WO2002019976A1 - Hair conditioning compositions comprising particles - Google Patents

Hair conditioning compositions comprising particles Download PDF

Info

Publication number
WO2002019976A1
WO2002019976A1 PCT/US2000/024646 US0024646W WO0219976A1 WO 2002019976 A1 WO2002019976 A1 WO 2002019976A1 US 0024646 W US0024646 W US 0024646W WO 0219976 A1 WO0219976 A1 WO 0219976A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
melting point
hair conditioning
alkyl
weight
Prior art date
Application number
PCT/US2000/024646
Other languages
French (fr)
Inventor
Arata Mitsumatsu
Mikio Uchida
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to PCT/US2000/024646 priority Critical patent/WO2002019976A1/en
Priority to AU2000273584A priority patent/AU2000273584A1/en
Priority to EP00961663A priority patent/EP1328240A1/en
Priority to MXPA03002057A priority patent/MXPA03002057A/en
Priority to CN00819878.0A priority patent/CN1454074A/en
Priority to JP2002524461A priority patent/JP2004508313A/en
Publication of WO2002019976A1 publication Critical patent/WO2002019976A1/en
Priority to US10/383,439 priority patent/US20030215415A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/26Aluminium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/41Amines
    • A61K8/416Quaternary ammonium compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the present invention relates to a hair conditioning composition comprising particles.
  • shampooing cleans the hair by removing excess soil and sebum.
  • shampooing can leave the hair in a wet, tangled, and generally unmanageable state. Once the hair dries, it is often left in a dry, rough, lusterless, or frizzy condition due to removal of the hair's natural oils and other natural conditioning and moisturizing components.
  • the hair can further be left with increased levels of static upon drying, which can interfere with combing and result in a condition commonly referred to as "fly-away hair", or contribute to an undesirable phenomena of "split ends", particularly for long hair.
  • a variety of approaches have been developed to condition the hair. These approaches range from * post-shampoo application of hair conditioners such as leave-on and rinse-off products, to hair conditioning shampoos which attempt to both clean and condition the hair from a single product.
  • Conditioning formulations can be in the form of rinse-off products or leave-on products, and can be in the form of an emulsion, cream, gel, spray, and mousse.
  • Such consumers who prefer the conventional conditioner formulations value the relatively higher conditioning effect, or convenience of changing the amount of conditioning depending on the condition of hair or amount of hair.
  • a hair conditioning composition which provides improved texture when the hair conditioning composition is spread on hands and/or hair.
  • conventional hair conditioning products are not completely satisfactory in providing such improved texture while having a suitable viscosity and delivering improved conditioning benefits such as moisturized feel, softness, and static control to the hair.
  • hair conditioning compositions which provide improved texture when the hair conditioning composition is spread on hands and/or hair, are easy to apply on the hair, and provide improved conditioning benefits such as moisturized feel, softness, and static control to the hair.
  • the present invention is directed to a hair conditioning composition (hereafter "Hair care composition A”) comprising by weight: (a) from about 0.1 % to about 15% of a high melting point fatty compound;
  • R 1 CONH (CH 2 ) m N (R 2 )2 wherein R1 is a residue of C-
  • an acid selected from the group consisting of ⁇ -glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, ⁇ -glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 ; (d) from about 0.01 % to about 10% of a particle; and (e) an aqueous carrier.
  • the present invention is also directed to a hair conditioning composition (hereinafter "Hair care composition B") comprising by weight: (a) from about 0.1% to about 15% of a high melting point fatty compound having a melting point of 25°C or higher; (b) from about 0.1 % to about 10% of a cationic conditioning agent;
  • the hair conditioning compositions A and B of the present invention comprise a high melting point fatty compound.
  • the high melting fatty compound together with a cationic surfactant such as an amidoamine and an aqueous carrier, provide a gel network which is suitable for providing various conditioning benefits such as slippery and slick feel on wet hair, and softness, moisturized feel, and fly-away control on dry hair.
  • the high melting point fatty compound useful herein have a melting point of 25°C or higher, and is selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof.
  • the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives.
  • a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature.
  • certain compounds having certain required carbon atoms may have a melting point of less than 25°C. Such compounds of low melting point are not intended to be included in this section.
  • Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
  • the high melting point fatty compound is included in the compositions A and B at a level by weight of from about 0.1 % to about 15%, preferably from about 0.25%) to about 13%. More preferably, the high melting point fatty compound is included at a level by weight of from about 1 % to about 10% especially in the composition A, at a level by weight of from about 0.25% to about 5% especially in the composition B.
  • the fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols are saturated and can be straight or branched chain alcohols. Nonlimiting examples of fatty alcohols include, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
  • the fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids are saturated and can be straight or branched chain acids. Also included are diacids, triacids, and other multiple acids which meet the requirements herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, sebacic acid, and mixtures thereof.
  • the fatty alcohol derivatives and fatty acid derivatives useful herein include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols, fatty acid esters of compounds having esterifiable hydroxy groups, hydroxy-substituted fatty acids, and mixtures thereof.
  • Nonlimiting examples of fatty alcohol derivatives and fatty acid derivatives include materials such as methyl stearyl ether; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e.
  • High melting point fatty compounds of a single compound of high purity are preferred.
  • Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred.
  • pure herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%.
  • high melting point fatty compounds useful herein include: cetyl alcohol, stearyl alcohol, and behenyl alcohol having tradenames KONOL series available from Shin Nihon Rika (Osaka, Japan), and NAA series available from NOF (Tokyo, Japan); pure behenyl alcohol having tradename 1- DOCOSANOL available from WAKO (Osaka, Japan), various fatty acids having tradenames NEO-FAT available from Akzo (Chicago Illinois, USA), HYSTRENE available from Witco Corp. (Dublin Ohio, USA), and DERMA available from Vevy (Genova, Italy).
  • the hair conditioning composition A of the present invention comprises an amidoamine of the following general formula: R 1 CONH (CH 2 ) m N (R2) 2 wherein R1 is a residue of C-
  • the amidoamine is included in the composition A at a level by weight of from about 0.1 % to about 10%, preferably from about 0.25% to about 8%, more preferably from about 0.5% to about 3%.
  • the amidoamine can be also included in the composition B as a cationic conditioning agent at a level by weight of, preferably from about 0.1 % to about 10%), more preferably from about 0.25% to about 8%, still more preferably from about 0.5%) to about 3%.
  • Preferred amidoamines useful in the present invention includes stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine, arachidamidoethyldimethylamine, and mixtures thereof; more preferably stearamidoprop
  • amidoamines useful herein include: stearamidopropyldimethylamine having tradename SAPDMA available from Inolex, and tradename Amidoamine MPS available from Nikko.
  • ACIDS The hair conditioning composition A of the present invention comprises an acid selected from the group consisting of ⁇ -glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, ⁇ -glutamic acid hydrochloride, tartaric acid, and mixtures thereof; preferably ⁇ -glutamic acid, lactic acid, hydrochloric acid, and mixtures thereof.
  • the acid is contained at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 , preferably from about 1 :0.5 to about 1 :0.9.
  • the acid can be also included in the composition B at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 , preferably from about 1 :0.5 to about 1 :0.9.
  • Commercially available acids useful herein include: ⁇ -Glutamic acid: £-
  • compositions A and B of the present invention comprise a particle.
  • the particle is included in the compositions A and B at a level by weight of from about 0.01 %) to about 10%, preferably from about 0.1 % to about 5%, more preferably from about 0.1 %) to about 2%.
  • the particles useful herein has an average particle size of preferably from about 25 ⁇ m to about 1500 ⁇ m, more preferably from about 50 ⁇ m to about 1000 ⁇ m, still more preferably from about
  • Preferred particles useful herein include, organic particles such as cellulose particles, and inorganic particles such as mica, silica, mud, clay, zeolite, and mixtures thereof, and more preferred are silica.
  • Preferred particles useful herein can be those having a breakability such that the particles are breakable when the particles contained in the compositions are spread on the hands and/or on the hair.
  • Commercially available particles useful herein include: silica having tradename Neosil series such as Neosil CBT 60 available from Crosfield.
  • compositions A and B of the present invention comprise an aqueous carrier.
  • the level and species of the carrier are selected according to the compatibility with other components, and other desired characteristic of the product.
  • the carrier useful in the present invention include water and water solutions of lower alkyl alcohols and polyhydric alcohols.
  • the lower alkyl alcohol useful herein are monohydric alcohols having 1 to 6 carbons, more preferably ethanol and isopropanol.
  • the polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
  • the aqueous carrier is substantially water.
  • Deionized water is preferably used.
  • Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product.
  • the compositions of the present invention comprise from about 20% to about 95%, preferably from about 30% to about 92%, and more preferably from about 50% to about 90% water.
  • the hair conditioning composition B of the present invention comprises a cationic conditioning agent.
  • This cationic conditioning agent together with the high melting point fatty compounds, provide a gel network suitable for providing various conditioning benefits such as slippery and slick feel on wet hair, and such as softness, moisturized feel, and fly-away control on dry hair.
  • the cationic conditioning agent is included in the composition at a level by weight of from about 0.1 %) to about 10%, preferably from about 0.25% to about 8%>, more preferably from about 0.5%o to about 3%.
  • the cationic conditioning agent can be also included in the composition A at a level by weight of, preferably from about 0.1 %o to about 10%, more preferably from about 0.25% to about 8%, still more preferably from about 0.5% to about 3%.
  • the cationic conditioning agent is selected from the group consisting of cationic surfactants, cationic polymers, and mixtures thereof.
  • the cationic surfactant useful herein is any known to the artisan, and can be included in the composition at a level by weight of, preferably from about 0.1 % to about 10%), more preferably from about 0.25%> to about 8%, still more preferably from about 0.5 to about 3%.
  • cationic surfactants useful herein are those corresponding to the general formula (I):
  • R1 , R2, R3, and R4 is selected from an aliphatic group of from 8 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms, the remainder of R " ! , R2, R3, and R4 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g.
  • the aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups.
  • the longer chain aliphatic groups e.g., those of about 12 carbons, or higher, can be saturated or unsaturated.
  • Nonlimiting examples of cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-8, quaternium-14, quaternium-18, quaternium-18 methosulfate, quatemium-24, and mixtures thereof.
  • cationic surfactants of general formula (I) preferred are those containing in the molecule at least one alkyl chain having at least 16 carbons.
  • preferred cationic surfactants include: behenyl trimethyl ammonium chloride available, for example, with tradename INCROQUAT TMC-80 from Croda and ECONOL TM22 from Sanyo Kasei; cetyl trimethyl ammonium chloride available, for example, with tradename CA-2350 from Nikko Chemicals, hydrogenated tallow alkyl trimethyl ammonium chloride, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, dicetyl dimethyl ammonium chloride, di(behenyl/arachidyl) dimethyl ammonium chloride, dibehenyl dimethyl ammonium chloride, stearyl dimethyl benz
  • hydrophilically substituted cationic surfactants in which at least one of the substituents contain one or more aromatic, ether, ester, amido, or amino moieties present as substituents or as linkages in the radical chain, wherein at least one of the R ⁇ - R ⁇ radicals contain one or more hydrophilic moieties selected from alkoxy (preferably C-
  • the hydrophilically substituted cationic conditioning surfactant contains from 2 to about 10 nonionic hydrophile moieties located within the above stated ranges.
  • Preferred hydrophilically substituted cationic surfactants include those of the formula (II) through (VIII) below:
  • n is from 8 to about 28, x+y is from 2 to about 40, ⁇ 1 is a short chain alkyl, preferably a C-j - C3 alkyl, more preferably methyl, or (CH CH 2 0) z H wherein x+y+z is up to 60, and X is a salt forming anion as defined above;
  • R ⁇ , R6, and R ⁇ are independently an C-j - C30 alkyl, the remainder are CH 2 CH 2 0H, one or two of R3, R9, and R10 are independently an C-] - C30 alkyl, and remainder are CH 2 CH 2 OH, and X is a salt forming anion as mentioned above;
  • Z 2 is an alkyl, preferably a Ci - C3 alkyl, more preferably methyl, and z3 is a short chain hydroxyalkyl, preferably hydroxymethyl or hydroxyethyl, p and q independently are integers from 2 to 4, inclusive, preferably from 2 to 3, inclusive, more preferably 2, R11 and R12 ( independently, are substituted or unsubstituted hydrocarbyls, preferably C-
  • Z4 and Z ⁇ are, independently, short chain hydrocarbyls, preferably C - C4 alkyl or alkenyl, more preferably ethyl
  • a is from 2 to about 40, preferably from about 7 to about 30, and
  • X is a salt forming anion as defined above;
  • R ⁇ 4 and R ⁇ $ independently, are C-
  • Z " 3 is a C12 - C 22 hydrocarbyl, alkyl carboxy or alkylamido
  • A is a protein, preferably a collagen, keratin, milk protein, silk, soy protein, wheat protein, or hydrolyzed forms thereof
  • X is a salt forming anion as defined above;
  • Nonlimiting examples of hydrophilically substituted cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-16, quaternium-26, quaternium-27, quaternium-30, quaternium-33, quaternium-43, quaternium-52, quaternium-53, quaternium-56, quatemium-60, quaternium-61 , quaternium-62, quaternium-70, quaternium-71 , quatemium-72, quaternium-75, quatemium-76 hydrolyzed collagen, quaternium-77, quaternium- 78, quaternium-79 hydrolyzed collagen, quaternium-79 hydrolyzed keratin, quaternium-79 hydroly
  • hydrophilically substituted cationic surfactants include dialkylamido ethyl hydroxyethylmonium salt, dialkylamidoethyl dimonium salt, dialkyloyl ethyl hydroxyethylmonium salt, dialkyloyl ethyldimonium salt, and mixtures thereof; for example, commerically available under the following tradenames; VARISOFT 110, VARIQUAT K1215 and 638 from Witco Chemical, MACKPRO KLP, MACKPRO WLW, MACKPRO MLP, MACKPRO NSP, MACKPRO NLW, MACKPRO WWP, MACKPRO NLP, MACKPRO SLP from Mclntyre, ETHOQUAD 18/25, ETHOQUAD 0/12PG, ETHOQUAD C/25, ETHOQUAD S/25, and ETHODUOQUAD from Akzo, OEHYQUAT SP from Henkel, and ATLAS G265 from ICI Americas.
  • Salts of primary, secondary, and tertiary fatty amines are also suitable cationic surfactants.
  • the alkyl groups of such amines preferably have from about 12 to about 22 carbon atoms, and can be substituted or unsubstituted.
  • Particularly useful are salts of amidoamines which are selected from the species disclosed above under the title "AMIDE AMINE” and “ACID”.
  • the salts of amidoamines are used as cationic conditioning agents in the composition B.
  • the term "polymer” shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers.
  • the cationic polymer is a water-soluble cationic polymer.
  • water soluble cationic polymer is a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1 %> in water (distilled or equivalent) at 25°C.
  • the preferred polymer will be sufficiently soluble to form a substantially clear solution at 0.5% concentration, more preferably at 1.0% concentration.
  • the cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million.
  • the cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof.
  • the cationic charge density is preferably at least about 0.1 meq/gram, more preferably at least about 1.5 meq/gram, even more preferably at least about 1.1 meq/gram, still more preferably at least about 1.2 meq/gram.
  • Cationic charge density of the cationic polymer can be determined according to the Kjeldahl Method. Those skilled in the art will recognize that the charge density of amino-containing polymers may vary depending upon pH and the isoelectric point of the amino groups. The charge density should be within the above limits at the pH of intended use.
  • Any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met.
  • Suitable counterions include halides (e.g., CI, Br, I, or F, preferably CI, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
  • the cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers.
  • the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non-cationic units referred to herein as spacer monomer units.
  • Such polymers are known in the art, and a variety can be found in the CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C., 1982).
  • Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as acrylamide, methacrylamide, alkyl and dialkyl acrylamides, alkyl and dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, and vinyl pyrrolidone.
  • the alkyl and dialkyl substituted monomers preferably have Ci - C7 alkyl groups, more preferably Ci
  • Suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
  • the cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition. In general, secondary and tertiary amines, especially tertiary amines, are preferred.
  • Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quaternization reaction. Amines can also be similarly quaternized subsequent to formation of the polymer.
  • tertiary amine functionalities can be quaternized by reaction with a salt of the formula R'X wherein R' is a short chain alkyl, preferably a Ci - C7 alkyl, more preferably a C-j - C3 alkyl, and X is an anion which forms a water soluble salt with the quaternized ammonium.
  • Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quaternized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts.
  • the alkyl portions of these monomers are preferably lower alkyls such as the C-j - C3 alkyls, more preferably C-
  • Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C- ⁇ - C7 hydrocarbyls, more preferably C-
  • the cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
  • Suitable cationic hair conditioning polymers include, for example: copolymers of 1-vinyl-2-pyrrolidone and 1-vinyl-3-methylimidazolium salt (e.g., chloride salt) (referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, "CTFA", as Polyquaternium-16), such as those commercially available from BASF Wyandotte Corp.
  • CTFA Cosmetic, Toiletry, and Fragrance Association
  • cationic polymers that can be used include polysaccharide polymers, such as cationic cellulose derivatives and cationic starch derivatives.
  • Cationic polysaccharide polymer materials suitable for use herein include those of the formula:
  • A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual
  • R is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof
  • R 1 , R 2 , and R 3 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1 , R 2 and R3) preferably being about 20 or less
  • X is an anionic counterion, as previously described.
  • Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR® and LR® series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10.
  • CTFA trimethyl ammonium substituted epoxide
  • Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200®.
  • cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride (commercially available from Celanese Corp. in their Jaguar R series).
  • Other materials include quaternary nitrogen-containing cellulose ethers (e.g., as described in U.S. Patent 3,962,418, incorporated herein by reference), and copolymers of etherified cellulose and starch (e.g., as described in U.S. Patent 3,958,581 , incorporated herein by reference.) LOW MELTING POINT OIL
  • the hair conditioning composition B of the present invention comprises a low melting point oil, which has a melting point of less than 25°C, and is included in the composition at a level by weight of from about 0.1 % to about 10%, preferably from about 0.25% to about 6%.
  • the low melting point oil having a melting point of less than 25°C can be also included in the composition A at a level by weight of, preferably from about 0.1%) to about 10%, more preferably from about 0.25% to about 6%, still more preferably from about 0.3% to about 3%.
  • the low melting point oil useful herein is selected from the group consisting of hydrocarbon having from 10 to about 40 carbon atoms, unsaturated fatty alcohols having from about 10 to about 30 carbon atoms, unsaturated fatty acids having from about 10 to about 30 carbon atoms, fatty acid derivatives, fatty alcohol derivatives, ester oils, poly ⁇ -olefin oils, and mixtures thereof.
  • Fatty alcohols useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty alcohols are unsaturated and can be straight or branched chain alcohols. Suitable fatty alcohols include, for example, oleyl alcohol, isostearyl alcohol, tridecylalcohol, decyl tetradecyl alcohol, and octyl dodecyl alcohol. These alcohols are available, for example, from Shinnihon Rika.
  • Low melting point oils useful herein include pentaerythritol ester oils, trimethylol ester oils, poly ⁇ -olefin oils, citrate ester oils, glyceryl ester oils, and mixtures thereof, and the ester oil useful herein is water-insoluble.
  • water-insoluble means the compound is substantially not soluble in water at 25°C; when the compound is mixed with water at a concentration by weight of above 1.0%, preferably at above 0.5%, the compound is temporarily dispersed to form an unstable colloid in water, then is quickly separated from water into two phases.
  • Pentaerythritol ester oils useful herein are those having the following formula:
  • R 1 , R 2 , R 3 , and R 4 are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 1 , R 2 , R 3 , and R 4 independently, are branched, straight, saturated, or unsaturated alkyl groups having from about 8 to about 22 carbons. More preferably, R 1 , R 2 , R 3 and R 4 are defined so that the molecular weight of the compound is from about 800 to about 1200.
  • Trimethylol ester oils useful herein are those having the following formula:
  • R 11 is an alkyl group having from 1 to about 30 carbons
  • R 12 , R 13 , and R 14 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 11 is ethyl and R 12 , R 13 , and R 14 , independently, are branched, straight, saturated, or unsaturated alkyl groups having from 8 to about 22 carbons. More preferably, R 11 , R 12 , R 13 and R 14 are defined so that the molecular weight of the compound is from about 800 to about 1200.
  • pentaerythritol ester oils and trimethylol ester oils herein include pentaerythritol tetraisostearate, pentaerythritol tetraoleate, trimethylolpropane triisostearate, trimethylolpropane trioleate, and mixtures thereof.
  • Such compounds are available from Kokyo Alcohol with tradenames KAKPTI, KAKTTI, and Shin-nihon Rika with tradenames PTO, ENUJERUBU TP3SO.
  • Poly ⁇ -olefin oils useful herein are those derived from 1-alkene monomers having from about 6 to about 16 carbons, preferably from about 6 to about 12 carbons atoms.
  • 1-alkene monomers useful for preparing the poly ⁇ -olefin oils include 1-hexene, 1-octene, 1-decene, 1- dodecene, 1-tetradecene, 1-hexadecene, branched isomers such as 4-methyl-1- pentene, and mixtures thereof.
  • Preferred 1-alkene monomers useful for preparing the poly ⁇ -olefin oils are 1-octene, 1-decene, 1 -dodecene, 1- tetradecene, 1-hexadecene, and mixtures thereof.
  • Poly ⁇ -olefin oils useful herein further have a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3.
  • Poly ⁇ -olefin oils having a molecular weight of at least about 800 are useful herein. Such high molecular weight poly ⁇ -olefin oils are believed to provide long lasting moisturized feel to the hair. Poly ⁇ -olefin oils having a molecular weight of less than about 800 are useful herein. Such low molecular weight poly ⁇ -olefin oils are believed to provide a smooth, light, clean feel to the hair.
  • Particularly useful poly ⁇ -olefin oils herein include polydecenes with tradenames PURESYN 6 having a number average molecular weight of about 500 and PURESYN 100 having a number average molecular weight of about 3000 and PURESYN 300 having a number average molecular weight of about 6000 available from Mobil Chemical Co.
  • Citrate ester oils useful herein are those having a molecular weight of at least about 500 having the following formula:
  • R 21 is OH or CH 3 COO
  • R 22 , R 23 , and R 24 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 21 is OH
  • R 22 , R 23 , and R 24 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R 21 , R 22 ,
  • R 23 and R 24 are defined so that the molecular weight of the compound is at least about 800.
  • citrate ester oils herein include triisocetyl citrate with tradename CITMOL 316 available from Bernel, triisostearyl citrate with tradename PELEMOL TISC available from Phoenix, and trioctyldodecyl citrate with tradename CITMOL 320 available from Bernel.
  • Glyceryl ester oils useful herein are those having a molecular weight of at least about 500 and having the following formula:
  • R 41 , R 42 , and R 43 are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons.
  • R 41 , R 42 , and R 43 independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R 41 , R 42 , and R 43 are defined so that the molecular weight of the compound is at least about 800.
  • composition A of the present invention may further comprises silicone compound.
  • the silicone compound can be included in the composition A at a level by weight of, preferably from about 0.1 % to about 10%), more preferably from about 0.25% > to about 8%>, still more preferably from about 0.5%) to about 3%.
  • the silicone compound can be also included in the composition B at a level by weight of, preferably from about 0.1 %> to about 10%>, more preferably from about 0.25% to about 8% > , still more preferably from about 0.5%> to about 3%.
  • the silicone compounds hereof can include volatile soluble or insoluble, or nonvolatile soluble or insoluble silicone conditioning agents.
  • soluble what is meant is that the silicone compound is miscible with the carrier of the composition so as to form part of the same phase.
  • insoluble what is meant is that the silicone forms a separate, discontinuous phase from the carrier, such as in the form of an emulsion or a suspension of droplets of the silicone.
  • the silicone compounds herein may be made by conventional polymerization, or emulsion polymerization.
  • the silicone compounds for use herein will preferably have a viscosity of from about 1 ,000 to about 2,000,000 centistokes at 25°C, more preferably from about 10,000 to about 1 ,800,000, and even more preferably from about 25,000 to about 1 ,500,000.
  • the viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970, which is incorporated by reference herein in its entirety.
  • Silicone compound of high molecular weight may be made by emulsion polymerization.
  • Silicone compounds useful herein include polyalkyl polyaryl siloxanes, polyalkyleneoxide-modified siloxanes, silicone resins, amino-substituted siloxanes, and mixtures thereof.
  • the silicone compound is preferably selected from the group consisting of polyalkyl polyaryl siloxanes, polyalkyleneoxide- modified siloxanes, silicone resins, and mixtures thereof, and more preferably from one or more polyalkyl polyaryl siloxanes.
  • Polyalkyl polyaryl siloxanes useful here in include those with the following structure (I)
  • R is alkyl or aryl
  • x is an integer from about 7 to about 8,000.
  • A represents groups which block the ends of the silicone chains.
  • the alkyl or aryl groups substituted on the siloxane chain (R) or at the ends of the siloxane chains (A) can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair.
  • Suitable A groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy.
  • the two R groups on the silicon atom may represent the same group or different groups.
  • the two R groups represent the same group.
  • Suitable R groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl.
  • the preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred.
  • the polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes. These silicone compounds are available, for example, from the General Electric Company in their ViscasilR and SF 96 series, and from Dow Corning in their Dow Corning 200 series. Polymethylphenylsiloxanes, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid, are useful herein.
  • highly arylated silicone compounds such as highly phenylated polyethyl silicone having refractive index of about 1.46 or higher, especially about 1.52 or higher.
  • a spreading agent such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
  • silicone gum means a polyorganosiloxane material having a viscosity at 25°C of greater than or equal to 1 ,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. Silicone gums are described by Petrarch, and others including U.S. Patent No. 4,152,416, to Spitzer et al., issued May 1 , 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968.
  • silicone gums will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1 ,000,000. Specific examples include polydimethylsiloxane, poly(dimethylsiloxane methylvinylsiloxane) copolymer, polydimethylsiloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof.
  • Polyalkyleneoxide-modified siloxanes useful herein include, for example, polypropylene oxide modified and polyethylene oxide modified polydimethylsiloxane.
  • the ethylene oxide and polypropylene oxide level should be sufficiently low so as not to interfere with the dispersibility characteristics of the silicone. These material are also known as dimethicone copolyols.
  • Silicone resins, which are highly crosslinked polymeric siloxane systems, are useful herein. The crosslinking is introduced through the incorporation of tri- functional and tetra-functional silanes with mono-functional or di-fu notional, or both, silanes during manufacture of the silicone resin.
  • silicone resins which have a sufficient level of trifunctional and tetrafu notional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins.
  • the ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material.
  • Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein.
  • the ratio of oxyge silicon atoms is at least about 1.2:1.0.
  • Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinylchlorosilanes, and tetrachlorosilane, with the methyl substituted silanes being most commonly utilized.
  • Preferred resins are offered by General Electric as GE SS4230 and SS4267.
  • Commercially available silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid.
  • the silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicone compounds on the hair and can enhance the glossiness of hair with high refractive index volumes.
  • silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane, which is commercially available as TospearfM f r0 m Toshiba Silicones.
  • Silicone resins can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the mono-functional unit (CH3)3SiO) 5; D denotes the difunctional unit (CH3) 2 SiO; T denotes the trifunctional unit (CH3)SiO-
  • M', D', T', and Q' denote substituents other than methyl, and must be specifically defined for each occurrence.
  • Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc.
  • the molar ratios of the various units either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system.
  • Higher relative molar amounts of T, Q, T' and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking.
  • the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
  • the silicone resins for use herein which are preferred are MQ, MT, MTQ, MQ and MDTQ resins.
  • the preferred silicone substituent is methyl.
  • MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weight of the resin is from about 1000 to about 10,000.
  • Amino-substituted siloxanes useful herein include those represented by the following structure (II)
  • R is CH3 or OH
  • x and y are integers which depend on the molecular weight, the average molecular weight being approximately between 5,000 and 10,000.
  • This polymer is also known as "amodimethicone”.
  • Suitable amino-substituted siloxane fluids include those represented by the formula (III)
  • R1 a G3-a-Si-(-0SiG 2 )n-(-0SiG b (R 1 ) 2 -b)m-0-SiG 3 .
  • G is chosen from the group consisting of hydrogen, phenyl, OH, C-i-Cs alkyl and preferably methyl; a denotes 0 or an integer from 1 to 3, and preferably equals 0; b denotes 0 or 1 and preferably equals 1 ; the sum n+m is a number from 1 to 2,000 and preferably from 50 to 150, n being able to denote a number from 0 to 1 ,999 and preferably from 49 to 149 and m being able to denote an integer from 1 to 2,000 and preferably from 1 to 10; R-
  • R 2 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and A " denotes a halide ion.
  • An especially preferred amino-substituted siloxane corresponding to formula (III) is the polymer known as "trimethylsilylamodimethicone", of formula (IV):
  • n and m are selected depending on the molecular weight of the compound desired.
  • R3 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl
  • R4 denotes a hydrocarbon radical, preferably a C-
  • Q " is a halide ion, preferably chloride
  • r denotes an average statistical value from 2 to 20, preferably from 2 to
  • s denotes an average statistical value from 20 to 200, and preferably from 20 to 50.
  • a preferred polymer of this class is available from Union Carbide under the name "UCAR SILICONE ALE 56.”
  • the composition A of the present invention may further comprises a polypropylene glycol.
  • the polypropylene glycol can be included in the composition A at a level by weight of, preferably from about 0.1 % to about
  • the polypropylene glycol can be also included in the composition B at a level by weight of, preferably from about 0.1 % to about 10%o, more preferably from about 0.25% to about 6%.
  • the polypropylene glycol useful herein may has a weight average molecular weight of preferably from about 200 g/mol to about 100,000 g/mol, more preferably from about 1 ,000 g/mol to about 60,000 g/mol. Without intending to be limited by theory, it is believed that the polypropylene glycol herein deposits onto, or is absorbed into hair to act as a moisturizer buffer, and/or provides one or more other desirable hair conditioning benefits.
  • the term "polypropylene glycol” includes single-polypropylene glycol-chain segment polymers, and multi-polypropylene glycol-chain segment polymers.
  • the general structure of branched polymers such as the multi-polypropylene glycol- chain segment polymers herein are described, for example, in "Principles of Polymerization,” pp. 17-19, G. Odian, (John Wiley & Sons, Inc., 3 rd ed., 1991).
  • the polypropylene glycol herein are typically polydisperse polymers.
  • the polypropylene glycols useful herein have a polydispersity of from about 1 to about 2.5, preferably from about 1 to about 2, and more preferably from about 1 to about 1.5.
  • the term "polydispersity" indicates the degree of the molecular weight distribution of the polymer sample.
  • the polydispersity is a ratio, greater than 1 , equal to the weight average molecular weight divided by the number average molecular weight.
  • the polypropylene glycol useful herein may be either water-soluble, water- insoluble, or may have a limited solubility in water, depending upon the degree of polymerization and whether other moieties are attached thereto.
  • the desired solubility of the polypropylene glycol in water will depend in large part upon the form (e.g., leave-on, or rinse-off form) of the hair care composition.
  • the solubility in water of the polypropylene glycol herein may be chosen by the artisan according to a variety of factors. Accordingly, for a leave-on hair care composition, it is preferred that the polypropylene glycol herein be a water- soluble polypropylene glycol.
  • Solubility information is readily available from polypropylene glycol suppliers, such as Sanyo Kasei (Osaka, Japan).
  • the present invention may also take the form of a rinse-off hair care composition. Without intending to be limited by theory, it is believed that in such a composition, a water-soluble polypropylene glycol may be too easily washed away before it effectively deposits on hair and provides the desired benefit(s).
  • the polypropylene glycol herein has a solubility in water at 25 °C of less than about 1 g/100 g water, more preferably a solubility in water of less than about 0.5 g/100 g water, and even more preferably a solubility in water of less than about 0.1 g/100 g water.
  • the polypropylene glycol is selected from the group consisting of a single-polypropylene glycol-chain segment polymer, a multi-polypropylene glycol-chain segment polymer, and mixtures thereof, more preferably selected from the group consisting of a single-polypropylene glycol-chain segment polymer of Formula I, below, a multi-polypropylene glycol-chain segment polymer of Formula II, below, and mixtures thereof.
  • a highly preferred single-polypropylene glycol-chain segment polymer has the formula:
  • a is a value from about 4 to about 400, preferably from about 20 to about
  • the single-polypropylene glycol-chain segment polymer useful herein is typically inexpensive, and is readily available from, for example, Sanyo Kasei
  • Witco Chemicals Corp. Greenwich, Connecticut, USA
  • PPG Specialty Chemicals Greenwich, Illinois, USA
  • a highly preferred multi-polypropylene glycol-chain segment polymer has the formula:
  • n is a value from about 0 to about 10, preferably from about 0 to about 7, and more preferably from about 1 to about 4.
  • each R" is independently selected from the group consisting of H, and C ⁇ -C 30 alkyl, and preferably each R" is independently selected from the group consisting of H, and C ⁇ -C 4 alkyl.
  • c and d are independently a value from about 0 to about 2, preferably from about 0 to about 1.
  • the total of b + c + d is at least about 2, preferably the total of b + c + d is from about 2 to about 3.
  • Each e is independently a value of 0 or 1 , if n is from about 1 to about 4, then e is preferably equal to 1.
  • x, y, and z is independently a value of from about 1 to about 120, preferably from about 7 to about 100, and more preferably from about 7 to about 100, where x + y + z is greater than about 20.
  • one or more of the propylene repeating groups in the polypropylene glycol is an isopropyl oxide repeating group. More preferably one or more of the propylene oxide repeating groups of the polypropylene glycol of Formula 111 and/or the polypropylene glycol of Formula IV is an isopropyl oxide repeating group. Even more preferably, substantially all of the propylene oxide repeating groups of the polypropylene glycol of Formula III and/or the polypropylene glycol of Formula IV are isopropyl oxide repeating groups. Accordingly, a highly preferred single-polypropylene glycol-chain segment polymer has the formula:
  • a is defined as described above for Formula III.
  • a highly preferred multi-polypropylene glycol-chain segment polymer has the formula:
  • n, R", b, c, d, e, x, y, and z are defined as above, for Formula IV. It is recognized that the isopropyl oxide repeating groups may also correspond either alone, or in combination with the above depicted, to: -(CH 2 -CH-0)- CH 3
  • polypropylene glycol useful herein is readily available from, for example, Sanyo Kasei (Osaka, Japan) as New pol PP-2000, New pol PP-4000, New pol GP-4000, and New pol SP-4000, from Dow Chemicals (Midland,
  • composition B of present invention may further comprise a polyethylene glycol having the formula: H(OCH 2 CH 2 ) n -OH wherein n has an average value of from 2,000 to 14,000, preferably from about 5,000 to about 9,000, more preferably from about 6,000 to about 8,000.
  • the polyethylene glycol can be included in the composition B at a level by weight of, preferably from about 0.1 % to about 10%, more preferably from about 0.25%) to about 6%o.
  • the polyethylene glycol can be also included in the composition A at a level by weight of, preferably from about 0.1 % to about 10%, more preferably from about 0.25%o to about 6%.
  • the polyethylene glycol described above is also known as a polyethylene oxide, and polyoxyethylene.
  • Polyethylene glycols useful herein that are especially preferred are PEG-2M wherein n has an average value of about 2,000 (PEG-2M is also known as Polyox WSR® N-10 from Union Carbide and as PEG- 2,000); PEG-5M wherein n has an average value of about 5,000 (PEG-5M is also known as Polyox WSR® N-35 and as Polyox WSR® N-80, both from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M wherein n has an average value of about 7,000 (PEG-7M is also known as Polyox WSR® N-750 from Union Carbide); PEG-9M wherein n has an average value of about 9,000 (PEG-9M is also known as Polyox WSR® N-3333 from Union Carbide); and PEG-14M wherein n has an average value of about 14,000 (PEG-14M is also known as Polyox WSR® N-3000 from Union Carbide).
  • compositions of the present invention can be in the form of rinse-off products or leave-on products, and can be in the form of emulsion, cream, gel, spray or, mousse.
  • compositions of the present invention have a suitable viscosity, preferably from about 1 ,000mm 2 s “1 to about 100,000mm s "1 , more preferably from about 2,000mm 2 s “1 to about 50,000mm 2 s “1 .
  • the viscosity herein can be suitably measured at 2.0s "1 of shear rate after 1 minute of rotation.
  • the composition comprises by weight:
  • an acid selected from the group consisting of - ⁇ '-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, -glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 , preferably, £.- Glutamic acid at a level such that the mole ratio of amidoamine to acid is from about 1 :0.5 to about 1 :0.9; (d) from about 0.01 % to about 10% of a particle; and (e) an aqueous carrier.
  • an acid selected from the group consisting of - ⁇ '-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, -glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to
  • This composition may further contain a silicone compound at a level by weight of from about 0.1 % to about 10%.
  • composition comprises by weight:
  • This composition may further contain a low melting point oil having a melting point of less than 25°C at a level by weight of from about 0.1% to about 10%, preferably from about 0.25%o to about 6%, more preferably from about 0.3%) to about 3%.
  • a low melting point oil having a melting point of less than 25°C at a level by weight of from about 0.1% to about 10%, preferably from about 0.25%o to about 6%, more preferably from about 0.3%) to about 3%.
  • the composition comprises by weight: (a) from about 0.1 % to about 15%, preferably from about 0.25% to about 5% of a high melting point fatty compound having a melting point of 25°C or higher; (b) from about 0.1 % to about 10%o, preferably from about 0.25%o to about 5% of a cationic conditioning agent; (c) from about 0.1 %o to about 10%, preferably from about 0.25% to about 6% of a low melting point oil having a melting point of less than 25°C, preferably, the low melting point oil being an unsaturated oil;
  • composition of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the composition more cosmetically or aesthetically acceptable or to provide them with additional usage benefits.
  • additional components generally are used individually at levels of from about 0.001%) to about 10%, preferably up to about 5%o by weight of the composition.
  • a wide variety of other additional components can be formulated into the present compositions.
  • conditioning agents such as hydrolysed collagen with tradename Peptein 2000 available from Hormel, vitamin E with tradename Emix-d available from Eisai, panthenol available from Roche, panthenyl ethyl ether available from Roche, a mixture of Polysorbate 60 and Cetearyl Alcohol with tradename Polawax NF available from Croda Chemicals, glycerylmonostearate available from Stepan Chemicals, hydroxyethyl cellulose available from Aqualon, 3-pyridinecarboxy acid amide (niacinamide), hydrolysed keratin, proteins, plant extracts, and nutrients; hair-fixative polymers such as amphoteric fixative polymers, cationic fixative polymers, anionic fixative polymers, nonionic fixative polymers, and silicone grafted copolymers; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; pH adjusting agents, such as citric acid,
  • compositions of the present invention can be in the form of rinse-off products and leave-on products, and can be in the form of emulsion, cream, gel, spray or, mousse.
  • Trimethylolpropane Triisostearate KAK TTI obtained by Kokyu alcohol.
  • PEG-2M Polyox obtained by Union Carbide.
  • the hair conditioning compositions of Examples 1 and 9 as shown above can be prepared by any conventional method well known in the art. They are suitably made as follows: when included in the composition, polymeric materials such as polypropylene glycol are dispersed in water at room temperature to make a polymer solution, and heated up to above 70°C. Amidoamine and acid, and when present, other cationic surfactants, ester oil of low melting point oil are added in the solution with agitation. Then high melting point fatty compound, and when present, other low melting point oils and benzyl alcohol are also added in the solution with agitation. The mixture thus obtained is cooled down to below 60°C, and the remaining components such as silicone compound are added with agitation, and further cooled down to about 30°C. Then, particles such as silica and mica are added and mixed.
  • polymeric materials such as polypropylene glycol are dispersed in water at room temperature to make a polymer solution, and heated up to above 70°C.
  • a triblender and/or mill can be used in each step, if necessary to disperse the materials. Alternatively, up to 50% of the acid can be added after cooling below
  • the embodiments disclosed herein have many advantages. For example, they can provide improved texture when the hair conditioning composition is spread on hands and/or hair, and also provide improved conditioning benefits such as moisturized feel, softness, and static control to the hair, and be easy to apply on the hair

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Disclosed is hair conditioning compositions comprising particles. One of the compositions comprises by weight: (a) from about 0.1 % to about 15 % of a high melting point fatty compound; (b) from about 0.1 % to about 10 % of an amidoamine having the following general formula: R1CONH(CH¿2?)Mn(R?2)¿2 wherein R1 is a residue of C¿11? to C24 fatty acids, R?2¿ is a C¿1? to C4 alkyl, and m is an integer from 1 to 4; (c) an acid selected from the group consisting of l-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, l-glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to acid is from about 1:0.3 to about 1:1; (d) from about 0.01 % to about 10 % of a particle; and (e) an aqueous carrier.

Description

HAIR CONDITIONING COMPOSITIONS COMPRISING PARTICLES
TECHNICAL FIELD
The present invention relates to a hair conditioning composition comprising particles.
BACKGROUND
Human hair becomes soiled due to its contact with the surrounding environment and from the sebum secreted by the scalp. The soiling of hair causes it to have a dirty feel and an unattractive appearance. The soiling of the hair necessitates shampooing with frequent regularity.
Shampooing cleans the hair by removing excess soil and sebum. However, shampooing can leave the hair in a wet, tangled, and generally unmanageable state. Once the hair dries, it is often left in a dry, rough, lusterless, or frizzy condition due to removal of the hair's natural oils and other natural conditioning and moisturizing components. The hair can further be left with increased levels of static upon drying, which can interfere with combing and result in a condition commonly referred to as "fly-away hair", or contribute to an undesirable phenomena of "split ends", particularly for long hair. A variety of approaches have been developed to condition the hair. These approaches range from* post-shampoo application of hair conditioners such as leave-on and rinse-off products, to hair conditioning shampoos which attempt to both clean and condition the hair from a single product.
Although some consumers prefer the ease and convenience of a shampoo which includes conditioners, a substantial proportion of consumers prefer the more conventional conditioner formulations which are applied to the hair as a separate step from shampooing, usually subsequent to shampooing. Conditioning formulations can be in the form of rinse-off products or leave-on products, and can be in the form of an emulsion, cream, gel, spray, and mousse. Such consumers who prefer the conventional conditioner formulations value the relatively higher conditioning effect, or convenience of changing the amount of conditioning depending on the condition of hair or amount of hair.
There is a desire for a hair conditioning composition which provides improved texture when the hair conditioning composition is spread on hands and/or hair. However, conventional hair conditioning products are not completely satisfactory in providing such improved texture while having a suitable viscosity and delivering improved conditioning benefits such as moisturized feel, softness, and static control to the hair.
Based on the foregoing, there remains a desire to provide hair conditioning compositions which provide improved texture when the hair conditioning composition is spread on hands and/or hair, are easy to apply on the hair, and provide improved conditioning benefits such as moisturized feel, softness, and static control to the hair.
None of the existing art provides all of the advantages and benefits of the present invention.
SUMMARY
The present invention is directed to a hair conditioning composition (hereafter "Hair care composition A") comprising by weight: (a) from about 0.1 % to about 15% of a high melting point fatty compound;
(b) from about 0.1 % to about 10% of an amidoamine having the following general formula:
R1 CONH (CH2)m N (R2)2 wherein R1 is a residue of C-| 1 to C24 fatty acids, R2 is a C-] to C4 alkyl, and m is an integer from 1 to 4;
(c) an acid selected from the group consisting of ^-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, ^-glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 ; (d) from about 0.01 % to about 10% of a particle; and (e) an aqueous carrier.
The present invention is also directed to a hair conditioning composition (hereinafter "Hair care composition B") comprising by weight: (a) from about 0.1% to about 15% of a high melting point fatty compound having a melting point of 25°C or higher; (b) from about 0.1 % to about 10% of a cationic conditioning agent;
(c) from about 0.1 % to about 10% of a low melting point oil having a melting point of less than 25°C;
(d) from about 0.01 % to about 10% of a particle; and (e) an aqueous carrier.
These and other features, aspects, and advantages of the present invention will become evident to those skilled in the art from a reading of the present disclosure.
DETAILED DESCRIPTION
While the specification concludes with claims particularly pointing and distinctly claiming the invention, it is believed the present invention will be better understood from the following description.
All percentages are by weight of the total composition unless otherwise indicated. All ratios are weight ratios unless otherwise indicated. All percentages, ratios, and levels of ingredients referred to herein are based on the actual amount of the ingredient, and do not include solvents, fillers, or other materials with which the ingredient may be combined as commercially available products, unless otherwise indicated. As used herein, "comprising" means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms "consisting of and "consisting essentially of.
All cited references are incorporated herein by reference in their entireties.
Citation of any reference is not an admission regarding any determination as to its availability as prior art to the claimed invention.
HIGH MELTING POINT FATTY COMPOUND
The hair conditioning compositions A and B of the present invention comprise a high melting point fatty compound. The high melting fatty compound, together with a cationic surfactant such as an amidoamine and an aqueous carrier, provide a gel network which is suitable for providing various conditioning benefits such as slippery and slick feel on wet hair, and softness, moisturized feel, and fly-away control on dry hair.
The high melting point fatty compound useful herein have a melting point of 25°C or higher, and is selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof.
It is understood by the artisan that the compounds disclosed in this section of the specification can in some instances fall into more than one classification, e.g., some fatty alcohol derivatives can also be classified as fatty acid derivatives. However, a given classification is not intended to be a limitation on that particular compound, but is done so for convenience of classification and nomenclature. Further, it is understood by the artisan that, depending on the number and position of double bonds, and length and position of the branches, certain compounds having certain required carbon atoms may have a melting point of less than 25°C. Such compounds of low melting point are not intended to be included in this section. Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.
The high melting point fatty compound is included in the compositions A and B at a level by weight of from about 0.1 % to about 15%, preferably from about 0.25%) to about 13%. More preferably, the high melting point fatty compound is included at a level by weight of from about 1 % to about 10% especially in the composition A, at a level by weight of from about 0.25% to about 5% especially in the composition B.
The fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols are saturated and can be straight or branched chain alcohols. Nonlimiting examples of fatty alcohols include, cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof.
The fatty acids useful herein are those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty acids are saturated and can be straight or branched chain acids. Also included are diacids, triacids, and other multiple acids which meet the requirements herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, sebacic acid, and mixtures thereof.
The fatty alcohol derivatives and fatty acid derivatives useful herein include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols, fatty acid esters of compounds having esterifiable hydroxy groups, hydroxy-substituted fatty acids, and mixtures thereof. Nonlimiting examples of fatty alcohol derivatives and fatty acid derivatives include materials such as methyl stearyl ether; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e. a mixture of fatty alcohols containing predominantly cetyl and stearyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; Cι-C30 alkyl ethers of the ceteth, steareth, and ceteareth compounds just described; polyoxyethylene ethers of behenyl alcohol; ethyl stearate, cetyl stearate, cetyl palmitate, stearyl stearate, myristyl myristate, polyoxyethylene cetyl ether stearate, polyoxyethylene stearyl ether stearate, polyoxyethylene lauryl ether stearate, ethyleneglycol monostearate, polyoxyethylene monostearate, polyoxyethylene distearate, propyleneglycol monostearate, propyleneglycol distearate, trimethylolpropane distearate, sorbitan stearate, polyglyceryl stearate, glyceryl monostearate, glyceryl distearate, glyceryl tristearate, and mixtures thereof.
High melting point fatty compounds of a single compound of high purity are preferred. Single compounds of pure fatty alcohols selected from the group of pure cetyl alcohol, stearyl alcohol, and behenyl alcohol are highly preferred. By "pure" herein, what is meant is that the compound has a purity of at least about 90%, preferably at least about 95%. These single compounds of high purity provide good rinsability from the hair when the consumer rinses off the composition. Commercially available high melting point fatty compounds useful herein include: cetyl alcohol, stearyl alcohol, and behenyl alcohol having tradenames KONOL series available from Shin Nihon Rika (Osaka, Japan), and NAA series available from NOF (Tokyo, Japan); pure behenyl alcohol having tradename 1- DOCOSANOL available from WAKO (Osaka, Japan), various fatty acids having tradenames NEO-FAT available from Akzo (Chicago Illinois, USA), HYSTRENE available from Witco Corp. (Dublin Ohio, USA), and DERMA available from Vevy (Genova, Italy). AMIDOAMINE
The hair conditioning composition A of the present invention comprises an amidoamine of the following general formula: R1 CONH (CH2)m N (R2)2 wherein R1 is a residue of C-| -j to C24 fatty acids, R2 is a Ci to C4 alkyl, and m is an integer from 1 to 4.
The amidoamine is included in the composition A at a level by weight of from about 0.1 % to about 10%, preferably from about 0.25% to about 8%, more preferably from about 0.5% to about 3%.
The amidoamine can be also included in the composition B as a cationic conditioning agent at a level by weight of, preferably from about 0.1 % to about 10%), more preferably from about 0.25% to about 8%, still more preferably from about 0.5%) to about 3%. Preferred amidoamines useful in the present invention includes stearamidopropyldimethylamine, stearamidopropyldiethylamine, stearamidoethyldiethylamine, stearamidoethyldimethylamine, palmitamidopropyldimethylamine, palmitamidopropyldiethylamine, palmitamidoethyldiethylamine, palmitamidoethyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethylamine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamidopropyldiethylamine, arachidamidoethyldiethylamine, arachidamidoethyldimethylamine, and mixtures thereof; more preferably stearamidopropyldimethylamine, stearamidoethyldiethylamine, and mixtures thereof.
Commercially available amidoamines useful herein include: stearamidopropyldimethylamine having tradename SAPDMA available from Inolex, and tradename Amidoamine MPS available from Nikko. ACIDS The hair conditioning composition A of the present invention comprises an acid selected from the group consisting of ^-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, ^-glutamic acid hydrochloride, tartaric acid, and mixtures thereof; preferably ^-glutamic acid, lactic acid, hydrochloric acid, and mixtures thereof. The acid is contained at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 , preferably from about 1 :0.5 to about 1 :0.9.
The acid can be also included in the composition B at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 , preferably from about 1 :0.5 to about 1 :0.9. Commercially available acids useful herein include: ^-Glutamic acid: £-
Glutamic acid (cosmetic grade) available from Ajinomoto. PARTICLES
The compositions A and B of the present invention comprise a particle.
The particle is included in the compositions A and B at a level by weight of from about 0.01 %) to about 10%, preferably from about 0.1 % to about 5%, more preferably from about 0.1 %) to about 2%. The particles useful herein has an average particle size of preferably from about 25μm to about 1500μm, more preferably from about 50μm to about 1000μm, still more preferably from about
50μm to about 500μm. Both organic and inorganic particles can be used herein.
Preferred particles useful herein include, organic particles such as cellulose particles, and inorganic particles such as mica, silica, mud, clay, zeolite, and mixtures thereof, and more preferred are silica. Preferred particles useful herein can be those having a breakability such that the particles are breakable when the particles contained in the compositions are spread on the hands and/or on the hair. Commercially available particles useful herein include: silica having tradename Neosil series such as Neosil CBT 60 available from Crosfield.
AQUEOUS CARRIER
The compositions A and B of the present invention comprise an aqueous carrier. The level and species of the carrier are selected according to the compatibility with other components, and other desired characteristic of the product.
The carrier useful in the present invention include water and water solutions of lower alkyl alcohols and polyhydric alcohols. The lower alkyl alcohol useful herein are monohydric alcohols having 1 to 6 carbons, more preferably ethanol and isopropanol. The polyhydric alcohols useful herein include propylene glycol, hexylene glycol, glycerin, and propane diol.
Preferably, the aqueous carrier is substantially water. Deionized water is preferably used. Water from natural sources including mineral cations can also be used, depending on the desired characteristic of the product. Generally, the compositions of the present invention comprise from about 20% to about 95%, preferably from about 30% to about 92%, and more preferably from about 50% to about 90% water.
CATIONIC CONDITIONING AGENT
The hair conditioning composition B of the present invention comprises a cationic conditioning agent. This cationic conditioning agent, together with the high melting point fatty compounds, provide a gel network suitable for providing various conditioning benefits such as slippery and slick feel on wet hair, and such as softness, moisturized feel, and fly-away control on dry hair.
The cationic conditioning agent is included in the composition at a level by weight of from about 0.1 %) to about 10%, preferably from about 0.25% to about 8%>, more preferably from about 0.5%o to about 3%.
The cationic conditioning agent can be also included in the composition A at a level by weight of, preferably from about 0.1 %o to about 10%, more preferably from about 0.25% to about 8%, still more preferably from about 0.5% to about 3%. The cationic conditioning agent is selected from the group consisting of cationic surfactants, cationic polymers, and mixtures thereof. Cationic surfactant
The cationic surfactant useful herein is any known to the artisan, and can be included in the composition at a level by weight of, preferably from about 0.1 % to about 10%), more preferably from about 0.25%> to about 8%, still more preferably from about 0.5 to about 3%.
Among the cationic surfactants useful herein are those corresponding to the general formula (I):
Figure imgf000009_0001
wherein at least one of R1 , R2, R3, and R4 is selected from an aliphatic group of from 8 to 30 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms, the remainder of R"! , R2, R3, and R4 are independently selected from an aliphatic group of from 1 to about 22 carbon atoms or an aromatic, alkoxy, polyoxyalkylene, alkylamido, hydroxyalkyl, aryl or alkylaryl group having up to about 22 carbon atoms; and X is a salt-forming anion such as those selected from halogen, (e.g. chloride, bromide), acetate, citrate, lactate, glycolate, phosphate, nitrate, sulfonate, sulfate, alkylsulfate, and alkyl sulfonate radicals. The aliphatic groups can contain, in addition to carbon and hydrogen atoms, ether linkages, and other groups such as amino groups. The longer chain aliphatic groups, e.g., those of about 12 carbons, or higher, can be saturated or unsaturated. Preferred is when R1 , R2, R3, and R4 are independently selected from C<| to about C22 alkyl- Nonlimiting examples of cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-8, quaternium-14, quaternium-18, quaternium-18 methosulfate, quatemium-24, and mixtures thereof.
Among the cationic surfactants of general formula (I), preferred are those containing in the molecule at least one alkyl chain having at least 16 carbons. Nonlimiting examples of such preferred cationic surfactants include: behenyl trimethyl ammonium chloride available, for example, with tradename INCROQUAT TMC-80 from Croda and ECONOL TM22 from Sanyo Kasei; cetyl trimethyl ammonium chloride available, for example, with tradename CA-2350 from Nikko Chemicals, hydrogenated tallow alkyl trimethyl ammonium chloride, dialkyl (14-18) dimethyl ammonium chloride, ditallow alkyl dimethyl ammonium chloride, dihydrogenated tallow alkyl dimethyl ammonium chloride, distearyl dimethyl ammonium chloride, dicetyl dimethyl ammonium chloride, di(behenyl/arachidyl) dimethyl ammonium chloride, dibehenyl dimethyl ammonium chloride, stearyl dimethyl benzyl ammonium chloride, stearyl propyleneglycol phosphate dimethyl ammonium chloride, stearoyl amidopropyl dimethyl benzyl ammonium chloride, stearoyl amidopropyl dimethyl (myristylacetate) ammonium chloride, and N-(stearoyl colamino formyl methy) pyridinium chloride.
Also preferred are hydrophilically substituted cationic surfactants in which at least one of the substituents contain one or more aromatic, ether, ester, amido, or amino moieties present as substituents or as linkages in the radical chain, wherein at least one of the R^ - R^ radicals contain one or more hydrophilic moieties selected from alkoxy (preferably C-| - C3 alkoxy), polyoxyalkylene (preferably Ci - C3 polyoxyalkylene), alkylamido, hydroxyalkyl, alkylester, and combinations thereof. Preferably, the hydrophilically substituted cationic conditioning surfactant contains from 2 to about 10 nonionic hydrophile moieties located within the above stated ranges. Preferred hydrophilically substituted cationic surfactants include those of the formula (II) through (VIII) below:
Figure imgf000010_0001
wherein n is from 8 to about 28, x+y is from 2 to about 40, ∑1 is a short chain alkyl, preferably a C-j - C3 alkyl, more preferably methyl, or (CH CH20)zH wherein x+y+z is up to 60, and X is a salt forming anion as defined above;
2X" ( E)
Figure imgf000011_0001
wherein m is 1 to 5, one or more of R^, R6, and R^ are independently an C-j - C30 alkyl, the remainder are CH2CH20H, one or two of R3, R9, and R10 are independently an C-] - C30 alkyl, and remainder are CH2CH2OH, and X is a salt forming anion as mentioned above;
Figure imgf000011_0002
X" (V)
Figure imgf000011_0003
wherein, independently for formulae (IV) and (V), Z2 is an alkyl, preferably a Ci - C3 alkyl, more preferably methyl, and z3 is a short chain hydroxyalkyl, preferably hydroxymethyl or hydroxyethyl, p and q independently are integers from 2 to 4, inclusive, preferably from 2 to 3, inclusive, more preferably 2, R11 and R12 ( independently, are substituted or unsubstituted hydrocarbyls, preferably C-| 2 -
C2o alkyl or alkenyl, and X is a salt forming anion as defined above;
Figure imgf000011_0004
wherein R^3 js a hydrocarbyl, preferably a C-j - C3 alkyl, more preferably methyl, Z4 and Z^ are, independently, short chain hydrocarbyls, preferably C - C4 alkyl or alkenyl, more preferably ethyl, a is from 2 to about 40, preferably from about 7 to about 30, and X is a salt forming anion as defined above;
Figure imgf000012_0001
wherein R^4 and Rβ$, independently, are C-| - C3 alkyl, preferably methyl, Z"3 is a C12 - C22 hydrocarbyl, alkyl carboxy or alkylamido, and A is a protein, preferably a collagen, keratin, milk protein, silk, soy protein, wheat protein, or hydrolyzed forms thereof; and X is a salt forming anion as defined above;
X' (VTfl)
Figure imgf000012_0002
wherein b is 2 or 3, R16 and Rπ 7, independently are C-j - C3 hydrocarbyls preferably methyl, and X is a salt forming anion as defined above. Nonlimiting examples of hydrophilically substituted cationic surfactants useful in the present invention include the materials having the following CTFA designations: quaternium-16, quaternium-26, quaternium-27, quaternium-30, quaternium-33, quaternium-43, quaternium-52, quaternium-53, quaternium-56, quatemium-60, quaternium-61 , quaternium-62, quaternium-70, quaternium-71 , quatemium-72, quaternium-75, quatemium-76 hydrolyzed collagen, quaternium-77, quaternium- 78, quaternium-79 hydrolyzed collagen, quaternium-79 hydrolyzed keratin, quaternium-79 hydrolyzed milk protein, quaternium-79 hydrolyzed silk, quaternium-79 hydrolyzed soy protein, and quaternium-79 hydrolyzed wheat protein, quaternium-80, quaternium-81 , quatemium-82, quaternium-83, quaternium-84, and mixtures thereof.
Highly preferred hydrophilically substituted cationic surfactants include dialkylamido ethyl hydroxyethylmonium salt, dialkylamidoethyl dimonium salt, dialkyloyl ethyl hydroxyethylmonium salt, dialkyloyl ethyldimonium salt, and mixtures thereof; for example, commerically available under the following tradenames; VARISOFT 110, VARIQUAT K1215 and 638 from Witco Chemical, MACKPRO KLP, MACKPRO WLW, MACKPRO MLP, MACKPRO NSP, MACKPRO NLW, MACKPRO WWP, MACKPRO NLP, MACKPRO SLP from Mclntyre, ETHOQUAD 18/25, ETHOQUAD 0/12PG, ETHOQUAD C/25, ETHOQUAD S/25, and ETHODUOQUAD from Akzo, OEHYQUAT SP from Henkel, and ATLAS G265 from ICI Americas.
Salts of primary, secondary, and tertiary fatty amines are also suitable cationic surfactants. The alkyl groups of such amines preferably have from about 12 to about 22 carbon atoms, and can be substituted or unsubstituted. Particularly useful are salts of amidoamines which are selected from the species disclosed above under the title "AMIDE AMINE" and "ACID". Preferably, the salts of amidoamines are used as cationic conditioning agents in the composition B. Cationic Polymer
The cationic polymer useful herein is described below. As used herein, the term "polymer" shall include materials whether made by polymerization of one type of monomer or made by two (i.e., copolymers) or more types of monomers. Preferably, the cationic polymer is a water-soluble cationic polymer. By
"water soluble" cationic polymer, what is meant is a polymer which is sufficiently soluble in water to form a substantially clear solution to the naked eye at a concentration of 0.1 %> in water (distilled or equivalent) at 25°C. The preferred polymer will be sufficiently soluble to form a substantially clear solution at 0.5% concentration, more preferably at 1.0% concentration.
The cationic polymers hereof will generally have a weight average molecular weight which is at least about 5,000, typically at least about 10,000, and is less than about 10 million. Preferably, the molecular weight is from about 100,000 to about 2 million. The cationic polymers will generally have cationic nitrogen-containing moieties such as quaternary ammonium or cationic amino moieties, and mixtures thereof.
The cationic charge density is preferably at least about 0.1 meq/gram, more preferably at least about 1.5 meq/gram, even more preferably at least about 1.1 meq/gram, still more preferably at least about 1.2 meq/gram. Cationic charge density of the cationic polymer can be determined according to the Kjeldahl Method. Those skilled in the art will recognize that the charge density of amino-containing polymers may vary depending upon pH and the isoelectric point of the amino groups. The charge density should be within the above limits at the pH of intended use.
Any anionic counterions can be utilized for the cationic polymers so long as the water solubility criteria is met. Suitable counterions include halides (e.g., CI, Br, I, or F, preferably CI, Br, or I), sulfate, and methylsulfate. Others can also be used, as this list is not exclusive.
The cationic nitrogen-containing moiety will be present generally as a substituent, on a fraction of the total monomer units of the cationic hair conditioning polymers. Thus, the cationic polymer can comprise copolymers, terpolymers, etc. of quaternary ammonium or cationic amine-substituted monomer units and other non-cationic units referred to herein as spacer monomer units. Such polymers are known in the art, and a variety can be found in the CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C., 1982).
Suitable cationic polymers include, for example, copolymers of vinyl monomers having cationic amine or quaternary ammonium functionalities with water soluble spacer monomers such as acrylamide, methacrylamide, alkyl and dialkyl acrylamides, alkyl and dialkyl methacrylamides, alkyl acrylate, alkyl methacrylate, vinyl caprolactone, and vinyl pyrrolidone. The alkyl and dialkyl substituted monomers preferably have Ci - C7 alkyl groups, more preferably Ci
- C3 alkyl groups. Other suitable spacer monomers include vinyl esters, vinyl alcohol (made by hydrolysis of polyvinyl acetate), maleic anhydride, propylene glycol, and ethylene glycol.
The cationic amines can be primary, secondary, or tertiary amines, depending upon the particular species and the pH of the composition. In general, secondary and tertiary amines, especially tertiary amines, are preferred. Amine-substituted vinyl monomers can be polymerized in the amine form, and then optionally can be converted to ammonium by a quaternization reaction. Amines can also be similarly quaternized subsequent to formation of the polymer. For example, tertiary amine functionalities can be quaternized by reaction with a salt of the formula R'X wherein R' is a short chain alkyl, preferably a Ci - C7 alkyl, more preferably a C-j - C3 alkyl, and X is an anion which forms a water soluble salt with the quaternized ammonium. Suitable cationic amino and quaternary ammonium monomers include, for example, vinyl compounds substituted with dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salt, diallyl quaternary ammonium salts, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen-containing rings such as pyridinium, imidazolium, and quaternized pyrrolidone, e.g., alkyl vinyl imidazolium, alkyl vinyl pyridinium, alkyl vinyl pyrrolidone salts. The alkyl portions of these monomers are preferably lower alkyls such as the C-j - C3 alkyls, more preferably C-| and C2 alkyls. Suitable amine-substituted vinyl monomers for use herein include dialkylaminoalkyl acrylate, dialkylaminoalkyl methacrylate, dialkylaminoalkyl acrylamide, and dialkylaminoalkyl methacrylamide, wherein the alkyl groups are preferably C-\ - C7 hydrocarbyls, more preferably C-| - C3, alkyls.
The cationic polymers hereof can comprise mixtures of monomer units derived from amine- and/or quaternary ammonium-substituted monomer and/or compatible spacer monomers.
Suitable cationic hair conditioning polymers include, for example: copolymers of 1-vinyl-2-pyrrolidone and 1-vinyl-3-methylimidazolium salt (e.g., chloride salt) (referred to in the industry by the Cosmetic, Toiletry, and Fragrance Association, "CTFA", as Polyquaternium-16), such as those commercially available from BASF Wyandotte Corp. (Parsippany, NJ, USA) under the LUVIQUAT tradename (e.g., LUVIQUAT FC 370); copolymers of 1-vinyl-2- pyrrolidone and dimethylaminoethyl methacrylate (referred to in the industry by CTFA as Polyquaternium-11) such as those commercially available from Gaf Corporation (Wayne, NJ, USA) under the GAFQUAT tradename (e.g., GAFQUAT 755N); cationic diallyl quaternary ammonium-containing polymers, including, for example, dimethyldiallylammonium chloride homopolymer and copolymers of acrylamide and dimethyldiallylammonium chloride, referred to in the industry (CTFA) as Polyquaternium 6 and Polyquatemium 7, respectively; and mineral acid salts of amino-alkyl esters of homo- and co-polymers of unsaturated carboxylic acids having from 3 to 5 carbon atoms, as described in U.S. Patent 4,009,256, incorporated herein by reference.
Other cationic polymers that can be used include polysaccharide polymers, such as cationic cellulose derivatives and cationic starch derivatives. Cationic polysaccharide polymer materials suitable for use herein include those of the formula:
Figure imgf000016_0001
wherein: A is an anhydroglucose residual group, such as a starch or cellulose anhydroglucose residual, R is an alkylene oxyalkylene, polyoxyalkylene, or hydroxyalkylene group, or combination thereof, R1 , R2, and R3 independently are alkyl, aryl, alkylaryl, arylalkyl, alkoxyalkyl, or alkoxyaryl groups, each group containing up to about 18 carbon atoms, and the total number of carbon atoms for each cationic moiety (i.e., the sum of carbon atoms in R1 , R2 and R3) preferably being about 20 or less, and X is an anionic counterion, as previously described.
Cationic cellulose is available from Amerchol Corp. (Edison, NJ, USA) in their Polymer JR® and LR® series of polymers, as salts of hydroxyethyl cellulose reacted with trimethyl ammonium substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 10. Another type of cationic cellulose includes the polymeric quaternary ammonium salts of hydroxyethyl cellulose reacted with lauryl dimethyl ammonium-substituted epoxide, referred to in the industry (CTFA) as Polyquaternium 24. These materials are available from Amerchol Corp. (Edison, NJ, USA) under the tradename Polymer LM-200®. Other cationic polymers that can be used include cationic guar gum derivatives, such as guar hydroxypropyltrimonium chloride (commercially available from Celanese Corp. in their Jaguar R series). Other materials include quaternary nitrogen-containing cellulose ethers (e.g., as described in U.S. Patent 3,962,418, incorporated herein by reference), and copolymers of etherified cellulose and starch (e.g., as described in U.S. Patent 3,958,581 , incorporated herein by reference.) LOW MELTING POINT OIL
The hair conditioning composition B of the present invention comprises a low melting point oil, which has a melting point of less than 25°C, and is included in the composition at a level by weight of from about 0.1 % to about 10%, preferably from about 0.25% to about 6%.
The low melting point oil having a melting point of less than 25°C, can be also included in the composition A at a level by weight of, preferably from about 0.1%) to about 10%, more preferably from about 0.25% to about 6%, still more preferably from about 0.3% to about 3%.
The low melting point oil useful herein is selected from the group consisting of hydrocarbon having from 10 to about 40 carbon atoms, unsaturated fatty alcohols having from about 10 to about 30 carbon atoms, unsaturated fatty acids having from about 10 to about 30 carbon atoms, fatty acid derivatives, fatty alcohol derivatives, ester oils, poly α-olefin oils, and mixtures thereof.
Fatty alcohols useful herein include those having from about 10 to about 30 carbon atoms, preferably from about 12 to about 22 carbon atoms, and more preferably from about 16 to about 22 carbon atoms. These fatty alcohols are unsaturated and can be straight or branched chain alcohols. Suitable fatty alcohols include, for example, oleyl alcohol, isostearyl alcohol, tridecylalcohol, decyl tetradecyl alcohol, and octyl dodecyl alcohol. These alcohols are available, for example, from Shinnihon Rika. Low melting point oils useful herein include pentaerythritol ester oils, trimethylol ester oils, poly α-olefin oils, citrate ester oils, glyceryl ester oils, and mixtures thereof, and the ester oil useful herein is water-insoluble. As used herein, the term "water-insoluble" means the compound is substantially not soluble in water at 25°C; when the compound is mixed with water at a concentration by weight of above 1.0%, preferably at above 0.5%, the compound is temporarily dispersed to form an unstable colloid in water, then is quickly separated from water into two phases.
Pentaerythritol ester oils useful herein are those having the following formula:
Figure imgf000017_0001
wherein R1, R2, R3, and R4, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons. Preferably, R1, R2, R3, and R4, independently, are branched, straight, saturated, or unsaturated alkyl groups having from about 8 to about 22 carbons. More preferably, R1, R2, R3 and R4 are defined so that the molecular weight of the compound is from about 800 to about 1200. Trimethylol ester oils useful herein are those having the following formula:
Figure imgf000018_0001
wherein R11 is an alkyl group having from 1 to about 30 carbons, and R12, R13, and R14, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons. Preferably, R11 is ethyl and R12, R13, and R14, independently, are branched, straight, saturated, or unsaturated alkyl groups having from 8 to about 22 carbons. More preferably, R11, R12, R13 and R14 are defined so that the molecular weight of the compound is from about 800 to about 1200. Particularly useful pentaerythritol ester oils and trimethylol ester oils herein include pentaerythritol tetraisostearate, pentaerythritol tetraoleate, trimethylolpropane triisostearate, trimethylolpropane trioleate, and mixtures thereof. Such compounds are available from Kokyo Alcohol with tradenames KAKPTI, KAKTTI, and Shin-nihon Rika with tradenames PTO, ENUJERUBU TP3SO.
Poly α-olefin oils useful herein are those derived from 1-alkene monomers having from about 6 to about 16 carbons, preferably from about 6 to about 12 carbons atoms. Nonlimiting examples of 1-alkene monomers useful for preparing the poly α-olefin oils include 1-hexene, 1-octene, 1-decene, 1- dodecene, 1-tetradecene, 1-hexadecene, branched isomers such as 4-methyl-1- pentene, and mixtures thereof. Preferred 1-alkene monomers useful for preparing the poly α-olefin oils are 1-octene, 1-decene, 1 -dodecene, 1- tetradecene, 1-hexadecene, and mixtures thereof. Poly α-olefin oils useful herein further have a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3.
Poly α-olefin oils having a molecular weight of at least about 800 are useful herein. Such high molecular weight poly α-olefin oils are believed to provide long lasting moisturized feel to the hair. Poly α-olefin oils having a molecular weight of less than about 800 are useful herein. Such low molecular weight poly α-olefin oils are believed to provide a smooth, light, clean feel to the hair.
Particularly useful poly α-olefin oils herein include polydecenes with tradenames PURESYN 6 having a number average molecular weight of about 500 and PURESYN 100 having a number average molecular weight of about 3000 and PURESYN 300 having a number average molecular weight of about 6000 available from Mobil Chemical Co.
Citrate ester oils useful herein are those having a molecular weight of at least about 500 having the following formula:
Figure imgf000019_0001
wherein R21 is OH or CH3COO, and R22, R23, and R24, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons. Preferably, R21 is OH, and R22, R23, and R24, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R21, R22,
R23 and R24 are defined so that the molecular weight of the compound is at least about 800.
Particularly useful citrate ester oils herein include triisocetyl citrate with tradename CITMOL 316 available from Bernel, triisostearyl citrate with tradename PELEMOL TISC available from Phoenix, and trioctyldodecyl citrate with tradename CITMOL 320 available from Bernel.
Glyceryl ester oils useful herein are those having a molecular weight of at least about 500 and having the following formula:
Figure imgf000019_0002
wherein R41, R42, and R43, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons. Preferably, R41, R42, and R43, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 8 to about 22 carbons. More preferably, R41, R42, and R43 are defined so that the molecular weight of the compound is at least about 800.
Particularly useful glyceryl ester oils herein include triisostearin with tradename SUN ESPOL G-318 available from Taiyo Kagaku, triolein with tradename CITHROL GTO available from Croda Surfactants Ltd., trilinolein with tradename EFADERMA-F available from Vevy, or tradename EFA- GLYCERIDES from Brooks. SILICONE COMPOUNDS Preferably, the composition A of the present invention may further comprises silicone compound. The silicone compound can be included in the composition A at a level by weight of, preferably from about 0.1 % to about 10%), more preferably from about 0.25%> to about 8%>, still more preferably from about 0.5%) to about 3%. The silicone compound can be also included in the composition B at a level by weight of, preferably from about 0.1 %> to about 10%>, more preferably from about 0.25% to about 8%>, still more preferably from about 0.5%> to about 3%.
The silicone compounds hereof can include volatile soluble or insoluble, or nonvolatile soluble or insoluble silicone conditioning agents. By soluble what is meant is that the silicone compound is miscible with the carrier of the composition so as to form part of the same phase. By insoluble what is meant is that the silicone forms a separate, discontinuous phase from the carrier, such as in the form of an emulsion or a suspension of droplets of the silicone. The silicone compounds herein may be made by conventional polymerization, or emulsion polymerization.
The silicone compounds for use herein will preferably have a viscosity of from about 1 ,000 to about 2,000,000 centistokes at 25°C, more preferably from about 10,000 to about 1 ,800,000, and even more preferably from about 25,000 to about 1 ,500,000. The viscosity can be measured by means of a glass capillary viscometer as set forth in Dow Corning Corporate Test Method CTM0004, July 20, 1970, which is incorporated by reference herein in its entirety. Silicone compound of high molecular weight may be made by emulsion polymerization. Silicone compounds useful herein include polyalkyl polyaryl siloxanes, polyalkyleneoxide-modified siloxanes, silicone resins, amino-substituted siloxanes, and mixtures thereof. The silicone compound is preferably selected from the group consisting of polyalkyl polyaryl siloxanes, polyalkyleneoxide- modified siloxanes, silicone resins, and mixtures thereof, and more preferably from one or more polyalkyl polyaryl siloxanes. Polyalkyl polyaryl siloxanes useful here in include those with the following structure (I)
Figure imgf000021_0001
wherein R is alkyl or aryl, and x is an integer from about 7 to about 8,000. "A" represents groups which block the ends of the silicone chains. The alkyl or aryl groups substituted on the siloxane chain (R) or at the ends of the siloxane chains (A) can have any structure as long as the resulting silicone remains fluid at room temperature, is dispersible, is neither irritating, toxic nor otherwise harmful when applied to the hair, is compatible with the other components of the composition, is chemically stable under normal use and storage conditions, and is capable of being deposited on and conditions the hair. Suitable A groups include hydroxy, methyl, methoxy, ethoxy, propoxy, and aryloxy. The two R groups on the silicon atom may represent the same group or different groups. Preferably, the two R groups represent the same group. Suitable R groups include methyl, ethyl, propyl, phenyl, methylphenyl and phenylmethyl. The preferred silicone compounds are polydimethylsiloxane, polydiethylsiloxane, and polymethylphenylsiloxane. Polydimethylsiloxane, which is also known as dimethicone, is especially preferred. The polyalkylsiloxanes that can be used include, for example, polydimethylsiloxanes. These silicone compounds are available, for example, from the General Electric Company in their ViscasilR and SF 96 series, and from Dow Corning in their Dow Corning 200 series. Polymethylphenylsiloxanes, for example, from the General Electric Company as SF 1075 methyl phenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid, are useful herein.
Also preferred, for enhancing the shine characteristics of hair, are highly arylated silicone compounds, such as highly phenylated polyethyl silicone having refractive index of about 1.46 or higher, especially about 1.52 or higher. When these high refractive index silicone compounds are used, they should be mixed with a spreading agent, such as a surfactant or a silicone resin, as described below to decrease the surface tension and enhance the film forming ability of the material.
Another polyalkyl polyaryl siloxane that can be especially useful is a silicone gum. The term "silicone gum", as used herein, means a polyorganosiloxane material having a viscosity at 25°C of greater than or equal to 1 ,000,000 centistokes. It is recognized that the silicone gums described herein can also have some overlap with the above-disclosed silicone compounds. This overlap is not intended as a limitation on any of these materials. Silicone gums are described by Petrarch, and others including U.S. Patent No. 4,152,416, to Spitzer et al., issued May 1 , 1979 and Noll, Walter, Chemistry and Technology of Silicones, New York: Academic Press 1968. Also describing silicone gums are General Electric Silicone Rubber Product Data Sheets SE 30, SE 33, SE 54 and SE 76. All of these described references are incorporated herein by reference in their entirety. The "silicone gums" will typically have a mass molecular weight in excess of about 200,000, generally between about 200,000 and about 1 ,000,000. Specific examples include polydimethylsiloxane, poly(dimethylsiloxane methylvinylsiloxane) copolymer, polydimethylsiloxane diphenylsiloxane methylvinylsiloxane) copolymer and mixtures thereof. Polyalkyleneoxide-modified siloxanes useful herein include, for example, polypropylene oxide modified and polyethylene oxide modified polydimethylsiloxane. The ethylene oxide and polypropylene oxide level should be sufficiently low so as not to interfere with the dispersibility characteristics of the silicone. These material are also known as dimethicone copolyols. Silicone resins, which are highly crosslinked polymeric siloxane systems, are useful herein. The crosslinking is introduced through the incorporation of tri- functional and tetra-functional silanes with mono-functional or di-fu notional, or both, silanes during manufacture of the silicone resin. As is well understood in the art, the degree of crosslinking that is required in order to result in a silicone resin will vary according to the specific silane units incorporated into the silicone resin. In general, silicone materials which have a sufficient level of trifunctional and tetrafu notional siloxane monomer units, and hence, a sufficient level of crosslinking, such that they dry down to a rigid, or hard, film are considered to be silicone resins. The ratio of oxygen atoms to silicon atoms is indicative of the level of crosslinking in a particular silicone material. Silicone materials which have at least about 1.1 oxygen atoms per silicon atom will generally be silicone resins herein. Preferably, the ratio of oxyge silicon atoms is at least about 1.2:1.0. Silanes used in the manufacture of silicone resins include monomethyl-, dimethyl-, trimethyl-, monophenyl-, diphenyl-, methylphenyl-, monovinyl-, and methylvinylchlorosilanes, and tetrachlorosilane, with the methyl substituted silanes being most commonly utilized. Preferred resins are offered by General Electric as GE SS4230 and SS4267. Commercially available silicone resins will generally be supplied in a dissolved form in a low viscosity volatile or nonvolatile silicone fluid. The silicone resins for use herein should be supplied and incorporated into the present compositions in such dissolved form, as will be readily apparent to those skilled in the art. Without being bound by theory, it is believed that the silicone resins can enhance deposition of other silicone compounds on the hair and can enhance the glossiness of hair with high refractive index volumes.
Other useful silicone resins are silicone resin powders such as the material given the CTFA designation polymethylsilsequioxane, which is commercially available as TospearfM fr0m Toshiba Silicones.
Silicone resins can conveniently be identified according to a shorthand nomenclature system well known to those skilled in the art as the "MDTQ" nomenclature. Under this system, the silicone is described according to the presence of various siloxane monomer units which make up the silicone. Briefly, the symbol M denotes the mono-functional unit (CH3)3SiO) 5; D denotes the difunctional unit (CH3)2SiO; T denotes the trifunctional unit (CH3)SiO-| 5; and Q denotes the quadri- or tetra-functional unit Si02. Primes of the unit symbols, e.g., M', D', T', and Q' denote substituents other than methyl, and must be specifically defined for each occurrence. Typical alternate substituents include groups such as vinyl, phenyl, amino, hydroxyl, etc. The molar ratios of the various units, either in terms of subscripts to the symbols indicating the total number of each type of unit in the silicone, or an average thereof, or as specifically indicated ratios in combination with molecular weight, complete the description of the silicone material under the MDTQ system. Higher relative molar amounts of T, Q, T' and/or Q' to D, D', M and/or or M' in a silicone resin is indicative of higher levels of crosslinking. As discussed before, however, the overall level of crosslinking can also be indicated by the oxygen to silicon ratio.
The silicone resins for use herein which are preferred are MQ, MT, MTQ, MQ and MDTQ resins. Thus, the preferred silicone substituent is methyl.
Especially preferred are MQ resins wherein the M:Q ratio is from about 0.5:1.0 to about 1.5:1.0 and the average molecular weight of the resin is from about 1000 to about 10,000.
Amino-substituted siloxanes useful herein include those represented by the following structure (II)
Figure imgf000024_0001
wherein R is CH3 or OH, x and y are integers which depend on the molecular weight, the average molecular weight being approximately between 5,000 and 10,000. This polymer is also known as "amodimethicone".
Suitable amino-substituted siloxane fluids include those represented by the formula (III)
(R1 )aG3-a-Si-(-0SiG2)n-(-0SiGb(R1 )2-b)m-0-SiG3.a(R1 )a (III) in which G is chosen from the group consisting of hydrogen, phenyl, OH, C-i-Cs alkyl and preferably methyl; a denotes 0 or an integer from 1 to 3, and preferably equals 0; b denotes 0 or 1 and preferably equals 1 ; the sum n+m is a number from 1 to 2,000 and preferably from 50 to 150, n being able to denote a number from 0 to 1 ,999 and preferably from 49 to 149 and m being able to denote an integer from 1 to 2,000 and preferably from 1 to 10; R-| is a monovalent radical of formula CqH2qL in which q is an integer from 2 to 8 and L is chosen from the groups
-N(R2)CH2-CH2-N(R2)2
-N(R2)2
-N(R2)3A" -N(R2)CH2-CH2-NR2H2A" in which R2 is chosen from the group consisting of hydrogen, phenyl, benzyl, a saturated hydrocarbon radical, preferably an alkyl radical containing from 1 to 20 carbon atoms, and A" denotes a halide ion. An especially preferred amino-substituted siloxane corresponding to formula (III) is the polymer known as "trimethylsilylamodimethicone", of formula (IV):
CH3 CH3
(CH3)3Si-Or— Si-O— In— r— Si-O— lm— Si (CH3;3 (W)
CH3 (CH2)a NH (CH2)b NH2
In this formula n and m are selected depending on the molecular weight of the compound desired.
Other amino-substituted siloxane which can be used are represented by the formula (V):
Figure imgf000025_0001
where R3 denotes a monovalent hydrocarbon radical having from 1 to 18 carbon atoms, preferably an alkyl or alkenyl radical such as methyl; R4 denotes a hydrocarbon radical, preferably a C-| - C-|8 alkylene radical or a Ci - Cιs> and more preferably Ci - CQ, alkyleneoxy radical; Q" is a halide ion, preferably chloride; r denotes an average statistical value from 2 to 20, preferably from 2 to
8; s denotes an average statistical value from 20 to 200, and preferably from 20 to 50. A preferred polymer of this class is available from Union Carbide under the name "UCAR SILICONE ALE 56."
POLYPROPYLENE GLYCOL
Preferably, the composition A of the present invention may further comprises a polypropylene glycol. The polypropylene glycol can be included in the composition A at a level by weight of, preferably from about 0.1 % to about
10%), more preferably from about 0.25% to about 6%. The polypropylene glycol can be also included in the composition B at a level by weight of, preferably from about 0.1 % to about 10%o, more preferably from about 0.25% to about 6%.
The polypropylene glycol useful herein may has a weight average molecular weight of preferably from about 200 g/mol to about 100,000 g/mol, more preferably from about 1 ,000 g/mol to about 60,000 g/mol. Without intending to be limited by theory, it is believed that the polypropylene glycol herein deposits onto, or is absorbed into hair to act as a moisturizer buffer, and/or provides one or more other desirable hair conditioning benefits. As used herein, the term "polypropylene glycol" includes single-polypropylene glycol-chain segment polymers, and multi-polypropylene glycol-chain segment polymers. The general structure of branched polymers such as the multi-polypropylene glycol- chain segment polymers herein are described, for example, in "Principles of Polymerization," pp. 17-19, G. Odian, (John Wiley & Sons, Inc., 3rd ed., 1991). The polypropylene glycol herein are typically polydisperse polymers. The polypropylene glycols useful herein have a polydispersity of from about 1 to about 2.5, preferably from about 1 to about 2, and more preferably from about 1 to about 1.5. As used herein, the term "polydispersity" indicates the degree of the molecular weight distribution of the polymer sample. Specifically, the polydispersity is a ratio, greater than 1 , equal to the weight average molecular weight divided by the number average molecular weight. For a further discussion about polydispersity, see "Principles of Polymerization," pp. 20-24, G. Odian, (John Wiley & Sons, Inc., 3rd ed., 1991).
The polypropylene glycol useful herein may be either water-soluble, water- insoluble, or may have a limited solubility in water, depending upon the degree of polymerization and whether other moieties are attached thereto. The desired solubility of the polypropylene glycol in water will depend in large part upon the form (e.g., leave-on, or rinse-off form) of the hair care composition. The solubility in water of the polypropylene glycol herein may be chosen by the artisan according to a variety of factors. Accordingly, for a leave-on hair care composition, it is preferred that the polypropylene glycol herein be a water- soluble polypropylene glycol. Solubility information is readily available from polypropylene glycol suppliers, such as Sanyo Kasei (Osaka, Japan). However, the present invention may also take the form of a rinse-off hair care composition. Without intending to be limited by theory, it is believed that in such a composition, a water-soluble polypropylene glycol may be too easily washed away before it effectively deposits on hair and provides the desired benefit(s).
For such a composition, a less soluble, or even a water-insoluble polypropylene glycol is therefore preferred. Accordingly, for a rinse-off hair care composition, it is preferred that the polypropylene glycol herein has a solubility in water at 25 °C of less than about 1 g/100 g water, more preferably a solubility in water of less than about 0.5 g/100 g water, and even more preferably a solubility in water of less than about 0.1 g/100 g water.
Preferably the polypropylene glycol is selected from the group consisting of a single-polypropylene glycol-chain segment polymer, a multi-polypropylene glycol-chain segment polymer, and mixtures thereof, more preferably selected from the group consisting of a single-polypropylene glycol-chain segment polymer of Formula I, below, a multi-polypropylene glycol-chain segment polymer of Formula II, below, and mixtures thereof.
Single-Polypropylene Glycol-Chain Segment Polymer Accordingly, a highly preferred single-polypropylene glycol-chain segment polymer has the formula:
HO-(C3H60)aH (111), wherein a is a value from about 4 to about 400, preferably from about 20 to about
100, and more preferably from about 20 to about 40. The single-polypropylene glycol-chain segment polymer useful herein is typically inexpensive, and is readily available from, for example, Sanyo Kasei
(Osaka, Japan), Dow Chemicals (Midland, Michigan, USA), Calgon Chemical,
Inc. (Skokie, Illinois, USA), Arco Chemical Co. (Newton Square Pennsylvania,
USA), Witco Chemicals Corp. (Greenwich, Connecticut, USA), and PPG Specialty Chemicals (Gurnee, Illinois, USA).
Multi-Polypropylene Glvcol-Chain Segment Polymer
A highly preferred multi-polypropylene glycol-chain segment polymer has the formula:
Figure imgf000027_0001
wherein n is a value from about 0 to about 10, preferably from about 0 to about 7, and more preferably from about 1 to about 4. In Formula IV, each R" is independently selected from the group consisting of H, and Cι-C30 alkyl, and preferably each R" is independently selected from the group consisting of H, and Cι-C4 alkyl. In Formula IV, each b is independently a value from about 0 to about 2, preferably from about 0 to about 1 , and more preferably b = 0. Similarly, c and d are independently a value from about 0 to about 2, preferably from about 0 to about 1. However, the total of b + c + d is at least about 2, preferably the total of b + c + d is from about 2 to about 3. Each e is independently a value of 0 or 1 , if n is from about 1 to about 4, then e is preferably equal to 1. Also in Formula IV, x, y, and z is independently a value of from about 1 to about 120, preferably from about 7 to about 100, and more preferably from about 7 to about 100, where x + y + z is greater than about 20.
Examples of the multi-polypropylene glycol-chain segment polymer of Formula IV which is especially useful herein includes polyoxypropylene glyceryl ether (n = 1 , R' = H, b = 0, c and d = 1 , e = 1 , and x, y, and z independently indicate the degree of polymerization of their respective polypropylene glycol- chain segments; available as New Pol GP-4000, from Sanyo Kasei, Osaka, Japan), polypropylene trimethylol propane (n = 1 , R' = C2H5, b = 1 , c and d = 1 , e = 1 , and x, y, and z independently indicate the degree of polymerization of their respective polypropylene glycol-chain segments), polyoxypropylene sorbitol (n = 4, each R' = H, b = 0, c and d = 1 , each e = 1 , and y, z, and each x independently indicate the degree of polymerization of their respective polypropylene glycol- chain segments; available as New Pol SP-4000, from Sanyo Kasei, Osaka, Japan), and PPG-10 butanediol (n = 0, c and d = 2, and y + z = 10; available as Probutyl DB-10, from Croda, Inc., of Parsippany, New Jersey, U.S.A.).
In a preferred embodiment, one or more of the propylene repeating groups in the polypropylene glycol is an isopropyl oxide repeating group. More preferably one or more of the propylene oxide repeating groups of the polypropylene glycol of Formula 111 and/or the polypropylene glycol of Formula IV is an isopropyl oxide repeating group. Even more preferably, substantially all of the propylene oxide repeating groups of the polypropylene glycol of Formula III and/or the polypropylene glycol of Formula IV are isopropyl oxide repeating groups. Accordingly, a highly preferred single-polypropylene glycol-chain segment polymer has the formula:
Figure imgf000028_0001
wherein a is defined as described above for Formula III. Similarly, a highly preferred multi-polypropylene glycol-chain segment polymer has the formula:
Figure imgf000029_0001
wherein n, R", b, c, d, e, x, y, and z are defined as above, for Formula IV. It is recognized that the isopropyl oxide repeating groups may also correspond either alone, or in combination with the above depicted, to: -(CH2-CH-0)- CH3
The polypropylene glycol useful herein is readily available from, for example, Sanyo Kasei (Osaka, Japan) as New pol PP-2000, New pol PP-4000, New pol GP-4000, and New pol SP-4000, from Dow Chemicals (Midland,
Michigan, USA), from Calgon Chemical, Inc. (Skokie, Illinois, USA), from Arco
Chemical Co. (Newton Square Pennsylvania, USA), from Witco Chemicals Corp.
(Greenwich, Connecticut, USA), and from PPG Specialty Chemicals (Gurnee,
Illinois, USA). POLYETHYLENE GLYCOL
Preferably, the composition B of present invention may further comprise a polyethylene glycol having the formula: H(OCH2CH2)n -OH wherein n has an average value of from 2,000 to 14,000, preferably from about 5,000 to about 9,000, more preferably from about 6,000 to about 8,000.
The polyethylene glycol can be included in the composition B at a level by weight of, preferably from about 0.1 % to about 10%, more preferably from about 0.25%) to about 6%o.
The polyethylene glycol can be also included in the composition A at a level by weight of, preferably from about 0.1 % to about 10%, more preferably from about 0.25%o to about 6%. The polyethylene glycol described above is also known as a polyethylene oxide, and polyoxyethylene. Polyethylene glycols useful herein that are especially preferred are PEG-2M wherein n has an average value of about 2,000 (PEG-2M is also known as Polyox WSR® N-10 from Union Carbide and as PEG- 2,000); PEG-5M wherein n has an average value of about 5,000 (PEG-5M is also known as Polyox WSR® N-35 and as Polyox WSR® N-80, both from Union Carbide and as PEG-5,000 and Polyethylene Glycol 300,000); PEG-7M wherein n has an average value of about 7,000 (PEG-7M is also known as Polyox WSR® N-750 from Union Carbide); PEG-9M wherein n has an average value of about 9,000 (PEG-9M is also known as Polyox WSR® N-3333 from Union Carbide); and PEG-14M wherein n has an average value of about 14,000 (PEG-14M is also known as Polyox WSR® N-3000 from Union Carbide). COMPOSITIONS
The compositions of the present invention can be in the form of rinse-off products or leave-on products, and can be in the form of emulsion, cream, gel, spray or, mousse.
The compositions of the present invention have a suitable viscosity, preferably from about 1 ,000mm2s"1 to about 100,000mm s"1, more preferably from about 2,000mm2s"1 to about 50,000mm2s"1. The viscosity herein can be suitably measured at 2.0s"1 of shear rate after 1 minute of rotation.
In one preferred embodiment of the present invention, the composition comprises by weight:
(a) from about 0.1 %0 to about 15%>, preferably from about 1 % to about 10% of a high melting point fatty compound, preferably, the high melting point fatty compound selected from the group consisting of cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof;
(b) from about 0.1 % to about 10%>, preferably from about 0.5% to about 3% of an amidoamine having the following general formula:
R1 CONH (CH )m N (R2)2 wherein R1 is a residue of C<( -) to C24 fatty acids, R2 is a C-j to C4 alkyl, and m is an integer from 1 to 4, preferably, the amidoamine selected from the group consisting of stearamidopropyl dimethylamine, stearamidoethyl diethylamine, and mixtures thereof;
(c) an acid selected from the group consisting of -έ'-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, -glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 , preferably, £.- Glutamic acid at a level such that the mole ratio of amidoamine to acid is from about 1 :0.5 to about 1 :0.9; (d) from about 0.01 % to about 10% of a particle; and (e) an aqueous carrier.
This composition may further contain a silicone compound at a level by weight of from about 0.1 % to about 10%.
In another preferred embodiment of the present invention, the composition comprises by weight:
(a) from about 0.1 % to about 15%), preferably from about 1 % to about 10%o of a high melting point fatty compound having a melting point of 25°C or higher;
(b) from about 0.1 % to about 10%, preferably from about 0.25%0 to about 5% of a cationic conditioning agent; (c) from about 0.01 % to about 10% of a particle;
(d) an aqueous carrier; and
(e) from about 0.1 % to about 10%), preferably from about 0.25% to about 6% of a polypropylene glycol.
This composition may further contain a low melting point oil having a melting point of less than 25°C at a level by weight of from about 0.1% to about 10%, preferably from about 0.25%o to about 6%, more preferably from about 0.3%) to about 3%.
In another preferred embodiment of the present invention, the composition comprises by weight: (a) from about 0.1 % to about 15%, preferably from about 0.25% to about 5% of a high melting point fatty compound having a melting point of 25°C or higher; (b) from about 0.1 % to about 10%o, preferably from about 0.25%o to about 5% of a cationic conditioning agent; (c) from about 0.1 %o to about 10%, preferably from about 0.25% to about 6% of a low melting point oil having a melting point of less than 25°C, preferably, the low melting point oil being an unsaturated oil;
(d) from about 0.01 % to about 10% of a particle;
(e) an aqueous carrier; and (f) from about 0.1 % to about 10%, preferably from about 0.25% to about 6%0 of a polyethylene glycol. ADDITIONAL COMPONENTS
The composition of the present invention may include other additional components, which may be selected by the artisan according to the desired characteristics of the final product and which are suitable for rendering the composition more cosmetically or aesthetically acceptable or to provide them with additional usage benefits. Such other additional components generally are used individually at levels of from about 0.001%) to about 10%, preferably up to about 5%o by weight of the composition. A wide variety of other additional components can be formulated into the present compositions. These include: other conditioning agents such as hydrolysed collagen with tradename Peptein 2000 available from Hormel, vitamin E with tradename Emix-d available from Eisai, panthenol available from Roche, panthenyl ethyl ether available from Roche, a mixture of Polysorbate 60 and Cetearyl Alcohol with tradename Polawax NF available from Croda Chemicals, glycerylmonostearate available from Stepan Chemicals, hydroxyethyl cellulose available from Aqualon, 3-pyridinecarboxy acid amide (niacinamide), hydrolysed keratin, proteins, plant extracts, and nutrients; hair-fixative polymers such as amphoteric fixative polymers, cationic fixative polymers, anionic fixative polymers, nonionic fixative polymers, and silicone grafted copolymers; preservatives such as benzyl alcohol, methyl paraben, propyl paraben and imidazolidinyl urea; pH adjusting agents, such as citric acid, sodium citrate, succinic acid, phosphoric acid, sodium hydroxide, sodium carbonate; salts, in general, such as potassium acetate and sodium chloride; coloring agents, such as any of the FD&C or D&C dyes; hair oxidizing (bleaching) agents, such as hydrogen peroxide, perborate and persulfate salts; hair reducing agents such as the thioglycolates; perfumes; and sequestering agents, such as disodium ethylenediamine tetra-acetate; ultraviolet and infrared screening and absorbing agents such as octyl salicylate, antidandruff agents such as zinc pyridinethione, and salicylic acid; and optical brighteners, for example polystyrylstilbenes, triazinstilbenes, hydroxycoumarins, aminocoumarins, triazoles, pyrazolines, oxazoles, pyrenes, porphyrins, imidazoles, and mixtures thereof.
EXAMPLES The following examples further describe and demonstrate embodiments within the scope of the present invention. The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention. Ingredients are identified by chemical or CTFA name, or otherwise defined below.
The compositions of the present invention can be in the form of rinse-off products and leave-on products, and can be in the form of emulsion, cream, gel, spray or, mousse.
Figure imgf000033_0001
Compositions
Components Example 4 Example 5 Example 6
Cetyl Alcohol *1 2.6 2.0 2.6
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000035_0001
Definitions of Components
*1 Cetyl Alcohol: Konol series available from Shin Nihon Rika.
*2 Stearyl Alcohol: Konol series available from Shin Nihon Rika.
*3 Stearamidopropyl Dimethylamine: SAPDMA available from Inolex. *4 ^-Glutamic acid: ^-Glutamic acid (cosmetic grade) available from Ajinomoto.
*5 Mica: Mearlmica CF available from Mearl.
*6 Silica: Neosil CBT 60 having an average particle size of 250-400μm available from Crosfield.
*7 Silicone Blend: SE 76 available from General Electric *8 Kathon CG: Methylchloroisothiazolinone and Methylisothiazolinone available from Rohm & Haas.
*9 Hydrolyzed collagen: Peptein 2000 available from Hormel.
*10 Panthenol: available from Roche.
*11 Panthenyl Ethyl Ether: available from Roche. *12 Ditallow dimethyl ammonium chloride: Available from Witco Chemicals.
*13 Pentaerythritol Tetraisostearate: KAK PTI obtained by Kokyu alcohol.
*14 Pentaerythritol Tetraoleate: Available from Shin NihonRika.
*15 Oleyl alcohol: Available from New Japan Chemical.
*16 Trimethylolpropane Triisostearate: KAK TTI obtained by Kokyu alcohol. *17 PEG-2M: Polyox obtained by Union Carbide.
*18 Polysorbate 60, Cetearyl Alcohol: mixture sold as Polawax NF obtained by Croda Chemicals.
*19 Glycerylmonostearate: Available from Stepan Chemicals.
*20 Polypropylene Glycol: PP2000 available from Sanyo Kasei. Method of Preparation
The hair conditioning compositions of Examples 1 and 9 as shown above can be prepared by any conventional method well known in the art. They are suitably made as follows: when included in the composition, polymeric materials such as polypropylene glycol are dispersed in water at room temperature to make a polymer solution, and heated up to above 70°C. Amidoamine and acid, and when present, other cationic surfactants, ester oil of low melting point oil are added in the solution with agitation. Then high melting point fatty compound, and when present, other low melting point oils and benzyl alcohol are also added in the solution with agitation. The mixture thus obtained is cooled down to below 60°C, and the remaining components such as silicone compound are added with agitation, and further cooled down to about 30°C. Then, particles such as silica and mica are added and mixed.
A triblender and/or mill can be used in each step, if necessary to disperse the materials. Alternatively, up to 50% of the acid can be added after cooling below
60°C.
The embodiments disclosed herein have many advantages. For example, they can provide improved texture when the hair conditioning composition is spread on hands and/or hair, and also provide improved conditioning benefits such as moisturized feel, softness, and static control to the hair, and be easy to apply on the hair
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to one skilled in the art without departing from its spirit and scope.

Claims

What is claimed is:
1. A hair conditioning composition comprising by weight:
(a) from about 0.1 %> to about 15% of a high melting point fatty compound;
(b) from about 0.1 %> to about 10% of an amidoamine having the following general formula:
R1 CONH (CH2)m N (R2)2 wherein R"1 is a residue of C-| 1 to C24 fatty acids, R2 is a Ci to C4 alkyl, and m is an integer from 1 to 4;
(c) an acid selected from the group consisting of ^-glutamic acid, lactic acid, hydrochloric acid, malic acid, succinic acid, acetic acid, fumaric acid, £-glutamic acid hydrochloride, tartaric acid, and mixtures thereof, at a level such that the mole ratio of amidoamine to acid is from about 1 :0.3 to about 1 :1 ;
(d) from about 0.01 %> to about 10%> of a particle; and
(e) an aqueous carrier.
2. The hair conditioning composition according to Claim 1 further comprising by weight of from about 0.1 % to about 10% of a silicone compound.
3. The hair conditioning composition according to Claim 1 further comprising by weight from about 0.1 %> to about 10% of a polypropylene glycol.
4. The hair conditioning composition according to Claim 1 comprising by weight:
(a) from about 1% to about 10%> of the high melting point fatty compound selected from the group consisting of cetyl alcohol, stearyl alcohol, behenyl alcohol, and mixtures thereof;
(b) from about 0.5%o to about 3% of the amidoamine selected from the group consisting of stearamidopropyl dimethylamine, stearamidoethyl diethylamine, and mixtures thereof;
(c) -Glutamic acid at a level such that the mole ratio of amidoamine to acid is from about 1 :0.5 to about 1 :0.9; and
(d) from about 0.1 %> to about 5% of the particle; and
(e) an aqueous carrier.
5. A hair conditioning composition comprising by weight:
(a) from about 0.1 %o to about 15%> of a high melting point fatty compound having a melting point of 25°C or higher;
(b) from about 0.1 % to about 10%> of a cationic conditioning agent;
(c) from about 0.1 % to about 10% of a low melting point oil having a melting point of less than 25°C;
(d) from about 0.01 % to about 10%> of a particle; and
(e) an aqueous carrier.
6. The hair conditioning composition according to Claim 5 wherein the low melting point oil is an unsaturated fatty alcohol.
7. The hair conditioning composition according to Claim 5 wherein the low melting point oil is selected from the group consisting of:
(a) pentaerythritol ester oils having a molecular weight of at least about 800, and having the following formula:
Figure imgf000039_0001
wherein R1, R2, R3, and R4, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons;
(b) trimethylol ester oils having a molecular weight of at least about 800, and having the following formula:
3
Figure imgf000039_0002
wherein R11 is an alkyl group having from 1 to about 30 carbons, and R12, R13, and R14, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons;
(c) poly α-olefin oils derived from 1-alkene monomers having from about 6 to about 16 carbons, the poly α-olefin oils having a viscosity of from about 1 to about 35,000 cst, a molecular weight of from about 200 to about 60,000, and a polydispersity of no more than about 3;
(d) citrate ester oils having a molecular weight of at least about 500, and having the following formula:
Figure imgf000040_0001
wherein R21 is OH or CH3COO, and R22, R23, and R24, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons;
(e) glyceryl ester oils having a molecular weight of at least about 500, and having the following formula:
Figure imgf000040_0002
wherein R41, R42, and R43, independently, are branched, straight, saturated, or unsaturated alkyl, aryl, and alkylaryl groups having from 1 to about 30 carbons; and mixtures thereof.
8. The hair conditioning composition according to Claim 5 further comprising by weight from about 0.1 % to about 10%o of a polyethylene glycol having the formula:
H(OCH2CH2)n -OH wherein n has an average value of from 2,000 to 14,000.
9. The hair conditioning composition according to Claims 1 and 5, wherein the particle is selected from the group consisting of mica, silica, mud, clay, and mixtures thereof.
10. The hair conditioning composition according to Claims 1 and 5, wherein the particle has an average particle size of from about 25μm to about 1500μm.
11. The hair conditioning composition according to Claims 1 and 5 having a viscosity of from about 1 ,000mm2s"1 to about 100,000mm2s"1.
PCT/US2000/024646 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles WO2002019976A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/US2000/024646 WO2002019976A1 (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles
AU2000273584A AU2000273584A1 (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles
EP00961663A EP1328240A1 (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles
MXPA03002057A MXPA03002057A (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles.
CN00819878.0A CN1454074A (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles
JP2002524461A JP2004508313A (en) 2000-09-08 2000-09-08 Hair conditioning composition containing particles
US10/383,439 US20030215415A1 (en) 2000-09-08 2003-03-07 Hair conditioning compositions comprising particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/024646 WO2002019976A1 (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/383,439 Continuation US20030215415A1 (en) 2000-09-08 2003-03-07 Hair conditioning compositions comprising particles

Publications (1)

Publication Number Publication Date
WO2002019976A1 true WO2002019976A1 (en) 2002-03-14

Family

ID=21741758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/024646 WO2002019976A1 (en) 2000-09-08 2000-09-08 Hair conditioning compositions comprising particles

Country Status (6)

Country Link
EP (1) EP1328240A1 (en)
JP (1) JP2004508313A (en)
CN (1) CN1454074A (en)
AU (1) AU2000273584A1 (en)
MX (1) MXPA03002057A (en)
WO (1) WO2002019976A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004000250A1 (en) * 2002-06-21 2003-12-31 Unilever Plc Hair conditioning composition
WO2005039517A1 (en) * 2003-10-21 2005-05-06 Unilever Plc Hair conditioning compositions
DE102005060435A1 (en) * 2005-12-15 2007-06-21 Henkel Kgaa Sprayable composition for treating keratin fibers, useful for temporary styling of hair, contains wax, emulsifier, propellant and powdered inorganic compound
WO2010002398A1 (en) * 2008-07-01 2010-01-07 Colgate-Palmolive Company Skin cleansing formulations with silica particle sensory indicator
US7691398B2 (en) 2001-04-12 2010-04-06 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Hair treatment composition comprising composite particles of clay and charged organic molecule
EP3461471A1 (en) * 2006-04-10 2019-04-03 Inolex Investment Corporation Hair conditioning cosmetic compositions containing a mixture of amidoamines
WO2020002051A1 (en) * 2018-06-28 2020-01-02 L'oreal Composition for dyeing keratin fibres, comprising at least one copolymer derived from the polymerization of at least one crotonic acid monomer and of at least one vinyl ester monomer and a fatty amine
US10993896B2 (en) 2015-05-01 2021-05-04 L'oreal Compositions for altering the color of hair
US11083675B2 (en) 2015-11-24 2021-08-10 L'oreal Compositions for altering the color of hair
US11090249B2 (en) 2018-10-31 2021-08-17 L'oreal Hair treatment compositions, methods, and kits for treating hair
US11135150B2 (en) 2016-11-21 2021-10-05 L'oreal Compositions and methods for improving the quality of chemically treated hair
US11213470B2 (en) 2015-11-24 2022-01-04 L'oreal Compositions for treating the hair
US11419809B2 (en) 2019-06-27 2022-08-23 L'oreal Hair treatment compositions and methods for treating hair
US11433011B2 (en) 2017-05-24 2022-09-06 L'oreal Methods for treating chemically relaxed hair
US11596588B2 (en) 2017-12-29 2023-03-07 L'oreal Compositions for altering the color of hair

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863408B2 (en) * 2009-03-06 2012-01-25 株式会社 資生堂 Hair treatment composition
JP5395817B2 (en) * 2011-01-19 2014-01-22 花王株式会社 Vesicle composition, production method thereof and use thereof
JP5373177B2 (en) * 2012-02-02 2013-12-18 株式会社 資生堂 Re-dispersion powder dispersion cosmetic
JP6735085B2 (en) * 2015-11-16 2020-08-05 花王株式会社 Hair cosmetics
BR112018010344B1 (en) * 2015-11-24 2021-08-10 L'oreal HAIR COMPOSITION, HAIR TREATMENT SYSTEM AND METHOD, METHODS FOR CHANGING HAIR COLOR AND HAIR SHAPE, AND, MULTICOMPARTMENT KITS
JP6718705B2 (en) * 2016-03-15 2020-07-08 花王株式会社 Hair cosmetics
WO2018057413A1 (en) * 2016-09-23 2018-03-29 The Procter & Gamble Company Stable foam compositions and methods of using the same to provide enhanced sensory and visual benefits to skin
EP4077613A1 (en) * 2019-12-20 2022-10-26 The Procter & Gamble Company Particulate fabric care composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031616A1 (en) * 1996-02-28 1997-09-04 The Procter & Gamble Company Mild hair conditioning compositions
WO2000038621A1 (en) * 1998-12-23 2000-07-06 Unilever Plc Self-warming hair conditioning compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031616A1 (en) * 1996-02-28 1997-09-04 The Procter & Gamble Company Mild hair conditioning compositions
WO2000038621A1 (en) * 1998-12-23 2000-07-06 Unilever Plc Self-warming hair conditioning compositions

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691398B2 (en) 2001-04-12 2010-04-06 Unilever Home & Personal Care Usa Division Of Conopco, Inc. Hair treatment composition comprising composite particles of clay and charged organic molecule
WO2004000250A1 (en) * 2002-06-21 2003-12-31 Unilever Plc Hair conditioning composition
KR101150604B1 (en) * 2003-10-21 2012-05-30 유니레버 엔.브이. Hair conditioning compositions
AU2004283446B2 (en) * 2003-10-21 2008-05-29 Unilever Plc Hair conditioning compositions
WO2005039517A1 (en) * 2003-10-21 2005-05-06 Unilever Plc Hair conditioning compositions
CN102218023B (en) * 2003-10-21 2013-01-23 荷兰联合利华有限公司 Hair conditioning compositions
DE102005060435A1 (en) * 2005-12-15 2007-06-21 Henkel Kgaa Sprayable composition for treating keratin fibers, useful for temporary styling of hair, contains wax, emulsifier, propellant and powdered inorganic compound
EP3461471A1 (en) * 2006-04-10 2019-04-03 Inolex Investment Corporation Hair conditioning cosmetic compositions containing a mixture of amidoamines
WO2010002398A1 (en) * 2008-07-01 2010-01-07 Colgate-Palmolive Company Skin cleansing formulations with silica particle sensory indicator
AU2008358914B2 (en) * 2008-07-01 2012-11-29 Colgate-Palmolive Company Skin cleansing formulations with silica particle sensory indicator
US10993896B2 (en) 2015-05-01 2021-05-04 L'oreal Compositions for altering the color of hair
US11213470B2 (en) 2015-11-24 2022-01-04 L'oreal Compositions for treating the hair
US11191706B2 (en) 2015-11-24 2021-12-07 L'oreal Compositions for altering the color of hair
US11083675B2 (en) 2015-11-24 2021-08-10 L'oreal Compositions for altering the color of hair
US11135150B2 (en) 2016-11-21 2021-10-05 L'oreal Compositions and methods for improving the quality of chemically treated hair
US11433011B2 (en) 2017-05-24 2022-09-06 L'oreal Methods for treating chemically relaxed hair
US11596588B2 (en) 2017-12-29 2023-03-07 L'oreal Compositions for altering the color of hair
FR3083111A1 (en) * 2018-06-28 2020-01-03 L'oreal KERATINIC FIBER COLORING COMPOSITION COMPRISING AT LEAST ONE COPOLYMER DERIVED FROM THE POLYMERIZATION OF AT LEAST ONE CROMONIC ACID MONOMER AND AT LEAST ONE VINYL ESTER MONOMER AND A FATTY AMINE
WO2020002051A1 (en) * 2018-06-28 2020-01-02 L'oreal Composition for dyeing keratin fibres, comprising at least one copolymer derived from the polymerization of at least one crotonic acid monomer and of at least one vinyl ester monomer and a fatty amine
US11980682B2 (en) 2018-06-28 2024-05-14 L'oreal Composition for dyeing keratin fibres, comprising at least one copolymer derived from the polymerization of at least one crotonic acid monomer and of at least one vinyl ester monomer and a fatty amine
US11090249B2 (en) 2018-10-31 2021-08-17 L'oreal Hair treatment compositions, methods, and kits for treating hair
US11975092B2 (en) 2018-10-31 2024-05-07 L'oreal Hair treatment compositions, methods, and kits for treating hair
US11419809B2 (en) 2019-06-27 2022-08-23 L'oreal Hair treatment compositions and methods for treating hair

Also Published As

Publication number Publication date
CN1454074A (en) 2003-11-05
MXPA03002057A (en) 2003-07-24
JP2004508313A (en) 2004-03-18
AU2000273584A1 (en) 2002-03-22
EP1328240A1 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
AU780644B2 (en) Antidandruff hair conditioning composition
US20040028711A1 (en) Anhydrous cosmetic compositions
WO2002100360A1 (en) Hair conditioning composition comprising cellulose polymer
WO2002019976A1 (en) Hair conditioning compositions comprising particles
US20030185779A1 (en) Hair care kits and heating devices for warming hair care compositions
EP1200044A1 (en) Hair conditioning composition comprising hydrophobically modified cellulose ether
EP1355623B1 (en) Anhydrous cosmetic compositions
US6468515B1 (en) Hair conditioning composition comprising high molecular weight ester oil
WO1999062492A1 (en) Hair conditioning compositions
US20030215415A1 (en) Hair conditioning compositions comprising particles
EP1328241A2 (en) Hair care kits and heating devices for warming hair care compositions
EP1083864A1 (en) Hair conditioning composition comprising poly alpha-olefin oil
EP1233740A1 (en) Hair conditioning composition comprising hydrophobically modified cationic cellulose
WO2001008643A1 (en) Hair conditioning compositon comprising cationic silicone emulsion
EP1014919A1 (en) Hair conditioning composition comprising high molecular weight ester oil
WO1999062466A1 (en) Hair conditioning composition comprising citrate ester oil
EP1087745A1 (en) Hair conditioning composition comprising primary oil and secondary oil
WO2000064412A1 (en) Hair conditioning compositions
WO1999024014A1 (en) Hair conditioning compositions comprising hydrophilically substituted cationic surfactants and high melting point compounds
AU2001238015A1 (en) Anhydrous cosmetic compositions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002524461

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/002057

Country of ref document: MX

Ref document number: 10383439

Country of ref document: US

Ref document number: 008198780

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000961663

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000961663

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000961663

Country of ref document: EP