WO2002018289A1 - String binders comprising a powdered thermoset polymer, composites made therefrom, and methods for making same - Google Patents

String binders comprising a powdered thermoset polymer, composites made therefrom, and methods for making same Download PDF

Info

Publication number
WO2002018289A1
WO2002018289A1 PCT/US2001/026037 US0126037W WO0218289A1 WO 2002018289 A1 WO2002018289 A1 WO 2002018289A1 US 0126037 W US0126037 W US 0126037W WO 0218289 A1 WO0218289 A1 WO 0218289A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
string
binder
polymer
chemical treatment
Prior art date
Application number
PCT/US2001/026037
Other languages
French (fr)
Inventor
Martin C. Flautt
James R. Priest
Original Assignee
Owens Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning filed Critical Owens Corning
Priority to AU2001286568A priority Critical patent/AU2001286568A1/en
Publication of WO2002018289A1 publication Critical patent/WO2002018289A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/323Polyesters, e.g. alkyd resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers

Definitions

  • the present invention relates generally to chemically treated reinforcing fibers, pre-forms made with the same, and polymer composites made with the same. More particularly, this invention relates to: reinforcing fibers having a chemical treatment comprising a thermoset polymer, a film former, and a surfactant; pre-forms made with such fibers; and polymer composites made with such pre-forms.
  • Fibers such as glass fibers, are commonly used as reinforcements for synthetic polymer composites. These fiber reinforced composites are desirable for their combination of light weight and strength and are useful in a variety of applications including automobile components and housings for computers.
  • thermoset resin is incorporated before the heating step so that when heated, the thermoset resin flows across the fibers and acts as a thermoset binder when cured.
  • One method of resin binder incorporation is known as the "wet laid" process involving the formation of an aqueous mixture of chopped glass fibers and resin binder, usually under agitation in a mixing tank. The resulting mixture may then be poured onto a porous mold or screen where suction is applied to remove liquid content.
  • Another wet laid process involves depositing chopped fibers on a mold, spraying the fibers with an aqueous composition containing the resin binder. Alternatively, the chopped fiber can be sprayed with the aqueous composition while they are being chopped and deposited on the mold. The final step in all these processes is to heat the fibers on the mold causing the resin binder to flow and set.
  • a wet laid process often involves the use of volatile organic compounds (NOCs) and other organic solvents thereby triggering environmental safety concerns regarding their use.
  • NOCs volatile organic compounds
  • wet laid processes are "dry processes" where a resin binder is dry mixed with chopped fibers, heated to melt and cure the resin, and cooled to form a preform.
  • a resin binder may be sprayed in molten form on to chopped fibers and cooled to form a pre-form.
  • string binders provide in eliminating many of the cumbersome steps of conventional processes, the current methods for producing string binders require the handling of molten thermoset resins. It would be desirable to avoid the expense and difficulty of providing thermoset resins in molten form.
  • the present invention satisfies such by producing a string binder with thermoset resins in powdered form.
  • An object of the invention is a string binder comprising a fibrous substrate, a powdered thermoset resin, a curing catalyst, a film former, and a surfactant.
  • the fibrous substrate preferably comprises glass filaments which are gathered into strands.
  • the powdered thermoset resin is preferably a polyester.
  • a curing catalyst is incorporated in the powdered resin.
  • the average particle size of the thermoset polymer powder is preferably less than 65 ⁇ m, more preferably less than 55 ⁇ m, and most preferably less than 45 ⁇ m.
  • the film former is preferably a vinyl polymer, more preferably polyvinyl acetate, and most preferably an epoxidized polyvinyl acetate.
  • the surfactant preferably comprises molecules which are the reaction product of a substituted phenol polymerized with an alkene oxide, and more preferably the reaction product of an octylphenol polymerized with ethylene oxide.
  • the chemical treatment may be applied by immersing the fibrous substrate in a bath with a chemical treatment comprising the powdered thermoset resin, a curing catalyst, the film former, the surfactant, and water, preferably de-ionized water.
  • the chemically treated fibrous substrate may then be dried and wound on a winder.
  • Chemically treated fibrous substrates made in such a manner belong to a general class referred herein as "string binders.”
  • string binder generally refers to fibrous substrates which incorporate a resin binder.
  • the string binders of the present invention incorporate at least one powdered thermoset resin which acts as a binder when cured.
  • Another object of this invention is a pre-form comprising string binders.
  • the pre- form may be made by chopping a string binder made in accordance with the present invention, directing the choppings on to a mold, heating to cause the powdered thermoset resin contained in the string binder to melt, flow and cure into a thermoset resin binder.
  • the pre-form may be made by weaving a plurality of string binder strands made in accordance with the present invention.
  • Yet another object of this invention is a reinforced composite comprising a polymer matrix and a pre-form.
  • the pre-form is made with a string binder in accordance with the present invention.
  • the reinforced composite may be made by placing the pre- form in a mold and forming the polymer matrix around the mat.
  • the polymer matrix is preferably formed by reaction injection molding.
  • the present invention provides for a string binder that may be used in continuous or chopped form as a raw material in preparation of pre-forms.
  • Such pre-forms impart desirable physical characteristics to a reinforced composite comprising a polymer matrix and the pre-forms.
  • the pre-forms may be placed in a mold where a polymer matrix is formed around the mat to produce a reinforced composite.
  • the string binders of the present invention comprise a fibrous substrate.
  • Any suitable fibrous substrate may be used in the invention.
  • the fibrous substrate may be selected from fibrous materials that are commonly known in the art, such as glass, carbon, natural fibers, polymers and other fiberizable materials known in the art, or mixtures thereof.
