of the imaging optical system in accordance with the standard corresponding to the optical members of the objective lens system, and performing necessary optical adjustments in the assembled imaging optical system, It can meet the standards regarding the performance of the imaging optical system.
実際に、 面精度に関する第 1の規格で研磨を実施したところ、 面精度に関する 第 4の規格 (ツェルニケ規格) を満たすことがわかった。 したがって、 面精度に 関する第 1の規格で研磨すれば、 所望の精度で加工された面が得られることが判 明した。 同様に、 面精度に関する第 2の規格または第 3の規格で研磨しても、 面 精度に関する第 4の規格 (ツェルニケ規格) を満たすことが確認された。  Actually, when the polishing was performed according to the first standard for surface accuracy, it was found that the polishing satisfies the fourth standard (Zernike standard) for surface accuracy. Therefore, it was found that a surface processed with desired accuracy can be obtained by polishing with the first standard relating to surface accuracy. Similarly, it was confirmed that even if polishing was performed according to the second or third standard for surface accuracy, the fourth standard (Zernike standard) for surface accuracy was satisfied.
また、 前述したように、 1つの特異面だけで対物レンズ系の性能に関する規格 値の大部分を占める波面収差を発生させることがある。 第 7表に、 この種の特異 面に関するツェルニケデータを示し、 第 8表に、 各成分の RM S値に換算した数 値を示している。 この種の特異面は、 第 1 8図、 第 2 0図および第 2 2図に示す ように、 真球からのずれの大きい特別な形状をしている。 第 9表には、 この種の 特異面が対物レンズ系中に 1面あると、 対物レンズ系の透過波面収差にどの程度 影響するかを示している。 In addition, as described above, a single singular surface may generate a wavefront aberration that occupies most of the standard value related to the performance of the objective lens system. Table 7 shows the Zernike data for this type of singular surface, and Table 8 shows the RMS values for each component. This kind of singular surface has a special shape with a large deviation from a true sphere, as shown in FIGS. 18, 20 and 22. Table 9 shows that this kind of It shows how a single singular surface in the objective lens system affects the transmitted wavefront aberration of the objective lens system.
実際の研磨面例では、 1枚の特異面の存在により、 対物レンズ系の性能に関す る規格値の 8割以上の収差を発生させている。 したがって、 このような研磨面が 1枚でも発生すると、 最終的に対物レンズ系の性能に関する規格を満たすことが できない可能性が高い。 また、 3 0面および 3 0高次コマ複合面のような特異面 については、 1面だけで対物レンズ系の性能に関する規格値を超える収差を発生 させている。 このような傾向の特異面が実際に発生することがあり、 その場合に は性能に関する規格を満足しない対物レンズ系が製造されるものと考えられる。 さて、 第 1図に示す、 F I A系ァライメント装置では、 ァライメントマーク (ウェハマーク WM) の X方向 (0度方向) 位置および Y方向 (9 0度方向) 位 置を計測する。 このようなァライメント装置では、 X方向用の C C Dおよび Y方 向用の C C Dのように 2つの撮像デバイスを用い、 各方向の位置を別々に計測す ることが可能である。 この場合、 X方向用の C C Dの受光面および Y方向用の C C Dの受光面を X方向フォーカス位置および Y方向フォーカス位置へ独立して合 わせ込むことが容易に可能となる。 したがって、 基本的に本発明の仕様を満たし ていれば、 非点収差 (ァス) は光学調整によって補正することができる。  In an actual polished surface example, the presence of one singular surface causes an aberration of 80% or more of the standard value for the performance of the objective lens system. Therefore, if even one such polished surface is generated, it is highly likely that the standard for the performance of the objective lens system cannot be finally satisfied. In addition, with respect to unique surfaces such as the 30th surface and the 30th higher-order coma composite surface, only one surface generates aberration exceeding the standard value for the performance of the objective lens system. A singular surface with such a tendency may actually occur, and in such a case, it is considered that an objective lens system that does not satisfy the performance standards will be manufactured. The FIA-based alignment device shown in FIG. 1 measures the position of the alignment mark (wafer mark WM) in the X direction (0 degree direction) and the Y direction (90 degree direction). In such an alignment apparatus, it is possible to separately measure the position in each direction by using two imaging devices, such as the CCD for the X direction and the CCD for the Y direction. In this case, it becomes easy to independently adjust the light receiving surface of the CCD for the X direction and the light receiving surface of the CCD for the Y direction to the X direction focus position and the Y direction focus position. Therefore, as long as the specifications of the present invention are satisfied, astigmatism (as) can be corrected by optical adjustment.
顕微鏡に含まれる対物レンズ系のような比較的小型の対物レンズ系の場合、 レ ンズ室に偏心を追い込んだ状態で各レンズが挿入され、 さらに各レンズの揷入さ れた各レンズ室が鏡筒に組み込まれて製造される。 この場合、 メカ押え機構によ り発生する成分は、 概してツェルニケ係数の C 2および C 3のチルト成分、 C 4 のフォーカス成分、 C 5および C 6のァス成分と言った具合に係数の順序で大き いほうから並んでいると考えられる。 チルト成分は公差内であれば折り込み済み で問題なく、 フォーカス成分、 ァス成分、 コマ収差成分、 球面収差成分は、 光学 部材の間隔調整、 偏心調整などによって補正可能である。 また、 ァス成分に関し ては、 シリンドリカル面を用いた調整機構によって補正することも可能である。 したがって、 メカ機構で気を付ける必要がある収差成分は、 ツェルニケ係数の C 1 0および C 1 1の 3 0成分、 C 1 2および C 1 3の高次ァス成分、 C 1 4お よび C 1 5の高次コマ成分などである。 レンズ室への組込み時におけるこれらの 収差成分の発生に十分注意する必要があるが、 これらの収差成分の発生は、 比較 的小径 (たとえば 5 0 mm以下の有効径) の対物レンズ系においては無視し得る 程度に小さく抑え込むことが可能であり、 今後とも必要に応じてより小さくなる ような機構を採用すれば無視することができる。 In the case of a relatively small objective lens system such as an objective lens system included in a microscope, each lens is inserted into the lens chamber with the eccentricity being driven, and each lens chamber into which the lens is inserted is mirrored. Manufactured by being incorporated in a cylinder. In this case, the components generated by the mechanical presser mechanism are generally in the order of the coefficients, such as the Zernike coefficient tilt components C2 and C3, the focus component C4, and the positive component C5 and C6. It is thought that they are lined up from the larger one. If the tilt component is within the tolerance, it is already folded and there is no problem. The focus component, the positive component, the coma aberration component, and the spherical aberration component can be corrected by adjusting the distance between the optical members and the eccentricity. In addition, the gas component can be corrected by an adjustment mechanism using a cylindrical surface. Therefore, the aberration components that need to be considered by the mechanical mechanism are the 30 components of Cernike coefficients C10 and C11, the higher order components of C12 and C13, and the C14 and C14 components. And higher-order coma components of C15. It is necessary to pay close attention to the generation of these aberration components when assembling them into the lens chamber. However, the generation of these aberration components is ignored in objective lens systems with relatively small diameters (for example, effective diameters of 50 mm or less). It can be kept as small as possible and can be neglected if a smaller mechanism is adopted as needed.
基本的に、 面精度に関する第 4の規格 (ツェルニケ規格) を満たせば、 各面面 精度に基づいて計算により予想される対物レンズ系の性能が本実施形態の補助規 格を満たすことは前述した通りである。 このとき、 各面面精度に基づく計算にお いて、 レンズ組み込み時の非回転対称成分の相殺効果を約 0 . 5と見込んで計算 している。 以下、 相殺効果について説明する。 光学系で使用されるレンズ枚数が 多い場合、 各レンズで発生したツェル二ケの非回転対称成分は、 各レンズの光軸 垂直面内での回転調整によりある程度相殺される。 例えば、 あるレンズで 0度方 向にピーク値を有する非回転対称成分が残存し、 別のレンズにも 0度方向に同様 の非回転対称成分が残存していた場合、 どちらか一方のレンズを光軸垂直面内に て回転させることにより、 波面収差を小さくすることができる。 ここでは、 この ような効果を相殺効果と呼び、 約 0 . 5と見込んでいる。  Basically, if the fourth standard for surface accuracy (Zernike standard) is satisfied, the objective lens system performance predicted by calculation based on each surface accuracy satisfies the auxiliary standard of the present embodiment. It is on the street. At this time, in the calculation based on the accuracy of each surface, the cancellation effect of the non-rotationally symmetric component when the lens is incorporated is estimated to be about 0.5. Hereinafter, the offset effect will be described. If the number of lenses used in the optical system is large, the non-rotationally symmetric component of the Zernike generated in each lens is offset to some extent by the rotation adjustment of each lens in the plane perpendicular to the optical axis. For example, if a non-rotationally symmetric component having a peak value in the 0 degree direction remains in one lens and a similar non-rotationally symmetric component in the 0 degree direction remains in another lens, one of the lenses is By rotating in the plane perpendicular to the optical axis, wavefront aberration can be reduced. Here, such an effect is called an offset effect and is expected to be about 0.5.
規格に含まれる各成分の発生量と、 低次収差や高次収差の発生量との関係は、 一対一に対応していない。 しかしながら、 面精度に関する 4つの規格のうちいず れの規格を採用しても、 最終的な対物レンズ系の性能に関する規格を満たすよう に設定されていなければならない。 このように、 面精度に関する規格を設けるこ とにより、 研磨面のうねり成分の発生が現実に少なくなる。 面精度に関する規格 を設定しない場合には、 前述したような特異面が発生し、 対物レンズ系の性能に 関する規格を、 ひいては結像光学系の性能に関する規格を満たすことができなく なる。  The relationship between the amount of each component included in the standard and the amount of low-order aberration or high-order aberration does not correspond one-to-one. However, no matter which of the four standards for surface accuracy is adopted, it must be set so as to satisfy the standard for the performance of the final objective lens system. By setting a standard for surface accuracy in this way, the generation of waviness components on the polished surface is actually reduced. If the standard regarding the surface accuracy is not set, the above-mentioned singular surface is generated, and the standard regarding the performance of the objective lens system and eventually the standard regarding the performance of the imaging optical system cannot be satisfied.
以下、 各面のツェルニケ係数から、 対物レンズ系の透過波面収差を計算により 見積もる方法を示す。 ツェルニケ係数は、 各レンズの有効径に対して規格化され ている。 したがって、 実際に使用する光束径に換算する必要がある。 面が既にッ エルニケ関数フィッティングされているので、 光軸中心で半径を小さくして新た なツェルニケ係数を求めることは、 半径! 0を光束径 /有効径の比率で求めて換算 することにより容易に可能である。 The method for estimating the transmitted wavefront aberration of the objective lens system from the Zernike coefficients of each surface is shown below. The Zernike coefficients are standardized for the effective diameter of each lens. Therefore, it is necessary to convert to the beam diameter actually used. Since the surface has already been fitted with the Zellnike function, the radius is reduced at the center of the optical axis and Finding the perfect Zernike coefficient is a radius! It is easily possible by calculating 0 and converting it by the ratio of luminous flux diameter / effective diameter.
また、 干渉計による面精度の検査は、 第 1 1図に示すように反射波面収差の計 測により行われる。 このため、 透過波面収差に換算するには、 計測波長のガラス 屈折率 nと、 空気屈折率または接合レンズの場合には接着剤屈折率 (いずれの場 合も η θで表す) との差 (n— η θ ) を乗じなければならない。 換算時に計測波 長 (通常 H e— N e波長: λ = 6 3 2 . 8 n m) と使用波長 λ 0とが異なる場合 は、 波面収差の単位である波長を換算するために λ 0 Ζ λを乗じる必要がある。 このような手法により、 第 1実施例の対物レンズ系の透過波面収差を計算によ り見積もった値を、 第 3表の対物レンズ性能の欄に示している。 この見積もり結 果は、 前述したように、 対物レンズ系の性能に関する規格とほぼ整合した値とな つている。 したがって、 各面を本実施形態の規格にしたがって研磨すれば、 性能 に関する所望の規格を満たす対物レンズ系が得ることができる。  The inspection of the surface accuracy by the interferometer is performed by measuring the reflected wavefront aberration as shown in FIG. Therefore, to convert to transmitted wavefront aberration, the difference between the glass refractive index n at the measurement wavelength and the air refractive index or the adhesive refractive index in the case of a cemented lens (in each case, represented by ηθ) ( n— η θ). If the measured wavelength (normally He—Ne wavelength: λ = 63.2.8 nm) is different from the used wavelength λ 0 at the time of conversion, λ 0 Ζ λ to convert the wavelength, which is the unit of wavefront aberration. Need to be multiplied. The value obtained by calculating the transmitted wavefront aberration of the objective lens system of the first example by such a method is shown in the column of objective lens performance in Table 3. As described above, this estimation result is almost consistent with the standard regarding the performance of the objective lens system. Therefore, if each surface is polished according to the standard of the present embodiment, an objective lens system satisfying a desired standard regarding performance can be obtained.
また、 本実施形態では、 各光学部材の屈折率分布による波面収差の Ρ— V値 (peak to val l ey:最大最小の差) を 0 . 0 0 5 λ以下に抑えている。 調査の結 果から、 比較的小径 (たとえば有効径が 6 0 mm以下) の光学部材においては、 このような屈折率均質性に関する精度を満たす光学材料を供給することが可能で あることが解つた。 光学部材の屈折率分布はなだらかな分布形状を示しており、 局所的なうねりは少ない。  Further, in this embodiment, the Ρ-V value (peak to valley: difference between maximum and minimum) of the wavefront aberration due to the refractive index distribution of each optical member is suppressed to 0.05 λ or less. From the results of the investigation, it was found that it is possible to supply an optical material that satisfies such accuracy regarding refractive index homogeneity for optical members with a relatively small diameter (for example, an effective diameter of 60 mm or less). . The refractive index distribution of the optical member shows a gentle distribution shape, and there is little local undulation.
したがって、 この P— V値を成分解析すると、 高次のうねり成分は多くても P 一 V値で 0 . 0 0 1 λ以下となり、 実質的な影響が無いと考えられる。 特開平 8 - 5 5 0 5号公報に開示されているように、 低次の屈折率分布に起因して発生す る収差成分は光学系の調整によって補正可能な成分であり、 ツェルニケ係数で表 すと、 第 2項の展開係数 C 2〜第 9項の展開係数 C 9に相当する。 したがって、 本実施形態の屈折率均質性に関する規格を満たしていれば、 最終的な対物レンズ 系の性能に実質的な悪影響を及ぼすことはないと考えられる。  Therefore, when this P-V value is subjected to component analysis, at most the higher-order undulation component is less than 0.001 λ in P-V value, and it is considered that there is no substantial effect. As disclosed in Japanese Patent Application Laid-Open No. 8-55505, an aberration component generated due to a low-order refractive index distribution is a component that can be corrected by adjusting the optical system, and is represented by a Zernike coefficient. Then, it corresponds to the expansion coefficient C2 in the second term to the expansion coefficient C9 in the ninth term. Therefore, it is considered that if the standard for the refractive index homogeneity of the present embodiment is satisfied, there is no substantial adverse effect on the performance of the final objective lens system.
なお、 面精度に関する規格および性能に関する規格のうち、 第 2の規格は最終 的な結像光学系の性能の規格と整合しているので最も有効である。 ただし、 通常 の市販の干渉計ではこのような成分に関する数値はソフトに機能がなく表示され ないため、 ツェルニケ係数から計算しなければならない。 実際の F I A系ァライ メント装置においては、 縦収差が各種マークの位置検出時のフォーカス位置のば らつきに寄与し、 横収差が各種マークの位置検出時の横方向の計測誤差となる。 ァライメン卜マークを画像処理する際に、 ソフトウエア処理の技術にしたがつ てこれらの誤差要因を減少させる技術も非常に進歩が著しいが、 基本的にハード ウェアとして結像光学系の性能が高いほど望ましい。 たとえば、 理想的に収差が 全く発生しない場合、 対物レンズ系を含む結像光学系に関する誤差要因はなくな り、 ウェハ上に形成されたァライメントマークの形状誤差等の影響が残るだけと なる。 Of the standards relating to surface accuracy and the standards relating to performance, the second standard is the most effective because it conforms to the standard for the performance of the final imaging optical system. However, usually In commercial interferometers, numerical values for such components have no function in software and are not displayed, so they must be calculated from Zernike coefficients. In an actual FIA-based alignment device, longitudinal aberration contributes to variations in the focus position when detecting the positions of various marks, and lateral aberration causes a measurement error in the horizontal direction when detecting the positions of various marks. Although the technology for reducing these error factors in image processing of alignment marks in accordance with the software processing technology has made remarkable progress, the performance of the imaging optical system as hardware is generally high. Is more desirable. For example, if no aberration occurs ideally, there is no error factor in the imaging optical system including the objective lens system, and only the influence of the shape error of the alignment mark formed on the wafer remains.
第 1図に示す本実施形態における各光学部材及び各ステージ等を前述したよう な機能を達成するように、 電気的、 機械的または光学的に連結することで、 本実 施形態にかかる露光装置を組み上げることができる。 そして、 照明系 I Lによつ てマスクを照明し (照明工程)、 投影光学モジュール P M 1〜P M 5からなる投 影光学系 P Lを用いてマスクに形成された転写用のパターンを感光性基板に走査 露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 液晶表示素 子、 薄膜磁気ヘッド等) を製造することができる。 以下、 第 1図に示す本実施形 態の露光装置を用いて感光性基板としてのゥェ八等に所定の回路パターンを形成 することによって、 マイクロデバィスとしての半導体デバイスを得る際の手法の 一例につき第 2 3図のフローチャートを参照して説明する。  The exposure apparatus according to the present embodiment is electrically, mechanically, or optically connected to each optical member, each stage, and the like in the present embodiment shown in FIG. 1 so as to achieve the functions described above. Can be assembled. Then, the mask is illuminated by the illumination system IL (illumination step), and the transfer pattern formed on the mask is projected onto the photosensitive substrate using the projection optical system PL including the projection optical modules PM1 to PM5. By performing scanning exposure (exposure step), a micro device (semiconductor element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured. Hereinafter, an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment shown in FIG. This will be described with reference to the flowchart of FIG.
先ず、 第 2 3図のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸 着される。 次のステップ 3 0 2において、 その 1ロットのウェハ上の金属膜上に フォトレジストが塗布される。 その後、 ステップ 3 0 3において、 第 1図に示す 露光装置を用いて、 マスク上のパターンの像がその投影光学系 (投影光学モジュ —ル) を介して、 その 1ロットのウェハ上の各ショット領域に順次露光転写され る。 その後、 ステップ 3 0 4において、 その 1ロットのウェハ上のフォトレジス 卜の現像が行われた後、 ステップ 3 0 5において、 その 1ロットのウェハ上でレ ジストパターンをマスクとしてエッチングを行うことによって、 マスク上のパタ ーンに対応する回路パターンが、 各ウェハ上の各ショット領域に形成される。 そ の後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体素子 等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極めて微 細な回路パ夕一ンを有する半導体デバイスをスループット良く得ることができる。 また、 第 1図に示す露光装置では、 プレート (ガラス基板) 上に所定のパター ン (回路パターン、 電極パターン等) を形成することによって、 マイクロデパイ スとしての液晶表示素子を得ることもできる。 以下、 第 2 4図のフローチャート を参照して、 このときの手法の一例につき説明する。 第 2 4図において、 パター ン形成工程 4 0 1では、 本実施形態の露光装置を用いてマスクのパターンを感光 性基板 (レジストが塗布されたガラス基板等) に転写露光する、 所謂光リソダラ フィ一工程が実行される。 この光リソグラフィー工程によって、 感光性基板上に は多数の電極等を含む所定パターンが形成される。 その後、 露光された基板は、 現像工程、 エッチング工程、 レチクル剥離工程等の各工程を経ることによって、 基板上に所定のパターンが形成され、 次のカラーフィルタ一形成工程 4 0 2へ移 行する。 First, in step 301 of FIG. 23, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the wafer of the lot. Then, in step 303, using the exposure apparatus shown in FIG. 1, the image of the pattern on the mask is transmitted through the projection optical system (projection optical module) to each shot on the wafer of the lot. It is sequentially exposed and transferred to the area. Thereafter, in step 304, the photoresist on the one lot of wafers is developed, and then in step 300, etching is performed on the one lot of wafers using the resist pattern as a mask. Putter on the mask A circuit pattern corresponding to the pattern is formed in each shot area on each wafer. Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with good throughput. In the exposure apparatus shown in FIG. 1, by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate), a liquid crystal display element as a microdepth can be obtained. . Hereinafter, an example of the technique at this time will be described with reference to the flowchart of FIG. In FIG. 24, in a pattern forming step 401, a so-called optical lithography method in which a mask pattern is transferred and exposed to a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment. One step is performed. By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to a developing process, an etching process, a reticle peeling process, etc., to form a predetermined pattern on the substrate, and the process proceeds to the next color filter forming process 402. .
次に、 カラーフィルター形成工程 4 0 2では、 R (Red) , G (Green) , B (Blue) に対応した 3つのドットの組がマトリックス状に多数配列されたり、 ま たは R、 G、 Bの 3本のストライプのフィルターの組を複数水平走査線方向に配 列したカラ一フィルタ一を形成する。 そして、 カラーフィルター形成工程 4 0 2 の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およびカラー フィルター形成工程 4 0 2にて得られたカラーフィル夕一等を用いて液晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パターン形 成工程 4 0 1にて得られた所定パターンを有する基板とカラーフィルター形成ェ 程 4 0 2にて得られたカラ一フィルターとの間に液晶を注入して、 液晶パネル (液晶セル) を製造する。  Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or R, G, A color filter is formed by arranging a plurality of sets of three stripe filters B in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In the cell assembling step 403, a liquid crystal panel (liquid crystal) is used by using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. Assemble the cell). In the cell assembling step 403, for example, a liquid crystal is interposed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. Inject to manufacture liquid crystal panels (liquid crystal cells).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 パックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループット良く得ることができ る。 Then, in the module assembling step 404, each component such as an electric circuit and a pack light for performing the display operation of the assembled liquid crystal panel (liquid crystal cell) is attached. Completed as a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
なお、 上述の実施形態では、 波面収差をツェルニケの多項式で表現しているが、 たとえば特開平 1 1一 1 2 5 5 1 2号公報に開示されているようにツェルニケ多 項式を用いることなく波面収差を表現することもできる。  In the above-described embodiment, the wavefront aberration is represented by a Zernike polynomial, but without using a Zernike polynomial as disclosed in Japanese Patent Application Laid-Open No. H11-125125, for example. Wavefront aberration can also be expressed.
また、 上述の実施形態では、 波面収差をツェルニケの多項式で表現する際に第 3 6項まで展開しているが、 これに限定されることなく、 さらに第 3 6項を超え て展開することもできる。 この場合、 第 3 7項以降の項については、 たとえば第 3 6項に関する規格値を適用することができる。  Further, in the above-described embodiment, when the wavefront aberration is expressed by the Zernike polynomial, the expansion is performed up to the 36th term. it can. In this case, for paragraphs 37 onwards, for example, the standard values for paragraph 36 can be applied.
さらに、 上述の実施形態では、 ウェハマークの位置を検出するための F I A系 ァライメント装置に本発明を適用しているが、 これに限定されることなく、 たと えば特開平 6 _ 5 8 7 3 0号公報、 特開平 7— 7 1 9 1 8号公報、 特開平 1 0— Further, in the above embodiment, the present invention is applied to the FIA-based alignment device for detecting the position of the wafer mark. However, the present invention is not limited to this. Japanese Patent Application Laid-Open No. 7-71,918, Japanese Patent Application Laid-Open No.
1 2 8 8 1 4号公報、 特開平 1 0— 1 2 2 8 2 0号公報、 および特開 2 0 0 0 -1 2 8 8 14 JP, JP-A-10- 1 2 280 0 JP, and JP 2000-
2 5 8 1 1 9号公報などに開示される重ね合わせ精度測定装置やパターン間寸法 測定装置にも本発明を適用することができる。 The present invention can be applied to an overlay accuracy measuring device and an inter-pattern dimension measuring device disclosed in, for example, US Pat.
以上の通り、 本発明は上述した実施形態には限られずに種々の構成をとり得る。 産業上の利用の可能性  As described above, the present invention can take various configurations without being limited to the above-described embodiment. Industrial applicability
以上説明したように、 本発明では、 残存する波面収差高次成分を良好に抑える ことのできる対物レンズ系を設計レベルで実現することができる。 また、 本発明 では、 対物レンズ系の光学調整により発生する波面収差高次成分および波長毎の 偏心コマ収差の差の少なくとも一方を抑えて対物レンズ系を設計することにより、 残存する波面収差高次成分を良好に抑えることができる。 さらに、 本発明では、 対物レンズ系を構成する各光学部材の屈折率分布による波面収差を抑えるととも に、 各光学部材の各面の基準面に対する波面収差を抑えて、 各光学部材をそれぞ れ製造することにより、 対物レンズ系に残存する波面収差高次成分を良好に抑え ることができる。 したがって、 本発明の対物レンズ系を含む結像光学系を介して形成された物体 像を観察する観察装置では、 対物レンズ系に、 ひいては結像光学系に残存する波 面収差高次成分を良好に抑えることができる。 また、 本発明の観察装置を備えた 露光装置では、 たとえば観察装置を用いて投影光学系に対してマスクと感光性基 板とを高精度に位置合わせして良好な露光を行うことができる。 さらに、 本発明 の露光装置を用いたマイクロデバイス製造方法では、 良好な露光工程を介して良 好なマイクロデバイスを製造することができる。 As described above, according to the present invention, an objective lens system capable of favorably suppressing the remaining higher order wavefront aberration components can be realized at a design level. Further, in the present invention, by designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of eccentric coma aberration for each wavelength, the remaining higher order Components can be suppressed well. Furthermore, in the present invention, the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and the wavefront aberration of each surface of each optical member with respect to the reference plane is suppressed, and each optical member is By manufacturing the same, high-order wavefront aberration components remaining in the objective lens system can be favorably suppressed. Therefore, in the observation apparatus for observing an object image formed via the imaging optical system including the objective lens system of the present invention, the objective lens system and, consequently, the higher order components of the wavefront aberration remaining in the imaging optical system are excellent. Can be suppressed. Further, in the exposure apparatus provided with the observation device of the present invention, for example, the mask and the photosensitive substrate can be positioned with high accuracy with respect to the projection optical system using the observation device, and good exposure can be performed. Further, in the microdevice manufacturing method using the exposure apparatus of the present invention, a good microdevice can be manufactured through a good exposure process.

Claims

請 求 の 範 囲 The scope of the claims
1. 物体側から順に、 正の屈折力を有する第 1レンズ群と、 負の屈折力を有す る第 2レンズ群とを備え、 1. In order from the object side, a first lens group having a positive refractive power and a second lens group having a negative refractive power are provided.
前記第 1レンズ群中において最も物体側に配置されたレンズの中心厚を d 1と し、 前記最も物体側に配置されたレンズの物体側の面と物体との間の光軸に沿つ た空気換算距離を d 0としたとき、  The center thickness of the lens closest to the object side in the first lens group is d1, and the thickness of the lens closest to the object side along the optical axis between the object side surface and the object is d1. When the air conversion distance is d 0,
d 1/d 0<0. 2  d 1 / d 0 <0.2
の条件を満足することを特徴とする対物レンズ系。  An objective lens system satisfying the following conditions:
2. 前記第 2レンズ群中において最も像側に配置された一対のレンズのうち物 体側のレンズのアッベ数をレ 1とし、 前記一対のレンズのうち像側のレンズのァ ッべ数をレ 2としたとき、 2. The Abbe number of the object-side lens of the pair of lenses disposed closest to the image in the second lens group is set to 1, and the Abbe number of the image-side lens of the pair of lenses is set to 1. When 2
I リ 1ーリ 2 Iく 15  I Li 1 Li 2 I Ku 15
V 1<40  V 1 <40
V 2<40  V 2 <40
の条件を満足することを特徴とする請求の範囲 1に記載の対物レンズ系。  2. The objective lens system according to claim 1, wherein the following condition is satisfied.
3. 前記一対のレンズは、 接合レンズを構成していることを特徴とする請求の 範囲 2に記載の対物レンズ系。 3. The objective lens system according to claim 2, wherein the pair of lenses constitute a cemented lens.
4. 前記対物レンズ系中のレンズ成分のうち負の屈折力の最も大きいレンズ成 分の中心厚を Dとし、 前記第 2レンズ群中において最も像側に配置されたレンズ の像側の面と前記物体との間の光軸に沿った距離を Lとしたとき、 4. Let D be the center thickness of the lens component having the largest negative refractive power among the lens components in the objective lens system, and select the image-side surface of the lens closest to the image side in the second lens group. When the distance along the optical axis from the object is L,
DZLく 0. 17  DZL K 0.17
の条件を満足することを特徴とする請求の範囲 1乃至 3のいずれか 1項に記載 の対物レンズ系。 4. The objective lens system according to claim 1, wherein the objective lens system satisfies the following condition.
5 . 対物レンズ系の製造方法において、 5. In the manufacturing method of the objective lens system,
前記対物レンズ系の光学調整により発生する波面収差高次成分および波長毎の 偏心コマ収差の差の少なくとも一方を抑えて前記対物レンズ系を設計する設計ェ 程と、  A design step of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of decentering coma aberration for each wavelength;
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする対物レンズ系の製造方 法。  An optical adjustment of the objective lens system to correct aberrations remaining in the assembled objective lens system.
6 . 前記設計工程では、 前記対物レンズ系の物体側の開口数を N Aとし、 使用 光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズの中心厚 および各レンズの空気間隔をそれぞれ d (mm) だけ変化させたときに発生する 波面収差のうち高次球面収差成分の: M S (root mean square: 自乗平均平方 根) 値を (3 0 · d · N A 6) · λ 1以下に設定することを特徴とする請求の範 囲 5に記載の対物レンズ系の製造方法。 6. In the design step, when the numerical aperture on the object side of the objective lens system is NA and the center wavelength of the light used is λ1, the center thickness of each lens constituting the objective lens system and the air of each lens The MS (root mean square) value of the higher order spherical aberration component of the wavefront aberration generated when the distance is changed by d (mm) is (30 · d · NA 6 ) · λ 6. The method for manufacturing an objective lens system according to claim 5, wherein the value is set to 1 or less.
7 . 前記設計工程では、 前記対物レンズ系の物体側の開口数を Ν Αとし、 使用 光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズを光軸と 直交する方向に沿って s (mm) だけ偏心させたときに発生する波面収差のうち 高次コマ収差成分の R M S値を (5 0 · s · N A 5 ) · λ 1以下に設定すること を特徴とする請求の範囲 5または 6に記載の対物レンズ系の製造方法。 7. In the design step, when the numerical aperture on the object side of the objective lens system is Ν and the center wavelength of the light used is λ1, each lens constituting the objective lens system is oriented in a direction orthogonal to the optical axis. The RMS value of the higher-order coma aberration component among the wavefront aberrations generated when decentered by s (mm) along the axis is set to (50 · s · NA 5 ) · λ1 or less. 7. The method for producing an objective lens system according to item 5 or 6.
8 . 前記設計工程では、 前記対物レンズ系の物体側の開口数を ΝΑとし、 使用 光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズを光軸と 直交する方向に沿って s (mm) だけ偏心させたときに発生する波面収差のうち 使用光の最短波長の偏心コマ収差成分の R M S値と使用光の最長波長の偏心コマ 収差成分の R M S値との差の絶対値を (5 0 · s · N A 3 ) · λ 1以下に設定す ることを特徴とする請求の範囲 5乃至 7のいずれか 1項に記載の対物レンズ系の 製造方法。 8. In the design step, when the numerical aperture on the object side of the objective lens system is ΝΑ and the center wavelength of the light used is λ1, each lens constituting the objective lens system is moved in a direction orthogonal to the optical axis. The absolute difference between the RMS value of the decentered coma component of the shortest wavelength of the used light and the RMS value of the decentered coma aberration component of the longest wavelength of the used light among the wavefront aberrations generated when decentering by s (mm) along 8. The method for manufacturing an objective lens system according to claim 5, wherein the value is set to be equal to or less than (50 · s · NA 3 ) · λ1.
9. 対物レンズ系の製造方法において、 9. In the manufacturing method of the objective lens system,
前記対物レンズ系に残存する波面収差高次成分を抑えるために、 前記対物レン ズ系を構成する各光学部材の屈折率分布による波面収差を抑えるとともに、 前記 各光学部材の各面の基準面に対する波面収差を抑えて、 前記各光学部材をそれぞ れ製造する製造工程と、  In order to suppress high-order wavefront aberration components remaining in the objective lens system, while suppressing the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system, each surface of each optical member with respect to a reference surface A manufacturing process for manufacturing each of the optical members while suppressing wavefront aberration,
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする対物レンズ系の製造方 法。  An optical adjustment of the objective lens system to correct aberrations remaining in the assembled objective lens system.
10. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の屈折率分布による波面収差の Ρ— V値 (peak to valley :最大最小の 差) を 0. 005 λ以下に抑えることを特徴とする請求の範囲 9に記載の対物レ ンズ系の製造方法。 10. In the manufacturing process, when the wavelength of the wavefront aberration measurement light is λ, the Ρ-V value (peak to valley: maximum-minimum difference) of the wavefront aberration due to the refractive index distribution of each optical member is defined as 0. 10. The method for manufacturing an objective lens system according to claim 9, wherein the objective lens system is controlled to be not more than 005λ.
11. 前記製造工程では、 波面収差の計測光の波長を としたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記全成分の回転対称成 分の RMS値を 0. 005 λ以下に抑え、 前記回転対称成分から 2次 4次曲線成 分を除去した回転対称成分 2次 4次残差の RMS値を 0. 003 λ以下に抑え、 前記全成分からァス成分を補正した後の非回転対称成分の RMS値を 0. 005 λ以下に抑えることを特徴とする請求の範囲 9または 10に記載の対物レンズ系 の製造方法。 11. In the manufacturing process, when the wavelength of the wavefront aberration measuring light is represented by, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each of the optical members with respect to the reference surface are calculated. The rotationally symmetric component of all the components is suppressed to 0.005 λ or less, and the RMS value of all the components is suppressed to 0.005 λ or less. The RMS value of the residual is suppressed to 0.003 λ or less, and the RMS value of the non-rotationally symmetric component after correcting the negative component from all the components is suppressed to 0.005 λ or less. Or the method for manufacturing an objective lens system according to item 10.
12. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記全成分の縦収差成分 の RMS値を 0. 007 λ以下に抑え、 前記全成分の縦収差高次成分の RMS値 を 0. 005 λ以下に抑え、 前記全成分の横収差成分の RMS値を 0. 005 λ 以下に抑え、 前記全成分の横収差高次成分の RMS値を 0. 003 λ以下に抑え ることを特徴とする請求の範囲 9または 10に記載の対物レンズ系の製造方法。 12. In the manufacturing process, when the wavelength of the wavefront aberration measuring light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface. And the RMS value of the longitudinal aberration component of all the components is suppressed to 0.007 λ or less, and the RMS value of the longitudinal aberration higher-order component of all the components Is suppressed to 0.005λ or less, the RMS value of the transverse aberration component of all the components is suppressed to 0.005λ or less, and the RMS value of the high-order transverse aberration component of all the components is suppressed to 0.003λ or less. 11. The method for manufacturing an objective lens system according to claim 9 or 10, wherein:
13. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記全成分からァス成分 を補正した後の成分の RMS値を 0. 008 λ以下に抑え、 前記全成分からァス 成分および低次球面収差成分を補正した後の成分の; MS値を 0. 005 λ以下 に抑え、 前記全成分の高次収差成分の RMS値を 0. 003 λ以下に抑えること を特徴とする請求の範囲 9または 10に記載の対物レンズ系の製造方法。 13. In the manufacturing process, when the wavelength of the wavefront aberration measurement light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface Was suppressed to 0.010 λ or less, and the RMS value of the component after correcting the vas component from all the components was suppressed to 0.008 λ or less, and the vas component and low-order spherical aberration component were corrected from the all components. The objective according to claim 9 or 10, wherein the MS value of the subsequent component is suppressed to 0.005 λ or less, and the RMS value of the high-order aberration component of all the components is suppressed to 0.003 λ or less. Manufacturing method of lens system.
14. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記波面収差をツェル二 ケの多項式で表すときの第 9項の展開係数 C 9を 0. 009 λ以下に抑え、 第 1 0項〜第 36項の展開係数 C 10〜C 36を 0. 005 λ以下にそれぞれ抑える ことを特徴とする請求の範囲 9または 10に記載の対物レンズ系の製造方法。 14. In the above manufacturing process, when the wavelength of the wavefront aberration measurement light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each of the optical members with respect to the reference surface. When the wavefront aberration is represented by a Zernike polynomial, the expansion coefficient C 9 in the ninth term is suppressed to 0.009 λ or less, and the expansion coefficient in the 10 th to 36 th terms 11. The method for manufacturing an objective lens system according to claim 9, wherein C10 to C36 are each suppressed to 0.005λ or less.
15. 前記製造工程に先立って、 前記対物レンズ系の光学調整により発生する 波面収差高次成分および波長毎の偏心コマ収差の差の少なくとも一方を抑えて前 記対物レンズ系を設計する設計工程を含むことを特徴とする請求の範囲 9乃至 1 4のいずれか 1項に記載の対物レンズ系の製造方法。 15. Prior to the manufacturing process, the designing process of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration and a difference in eccentric coma aberration for each wavelength generated by optical adjustment of the objective lens system. The method for manufacturing an objective lens system according to any one of claims 9 to 14, wherein the method comprises:
16. 前記設計工程では、 前記対物レンズ系の物体側の開口数を ΝΑとし、 使 用光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズの中心 厚および各レンズの空気間隔をそれぞれ d (mm) だけ変化させたときに発生す る波面収差のうち高次球面収差成分の RMS値を (30 · d · NA6) · λ 1以 下に設定することを特徴とする請求の範囲 1 5に記載の対物レンズ系の製造方法。 16. In the design process, when the numerical aperture on the object side of the objective lens system is ΝΑ and the center wavelength of the light used is λ1, the center thickness of each lens constituting the objective lens system and the The RMS value of the higher-order spherical aberration component among the wavefront aberrations generated when the air spacing is changed by d (mm) is (30 · d · NA 6 ) · λ1 or less. 16. The method for manufacturing an objective lens system according to claim 15, wherein the method is set as follows.
17. 前記設計工程では、 前記対物レンズ系の物体側の開口数を NAとし、 使 用光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズを光軸 と直交する方向に沿って s (mm) だけ偏心させたときに発生する波面収差のう ち高次コマ収差成分の RMS値を (50 · s · NA5) · λ 1以下に設定するこ とを特徴とする請求の範囲 15または 16に記載の対物レンズ系の製造方法。 17. In the design step, when the numerical aperture on the object side of the objective lens system is NA and the center wavelength of the light used is λ1, each lens constituting the objective lens system is oriented in a direction orthogonal to the optical axis. The RMS value of the high-order coma aberration component among the wavefront aberrations generated when decentering by s (mm) along is set to (50 · s · NA 5 ) · λ1 or less. 17. The method for manufacturing an objective lens system according to claim 15 or 16.
18. 前記設計工程では、 前記対物レンズ系の物体側の開口数を ΝΑとし、 使 用光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズを光軸 と直交する方向に沿って s (mm) だけ偏心させたときに発生する波面収差のう ち使用光の最短波長の偏心コマ収差成分の RMS値と使用光の最長波長の偏心コ マ収差成分の RMS値との差の絶対値を (50 * s ' NA3) ' A 1以下に設定 することを特徴とする請求の範囲 15乃至 17のいずれか 1項に記載の対物レン ズ系の製造方法。 18. In the design step, when the numerical aperture on the object side of the objective lens system is ΝΑ and the center wavelength of the light used is λ1, each lens constituting the objective lens system is oriented in a direction orthogonal to the optical axis. Of the wavefront aberration generated when the beam is decentered by s (mm) along the distance between the RMS value of the decentered coma component of the shortest wavelength of the used light and the RMS value of the decentered coma component of the longest wavelength of the used light objective lens system method according to any one of claims 15 to 17, the absolute value and said (50 * s 'NA 3) ' be set to a 1 the following differences.
19. 光学調整の後に対物レンズ系に残存する波面収差を抑えるために、 前記 対物レンズ系を構成する各光学部材の屈折率分布による波面収差が抑えられ、 且 つ前記各光学部材の各面の基準面に対する波面収差が抑えられていることを特徴 とする対物レンズ系。 19. In order to suppress the wavefront aberration remaining in the objective lens system after the optical adjustment, the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system is suppressed, and each surface of each optical member is An objective lens system characterized in that wavefront aberration with respect to a reference plane is suppressed.
20. 波面収差の計測光の波長を λとしたとき、 前記残存する波面収差からチ ルト成分およびパワー成分を補正した後の全成分の RMS値が 0. 012 λ以下 に抑えられ、 前記全成分の回転対称成分の RMS値が 0. 007 λ以下に抑えら れ、 前記回転対称成分から 2次 4次曲線成分を除去した回転対称成分 2次 4次残 差の RMS値が 0. 005 λ以下に抑えられ、 前記全成分からァス成分を補正し た後の非回転対称成分の RMS値が 0. 005 λ以下に抑えられていることを特 徴とする請求の範囲 19に記載の対物レンズ系。 20. When the wavelength of the wavefront aberration measuring light is λ, the RMS values of all components after correcting the tilt component and the power component from the remaining wavefront aberration are suppressed to 0.012λ or less, and the total components are The RMS value of the rotationally symmetric component is suppressed to 0.007 λ or less, and the RMS value of the rotationally symmetric component obtained by removing the quadratic and quartic curve components from the rotationally symmetric component is 0.005 λ or less. 20.The objective lens according to claim 19, wherein the RMS value of the non-rotationally symmetric component after correcting the negative component from all the components is suppressed to 0.005 λ or less. system.
21. 波面収差の計測光の波長を λとしたとき、 前記残存する波面収差からチ ルト成分およびパワー成分を補正した後の全成分の RMS値が 0. 012 λ以下 に抑えられ、 前記全成分の縦収差成分の RMS値が 0. 008 λ以下に抑えられ、 前記全成分の縦収差高次成分の RMS値が 0. 006 λ以下に抑えられ、 前記全 成分の横収差成分の RMS値が 0. 005 λ以下に抑えられ、 前記全成分の横収 差高次成分の RMS値が 0. 004 λ以下に抑えられていることを特徴とする請 求の範囲 19に記載の対物レンズ系。 21. Assuming that the wavelength of the wavefront aberration measuring light is λ, the RMS values of all components after correcting the tilt component and the power component from the remaining wavefront aberration are suppressed to 0.012λ or less, and The RMS value of the longitudinal aberration component is suppressed to 0.008 λ or less, the RMS value of the longitudinal higher order component of all the components is suppressed to 0.006 λ or less, and the RMS value of the transverse aberration component of all the components is 20. The objective lens system according to claim 19, wherein the objective lens system is controlled to 0.005 λ or less, and the RMS value of the high-order lateral difference component of all components is suppressed to 0.004 λ or less.
22. 波面収差の計測光の波長を λとしたとき、 前記残存する波面収差からチ ルト成分およびパワー成分を補正した後の全成分の RMS値が 0. 012 λ以下 に抑えられ、 前記全成分からァス成分を補正した後の成分の RMS値が 0. 01 0 λ以下に抑えられ、 前記全成分からァス成分および低次球面収差成分を補正し た後の成分の RMS値が 0. 008 λ以下に抑えられ、 前記全成分の高次収差成 分の RMS値が 0. 007 λ以下に抑えられていることを特徴とする請求の範囲 19に記載の対物レンズ系。 22. When the wavelength of the wavefront aberration measurement light is λ, the RMS values of all components after correcting the tilt component and the power component from the remaining wavefront aberration are suppressed to 0.012 λ or less, and the total components are The RMS value of the component after the correction of the ass component is suppressed to 0.010 λ or less, and the RMS value of the component after the correction of the aus component and the low-order spherical aberration component from all the components is 0.1. 20. The objective lens system according to claim 19, wherein the RMS value of the high-order aberration component of all the components is suppressed to 0.007 λ or less.
23. 前記波面収差をツェルニケの多項式で表すときの第 9項の展開係数 C 9 が 0. 009 λ以下に抑えられ、 第 10項〜第 36項の展開係数 C 10〜C 36 が 0. 008 λ以下にそれぞれ抑えられていることを特徴とする請求の範囲 20 乃至 22のいずれか 1項に記載の対物レンズ系。 23. When the wavefront aberration is represented by a Zernike polynomial, the expansion coefficient C 9 of the ninth term is suppressed to 0.009λ or less, and the expansion coefficient C 10 to C 36 of the tenth to 36th terms is 0.008. The objective lens system according to any one of claims 20 to 22, wherein each of the objective lens systems is suppressed to λ or less.
24. 請求の範囲 1乃至 4のいずれか 1項に記載の対物レンズ系または請求の 範囲 19乃至 23のいずれか 1項に記載の対物レンズ系を含む結像光学系を備え、 該結像光学系を介して形成された物体像を観察することを特徴とする観察装置。 24. An imaging optical system comprising the objective lens system according to any one of claims 1 to 4 or the imaging optical system including the objective lens system according to any one of claims 19 to 23. An observation apparatus for observing an object image formed through a system.
25. 対物レンズ系を含む結像光学系を備え、 該結像光学系を介して形成され た物体像を観察する観察装置において、 光学調整の後に前記結像光学系に残存する波面収差を抑えるために、 前記結像 光学系中の前記対物レンズ系以外の各光学部材の屈折率分布による波面収差が抑 えられ、 且つ前記各光学部材の各面の基準面に対する波面収差が抑えられている ことを特徴とする観察装置。 25. An observation apparatus which includes an imaging optical system including an objective lens system and observes an object image formed through the imaging optical system, In order to suppress the wavefront aberration remaining in the imaging optical system after the optical adjustment, the wavefront aberration due to the refractive index distribution of each optical member other than the objective lens system in the imaging optical system is suppressed, and An observation apparatus, wherein wavefront aberration of each surface of the optical member with respect to a reference surface is suppressed.
2 6 . 対物レンズ系を含む結像光学系を備え、 該結像光学系を介して形成され た物体像を観察する観察装置において、 26. An observation apparatus which includes an imaging optical system including an objective lens system and observes an object image formed through the imaging optical system.
前記結像光学系は、 前記対物レンズ系と前記物体像との間の光路中に配置され る光学部材を備え、  The imaging optical system includes an optical member disposed in an optical path between the objective lens system and the object image,
光学調整の後に前記結像光学系に残存する波面収差を抑えるために、 前記対物 レンズ系と前記物体像との間の光路中に配置される全ての光学部材中の各光学部 材の屈折率分布による波面収差が抑えられ、 且つ前記各光学部材の各面の基準面 に対する波面収差が抑えられていることを特徴とする観察装置。  In order to suppress the wavefront aberration remaining in the imaging optical system after the optical adjustment, the refractive index of each optical member among all the optical members arranged in the optical path between the objective lens system and the object image An observation apparatus wherein wavefront aberration due to distribution is suppressed, and wavefront aberration of each surface of each optical member with respect to a reference surface is suppressed.
2 7 . 波面収差の計測光の波長を λとしたとき、 前記残存する波面収差からチ ルト成分およびパワー成分を補正した後の縦収差成分の RM S値が 0 . 0 1 2 λ 以下に抑えられ、 前記残存する波面収差からチルト成分およびパヮ一成分を補正 した後の横収差成分の R M S値が 0 . 0 0 6 λ以下に抑えられていることを特徵 とする請求の範囲 2 5または 2 6に記載の観察装置。 27. Assuming that the wavelength of the wavefront aberration measurement light is λ, the RMS value of the longitudinal aberration component after correcting the tilt component and the power component from the remaining wavefront aberration is suppressed to 0.012λ or less. The RMS value of the transverse aberration component after correcting the tilt component and the power component from the remaining wavefront aberration is suppressed to 0.006λ or less. 7. The observation device according to 6.
2 8 . 前記各光学部材の屈折率分布による波面収差の Ρ— V値が 0 . 0 0 5 λ 以下に抑えられていることを特徴とする請求の範囲 2 5乃至 2 7のいずれか 1項 に記載の観察装置。 28. The method according to any one of claims 25 to 27, wherein the 波 -V value of the wavefront aberration due to the refractive index distribution of each optical member is suppressed to 0.005λ or less. 2. The observation device according to 1.
2 9 . 前記各光学部材の各面の基準面に対する波面収差からチルト成分および パワー成分を補正した後の全成分の R M S値が 0 . 0 1 0 λ以下に抑えられ、 前 記全成分の回転対称成分の RM S値が 0 . 0 0 5 λ以下に抑えられ、 前記回転対 称成分から 2次 4次曲線成分を除去した回転対称成分 2次 4次残差の RM S値が 29. The RMS value of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface is suppressed to 0.010λ or less, and the rotation of all the components described above is performed. The RMS value of the symmetric component is suppressed to 0.005λ or less, and the RMS value of the rotational symmetric component obtained by removing the quadratic-quadratic curve component from the rotational symmetric component is the RMS value of the quadratic residual.
0. 003 λ以下に抑えられ、 前記全成分からァス成分を補正した後の非回転対 称成分の RMS値が 0. 005 λ以下に抑えられていることを特徴とする請求の 範囲 25乃至 27のいずれか 1項に記載の観察装置。 Wherein the RMS value of the non-rotational symmetric component after correcting the negative component from all the components is suppressed to 0.005 λ or less. 28. The observation device according to any one of 27.
30. 前記各光学部材の各面の基準面に対する波面収差からチルト成分および パワー成分を補正した後の全成分の RMS値が 0. 010 λ以下に抑えられ、 前 記全成分の縦収差成分の RMS値が 0. 007 λ以下に抑えられ、 前記全成分の 縦収差高次成分の RMS値が 0. 005 λ以下に抑えられ、 前記全成分の横収差 成分の RMS値が 0. 005 λ以下に抑えられ、 前記全成分の横収差高次成分の 尺 3値が0. 003え以下に抑えられていることを特徴とする請求の範囲 25 乃至 27のいずれか 1項に記載の観察装置。 30. The RMS value of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface is suppressed to 0.010 λ or less, and the longitudinal aberration components of all the components The RMS value is suppressed to 0.0007 λ or less, the RMS value of the longitudinal aberration higher-order component of all components is suppressed to 0.005 λ or less, and the RMS value of the transverse aberration component of all components is 0.005 λ or less. 28. The observation apparatus according to claim 25, wherein the third order value of the high order transverse aberration component of all the components is suppressed to 0.003 or less.
31. 前記各光学部材の各面の基準面に対する波面収差からチルト成分および パワー成分を補正した後の全成分の RMS値が 0. 010 λ以下に抑えられ、 前 記全成分からァス成分を補正した後の成分の RMS値が 0. 008 λ以下に抑え られ、 前記全成分からァス成分および低次球面収差成分を補正した後の成分の R MS値が 0. 005 λ以下に抑えられ、 前記全成分の高次収差成分の RMS値が 0. 003 λ以下に抑えられていることを特徴とする請求の範囲 25乃至 27の いずれか 1項に記載の観察装置。 31. The RMS value of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface is suppressed to 0.010 λ or less. The RMS value of the component after the correction is suppressed to 0.008 λ or less, and the RMS value of the component after the ass component and the low-order spherical aberration component are corrected from all the components is suppressed to 0.005 λ or less. The observation apparatus according to any one of claims 25 to 27, wherein RMS values of high-order aberration components of all the components are suppressed to 0.003λ or less.
32. 前記各光学部材の各面の基準面に対する波面収差からチルト成分および パワー成分を補正した後の全成分の RMS値が 0. 010 λ以下に抑えられ、 前 記波面収差をツェルエケの多項式で表すときの第 9項の展開係数 C 9が 0. 00 9 λ以下に抑えられ、 第 10項〜第 36項の展開係数 C 10〜C 36が 0. 00 5 λ以下にそれぞれ抑えられていることを特徴とする請求の範囲 25乃至 27の いずれか 1項に記載の観察装置。 32. The RMS value of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface is suppressed to 0.010 λ or less, and the wavefront aberration is expressed by Zelke polynomial. When expressed, the expansion coefficient C 9 of the ninth term is suppressed to 0.0009λ or less, and the expansion coefficients C 10 to C 36 of the 10th to 36th terms are suppressed to 0.005λ or less, respectively. The observation device according to any one of claims 25 to 27, characterized in that:
33. 対物レンズ系を含む結像光学系を介して形成された物体像を観察する観 察装置の製造方法において、 33. Observation of the object image formed through the imaging optical system including the objective lens system In the manufacturing method of the observation device,
前記対物レンズ系を請求の範囲 5乃至 1 8のいずれか 1項に記載の製造方法を 用いて製造することを特徴とする観察装置の製造方法。  A method for manufacturing an observation device, wherein the objective lens system is manufactured using the manufacturing method according to any one of claims 5 to 18.
3 4 . 前記結像光学系中の前記対物レンズ系以外の各光学部材の屈折率分布に よる波面収差を抑えるとともに、 前記各光学部材の各面の基準面に対する波面収 差を抑えて、 前記各光学部材をそれぞれ製造することを特徴とする請求の範囲 3 3に記載の観察装置の製造方法。 34. While suppressing the wavefront aberration due to the refractive index distribution of each optical member other than the objective lens system in the imaging optical system, and suppressing the wavefront difference of each surface of each optical member with respect to a reference surface, 34. The method for manufacturing an observation device according to claim 33, wherein each optical member is manufactured.
3 5 . 請求の範囲 2 4乃至 3 2のいずれか 1項に記載の観察装置と、 マスクの パターンを感光性基板上へ投影露光するための投影光学系とを備えていることを 特徴とする露光装置。 35. An observation apparatus according to any one of claims 24 to 32, and a projection optical system for projecting and exposing a pattern of a mask onto a photosensitive substrate. Exposure equipment.
3 6 . 前記観察装置は、 前記投影光学系に対して前記マスクと前記感光性基板 とを位置合わせするために、 前記マスク上に設けられたマークまたは前記感光性 基板上に設けられたマークを観察することを特徴とする請求の範囲 3 5に記載の 36. The observing device may include a mark provided on the mask or a mark provided on the photosensitive substrate in order to align the mask and the photosensitive substrate with respect to the projection optical system. The method according to claim 35, wherein the observation is performed.
3 7 . 請求の範囲 3 5または 3 6に記載の露光装置を用いて前記マスクのバタ 一ンを前記感光性基板へ露光する露光工程と、 37. An exposure step of exposing the mask substrate to the photosensitive substrate using the exposure apparatus according to claim 35 or 36,
前記露光された基板を現像する現像工程とを含むことを特徴とするマイクロデ パイスの製造方法。  A developing step of developing the exposed substrate.
3 8 . 前記観察装置を請求の範囲 3 3または 3 4に記載の製造方法を用いて製 造することを特徴とする請求の範囲 3 7に記載のマイクロデバイスの製造方法。 38. The method for manufacturing a micro device according to claim 37, wherein the observation device is manufactured using the manufacturing method according to claim 33 or 34.
3 9 . 対物レンズ系を含む結像光学系を介して形成された物体像を観察する観 察装置の製造方法において、 前記対物レンズ系の光学調整により発生する波面収差高次成分および波長毎の 偏心コマ収差の差の少なくとも一方を抑えて前記対物レンズ系を設計する設計ェ 程と、 39. In a method for manufacturing an observation device for observing an object image formed through an imaging optical system including an objective lens system, A design step of designing the objective lens system by suppressing at least one of a higher order component of wavefront aberration generated by optical adjustment of the objective lens system and a difference of decentering coma aberration for each wavelength;
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする観察装置の製造方法。  An adjustment step of optically adjusting the objective lens system in order to correct aberrations remaining in the assembled objective lens system.
40. 前記設計工程では、 前記対物レンズ系の物体側の開口数を NAとし、 使 用光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズの中心 厚および各レンズの空気間隔をそれぞれ d (mm) だけ変化させたときに発生す る波面収差のうち高次球面収差成分の RMS (root mean square:自乗平均平方 根) 値を (30 · d · NA6) · λ 1以下に設定することを特徴とする請求の範 囲 39に記載の観察装置の製造方法。 40. In the design process, when the numerical aperture on the object side of the objective lens system is NA and the center wavelength of the light used is λ1, the center thickness of each lens constituting the objective lens system and the The RMS (root mean square) value of the higher-order spherical aberration component of the wavefront aberration generated when the air spacing is changed by d (mm) is (30 · d · NA 6 ) · λ 40. The method for manufacturing an observation device according to claim 39, wherein the method is set to 1 or less.
41. 前記設計工程では、 前記対物レンズ系の物体側の開口数を ΝΑとし、 使 用光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズを光軸 と直交する方向に沿って s (mm) だけ偏心させたときに発生する波面収差のう ち高次コマ収差成分の RMS値を (50 · s · NA5) · λ 1以下に設定するこ とを特徴とする請求の範囲 39または 40に記載の観察装置の製造方法。 41. In the design process, when the numerical aperture on the object side of the objective lens system is ΝΑ, and the center wavelength of the light used is λ1, each lens constituting the objective lens system is oriented in a direction orthogonal to the optical axis. The RMS value of the high-order coma aberration component among the wavefront aberrations generated when decentering by s (mm) along is set to (50 · s · NA 5 ) · λ1 or less. 41. The method for manufacturing an observation device according to claim 39 or 40.
42. 前記設計工程では、 前記対物レンズ系の物体側の開口数を ΝΑとし、 使 用光の中心波長を λ 1としたとき、 前記対物レンズ系を構成する各レンズを光軸 と直交する方向に沿って s (mm) だけ偏心させたときに発生する波面収差のう ち使用光の最短波長の偏心コマ収差成分の; MS値と使用光の最長波長の偏心コ マ収差成分の RMS値との差の絶対値を (50 · s · NA3) · λ 1以下に設定 することを特徴とする請求の範囲 39乃至 41のいずれか 1項に記載の観察装置 の製造方法。 42. In the design process, when the numerical aperture on the object side of the objective lens system is ΝΑ, and the center wavelength of the light used is λ1, each lens constituting the objective lens system is oriented in a direction orthogonal to the optical axis. Of the shortest wavelength decentered coma aberration component of the used light among the wavefront aberrations generated when the beam is decentered by s (mm) along the axis; the MS value and the RMS value of the longest wavelength decentered coma component of the used light 42. The method for manufacturing an observation device according to claim 39, wherein the absolute value of the difference is set to (50 · s · NA 3 ) · λ1 or less.
43. 対物レンズ系を含む結像光学系を介して形成された物体像を観察する観 察装置の製造方法において、 43. Observation of the object image formed through the imaging optical system including the objective lens system In the manufacturing method of the observation device,
前記対物レンズ系に残存する波面収差高次成分を抑えるために、 前記対物レン ズ系を構成する各光学部材の屈折率分布による波面収差を抑えるとともに、 前記 各光学部材の各面の基準面に対する波面収差を抑えて、 前記各光学部材をそれぞ れ製造する製造工程と、  In order to suppress high-order wavefront aberration components remaining in the objective lens system, while suppressing the wavefront aberration due to the refractive index distribution of each optical member constituting the objective lens system, each surface of each optical member with respect to a reference surface A manufacturing process for manufacturing each of the optical members while suppressing wavefront aberration,
組み立てられた前記対物レンズ系に残存する収差を補正するために前記対物レ ンズ系を光学調整する調整工程とを含むことを特徴とする観察装置の製造方法。  An adjustment step of optically adjusting the objective lens system in order to correct aberrations remaining in the assembled objective lens system.
44. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の屈折率分布による波面収差の Ρ— V値を 0. 005 λ以下に抑えること を特徴とする請求の範囲 43に記載の観察装置の製造方法。 44. In the above manufacturing process, when the wavelength of the wavefront aberration measuring light is λ, the Ρ-V value of the wavefront aberration due to the refractive index distribution of each optical member is suppressed to 0.005λ or less. A method for manufacturing an observation device according to claim 43.
45. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記全成分の回転対称成 分の RMS値を 0. 005 λ以下に抑え、 前記回転対称成分から 2次 4次曲線成 分を除去した回転対称成分 2次 4次残差の RMS値を 0. 003 λ以下に抑え、 前記全成分からァス成分を補正した後の非回転対称成分の RMS値を 0. 005 λ以下に抑えることを特徴とする請求の範囲 43または 44に記載の観察装置の 製造方法。 45. In the above manufacturing process, when the wavelength of the wavefront aberration measuring light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each of the optical members with respect to the reference surface. Is suppressed to 0.0010 λ or less, the RMS value of the rotationally symmetric component of all the components is suppressed to 0.005 λ or less, and the rotationally symmetric component obtained by removing the quadratic quartic curve component from the rotationally symmetric component The RMS value of the next residual is suppressed to 0.003 λ or less, and the RMS value of the non-rotationally symmetric component after correcting the negative component from all the components is suppressed to 0.005 λ or less. 44. The method for manufacturing the observation device according to 43 or 44.
46. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記全成分の縦収差成分 の RMS値を 0. 007 λ以下に抑え、 前記全成分の縦収差高次成分の RMS値 を 0. 005 λ以下に抑え、 前記全成分の横収差成分の RMS値を 0. 005 λ 以下に抑え、 前記全成分の横収差高次成分の RMS値を 0. 003 λ以下に抑え ることを特徴とする請求の範囲 43または 44に記載の観察装置の製造方法。 46. In the manufacturing process, when the wavelength of the wavefront aberration measurement light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each of the optical members with respect to the reference surface. Is suppressed to 0.0010 λ or less, the RMS value of the longitudinal aberration component of all the components is suppressed to 0.007 λ or less, and the RMS value of the longitudinal aberration higher-order component of all the components is suppressed to 0.005 λ or less. The RMS value of the transverse aberration component of all components is suppressed to 0.005 λ or less, and the RMS value of the high order transverse aberration component of all components is suppressed to 0.003 λ or less. 3. The method for manufacturing an observation device according to claim 1.
47. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記全成分からァス成分 を補正した後の成分の RMS値を 0. 008 λ以下に抑え、 前記全成分からァス 成分および低次球面収差成分を補正した後の成分の RMS値を 0. 005 λ以下 に抑え、 前記全成分の高次収差成分の RMS値を 0. 003 λ以下に抑えること を特徴とする請求の範囲 43または 44に記載の観察装置の製造方法。 47. In the above manufacturing process, when the wavelength of the wavefront aberration measurement light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each of the optical members with respect to the reference surface. Was suppressed to 0.010 λ or less, and the RMS value of the component after correcting the vas component from all the components was suppressed to 0.008 λ or less, and the vas component and low-order spherical aberration component were corrected from the all components. The observation device according to claim 43 or 44, wherein the RMS value of the subsequent component is suppressed to 0.005 λ or less, and the RMS value of the high-order aberration component of all the components is suppressed to 0.003 λ or less. Manufacturing method.
48. 前記製造工程では、 波面収差の計測光の波長を λとしたとき、 前記各光 学部材の各面の基準面に対する波面収差からチルト成分およびパワー成分を補正 した後の全成分の RMS値を 0. 010 λ以下に抑え、 前記波面収差をツェル二 ケの多項式で表すときの第 9項の展開係数 C 9を 0. 009 λ以下に抑え、 第 1 0項〜第 36項の展開係数 C 10〜C 36を 0. 005 λ以下にそれぞれ抑える ことを特徴とする請求の範囲 43または 44に記載の観察装置の製造方法。 48. In the manufacturing process, when the wavelength of the wavefront aberration measurement light is λ, the RMS values of all components after correcting the tilt component and the power component from the wavefront aberration of each surface of each optical member with respect to the reference surface When the wavefront aberration is represented by a Zernike polynomial, the expansion coefficient C 9 in the ninth term is suppressed to 0.009 λ or less, and the expansion coefficient in the 10 th to 36 th terms 45. The method for manufacturing an observation device according to claim 43, wherein C10 to C36 are respectively suppressed to 0.005λ or less.
49. 請求の範囲 39乃至 48のいずれか 1項に記載の製造方法を用いて製造 された観察装置と、 マスクのパターンを感光性基板上へ投影露光するための投影 光学系とを備えていることを特徴とする露光装置。 49. An observation apparatus manufactured by using the manufacturing method according to any one of claims 39 to 48, and a projection optical system for projecting and exposing a mask pattern onto a photosensitive substrate. An exposure apparatus comprising:
50. 請求の範囲 49に記載の露光装置を用いて前記マスクのパターンを前記 感光性基板へ露光する露光工程と、 50. An exposure step of exposing the pattern of the mask to the photosensitive substrate using the exposure apparatus according to claim 49,
前記露光された基板を現像する現像工程とを含むことを特徴とするマイクロデ バイスの製造方法。  And a developing step of developing the exposed substrate.
PCT/JP2001/007715 2000-09-07 2001-09-05 Object lens system, observing device equipped with the object lens system, and exposure system equipped with the observing device WO2002021187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002524747A JPWO2002021187A1 (en) 2000-09-07 2001-09-05 Objective lens system, observation apparatus provided with the objective lens system, and exposure apparatus provided with the observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-271084 2000-09-07
JP2000271084 2000-09-07

Publications (1)

Publication Number Publication Date
WO2002021187A1 true WO2002021187A1 (en) 2002-03-14

Family

ID=18757418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007715 WO2002021187A1 (en) 2000-09-07 2001-09-05 Object lens system, observing device equipped with the object lens system, and exposure system equipped with the observing device

Country Status (2)

Country Link
JP (1) JPWO2002021187A1 (en)
WO (1) WO2002021187A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101310A (en) * 2005-10-03 2007-04-19 Nikon Corp Position detector
JP2012243863A (en) * 2011-05-17 2012-12-10 Canon Inc Imprint apparatus, imprint method and manufacturing method of device
JP2015062233A (en) * 2014-10-23 2015-04-02 キヤノン株式会社 Imprint apparatus, imprint method, and method for manufacturing device
JP2016015506A (en) * 2015-08-27 2016-01-28 キヤノン株式会社 Imprint apparatus and device manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292611A (en) * 1985-06-20 1986-12-23 Asahi Optical Co Ltd Variable power lens for copying
JPS62280814A (en) * 1986-05-30 1987-12-05 Canon Inc Zoom lens
US4832465A (en) * 1985-08-14 1989-05-23 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens for use in copying
US4989957A (en) * 1988-06-06 1991-02-05 Olympus Optical Co., Ltd. Objective lens for microscopes
US5701196A (en) * 1993-11-05 1997-12-23 Olympus Optical Co., Ltd Stereomicroscope
JP2000105339A (en) * 1998-09-29 2000-04-11 Olympus Optical Co Ltd Objective optical system for stereomicroscope
JP2000105340A (en) * 1998-07-29 2000-04-11 Nikon Corp Objective lens for microscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292611A (en) * 1985-06-20 1986-12-23 Asahi Optical Co Ltd Variable power lens for copying
US4832465A (en) * 1985-08-14 1989-05-23 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens for use in copying
JPS62280814A (en) * 1986-05-30 1987-12-05 Canon Inc Zoom lens
US4989957A (en) * 1988-06-06 1991-02-05 Olympus Optical Co., Ltd. Objective lens for microscopes
US5701196A (en) * 1993-11-05 1997-12-23 Olympus Optical Co., Ltd Stereomicroscope
JP2000105340A (en) * 1998-07-29 2000-04-11 Nikon Corp Objective lens for microscope
JP2000105339A (en) * 1998-09-29 2000-04-11 Olympus Optical Co Ltd Objective optical system for stereomicroscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101310A (en) * 2005-10-03 2007-04-19 Nikon Corp Position detector
JP2012243863A (en) * 2011-05-17 2012-12-10 Canon Inc Imprint apparatus, imprint method and manufacturing method of device
JP2015062233A (en) * 2014-10-23 2015-04-02 キヤノン株式会社 Imprint apparatus, imprint method, and method for manufacturing device
JP2016015506A (en) * 2015-08-27 2016-01-28 キヤノン株式会社 Imprint apparatus and device manufacturing method

Also Published As

Publication number Publication date
JPWO2002021187A1 (en) 2004-01-15

Similar Documents

Publication Publication Date Title
KR101407204B1 (en) Projection objective
US6512641B2 (en) Projection exposure apparatus and method
US9588431B2 (en) Illumination optics and projection exposure apparatus
US7301707B2 (en) Projection optical system and method
JP4192279B2 (en) Projection optical system manufacturing method, projection optical system manufactured by the manufacturing method, projection exposure apparatus and method, and semiconductor device manufacturing method
KR20020089204A (en) Catadioptric reduction lens
WO2002047130A1 (en) Observation device and its manufacturing method, exposure device, and method for manufacturing micro device
KR101432822B1 (en) Imaging systems in particular for a microlithographic projection illumination unit
US7957069B2 (en) Projection optical system
JP4811623B2 (en) Projection optical system and exposure apparatus provided with the projection optical system
JP2007513372A (en) Projection optical system
WO2002021187A1 (en) Object lens system, observing device equipped with the object lens system, and exposure system equipped with the observing device
US20100020390A1 (en) Catadioptric projection objective with pupil correction
US20090316256A1 (en) Chromatically corrected objective and projection exposure apparatus including the same
CN102707414B (en) Photoetching projection objective
JPH10142501A (en) Projecting aligner and production of semiconductor device by using the projection aligner
KR20010112107A (en) Projection optical system and exposure apparatus having its projection optical system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 524747

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase