WO2002020691A2 - Utilisation de desemulsionneurs hydrosolubles permettant de separer des huiles d'hydrocarbures et des argiles - Google Patents
Utilisation de desemulsionneurs hydrosolubles permettant de separer des huiles d'hydrocarbures et des argiles Download PDFInfo
- Publication number
- WO2002020691A2 WO2002020691A2 PCT/US2001/027408 US0127408W WO0220691A2 WO 2002020691 A2 WO2002020691 A2 WO 2002020691A2 US 0127408 W US0127408 W US 0127408W WO 0220691 A2 WO0220691 A2 WO 0220691A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clay
- hydrocarbon oil
- dispersion
- group
- water
- Prior art date
Links
- 239000003921 oil Substances 0.000 title claims abstract description 82
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 229930195733 hydrocarbon Natural products 0.000 title claims description 83
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 83
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 82
- 239000004094 surface-active agent Substances 0.000 claims abstract description 90
- 239000004927 clay Substances 0.000 claims abstract description 63
- 238000000034 method Methods 0.000 claims abstract description 60
- 238000000926 separation method Methods 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims description 48
- 239000006185 dispersion Substances 0.000 claims description 43
- 125000004432 carbon atom Chemical group C* 0.000 claims description 33
- 239000001257 hydrogen Substances 0.000 claims description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- -1 alkenyl succinate Chemical compound 0.000 claims description 24
- 125000000217 alkyl group Chemical group 0.000 claims description 24
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 15
- 239000002283 diesel fuel Substances 0.000 claims description 15
- 150000002148 esters Chemical class 0.000 claims description 15
- 150000003839 salts Chemical group 0.000 claims description 15
- 229940014800 succinic anhydride Drugs 0.000 claims description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 239000003085 diluting agent Substances 0.000 claims description 10
- 125000003342 alkenyl group Chemical group 0.000 claims description 9
- 239000003209 petroleum derivative Substances 0.000 claims description 8
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical group CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 6
- 239000003995 emulsifying agent Substances 0.000 claims description 6
- 150000002431 hydrogen Chemical group 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 229910001424 calcium ion Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 2
- 239000011575 calcium Substances 0.000 claims 2
- 239000011591 potassium Substances 0.000 claims 2
- 229910052700 potassium Inorganic materials 0.000 claims 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims 1
- 229910017053 inorganic salt Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 229910001425 magnesium ion Inorganic materials 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims 1
- 238000005553 drilling Methods 0.000 abstract description 38
- 239000012530 fluid Substances 0.000 abstract description 19
- 238000005119 centrifugation Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 150000008064 anhydrides Chemical class 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 150000001412 amines Chemical group 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 8
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 7
- 239000000693 micelle Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- 235000011044 succinic acid Nutrition 0.000 description 7
- RSPWVGZWUBNLQU-FOCLMDBBSA-N 3-[(e)-hexadec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCCCCCC\C=C\C1CC(=O)OC1=O RSPWVGZWUBNLQU-FOCLMDBBSA-N 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 239000011236 particulate material Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 239000001384 succinic acid Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 230000029936 alkylation Effects 0.000 description 3
- 238000005804 alkylation reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 244000144992 flock Species 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 150000003444 succinic acids Chemical class 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- WVRNUXJQQFPNMN-VAWYXSNFSA-N 3-[(e)-dodec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCC\C=C\C1CC(=O)OC1=O WVRNUXJQQFPNMN-VAWYXSNFSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229920002367 Polyisobutene Polymers 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical class NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229960002887 deanol Drugs 0.000 description 2
- 239000012972 dimethylethanolamine Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- QWYZFXLSWMXLDM-UHFFFAOYSA-M pinacyanol iodide Chemical compound [I-].C1=CC2=CC=CC=C2N(CC)C1=CC=CC1=CC=C(C=CC=C2)C2=[N+]1CC QWYZFXLSWMXLDM-UHFFFAOYSA-M 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000005466 alkylenyl group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 150000003949 imides Chemical group 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007056 transamidation reaction Methods 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B21/00—Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
- E21B21/06—Arrangements for treating drilling fluids outside the borehole
- E21B21/068—Arrangements for treating drilling fluids outside the borehole using chemical treatment
Definitions
- FIELD OF INVENTION Dispersions of particulate matter in hydrocarbon oils are used in a variety of applications (such as oil well drilling fluids) where a high viscosity lubricious composition is desired. At some point in the life of a drilling mud it has to be disposed of or recycled due to contamination or the completion of drilling in a particular location. The presence of emulsified water, inorganic particulate, hydrocarbons, etc. in a single high viscosity mixture makes reclamation of components difficult or disposal environmentally risky. Two methods of separating the solids from the hydrocarbon oil phase are set forth.
- Drilling fluids are available in a variety of forms including water based muds, oil based muds, and muds using a combination of oil and water.
- the muds become contaminated with debris removed by the drilling bits and with liquids (water, brines, etc.) that enter the hole from above or from liquids that leach into the hole from deposits in the ground.
- the mud composition can change due to liquid contaminants.
- Many of the solid contaminants can be removed by screening or other mechanical separations based on density or particle size. Mechanical separation of oversized solid material (drilling debris) typically takes with it a liquid layer of the drilling mud which generally is removed before the solid material is discarded.
- a simple mechanical separation of such clay from the oil generally cannot remove all of the trapped oil between the layers of the clay.
- Simple dilution of a spent drilling mud with water or oil generally generates more waste material with only a slight decrease in viscosity.
- Emulsified water or brine that may be present in the drilling mud further complicates the separation process and may build viscosity.
- HLB hydrophile-lipophile balance
- the high HLB surfactant can be characterized by its chemical structure and the fact that it has high solubility in water (e.g. at least soluble to 5 g/100 g of water). The separation of these three layers from an oil based drilling mud can be expedited or facilitated by mixing and centrifugation of the mixture.
- While a high HLB surfactant of the disclosed structure will consistently break dispersions of clay in hydrocarbon oil with the use of a centrifuge, it is desirable in another embodiment to break the dispersion and separate a majority of the clay or other fine particle inorganic matter from the hydrocarbon without the initial used of a centrifuge to expedite the separation.
- a process using a blend of the high HLB surfactant and a surface active compound comprising the ester/salt reaction product of an alkenyl substituted succinic anhydride or similarly substituted succinic acid with a dialkylalkanolamine has been found to effectively break the dispersion of clay in hydrocarbon oil into three layers (top oil layer, middle water layer, and bottom clay layer) without the need for a centrifuge for the initial crude separation.
- significant amounts of the recovered water phase can be recycled and used to break addition samples of clay dispersed in hydrocarbon oil, optionally with some addition high HLB surfactant and, in the second embodiment, the surface active agent to replace lost surfactant and lost surface active agent.
- both the recovered water and oil phase can be recycled and used to break additional dispersions of clay in hydrocarbon oil. Recycling saves not only the water and oil phases but also saves significant amount of the high HLB surfactant and surface active agent.
- the two liquid layers and any flock layers therein or there between can be centrifuged (or other mechanical forces applied) to further purify the hydrocarbon oil layer, water layer or clay (inorganic) layer.
- the present invention provides a method for destabilizing an oil based dispersion of inorganic material in hydrocarbon oil, comprising:
- each R is independently a hydrocarbyl group containing at least 8 carbon atoms, n is at least 1, W is a group containing at least 6 carbon atoms and at least one ether linkage for every 6 carbon atoms thereof, and each X is selected from the group consisting of
- each Y is independently -O- or -NR'-
- each Z is independently OM or NR' 2
- each R' is independently hydrogen or a C ⁇ to C 18 alkyl group
- the present invention further provides surfactants suitable for such use, including a composition represented by the structure
- R is independently a hydrocarbyl group containing at least 8 carbon atoms
- W is a group containing at least 6 carbon atoms and at least one ether linkage for every 6 carbon atoms thereof, having no unreacted amino groups and where X is selected from the group consisting of
- Y is -O- or -NR'-
- the second embodiment also provides for inclusion of a surface active agent comprising the half ester of the reaction of an alkenyl substituted succinic anhydride or similarly substituted succinic acid reacted with a dialkylalkanolamine in the process for breaking the emulsion.
- a surface active agent comprising the half ester of the reaction of an alkenyl substituted succinic anhydride or similarly substituted succinic acid reacted with a dialkylalkanolamine in the process for breaking the emulsion.
- a hydrocarbon solvent which can be the same as the hydrocarbon oil, helps separate the hydrocarbon oil from the clay and break the dispersion.
- the process of the second embodiment is preferably set up as a continuous process where the water rich phases and hydrocarbon oil and/or solvent phases are reused at least several times in breaking additional dispersions of clay in hydrocarbon solvent.
- the water and hydrocarbon oil recovered are reused significant amounts of the high HLB surfactant and the surface active agent would be carried back into the process minimizing the additional amounts needed in subsequent batches.
- the byproducts of the process would be recovered hydrocarbon oil and a solid clay component with significantly reduced hydrocarbon oil content.
- hydrocarbon oil is used in its common meaning that the component is a liquid at room temperature and is primarily composed of hydrogen and carbon atoms. It may include unsaturation and single or multiple aromatic rings. It may include some small percentage of atoms other than carbon and hydrogen e.g. less than 5 wt.%, more desirably less than 2 wt.% and preferably less than 1 wt.% of atoms other than carbon and hydrogen. While commercially important hydrocarbon fluids are often obtained as petroleum distillates, the hydrocarbon oil of this invention may be other than a petroleum distillate.
- the hydrocarbon oil of this invention may be a hydrogenated petroleum distillate, hydrocracked petroleum distillate, or even an alpha olefin polymer. It may be a paraffinic oil such as described in U.S. 6,096,690. Alternatively it may be a diesel fuel.
- the aromatic component of diesel fuel has a toxic effect on some marine life and preferred diesel fuels have an aromatic content of less than 3, more desirably less than 2 and preferably less than 1 wt.% aromatic.
- the hydrocarbon oil has a viscosity of less than 5 centapoise at 25 °C and more preferably less than 1.5 centapoise. Desirably the hydrocarbon oil has a minimum flash point above 60°C.
- hydrocarbon solvent used to facilitate separation in the second embodiment can be a hydrocarbon oil as described above or another hydrocarbon chemical.
- a hydrocarbon solvent with a lower flash point than the hydrocarbon oil used in the dispersion can be tolerated in the process.
- the surfactant can be represented by the structure (R-X-) n -W.
- the expression "represented by the structure” is meant to include obvious variants and equivalent of a given structure, including isomers, tautomers, and the like.
- each R is independently a hydrocarbyl group containing at least 8 carbon atoms, and preferably up to 40 carbon atoms.
- Preferably each R is an alkyl or alkenyl group of 12 to 32, or more preferably 16 to 18 carbon atoms.
- the R groups are intended to provide a measure of hydrophobic character to the surfactant molecule.
- each X is a carbonyl-containing linking group, represented by one or more of the structures
- each Y is independently -O- or -NR'-
- each Z is independently OM or NR 2
- each R' is independently hydrogen or a Ci to C 18 alkyl group
- M is hydrogen, a monovalent metal or one valence of a polyvalent metal, a quaternary ammonium ion, a Ci to C 18 alkyl group, or -(CH CHR"O) a -H, R" is hydrogen or methyl, and a is 1 to 40.
- X is a structure containing two carboxylic moieties, that is, a succinic or maleic acid-type structure.
- Y is NR', or optionally NH.
- Z is OM and preferably M is a monovalent metal, preferably an alkali metal, more preferably sodium.
- each X group is represented by the structure
- Alkyl and alkenyl-substituted succinamides are well known materials which have been set forth, i.e., in U.S. 4,664,834. They can be prepared by, first, reacting an olefin (providing the R group) with the desired unsaturated carboxylic acid such as fumaric acid or a derivative of such an acid such as maleic anhydride at a temperature in the range of, for example, 160°C to 240°C, preferably 185°C to 210°C. Generally these reactions are conducted at an atmospheric pressure, although elevated pressures can also be used. Free radical inhibitors (e.g., t-butyl catechol) can be used to reduce or prevent the formation of polymeric by-products. Further details can be found in Benn et al.,
- n is at least 1 but is normally 2 or more, preferably
- W is a mono- or polyvalent group.
- the W group of the surfactant is believed to provide a measure of hydrophilic character to the molecule.
- the group W is preferably a polyvalent group, normally a divalent group, so that n in the above formula is normally 2.
- the W group contains at least 6 carbon atoms, and preferably 20 to 300 carbon atoms, more preferably 40 to 200 carbon atoms, and moreover contains at least one ether linkage for every 6 carbon atoms, and preferably for every 4 carbon atoms.
- the group W preferably comprises polymerized ethylene oxide monomers and propylene oxide monomers. In one embodiment, W is represented by the structure
- n is at least 2 and each R" is independently hydrogen or methyl. That is, monomer units derived from ethylene, propylene, or mixtures thereof can be used.
- W is represented by the structure
- a and c are integers which together equal 2 to 20 (preferably 3 to 20) and b is an integer in the range of 5 to 80 (preferably 5 or 10 to about 30 or 40).
- the reactant used to form the W group is terminated by amine functionality, to provide the amides characteristic of the preferred X groups, above.
- W then represents the central moiety of an amine- terminated poly(oxyalkylene).
- Preferred examples of such amine terminated materials can be described as alpha, omega diaminopolypropyleneoxide-capped poly(oxyethylene)s, when n is 2. If n is 1, W would be a corresponding monoamino polyoxyalkylene moiety, the non-nitrogen terminated end of which would normally be terminated with a nonreactive group such as an alkyl (e.g., methyl, ethyl, propyl) group. It is also possible that additional amino groups are present within the structure of W.
- alkyl e.g., methyl, ethyl, propyl
- HuntsmanTM XTJ-502 also referred to as JeffamineTM ED- 2003
- JeffamineTM ED- 2003 which is an alpha,omega diamino poly(oxyalkylene) is particularly preferred.
- a preferred surfactant for use in the present invention is a sodium salt represented by the structure
- a and c are integers which together equal 4 to 6
- c is a positive integer
- b is an integer in the range of 5 or 10 to about 30 to 40, and more preferably about 10 to 30.
- Such materials have good resistance to Ca ion (water hardness) and low sorption onto soil.
- W can be a monovalent moiety containing at least 20 carbon atoms and at least one ether linkage for every 6 carbon atoms thereof, having no unreacted amino groups.
- One species of W, in this case, is represented by the structure
- a preferred species of W is that represented by the structure
- each R" is independently hydrogen or methyl
- R'" is hydrogen or a Ci to C 4 alkyl group
- n is at least 5.
- the ratio of the hydrogen to methyl groups of R" is 3:1 to 8:1, preferably 5:1 to 8:1, (e.g., about 19:3)
- R'" is a methyl group
- n is 5 to 42, preferably 8 to 42, or 15 to 42, or more preferably 20 to 24 (e.g., about 22).
- the preferred surfactant can be described as a reaction product of a hydrocarbyl-substituted succinic anhydride or a reactive equivalent thereof (e.g., diacid form of anhydride) with at least one water-dispersible amine-terminated poly(oxyalkylene).
- the components are typically prepared by reacting the hydrocarbyl-substituted succinic anhydride with the amine-terminated poly(oxyalkylene) at temperatures of 60°C to about 160°C, preferably 120°C to 160°C.
- the ratio of the anhydride to the diamine is typically 0.1:1 to 8:1, preferably 1:1 to 4:1, and more preferably about 2:1.
- the resulting material is normally an amid/acid, that is, a half amide.
- the product can be neutralized with a basic material using methods well known in the art, to form a salt, preferably a sodium salt. Such materials and their preparation are described in greater detail in U.S. Patent 4,664,834.
- the above-described high HLB surfactant is used in the application (e.g. in water, clay, hydrocarbon oil etc.) generally at a concentration of about 0.5, 1, or 5 to about 50 weight percent, and preferably from about 0.5 or 1 to about 10 or 20 wt.% based on the weight of the dispersion of clay in hydrocarbon oil, water, high HLB surfactant and optional surface active agent.
- the high HLB surfactant is made up in water or another polar diluent at a concentration about 10 to 40 or 50 wt. percent and more preferably about 15 to 35 percent (based on active chemical).
- Diluents other than water include polar solvents such as C ⁇ -C 4 alcohols, acetone, etc.
- the diluent e.g. water phase is desirably at least 50 wt.% of the blend, more desirably at least 75 wt.% of the blend.
- the amounts can be adjusted, as needed, to optimize performance for a particular drilling fluid.
- the surfactant can be dissolved or otherwise dispersed in the water; preferably the surfactant is dissolved.
- the surfactant in water can be recycled along with some of the water recovered as the water phase from the separation of the drilling fluid into three components.
- the surface active agent which can be used in addition to the high HLB surfactant, is comprised of the ester salt (also known as a half ester salt) of the reaction of an alkenyl substituted succinic acid or succinic anhydride reacted with a dialkylalkanolamine or an alkyldialkanolamine or similar amines having at least one alkanol group.
- ester salt also known as a half ester salt
- the succinic acids and anhydrides are described as hydrocarbyl- substituted carboxylic acids, anhydrides, esters and amide derivatives thereof.
- the above-surface active agent is used in the application (e.g. in water, clay, hydrocarbon oil etc.) generally at a concentration of about 0.5, 1, or 5 to about 50 weight percent, and preferably from about 0.5 or 1 to about 10 or 20 wt.% based on the weight of the dispersion of clay in hydrocarbon oil, water, high HLB surfactant and optional surface active agent.
- Reactive equivalents of the alpha-beta olefinically unsaturated carboxylic acid reagents include the anhydride, ester or amide functional derivatives of the foregoing acids.
- a preferred alpha-beta olefinically unsaturated carboxylic acid is maleic anhydride.
- the succinic agent of this invention is a hydrocarbyl- substituted succinic acid or anhydride represented correspondingly by the formulae
- R is hydrocarbyl group of about 12 to about 16 or 32 carbon atoms.
- R in formula (C-I-3) is a hexadecenyl group.
- the “succinic groups” are those groups characterized by the structure
- X and X' are the same or different provided that at least one of X and X' is such that the substituted succinic agent can function as a carboxyl acylating agent. That is, at least one of X and X' must be such that the substituted succinic agent can form, for example, half ester salts with dialkylalkanolamines, and otherwise function as a conventional carboxylic acid acylating agent. Transesterification and transamidation reactions are considered, for purposes of this invention, as conventional acylating reactions.
- X and/or X' is usually -OH, -O-hydrocarbyl, -O-M + where M + represents one equivalent of a metal, ammonium or amine cation, -NH 2 , -CI, -Br, and together, X and X' can be -O- so as to form the anhydride.
- M + represents one equivalent of a metal, ammonium or amine cation, -NH 2 , -CI, -Br, and together, X and X' can be -O- so as to form the anhydride.
- the specific identity of any X or X 1 group which is not one of the above is not critical so long as its presence does not prevent the remaining group from entering into acylation reactions.
- X and X' are each such that both carboxyl functions of the succinic group (i.e., both -C(O)X and -C(O)X') can enter into acylation reactions.
- One of the unsatisfied valences in the grouping of formula (C-I-4) forms a carbon-carbon bond with a carbon atom in the hydrocarbyl substituent group. While other such unsatisfied valence may be satisfied by a similar bond with the same or different substituent group, all but the said one such valence is usually satisfied by hydrogen; i.e., -H.
- the succinic groups correspond the formula
- R and R' are each independently selected from the group consisting of -OH, -CI, -O-lower alkyl, or when taken together, R and R' form -O-.
- the succinic group is a succinic anhydride group. All the succinic groups in a particular succinic acylating agent need not be the same, but they can be the same. In one embodiment, the succinic groups correspond to CH — COOH
- hydrocarbyl-substituted succinic agents wherein the succinic groups are the same or different is within the ordinary skill of the art and can be accomplished through conventional procedures such as treating the hydrocarbyl substituted succinic acylating agents themselves (for example, hydrolyzing the anhydride to the free acid or converting the free acid to an acid chloride with thionyl chloride) and/or selecting the appropriate maleic or fumaric reactants.
- Partial esters of the succinic acids or anhydrides can be prepared simply by the reaction of the acid or anhydride with a dialkylalkanolamine.
- Particularly useful alkyl groups in the dialkyl and alkanol are the lower alkyl groups of 1 to 6 carbon atoms and the lower alkanol groups of 1 to 6 carbon atoms such as methyl, ethyl, and propyl along with alcohols such as methanol, ethanol, allyl alcohol, propanol, cyclohexanol, etc.
- Preferred alkyl groups are methyl and ethyl and a preferred alkanol is ethanol.
- Esterification reactions are usually promoted by the use of alkaline catalysts such as sodium hydroxide or alkoxide, or an acidic catalyst such as sulfuric acid or toluene sulfonic acid.
- alkaline catalysts such as sodium hydroxide or alkoxide
- an acidic catalyst such as sulfuric acid or toluene sulfonic acid.
- a partial ester or half ester can be represented by the formula
- the alkylene substituted succinic anhydride of the present invention can also be made via a direct alkylation procedure that does not use chlorine.
- the product of the reaction between any residual COOH groups of the succinic group and any amine such as the amine portion of dialkylalkanolamine comprises at least one salt.
- This salt can be an internal salt involving residues of a molecule of the succinic group, and the amine portion of the dialkylalkanolamine attached to the succinic group via an ester linkage, wherein one of the carboxyl groups becomes ionically bound to a nitrogen atom within the same group; or it may be an external salt wherein the ionic salt group is formed with a nitrogen atoms is not part of the same molecule.
- the product of the reaction between succinic group and alkanolamines can also include other compounds such as a half ester and half salt, i.e., an ester/salt.
- the surface active component is made by reacting a linear or branched alkenyl substituted succinic anhydride or diacid with dialkylalkanolamine in a mole ratio of about 1: about (0.4-1.25) respectively, and in one embodiment in an mole ratio of about 1:(0.8-1.2) respectively.
- surface active component is made by reacting a hexadecenyl succinic anhydride with N,N-dimethylethanolamine in an equivalent ratio of about 1: about (0.4-0.6) (which also corresponds to a mole ratio of about 1: about (0.8-1.2)) respectively, and in one embodiment in an equivalent ratio of about
- one or more additional surfactants can be used along with the above-described materials.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art.
- hydrocarbyl groups examples include:
- hydrocarbon substituents that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
- aliphatic e.g., alkyl or alkenyl
- alicyclic e.g., cycloalkyl, cycloalkenyl
- aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
- substituted hydrocarbon substituents that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulfoxy);
- hetero substituents that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms.
- Heteroatoms include sulfur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
- no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituents in the hydrocarbyl group.
- the drilling fluids of this invention typically include a particulate material, usually inorganic, added to build viscosity and density; an emulsifier(s) to help suspend particulate material and aid wetting; wetting agents to help wetting of the variety of substrates that the fluid comes in contact with; viscosifiers that help increase or control fluid viscosity; fluid loss control agents; proppants; and optionally water.
- the particulate material can be any material that is readily dispersed in hydrocarbon oil, optionally with an emulsifier or wetting agent.
- hydrocarbon oil optionally with an emulsifier or wetting agent.
- it is a clay due to the low cost of clays and their high density relative to water and hydrocarbon oil. While water has a density of about 8 pounds per gallon, drilling fluids often have densities of values such as 18 pounds per gallon due to the addition of high density materials such as clays. This higher density may help stabilize the relative position of fluids in the drilling operation and help the pumping of the drilling debris up from the bottom of the well.
- the particulate material e.g.
- clay is at least 5 wt.%, more desirably at least 10 wt.% and preferably from about 10 or 20 to about 50 wt.% of the drilling fluid.
- the particulate material is or is predominantly clay.
- the clay may include organically modified clay which is generally referred to as clay modified to increase their compatibility and swelling with oils. These are well known to the art.
- Water and/or brine may be present in the drilling fluid. Its amount can vary from about 0 to about 40wt.% and more desirably from about 5 to about 35 wt.% based on the weight of the clay dispersed in hydrocarbon oil.
- the water can include from about 0 to about 55 wt.% inorganic salts such as sodium chloride, magnesium chloride, sulfates, etc. known to be available commercially or naturally occurring in brines. These components can be added when the drilling fluid is first formulated or can be contaminants picked up as the drilling fluid is used to drill wells.
- Emulsifiers can be present in the drilling fluid. They help suspend particulates and emulsify any water that enters the drilling fluid. These are often low HLB materials (surfactants) such as fatty acid soaps. They are further taught in
- a glass lined, jacketed reactor vessel equipped with an agitator, condenser, and nitrogen flow, and is heated to 85°C.
- To this vessel is charged 100 parts by weight JeffamineTM ED-2003 (a diamine with terminal amine groups, internal ether linkages, and a molecular weight of about 2,000), with stirring.
- To the vessel is added 30.9 parts hexadecenyl succinic anhydride over 30 minutes, during which time the reaction temperature increases to about 93 °C. Thereafter the mixture is heated to about 100°C and maintained at temperature for 3 hours.
- reaction mixture is cooled to 45°C and 131 parts water is added as diluent, as well as 0.8 parts silicone antifoam agent.
- the mixture is maintained, with stirring, at 40°C for 1 hour.
- 9.0 parts of 50% aqueous sodium hydroxide solution over 15 minutes, during which time the temperature is maintained at below 50°C; stirring is continued to effect complete reaction.
- Example 2 is substantially repeated except that the JeffamineTM ED-2003 amine is replaced by 300 parts by weight of a similar material of about 6000 molecular weight. The amount of diluent water added is adjusted accordingly to provide a 50% by weight concentration of chemical in the resulting mixture.
- Example 4 is substantially repeated except that the JeffamineTM ED-2003 amine is replaced by 300 parts by weight of a similar material of about 6000 molecular weight. The amount of diluent water added is adjusted accordingly to provide a 50% by weight concentration of chemical in the resulting mixture.
- Example 3 is substantially repeated except that the amine is replaced by 60 parts by weight of a similar material of about 600 molecular weight.
- Example 5 is substantially repeated except that the amine is replaced by 60 parts by weight of a similar material of about 600 molecular weight.
- Dodecenyl-succinic anhydride is prepared by a method similar to that of Example 1 A and B, except that a C12 alkyl group is provided.
- Example 6 After a total of 4 hours at 100°C, the composition is allowed to cool to 44°C. To the composition, 633 g water is added in one portion, causing the mixture to become slightly foamy. At 44°C, 40 g of 50% aqueous sodium hydroxide solution is added dropwise over 20 minutes. During this addition, the temperature of the composition increases to 49°C. After maintaining the composition at temperature for 40 minutes, it is poured into jars without filtration. The product is a dark brown foamy liquid.
- Example 6 Example 6
- Example 7 100°C with stirring. After a total of 1 hour at 100°C, the composition is allowed to cool to 45°C and 736 g water is added in one portion. At 45°C, 40 g of 50% aqueous sodium hydroxide solution is added dropwise over 20 minutes and the reaction mixture is maintained below 50°C. After maintaining the composition at temperature for 1 hour, it is poured into jars without filtration. The product composition is an orange liquid.
- CMC critical micelle concentration
- the solubility of Surfactant A in the presence of calcium ion is determined at 22°C.
- Mixtures of Surfactant A are prepared using water containing 0.001M, 0.01M, and 0.2M CaCl 2 .
- the critical micelle concentration that is, up to 0.20 weight percent
- the surfactant dissolves to form a clear solution without formation of precipitate.
- Formation of precipitate is determined by the use of pinacyanol dye as in Example 7. Since micelles and precipitate cannot coexist thermodynamically for single surfactant systems, the presence of a blue color, indicating the existence of micelles, likewise indicates the absence of precipitate. The absence of precipitate at all the concentrations evaluated indicates excellent hardness tolerance of Surfactant A.
- a commercial diesel fuel based drilling mud was treated with at the 20 wt.% level with a 20 wt.% solution of an emulsifier according to Example 1 where the succinic anhydride is hexadecenyl succinic anhydride and the diamino terminated propylene oxide capped polyoxyethylene had a number average molecular weight of about 1000.
- the resulting solution was mixed thoroughly.
- a portion of the material was placed in a test tube and centrifuged for 30 minutes at a preset centrifuge speed.
- the resulting product had three distinct phases after centrifuging comprising a top hydrocarbon , a middle water and surfactant layer and a bottom clay layer.
- a drilling mud of this type can be prepared from 55% diesel fuel, 5% asphalt, 3% low HLB emulsifier, 2% organically modified clay, and 35% by wt. barite.
- a mixture of 1000 parts (1.69 equivalents) of the polyisobutene-substituted succinic acylating agent having a ratio of succinic groups to equivalent weights of polyisobutene of about 1.91 (prepared according to Example 1 of EP 0 561 600 A2) and 1151 parts of a 40 Neutral oil are heated to 65-70°C with stirring.
- N,N- dimethylethanolamine 151 parts; 1.69 equivalent
- the reaction mixture is heated to 93°C and held at that temperature for 2 hours.
- the temperature is adjusted to 160°C, and held at that temperature for several hours (10-15 hours), and then filtered and cooled to room temperature to provide the product.
- the product has a nitrogen content of 0.90% by weight, a total acid number of 13.0, a total base number of 39.5, a viscosity at 100°C of 50.0 cSt, a viscosity at 40°C of 660 centistoke (cSt), a specific gravity of 0.925 at 15.6°C, and a flash point of 75°C.
- the product is an ester/salt.
- the first component being the surfactant of Examples 1-6 where the anhydride is hexadecenyl succinic anhydride and the Jeffamine is a diamino terminated propylene oxide capped polyoxyethylene of about 1000 molecular weight with the second component being a surface active agent generally comprised of the half ester of a hexadecenyl succinic anhydride reacted with dimethylethanolamine in a mole ratio of about 1:1
- the composition of the drilling mud was very similar to that set forth in the example above but being a used drilling mud may have contained some contaminants.
- muds are well known and readily commercially available.
- the blend of surfactant, surface active agent, water, and drilling mud were shaken to mix and settled over several minutes to form a yellow flock layer and a dark solid layer.
- This clay may be further cleaned and possibly sent to a landfill.
- a centrifuge designed for separating liquids of different densities might be used to further purify water or fuel layers that didn't go back into processing further clay dispersions in hydrocarbon oil.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Lubricants (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXPA03001866A MXPA03001866A (es) | 2000-09-05 | 2001-09-04 | Uso de desemulsionantes solubles en agua en la separacion de aceites hidrocarbonados de las arcillas descripcion. |
EP01968445A EP1325208A2 (fr) | 2000-09-05 | 2001-09-04 | Utilisation de desemulsionneurs hydrosolubles permettant de separer des huiles d'hydrocarbures et des argiles |
CA002419953A CA2419953A1 (fr) | 2000-09-05 | 2001-09-04 | Utilisation de desemulsionneurs hydrosolubles permettant de separer des huiles d'hydrocarbures et des argiles |
US10/344,911 US20030222026A1 (en) | 2001-09-04 | 2001-09-04 | Use of water soluble demulsifiers in separating hydrocarbon oils from clays |
AU2001288691A AU2001288691A1 (en) | 2000-09-05 | 2001-09-04 | Use of water soluble demulsifiers in separating hydrocarbon oils from clays |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23011300P | 2000-09-05 | 2000-09-05 | |
US60/230,113 | 2000-09-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002020691A2 true WO2002020691A2 (fr) | 2002-03-14 |
WO2002020691A3 WO2002020691A3 (fr) | 2002-08-15 |
Family
ID=22863998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/027408 WO2002020691A2 (fr) | 2000-09-05 | 2001-09-04 | Utilisation de desemulsionneurs hydrosolubles permettant de separer des huiles d'hydrocarbures et des argiles |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1325208A2 (fr) |
AU (1) | AU2001288691A1 (fr) |
CA (1) | CA2419953A1 (fr) |
MX (1) | MXPA03001866A (fr) |
WO (1) | WO2002020691A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031806A1 (fr) * | 2006-09-14 | 2008-03-20 | Lamberti Spa | Inhibiteurs de gonflement pour argiles et schistes |
US7867399B2 (en) | 2008-11-24 | 2011-01-11 | Arkansas Reclamation Company, Llc | Method for treating waste drilling mud |
US7935261B2 (en) | 2008-11-24 | 2011-05-03 | Arkansas Reclamation Company, Llc | Process for treating waste drilling mud |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5723423A (en) * | 1993-12-22 | 1998-03-03 | Union Oil Company Of California, Dba Unocal | Solvent soaps and methods employing same |
GB2347682A (en) * | 1999-03-12 | 2000-09-13 | Univ Napier | A method for the extraction of oil by microemulsification |
-
2001
- 2001-09-04 EP EP01968445A patent/EP1325208A2/fr not_active Withdrawn
- 2001-09-04 WO PCT/US2001/027408 patent/WO2002020691A2/fr not_active Application Discontinuation
- 2001-09-04 AU AU2001288691A patent/AU2001288691A1/en not_active Abandoned
- 2001-09-04 MX MXPA03001866A patent/MXPA03001866A/es unknown
- 2001-09-04 CA CA002419953A patent/CA2419953A1/fr not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5723423A (en) * | 1993-12-22 | 1998-03-03 | Union Oil Company Of California, Dba Unocal | Solvent soaps and methods employing same |
US5780407A (en) * | 1993-12-22 | 1998-07-14 | Union Oil Company Of California | Solvent soaps and methods employing same |
GB2347682A (en) * | 1999-03-12 | 2000-09-13 | Univ Napier | A method for the extraction of oil by microemulsification |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008031806A1 (fr) * | 2006-09-14 | 2008-03-20 | Lamberti Spa | Inhibiteurs de gonflement pour argiles et schistes |
US7867399B2 (en) | 2008-11-24 | 2011-01-11 | Arkansas Reclamation Company, Llc | Method for treating waste drilling mud |
US7935261B2 (en) | 2008-11-24 | 2011-05-03 | Arkansas Reclamation Company, Llc | Process for treating waste drilling mud |
Also Published As
Publication number | Publication date |
---|---|
EP1325208A2 (fr) | 2003-07-09 |
MXPA03001866A (es) | 2003-06-24 |
WO2002020691A3 (fr) | 2002-08-15 |
CA2419953A1 (fr) | 2002-03-14 |
AU2001288691A1 (en) | 2002-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9499736B2 (en) | Low interfacial tension surfactants for petroleum applications | |
CA2783831C (fr) | Tensioactifs a faible tension interfaciale pour des applications dans le petrole | |
US6090896A (en) | Surfactant-assisted soil remediation | |
US20030222026A1 (en) | Use of water soluble demulsifiers in separating hydrocarbon oils from clays | |
US20140128296A1 (en) | Tunable polymeric surfactants for mobilizing oil into water | |
US9315718B2 (en) | Low interfacial tension surfactants for petroleum applications | |
EP1325208A2 (fr) | Utilisation de desemulsionneurs hydrosolubles permettant de separer des huiles d'hydrocarbures et des argiles | |
AU2009356244B2 (en) | Low interfacial tension surfactants for petroleum applications | |
WO2013192201A1 (fr) | Formulations et procédés d'élimination de matières solides mouillées par l'huile à partir de courants aqueux | |
WO2014071038A1 (fr) | Tensioactifs à faible tension interfaciale pour des applications dans le pétrole | |
CN111978977B (zh) | 一种高效水溶性复配老化油破乳剂及其制备方法 | |
DK202070494A1 (en) | Biodegradable demulsifiers | |
RU2313385C2 (ru) | Применение нефтеполимерной смолы в качестве стабилизатора водонефтяных эмульсий | |
MXPA99008075A (en) | Method of inhibiting the formation of oil and water emulsions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10344911 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2419953 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/001866 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001968445 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001968445 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001968445 Country of ref document: EP |
|
NENP | Non-entry into the national phase in: |
Ref country code: JP |