  • fibrous substrates that may be used either alone or in combination with glass or carbon fibers include thermoplastics including polyesters such as DACRON ® (available from E.I. DuPont de Nemours, and Co.), polyaramids such as KEVLAR ® (available from E.I. DuPont de Nemours, and Co.) and natural fibers.
  • the fibrous substrate is preferably a fibrous material in the form of continuous strands composed of multiple filaments.
  • the strands may take the form of yarns, or rovings.
  • the strands of fibrous substrate comprise reinforcing fibers.
  • such strands are formed by combining filaments of the reinforcing fibers as they are attenuated from a fiber-forming apparatus such as a bushing or orifice plate, although they may also be made by any method conventionally known in the art.
  • the filaments may be coated with a suitable sizing composition.
  • a suitable sizing composition may comprise functional agents such as lubricants, coupling agents and film-forming polymers. After being coated with the sizing composition, the filaments may be gathered into strands. These strands may then be formed into yarns or rovings.
  • the filaments making up the strands are glass and have a diameter preferably ranging from 3.5 to 24 ⁇ m and more preferably from 9 to 13 ⁇ m.
  • the preferred filament diameters correspond to U.S. filament designations G, H, and K.
  • the strand input has a yield of from 3,700 to 7,500 yd/lb. (7,458 to 15,119 m/kg), most preferably 7,500 yd/lb. (15,119 /kg), or approximately 66 TEX (g/km a measurement reflecting the weight and thickness of the strand).
  • the string binders of the present invention further comprise at least one powdered thermoset resin.
  • the average particle size of the powdered thermoset resin is preferably less than 65 ⁇ m, more preferably less than 55 ⁇ m, and most preferably less than 45 ⁇ m.
  • the powdered thermoset resin preferably flows at a temperature less than 400°F (204°C), and preferably greater than 200°F (93°C).
  • the powdered thermoset resin is preferably present in the string binder in an amount ranging from 20 to 50 wt. %, more preferably from 25 to 40 wt. %, and most preferably from 30 to 35 wt. % of the string binder.
  • the presence of the powdered thermoset resin in the string binder may be achieved by applying a chemical treatment comprising a dispersion of the powdered thermoset resin in water.
  • the amount of powdered thermoset resin in the chemical treatment is preferably from 20 to 45 wt. %, more preferably from 25 to 40 wt. %, and most preferably from 30 to 35 wt. % of the chemical treatment.
  • the powdered thermoset resin comprises any thermoset polymer capable of being crosslinked into a thermoset plastic.
  • thermoset polymers include polyesters, vinyl esters, and epoxies.
  • the powdered thermoset resin is a powdered polyester.
  • a particularly preferred powdered thermoset resin is a powdered polyester containing 2 wt. % benzyl peroxide curing catalyst and is available from Alpha Owens Corning and designated as E240-8.
  • the string binders of the present invention further comprise a film former.
  • the film former is preferably present in the string binder in an amount ranging from 3 to 20 wt. %, more preferably from 4 to 15 wt. %, and most preferably from 5 to 10 wt. % solids of the string binder.
  • the presence of the film former in the string binder may be achieved by applying a chemical treatment comprising the film former in water.
  • the amount of film former in the chemical treatment is preferably from 3 to 20 wt. %, more preferably from 4 to 15 wt. %, and most preferably from 5 to 10 wt. % solids of the chemical treatment.
  • Any material capable of melting at elevated temperatures (for example greater than 200°F (93°C)) and forming a tack free film when cooled may be used as the film former in the present invention.
  • Polyvinyl polymers are preferred film formers, with polyvinyl acetate more preferred, and epoxidized polyvinyl acetate as most preferred.
  • An example of a preferred epoxidized polyvinyl acetate is DURACET ® 675-01 (commercially available from Franklin International, Inc.).
  • the string binders of the present invention further comprise a surfactant.
  • the surfactant is preferably present in the string binder in an amount ranging from 0.20 to 0.50 wt. %, more preferably from 0.25 to 0.45 wt. %, and most preferably from 0.30 to 0.35 wt. % of the string binder.
  • the presence of the surfactant in the string binder may be achieved by applying a chemical treatment to a fibrous substrate comprising the surfactant and a suspension of thermoset polymer power in water. Any material that reduces the interfacial tension between the powdered thermoset resin and water may be used as the surfactant of the present invention.
  • a preferred surfactant comprises molecules which are the reaction product of a substituted phenol polymerized with an alkene oxide. More preferably the surfactant comprises molecules which are the reaction product of an octylphenol polymerized with an ethylene oxide having the formula:
  • the chemical treatment may include optional improvements which serve to impart desired properties to a fiber reinforced composites.
  • the chemical treatment may further comprise flame retardants and/or pigments.
  • the chemical treatment of this invention may be applied to a fibrous substrate by any means known in the art.
  • a preferred method is illustrated by Fig. 1 where a strand input 1 of a fibrous substrate, preferably an E-glass, is fed from a feed spool 2 through an optional tensioner bar arrangement 3.
  • the strand input 1 may be passed through a bath 5 holding the chemical treatment 6 of this invention.
  • the bath 5 is preferably equipped with conventional breaker bars 7 to guide the strand input 1 while it is submerged in the chemical treatment 6 which is preferably at room temperature (60-80°F or 15-26°C).
  • the strand may be passed over at least one additional breaker 8 before being fed through a stripper die 9 to remove substantially all but the desired amount of treatment from the strand.
  • the stripper die 9 is selected to have an orifice opening of the appropriate diameter to meter the desired amount of resin onto the fibrous substrate.
  • the strand may then be passed through an oven 10 for drying. After exiting the oven 10 the strand is allowed to cool.
  • the strand is then wound onto a product spool or collet 11 using any conventional winding apparatus.
  • the rate at which the strand is wound depends upon the drying conditions, the composition of chemical treatment, and the amount of chemical treatment remaining on the strand once the excess has been removed. In short, the winding rate is preferably the maximum rate possible that allows the chemical treatment to dry on the strand before it is spooled, and is readily determined to an person ordinarily skilled in the art. Rates on the order of 80-750 ft/min (24-288 m/min) have been achieved.
  • Fibrous substrates which are chemically treated in accordance with this invention may by themselves be used to make a pre-form or they may be co-roved with a reinforcing fiber material to form a multi-end roving product which in turn may be used to make a pre-form.
  • This reinforcing fiber material may be selected from glass, polymer, natural fibers, or any combination thereof. Examples of such reinforcing fiber materials include, but are not limited to glass, KEVLAR ® , polyaramids, polyesters such as DACRON ® , and natural fibers such as linen, jute, hemp, cotton and sisal.
  • the reinforcing fiber material is in the form of a continuous roving.
  • one or more ends of string binder are roved together with one or more ends of a reinforcing fiber material, such as glass, using any conventional winding process.
  • roving ends from 1-3 wound spools of continuously formed string binder of the present invention may be lined up in a creel simultaneously with roving ends from 10-20 forming cakes of glass reinforcing fiber strand.
  • the reinforcing fiber material used to make the co-roved product is not treated with the chemical treatment used to form the string binder. This reinforcing fiber material may, however, be sized with an acceptable sizing treatment before being co-roved with the string binder.
  • a sizing treatment typically provides certain desirable effects to the reinforcing fiber material, such as protection from damage by attrition or erosion, and enhances wetout of the fibers in the composite matrix, when molded.
  • the sizing treatment is applied to the strands of reinforcing fiber material before they are wound into forming cakes.
  • the combined ends of the string binder and reinforcing fiber material may then be co-roved or wound together onto a spool, thereby forming a multi-end roving having a proportionate amount of string binder within the roving.
  • the proportion of string binder to the reinforcing fiber material may be varied according to the desired product specifications, the quantities of each being readily determined by one having ordinary skill in the art.
  • the proportion of string binder to reinforcing fiber material in the present invention ranges from 5 to 30% (more preferably 10 to 20%) by weight of string binder to 80% to 90% by weight of reinforcing fiber material.
  • the string binder of the present invention and multi-end roving formed therefrom may be incorporated into several reinforcing articles, depending on the desired application.
  • the multi-end rovings may be used to form a woven fabric reinforcement, such as a woven roving or a multi-axial stitched reinforcement.
  • the string binder and multi-end rovings formed therefrom may also be used, in continuous or chopped form, in various applications requiring an input of reinforcing fiber segments.
  • the string binder may immediately be chopped into segments instead of being spooled after forming.
  • the length of such segments is typically from 0.50 inch (1.27 cm) up to 3 inches (7.62 cm) in length.
  • the chopped segments are from 1 inch (2.54 cm) to 3 inches (7.62 cm) in length.
  • segments obtained according to the aforementioned procedure are preferably used to make pre-forms using a spray-up process.
  • a spray-up process is described in U.S. Patent No. 3,170,197.
  • segments of a multi-end roving comprising the string binder are blown or spread by conventional means over a shaped pre-form screen and a sufficient level of heat applied to melt and flow the powdered thermoset resin enough to permit some fusing of the segments and curing of the thermoset resin.
  • suction is applied to promote compacting of the segments as they fuse.
  • the process of fusing allows the layered material to conform to the shape of the pre-form screen, and the material is then set into a solid matted structure or pre-form that may be physically transported if necessary to another location to complete the molding process that forms the final composite product.
  • the reinforcing article may typically comprise from 10% to 20% by weight of the string binder, in combination with from 80% to 90% by weight of another pre-form material.
  • the weight ratio of the amount of fibrous carrier substrate to the amount of dried chemical treatment in the string binder preferably ranges from 99:1 to 85: 15 with 94:6 most preferred.
  • the chopped segments may be laid up on a consolidation screen, and optionally compressed using suction drawn through the screen to form the material into a desired shape that conforms to the contour of the screen. Consolidation may also be accomplished by placing a second screen on top of the preform prior to heating. Reinforced Composite
  • the pre-form of this invention may be used in otherwise conventional molding processes to make a reinforced composite comprising the pre-form and a polymer matrix.
  • the pre-form is placed in a mold cavity into which a moldable polymer matrix material is injected or otherwise added.
  • Any moldable polymer matrix material that is compatible with the thermoset polymer material of the string binder in the pre-form may be used.
  • Typical moldable polymer matrix resins that may be used include vinyl esters, polyesters, urethanes and phenolic thermoplastics.
  • the moldable polymer matrix is a urethane polymer that is compatible with the thermoset polymer material that is present in the string binder.
  • the pre-form may be placed in a mold in which a isocyanate and a polyol may be injected to react and form a urethane polymer reinforced by the pre-form.
  • a mold in which a isocyanate and a polyol may be injected to react and form a urethane polymer reinforced by the pre-form.
  • the skilled artisan will be able to identify other moldable matrix resin materials suitable for use with pre-forms made according to this invention without undue experimentation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A string binder is disclosed which is useful for making reinforcing articles for use in the manufacture of molded composite articles. The string binder comprises a fibrous substrate with a chemical treatment, applied thereto, comprising a thermoset polymer powder, a curing catalyst, a film former, and a surfactant. Additionally, the string binder may be co-roved with one or more ends of a separate fibrous pre-form material to make a product suitable for use in various molding applications.

Description

STRING BINDERS COMPRISING A POWDERED THERMOSET POLYMER, COMPOSITES MADE THEREFROM, AND METHODS FOR MAKING SAME
FIELD OF THE INVENTION
The present invention relates generally to chemically treated reinforcing fibers, pre-forms made with the same, and polymer composites made with the same. More particularly, this invention relates to: reinforcing fibers having a chemical treatment comprising a thermoset polymer, a film former, and a surfactant; pre-forms made with such fibers; and polymer composites made with such pre-forms.
BACKGROUND OF THE INVENTION
Fibers, such as glass fibers, are commonly used as reinforcements for synthetic polymer composites. These fiber reinforced composites are desirable for their combination of light weight and strength and are useful in a variety of applications including automobile components and housings for computers.
Conventional techniques may be used to make fiber reinforced composites and usually involve placing a pre-form in a mold and forming a polymer matrix around the pre-form. Methods for making pre-forms involve depositing chopped reinforcing fibers on to a porous form, consolidating the fibers by heating, and cooling to form a mat structure. For adequate consolidation and pre-form strength, a resin binder is usually incorporated before the heating step so that when heated, the resin flows across the fibers and acts as a binder. When the resin binder is a thermoset, a thermoset resin is incorporated before the heating step so that when heated, the thermoset resin flows across the fibers and acts as a thermoset binder when cured. The incorporation of a resin binder in order to economically produce adequate pre-forms continues to be a significant problem in the art.
One method of resin binder incorporation is known as the "wet laid" process involving the formation of an aqueous mixture of chopped glass fibers and resin binder, usually under agitation in a mixing tank. The resulting mixture may then be poured onto a porous mold or screen where suction is applied to remove liquid content. Another wet laid process involves depositing chopped fibers on a mold, spraying the fibers with an aqueous composition containing the resin binder. Alternatively, the chopped fiber can be sprayed with the aqueous composition while they are being chopped and deposited on the mold. The final step in all these processes is to heat the fibers on the mold causing the resin binder to flow and set. Unfortunately, due to the nature of glass fibers, it is difficult to obtain a uniform dispersion of fibers in a wet laid process. Poor fiber dispersion leads to undesirable qualities in a resultant pre-form such as poor structural strength. Additionally, a wet laid process often involves the use of volatile organic compounds (NOCs) and other organic solvents thereby triggering environmental safety concerns regarding their use. In contrast to wet laid processes are "dry processes" where a resin binder is dry mixed with chopped fibers, heated to melt and cure the resin, and cooled to form a preform. Alternatively, a resin binder may be sprayed in molten form on to chopped fibers and cooled to form a pre-form. Unfortunately, an application of large quantities of resin binder is required in order to produce an acceptable pre-form. As a result, there is an undesirable generation of excess molten resin which may foul equipment and require extensive cleanup operations. Furthermore, when combined with a polymer matrix to form a reinforced composite, large quantities of resin binder present in a pre-form exacerbates any incompatibility between the resin binder and polymer matrix.
Accordingly, there may be an increased likelihood of defects in the reinforced composite such as: 1) blistering, the result of undesirable chemical reactions between the resin binder and polymer matrix; 2) reduced bond strength between the pre-form and polymer matrix, also the result of undesirable chemical reactions; and 3) bleeding, the result of resin binder diffusing through the polymer matrix.
One solution to the problems caused by the aforementioned wet and dry processes is the production of string binders as disclosed in United States Patent Application No. 09/280,808, filed March 30th, 1999, entitled "String Binders" and United States Patent Application Serial No. 09/593,550 filed June 14th, 2000, entitled "String Binders and Method for Making Same." These references generally disclose a string binder made by incorporating molten thermoset resin on a strand composed of gathered fibers and cooling. These resin incorporated strands may then be chopped, directed to a mold, heated to cause the resin to flow, and cured into a thermoset resin binder. When cooled, a pre-form with a thermoset resin binder is formed. Despite the advantages string binders provide in eliminating many of the cumbersome steps of conventional processes, the current methods for producing string binders require the handling of molten thermoset resins. It would be desirable to avoid the expense and difficulty of providing thermoset resins in molten form. The present invention satisfies such by producing a string binder with thermoset resins in powdered form.
SUMMARY OF THE INVENTION An object of the invention is a string binder comprising a fibrous substrate, a powdered thermoset resin, a curing catalyst, a film former, and a surfactant. The fibrous substrate preferably comprises glass filaments which are gathered into strands. The powdered thermoset resin is preferably a polyester. Preferably, a curing catalyst is incorporated in the powdered resin. The average particle size of the thermoset polymer powder is preferably less than 65 μm, more preferably less than 55 μm, and most preferably less than 45 μm. The film former is preferably a vinyl polymer, more preferably polyvinyl acetate, and most preferably an epoxidized polyvinyl acetate. The surfactant preferably comprises molecules which are the reaction product of a substituted phenol polymerized with an alkene oxide, and more preferably the reaction product of an octylphenol polymerized with ethylene oxide.
The chemical treatment may be applied by immersing the fibrous substrate in a bath with a chemical treatment comprising the powdered thermoset resin, a curing catalyst, the film former, the surfactant, and water, preferably de-ionized water. The chemically treated fibrous substrate may then be dried and wound on a winder. Chemically treated fibrous substrates made in such a manner belong to a general class referred herein as "string binders." The term "string binder" generally refers to fibrous substrates which incorporate a resin binder. The string binders of the present invention incorporate at least one powdered thermoset resin which acts as a binder when cured.
Another object of this invention is a pre-form comprising string binders. The pre- form may be made by chopping a string binder made in accordance with the present invention, directing the choppings on to a mold, heating to cause the powdered thermoset resin contained in the string binder to melt, flow and cure into a thermoset resin binder. Alternatively, the pre-form may be made by weaving a plurality of string binder strands made in accordance with the present invention. Yet another object of this invention is a reinforced composite comprising a polymer matrix and a pre-form. The pre-form is made with a string binder in accordance with the present invention. The reinforced composite may be made by placing the pre- form in a mold and forming the polymer matrix around the mat. The polymer matrix is preferably formed by reaction injection molding.
DETAILED DESCRIPTION OF THE INVENTION The present invention provides for a string binder that may be used in continuous or chopped form as a raw material in preparation of pre-forms. Such pre-forms impart desirable physical characteristics to a reinforced composite comprising a polymer matrix and the pre-forms. The pre-forms may be placed in a mold where a polymer matrix is formed around the mat to produce a reinforced composite. Fibrous Substrate
The string binders of the present invention comprise a fibrous substrate. Any suitable fibrous substrate may be used in the invention. Preferably, the fibrous substrate may be selected from fibrous materials that are commonly known in the art, such as glass, carbon, natural fibers, polymers and other fiberizable materials known in the art, or mixtures thereof. Examples of fibrous substrates that may be used either alone or in combination with glass or carbon fibers include thermoplastics including polyesters such as DACRON® (available from E.I. DuPont de Nemours, and Co.), polyaramids such as KEVLAR® (available from E.I. DuPont de Nemours, and Co.) and natural fibers. The fibrous substrate is preferably a fibrous material in the form of continuous strands composed of multiple filaments. The strands may take the form of yarns, or rovings. Preferably, the strands of fibrous substrate comprise reinforcing fibers. Typically, such strands are formed by combining filaments of the reinforcing fibers as they are attenuated from a fiber-forming apparatus such as a bushing or orifice plate, although they may also be made by any method conventionally known in the art. The filaments may be coated with a suitable sizing composition. For example, a suitable sizing composition may comprise functional agents such as lubricants, coupling agents and film-forming polymers. After being coated with the sizing composition, the filaments may be gathered into strands. These strands may then be formed into yarns or rovings.
Preferably, the filaments making up the strands are glass and have a diameter preferably ranging from 3.5 to 24 μm and more preferably from 9 to 13 μm. The preferred filament diameters correspond to U.S. filament designations G, H, and K. In the method according to the invention, preferably the strand input has a yield of from 3,700 to 7,500 yd/lb. (7,458 to 15,119 m/kg), most preferably 7,500 yd/lb. (15,119 /kg), or approximately 66 TEX (g/km a measurement reflecting the weight and thickness of the strand).
Powdered Thermoset Resin
The string binders of the present invention further comprise at least one powdered thermoset resin. The average particle size of the powdered thermoset resin is preferably less than 65 μm, more preferably less than 55 μm, and most preferably less than 45 μm. The powdered thermoset resin preferably flows at a temperature less than 400°F (204°C), and preferably greater than 200°F (93°C). The powdered thermoset resin is preferably present in the string binder in an amount ranging from 20 to 50 wt. %, more preferably from 25 to 40 wt. %, and most preferably from 30 to 35 wt. % of the string binder. The presence of the powdered thermoset resin in the string binder may be achieved by applying a chemical treatment comprising a dispersion of the powdered thermoset resin in water. The amount of powdered thermoset resin in the chemical treatment is preferably from 20 to 45 wt. %, more preferably from 25 to 40 wt. %, and most preferably from 30 to 35 wt. % of the chemical treatment.
The powdered thermoset resin comprises any thermoset polymer capable of being crosslinked into a thermoset plastic. Examples of thermoset polymers include polyesters, vinyl esters, and epoxies. Preferably, the powdered thermoset resin is a powdered polyester. A particularly preferred powdered thermoset resin is a powdered polyester containing 2 wt. % benzyl peroxide curing catalyst and is available from Alpha Owens Corning and designated as E240-8. Film Former
The string binders of the present invention further comprise a film former. The film former is preferably present in the string binder in an amount ranging from 3 to 20 wt. %, more preferably from 4 to 15 wt. %, and most preferably from 5 to 10 wt. % solids of the string binder. The presence of the film former in the string binder may be achieved by applying a chemical treatment comprising the film former in water. The amount of film former in the chemical treatment is preferably from 3 to 20 wt. %, more preferably from 4 to 15 wt. %, and most preferably from 5 to 10 wt. % solids of the chemical treatment. Any material capable of melting at elevated temperatures (for example greater than 200°F (93°C)) and forming a tack free film when cooled may be used as the film former in the present invention. Polyvinyl polymers are preferred film formers, with polyvinyl acetate more preferred, and epoxidized polyvinyl acetate as most preferred. An example of a preferred epoxidized polyvinyl acetate is DURACET® 675-01 (commercially available from Franklin International, Inc.).
Surfactant
The string binders of the present invention further comprise a surfactant. The surfactant is preferably present in the string binder in an amount ranging from 0.20 to 0.50 wt. %, more preferably from 0.25 to 0.45 wt. %, and most preferably from 0.30 to 0.35 wt. % of the string binder. The presence of the surfactant in the string binder may be achieved by applying a chemical treatment to a fibrous substrate comprising the surfactant and a suspension of thermoset polymer power in water. Any material that reduces the interfacial tension between the powdered thermoset resin and water may be used as the surfactant of the present invention. A preferred surfactant comprises molecules which are the reaction product of a substituted phenol polymerized with an alkene oxide. More preferably the surfactant comprises molecules which are the reaction product of an octylphenol polymerized with an ethylene oxide having the formula:
H
Figure imgf000007_0001
wherein the molecules have an average value of N equal to about 9.5. Examples of such a surfactant include TRITON X-100 (commercially available from B. F. Goodrich Company). Optional Ingredients The chemical treatment may include optional improvements which serve to impart desired properties to a fiber reinforced composites. For example, the chemical treatment may further comprise flame retardants and/or pigments. Chemical Treatment Application
The chemical treatment of this invention may be applied to a fibrous substrate by any means known in the art. A preferred method is illustrated by Fig. 1 where a strand input 1 of a fibrous substrate, preferably an E-glass, is fed from a feed spool 2 through an optional tensioner bar arrangement 3. The strand input 1 may be passed through a bath 5 holding the chemical treatment 6 of this invention. The bath 5 is preferably equipped with conventional breaker bars 7 to guide the strand input 1 while it is submerged in the chemical treatment 6 which is preferably at room temperature (60-80°F or 15-26°C). After exiting the bath 5, the strand may be passed over at least one additional breaker 8 before being fed through a stripper die 9 to remove substantially all but the desired amount of treatment from the strand. The stripper die 9 is selected to have an orifice opening of the appropriate diameter to meter the desired amount of resin onto the fibrous substrate. The strand may then be passed through an oven 10 for drying. After exiting the oven 10 the strand is allowed to cool. The strand is then wound onto a product spool or collet 11 using any conventional winding apparatus. The rate at which the strand is wound depends upon the drying conditions, the composition of chemical treatment, and the amount of chemical treatment remaining on the strand once the excess has been removed. In short, the winding rate is preferably the maximum rate possible that allows the chemical treatment to dry on the strand before it is spooled, and is readily determined to an person ordinarily skilled in the art. Rates on the order of 80-750 ft/min (24-288 m/min) have been achieved. Co-Roving
Fibrous substrates which are chemically treated in accordance with this invention ("string binders") may by themselves be used to make a pre-form or they may be co-roved with a reinforcing fiber material to form a multi-end roving product which in turn may be used to make a pre-form. This reinforcing fiber material may be selected from glass, polymer, natural fibers, or any combination thereof. Examples of such reinforcing fiber materials include, but are not limited to glass, KEVLAR®, polyaramids, polyesters such as DACRON®, and natural fibers such as linen, jute, hemp, cotton and sisal. Preferably, the reinforcing fiber material is in the form of a continuous roving. To form the co-roved multi-end product, one or more ends of string binder are roved together with one or more ends of a reinforcing fiber material, such as glass, using any conventional winding process. For example, roving ends from 1-3 wound spools of continuously formed string binder of the present invention may be lined up in a creel simultaneously with roving ends from 10-20 forming cakes of glass reinforcing fiber strand. Unlike the string binder of the present invention, the reinforcing fiber material used to make the co-roved product is not treated with the chemical treatment used to form the string binder. This reinforcing fiber material may, however, be sized with an acceptable sizing treatment before being co-roved with the string binder. Application of a sizing treatment typically provides certain desirable effects to the reinforcing fiber material, such as protection from damage by attrition or erosion, and enhances wetout of the fibers in the composite matrix, when molded. Preferably, the sizing treatment is applied to the strands of reinforcing fiber material before they are wound into forming cakes.
The combined ends of the string binder and reinforcing fiber material may then be co-roved or wound together onto a spool, thereby forming a multi-end roving having a proportionate amount of string binder within the roving. The proportion of string binder to the reinforcing fiber material may be varied according to the desired product specifications, the quantities of each being readily determined by one having ordinary skill in the art. Preferably, the proportion of string binder to reinforcing fiber material in the present invention ranges from 5 to 30% (more preferably 10 to 20%) by weight of string binder to 80% to 90% by weight of reinforcing fiber material. Pre-form
The string binder of the present invention and multi-end roving formed therefrom may be incorporated into several reinforcing articles, depending on the desired application. For example, the multi-end rovings may be used to form a woven fabric reinforcement, such as a woven roving or a multi-axial stitched reinforcement. Alternatively, the string binder and multi-end rovings formed therefrom may also be used, in continuous or chopped form, in various applications requiring an input of reinforcing fiber segments.
In an embodiment requiring input of chopped reinforcing fiber segments, the string binder, or, preferably, the multi-end roving comprising the string binder, may immediately be chopped into segments instead of being spooled after forming. Preferably, the length of such segments is typically from 0.50 inch (1.27 cm) up to 3 inches (7.62 cm) in length. Most preferably, the chopped segments are from 1 inch (2.54 cm) to 3 inches (7.62 cm) in length.
The segments obtained according to the aforementioned procedure are preferably used to make pre-forms using a spray-up process. Such a process is described in U.S. Patent No. 3,170,197. In a particularly preferred embodiment including this method, segments of a multi-end roving comprising the string binder are blown or spread by conventional means over a shaped pre-form screen and a sufficient level of heat applied to melt and flow the powdered thermoset resin enough to permit some fusing of the segments and curing of the thermoset resin. Preferably, suction is applied to promote compacting of the segments as they fuse. The process of fusing allows the layered material to conform to the shape of the pre-form screen, and the material is then set into a solid matted structure or pre-form that may be physically transported if necessary to another location to complete the molding process that forms the final composite product.
Where the reinforcing article is a pre-form, it may typically comprise from 10% to 20% by weight of the string binder, in combination with from 80% to 90% by weight of another pre-form material. The weight ratio of the amount of fibrous carrier substrate to the amount of dried chemical treatment in the string binder preferably ranges from 99:1 to 85: 15 with 94:6 most preferred. To make the pre-form, the chopped segments may be laid up on a consolidation screen, and optionally compressed using suction drawn through the screen to form the material into a desired shape that conforms to the contour of the screen. Consolidation may also be accomplished by placing a second screen on top of the preform prior to heating. Reinforced Composite
The pre-form of this invention may be used in otherwise conventional molding processes to make a reinforced composite comprising the pre-form and a polymer matrix. Typically, the pre-form is placed in a mold cavity into which a moldable polymer matrix material is injected or otherwise added. Any moldable polymer matrix material that is compatible with the thermoset polymer material of the string binder in the pre-form may be used. Typical moldable polymer matrix resins that may be used include vinyl esters, polyesters, urethanes and phenolic thermoplastics. Preferably, the moldable polymer matrix is a urethane polymer that is compatible with the thermoset polymer material that is present in the string binder. For example the pre-form may be placed in a mold in which a isocyanate and a polyol may be injected to react and form a urethane polymer reinforced by the pre-form. The skilled artisan will be able to identify other moldable matrix resin materials suitable for use with pre-forms made according to this invention without undue experimentation.
EXAMPLES
Chemical treatments was prepared by mixing of E240-8 Polyester (commercially available from, of TRITON X-100, of DURACET 675-01, and de-ionized water in the weight percent amounts listed in Table 1. The chemical treatments were then applied to glass strands in accordance with the invention. TABLE 1
Figure imgf000011_0001
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that the invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications and equivalents which are within the spirit and scope of the invention, as defined by the appended claims.

Claims

WHAT IS CLAIMED IS:
1. Reinforcing fibers having a chemical treatment comprising a thermoset polymer powder, a curing catalyst, a film former, and a surfactant.
2. The product of claim 1 wherein the thermoset polymer is powdered polyester.
3. The product of claim 1 wherein the film former is a vinyl polymer.
4. The product of claim 1 wherein the vinyl polymer is polyvinyl acetate.
5. The product of claim 1 wherein the surfactant comprises molecules which are the reaction product of a substituted phenol polymerized with an alkene oxide.
6. The product of claim 1 wherein the surfactant comprises molecules which are the reaction product of an octylphenol polymerized with ethylene oxide having the formula:
Figure imgf000012_0001
7. The product of claim 6 wherein the molecules have an average value of N equal to about 9.5.
8. The product of claim 1 wherein the thermoset polymer is a powdered polyester, the vinyl polymer is polyvinyl acetate, and the surfactant comprises molecules which are the reaction product of an octylphenol polymerized with ethylene oxide.
9. The product of claim 1 wherein said reinforcing fibers form a strand having the chemical treatment.
10. The product of claim 1 wherein the curing catalyst is benzyl peroxide.
11. A reinforcing fiber mat comprising the fibers of claim 8.
12. A composite comprising a polymer matrix and the reinforcing fiber mat of claim 11.
PCT/US2001/026037 2000-08-31 2001-08-21 String binders comprising a powdered thermoset polymer, composites made therefrom, and methods for making same WO2002018289A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001286568A AU2001286568A1 (en) 2000-08-31 2001-08-21 String binders comprising a powdered thermoset polymer, composites made therefrom, and methods for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65256500A 2000-08-31 2000-08-31
US09/652,565 2000-08-31

Publications (1)

Publication Number Publication Date
WO2002018289A1 true WO2002018289A1 (en) 2002-03-07

Family

ID=24617285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/026037 WO2002018289A1 (en) 2000-08-31 2001-08-21 String binders comprising a powdered thermoset polymer, composites made therefrom, and methods for making same

Country Status (2)

Country Link
AU (1) AU2001286568A1 (en)
WO (1) WO2002018289A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US280808A (en) 1883-07-10 Window-shade roller
US593550A (en) 1897-11-09 Island
US3170197A (en) 1961-01-12 1965-02-23 Ivan G Brenner Apparatus for producing a fibrous glass preform
WO1991015434A1 (en) * 1990-03-30 1991-10-17 Owens-Corning Fiberglas Corporation Coating composition for fibers
US5116900A (en) * 1990-02-13 1992-05-26 Owens-Corning Fiberglas Corporation Coating composition for fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US280808A (en) 1883-07-10 Window-shade roller
US593550A (en) 1897-11-09 Island
US3170197A (en) 1961-01-12 1965-02-23 Ivan G Brenner Apparatus for producing a fibrous glass preform
US5116900A (en) * 1990-02-13 1992-05-26 Owens-Corning Fiberglas Corporation Coating composition for fibers
WO1991015434A1 (en) * 1990-03-30 1991-10-17 Owens-Corning Fiberglas Corporation Coating composition for fibers

Also Published As

Publication number Publication date
AU2001286568A1 (en) 2002-03-13

Similar Documents

Publication Publication Date Title
US6780468B2 (en) String binders
US5227236A (en) Process for preparing thermoplastic matrix fiber-reinforced prepregs and composite structure products formed thereby
EP0535223B1 (en) Process for producing tubes or pipes formed from a thermoplastic powder impregnated fiberglass roving
JPH07216104A (en) Preparation of long filament-reinforced resin structure
KR20010013375A (en) High solubility size composition for fibers
US5024890A (en) Size composition for impregnating filament strands and glass fibers coated therein
US6849331B1 (en) Polyester resin string binder
WO2002042235A2 (en) Epoxy urethane string binder
US5312687A (en) Size composition for impregnating filament strands with a liquid crystal polymer and the strands produced thereby
EP1353993A2 (en) Mixed lubricant sizing
US5587034A (en) Process for pultruding fiber reinforced furan composites
EP0368412B1 (en) Method for the production of flexible, polymer-impregnated reinforcing materials, the polymer-impregnated reinforcing materials produced and shaped articles produced on the basis of these reinforcing materials
US6828024B1 (en) Epoxy film former string binder
WO2001096105A2 (en) Moldable matrix polymer material and method for making molded composite product
WO2002018289A1 (en) String binders comprising a powdered thermoset polymer, composites made therefrom, and methods for making same
US20020098754A1 (en) Calcium carbonate filled epoxy urethane string binders
CA2406486A1 (en) String binders and method for making same
JPH05261832A (en) Molding of a composite product
US20110129608A1 (en) Methods of applying matrix resins to glass fibers
JPH04249538A (en) Glass-reinforced polyamide resin composition and production thereof
WO2002068356A1 (en) Particulate material distributed in-between gathered fibers of a strand and increased loading of sizing resulting therefrom
JPH0137503B2 (en)
JP2003268137A (en) Prepreg and method for producing prepreg
JPH0439334A (en) Production of thermoplastic polyester resin composition reinforced with long fiber
WO1992018433A1 (en) Coated glass fibers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP