WO2002018924A1 - Method for determination of substrate and biosensor - Google Patents

Method for determination of substrate and biosensor Download PDF

Info

Publication number
WO2002018924A1
WO2002018924A1 PCT/JP2000/005789 JP0005789W WO0218924A1 WO 2002018924 A1 WO2002018924 A1 WO 2002018924A1 JP 0005789 W JP0005789 W JP 0005789W WO 0218924 A1 WO0218924 A1 WO 0218924A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
acid
electrode
substrate
biosensor
Prior art date
Application number
PCT/JP2000/005789
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Shinozuka
Toru Yokoyama
Kenji Nakamura
Original Assignee
Sapporo Immuno Diagnostic Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Immuno Diagnostic Laboratory filed Critical Sapporo Immuno Diagnostic Laboratory
Priority to PCT/JP2000/005789 priority Critical patent/WO2002018924A1/en
Priority to AU2000267324A priority patent/AU2000267324A1/en
Publication of WO2002018924A1 publication Critical patent/WO2002018924A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted

Definitions

  • the present invention relates to a method and a biosensor for specifically and simply quantifying a substrate in a sample without requiring complicated pretreatment of the sample.
  • a reaction reagent comprising at least a dehydrogenase, a coenzyme, an electron mediator, and a tetrazolium salt was immobilized on an absorbent carrier and placed on an electrode formed on the same plane using a conductive material.
  • a method for quantifying a substrate and a biosensor are provided. Background of the Invention
  • a biosensor is a technology that enables quantification by combining a molecular recognition function that specifically reacts with a substrate contained in a sample, a transducer that can electrically convert information, and electronics technology.
  • enzyme sensors immunosensors, DNA sensors, etc.
  • enzyme sensors have been the most studied since ancient times and widely used.
  • Enzyme sensors are also classified into reaction principles using oxidases or dehydrogenases. Enzyme sensors using oxidases have been applied to many blood glucose measurement sensors. However, an enzyme sensor using an oxidase is greatly affected by dissolved oxygen, which poses a major problem when measuring low-concentration regions. For this reason, enzymatic sensors using dehydrogenase that are not affected by dissolved oxygen are being actively studied.
  • biosensor that integrates oxidized nicotinamide adenine dinucleotide (NAD +) of various dehydrogenases and coenzymes and 1-methoxy PMS of electron mediator with an electrode as a reaction reagent.
  • NAD + oxidized nicotinamide adenine dinucleotide
  • 1-methoxy PMS 1-methoxy PMS of electron mediator with an electrode as a reaction reagent.
  • a biosensor using a reagent consisting of a tetrazolium salt has been developed (PC TZ JP99 / 0 1 3 9 2). Compared to biosensors using reduced coenzyme direct oxidation or various electronic media, this biosensor ultimately produces chemically stable formazan, resulting in less responsive response. A current is obtained. In addition, a large increase in response current and an improvement in detection sensitivity were observed, enabling highly sensitive quantification of the substrate in a low concentration range.
  • At least a dehydrogenase, a coenzyme, an electron mediator and a tetrazolium salt are formed on at least an electrode composed of a working electrode and a counter electrode formed on the same plane using a conductive material. It is intended to provide a method for quantifying a substrate and a biosensor on which an absorptive carrier in which a reaction reagent consisting of:
  • the biosensor of the present invention is on the same plane
  • the electrode system is formed in a simple manner.Since it has a simple structure in which an absorptive carrier on which all the reaction reagents are immobilized is simply laminated on the electrodes, the biosensor can be easily manufactured, Production has become possible. Description of the invention
  • an electrode system comprising at least a working electrode and a counter electrode formed on the same plane using a conductive material, and absorbing a reaction reagent comprising at least a dehydrogenase, a coenzyme, an electron mediator, and a tetrazolium salt.
  • the reducing coenzyme is generated by a specific enzymatic reaction of a substrate in a sample with a dehydrogenase and a coenzyme as reaction reagents, and further, a redox reaction with an electron mediator and a tetrazolium salt. Progress and eventually produce chemically stable formazan. Subsequently, when a potential is applied to the electrode, formazan is oxidized, and the concentration of the substrate in the sample can be determined from the obtained oxidation current.
  • the feature of the present invention is that by disposing the absorbent carrier on both electrodes formed on the same plane on the insulating substrate, an effect of the filter by the absorbent carrier can be obtained, and the measurement contained in the sample can be performed. Separation of the influential solid components etc. becomes possible, and only the separated sample reaches both electrodes. Further, the separation effect can be further improved by using several kinds of absorbent carriers and gradually reducing the pore size. In addition, since it has a simple structure in which an absorbent carrier is simply laminated on the electrode, the biosensor can be easily manufactured and mass production is possible. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows a method for manufacturing an electrode according to one embodiment of the present invention
  • FIG. 2 is a configuration diagram of a method (1) for manufacturing a sensor chip in Example 2
  • FIG. 3 is a configuration diagram of a method (2) of manufacturing a sensor chip in Example 3.
  • FIG. It is a block diagram of the manufacturing method (3).
  • FIG. 5 is a configuration diagram of a method (4) for manufacturing a sensor chip in Example 5
  • FIG. 6 is a rough drawing showing a result of an addition test of glucose in saliva in Example 6;
  • FIG. 7 is a graph showing the results of a dilution test of glucose in saliva in Example 7.
  • the structures of the substrate to be measured, the reaction reagent, and the sensor chip will be described in order.
  • the measurable substrate of the present invention is not particularly limited as long as it can generate a reduced coenzyme using dehydrogenase as a catalyst, and any substrate can be quantified.
  • alanine, alcohol, aldehyde, isochenoic acid, peridine-5, -diphosphoglucose, galactose, formic acid, dariceraldehyde-13-monophosphate, glycerol, glycerol-13-phosphate, glucose, glucose-16 —Phosphoric acid, glutamic acid, cholesterol, sarcosine, sorbitol, carbonic acid, lactic acid, 3-hydroxybutyric acid, pyruvic acid, phenylalanine, flux 1, 6-phosphogluconic acid, formaldehyde, mannitol, malic acid, mouth isocyanate Etc. are available.
  • the dehydrogenase used in the present invention is not particularly limited as long as it is an enzyme that produces a reduced coenzyme, and the origin is not particularly limited.
  • alanine dehydrogenase alcohol dehydrogenase, aldehyde dehydrogenase, isocenoic acid dehydrogenase, peridine-1,5-diphosphoglucose dehydrogenase, galactose dehydrogenase, formate dehydrogenase, darisel Aldehyde-13-phosphate dehydrogenase, glycerol dehydrogenase, glycerol-13-phosphate dehydrogenase, glucose dehydrogenase, glucose-16-phosphate dehydrogenase, glutamate dehydrogenase, kore Sterol dehydrogenase, sarcosine dehydrogenase, sorbitol dehydrogenase, carbonic acid dehydrogenase, lactate
  • the electron mediator is a substance that promptly undergoes an oxidative reduction reaction with a reduced coenzyme and a tetrazolium salt.
  • the electron mediator for example, quinones, diaphorases, cytochromes, porogens, phenazines, 'phenoxazines, phenothiazines, ferricyanides, ferredoxins, phenocens and derivatives thereof can be used.
  • phenazines show stable response here, and in particular, 1-methoxy PMS has good storage stability and excellent reactivity with reduced coenzyme and tetrazolium salt. —I found it to be a good evening.
  • the tetrazolium salt is not particularly limited as long as it forms formazan, and among them, 2- (4-1-dophenyl) -1,3- (412-trophenyl) 1,5-1 (2,4-disulfophenyl) 1-1 2H-tetrazolium, monosodium salt (WST-1) is a water-soluble and chemically stable formazane produced upon reduction, and the produced formazan shows good response in electrochemical detection methods From this, it has been found that the tetrazolium salt in the present invention is preferable.
  • the electrode used in the present invention is a conductive substance and is not particularly limited as long as it is electrochemically stable.
  • the material is carbon, gold, silver, silver / silver chloride, nickel, platinum, platinum black, and platinum black. Palladium, etc., and their alloys can be used. As a result of examining various materials among them, they found that carbon materials are inexpensive and chemically stable, and are preferable as working electrodes of the electrodes in the present invention.
  • the carbon material means all materials containing carbon.
  • the carbon materials that can be used are not particularly limited, and are used in conventional carbon electrodes. Any material can be used, for example, pon fiber, carbon black, bon paste, glass, bonbon, graphite, and the like.
  • Such a carbon material is formed as an electrode portion on an insulating support by a conventional method. Usually, it can be formed by printing a paste made from a carbon fiber material using a resin binder or the like and then heating and drying the paste.
  • the printing method is not particularly limited to screen printing, and gravure printing, offset printing, inkjet printing, and the like can be applied.
  • the counter electrode also serves as the reference electrode, silver / silver silver is selected here.
  • the lead that is the connection between the electrode reaction part and the electrochemical detection circuit is the most conductive and inexpensive silver. Was selected and formed by printing.
  • a two-electrode system including only the working electrode and the counter electrode is used.
  • a three-electrode system including a reference electrode is used, more accurate quantification can be performed.
  • the insulating support examples include glass, glass epoxy, ceramics, and plastic.
  • plastic films such as polyester, polyethylene, polyethylene terephthalate (PET), polystyrene, and polypropylene are inexpensive, and PET films are preferred here because of their good adhesion to conductive inks and good workability. I found it.
  • the cover, spacer, and the material that adheres to it can be shaped as long as the sample can be retained, the absorbent carrier can be retained, there is no hindrance to the series of reactions, and external contact with the reaction area can be protected. There are no particular restrictions on the material, etc.
  • the absorbent carrier used in the present invention is not particularly limited as long as it is a material that can absorb the reaction reagent solution and does not affect the reaction reagent.
  • the material include glass fiber, silica fiber, and cellulose fiber. Fibers and carboxymethylcellulose, getylaminoethylcellulose, cellulose acetate, cellulose mixed ester, nylon woven fabric, nitrocellulose, polypropylene, polyether sulfone, polyester nonwoven fabric, polytetrafluoroethylene (PTFE), Polypropylene or the like can be used.
  • the three types of absorbent carriers of the absorption layer, the spreading layer, and the reaction layer are respectively It uses polypropylene, cellulose fiber, and nitrocellulose, and forms a reaction reagent layer by layering them.
  • a single-layer structure is also possible, in which case the constituent materials can be reduced.
  • Example 1 Method for producing electrode
  • FIG. 1 shows the electrode manufactured in this example. It should be noted that this electrode can be manufactured more easily by screen printing two types of electrodes on the same plane.
  • FIG. 2 shows the sensor chip manufactured in this example.
  • This sensor chip is composed of the electrode prepared in Example 1 and three kinds of absorbent carriers.
  • the sample is supplied into the sensor chip by bringing the sample into contact with the supply port 7 of the force par 6. It is a structure that can be used.
  • a polypropylene membrane (manufactured by Nippon Millipore Co., Ltd.) is used as the absorbent carrier 8 of the absorption layer, and a buffer component for adjusting the optimum pH of the enzyme reaction is absorbed in a solution and dried (at 40 ° C). , 15 minutes).
  • a nitrocellulose membrane (manufactured by Nippon Millipore Co., Ltd.) was used as the absorbent carrier 10 in the reaction layer, and a tetrazolium salt WST-1 (manufactured by Dojin Chemical Lab.) And a dehydrogenase (Toyobo) Co., Ltd.) and oxidized nicotinamide adenine dinucleotide (NAD '+) (manufactured by Oriental Co., Ltd.) as a coenzyme were dissolved in a phosphate buffer solution (pH 7.4, 2 O mM). After absorption, drying (40. C, 10 minutes), the cells were immobilized.
  • a phosphate buffer solution pH 7.4, 2 O mM
  • FIG. 3 shows the sensor chip manufactured in this example.
  • the sensor chip is composed of the electrode prepared in Example '1 and one kind of absorbent carrier', and the sample is supplied into the sensor chip by bringing the sample into contact with the supply port 7 on the side of the sensor chip. It is a structure that can do it.
  • Buffer solution, 1-methoxy PMS, WST-1 and enzyme are absorbed into each part of the nitrocellulose membrane of absorbent carrier 10 and dried (40 ° C, 10 minutes) and fixed. It has become.
  • Example 4 Manufacturing method of sensor chip (3)
  • FIG. 4 shows the sensor chip manufactured in this example.
  • This sensor chip is composed of the electrode prepared in Example 1 and three types of absorbent carriers.
  • the sample is immediately supplied into the sensor chip. Do Can be.
  • Example 5 Sensor chip fabrication method (4)
  • FIG. 5 shows the sensor chip manufactured in this example.
  • This sensor chip is composed of the electrode prepared in Example 1 and three types of absorbent carriers. By bringing the sample into contact with the supply port 7 on the side of the sensor chip, the sample can be supplied into the sensor chip. It has a structure that can be used.
  • Example 6 Addition test of gafflecose in saliva
  • FIG. 6 shows the results of measurement using a biosensor produced using glucose dehydrogenase in Example 2 and saliva samples adjusted to various concentrations by adding glucose to saliva.
  • a saliva sample was added 70, and after 60 seconds, a potential of +50 OmV was applied with reference to the counter electrode, and the response current value was measured 7 seconds after the potential was applied. This result shows the concentration obtained by calculating the obtained response current value by the conversion formula.
  • FIG. 7 shows the results of measurement using the biosensor prepared in Example 6 and a sample obtained by diluting saliva having a high glucose concentration with physiological saline.
  • Example 6 In the same manner as in the measurement of Example 6, a sample containing glucose was immersed in 70 L, and after 60 seconds, a potential of +50 OmV was applied with reference to the counter electrode. The response current value was measured. This result shows the concentration obtained by calculating the obtained response current value by the conversion formula.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method for determining a substrate wherein a substrate in a sample is determined by providing a biosensor having a structure in which electrodes are formed on the same plane by the use of electrically conductive materials, and reaction reagents including at least a dehydrogenase, a coenzyme, an electronic mediator and a tetrazolium salt are fixed on absorbent carriers and arranged on or above the electrodes, and detecting electrochemically a formazan produced by the supply of a sample; and a biosensor used therein. The method and the biosensor can be used for determining a substrate in a sample specifically, rapidly and with ease, without the need of a complicated pretreatment of the sample.

Description

明 細 書  Specification
基質の定量方法およびパイォセンサ 発明の分野  FIELD OF THE INVENTION Field of the Invention
本発明は、 試料の煩雑な前処理を必要とせずに、 試料中の基質を特異的に簡便 でしかも迅速に定量する方法およびバイオセンサに関する。 具体的には、 導電性 材料を用いて同一平面上に形成された電極上に、少なくとも脱水素酵素、補酵素、 電子メディエータおよびテトラゾリゥム塩からなる反応試薬を吸収性担体に固定 化させて配置した基質の定量方法およびバイオセンサを提供するものである。 発明の背景  The present invention relates to a method and a biosensor for specifically and simply quantifying a substrate in a sample without requiring complicated pretreatment of the sample. Specifically, a reaction reagent comprising at least a dehydrogenase, a coenzyme, an electron mediator, and a tetrazolium salt was immobilized on an absorbent carrier and placed on an electrode formed on the same plane using a conductive material. A method for quantifying a substrate and a biosensor are provided. Background of the Invention
近年、 試料溶液の希釈や撹拌等を行うことなく、 簡便でしかも迅速に試料中の 基質を定量するさまざまなバイオセンサが考案され、 実用化されている。  In recent years, various biosensors have been devised and put into practical use that simply and rapidly quantify a substrate in a sample without diluting or stirring the sample solution.
バイオセンサとは、 試料中に含まれる基質と特異的に反応する分子認識機能と、 電気的に情報変換が可能なトランスデューサと、 エレクトロニクス技術とを組み 合わせることにより定量が可能となる技術で、 定量する生体物質により、 酵素セ ンサ、 免疫センサ、 D NAセンサ等に分類される。 その中で、 酵素センサが古く から最も研究され、 広く実用化されている。  A biosensor is a technology that enables quantification by combining a molecular recognition function that specifically reacts with a substrate contained in a sample, a transducer that can electrically convert information, and electronics technology. Are classified into enzyme sensors, immunosensors, DNA sensors, etc. Among them, enzyme sensors have been the most studied since ancient times and widely used.
酵素センサにも、 酸化酵素もしくは脱水素酵素を用いた反応原理に分類され、 特に酸化酵素を用いた酵素センサは、多くの血糖測定用センサに応用されている。 しかし、 酸化酵素を用いた酵素センサでは、 溶存酸素の影響を大きく受け、 低濃 度領域を測定する場合、 大きな問題となってくる。 このことから、 溶存酸素の影 響を受けない脱水素酵素を用いた酵素センサの研究が盛んに行われている。  Enzyme sensors are also classified into reaction principles using oxidases or dehydrogenases. Enzyme sensors using oxidases have been applied to many blood glucose measurement sensors. However, an enzyme sensor using an oxidase is greatly affected by dissolved oxygen, which poses a major problem when measuring low-concentration regions. For this reason, enzymatic sensors using dehydrogenase that are not affected by dissolved oxygen are being actively studied.
脱水素酵素反応から生成する還元型補酵素は、 非導電性の蛋白質であるので、 直接電気化学的に検出するには、 高い印加電位を要する問題がある。 そこで、 酵 素反応から生成した還元型補酵素を電子メデイエ一夕を介して電気化学的に検出 する方法が、 繋用されている。 (特開平 1 0— 1 6 5 1 9 9 )。 電子メデイエ一夕 は、 還元型補酵素との酸化還元反応によって還元型電子メデイエ一夕を生じ、 電 極により電位を印加することで、 容易に酸化還元反応し、 試料中の基質濃度の定 量が可能となる。 このことから、 電子メデイエ一夕を用いることによって酵素セ ンサの作製が可能となる。 Since the reduced coenzyme produced from the dehydrogenase reaction is a non-conductive protein, direct electrochemical detection requires a high applied potential. Therefore, a method of electrochemically detecting the reduced coenzyme generated from the enzymatic reaction via electronic media has been used. (Japanese Unexamined Patent Publication No. 10-165 1999). In the electron media reaction, a reduced electron mediator is generated by a redox reaction with a reduced coenzyme, and a redox reaction is easily performed by applying an electric potential to the electrode to determine the substrate concentration in the sample. Amount is possible. From this, it is possible to produce enzyme sensors by using electronic media.
我々も、 種々の脱水素酵素と補酵素の酸化型ニコチンアミドアデニンジヌクレ ォチド (NAD +) および電子メディエー夕の 1—メトキシ P M Sを反応試薬 に用いて、 電極と一体化させたバイオセンサ (特願平 1 0— 2 0 1 5 5 3 , WO 0 0 / 0 4 3 7 8 )を考案し、種々の基質に対してバイオセンサを作製してきた。 これらのバイオセンサの特徴として、 導電性材料を印刷手法によって形成した作 用極と対極を対向させた電極間に、 反応試薬をすベて担持した吸収性担体を配置 したバイォセンサであり、 各基質濃度に依存する直線的で良好な応答電流を確認 している。 しかし、 その後の検討から、 これらのバイオセンサは基質の低濃度領 域におけるばらつきが大きく、 改良の必要があった。  We have also developed a biosensor (special feature) that integrates oxidized nicotinamide adenine dinucleotide (NAD +) of various dehydrogenases and coenzymes and 1-methoxy PMS of electron mediator with an electrode as a reaction reagent. We devised Nipponhei 10—2 0 15 5 3, WO 00/04 4 378) and produced biosensors for various substrates. One of the features of these biosensors is that they are biosensors in which an absorbent carrier carrying all the reaction reagents is placed between the working electrode formed by printing a conductive material and the electrode facing the counter electrode. A linear and good response current depending on the concentration was confirmed. However, subsequent studies showed that these biosensors had large variations in the low concentration region of the substrate, and needed to be improved.
そこで、 導電性材料を用いて形成された電極と少なくとも脱水素酵素と補酵素 と電子メディエー夕に加えて、 さらにテトラゾリゥム塩からなる試薬を用いたバ ィォセンサを開発してきた (P C TZ J P 9 9 / 0 1 3 9 2 )。 このバイオセンサ は、 還元型補酵素の直接酸化あるいは種々の電子メデイエ一夕を用いたバイオセ ンサと比較して、 化学的に安定なホルマザンを最終的に生成させているため、 変 動の少ない応答電流が得られる。 また、 応答電流の大幅な増大ならびに検出感度 の向上が見られることから、低濃度領域で、高感度な基質の定量が可能となった。 その際に作製したバイオセンサは、 両電極が対向しており、 また、 反応試薬も 両電極上に固定化を行った構造であった。 しかし、 その後の検討から、 この作製 方法では、 大量に生産するのが構造的に困難であることが判明し、 今回大量生産 に向けて、 作製方法の改良を行った。 発明の要旨  Therefore, in addition to an electrode formed using a conductive material, at least a dehydrogenase, a coenzyme, and an electron mediator, a biosensor using a reagent consisting of a tetrazolium salt has been developed (PC TZ JP99 / 0 1 3 9 2). Compared to biosensors using reduced coenzyme direct oxidation or various electronic media, this biosensor ultimately produces chemically stable formazan, resulting in less responsive response. A current is obtained. In addition, a large increase in response current and an improvement in detection sensitivity were observed, enabling highly sensitive quantification of the substrate in a low concentration range. The biosensor fabricated at that time had a structure in which both electrodes faced each other, and the reaction reagent was immobilized on both electrodes. However, subsequent studies revealed that this method was structurally difficult to produce in large quantities, and this time the production method was improved for mass production. Summary of the Invention
上記の課題を解決するために、 導電性材料を用いて同一平面上に形成された少 なくとも作用極と対極からなる電極上に、 少なくとも脱水素酵素と補酵素と電子 メデイエ一夕およびテトラゾリゥム塩からなる反応試薬を固定ィ匕させた吸収性担 体を配置した基質の定量方法およびバイォセンサを提供するものである。  In order to solve the above problems, at least a dehydrogenase, a coenzyme, an electron mediator and a tetrazolium salt are formed on at least an electrode composed of a working electrode and a counter electrode formed on the same plane using a conductive material. It is intended to provide a method for quantifying a substrate and a biosensor on which an absorptive carrier in which a reaction reagent consisting of:
本発明のバイオセンサは、 以前作製したバイオセンサと比較して、 同一平面上 に電極系を形成しており、 また、 すべての反応試薬が固定化された吸収性担体を 電極上に積層するだけの簡単な構造となっていることから、 バイオセンサの作製 が容易となり、 大量生産が可能となった。 発明の説明 The biosensor of the present invention is on the same plane The electrode system is formed in a simple manner.Since it has a simple structure in which an absorptive carrier on which all the reaction reagents are immobilized is simply laminated on the electrodes, the biosensor can be easily manufactured, Production has become possible. Description of the invention
本発明においては、 導電性材料を用いて同一平面上に形成された少なくとも作 用極と対極からなる電極系と、 少なくとも脱水素酵素と補酵素と電子メディエー 夕およびテトラゾリゥム塩からなる反応試薬を吸収性担体に固定化させた構造を 有する試料中の基質の定量方法、 および電極と反応試薬を固定化させた吸収性担 体を一体化させ、 簡便でしかも迅速な定量が可能なバイオセンサを提供するもの である。  In the present invention, an electrode system comprising at least a working electrode and a counter electrode formed on the same plane using a conductive material, and absorbing a reaction reagent comprising at least a dehydrogenase, a coenzyme, an electron mediator, and a tetrazolium salt. To provide a method for quantifying a substrate in a sample having a structure immobilized on an absorbent carrier, and a biosensor capable of simple and rapid quantification by integrating an electrode and an absorptive carrier on which a reaction reagent is immobilized Is what you do.
本発明では、 試料中の基質と反応試薬である脱水素酵素および補酵素による特 異的な酵素反応によって還元性補酵素を生成し、 さらに、 電子メディエー夕およ びテトラゾリゥム塩との酸化還元反応が進行し、 化学的に安定なホルマザンを最 終的に生成する。 続いて電極に電位を印加すると、 ホルマザンが酸ィ匕され、 得ら れた酸化電流から試料中の基質濃度の定量が可能となる。  In the present invention, the reducing coenzyme is generated by a specific enzymatic reaction of a substrate in a sample with a dehydrogenase and a coenzyme as reaction reagents, and further, a redox reaction with an electron mediator and a tetrazolium salt. Progress and eventually produce chemically stable formazan. Subsequently, when a potential is applied to the electrode, formazan is oxidized, and the concentration of the substrate in the sample can be determined from the obtained oxidation current.
本発明の特徴は、 絶縁性基板上の同一平面上に形成された両電極上に吸収性担 体を配置することで、 吸収性担体によるフィルタ一効果が得られ、 試料中に含ま れる測定に影響を及ぼす固形成分等の分離が可能となり、 両電極上には分離され た試料のみが到達する。 さらに吸収性担体を数種類用い、 孔径を徐々に小さくす ることにより、 より分離効果を向上させることができる。 また、 電極上に吸収性 担体を積層するだけの簡単な構造となっていることから、 バイオセンサの作製が 容易となり、 大量生産が可能となった。 図面の簡単な説明  The feature of the present invention is that by disposing the absorbent carrier on both electrodes formed on the same plane on the insulating substrate, an effect of the filter by the absorbent carrier can be obtained, and the measurement contained in the sample can be performed. Separation of the influential solid components etc. becomes possible, and only the separated sample reaches both electrodes. Further, the separation effect can be further improved by using several kinds of absorbent carriers and gradually reducing the pore size. In addition, since it has a simple structure in which an absorbent carrier is simply laminated on the electrode, the biosensor can be easily manufactured and mass production is possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施例における電極の作製方法であり ;  FIG. 1 shows a method for manufacturing an electrode according to one embodiment of the present invention;
図 2は実施例 2におけるセンサチップの作製方法 ( 1 ) の構成図であり 図 3は実施例 3におけるセンサチップの作製方法 (2 ) の構成図であり 図 4は実施例 4におけるセンサチップの作製方法 (3 ) の構成図であり 図 5は実施例 5におけるセンサチップの作製方法 (4 ) の構成図であり ; 図 6は実施例 6における唾液中のグルコースの添加試験の結果を示すダラフで あり ; FIG. 2 is a configuration diagram of a method (1) for manufacturing a sensor chip in Example 2, and FIG. 3 is a configuration diagram of a method (2) of manufacturing a sensor chip in Example 3. FIG. It is a block diagram of the manufacturing method (3). FIG. 5 is a configuration diagram of a method (4) for manufacturing a sensor chip in Example 5; FIG. 6 is a rough drawing showing a result of an addition test of glucose in saliva in Example 6;
図 7は実施例 7における唾液中のグルコースの希釈試験の結果を示すグラフで める。  FIG. 7 is a graph showing the results of a dilution test of glucose in saliva in Example 7.
上記図中の符号は次のように説明される:  The symbols in the above figures are explained as follows:
1は絶縁性支持体; 2はリード; 3は絶縁層; 4は作用極; 5は対極; 6はカバ 一; 7は供給口; 8は吸収層; 9は展開層; 1 0は反応層; 1 1はスぺ一サであ る。 好適実施態様の説明 1 is an insulating support; 2 is a lead; 3 is an insulating layer; 4 is a working electrode; 5 is a counter electrode; 6 is a cover; 7 is a supply port; 8 is an absorption layer; 11 is a sponsor. Description of the preferred embodiment
本発明において、 測定対象となる基質、 反応試薬およびセンサチップの構造に 関して順に説明する。  In the present invention, the structures of the substrate to be measured, the reaction reagent, and the sensor chip will be described in order.
本発明の測定可能な基質としては、 脱水素酵素を触媒として、 還元型補酵素を 生成することが可能な基質であれば特に制限はなく、 あらゆる基質の定量が可能 である。 例えばァラニン、 アルコール、 アルデヒド、 イソクェン酸、 ゥリジン— 5, —ジホスフォーグルコース、 ガラク卜一ス、 ギ酸、 ダリセルアルデヒド一 3 一リン酸、 グリセロール、 グリセロール一 3—リン酸、 グルコース、 グルコース 一 6—リン酸、 グルタミン酸、 コレステロール、 サルコシン、 ソルビトール、 炭 酸、 乳酸、 3—ヒドロキシ酪酸、 ピルビン酸、 フエ二ルァラニン、 フルク 1 ス、 6—ホスフォグルコン酸、 ホルムアルデヒド、 マンニトール、 リンゴ酸、 口イシ ン等が利用できる。  The measurable substrate of the present invention is not particularly limited as long as it can generate a reduced coenzyme using dehydrogenase as a catalyst, and any substrate can be quantified. For example, alanine, alcohol, aldehyde, isochenoic acid, peridine-5, -diphosphoglucose, galactose, formic acid, dariceraldehyde-13-monophosphate, glycerol, glycerol-13-phosphate, glucose, glucose-16 —Phosphoric acid, glutamic acid, cholesterol, sarcosine, sorbitol, carbonic acid, lactic acid, 3-hydroxybutyric acid, pyruvic acid, phenylalanine, flux 1, 6-phosphogluconic acid, formaldehyde, mannitol, malic acid, mouth isocyanate Etc. are available.
本発明に用いられる脱水素酵素としては、 還元型補酵素を生成する酵素であれ ば特に制限はなく、 また由来についても特に限定されることはない。 例えばァラ ニン脱水素酵素、 アルコール脱水素酵素、 アルデヒド脱水素酵素、 イソクェン酸 脱水素酵素、 ゥリジン一 5, 一ジホスフォーグルコース脱水素酵素、 ガラクトー ス脱水素酵素、 ギ酸脱水素酵素、 ダリセルアルデヒド一 3—リン酸脱水素酵素、 グリセロール脱水素酵素、 グリセロール一 3—リン酸脱水素酵素、 グルコース脱 水素酵素、 グルコース一 6—リン酸脱水素酵素、 グルタミン酸脱水素酵素、 コレ ステロール脱水素酵素、 サルコシン脱水素酵素、 ソルビトール脱水素酵素、 炭酸 脱水素酵素、 乳酸脱水素酵素、 3—ヒドロキシ酪酸脱水素酵素、 ピルビン酸脱水 素酵素、 フエ二ルァラニン脱水素酵素、 フルクト一ス脱水素酵素、 6—ホスフォ ダルコン酸脱水素酵素、ホルムアルデヒド脱水素酵素、マンニトール脱水素酵素、 リンゴ酸脱水素酵素、 ロイシン脱水素酵素等が利用できる。 The dehydrogenase used in the present invention is not particularly limited as long as it is an enzyme that produces a reduced coenzyme, and the origin is not particularly limited. For example, alanine dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, isocenoic acid dehydrogenase, peridine-1,5-diphosphoglucose dehydrogenase, galactose dehydrogenase, formate dehydrogenase, darisel Aldehyde-13-phosphate dehydrogenase, glycerol dehydrogenase, glycerol-13-phosphate dehydrogenase, glucose dehydrogenase, glucose-16-phosphate dehydrogenase, glutamate dehydrogenase, kore Sterol dehydrogenase, sarcosine dehydrogenase, sorbitol dehydrogenase, carbonic acid dehydrogenase, lactate dehydrogenase, 3-hydroxybutyrate dehydrogenase, pyruvate dehydrogenase, phenylalanine dehydrogenase, fructose dehydration Enzyme, 6-phosphodalconate dehydrogenase, formaldehyde dehydrogenase, mannitol dehydrogenase, malate dehydrogenase, leucine dehydrogenase and the like can be used.
電子メディェ一タとしては、 還元型補酵素およびテトラゾリゥム塩とすみやか に酸ィ匕還元反応を行う物質であれば特に制限はない。 例えばキノン類、 ジァホラ —ゼ、 シトクロム類、 ピオロゲン類、 フエナジン類、'フエノキサジン類、 フエノ チアジン類、 フェリシアン化物、 フェレドキシン類、 フエ口センおよびその誘導 体等を用いることができる。 その中でもフエナジン類がここでは応答の安定性が 見られ、 特に 1ーメトキシ P M Sは保存安定性が良いことや還元型補酵素およ ぴテトラゾリゥム塩との反応性も優れることから、 本発明における電子メディェ —夕として好ましいことを見出した。  There is no particular limitation on the electron mediator as long as it is a substance that promptly undergoes an oxidative reduction reaction with a reduced coenzyme and a tetrazolium salt. For example, quinones, diaphorases, cytochromes, porogens, phenazines, 'phenoxazines, phenothiazines, ferricyanides, ferredoxins, phenocens and derivatives thereof can be used. Among them, phenazines show stable response here, and in particular, 1-methoxy PMS has good storage stability and excellent reactivity with reduced coenzyme and tetrazolium salt. —I found it to be a good evening.
テトラゾリゥム塩としては、 ホルマザンを生成するものであれば特に制限はな く、 その中でも 2— (4一ョ一ドフエニル) 一 3— (4一二トロフエニル) 一 5 一 (2, 4一ジスルホフエニル) 一 2 H—テトラゾリゥム, 1ナトリウム塩 (W S T - 1 ) は還元したときに生成されるホルマザンが水溶性で化学的に安定であ り、 また生成したホルマザンが電気化学的検出方法において良好な応答を示すこ とから、 本発明におけるテトラゾリゥム塩として好ましいことを見出した。  The tetrazolium salt is not particularly limited as long as it forms formazan, and among them, 2- (4-1-dophenyl) -1,3- (412-trophenyl) 1,5-1 (2,4-disulfophenyl) 1-1 2H-tetrazolium, monosodium salt (WST-1) is a water-soluble and chemically stable formazane produced upon reduction, and the produced formazan shows good response in electrochemical detection methods From this, it has been found that the tetrazolium salt in the present invention is preferable.
以上の反応試薬をあらかじめ固定ィ匕することで、試料を接触させるだけで溶解、 混合し、 一連の反応が進行して最終的にホルマザンが生成される方法を構築でき る。  By pre-fixing the above reaction reagents, a method can be constructed in which a series of reactions proceed to finally produce formazan by dissolving and mixing just by bringing the sample into contact.
本発明に用いられる電極としては、 導電性物質であり、 電気化学的に安定であ れば特に制限はなく、 材料についてはカーボン、 金、 銀、 銀/塩化銀、 ニッケル、 白金、 白金黒およびパラジウム等、 ならびにそれらの合金を使用することができ る。 その中でも種々の材料を検討した結果、 カーボン材料が安価で化学的に安定 しており、 本発明における電極の作用極として好ましいことを見出した。  The electrode used in the present invention is a conductive substance and is not particularly limited as long as it is electrochemically stable. The material is carbon, gold, silver, silver / silver chloride, nickel, platinum, platinum black, and platinum black. Palladium, etc., and their alloys can be used. As a result of examining various materials among them, they found that carbon materials are inexpensive and chemically stable, and are preferable as working electrodes of the electrodes in the present invention.
ここでのカーボン材料とは、 カーボンを含む材料全般を意味する。 利用できる カーボン材料は特に制限されるものではなく、 従来の力一ボン電極において使用 されているものであれば良く、 例えば力一ポンファィバ、 カーボンブラック、 力 一ボンペースト、グラッシ一力一ボン、グラフアイト等を使用することができる。 このようなカーボン材料は常套の方法によつて絶縁性の支持体上に電極部分と して形成される。 通常、 力一ボン材料を樹脂パインダ一等によりペースト状にし たものを印刷し、 それを加熱乾燥することにより形成できる。 Here, the carbon material means all materials containing carbon. The carbon materials that can be used are not particularly limited, and are used in conventional carbon electrodes. Any material can be used, for example, pon fiber, carbon black, bon paste, glass, bonbon, graphite, and the like. Such a carbon material is formed as an electrode portion on an insulating support by a conventional method. Usually, it can be formed by printing a paste made from a carbon fiber material using a resin binder or the like and then heating and drying the paste.
印刷方法としては、 スクリーン印刷に限定されることは特になく、 その他、 グ ラビア印刷、 オフセット印刷、 インクジェット印刷等が応用できる。  The printing method is not particularly limited to screen printing, and gravure printing, offset printing, inkjet printing, and the like can be applied.
対極は、 参照極も兼ねるため、 ここでは銀/塩ィヒ銀を選択し、 また電極反応部 分と電気化学的検出回路との接続部分であるリードは、 最も導電性が優れ、 安価 な銀を選択し、 印刷により形成した。  Since the counter electrode also serves as the reference electrode, silver / silver silver is selected here.The lead that is the connection between the electrode reaction part and the electrochemical detection circuit is the most conductive and inexpensive silver. Was selected and formed by printing.
本発明では、 作用極と対極のみの 2電極系であつたが、 参照極を加えた 3電極 系を用いれば、 より正確な定量が可能となる。  In the present invention, a two-electrode system including only the working electrode and the counter electrode is used. However, if a three-electrode system including a reference electrode is used, more accurate quantification can be performed.
絶縁性支持体としては、 ガラス、 ガラスエポキシ、 セラミックス、 プラスチッ ク等が挙げられるが、 電極部分の印刷形成の際や試料の添加の際に侵されない物 質であれば特に制限はない。 例えばポリエステル、 ポリエチレン、 ポリエチレン テレフタレ一卜 (P E T) ,ポリスチレン、ポリプロピレン等のプラスチックフィ ルムが安価であり、 さらに導電性インクとの密着性や加工性の良さから、 ここで は P E Tフィルムが好ましいことを見出した。  Examples of the insulating support include glass, glass epoxy, ceramics, and plastic. However, there is no particular limitation as long as it is a material that is not attacked when printing the electrode portion or adding a sample. For example, plastic films such as polyester, polyethylene, polyethylene terephthalate (PET), polystyrene, and polypropylene are inexpensive, and PET films are preferred here because of their good adhesion to conductive inks and good workability. I found it.
カバーとスぺ一サおよびそれらを接着する材料は、 試料に侵されることなく、 吸収性担体を保持し、 一連の反応への阻害がなく、 反応部分への外部からの接触 を保護できれば、 形状、 材質等の制限は特にない。  The cover, spacer, and the material that adheres to it can be shaped as long as the sample can be retained, the absorbent carrier can be retained, there is no hindrance to the series of reactions, and external contact with the reaction area can be protected. There are no particular restrictions on the material, etc.
本発明に用いられる吸収性担体としては、 反応試薬溶液を吸収できる材質であ り、 反応試薬に影響を及ぼさない材質であれば特に制限はない、 例えば、 ガラス 繊維、 シリカ繊維、 セルロース繊維等の繊維類およびカルポキシメチルセルロー ス、 ジェチルアミノエチルセルロース、 セルロースアセテート、 セルロース混合 エステル、 ナイ口ン織布、 ニトロセルロース、 ポリプロピレン、 ポリエーテルス ルホン、ポリエステル不織布、 ポリテトラフルォロエチレン(P T F E)、 ポリプ ロピレン等が使用できる。  The absorbent carrier used in the present invention is not particularly limited as long as it is a material that can absorb the reaction reagent solution and does not affect the reaction reagent. Examples of the material include glass fiber, silica fiber, and cellulose fiber. Fibers and carboxymethylcellulose, getylaminoethylcellulose, cellulose acetate, cellulose mixed ester, nylon woven fabric, nitrocellulose, polypropylene, polyether sulfone, polyester nonwoven fabric, polytetrafluoroethylene (PTFE), Polypropylene or the like can be used.
本発明では、 吸収層、 展開層、 反応層の 3種類の吸収性担体は、 それぞれ、 ポ リプロピレン、 セルロース繊維、 ニトロセルロースを使用しており、 それらを積 層形成させて反応試薬層を構成している。 なお、 単層構造も可能であり、 その場 合、 構成材料の削減が図れる。 実施例 In the present invention, the three types of absorbent carriers of the absorption layer, the spreading layer, and the reaction layer are respectively It uses polypropylene, cellulose fiber, and nitrocellulose, and forms a reaction reagent layer by layering them. A single-layer structure is also possible, in which case the constituent materials can be reduced. Example
以下に、 本発明を実施例により詳細に説明するが、 本発明はこれらに限定され るものではない。 実施例 1 電極の作製方法  Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. Example 1 Method for producing electrode
本実施例で作製した電極を図 1に示す。 なお、 本電極は、 同一平面上に 2種類 の電極をスクリーン印刷することで、 より簡便に電極を作製することが可能とな つ†。  FIG. 1 shows the electrode manufactured in this example. It should be noted that this electrode can be manufactured more easily by screen printing two types of electrodes on the same plane.
P E Tフィルム (東レ (株) 製) の絶縁性支持体 1に導電性銀インク (日本ァ チゾン (株) 製) をスクリーン印刷後、 加熱乾燥 (1 2 0 °C, 1 5分間) してリ ード 2を形成した。 次に作用極と対極への接続部分を残し絶縁性インク (日本ァ チソン (株) 製) を用いて絶縁層 3を形成 (紫外線照射により硬化) した。 その 上に、 導電性グラフアイトインク (日本アチソン (株)製) を用いて作用極 4を、 導電性銀ノ塩化銀インク (日本アチソン (株) 製) を用いて対極 5をスクリーン 印刷し加熱乾燥 (1 2 0 , 1 5分間) して電極を積層形成した。 実施例 2 センサチップの作製方法 (1 )  Screen printing of conductive silver ink (Nippon Azizon Co., Ltd.) on the insulating support 1 of PET film (Toray Co., Ltd.), followed by heating and drying (120 ° C, 15 minutes), Form 2 was formed. Next, the insulating layer 3 was formed (cured by ultraviolet irradiation) using an insulating ink (manufactured by Nippon Acheson Co., Ltd.) while leaving the connection portions to the working electrode and the counter electrode. The working electrode 4 is screen printed using conductive graphite ink (manufactured by Nippon Acheson Co., Ltd.), and the counter electrode 5 is printed using conductive silver chloride silver ink (manufactured by Nippon Acheson Co., Ltd.). After drying (120, 15 minutes), electrodes were laminated. Example 2 Fabrication method of sensor chip (1)
本実施例で作製したセンサチップを図 2に示す。 なお、 本センサチップは、 実 施例 1で作製した電極と 3種類の吸収性担体からなり、 力パー 6の供給口 7に試 料を接触させることで、 センサチップ内に試料を供給することが可能な構造とな つている。  FIG. 2 shows the sensor chip manufactured in this example. This sensor chip is composed of the electrode prepared in Example 1 and three kinds of absorbent carriers.The sample is supplied into the sensor chip by bringing the sample into contact with the supply port 7 of the force par 6. It is a structure that can be used.
吸収層の吸収性担体 8としてポリプロピレン製メンブレン(日本ミリポア(株) 製) を用い、 それに酵素反応の至適 p Hを調整するための緩衝成分を溶液状で吸 収、 乾燥 (4 0 °C, 1 5分間) させて固定化した。  A polypropylene membrane (manufactured by Nippon Millipore Co., Ltd.) is used as the absorbent carrier 8 of the absorption layer, and a buffer component for adjusting the optimum pH of the enzyme reaction is absorbed in a solution and dried (at 40 ° C). , 15 minutes).
展開層の吸収性担体 9としてセルロース繊維 (アドバンテック東洋 (株) 製) を用い、それに電子メデイエ一夕である 1—メトキシ P M S ((株)同仁化学研 究所製) を超純水により溶解させたのち、 吸収、 乾燥 (4 0で, 1 5分間) させ て固定化した。 Cellulose fiber (Advantech Toyo Co., Ltd.) as absorbent carrier 9 in the spreading layer Then, 1-methoxy PMS (made by Dojindo Laboratories, Inc.), which is an electronic media overnight, is dissolved in ultrapure water, then absorbed and dried (40, 15 minutes) and fixed. Has become
反応層の吸収性担体 1 0としてニトロセルロース製メンブレン (日本ミリポア (株)製) を用い、 それにテトラゾリゥム塩である WS T— 1 ((株) 同仁化学研 究所製) と脱水素酵素 (東洋紡 (株) 製) および補酵素である酸化型ニコチンァ ミドアデニンジヌクレオチド (NAD'+) (オリエンタル (株) 製) をリン酸緩衝 溶液 (p H 7. 4 , 2 O mM) により溶解させたのち、 吸収、 乾燥 (4 0。C, 1 0分間) させ固定化した。  A nitrocellulose membrane (manufactured by Nippon Millipore Co., Ltd.) was used as the absorbent carrier 10 in the reaction layer, and a tetrazolium salt WST-1 (manufactured by Dojin Chemical Lab.) And a dehydrogenase (Toyobo) Co., Ltd.) and oxidized nicotinamide adenine dinucleotide (NAD '+) (manufactured by Oriental Co., Ltd.) as a coenzyme were dissolved in a phosphate buffer solution (pH 7.4, 2 O mM). After absorption, drying (40. C, 10 minutes), the cells were immobilized.
実施例 1で作製した電極上に、 反応試薬を固定化した吸収性担体 8、 9、 1 0 をスぺーサ 1 1を介して積層配置し、 カバ一 6により被覆してセンサチップを作 製した。 実施例 3 センサチップの作製方法 (2 )  Absorbent carriers 8, 9, and 10 on which the reaction reagents were immobilized were placed on the electrode prepared in Example 1 via a spacer 11 and covered with a cover 16, thereby producing a sensor chip. did. Example 3 Sensor chip fabrication method (2)
本実施例で作製したセンサチップを図 3に示す。 なお、 本センサチップは、 実 施例' 1で作製した電極と 1種類の吸収性担体からなり'、 センサチップ側面の供給 口 7に試料を接触させることで、 センサチップ内に試料を供給することが可能な 構造となっている。  FIG. 3 shows the sensor chip manufactured in this example. The sensor chip is composed of the electrode prepared in Example '1 and one kind of absorbent carrier', and the sample is supplied into the sensor chip by bringing the sample into contact with the supply port 7 on the side of the sensor chip. It is a structure that can do it.
吸収性担体 1 0のニトロセルロース製メンブレンに、 緩衝成分、 1ーメトキシ P M S、 WS T— 1と酵素の 3種類の溶液を各々の部位に吸収、 乾燥 (4 0 °C, 1 0分間) させ固定化した。  Buffer solution, 1-methoxy PMS, WST-1 and enzyme are absorbed into each part of the nitrocellulose membrane of absorbent carrier 10 and dried (40 ° C, 10 minutes) and fixed. It has become.
実施例 1で作製した電極と吸収性担体 1 0の WS T— 1と酵素を固定化させた 位置を接触させるように配置し、 スぺ一サ 1 1を介してカバー 6で被覆してセン サチップを作製した。 実施例 4 センサチップの作製方法 ( 3 )  The electrode prepared in Example 1 was arranged so that the position where the WST-1 of the absorbent carrier 10 and the enzyme were immobilized was in contact with each other, and the cover 6 was covered with the cover 11 through the spacer 11 to make the sensor. A sub chip was prepared. Example 4 Manufacturing method of sensor chip (3)
本実施例で作製したセンサチップを図 4に示す。 なお、 本センサチップは、 実 施例 1で作製した電極と 3種類の吸収性担体からなり、 センサチップ側面の供給 ' 口 7に試料を接触させることで、 すみやかにセンサチップ内に試料を供給するこ とができる。 FIG. 4 shows the sensor chip manufactured in this example. This sensor chip is composed of the electrode prepared in Example 1 and three types of absorbent carriers. By bringing the sample into contact with the supply port 7 on the side of the sensor chip, the sample is immediately supplied into the sensor chip. Do Can be.
実施例 2と同じ吸収性担体を用いて反応試薬の固定化を行い、 3種類の吸収性 担体の一部分が重なるように供給口から電極上にわたって配置し、 スぺーサ 1 1 を介してカバ一 6で被覆してセンサチップを作製した。 実施例 5 センサチップの作製方法 (4)  The reaction reagent was immobilized using the same absorptive carrier as in Example 2.The three absorptive carriers were placed over the electrode from the supply port so that a part of the absorptive carriers partially overlapped. 6 to form a sensor chip. Example 5 Sensor chip fabrication method (4)
本実施例で作製したセンサチップを図 5に示す。 なお、 本センサチップは、 実 施例 1で作製した電極と 3種類の吸収性担体からなり、 センサチップ側面の供給 口 7に試料を接触させることで、 センサチップ内に試料を供給することができる 構造となっている。  FIG. 5 shows the sensor chip manufactured in this example. This sensor chip is composed of the electrode prepared in Example 1 and three types of absorbent carriers. By bringing the sample into contact with the supply port 7 on the side of the sensor chip, the sample can be supplied into the sensor chip. It has a structure that can be used.
実施例 2と同じ吸収性担体を用いて反応試薬の固定化を行い、 吸収層が供給口 から電極上まで配置し、他の展開層および反応層は電極上に配置する構造を有し、 スぺーサ 1 1を介してカバー 6で被覆してセンサチップを作製した 上記の方法で作製したバイオセンサを用いて、 唾液中のグルコースの測定を行 つた結果を以下に示す。 実施例 6 唾液中のグフレコースの添加試験  The same reagent as in Example 2 was used to immobilize the reaction reagent, the absorption layer was arranged from the supply port to the electrode, and the other developing layer and the reaction layer were arranged on the electrode. The results of measurement of glucose in saliva using the biosensor produced by the above-described method in which a sensor chip was produced by covering with a cover 6 via a spacer 11 are shown below. Example 6 Addition test of gafflecose in saliva
実施例 2でグルコース脱水素酵素を用いて作製したバイオセンサと唾液にグ ルコースを添加して種々の濃度に調整した唾液試料を用いて、 測定を行った結果 を図 6に示す。  FIG. 6 shows the results of measurement using a biosensor produced using glucose dehydrogenase in Example 2 and saliva samples adjusted to various concentrations by adding glucose to saliva.
唾液試料を 7 0 添加し、 6 0秒後に対極を基準に、 + 5 0 O mVの電位を 印加して、 電位印加 7秒後の応答電流値を測定した。 本結果は、 得られた応答電 流値を換算式により計算した濃度を示している。  A saliva sample was added 70, and after 60 seconds, a potential of +50 OmV was applied with reference to the counter electrode, and the response current value was measured 7 seconds after the potential was applied. This result shows the concentration obtained by calculating the obtained response current value by the conversion formula.
本結果から、 唾液成分によるセンサ応答の阻害が見られず、 グルコース濃度に 依存した直線的な応答電流値が得られた。 また、 添加濃度に対して回収性の高い 結果が得られたことから、 唾液試料を用いても高感度にグルコースの定量が可能 である。 実施例 7 唾液中のグルコースの希釈試験 From these results, no inhibition of sensor response by saliva components was observed, and a linear response current value dependent on glucose concentration was obtained. In addition, high recoverability was obtained with respect to the added concentration, so that glucose can be quantified with high sensitivity even using saliva samples. Example 7 Dilution test of glucose in saliva
実施例 6で作製したバイオセンサとグルコース濃度が高値を示した唾液に生理 食塩水で希釈した試料を用いて、 測定を行った結果を図 7に示す。  FIG. 7 shows the results of measurement using the biosensor prepared in Example 6 and a sample obtained by diluting saliva having a high glucose concentration with physiological saline.
実施例 6の測定と同様に、 グルコースを含む試料を 7 0 L添カ卩し、 6 0秒後 に対極を基準に、 + 5 0 O mVの電位を印加して、 電位印加 7秒後の応答電流値 を測定した。 本結果は、 得られた応答電流値を換算式により計算した濃度を示し ている。  In the same manner as in the measurement of Example 6, a sample containing glucose was immersed in 70 L, and after 60 seconds, a potential of +50 OmV was applied with reference to the counter electrode. The response current value was measured. This result shows the concentration obtained by calculating the obtained response current value by the conversion formula.
本結果から、 原点を通る良好な直線性を示したことから、 唾液中のグルコース を特異的に検出していることが確認された。 なお、 上記実施例では、 電極形状、 吸収性担体の形状、 配置方法等について述 ベたが、 これに制限されることはない。 また、 吸収性担体も 1もしくは 3枚を用 いて述べたが、 それ以上の吸収性担体を用いてもバイオセンサを作製することが 可能である。  From these results, it was confirmed that glucose in saliva was specifically detected because the sample showed good linearity passing through the origin. In the above embodiment, the electrode shape, the shape of the absorbent carrier, the arrangement method, and the like have been described, but the present invention is not limited thereto. In addition, although one or three absorbent carriers have been described, a biosensor can be manufactured using more absorbent carriers.

Claims

請求の範囲 The scope of the claims
1 . 少なくとも脱水素酵素、 補酵素、 電子メディエー夕およびテトラゾリゥム塩 からなる反応試薬を試料供給部および電極反応部に固定化し、 試料の供給により 生じる反応によって、 生成したホルマザンを前記電極反応部において電気化学的 に検出することを特徴とする基質の定量方法。 1. At least a reaction reagent consisting of a dehydrogenase, a coenzyme, an electron mediator, and a tetrazolium salt is immobilized in the sample supply section and the electrode reaction section, and the formazan generated by the reaction caused by the supply of the sample is subjected to electricity in the electrode reaction section. A method for quantifying a substrate, which is characterized by being chemically detected.
2 . 前記反応試薬を吸収性担体に固定化させ、 前記試料供給部および電極反応部 に配置することを特徴とする請求項 1記載の基質の定量方法。 2. The method for quantifying a substrate according to claim 1, wherein the reaction reagent is immobilized on an absorptive carrier and arranged in the sample supply section and the electrode reaction section.
3 . 前記吸収性担体は、 前記試料中に含まれる不純物より孔径の小さいものを用 いるか、 もしくは孔径の異なる数種類の前記吸収性担体を用いることを特徵とす る請求項 1および 2記載の基質の定量方法。 3. The substrate according to claim 1 or 2, wherein the absorbent carrier has a smaller pore size than impurities contained in the sample, or uses several types of the absorbent carriers having different pore sizes. Quantitation method.
4. 前記電極反応部は、 絶縁性基板の同一平面上に少なくとも作用極および対極 を有することを特徴とする請求項 1〜 3記載の基質の定量方法。 4. The method according to claim 1, wherein the electrode reaction section has at least a working electrode and a counter electrode on the same plane of the insulating substrate.
5 . 前記試料は、 血液、 尿、 唾液、 汗等の生体試料、 食品試料および環境試料で あることを特徵とする請求項 1〜 4記載の基質の定量方法。 5. The method of claim 1, wherein the sample is a biological sample such as blood, urine, saliva, or sweat, a food sample, and an environmental sample.
6 . 前記基質は、 ァラニン、 アルコール、 アルデヒド、 イソクェン酸、 ゥリジン 一 5, ージホスフォーグルコース、 ガラク 1 ^一ス、 ギ酸、 ダリセルアルデヒド— 3—リン酸、 グリセロール、 グリセロール— 3—リン酸、 グルコース、 ダルコ一 ス一 6—リン酸、 グルタミン酸、 コレステロール、 サルコシン、 ソルビトール、 炭酸、 乳酸、 3—ヒドロキシ酪酸、 ピルピン酸、 フエ二ルァラニン、 フルク! ^一 ス、 6—ホスフォグルコン酸、 ホルムアルデヒド、 マンニトール、 リンゴ酸、 口 ィシン等であることを特徴とする請求項 1〜 5記載の基質の定量方法。 6. The substrate is alanine, alcohol, aldehyde, isochenoic acid, peridine-1,5, diphosphoglucose, galactic acid, formic acid, dariceraldehyde-3-phosphate, glycerol, glycerol-3-phosphate. , Glucose, darcos-6-phosphate, glutamic acid, cholesterol, sarcosine, sorbitol, carbonic acid, lactic acid, 3-hydroxybutyric acid, pyruvate, phenylalanine, fruc! The method for quantifying a substrate according to any one of claims 1 to 5, wherein the substance is mannitol, malic acid, glycine, or the like.
7 . 少なくとも脱水素酵素、 補酵素、 電子メデイエ一夕およびテトラゾリゥム塩 からなる反応試薬を試料供給部と電極反応部に固定化し、 一体化することで、 試 料を供給するだけで生じる反応によって、 生成したホルマザンを電気化学的に検 出することを特徴とする請求項 1記載の定量方法を用いたバイオセンサ。 7. At least dehydrogenase, coenzyme, electronic media and tetrazolium salt By immobilizing and integrating a reaction reagent consisting of the following into the sample supply section and the electrode reaction section, and electrochemically detecting the generated formazan by a reaction that occurs only by supplying the sample. A biosensor using the quantification method according to item 1.
8 . 前記反応試薬を吸収性担体に固定化させ、 前記試料供給部および電極反応部 に配置することを特徴とする請求項 7記載のバイォセンサ。 8. The biosensor according to claim 7, wherein the reaction reagent is immobilized on an absorbent carrier, and is disposed in the sample supply unit and the electrode reaction unit.
9 . 前記吸収性担体は、 前記試料中に含まれる不純物より孔径の小さいものを用 いるか、 もしくは孔径の異なる数種類の前記吸収性担体を用いることを特徴とす る請求項 7および 8記載のバイオセンサ。 9. The biomaterial according to claim 7, wherein the absorbent carrier has a smaller pore size than impurities contained in the sample, or uses several kinds of the absorbent carriers having different pore sizes. Sensor.
1 0 . 前記電極反応部は、 絶縁性基板の同一平面上に少なくとも作用極および対 極を有することを特徴とする請求項 7〜 9記載のパイォセンサ。 10. The biosensor according to claim 7, wherein the electrode reaction unit has at least a working electrode and a counter electrode on the same plane of the insulating substrate.
1 1 . 前記試料は、 血液、 尿、 唾液、 汗等の生体試料、 食品試料および環境試料 であることを特徵とする請求項?〜 1 0記載のバイオセンサ。 11. The claim, wherein the sample is a biological sample such as blood, urine, saliva, sweat, a food sample and an environmental sample. The biosensor according to any one of Items 1 to 10.
1 2 . 前記基質は、 ァラニン、 アルコール、 アルデヒド、 イソクェン酸、 ゥリジ ン一 5 ' —ジホスフォーグルコース、 ガラクト一ス、 ギ酸、 グリセルアルデヒド — 3—リン酸、 グリセロール、 グリセ口一ルー 3—リン酸、 グルコース、 ダルコ ース一6—リン酸、 グルタミン酸、 コレステロール、サルコシン、 ソルビトール、 炭酸、 乳酸、 3—ヒドロキシ酪酸、 ピルビン酸、 フエ二ルァラニン、 フルクトー ス、 6—ホスフォグルコン酸、 ホルムアルデヒド、 マンニトール、 リンゴ酸、 口 ィシン等であることを特徴とする請求項 7〜 1 1記載のバイオセンサ。 1 2. The substrate is alanine, alcohol, aldehyde, isocenoic acid, peridine-1 5'-diphosphoglucose, galactose, formic acid, glyceraldehyde — 3-phosphate, glycerol, glycerol 3- Phosphoric acid, glucose, glucosyl monophosphate, glutamic acid, cholesterol, sarcosine, sorbitol, carbonic acid, lactic acid, 3-hydroxybutyric acid, pyruvate, phenylalanine, fructose, 6-phosphogluconate, formaldehyde, The biosensor according to any one of claims 7 to 11, wherein the biosensor is mannitol, malic acid, lactic acid, or the like.
PCT/JP2000/005789 2000-08-28 2000-08-28 Method for determination of substrate and biosensor WO2002018924A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/005789 WO2002018924A1 (en) 2000-08-28 2000-08-28 Method for determination of substrate and biosensor
AU2000267324A AU2000267324A1 (en) 2000-08-28 2000-08-28 Method for determination of substrate and biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005789 WO2002018924A1 (en) 2000-08-28 2000-08-28 Method for determination of substrate and biosensor

Publications (1)

Publication Number Publication Date
WO2002018924A1 true WO2002018924A1 (en) 2002-03-07

Family

ID=11736396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005789 WO2002018924A1 (en) 2000-08-28 2000-08-28 Method for determination of substrate and biosensor

Country Status (2)

Country Link
AU (1) AU2000267324A1 (en)
WO (1) WO2002018924A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086453A1 (en) 2001-04-20 2002-10-31 Sapporo Immuno Diagnostic Laboratory Instrument for use in collecting and recovering liquid secretion in oral cavity
EP3561507A4 (en) * 2016-12-21 2020-09-30 Dongwoon Anatech Co., Ltd. Diagnostic device using saliva and diagnostic method using same
CN114527266A (en) * 2021-12-31 2022-05-24 攸太科技(台州)有限公司 Urine electrochemical detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298414A (en) * 1989-05-12 1994-03-29 British Technology Group Limited Detection of morphine using morphine dehydrogenase
JPH09286784A (en) * 1996-04-18 1997-11-04 Doujin Kagaku Kenkyusho:Kk Novel water-soluble tetrazolium salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298414A (en) * 1989-05-12 1994-03-29 British Technology Group Limited Detection of morphine using morphine dehydrogenase
JPH09286784A (en) * 1996-04-18 1997-11-04 Doujin Kagaku Kenkyusho:Kk Novel water-soluble tetrazolium salt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086453A1 (en) 2001-04-20 2002-10-31 Sapporo Immuno Diagnostic Laboratory Instrument for use in collecting and recovering liquid secretion in oral cavity
EP3561507A4 (en) * 2016-12-21 2020-09-30 Dongwoon Anatech Co., Ltd. Diagnostic device using saliva and diagnostic method using same
EP4227678A1 (en) * 2016-12-21 2023-08-16 Dongwoon Anatech Co., Ltd. Diagnostic apparatus and diagnostic method for measurements on saliva
EP4227679A1 (en) * 2016-12-21 2023-08-16 Dongwoon Anatech Co., Ltd. Diagnostic apparatus and diagnostic method for measurements on saliva
CN114527266A (en) * 2021-12-31 2022-05-24 攸太科技(台州)有限公司 Urine electrochemical detection method

Also Published As

Publication number Publication date
AU2000267324A1 (en) 2002-03-13

Similar Documents

Publication Publication Date Title
JP4177662B2 (en) Biosensor
JP3403390B2 (en) Substrate quantification method and biosensor
JP3118015B2 (en) Biosensor and separation and quantification method using the same
EP1126032B1 (en) Biosensor
US6726818B2 (en) Biosensors with porous chromatographic membranes
KR970001146B1 (en) Gas measuring bio-sensor and manufacturing method
CN106053560B (en) Biosensor having electrode for measuring hematocrit value
JP2005501253A5 (en)
CN110514704B (en) Novel biosensing method
US20240085362A1 (en) Method for improving stability of electrochemical sensor
JP2000035413A (en) Biosensor using dehydrogenase and coenzyme
JP4627912B2 (en) Biosensor
Ramanavicius et al. Potentiometric study of quinohemoprotein alcohol dehydrogenase immobilized on the carbon rod electrode
US6468416B1 (en) Method for assaying L-phenylalanine and L-phenylalanine sensor
WO2002018924A1 (en) Method for determination of substrate and biosensor
JP2502665B2 (en) Biosensor
JP2001249103A (en) Biosensor
JP4180933B2 (en) NAD or reduced NAD concentration measurement electrode system and measurement method
JP2002221508A (en) Biosensor
Wollenberger et al. Enzymatic substrate recycling electrodes
WO2010070719A1 (en) Biosensor and method of measuring substrate concentration
JP2004069582A (en) Biosensor
Wu et al. Engineered Nanopaper Electrode Array Fabrication and Biomedical Applications
JP2003270197A (en) Biosensor
JPH08338824A (en) Biosensor, manufacture for biosensor and method for determining specific compound

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CU IN JP KR MX NO NZ PL RO RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase