WO2002017983A1 - Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same - Google Patents

Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same Download PDF

Info

Publication number
WO2002017983A1
WO2002017983A1 PCT/JP2001/007289 JP0107289W WO0217983A1 WO 2002017983 A1 WO2002017983 A1 WO 2002017983A1 JP 0107289 W JP0107289 W JP 0107289W WO 0217983 A1 WO0217983 A1 WO 0217983A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
cells
pharmaceutical composition
periodontal tissue
forming
Prior art date
Application number
PCT/JP2001/007289
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Ueda
Ken-Ichiro Hata
Yoshitaka Hibino
Kunihiko Okada
Original Assignee
Osteogenesis Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osteogenesis Co., Ltd. filed Critical Osteogenesis Co., Ltd.
Priority to AU2001280164A priority Critical patent/AU2001280164A1/en
Publication of WO2002017983A1 publication Critical patent/WO2002017983A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3821Bone-forming cells, e.g. osteoblasts, osteocytes, osteoprogenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/32Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3633Extracellular matrix [ECM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3847Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3865Dental/periodontal tissues
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • composition for forming bone or periodontal tissue and method for preparing the same and injection for forming bone or periodontal tissue and method for preparing the same
  • the present invention relates to a pharmaceutical composition for forming bone or periodontal tissue and a method for preparing the same, which can be used for repairing and regenerating bone or periodontal tissue, and an injection for forming bone or periodontal tissue and a method for preparing the same.
  • bone tissue (cartilage tissue) by tissue engineering combines the cells that form bone tissue, the substrate that replaces new bone tissue, and growth factors that control the proliferation and differentiation of cells involved in bone tissue regeneration. It is intended to regenerate bone tissue (cartilage tissue) by using it, and to apply functions related to the repair mechanism of normal bone tissue in the living body. In particular, focusing on growth factors, repairing growth factors together with substrates Many attempts have been made to regenerate bone tissue by directly transplanting to the desired bone defect. Among growth factors, bone morphogenetic protein (BMP) has been widely studied.
  • BMP bone morphogenetic protein
  • BMP is a growth factor that has been discovered as a substance exhibiting ectopic osteoinductive activity in the demineralized bone matrix, and acts on undifferentiated mesenchymal stem cells to cause osteoblasts or cartilage. Differentiate into blasts.
  • As a carrier for using BMP glass fiber, hydroxyapatite, ceramics, collagen, synthetic polymer, and the like are being studied.
  • For bone formation implants combining BMP and carrier see For example, it has been proposed in Japanese Patent Application Laid-Open Nos. 7-24632-35 and 10-151188.
  • cell-hybrid artificial bone which combines cells cultured in a test tube with biomaterials
  • an osteogenic cell collected from bone marrow is cultured in a three-dimensional scaffold having a defect-like form to be regenerated, thereby producing a cell-incorporated artificial bone. Is implanted into the defect.
  • Caplan et al. Found that mesenchymal stem cells were present in the bone marrow and showed that ectopic osteoinduction was observed when the bone marrow was mixed with porous calcium phosphate ceramics and transplanted (Ohguchi, H., Goldgerg, VM: Heterotopic osteogenesis m porous ceramics muced by marrow cells. J.
  • GTR guides tissue regeneration
  • This method involves inserting a shielding membrane (GTR membrane) between the root surface and the gingival flap to block the invasion of cells from the connective tissue and epithelium of the gingiva to the tissue defect, and to form periodontal ligament cells and osteoblasts Cells are periodontal It provides a place to regenerate the organization.
  • GTR membrane shielding membrane
  • Polytetrafluoroethylene film and the like are generally used for the GTR film, but since these materials are non-bioabsorbable, secondary surgery is required to remove the GTR film.
  • tissue engineering has attempted to regenerate bone tissue (cartilage tissue) or periodontal tissue in many cases.
  • knowledge on the regeneration mechanism of bone tissue (cartilage tissue) or periodontal tissue may not be sufficient.
  • Such a regeneration method is required not only to have a high effect of regenerating bone or periodontal tissue, but also to have good operability and to be safe for a living body. Disclosure of the invention
  • the present invention has been made as a result of intensive studies in view of the above problems, and in order to provide a novel bone or periodontal tissue regeneration method applicable to clinical use, the bone or periodontal tissue used in the method is provided. It is intended to provide a pharmaceutical composition for tissue formation.
  • the configuration of the first aspect of the present invention is as follows.
  • a pharmaceutical composition for forming bone or periodontal tissue which has fluidity at the time of use comprising mesenchymal stem cells having acquired the ability to differentiate into bone cells, and an inorganic bioabsorbable material.
  • a pharmaceutical composition for forming a bone or periodontal tissue which further contains a gelling agent and is configured to gel after application. According to such a configuration, since it includes cells that have acquired the ability to differentiate into bone cells, direct regeneration of bone tissue by itself can be expected.
  • inorganic bioabsorbable materials used as cell carriers or scaffolds will be replaced with bone tissue in the future, and their safety is high.
  • a bone or periodontal tissue defect can be effectively repaired and regenerated, and bone or bone having high operability and safety can be obtained.
  • a pharmaceutical composition for periodontal tissue formation is provided.
  • FIG. 1 is a view showing a phase-contrast micrograph of the bone marrow cells on the third day of the initial culture in Example 1.
  • FIG. 2 is a view showing a phase-contrast micrograph of the bone marrow cells on day 10 of the subculture in Example 1.
  • FIG. 3 is a view showing a phase-contrast micrograph showing a state of bone marrow cells on day 14 of subculture in Example 1. Bone marrow cells are observed in a polygonal shape, and extracellular matrix-like structures can be observed around the cells.
  • FIG. 4 is a view showing a stained image obtained by staining the cells on day 14 of the subculture in Example 1 with alkaline phosphatase. It can be seen that the cells are partially aggregated and form calcified nodules.
  • FIG. 5 is a photograph showing the results of transplantation of the cell-containing (3-TCP paste) in Example 3.
  • the tissue image of the demineralized HE (hematoxylen-geosin) stained portion of the transplanted portion 8 weeks after transplantation is shown. (100 times).
  • the part missing in white is decalcified) 3-TCP.
  • a regular lamellar structure is observed in the formed bone tissue, the bone cavities are narrowed, and mature bone tissue is generally observed.
  • FIG. 6 is a diagram showing a table summarizing the osteogenic ability of each sample in Example 4.
  • C and E represent the control group and the stimulation group, respectively.
  • FIG. 7 is a graph summarizing the measurement results in Example 5.
  • the alkaline phosphatase (ALP) activity in each group when cultured under the conditions of an extension rate of 15% (mechal5%) and 5 cycles / min (5 cycles / min, about 0.083 Hz) is shown.
  • SC1 and SC2 were the groups that did not use an induction medium and did not receive a stretching stimulus.
  • the groups without a group, indl + Sl to indl + S4 represent the groups to which a stretching stimulus is applied using an induction medium, respectively.
  • FIG. 8 is a graph showing a summary of measurement results in Example 5. It shows the activity of ALPHA in each group when cultured under the conditions of an extension rate of 15% (mechal5%) and 10 cycles / min (10 cycles / min, about 0.167 Hz).
  • SC1 and SC2 were a group that did not use an induction medium and did not receive a stretching stimulus
  • SC + S1 and SC + S2 were a group that added only a stretching stimulus without using an induction medium
  • indl and ind2 were a group that used an induction medium and applied a stretching stimulation
  • the groups without a group, indl + Sl to indl + S4 represent the groups to which a stretching stimulus is applied using an induction medium, respectively.
  • FIG. 9 is a diagram showing a graph summarizing the measurement results in Example 5.
  • the alkaline phosphatase (ALP) activity in each group when cultured under the conditions of an extension rate of 20% (mecha 20%) and 5 cycles / min (5 cycles / min, about 0.083 Hz) is shown.
  • SC1 and SC2 do not use induction medium and do not stimulate
  • SC + S1 and SC + S2 do not use induction medium and apply only extension stimulation
  • indl and ind2 use induction medium and do not stimulate extension
  • the groups, indl + Sl to indl + S4 represent the groups to which the stretching stimulus is applied using the induction medium.
  • a mesenchymal stem cell that has acquired a differentiation ability to a bone cell is used, but “acquired a differentiation ability to a bone cell” is an undifferentiated state. Is the state in which the cells are oriented to differentiate into bone cells.
  • bone cells include osteoblasts, osteoclasts, and chondroblasts.
  • mesenchymal stem cells having acquired the differentiation ability to bone cells not only autologous cells but also allogeneic allogeneic cells can be used.
  • human mesenchymal stem cells can be used.
  • osteoblast-acquiring cells Mesenchymal stem cells that have acquired the ability to differentiate into bone cells.
  • osteoblast-acquiring cells are transformed under the conditions that induce undifferentiated mesenchymal stem cells to differentiate into bone cells. It can be prepared by culturing. For example,) 3-glycerophosphate> dexamethasone, L-ascorbic acid
  • differentiation into bone cells By culturing undifferentiated mesenchymal stem cells in a medium containing (L-ascorbic acid), differentiation into bone cells can be induced.
  • the culture conditions are not limited to these, and any known conditions for inducing differentiation into bone cells can be used.
  • the physical stimulation refers to the pressure from outside the cell, pulling force or the like is applied, for example, a gas in the culture vessel (air, C_ ⁇ 2, etc.) periodically ', continuous, or Intermittent
  • the cells can be supplied with a desired external pressure, etc., through the culture medium. Wear.
  • the cells are seeded on a stretchable membrane or the like (for example, a silicon membrane), and the membrane to which the cells adhere is expanded or contracted periodically, continuously, or intermittently, thereby stretching and stimulating the cells to stretch. Stimulation can be given.
  • a physical stimulus can be given to the cells by giving a desired flow to the medium.
  • Sources of undifferentiated mesenchymal stem cells include bone marrow, dental pulp, and cord blood. After collecting them according to a conventional method, undifferentiated mesenchymal cells are selected based on the presence or absence of adhesiveness. That is, undifferentiated mesenchymal stem cells can be obtained by selecting cells having adhesive properties from cells contained in bone marrow and the like.
  • the pharmaceutical composition for forming bone or periodontal tissue of the present invention (hereinafter, referred to as “the pharmaceutical composition of the present application”) is obtained by adding the extracellular matrix of the cells together with the cells having the ability to differentiate into bone.
  • the extracellular matrix is expected to serve as a scaffold for the bone differentiation-acquiring cells at the site to which the pharmaceutical composition of the present invention is applied, and it is considered that the bone differentiation-acquiring cells are likely to be established at the application site.
  • it also serves as a scaffold for bone cells existing around the application site, so that high bone inducing ability can be expected.
  • factors such as BMP contained in the extracellular matrix include the bone cell differentiation-acquiring cells themselves contained in the pharmaceutical composition of the present invention, and bone cells around the application site or stem cells having the ability to differentiate into bone cells. This is because it can be expected to promote the growth, proliferation, and differentiation of E. coli.
  • the extracellular matrix here is a matrix (matrix) that surrounds the cells that have acquired the osteoblastic capacity.
  • the extracellular matrix of autologous cells can be used. This is because BMPs and the like contained in such extracellular matrix are of the same species, so that the same effect can be expected even when allogeneic cells are used.
  • the extracellular matrix of autologous cells can be used, which facilitates the preparation of the extracellular matrix of cells having the ability to acquire bone differentiation potential.
  • the extracellular matrix is added, the cells with the ability to acquire bone differentiation potential added simultaneously may not be living cells. This means that it is not necessary to treat the cells with bone differentiation potential in the state of living cells, which is desirable from the viewpoint of handling. For example, after obtaining cells having bone differentiation potential, those obtained by freeze-drying or the like can be prepared and used as the cells having bone differentiation potential and its extracellular matrix.
  • the content of the bone differentiation-acquiring cells in the pharmaceutical composition of the present invention is preferably such that 1 ⁇ 10 5 or more cells are present in 1 ml of the composition, more preferably 1 ⁇ 10 6 to 1 ⁇ 10 10. Preferably, there are seven cells. This is because by setting such a cell content, bone formation can be effectively induced.
  • 3_tricalcium phosphate hereinafter, referred to as "3-TCP”
  • ⁇ -tricalcium phosphate hereinafter, referred to as "0; -TCPJ”
  • phosphorus A material selected from the group consisting of tetracalcium acid, octacalcium phosphate, and amorphous calcium phosphate can be used, and these materials can be used alone, as well as optionally. Two or more selected types may be used in combination. Preferably,) any one of 3-TC) or ⁇ -TC ⁇ , or a combination of these at an arbitrary ratio is used. Used as an inorganic bioabsorbable material.
  • the inorganic bioabsorbable material can be obtained by a known method. Also, commercially available inorganic biomaterials can be used. 3) As TCP, for example, one manufactured by Olympus Optical Co., Ltd. can be used.
  • the inorganic bioabsorbable material is preferably in the form of a powder having a particle size such that the pharmaceutical composition of the present invention becomes fluid when used.
  • the powdery inorganic bioabsorbable material can be prepared by crushing and processing the inorganic bioabsorbable material processed to an appropriate size to a desired particle size.
  • the average particle diameter of the inorganic bioabsorbable material should be 0.5 im to 50 m. Is preferred. More preferably, the average particle size is 0.5! 1 to 10 inorganic bioabsorbable materials. Still more preferably, the average particle size is 1! 5 to 5 organic bioabsorbable materials are used. It is also possible to use a combination of a plurality of types of inorganic bioabsorbable materials having different particle diameters.
  • the inorganic bioabsorbable material is contained in an amount of 50% by weight to 75% by weight based on the whole pharmaceutical composition of the present invention.
  • the fluidity of the pharmaceutical composition of the present invention is mainly determined by the particle size and the content of the inorganic bioabsorbable material, and the desired fluidity can be obtained by appropriately adjusting both. Can be.
  • the fluidity can be adjusted also by the amount of the thickener added.
  • the degree of fluidity of the pharmaceutical composition of the present invention at the time of use is not particularly limited, and may be slurry, paste, clay, high-viscosity fluid, or the like. It is preferably in the form of a paste. By making it into a paste, it becomes a pharmaceutical composition for forming bone or periodontal tissue having excellent plasticity. Therefore, it can be applied without being previously formed into the shape of the application portion. That is, application to the application section can be easily performed. In addition, it becomes a pharmaceutical composition for forming bone or periodontal tissue, which has good fixation properties at the application part.
  • the fluidity is such that it can be injected using an injection container, and such fluidity facilitates application to the application section.
  • desired fluidity can be obtained depending on the application section. For example, when injecting under the periosteum, it is preferable to make the liquid more fluid (a state having a lower viscosity).
  • the pharmaceutical composition of the present invention only needs to have fluidity at least at the time of use, and may be in the form of powder or solid before use. Therefore, the pharmaceutical composition of the present invention can be used in a frozen state.
  • the lyophilized state can be used as the pharmaceutical composition of the present invention. Frozen or lyophilized before use By doing so, long-term storage becomes possible, and handling before use becomes easy.
  • the antigenicity can be reduced by freezing or freeze-drying, it is safe to use allogeneic cells instead of autologous cells as mesenchymal stem cells that have acquired the ability to differentiate into bone cells. The performance is improved.
  • the flowability of the pharmaceutical composition of the present invention can be adjusted by adding a thickener.
  • thickeners thickener polysaccharides such as sodium alginate, glycerin, and serine can be used, but from the viewpoint of safety and bone formation ability, they are highly biocompatible and bioabsorbable. It is preferable to use a substance having biodegradability or biodegradability. By adding glycerin, etc., the effect of preventing frost damage can also be obtained.
  • the pharmaceutical composition of the present invention contains a gelling agent so as to be gelled after application.
  • a gelling agent so as to be gelled after application.
  • gelation occurs immediately after application, so that fixability at the application site is improved, and bone or periodontal tissue is repaired or regenerated effectively.
  • it since it has fluidity during use and gels at the application site after use (after application), it is not necessary to mold the application site in advance, and versatility is improved.
  • collagen or fibrin glue can be used as the gelling agent.
  • Various collagens can be selected and used, but it is preferable to use collagen suitable for the application purpose (applied tissue) of the pharmaceutical composition for forming bone or periodontal tissue of the present invention.
  • type I collagen can be used.
  • the collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).
  • the pharmaceutical composition of the present application may contain an aqueous solvent. That is, at least an osteogenic differentiation-capable cell and an inorganic bioabsorbable material may be mixed in an aqueous solvent.
  • Aqueous solvents include sterile water, saline, A phosphate buffer or the like can be used.
  • a part of the culture solution used for obtaining the cells having bone differentiation potential can be used as a solvent.
  • the pharmaceutical composition of the present application may contain, in addition to the above components, a stabilizer, a preservative, a pH adjuster, and the like. It can also include growth factors, especially osteoinductive factors (BMP).
  • BMP osteoinductive factors
  • the pharmaceutical composition of the present application is prepared by mixing the above components. It can also be prepared by the preparation method in the second aspect of the present invention described later. Furthermore, it can be prepared, for example, by the following method. First, a block of an inorganic bioabsorbable material is prepared in a culture solution, and skeletal cells are cultured so as to be adsorbed on the block to form an inorganic bioabsorbable material-bone cell complex. Then, this is crushed, pulverized, or the like to obtain a pharmaceutical composition of the present application comprising a mixture of bone cells and an inorganic bioabsorbable material.
  • the pharmaceutical composition of the present invention thus prepared contains, in addition to the bone cells, the extracellular matrix of the cells.
  • a thickener In the case of the above-mentioned preparation method, a thickener, a gelling agent (collagen, fubulin glue, etc.), a stabilizing agent, a preservative, a pH regulator, a growth factor and the like can be separately added. Further, the finally obtained mixture of each component may be frozen or lyophilized. Freezing or freeze-drying can be performed according to a conventional method.
  • the pharmaceutical composition of the present invention When the pharmaceutical composition of the present invention is prepared in a frozen state or a lyophilized state, it is made into a state having desired fluidity at the time of use. If frozen, thaw to return to the state before freezing. At this time, a desired fluidity can be adjusted by adding a physiological saline or the like. On the other hand, in the case of the freeze-dried state, a solvent such as physiological saline is added to obtain a fluidity before the freeze-drying treatment or a state having a desired fluidity.
  • an injection for bone or periodontal tissue formation (hereinafter referred to as “the injection of the present application”) can be obtained.
  • the pharmaceutical composition of the present invention prepared in this state is sealed in an injection container, and then frozen or freeze-dried to obtain an injection of the present invention.
  • the use of such an injection makes handling easier. That is, a desired effect can be expected by injecting the present injection transdermally or transmucosally without adding lime to the skin or mucous membrane as in the past when applying.
  • Such an injection of the present invention is used after the bone or periodontal tissue forming pharmaceutical composition encapsulated therein is brought into a state having desired fluidity in the same manner as described above.
  • a second aspect of the present invention provides a method for preparing a pharmaceutical composition for forming bone or periodontal tissue having fluidity during use, which comprises the following steps a) to c).
  • mesenchymal stem cells having adhesiveness from a mesenchymal stem cell source
  • b) culturing the mesenchymal stem cells selected in step a) under conditions that induce differentiation into bone cells
  • step a) a step of mixing a mesenchymal stem cell that has acquired the differentiation ability into a bone cell in step b) with an inorganic bioabsorbable material in an aqueous solvent to form a flowable composition.
  • cells having adhesive properties are selected from a mesenchymal stem cell source.
  • Sources of mesenchymal stem cells include bone marrow, dental pulp, and cord blood, as described above. After collecting them according to a conventional method, cells having adhesive properties are selected. Selection of cells having adhesive properties is performed, for example, by seeding a suspension of bone marrow cells or the like in a flask or culture dish, culturing for a desired period of time, and exchanging the medium. This is performed by removing cells and the like. Preferably, this selection operation is performed several times to reduce the incorporation of non-adhesive components.
  • the mesenchymal stem cells selected in step a) are cultured under conditions that induce differentiation into bone cells. That is, in step b), undifferentiated mesenchymal stem cells are oriented to differentiate into bone cells. For example, 0-glyceric phosphate (
  • the culture conditions are not limited to these, and any known conditions for inducing differentiation into bone cells can be employed.
  • Alkaline phosphatase activity and osteocalcin content are used as indicators of differentiation from undifferentiated mesenchymal stem cells to bone cells.
  • Alkaline phosphatase activity is expressed from the early stage of differentiation, and osteocalcin is known to be expressed in mature osteoblasts. Therefore, by measuring the expression levels of these, it is possible to determine whether or not the cells have the ability to differentiate into bone cells, and to know the degree of differentiation. .
  • the mesenchymal stem cells obtained in step a) be cultured and expanded while maintaining the ability to differentiate into bone cells.
  • the number of cells can be increased, and it is easy to mix a desired number of cells with the inorganic bioabsorbable material in step c) described later.
  • the culture of undifferentiated mesenchymal cells it has been pointed out that by repeating the passage in accordance with a known culture method, the number of cells differentiated into bone cells decreases thereafter. In other words, it is said that it is difficult to culture undifferentiated mesenchymal cells for a long period of time while maintaining the ability to differentiate into bone cells in the future.
  • a step of culturing the mesenchymal stem cells selected in step a) in the presence of physical stimulation is preferably performed.
  • Physical stimulation refers to the application of external pressure, tension, etc. to a cell.
  • periodic gas air, co 2, etc.
  • Komu Ri intermittently feeding can provide the desired external pressure such as the cell via the culture medium.
  • the cells are seeded on a stretchable membrane or the like (for example, a silicon membrane), and the membrane to which the cells adhere is expanded or contracted periodically, continuously, or intermittently to stimulate the cells to expand or contract.
  • by applying a desired flow to the medium physical stimulation can be applied to the cells.
  • physical stimulation can be provided using ultrasound. Incidentally, a desired physical stimulus can be applied by arbitrarily combining these methods.
  • step c) the mesenchymal stem cells, which have acquired the differentiation potential into bone cells in step b), and an inorganic bioabsorbable material are mixed in an aqueous solvent to form a fluid composition, that is, fluidity A bone or periodontal tissue forming pharmaceutical composition having the following formula is formed. Further, the mesenchymal stem cells having acquired the differentiation ability to the bone cells according to b), the extracellular matrix of the cells, and a bioabsorbable material are mixed in an aqueous solvent to form a fluid composition. You can also.
  • the bone or periodontal tissue forming pharmaceutical composition can be used at the site where the composition has been applied.
  • the extracellular matrix is expected to serve as a scaffold for bone differentiation-acquiring cells, and it is thought that the bone differentiation-acquiring cells are likely to be established at the application site. In addition, it also serves as a scaffold for bone cells existing around the application site, and can be expected to have high bone inducing ability.
  • factors such as BMP contained in the extracellular matrix may be used to obtain the bone differentiation-acquiring cells themselves contained in the pharmaceutical composition for forming bone or periodontal tissue, and the bone cells or bone cells around the application site. It is expected to promote the growth, proliferation, and differentiation of stem cells that have the ability to differentiate into cells.
  • the extracellular matrix refers to a matrix (matrix) that surrounds the cells having bone differentiation potential.
  • a gelling agent is further mixed to form a flowable composition such that the composition for forming bone or periodontal tissue prepared by the method of the present invention gels after application.
  • a composition for forming bone or periodontal tissue which gels immediately after application is prepared. Therefore, it is possible to prepare a pharmaceutical composition for forming a bone or a periodontal tissue, which can improve the fixability at an application site and can effectively repair or regenerate the bone or the periodontal tissue.
  • a gelling agent having a high biocompatibility for example, collagen or fipurin glue.
  • collagens can be selected and used, but it is preferable to use collagen suitable for the application purpose (applied tissue) of the pharmaceutical composition for forming bone or periodontal tissue of the present invention.
  • type I collagen can be used.
  • the collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).
  • Resulting flowable composition in step c) in 1 m 1 the it is preferred that 1 X 1 0 5 or more cells are mixed bone based differentiation capacitation cells so that the presence, and et al Preferably, the cells are mixed so that 1 ⁇ 10 6 to 1 ⁇ 10 7 cells are present.
  • the type of the inorganic bioabsorbable material is not particularly limited, a material selected from the group consisting of / 3-TCP, a-TCP, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate is used. Can be used. These materials can be used alone, or two or more arbitrarily selected materials may be used in combination. Preferably, 0-TCP is used as the inorganic bioabsorbable material.
  • the inorganic bioabsorbable material can be obtained by the method described in the first aspect of the present invention.
  • the particle diameter and properties of the inorganic bioabsorbable material those described in the first aspect of the present invention are also applied in the second aspect.
  • the mixing amount of the inorganic bioabsorbable material depends on the total flowable composition obtained as a result of step c). Preferably, it is 50% by weight to 75% by weight.
  • aqueous solvent sterilized water, physiological saline, phosphate buffer and the like can be used. Also, a part of the culture solution used in step b) can be used.
  • the degree of fluidity of the composition obtained as a result of step c) is not particularly limited, and may be paste, clay, high-viscosity fluid, or the like. Preferably, it is in the form of a paste. By forming the paste, a composition having excellent plasticity is obtained. Therefore, it can be applied without being previously formed into the shape of the application portion. That is, a pharmaceutical composition for forming bone or periodontal tissue which can be easily applied is prepared. In addition, a pharmaceutical composition for forming bone or periodontal tissue having good fixation properties at the application site is prepared.
  • desired fluidity can be obtained depending on the application site. For example, when injecting under the periosteum, it is preferable to make the liquid more fluid (low viscosity).
  • a thickener can also be added in step c).
  • thickening polysaccharides such as sodium alginate, glycerin, petrolatum, etc. can be used.However, from the viewpoints of safety and no or bone formation ability, it has high biocompatibility and bioabsorbability.
  • a biodegradable material is preferably used. Addition of glycerin and the like also has the effect of preventing frost damage. Further, a stabilizer, a preservative, a pH adjuster, and the like can be added.
  • growth factors in particular osteoinductive factors (BMP), can be added.
  • a step (step) of freezing the flowable composition obtained in step c) can be performed.
  • the frozen pharmaceutical composition for bone or periodontal tissue formation obtained by such a step is suitable for long-term storage. It can be stored with stable quality until use. Further, once frozen, the antigenicity of the fluid composition can be reduced, and immune rejection when applied (transplanted) to a living body can be reduced.
  • the freezing treatment can be performed according to a conventional method.
  • the frozen pharmaceutical composition for forming bone or periodontal tissue is thawed and used at the time of use. At this time, the desired fluidity can be adjusted by adding an aqueous solvent such as physiological saline.
  • step e) a step of freeze-drying the flowable composition obtained in step c) (step e)) can be performed.
  • the freeze-dried pharmaceutical composition for bone or periodontal tissue formation obtained by such a step is suitable for long-term storage similarly to the above-mentioned frozen one, and has a stable quality until use. Can be saved. Also, a decrease in antigenicity can be expected.
  • the freeze-drying treatment can be performed according to a conventional method.
  • the lyophilized pharmaceutical composition for bone or periodontal tissue formation is used after it has been made to have a fluidity before lyophilization or a desired fluidity by adding an aqueous solvent such as physiological saline. Is done.
  • an injection for forming bone or periodontal tissue can be prepared by performing the following steps. A) enclosing the osteogenic pharmaceutical composition obtained by the above-mentioned preparation method in an injection container; and
  • step B a step of freezing or freeze-drying the pharmaceutical composition for forming bone or periodontal tissue enclosed in the injection container obtained in step A).
  • the type of injection container is not particularly limited, and for example, a commercially available syringe can be used. Freezing or freeze-drying can be performed according to a conventional method.
  • a third aspect of the present invention provides a method for preparing cells having the ability to differentiate into bone cells, and a method for preparing bone cells.
  • the present inventors dissociate into bone cells by culturing the cells under a physical stimulus. It has been found that more subcultures are possible without losing chemopotency.
  • the third aspect of the present invention has been made based on such findings, and is a method for preparing a cell having the ability to differentiate into bone cells, comprising the following steps.
  • step i) a step of selecting mesenchymal stem cells having adhesion from a mesenchymal stem cell source; and ii) culturing the mesenchymal stem cells selected in step i) in the presence of a physical stimulus.
  • steps i) and ii) here are the same as those in steps a) and a-1) in the second aspect of the present invention, and therefore, description thereof will be omitted.
  • well-known or well-known culture conditions can be adopted as culture conditions other than the physical stimulation.
  • a third aspect of the present invention is a method for preparing a bone cell, comprising the following steps.
  • a large amount of bone cells can be obtained.
  • a large amount of extracellular matrix of bone cells can be obtained.
  • step iii) is the same as step b) in the second aspect of the present invention, and a description thereof will be omitted.
  • the bone cell obtained by the preparation method of the third aspect of the present invention can be used, for example, as a mesenchymal stem cell that has acquired the ability to differentiate into a bone cell in the first aspect of the present invention.
  • a fourth aspect of the present invention is a method for preparing bone cells, which comprises culturing mesenchymal stem cells in the presence of a physical stimulus when the cells are induced to differentiate into bone cells.
  • the bone cells obtained by such a preparation method can be used, for example, as mesenchymal stem cells that have acquired the ability to differentiate into bone cells in the first aspect of the present invention.
  • mesenchymal stem cells those prepared from bone marrow, dental pulp, cord blood, etc. according to a conventional method can be used as described above. After collection, cells cultured in the presence of a physical stimulus can also be used.
  • the lower body of a male Fischer (7-week-old) rat anesthetized by a ether was shaved. After shaving, the remaining hair in the shaved area was completely removed with a depilatory cream. Subsequently, the hair removal cream and the hair remaining on the shaved part were sufficiently washed away. Thereafter, excess water was sufficiently removed. Next, the rat was fixed on the stomach, and the back of the lower body was thoroughly wiped with hibiden for disinfection. After disinfection, the back of the lower body was incised into a cross shape, and the skin at the incision was sufficiently peeled off and fixed to expose the thigh.
  • the femur was exposed by exfoliating muscles and the like from the head of the femur. At this time, the soft tissue attached to the bone was removed as much as possible. Subsequently, the ligaments and the like at the joints were cut, and the femur was extracted.
  • the extracted large fe bone was eagle minimal essential me mm (GIBCO Laboratories Life Technologies, NY USA) (15% Fetal Bovine Serum (GIBCO Laboratories Life Technologies, NY USA), lOOU / ml penicillin G (Meiji Seika Co., Ltd.), 100 g / ml streptomycin (Sigma Chemical Co., St Louis, USA) containing 0.25 ⁇ g / ml amphotericins B (GIBCO Laboratories Life Technologies, NY USA).
  • the flask in which the bone marrow cells were seeded was transferred into Incube overnight, and cultured under the conditions of 5% CO 2 and 37.
  • the medium was replaced 24 hours after seeding of the bone marrow cells in order to remove the blood cells contained in the culture solution and to select and culture the adherent cells. Thereafter, culturing was continued for about 7 days in the culture solution until the cells became subconfluent. During that time, medium exchange was performed once every two days.
  • the state of the cells on the third day of the initial culture is shown in FIG.
  • the cells were detached using 0.05% trypsin, inoculated so that the area ratio became 2 to 4 times, and subcultured.
  • the medium was exchanged every two days, and each time, 3-glycerophosphate, Dexamethasone, and Vitamin C phosphate (jj-ascorbic acid phosphate magnesium salt n-hydrate) were added to the medium as described above. In this way, the cells were cultured for about 2 weeks until calcification was confirmed in the flask.
  • 3-glycerophosphate, Dexamethasone, and Vitamin C phosphate jj-ascorbic acid phosphate magnesium salt n-hydrate
  • FIG. 3 shows the state of the cells after further culturing for 4 days (subculture day 14). Bone marrow cells are observed in a polygonal shape, and extracellular matrix-like structures can be observed around the cells.
  • FIG. 4 shows cells on the 14th day of subculture stained with alkaline phosphatase. It can be seen that the cells are partially aggregated and form calcified nodules. Immediately, positive reaction of lipophosphatase can be observed mainly in the nodules.
  • the medium in the flask was removed except for a small amount of the medium in the flask.
  • the cells were then detached from the flask using Cell'Scraper (Nunc Inter Med).
  • the detached cells were transferred to a centrifuge tube (FALCON ECTON DICKINSON USA) together with the medium, and subjected to centrifugation (1500 rpm, 5 min). The supernatant was aspirated and the cell components were collected.
  • the cell components recovered in (1-6) were suspended using a small amount of sterile water to obtain a cell suspension.
  • the 3-TCP paste and the cell suspension were stirred and mixed to obtain a cell-containing) 3-TCP paste.
  • sterile water was used to adjust the content of
  • the cell-containing j3-TCP paste thus prepared can be frozen or lyophilized for storage.
  • the cell-containing) 3-TCP paste obtained in Example 2 was transferred to a 5 cc syringe.
  • the back of a 7-year-old male male rat (7 weeks old) anesthetized with ether was shaved. After shaving, the remaining hair in the shaved area was completely removed with a depilatory cream. Subsequently, the hair removal cream and the hair remaining on the shaved part were sufficiently washed away. Thereafter, excess water was sufficiently removed.
  • the rats were fixed on their stomachs, and the surgical field was thoroughly wiped with hibiden to disinfect them. Thereafter, approximately 3 cc of the cell-containing (3-TCP paste) obtained in Example 2 was injected subcutaneously into the back using a syringe.
  • FIG. 5 is a demineralized HE (hematoxylene eosin) -stained tissue image (100-fold) of the transplanted portion 8 weeks after transplantation of the cell-containing i8-TCP paste. The part missing in white is decalcified / 3-TCP. On the formed bone tissue Has a regular lamellar structure, narrowed bone lacunae, and an overall mature bone structure is observed.
  • HE hematoxylene eosin
  • the bone marrow cells obtained in Example 1 were subcultured in the presence and absence of physical stimulation, and the bone formation ability of each of the cultured cells was compared.
  • a culture device capable of intermittently applying a physical stimulus by changing the air pressure was prepared. That is, a pump that repeatedly repeats decompression and pressurization through a tube was attached to a closed space (box-shaped container), and this was used as a culture device. In such a device, the enclosed space is repeatedly depressurized and pressurized at a speed of about 10 Hz to about 1 to 1.2 atm, and physical stimulation can be applied to cultured cells in a petri dish installed inside. it can.
  • the bone marrow cells prepared in Example 1 above were cultured (stimulation group).
  • the cells prepared in Example 1 were seeded on a culture dish (bone marrow cells obtained from one femur were seeded on a culture dish of 80 cm 2 ).
  • the medium was replaced 24 hours after the seeding of the bone marrow cells in order to remove the hemocyte cells contained in the culture medium and to select and culture the adherent cells.
  • the culture was continued for about 10 days until it became subconfluent (primary culture).
  • the cells were detached using 0.05% trypsin, and the cells cultured in one Petri dish were divided into two Petri dishes and inoculated (two times in area ratio) for subculture.
  • Physical stimulation was performed for 8 hours on Z days during the primary culture and every day from the day following each passage.
  • the medium was changed every day, and the culture dish was taken out of the closed space except at the time of stimulation and ventilated.
  • control group primary culture and subculture were performed using a general-purpose incubator instead of the culture device. Other conditions are the same as those of the stimulus group.
  • the medium includes -glycerophosphate (Sigma Chemical Co., St Louis, US), Dexamethasone (Sigma Chemical Co., St Louis, USA), and VitaminC osphate (L-ascorbic acid phosphate magnesium salt n-hydrate, Sigma Chemical Co., St Louis, USA) were added to 10 mM, 10-8 M, and 50 Wg / ml, respectively. Addition of these induces differentiation into osteoblasts.
  • the stimulus group was also given a physical stimulus by the above-mentioned method even during culture using the
  • Fig. 6 shows a table summarizing the osteogenic ability of each sample.
  • C and E represent a control group and a stimulation group, respectively.
  • iliac bone marrow fluid was collected from a human iliac bone using a bone marrow puncture needle into a lOcc syringe (manufactured by Terumo Corporation), and the basic medium (eagle minimal essential medium (GIBCO Laboratories Life Technologies, NY USA, 15% Fetal Bovine
  • a basal medium was added to the suspension of bone marrow fluid collected in the centrifuge tube, and then seeded in a flask (80 cm 2 , Greiner labortec nik Germany). Then, the flask seeded with bone marrow fluid was transferred to an incubator, and cultured under the conditions at 5% C0 2, 37. The culture medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and to select and culture the adherent cells. Thereafter, culturing was continued for about 7 days in the culture medium until the cells became subconfluent. During that time, the medium was changed once every three days.
  • MSCGM 50 U / ml penicillin G, and 50 pg / ml streptomycin (manufactured by Poietics) were added to the culture solution. Subsequently, the cells were detached using 0.05% trypsin, inoculated at an area ratio of 2 to 4 times, and subcultured.
  • VitaminC pliosphate L-ascorbic acid phosphate magnesium salt n-hydrate, 'Sigma Chemical Co., St Louis, USA
  • 10 mM 100 nM
  • 0.05 mM 0.05 mM
  • Figures 7 to 9 show graphs summarizing the ALP activity of each group.
  • Figure 7 shows the results under the conditions of an extension rate of 15% (mecal 5%) and 5 cycles (5 cycles / min, about 0.083Hz).
  • FIGS. 8 and 9 show the results under the conditions of an extension rate of 15% (mechal5%), 10 cycles / min (10 cycles / min, about 0.167 Hz), and an extension rate of 20% (mec a20%), The results are for five cycles (5 cycles / min, about 0.083 Hz).
  • SC1 and SC2 show the results of the group without using the induction medium and no extension stimulus
  • SC + S1 and SC + S2 show the results of the group without the induction medium and only the extension stimulus.
  • ind2 is the result of the group using an induction medium and no extension stimulus was applied
  • indl + Sl to indl + S4 is the result of the group using an induction medium and extension stimulation was applied.
  • the pharmaceutical composition for forming bone or periodontal tissue of the present invention can be applied to various fields that require repair and regeneration of bone tissue or periodontal tissue.
  • the present invention can be applied to regeneration of bone tissue (cartilage tissue) at a bone (cartilage) defect caused by trauma or various bone diseases, and reinforcement or supplementation of bone (cartilage).
  • the present invention can be applied to regeneration of alveolar bone and periodontal tissue in a defective portion of alveolar bone due to periodontal disease or the like.
  • a bone-forming pharmaceutical composition in a paste form or the like is injected, applied, or the like to an application site.
  • the pharmaceutical composition for forming bone or periodontal tissue of the present invention contains cells that have acquired the ability to differentiate into bone cells, direct regeneration of bone or periodontal tissue by itself can be expected.
  • inorganic bioabsorbable materials used as cell carriers or scaffolds will be replaced with bone or periodontal tissue in the future, and their safety is high.
  • it since it has fluidity, it is not necessary to mold it in advance according to the shape of the bone defect, and it is versatile and easy to handle.
  • the pharmaceutical composition for forming bone or periodontal tissue of the present invention can be injected transdermally or transmucosally using a needle, it can be applied without opening the wound. In other words, minimally invasive application is possible when applied.
  • the pharmaceutical composition for forming a bone or periodontal tissue of the present invention eliminates the need to apply the application site at the time of application.
  • a method for preparing a cell having the ability to differentiate into bone cells is provided.
  • more subcultures can be carried out while maintaining the ability to differentiate into bone cells.
  • a method for preparing a bone cell is also provided, and a large amount of the bone cell can be obtained. At the same time, it is possible to obtain a large amount of extracellular matrix of bone cells.
  • differentiation induction from mesenchymal stem cells to bone cells can be promoted, and as a result, cells having osteogenic ability can be efficiently used. It can be prepared in a suitable manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biotechnology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Medicinal compositions for forming a tissue around a bone or a tooth which are highly effective in regenerating a bone tissue, can be handled conveniently and have a high safety. A medicinal composition for forming a tissue around a bone or a tooth, which is in the form of a paste at using, is prepared by mixing mesenchymal stem cells capable of differentiating into bone cells, extracellular matrix of these cells and ß-TCP having an average particle size of from 1 to 5 νm.

Description

明 細 書 骨又は歯周組織形成用医薬組成物及びその調製方法、 並びに、 骨又は歯周組織 形成用注射剤及びその調製方法 技術分野  Description Pharmaceutical composition for forming bone or periodontal tissue and method for preparing the same, and injection for forming bone or periodontal tissue and method for preparing the same
本発明は、 骨組織又は歯周組織の修復、 再生に利用できる骨又は歯周組織形成 用医薬組成物及びその調製方法、 並びに、 骨又は歯周組織形成用注射剤及びその 調製方法に関する。 背景技術  The present invention relates to a pharmaceutical composition for forming bone or periodontal tissue and a method for preparing the same, which can be used for repairing and regenerating bone or periodontal tissue, and an injection for forming bone or periodontal tissue and a method for preparing the same. Background art
ティッシュ ·エンジニアリング(組織工学)により骨組織及び軟骨組織の損傷、 欠損等の修復 ·再生が試みられている。 ティ ッシュ · エンジニアリングによる骨 組織 (軟骨組織) の再生は、 骨組織を形成する細胞、 新生骨組織に置き換わる基 質、 及び骨組織の再生に関与する細胞の増殖や分化をコントロールする成長因子 を組み合わせて用いることにより骨組織 (軟骨組織) の再生を図るものであり、 生体において正常な骨組織が有する修復機構に関わる機能を応用するものである 特に成長因子に注目し、 成長因子を基質とともに修復したい骨欠損部に直接移 植することにより骨組織の再生を図る試みが数多く行われている。 成長因子の中 でも、 骨誘導因子 (bone morphogenetic protein: B M P ) が広く研究の対象と されている。 B M Pは、 ゥシ脱灰骨基質中に存在する異所性骨誘導活性を示す物 質として発見された成長因子であって、 未分化間葉系幹細胞に作用し、 これを骨 芽細胞又は軟骨芽細胞に分化させる。 B M Pを用いる際の担体としては、 ガラス 繊維、 ハイ ドロキシアパタイ ト、 セラミックス、 コラーゲン、 合成ポリマ一等が 検討されている。 B M Pと担体とを組み合わせた骨形成用移植体については、 例 えば、 特開平 7— 2 4 6 2 3 5号、 特開平 1 0— 1 5 1 1 8 8号において提案さ れている。 Attempts have been made to repair and regenerate bone tissue and cartilage tissue damage and defects by tissue engineering. The regeneration of bone tissue (cartilage tissue) by tissue engineering combines the cells that form bone tissue, the substrate that replaces new bone tissue, and growth factors that control the proliferation and differentiation of cells involved in bone tissue regeneration. It is intended to regenerate bone tissue (cartilage tissue) by using it, and to apply functions related to the repair mechanism of normal bone tissue in the living body. In particular, focusing on growth factors, repairing growth factors together with substrates Many attempts have been made to regenerate bone tissue by directly transplanting to the desired bone defect. Among growth factors, bone morphogenetic protein (BMP) has been widely studied. BMP is a growth factor that has been discovered as a substance exhibiting ectopic osteoinductive activity in the demineralized bone matrix, and acts on undifferentiated mesenchymal stem cells to cause osteoblasts or cartilage. Differentiate into blasts. As a carrier for using BMP, glass fiber, hydroxyapatite, ceramics, collagen, synthetic polymer, and the like are being studied. For bone formation implants combining BMP and carrier, see For example, it has been proposed in Japanese Patent Application Laid-Open Nos. 7-24632-35 and 10-151188.
他方、 試験管内で培養した細胞と生体材料を組み合わせた細胞ハイブリツ ド型 の人工骨の利用が検討されている。 この方法は、 例えば、 骨髄から採取した骨原 性細胞を、 再生しょうとする欠損の形態をもった 3次元的足場の中で培養するこ とにより、 細胞組み込み型の人工骨を作製し、 これを欠損部に移植するものであ る。 Caplan らのグループは骨髄中に間葉系幹細胞が存在することを見出し、 骨 髄を多孔質のリン酸カルシウムセラミックスに混合し移植すると異所性の骨誘導 が見られる こ と を示している ( Ohguchi,H., Goldgerg,V.M.: Heterotopic osteogenesis m porous ceramics m uced by marrow cells. J. orthop . Res. 7:568-578 (1989))。 また、 その後の研究により、 培養皿の中で多孔質セラミック スに骨髄細胞を播種し、 デキサメタゾンの存在下で培養することにより in vitro でも骨形成を誘導することが可能であり、 これを in vivo に移植することにより 確実に骨組織が形成することが示された (Hanada,K., Dennis,J.E.: Stimulatery effect of basic fibroblast growth factor and bone morphogenetic protem-2 on osteogenetic differentation of rat bone marrow-derived mesenchymal stem cells. J.Bone Mineral Res. 12: 1606- 1614 (1997))。  On the other hand, the use of cell-hybrid artificial bone, which combines cells cultured in a test tube with biomaterials, is being studied. In this method, for example, an osteogenic cell collected from bone marrow is cultured in a three-dimensional scaffold having a defect-like form to be regenerated, thereby producing a cell-incorporated artificial bone. Is implanted into the defect. Caplan et al. Found that mesenchymal stem cells were present in the bone marrow and showed that ectopic osteoinduction was observed when the bone marrow was mixed with porous calcium phosphate ceramics and transplanted (Ohguchi, H., Goldgerg, VM: Heterotopic osteogenesis m porous ceramics muced by marrow cells. J. orthop. Res. 7: 568-578 (1989)). Further studies show that bone formation can be induced in vitro by seeding bone marrow cells on porous ceramics in a culture dish and culturing in the presence of dexamethasone. (Hanada, K., Dennis, JE: Stimulatery effect of basic fibroblast growth factor and bone morphogenetic protem-2 on osteogenetic differentation of rat bone marrow-derived mesenchymal stem cells. J. Bone Mineral Res. 12: 1606-1614 (1997)).
また、 骨髄細胞ないし骨芽細胞とリン酸カルシウム系化合物とを含有した移植 用材料の利用について、 特開平 3 - 4 5 2 6 7号公報、 特開平 0 7— 1 9 4 3 7 3号公報、 特開平 1 0— 2 4 3 9 9 6号公報、 特許第 2 7 2 5 3 8 7号等に提案 されている。  Also, regarding the use of a transplantation material containing bone marrow cells or osteoblasts and a calcium phosphate-based compound, Japanese Patent Application Laid-Open Nos. Hei 3-45267 / 07, 197-14733 / 07, and It has been proposed in Kaihei 10—2 439 996 and Japanese Patent No. 2752387.
骨組織の再生方法として広く臨床応用されている唯一の方法は、 組織再生誘導 法 ( G T R : guides tissue regeneration) と呼ばれる歯周組織再生法である。 こ の方法は、 組織欠損部に齒肉の結合組織や上皮からの細胞の侵入を遮蔽すべく歯 根面と歯肉弁の間に遮蔽膜 (G T R膜) を挿入し、 歯根膜細胞や骨芽細胞が歯周 組織を再生する場を与えるものである。 G T R膜にはポリテトラフルォロェチレ ン膜等が一般に用いられているが、 これらの材料は生体非吸収性であるため、 G T R膜を除くための 2次的手術が必要である。 合成ポリマーからなる吸収性の膜 やコラーゲンからなる生体親和性に優れた膜も開発されているが、 現在までのと ころ、 前者は組織に対する親和性が低く、 後者は十分な強度が得られないといつ た問題がある。 また、 G T R法は大きな歯槽骨の欠損に対してはその再生能力に 限界があることが指摘されている。 The only method that has been widely applied clinically to bone tissue regeneration is the periodontal tissue regeneration method called GTR (guides tissue regeneration). This method involves inserting a shielding membrane (GTR membrane) between the root surface and the gingival flap to block the invasion of cells from the connective tissue and epithelium of the gingiva to the tissue defect, and to form periodontal ligament cells and osteoblasts Cells are periodontal It provides a place to regenerate the organization. Polytetrafluoroethylene film and the like are generally used for the GTR film, but since these materials are non-bioabsorbable, secondary surgery is required to remove the GTR film. Absorbent membranes made of synthetic polymers and membranes made of collagen with excellent biocompatibility have been developed, but as of now, the former has low affinity for tissues, and the latter does not have sufficient strength. There is a problem. It has also been pointed out that the GTR method has a limited regeneration ability for large alveolar bone defects.
軟骨の再生法においても、 軟骨細胞と担体とを組み合わせたものを移植するこ とが試みられている。  Even in the method of regenerating cartilage, attempts have been made to transplant a combination of chondrocytes and a carrier.
以上のように、 ティッシュ · エンジニアリングにより骨組織 (軟骨組織) 又は 歯周組織の再生が多数試みられているものの、 骨組織 (軟骨組織) 又は歯周組織 の再生メカニズムについての知見が十分でないこともあって、 臨床に応用し得る 効果的な再生方法は少なく、 新規な骨又は歯周組織の再生方法の開発が望まれて いる。 かかる再生方法には、 骨又は歯周組織の再生効果が高いことはもちろんの こと、 操作性の良いこと、 及び生体に対して安全であることが求められる。 発明の開示  As described above, tissue engineering has attempted to regenerate bone tissue (cartilage tissue) or periodontal tissue in many cases. However, knowledge on the regeneration mechanism of bone tissue (cartilage tissue) or periodontal tissue may not be sufficient. There are few effective regeneration methods that can be applied clinically, and the development of a new bone or periodontal tissue regeneration method is desired. Such a regeneration method is required not only to have a high effect of regenerating bone or periodontal tissue, but also to have good operability and to be safe for a living body. Disclosure of the invention
本発明は、 以上の課題に鑑み鋭意検討した結果なされたものであり、 臨床に応 用し得る新規な骨又は歯周組織の再生方法を提供すべく、 当該方法に使用される 骨又は歯周組織形成用医薬組成物を提供することを目的とするものである。 本発 明の第 1の局面における構成は次の通りである。  The present invention has been made as a result of intensive studies in view of the above problems, and in order to provide a novel bone or periodontal tissue regeneration method applicable to clinical use, the bone or periodontal tissue used in the method is provided. It is intended to provide a pharmaceutical composition for tissue formation. The configuration of the first aspect of the present invention is as follows.
骨系細胞への分化能を獲得した間葉系幹細胞と、 無機系生体吸収性材料とを含 んでなり、 使用時において流動性を有する骨又は歯周組織形成用医薬組成物であ る。 また好ましくは、 さらにゲル化剤を含有させ、 適用後においてゲル化するよ うな構成とする骨又は歯周組織形成用医薬組成物である。 このような構成によれば、 骨系細胞への分化能を獲得した細胞を含むため、 そ れ自身による直接的な骨組織の再生が期待できる。 また、 細胞の担体ないしは足 場として用いる無機系生体吸収性材料は、 将来骨組織への置き換えが行われるも のであって、 その安全性が高い。 さらに、 使用時において流動性を有することに より、 骨又は歯周組織欠損部の形状に合わせて予め成型する必要がなく汎用的で あり、 また、 その取り扱いも容易である。 このように、 本発明の第 1の局面にお ける構成によれば、 骨又は歯周組織欠損部の修復、 再生を効果的に行うことがで き、 かつ操作性、 安全性の高い骨又は歯周組織形成用医薬組成物が提供される。 図面の簡単な説明 A pharmaceutical composition for forming bone or periodontal tissue which has fluidity at the time of use, comprising mesenchymal stem cells having acquired the ability to differentiate into bone cells, and an inorganic bioabsorbable material. Also preferably, a pharmaceutical composition for forming a bone or periodontal tissue, which further contains a gelling agent and is configured to gel after application. According to such a configuration, since it includes cells that have acquired the ability to differentiate into bone cells, direct regeneration of bone tissue by itself can be expected. In addition, inorganic bioabsorbable materials used as cell carriers or scaffolds will be replaced with bone tissue in the future, and their safety is high. Furthermore, since it has fluidity at the time of use, it does not need to be molded in advance in accordance with the shape of the bone or periodontal tissue defect, and is versatile, and its handling is easy. As described above, according to the configuration of the first aspect of the present invention, a bone or periodontal tissue defect can be effectively repaired and regenerated, and bone or bone having high operability and safety can be obtained. A pharmaceutical composition for periodontal tissue formation is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1における初期培養 3 日目の骨髄細胞の様子を写した位相差顕 微鏡写真を示す図である。  FIG. 1 is a view showing a phase-contrast micrograph of the bone marrow cells on the third day of the initial culture in Example 1.
図 2は、 実施例 1における継代培養 1 0日目の骨髄細胞の様子を写した位相差 顕微鏡写真を示す図である。  FIG. 2 is a view showing a phase-contrast micrograph of the bone marrow cells on day 10 of the subculture in Example 1.
図 3は、 実施例 1における継代培養 1 4日目の骨髄細胞の様子を写した位相差 顕微鏡写真を示す図である。 骨髄細胞は多角形に観察され、 細胞の周囲には細胞 外マトリックス様の構造が観察できる。  FIG. 3 is a view showing a phase-contrast micrograph showing a state of bone marrow cells on day 14 of subculture in Example 1. Bone marrow cells are observed in a polygonal shape, and extracellular matrix-like structures can be observed around the cells.
図 4は、 実施例 1における継代培養 1 4日目の細胞をアル力リフォスファタ一 ゼ染色した染色像を示す図である。 細胞が部分的に凝集し、 石灰化結節を形成し ていることがわかる。  FIG. 4 is a view showing a stained image obtained by staining the cells on day 14 of the subculture in Example 1 with alkaline phosphatase. It can be seen that the cells are partially aggregated and form calcified nodules.
図 5は、 実施例 3における細胞含有) 3 -TCP ペーストを移植した結果の写真を 示した図であり、 移植後 8週目における移植部の脱灰 H.E. (へマトキシレン—ェ ォジン)染色組織像( 1 0 0倍)である。白く抜けている部分は脱灰された) 3 -TCP である。 形成された骨組織には規則性のある層板構造が認められ、 骨小腔は狭小 化し、 全体的に成熟した骨組織が観察される。 図 6は、実施例 4における各サンプルの骨形成能をまとめた表を示す図である。 C及び Eは、 対照群及び刺激群をそれぞれ表す。 FIG. 5 is a photograph showing the results of transplantation of the cell-containing (3-TCP paste) in Example 3. The tissue image of the demineralized HE (hematoxylen-geosin) stained portion of the transplanted portion 8 weeks after transplantation is shown. (100 times). The part missing in white is decalcified) 3-TCP. A regular lamellar structure is observed in the formed bone tissue, the bone cavities are narrowed, and mature bone tissue is generally observed. FIG. 6 is a diagram showing a table summarizing the osteogenic ability of each sample in Example 4. C and E represent the control group and the stimulation group, respectively.
図 7は、 実施例 5における測定結果をまとめたグラフを示す図である。 伸展率 15% (mechal5% )、 5サイクル/分 (5cycle/min、 約 0.083Hz) の条件で培養し た場合の各群におけるアルカリフォスファタ一ゼ (ALP) 活性が示される。 SC1 及び SC2は誘導培地を用いず伸展刺激も加えない群、 SC+S1及ぴ SC+S2は誘導 培地を用いず伸展刺激のみを加える群、 indl及び ind2は誘導培地を用い伸展剌 激を加えない群、 indl+Sl〜indl+S4 は誘導培地を用い伸展刺激を加える群をそ れぞれ表す。  FIG. 7 is a graph summarizing the measurement results in Example 5. The alkaline phosphatase (ALP) activity in each group when cultured under the conditions of an extension rate of 15% (mechal5%) and 5 cycles / min (5 cycles / min, about 0.083 Hz) is shown. SC1 and SC2 were the groups that did not use an induction medium and did not receive a stretching stimulus. The groups without a group, indl + Sl to indl + S4, represent the groups to which a stretching stimulus is applied using an induction medium, respectively.
図 8は、 実施例 5における測定結果をまとめたグラフを示す図である。 伸展率 15% (mechal5% )、 10サイクル/分 ( 10cycle/min、 約 0.167Hz) の条件で培養 した場合の各群におけるアル力リフォスファターゼ(ALP)活性が示される。 SC1 及び SC2は誘導培地を用いず伸展刺激も加えない群、 SC+S1及び SC+S2は誘導 培地を用いず伸展刺激のみを加える群、 indl及ぴ ind2は誘導培地を用い伸展刺 激を加えない群、 indl+Sl〜indl+S4 は誘導培地を用い伸展刺激を加える群をそ れぞれ表す。  FIG. 8 is a graph showing a summary of measurement results in Example 5. It shows the activity of ALPHA in each group when cultured under the conditions of an extension rate of 15% (mechal5%) and 10 cycles / min (10 cycles / min, about 0.167 Hz). SC1 and SC2 were a group that did not use an induction medium and did not receive a stretching stimulus, SC + S1 and SC + S2 were a group that added only a stretching stimulus without using an induction medium, and indl and ind2 were a group that used an induction medium and applied a stretching stimulation The groups without a group, indl + Sl to indl + S4, represent the groups to which a stretching stimulus is applied using an induction medium, respectively.
図 9は、 実施例 5における測定結果をまとめたグラフを示す図である。 伸展率 20 % (mecha20% )、 5サイクル/分 (5cycle/min、 約 0.083Hz) の条件で培養し た場合の各群におけるアルカリフォスファタ一ゼ (ALP) 活性が示される。 SC1 及び SC2は誘導培地を用いず伸展刺激も加えない群、 SC+S1及び SC+S2は誘導 培地を用いず伸展刺激のみを加える群、 indl及び ind2は誘導培地を用い伸展刺 激を加えない群、 indl+Sl~indl+S4は誘導培地を用い伸展刺激を加える群をそ れぞれ表す。 発明を実施するための最良の形態 本発明の第 1の局面においては、 骨系細胞への分化能を獲得した間葉系幹細胞 が用いられるが、 「骨系細胞への分化能を獲得した」とは、 未分化の状態であった ものが骨系細胞へ分化すべく方向づけられた状態をいう。ここで、骨系細胞には、 骨芽細胞、 破骨細胞、 及び軟骨芽細胞が含まれる。 FIG. 9 is a diagram showing a graph summarizing the measurement results in Example 5. The alkaline phosphatase (ALP) activity in each group when cultured under the conditions of an extension rate of 20% (mecha 20%) and 5 cycles / min (5 cycles / min, about 0.083 Hz) is shown. SC1 and SC2 do not use induction medium and do not stimulate, SC + S1 and SC + S2 do not use induction medium and apply only extension stimulation, indl and ind2 use induction medium and do not stimulate extension The groups, indl + Sl to indl + S4, represent the groups to which the stretching stimulus is applied using the induction medium. BEST MODE FOR CARRYING OUT THE INVENTION In the first aspect of the present invention, a mesenchymal stem cell that has acquired a differentiation ability to a bone cell is used, but “acquired a differentiation ability to a bone cell” is an undifferentiated state. Is the state in which the cells are oriented to differentiate into bone cells. Here, bone cells include osteoblasts, osteoclasts, and chondroblasts.
また、骨系細胞への分化能を獲得した間葉系幹細胞として、自家細胞に限らず、 同種由来の他家細胞を用いることができる。 特に、 人の間葉系幹細胞を用いるこ とができる。  In addition, as the mesenchymal stem cells having acquired the differentiation ability to bone cells, not only autologous cells but also allogeneic allogeneic cells can be used. In particular, human mesenchymal stem cells can be used.
骨系細胞への分化能を獲得した間葉系幹細胞 (以下、 「骨系分化能獲得細胞」と いう) は、 未分化の間葉系幹細胞を骨系細胞への分化を誘導する条件下で培養す る ことによ り調製する こ とができる。 例えば、 )3 -グリ セ口 リ ン酸 ( β ■glycerophosphate ) > デキサメタゾン (Dexamethason)、 L -ァスコルビン酸 Mesenchymal stem cells that have acquired the ability to differentiate into bone cells (hereinafter referred to as “osteoblast-acquiring cells”) are transformed under the conditions that induce undifferentiated mesenchymal stem cells to differentiate into bone cells. It can be prepared by culturing. For example,) 3-glycerophosphate> dexamethasone, L-ascorbic acid
(L-ascorbic acid) を含む培地で未分化の間葉系幹細胞を培養することにより、 骨系細胞への分化を誘導することができる。 もちろん、 培養条件はこれに限定さ れるものではなく、 骨系細胞への分化を誘導する条件として公知のものを採用す ることができる。 By culturing undifferentiated mesenchymal stem cells in a medium containing (L-ascorbic acid), differentiation into bone cells can be induced. Of course, the culture conditions are not limited to these, and any known conditions for inducing differentiation into bone cells can be used.
骨系細胞への分化を誘導する際の培養条件について検討したところ、 物理的刺 激 (メカ二カルストレス) の存在下で細胞を培養することにより、 骨系細胞への 分化が促進されることがわかった。 このことから、 分化誘導時に細胞に物理的剌 激を与えることが、 好ましい一の条件であるといえる。 例えば、 物理的刺激の存 在下、 )3 -グ リ セ 口 リ ン酸 ( β -glycerophosphate ) , デキサメ タ ゾン (Dexamethason)、 L -ァスコルビン酸 (L-ascorbic acid) を含む培地で未分化 間葉系幹細胞を培養することにより効率的な分化誘導を行うことができる。 ここでの物理的刺激とは、 細胞に外部より圧力、 引っ張り力等が加わることを いい、 例えば、 培養容器内に気体 (空気、 C〇2等) を周期的'、 連続的、 又は断 続的に送り込むことにより、 培地を介して細胞に所望の外圧等を与えることがで きる。 また、 細胞を伸縮性の膜等 (例えば、 シリコン製の膜) に播種し、 細胞が 接着した当該膜等を周期的、 連続的、 又は断続的に伸縮させることにより、 細胞 に伸縮刺激、 伸展刺激などを与えることができる。 また、培地に所望のフロー (流 れ) を与えることによつても、 細胞に物理的刺激を与えることができる。 更に、 超音波を用いて物理的刺激を与えることも可能である。 尚、 これらの方法を任意 に組み合わせて所望の物理的刺激を与えることもできる。 Investigation of culture conditions for inducing differentiation into bone cells shows that culturing the cells in the presence of physical stimulation (mechanical stress) promotes differentiation into bone cells. I understood. From this, it can be said that giving physical stimulation to cells at the time of induction of differentiation is one preferable condition. For example, in the presence of physical stimuli, undifferentiated mesenchymals in a medium containing 3-glycerophosphate (β-glycerophosphate), dexamethasone (Dexamethason), and L-ascorbic acid (L-ascorbic acid) By culturing the lineage stem cells, efficient differentiation can be induced. Here, the physical stimulation refers to the pressure from outside the cell, pulling force or the like is applied, for example, a gas in the culture vessel (air, C_〇 2, etc.) periodically ', continuous, or Intermittent The cells can be supplied with a desired external pressure, etc., through the culture medium. Wear. In addition, the cells are seeded on a stretchable membrane or the like (for example, a silicon membrane), and the membrane to which the cells adhere is expanded or contracted periodically, continuously, or intermittently, thereby stretching and stimulating the cells to stretch. Stimulation can be given. Also, a physical stimulus can be given to the cells by giving a desired flow to the medium. In addition, it is possible to provide physical stimulation using ultrasound. Incidentally, a desired physical stimulus can be given by arbitrarily combining these methods.
未分化の間葉系幹細胞源としては、 骨髄、 歯髄、 さい帯血を挙げることができ る。 これらを常法に従い採取した後、 未分化の間葉系細胞を接着性の有無により 選択する。 即ち、 骨髄等に含まれる細胞の中で接着性を有するものを選択するこ とにより、 未分化の間葉系幹細胞が得られる。  Sources of undifferentiated mesenchymal stem cells include bone marrow, dental pulp, and cord blood. After collecting them according to a conventional method, undifferentiated mesenchymal cells are selected based on the presence or absence of adhesiveness. That is, undifferentiated mesenchymal stem cells can be obtained by selecting cells having adhesive properties from cells contained in bone marrow and the like.
骨系分化能獲得細胞とともに、 該細胞の細胞外基質をも加えて本発明の骨又は 齒周組織形成用医薬組成物 (以下、 「本願医薬組成物」という) とすることが好ま しい。 本願医薬組成物を適用した部位において、 細胞外基質が骨分化能獲得細胞 の足場となることが期待され、 適用部位において骨分化能獲得細胞が定着し易く なると考えられるからである。 また、 適用部位周囲に存在する骨系細胞の足場と もなり、 高い骨誘導能が期待できるからである。 さらに、 細胞外基質に含まれる B M P等の因子が、 本願医薬組成物に含有される骨系分化能獲得細胞自体、 及び 適用部周囲の骨系細胞ないしは骨系細胞への分化能を備えた幹細胞の成長、増殖、 分化を促進することが期待できるからである。 ここでの細胞外基質とは、 骨系分 化能獲得細胞を取り巻いて存在する基質 (マトリクス) である。  It is preferable that the pharmaceutical composition for forming bone or periodontal tissue of the present invention (hereinafter, referred to as “the pharmaceutical composition of the present application”) is obtained by adding the extracellular matrix of the cells together with the cells having the ability to differentiate into bone. This is because the extracellular matrix is expected to serve as a scaffold for the bone differentiation-acquiring cells at the site to which the pharmaceutical composition of the present invention is applied, and it is considered that the bone differentiation-acquiring cells are likely to be established at the application site. In addition, it also serves as a scaffold for bone cells existing around the application site, so that high bone inducing ability can be expected. In addition, factors such as BMP contained in the extracellular matrix include the bone cell differentiation-acquiring cells themselves contained in the pharmaceutical composition of the present invention, and bone cells around the application site or stem cells having the ability to differentiate into bone cells. This is because it can be expected to promote the growth, proliferation, and differentiation of E. coli. The extracellular matrix here is a matrix (matrix) that surrounds the cells that have acquired the osteoblastic capacity.
自家細胞の細胞外基質に限らず、 同種の他家細胞の細胞外基質を用いることも できる。 かかる細胞外基質に含まれる B M P等が同種であるため、 他家細胞を用 いた場合においても同様の効果が期待できるからである。 このように、 自家細胞 の細胞外基質のみならず、同種細胞の細胞外基質をも用いることができることは、 骨系分化能獲得細胞の細胞外基質の調製を容易とするものである。 細胞外基質を加える場合には、 同時に加えられる骨系分化能獲得細胞は生細胞 でなくても良い。 このことは、 骨系分化能獲得細胞を生細胞の状態で取り扱わな くても良いことを意味し、 取り扱いの観点から望ましいものといえる。 例えば、 骨系分化能獲得細胞を得た後、 凍結乾燥処理等をしたものを用意し、 これを骨系 分化能獲得細胞及びその細胞外基質として用いることができる。 Not only the extracellular matrix of autologous cells but also the extracellular matrix of allogeneic cells of the same type can be used. This is because BMPs and the like contained in such extracellular matrix are of the same species, so that the same effect can be expected even when allogeneic cells are used. As described above, not only the extracellular matrix of autologous cells but also the extracellular matrix of allogeneic cells can be used, which facilitates the preparation of the extracellular matrix of cells having the ability to acquire bone differentiation potential. When the extracellular matrix is added, the cells with the ability to acquire bone differentiation potential added simultaneously may not be living cells. This means that it is not necessary to treat the cells with bone differentiation potential in the state of living cells, which is desirable from the viewpoint of handling. For example, after obtaining cells having bone differentiation potential, those obtained by freeze-drying or the like can be prepared and used as the cells having bone differentiation potential and its extracellular matrix.
本願医薬組成物における骨系分化能獲得細胞の含有量は、 組成物 l m l 中に 1 X 1 0 5個以上の細胞が存在することが好ましく、 さらに好ましくは 1 X 1 0 6〜 1 X 1 0 7個の細胞が存在することが好ましい。 かかる細胞含有量とすることに より、 効果的に骨形成を誘導できるからである。 The content of the bone differentiation-acquiring cells in the pharmaceutical composition of the present invention is preferably such that 1 × 10 5 or more cells are present in 1 ml of the composition, more preferably 1 × 10 6 to 1 × 10 10. Preferably, there are seven cells. This is because by setting such a cell content, bone formation can be effectively induced.
無機系生体吸収性材料の種類は特に限定されないが、 )3 _リン酸三カルシウム (以下、 「 3— T C P」という)、 α —リン酸三カルシウム (以下、 「0;— T C P J という)、 リン酸四カルシウム、 リン酸八カルシウム、 及ぴ非結晶質リン酸カルシ ゥムからなる群から選択される材料を用いることができる。 これらの材料は単独 で用いることができることはもちろんのこと、 任意に選択した 2種以上を組み合 わせて用いても良い。 好ましくは、 )3— T C Ρ又は α— T C Ρのいずれか、 又は これらを任意の割合で組み合わせて用いる。 さらに好ましくは i3— T C Pを無機 系生体吸収性材料として用いる。  Although the type of the inorganic bioabsorbable material is not particularly limited,) 3_tricalcium phosphate (hereinafter, referred to as "3-TCP"), α-tricalcium phosphate (hereinafter, referred to as "0; -TCPJ"), phosphorus A material selected from the group consisting of tetracalcium acid, octacalcium phosphate, and amorphous calcium phosphate can be used, and these materials can be used alone, as well as optionally. Two or more selected types may be used in combination. Preferably,) any one of 3-TC) or α-TCΡ, or a combination of these at an arbitrary ratio is used. Used as an inorganic bioabsorbable material.
無機系生体吸収性材料は公知の方法により得ることができる。 また、 市販され る無機系生体材料を用いることもできる。 )3— T C Pとしては、 例えば、 ォリン パス光学工業株式会社製のものを利用できる。  The inorganic bioabsorbable material can be obtained by a known method. Also, commercially available inorganic biomaterials can be used. 3) As TCP, for example, one manufactured by Olympus Optical Co., Ltd. can be used.
無機系生体吸収性材料は、 本願医薬組成物が使用時において流動性となるよう な粒子径を有する粉末状であることが好ましい。  The inorganic bioabsorbable material is preferably in the form of a powder having a particle size such that the pharmaceutical composition of the present invention becomes fluid when used.
粉末状の無機系生体吸収性材料は、 適当な大きさに加工された無機系生体吸収 性材料を、 所望の粒子径となるまで破砕、 粉枠することにより調製することがで きる。 無機系生体吸収性材料の平均粒子径を、 0 . 5 i m〜 5 0 mとすること が好ましい。 さらに好ましくは、 平均粒子径 0 . 5 !〜 1 0 の無機系生体 吸収性材料を用いる。 さらにさらに好ましくは、 平均粒子径 1 !〜 5 の無 機系生体吸収性材料を用いる。 粒子径の異なる複数種類の無機系生体吸収性材料 を組み合わせて用いることも可能である。 The powdery inorganic bioabsorbable material can be prepared by crushing and processing the inorganic bioabsorbable material processed to an appropriate size to a desired particle size. The average particle diameter of the inorganic bioabsorbable material should be 0.5 im to 50 m. Is preferred. More preferably, the average particle size is 0.5! 1 to 10 inorganic bioabsorbable materials. Still more preferably, the average particle size is 1! 5 to 5 organic bioabsorbable materials are used. It is also possible to use a combination of a plurality of types of inorganic bioabsorbable materials having different particle diameters.
無機系生体吸収性材料は本願医薬組成物全体に対して 5 0重量%〜7 5重量% 含有することが好ましい。  It is preferable that the inorganic bioabsorbable material is contained in an amount of 50% by weight to 75% by weight based on the whole pharmaceutical composition of the present invention.
尚、 本願医薬組成物の流動性は、 主に無機系生体吸収性材料の粒子径、 及び含 有率で決定されるものであり、 両者を適宜調整することにより所望の流動性を得 ることができる。 また、 後述の増粘剤を添加する場合には、 増粘剤の添加量によ つても流動性の調整を行うことができる。  The fluidity of the pharmaceutical composition of the present invention is mainly determined by the particle size and the content of the inorganic bioabsorbable material, and the desired fluidity can be obtained by appropriately adjusting both. Can be. In addition, when a thickener described below is added, the fluidity can be adjusted also by the amount of the thickener added.
ここで、 使用時における本願医薬組成物の流動性の程度は特に限定されず、 ス ラリー状、 ペース卜状、 粘土状、 高粘度流動体状等とすることができる。 好まし くは、 ペースト状である。 ペースト状とすることにより、 可塑性に優れた骨又は 歯周組織形成用医薬組成物となる。 したがって、 予め適用部の形状に成型するこ となく適用できる。 即ち、 適用部への適用が容易に行える。 また、 適用部におい て定着性の良い骨又は歯周組織形成用医薬組成物となる。  Here, the degree of fluidity of the pharmaceutical composition of the present invention at the time of use is not particularly limited, and may be slurry, paste, clay, high-viscosity fluid, or the like. It is preferably in the form of a paste. By making it into a paste, it becomes a pharmaceutical composition for forming bone or periodontal tissue having excellent plasticity. Therefore, it can be applied without being previously formed into the shape of the application portion. That is, application to the application section can be easily performed. In addition, it becomes a pharmaceutical composition for forming bone or periodontal tissue, which has good fixation properties at the application part.
また、 使用時において、 注射容器を用いて注入可能な程度の流動性であること が好ましレ かかる流動性とすることにより、適用部への適用が一層容易となる。 尚、 適用部に応じて所望の流動性とすることができる。 例えば、 骨膜下に注入 する場合には、 より流動性を有する状態 (粘度の低い状態) にすることが好まし い。  In use, it is preferable that the fluidity is such that it can be injected using an injection container, and such fluidity facilitates application to the application section. In addition, desired fluidity can be obtained depending on the application section. For example, when injecting under the periosteum, it is preferable to make the liquid more fluid (a state having a lower viscosity).
本願医薬組成物は、 少なくとも使用時において流動性を有しておればよく、 使 用前においては、 粉状ないし固形状であっても良い。 したがって、 凍結した状態 をもって本願医薬組成物とすることができる。 また、 凍結乾燥した状態をもって 本願医薬組成物とすることもできる。 使用前において凍結状態又は凍結乾燥状態 とすることにより、 長期の保存が可能となり、 また、 使用前の取り扱いも容易と なる。 さらには、 凍結処理又は凍結乾燥処理により抗原性の低下が期待できるた め、 骨系細胞への分化能を獲得した間葉系幹細胞として自家細胞ではなく同種の 他家細胞を用いた場合の安全性が向上される。 The pharmaceutical composition of the present invention only needs to have fluidity at least at the time of use, and may be in the form of powder or solid before use. Therefore, the pharmaceutical composition of the present invention can be used in a frozen state. The lyophilized state can be used as the pharmaceutical composition of the present invention. Frozen or lyophilized before use By doing so, long-term storage becomes possible, and handling before use becomes easy. Furthermore, since the antigenicity can be reduced by freezing or freeze-drying, it is safe to use allogeneic cells instead of autologous cells as mesenchymal stem cells that have acquired the ability to differentiate into bone cells. The performance is improved.
増粘剤を添加することにより、 本願医薬組成物の流動性を調整することもでき る。 増粘剤としては、 アルギン酸ナトリウム等の增粘多糖類、 グリセリン、 ヮセ リン等を用いることができるが、 安全性及ぴ 又は骨形成能の観点から、 生体親 和性が高く、 かつ生体吸収性又は生体分解性のものを用いることが好ましい。 グ リセリン等を添加することにより、 凍害防止の効果も得られる。  The flowability of the pharmaceutical composition of the present invention can be adjusted by adding a thickener. As thickeners, thickener polysaccharides such as sodium alginate, glycerin, and serine can be used, but from the viewpoint of safety and bone formation ability, they are highly biocompatible and bioabsorbable. It is preferable to use a substance having biodegradability or biodegradability. By adding glycerin, etc., the effect of preventing frost damage can also be obtained.
本願医薬組成物にゲル化剤を含有させ、 適用後においてゲル化するような構成 とすることが好ましい。 かかる構成によれば、 適用後速やかにゲル化するため、 適用部位における定着性が向上し、 骨又は歯周組織の修復又は再生が効果的に行 われる。 また、 使用時において流動性を有し、 使用後 (適用後) に適用部位にお いてゲル化するため、 予め適用部位の形状に成型する必要がなく、 汎用性が向上 する。  It is preferable that the pharmaceutical composition of the present invention contains a gelling agent so as to be gelled after application. According to such a configuration, gelation occurs immediately after application, so that fixability at the application site is improved, and bone or periodontal tissue is repaired or regenerated effectively. In addition, since it has fluidity during use and gels at the application site after use (after application), it is not necessary to mold the application site in advance, and versatility is improved.
ゲル化剤としては生体親和性が高いものを用いることが好ましく、 例えば、 コ ラ一ゲン又はフイブりン糊等を用いることができる。 コラーゲンとしては種々の ものを選択して用いることができるが、 本発明の骨又は歯周組織形成用医薬組成 物の適用目的 (適用組織) に適したものを採用することが好ましい。 骨組織の再 生を目的とする場合には、 例えば、 I 型コラーゲンを用いることができる。 用い るコラーゲンは可溶性 (酸可溶性コラーゲン、 アルカリ可溶性コラーゲン、 酵素 可溶性コラーゲン等) であることが好ましい。  As the gelling agent, it is preferable to use one having high biocompatibility, for example, collagen or fibrin glue can be used. Various collagens can be selected and used, but it is preferable to use collagen suitable for the application purpose (applied tissue) of the pharmaceutical composition for forming bone or periodontal tissue of the present invention. When the purpose is to regenerate bone tissue, for example, type I collagen can be used. The collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).
本願医薬組成物は、 水系の溶媒を含むものであってもよい。 即ち、 水系の溶媒 中において、 少なくとも骨系分化能獲得細胞と無機系生体吸収性材料とが混合さ れて構成されるものであってもよい。水系の溶媒としては、滅菌水、生理食塩水、 リン酸バッファ一等を用いることができる。 また、 骨系分化能獲得細胞を取得す る際に用いた培養液の一部を溶媒として用いることもできる。 The pharmaceutical composition of the present application may contain an aqueous solvent. That is, at least an osteogenic differentiation-capable cell and an inorganic bioabsorbable material may be mixed in an aqueous solvent. Aqueous solvents include sterile water, saline, A phosphate buffer or the like can be used. In addition, a part of the culture solution used for obtaining the cells having bone differentiation potential can be used as a solvent.
本願医薬組成物は、 上記の成分の他、 安定化剤、 保存剤、 p H調整剤等を含ん でいても良い。 また、 成長因子、 特に骨誘導因子 (B M P ) を含ませることもで さる。  The pharmaceutical composition of the present application may contain, in addition to the above components, a stabilizer, a preservative, a pH adjuster, and the like. It can also include growth factors, especially osteoinductive factors (BMP).
本願医薬組成物は、 上記の各成分を混合することにより調製される。 また、 後 述の本発明の第 2の局面における調製方法によっても調製することができる。 さ らに、 例えば、 次の方法によっても、 調製することができる。 まず、 培養液中に 無機系生体吸収性材料のプロックを用意し、 これへ吸着するように骨系細胞を培 養し、無機系生体吸収性材料一骨系細胞複合体を形成する。そして、 これを破砕、 粉碎等することにより、 骨系細胞と無機系生体吸収性材料との混合物からなる本 願医薬組成物とする。 このように調製した本願医薬組成物には、 骨系細胞の他、 該細胞の細胞外基質がリツチに含まれている。 以上の調製方法による場合におい ても、 増粘剤、 ゲル化剤 (コラーゲン、 フ ブリン糊等)、 安定化剤、 保存剤、 p H調整剤、 成長因子等を別途添加することができる。 また、 最終的に得られた各 成分の混合物を凍結又は凍結乾燥させてもよい。 凍結処理又は凍結乾燥処理は常 法に従い行うことができる。  The pharmaceutical composition of the present application is prepared by mixing the above components. It can also be prepared by the preparation method in the second aspect of the present invention described later. Furthermore, it can be prepared, for example, by the following method. First, a block of an inorganic bioabsorbable material is prepared in a culture solution, and skeletal cells are cultured so as to be adsorbed on the block to form an inorganic bioabsorbable material-bone cell complex. Then, this is crushed, pulverized, or the like to obtain a pharmaceutical composition of the present application comprising a mixture of bone cells and an inorganic bioabsorbable material. The pharmaceutical composition of the present invention thus prepared contains, in addition to the bone cells, the extracellular matrix of the cells. In the case of the above-mentioned preparation method, a thickener, a gelling agent (collagen, fubulin glue, etc.), a stabilizing agent, a preservative, a pH regulator, a growth factor and the like can be separately added. Further, the finally obtained mixture of each component may be frozen or lyophilized. Freezing or freeze-drying can be performed according to a conventional method.
本願医薬組成物を、 凍結した状態又は凍結乾燥した状態として調製した場合に は、 使用時に所望の流動性を有する状態にする。 凍結状態の場合には、 解凍する ことにより凍結前の状態に戻される。 このとき、 生理食塩水等を加えて所望の流 動性に調整することもできる。 他方、 凍結乾燥状態の場合には、 生理食塩水等の 溶媒を加えることにより、 凍結乾燥処理前の流動性又は所望の流動性を有する状 態にする。  When the pharmaceutical composition of the present invention is prepared in a frozen state or a lyophilized state, it is made into a state having desired fluidity at the time of use. If frozen, thaw to return to the state before freezing. At this time, a desired fluidity can be adjusted by adding a physiological saline or the like. On the other hand, in the case of the freeze-dried state, a solvent such as physiological saline is added to obtain a fluidity before the freeze-drying treatment or a state having a desired fluidity.
本願医薬組成物を注射容器に封入することにより、 骨又は歯周組織形成用注射 剤 (以下、 「本願注射剤」という) とすることができる。 例えば、 流動性を有する 状態で調製した本願医薬組成物を注射容器に封入し、 その後凍結又は凍結乾燥さ せて本願注射剤とする。 このような注射剤とすることにより、 取り扱いが一層容 易となる。 すなわち、 適用時に従来のごとく皮膚又は粘膜に石灰を加えることな く経皮的又は経粘膜的に本願注射剤を注入することで所望の効果を期待できる。 このような本願注射剤は、 その中に封入される骨又は歯周組織形成用医薬組成物 を上記同様に所望の流動性を有する状態にした後、 使用されるものである。 注射 容器の種類は特に限定されず、 例えば、 市販の注射器を用いることができる。 本発明の第 2の局面は、 以下の a)ないし c)のステップを含む、 使用時において 流動性を有する骨又は歯周組織形成用医薬組成物の調製方法を提供するものであ る。 By enclosing the pharmaceutical composition of the present invention in an injection container, an injection for bone or periodontal tissue formation (hereinafter referred to as “the injection of the present application”) can be obtained. For example, having liquidity The pharmaceutical composition of the present invention prepared in this state is sealed in an injection container, and then frozen or freeze-dried to obtain an injection of the present invention. The use of such an injection makes handling easier. That is, a desired effect can be expected by injecting the present injection transdermally or transmucosally without adding lime to the skin or mucous membrane as in the past when applying. Such an injection of the present invention is used after the bone or periodontal tissue forming pharmaceutical composition encapsulated therein is brought into a state having desired fluidity in the same manner as described above. The type of the injection container is not particularly limited, and for example, a commercially available syringe can be used. A second aspect of the present invention provides a method for preparing a pharmaceutical composition for forming bone or periodontal tissue having fluidity during use, which comprises the following steps a) to c).
a)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステップ、 b)ステップ a)で選択した間葉系幹細胞を骨系細胞への分化を誘導する条件下で 培養するステップ、  a) selecting mesenchymal stem cells having adhesiveness from a mesenchymal stem cell source, b) culturing the mesenchymal stem cells selected in step a) under conditions that induce differentiation into bone cells,
c)ステップ b)により骨系細胞への分化能を獲得した間葉系幹細胞と、 無機系生 体吸収性材料とを水系溶媒中で混合して流動性組成物を形成するステップ。 ステップ a)では、 間葉系幹細胞源より接着性を有する細胞が選択される。 間葉 系幹細胞源としては、 上述のように、 骨髄、 歯髄、 さい帯血を挙げることができ る。 これらを常法に従い採取した後、 接着性を有する細胞が選択される。 接着性 有する細胞の選択は、 例えば、 フラスコ、 培養皿等に骨髄細胞等の懸濁液を播種 し、 所望時間培養した後、 培地交換を行うことにより、 フラスコ、 培養皿に接着 しない血球系の細胞等を除去することによって行われる。 好ましくは、 この選択 の操作を数回行い、 接着性を有しない成分の混入を少なくする。  c) a step of mixing a mesenchymal stem cell that has acquired the differentiation ability into a bone cell in step b) with an inorganic bioabsorbable material in an aqueous solvent to form a flowable composition. In step a), cells having adhesive properties are selected from a mesenchymal stem cell source. Sources of mesenchymal stem cells include bone marrow, dental pulp, and cord blood, as described above. After collecting them according to a conventional method, cells having adhesive properties are selected. Selection of cells having adhesive properties is performed, for example, by seeding a suspension of bone marrow cells or the like in a flask or culture dish, culturing for a desired period of time, and exchanging the medium. This is performed by removing cells and the like. Preferably, this selection operation is performed several times to reduce the incorporation of non-adhesive components.
ステップ b)では、ステップ a)で選択した間葉系幹細胞を骨系細胞への分化を誘 導する条件下で培養する。 即ち、 ステップ b)において、 未分化である間葉系幹細 胞が骨系細胞へ分化すべく方向づけが行われる。 例えば、 0 -グリセ口リン酸 (|3 -glycerophosphate ) デキサメタゾン ( Dexamethason)、 L -アスコリレビン酸 (L-ascorbic acid) を含む培地で培養することにより、 骨系細胞への分化を誘導 することができる。 もちろん、 培養条件はこれに限定されるものではなく、 骨系 細胞への分化を誘導する条件として公知のものを採用することができる。 In step b), the mesenchymal stem cells selected in step a) are cultured under conditions that induce differentiation into bone cells. That is, in step b), undifferentiated mesenchymal stem cells are oriented to differentiate into bone cells. For example, 0-glyceric phosphate (| 3 By culturing in a medium containing dexamethasone (L-ascorbic acid) and L-ascorbic acid (L-ascorbic acid), differentiation into bone cells can be induced. Of course, the culture conditions are not limited to these, and any known conditions for inducing differentiation into bone cells can be employed.
未分化の間葉系幹細胞から骨系細胞への分化の指標には、 アルカリフォスファ タ一ゼ活性、 ォステオカルシン量が用いられる。 アルカリフォスファタ一ゼ活性 は、 分化の初期段階から発現し、 ォステオカルシンは成熟した骨芽細胞で発現さ れていることが知られている。 従って、 これらの発現量を測定することにより、 骨系細胞への分化能の獲得の有無を判断でき、 また、 分化の程度を知ることがで さる。 。  Alkaline phosphatase activity and osteocalcin content are used as indicators of differentiation from undifferentiated mesenchymal stem cells to bone cells. Alkaline phosphatase activity is expressed from the early stage of differentiation, and osteocalcin is known to be expressed in mature osteoblasts. Therefore, by measuring the expression levels of these, it is possible to determine whether or not the cells have the ability to differentiate into bone cells, and to know the degree of differentiation. .
ステップ a)とステップ b)との間に、 ステップ a)で得られた間葉系幹細胞を、 骨 系細胞への分化能を保持した状態で培養し、 増殖させることが好ましい。 この操 作を行うことにより、 細胞数を増加させることができ、 後述のステップ c)におい て所望の数の細胞を無機系生体吸収性材料と混合することを容易とする。 未分化 の間葉系細胞の培養については、 公知の培養方法に従って継代を繰り返すことに より、 その後、 骨系細胞へ分化する細胞数が減少することが指摘されている。 換 言すれば、 未分化の間葉系細胞を将来的な骨系細胞への分化能を保持させた状態 で長期間培養することが困難であるといわれている。 そこで、 未分化の間葉系幹 細胞を骨系細胞への分化能を保持した状態で培養する条件について検討を重ねた 結果、 物理的刺激 (メカニカルストレス) の存在下で培養することにより、 継代 の繰り返しによる骨系細胞への分化能の低下を抑えることができることがわかつ た。 そこで、 ステップ a)で得られた間葉系幹細胞を未分化の状態で培養し、 増殖 させるためには、 ステップ a)により選択された間葉系幹細胞を物理的刺激の存在 下で培養するステップ (ステップ a- 1) ) を行うことが好ましい。  Between step a) and step b), it is preferable that the mesenchymal stem cells obtained in step a) be cultured and expanded while maintaining the ability to differentiate into bone cells. By performing this operation, the number of cells can be increased, and it is easy to mix a desired number of cells with the inorganic bioabsorbable material in step c) described later. Regarding the culture of undifferentiated mesenchymal cells, it has been pointed out that by repeating the passage in accordance with a known culture method, the number of cells differentiated into bone cells decreases thereafter. In other words, it is said that it is difficult to culture undifferentiated mesenchymal cells for a long period of time while maintaining the ability to differentiate into bone cells in the future. Therefore, as a result of repeated studies on the conditions for culturing undifferentiated mesenchymal stem cells while maintaining the ability to differentiate into bone cells, it was found that culturing in the presence of physical stimuli (mechanical stress) resulted It has been found that a decrease in the ability to differentiate into bone cells due to repeated generations can be suppressed. Therefore, in order to culture and proliferate the mesenchymal stem cells obtained in step a) in an undifferentiated state, a step of culturing the mesenchymal stem cells selected in step a) in the presence of physical stimulation (Step a-1)) is preferably performed.
物理的刺激とは、 細胞に外部より圧力、 引っ張り力等が加わることをいい、 例 えば、 培養容器内に気体 (空気、 c o 2等) を周期的、 連続的、 又は断続的に送 り込むことにより、 培地を介して細胞に所望の外圧等を与えることができる。 ま た、 細胞を伸縮性の膜等 (例えば、 シリコン製の膜) に播種し、 細胞が接着した 当該膜等を周期的、 連続的、 又は断続的に伸縮させることにより、 細胞に伸縮刺 激、 伸展刺激などを与えることができる。 また、 培地に所望のフロー (流れ) を 与えることによつても、 細胞に物理的刺激を与えることができる。 更に、 超音波 を用いて物理的刺激を与えることもできる。 尚、 これらの方法を任意に組み合わ せて所望の物理的刺激を与えることもできる。 Physical stimulation refers to the application of external pressure, tension, etc. to a cell. Eg to periodic gas (air, co 2, etc.) into the culture vessel, by continuous or Komu Ri intermittently feeding, can provide the desired external pressure such as the cell via the culture medium. In addition, the cells are seeded on a stretchable membrane or the like (for example, a silicon membrane), and the membrane to which the cells adhere is expanded or contracted periodically, continuously, or intermittently to stimulate the cells to expand or contract. , Can give extension stimulation. Also, by applying a desired flow to the medium, physical stimulation can be applied to the cells. In addition, physical stimulation can be provided using ultrasound. Incidentally, a desired physical stimulus can be applied by arbitrarily combining these methods.
ステップ c)では、 ステップ b)により骨系細胞への分化能を獲得した間葉系幹細 胞と、 無機系生体吸収性材料とを水系溶媒中で混合して流動性組成物、 即ち流動 性を有する骨又は歯周組織形成用医薬組成物が形成される。 また、 b)により骨系 細胞への分化能を獲得した間葉系幹細胞と、 該細胞の細胞外基質と、 及び生体吸 収性材料とを水系溶媒中で混合して流動性組成物を形成することもできる。 この ように細胞外基質を加えて流動性組成物を形成することにより骨又は歯周組織形 成用組成物を調製すれば、 骨又は歯周組織形成医薬組成物を適用した部位におい て、 当該細胞外基質が骨分化能獲得細胞の足場となることが期待され、 適用部位 において骨分化能獲得細胞が定着し易くなると考えられる。 また、 適用部位周囲 に存在する骨系細胞の足場ともなり、 高い骨誘導能が期待できるものである。 さ らに、 細胞外基質に含まれる B M P等の因子が、 骨又は歯周組織形成用医薬組成 物に含有される骨系分化能獲得細胞自体、 及び適用部位周囲の骨系細胞ないしは 骨系細胞への分化能を備えた幹細胞の成長、 増殖、 分化を促進することが期待で きるものである。 尚、 ここでの細胞外基質とは、 骨系分化能獲得細胞を取り巻い て存在する基質 (マトリクス) である。  In step c), the mesenchymal stem cells, which have acquired the differentiation potential into bone cells in step b), and an inorganic bioabsorbable material are mixed in an aqueous solvent to form a fluid composition, that is, fluidity A bone or periodontal tissue forming pharmaceutical composition having the following formula is formed. Further, the mesenchymal stem cells having acquired the differentiation ability to the bone cells according to b), the extracellular matrix of the cells, and a bioabsorbable material are mixed in an aqueous solvent to form a fluid composition. You can also. When the composition for forming bone or periodontal tissue is prepared by adding the extracellular matrix to form a flowable composition in this manner, the bone or periodontal tissue forming pharmaceutical composition can be used at the site where the composition has been applied. The extracellular matrix is expected to serve as a scaffold for bone differentiation-acquiring cells, and it is thought that the bone differentiation-acquiring cells are likely to be established at the application site. In addition, it also serves as a scaffold for bone cells existing around the application site, and can be expected to have high bone inducing ability. In addition, factors such as BMP contained in the extracellular matrix may be used to obtain the bone differentiation-acquiring cells themselves contained in the pharmaceutical composition for forming bone or periodontal tissue, and the bone cells or bone cells around the application site. It is expected to promote the growth, proliferation, and differentiation of stem cells that have the ability to differentiate into cells. Here, the extracellular matrix refers to a matrix (matrix) that surrounds the cells having bone differentiation potential.
ステップ c)において、 本発明の方法により調製される骨又は歯周組織形成用組 成物が適用後にゲル化するように、 ゲル化剤をさらに混合して流動性組成物を形 成することが好ましい。 かかる構成によれば、 適用後速やかにゲル化する骨又は 歯周組織形成用組成物が調製される。従って、適用部位における定着性が向上し、 骨又は歯周組織の修復又は再生を効果的に行うことができる骨又は歯周組織形成 用医薬組成物を調製することができる。 In step c), a gelling agent is further mixed to form a flowable composition such that the composition for forming bone or periodontal tissue prepared by the method of the present invention gels after application. Preferably. According to such a configuration, a composition for forming bone or periodontal tissue which gels immediately after application is prepared. Therefore, it is possible to prepare a pharmaceutical composition for forming a bone or a periodontal tissue, which can improve the fixability at an application site and can effectively repair or regenerate the bone or the periodontal tissue.
ゲル化剤としては生体親和性が高いものを用いることが好ましく、 例えば、 コ ラ一ゲン又はフィプリン糊等を用いることができる。 コラーゲンとしては種々の ものを選択して用いることができるが、 本発明の骨又は歯周組織形成用医薬組成 物の適用目的 (適用組織) に適したものを採用することが好ましい。 骨組織の再 生を目的とする場合には、 例えば、 I 型コラーゲンを用いることができる。 用い るコラーゲンは可溶性 (酸可溶性コラーゲン、 アルカリ可溶性コラーゲン、 酵素 可溶性コラーゲン等) であることが好ましい。  It is preferable to use a gelling agent having a high biocompatibility, for example, collagen or fipurin glue. Various collagens can be selected and used, but it is preferable to use collagen suitable for the application purpose (applied tissue) of the pharmaceutical composition for forming bone or periodontal tissue of the present invention. When the purpose is to regenerate bone tissue, for example, type I collagen can be used. The collagen used is preferably soluble (acid-soluble collagen, alkali-soluble collagen, enzyme-soluble collagen, etc.).
ステップ c)の結果得られる流動性組成物 1 m 1 中に、 1 X 1 0 5個以上の細胞 が存在することとなるように骨系分化能獲得細胞を混合することが好ましく、 さ らに好ましくは 1 X 1 0 6〜 1 X 1 0 7個の細胞が存在するように混合すること が好ましい。 Resulting flowable composition in step c) in 1 m 1, the it is preferred that 1 X 1 0 5 or more cells are mixed bone based differentiation capacitation cells so that the presence, and et al Preferably, the cells are mixed so that 1 × 10 6 to 1 × 10 7 cells are present.
無機系生体吸収性材料の種類は特に限定されないが、 /3— T C P、 a— T C P、 リン酸四カルシウム、 リン酸八カルシウム、 及び非結晶質リン酸カルシウムから なる群からなる群より選択される材料を用いることができる。 これらの材料は単 独で用いることができることはもちろんのこと、 任意に選択した 2種以上を組み 合わせて用いても良い。 好ましくは 0— T C Pを無機系生体吸収性材料として用 いる。  Although the type of the inorganic bioabsorbable material is not particularly limited, a material selected from the group consisting of / 3-TCP, a-TCP, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate is used. Can be used. These materials can be used alone, or two or more arbitrarily selected materials may be used in combination. Preferably, 0-TCP is used as the inorganic bioabsorbable material.
無機系生体吸収性材料は、 本発明の第 1の局面において述べた方法で得ること ができる。 また、 無機系生体吸収性材料の粒子径、 性状についても、 本発明の第 1の局面において述べたものが当該第 2の局面においても適用される。 無機系生 体吸収性材料の混合量は、 ステップ c)の結果得られる流動性組成物全体に対して 5 0重量%〜7 5重量%とすることが好ましい。 The inorganic bioabsorbable material can be obtained by the method described in the first aspect of the present invention. As for the particle diameter and properties of the inorganic bioabsorbable material, those described in the first aspect of the present invention are also applied in the second aspect. The mixing amount of the inorganic bioabsorbable material depends on the total flowable composition obtained as a result of step c). Preferably, it is 50% by weight to 75% by weight.
水系溶媒としては、 滅菌水、 生理食塩水、 リン酸バッファ一等を用いることが できる。 また、 ステップ b)で用いた培養液の一部を用いることもできる。  As the aqueous solvent, sterilized water, physiological saline, phosphate buffer and the like can be used. Also, a part of the culture solution used in step b) can be used.
ステップ c)の結果得られる組成物の流動性の程度は特に限定されず、 ペースト 状、 粘土状、 高粘度流動体状等とすることができる。 好ましくは、 ペースト状で ある。ペース卜状とすることにより、可塑性に優れた組成物となる。したがって、 予め適用部の形状に成型することなく適用できる。 即ち、 適用が容易に行える骨 又は歯周組織形成用医薬組成物が調製される。 また、 適用部位において定着性の 良い骨又は歯周組織形成用医薬組成物が調製される。  The degree of fluidity of the composition obtained as a result of step c) is not particularly limited, and may be paste, clay, high-viscosity fluid, or the like. Preferably, it is in the form of a paste. By forming the paste, a composition having excellent plasticity is obtained. Therefore, it can be applied without being previously formed into the shape of the application portion. That is, a pharmaceutical composition for forming bone or periodontal tissue which can be easily applied is prepared. In addition, a pharmaceutical composition for forming bone or periodontal tissue having good fixation properties at the application site is prepared.
また、 使用時において、 注射容器を用いて注入可能な程度の流動性であること が好ましい。 かかる流動性とすることにより、 適用部位への適用が一層容易とな る。  In addition, when used, it is preferably fluid enough to be injected using an injection container. With such fluidity, application to the application site is further facilitated.
尚、 適用部位に応じて所望の流動性とすることができる。 例えば、 骨膜下に注 入する場合には、 より流動性を有する状態 (粘度の低い状態) にすることが好ま しい。  In addition, desired fluidity can be obtained depending on the application site. For example, when injecting under the periosteum, it is preferable to make the liquid more fluid (low viscosity).
ステップ c)において増粘剤を添加することもできる。 増粘剤としては、 アルギ ン酸ナトリウム等の増粘多糖類、 グリセリン、 ワセリン等を用いることができる が、 安全性及びノ又は骨形成能の観点から、 生体親和性が高く、 かつ生体吸収性 又は生体分解性のものを用いることが好ましい。 グリセリン等を添加することに より、 凍害防止の効果も得られる。 また、 安定化剤、 保存剤、 P H調整剤等を添 加することもできる。 さらに、 成長因子、 特に骨誘導因子 (B M P ) を添加.する こともできる。  A thickener can also be added in step c). As the thickening agent, thickening polysaccharides such as sodium alginate, glycerin, petrolatum, etc. can be used.However, from the viewpoints of safety and no or bone formation ability, it has high biocompatibility and bioabsorbability. Alternatively, a biodegradable material is preferably used. Addition of glycerin and the like also has the effect of preventing frost damage. Further, a stabilizer, a preservative, a pH adjuster, and the like can be added. In addition, growth factors, in particular osteoinductive factors (BMP), can be added.
ステップ c)の後、 さらに、 ステップ c)により得られた流動性組成物を凍結する ステップ (ステップ ) を行うことができる。 かかるステップにより得られる、 凍結された骨又は齒周組織形成用医薬組成物は、 長期間の保存に適したものであ り、 使用時まで安定した品質で保存することができる。 また、 一旦凍結すること により、 流動性組成物の抗原性を低下させ、 生体に適用 (移植) した際の免疫拒 絶反応を低減させることができる。 凍結処理は常法に従い行うことができる。 こ のように凍結された骨又は歯周組織形成用医薬組成物は、 使用時に解凍して使用 される。 このとき生理食塩水等の水系溶媒を加えて所望の流動性に調整すること もできる。 After step c), a step (step) of freezing the flowable composition obtained in step c) can be performed. The frozen pharmaceutical composition for bone or periodontal tissue formation obtained by such a step is suitable for long-term storage. It can be stored with stable quality until use. Further, once frozen, the antigenicity of the fluid composition can be reduced, and immune rejection when applied (transplanted) to a living body can be reduced. The freezing treatment can be performed according to a conventional method. The frozen pharmaceutical composition for forming bone or periodontal tissue is thawed and used at the time of use. At this time, the desired fluidity can be adjusted by adding an aqueous solvent such as physiological saline.
ステップ c)の後、 さらに、 ステップ c)により得られた流動性組成物を凍結乾燥 するステップ (ステップ e) ) を行うことができる。 かかるステップにより得られ る、 凍結乾燥された骨又は歯周組織形成用医薬組成物は、 上記の凍結されたもの と同様に長期間の保存に適したものであり、 使用時まで安定した品質で保存する ことができる。 また、 抗原性の低下も同様に期待できるものである。 凍結乾燥処 理は常法に従い行うことができる。 このように凍結乾燥された骨又は歯周組織形 成用医薬組成物は、 生理食塩水等の水系溶媒を加えることにより、 凍結乾燥前の 流動性又は所望の流動性を有する状態にした後使用される。  After step c), a step of freeze-drying the flowable composition obtained in step c) (step e)) can be performed. The freeze-dried pharmaceutical composition for bone or periodontal tissue formation obtained by such a step is suitable for long-term storage similarly to the above-mentioned frozen one, and has a stable quality until use. Can be saved. Also, a decrease in antigenicity can be expected. The freeze-drying treatment can be performed according to a conventional method. The lyophilized pharmaceutical composition for bone or periodontal tissue formation is used after it has been made to have a fluidity before lyophilization or a desired fluidity by adding an aqueous solvent such as physiological saline. Is done.
上記の調製方法により得られる骨又は歯周組織形成用医薬組成物から、 以下の ステップを行うことにより、 骨又は歯周組織形成用注射剤を調製することができ る。 即ち、 A)上記の調製方法により得られる骨形成医薬組成物を注射容器に封入 するステップ、 及び  From the pharmaceutical composition for forming bone or periodontal tissue obtained by the above-mentioned preparation method, an injection for forming bone or periodontal tissue can be prepared by performing the following steps. A) enclosing the osteogenic pharmaceutical composition obtained by the above-mentioned preparation method in an injection container; and
B)ステップ A)で得られる注射容器に封入された前記骨又は歯周組織形成用医 薬組成物を凍結又は凍結乾燥するステップ、 である。  B) a step of freezing or freeze-drying the pharmaceutical composition for forming bone or periodontal tissue enclosed in the injection container obtained in step A).
注射容器の種類は特に限定されず、 例えば、 市販の注射器を用いることができ る。 また、 凍結処理又は凍結乾燥処理は常法に従い行うことができる。  The type of injection container is not particularly limited, and for example, a commercially available syringe can be used. Freezing or freeze-drying can be performed according to a conventional method.
本発明の第 3の局面は、 骨系細胞への分化能を保持した細胞の調製方法、 及び 骨系細胞の調製方法を提供する。 本発明の第 2の局面で述べたように、 本発明者 らは、 物理的刺激を細胞に負荷した状態で培養することにより、 骨系細胞への分 化能を失うことなく、 より多くの継代培養が可能であることを見出した。 本発明 の第 3の局面は、 かかる知見に基づきなされたものであり、 以下のステップを含 む、 骨系細胞への分化能を保持した細胞の調製方法である。 A third aspect of the present invention provides a method for preparing cells having the ability to differentiate into bone cells, and a method for preparing bone cells. As described in the second aspect of the present invention, the present inventors dissociate into bone cells by culturing the cells under a physical stimulus. It has been found that more subcultures are possible without losing chemopotency. The third aspect of the present invention has been made based on such findings, and is a method for preparing a cell having the ability to differentiate into bone cells, comprising the following steps.
i)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステツプ、 及び ii)ステップ i)により選択された間葉系幹細胞を物理的刺激の存在下で培養する ステップ。  i) a step of selecting mesenchymal stem cells having adhesion from a mesenchymal stem cell source; and ii) culturing the mesenchymal stem cells selected in step i) in the presence of a physical stimulus.
上記調製方法によれば、 骨系細胞への分化能を保持させた状態でより多くの継 代培養を行うことができ、 その結果、 大量の細胞を得ることが可能となる。 ここでのステツプ i)及び ii)の各要素については、 本発明の第 2の局面における ステップ a)及ぴ a- 1)におけるものとそれぞれ同様であるので、 その説明を省略す る。 尚、 物理的刺激以外の培養条件は、 周知ないし公知のものを採用することが できる。  According to the above-described preparation method, more subcultures can be performed while maintaining the differentiation ability to bone cells, and as a result, a large amount of cells can be obtained. The elements in steps i) and ii) here are the same as those in steps a) and a-1) in the second aspect of the present invention, and therefore, description thereof will be omitted. In addition, well-known or well-known culture conditions can be adopted as culture conditions other than the physical stimulation.
また、 本発明の第 3の局面は、 以下のステップを含む、 骨系細胞の調製方法で ある。  A third aspect of the present invention is a method for preparing a bone cell, comprising the following steps.
i)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステップ、 ii)ステップ i)により選択された間葉系幹細胞を物理的刺激の存在下で培養する ステップ、 及び  i) selecting a mesenchymal stem cell having adhesiveness from a mesenchymal stem cell source, ii) culturing the mesenchymal stem cell selected in step i) in the presence of a physical stimulus, and
iii) 骨系細胞への分化を誘導する条件下で培養するステップ。  iii) culturing under conditions that induce differentiation into bone cells.
かかる調製方法によれば、 骨系細胞を大量に得ることが可能となる。 また、 同 時に骨系細胞の細胞外基質を大量に得ることも可能となる。  According to such a preparation method, a large amount of bone cells can be obtained. At the same time, a large amount of extracellular matrix of bone cells can be obtained.
ステップ iii)の各要素については、 本発明の第 2の局面におけるステップ b)と 同様であり、 その説明を省略する。  Each element of step iii) is the same as step b) in the second aspect of the present invention, and a description thereof will be omitted.
本発明の第 3の局面の調製方法により得られる骨系細胞は、 例えば、 本発明の 第 1の局面における骨系細胞への分化能を獲得した間葉系幹細胞として用いるこ とができる。 本発明の第 4の局面は、 間葉系幹細胞を骨系細胞へと分化誘導する際に、 物理 的刺激の存在下で培養する、 ことを特徴とする骨系細胞の調製方法である。 かか る調製方法により得られた骨系細胞は、 例えば、 本発明の第一の局面における骨 系細胞への分化能を獲得した間葉系幹細胞として用いることができる。 The bone cell obtained by the preparation method of the third aspect of the present invention can be used, for example, as a mesenchymal stem cell that has acquired the ability to differentiate into a bone cell in the first aspect of the present invention. A fourth aspect of the present invention is a method for preparing bone cells, which comprises culturing mesenchymal stem cells in the presence of a physical stimulus when the cells are induced to differentiate into bone cells. The bone cells obtained by such a preparation method can be used, for example, as mesenchymal stem cells that have acquired the ability to differentiate into bone cells in the first aspect of the present invention.
ここでの間葉系幹細胞としては、 上述のように、 骨髄、 歯髄、 さい帯血などか ら常法に従い調製したものを用いることができる。 また、 採取後、 物理的刺激の 存在下で培養を行った細胞を用いることもできる。  As described above, as the mesenchymal stem cells, those prepared from bone marrow, dental pulp, cord blood, etc. according to a conventional method can be used as described above. After collection, cells cultured in the presence of a physical stimulus can also be used.
[実施例 1 ] 骨髄細胞の調製 [Example 1] Preparation of bone marrow cells
( 1— 1 ) ラッ ト大腿骨の摘出  (1-1) Removal of rat femur
ェ一テルにより麻酔死させた F i s c h e r系雄ラッ ト (7週令) の下半身を 剃毛した。 剃毛後、 除毛クリームで剃毛部における残りの毛を完全に除去した。 続いて、 除毛クリーム及び剃毛部に残存する毛を十分に洗い流した。 その後、 余 分な水分を十分に除去した。 次に、 ラッ トを腹ばいの状態に固定し、 下半身の背 部をヒビデンでよく拭って消毒した。 消毒後の下半身背部を十文字に切開し、 切 開部の皮膚を十分に剥離、 固定して大腿部を露出させた。 大腿骨頭部より筋肉等 を剥離することにより、 大腿骨を露出した。 このとき、 可能な限り骨に付着した 軟組織を除去した。 続いて、 関節部の靭帯等を切断して大腿骨を摘出した。 摘出 した大 fe骨は eagle minimal essential me mm(GIBCO Laboratories Life Technologies,NY USA) ( 15% Fetal Bovine Serum (GIBCO Laboratories Life Technologies, NY USA)、 lOOU/ml penicillin G (明治製菓株式会社 製)、 100 g/ml streptomycin ( Sigma Chemical Co., St Louis, USAノ、 0. 25 β g/ml amphotericins B (GIBCO Laboratories Life Technologies, NY USA) 含有、 以下、 「基本培地」という) 中で保存した。  The lower body of a male Fischer (7-week-old) rat anesthetized by a ether was shaved. After shaving, the remaining hair in the shaved area was completely removed with a depilatory cream. Subsequently, the hair removal cream and the hair remaining on the shaved part were sufficiently washed away. Thereafter, excess water was sufficiently removed. Next, the rat was fixed on the stomach, and the back of the lower body was thoroughly wiped with hibiden for disinfection. After disinfection, the back of the lower body was incised into a cross shape, and the skin at the incision was sufficiently peeled off and fixed to expose the thigh. The femur was exposed by exfoliating muscles and the like from the head of the femur. At this time, the soft tissue attached to the bone was removed as much as possible. Subsequently, the ligaments and the like at the joints were cut, and the femur was extracted. The extracted large fe bone was eagle minimal essential me mm (GIBCO Laboratories Life Technologies, NY USA) (15% Fetal Bovine Serum (GIBCO Laboratories Life Technologies, NY USA), lOOU / ml penicillin G (Meiji Seika Co., Ltd.), 100 g / ml streptomycin (Sigma Chemical Co., St Louis, USA) containing 0.25 β g / ml amphotericins B (GIBCO Laboratories Life Technologies, NY USA).
( 1 - 2 ) 骨髄細胞の採取 lOcc用のシリンジ (テルモ株式会社 製) に基本培地を lOcc吸引した。 ( 1— 1 ) で得られた大腿骨をシャーレに移し、 大腿骨に付着する余分な軟組織を除去 した。 その後、 大腿骨を別のシャーレに移し、 両端 (骨頭部) を切断した。 両端 を切断した大腿骨を遠沈管上に保持し、 この状態で、 骨髄空内に用意しておいた シリンジの針を一度貫通させた。 その後、 針を上方に引き上げ、 ゆっく りとシリ ンジ内の基本培地を 5cc程度流し込んだ。 次に、 大腿骨を上下反転させ、 反対の 断端より残りの基本培地を流し込んだ。 このような操作により、 遠沈管に骨髄細 胞の懸濁液が回収された。 (1-2) Collection of bone marrow cells The basic medium was aspirated into a syringe for lOcc (manufactured by Terumo Corporation). The femur obtained in (1-1) was transferred to a petri dish, and excess soft tissue attached to the femur was removed. After that, the femur was transferred to another Petri dish, and both ends (bone head) were cut off. The femur whose both ends were cut was held on a centrifuge tube, and in this state, a syringe needle prepared in the bone marrow cavity was once passed through. Then, the needle was lifted upward, and about 5 cc of the basal medium in the syringe was slowly poured. Next, the femur was turned upside down, and the remaining basal medium was poured from the opposite stump. By such an operation, a suspension of bone marrow cells was collected in a centrifuge tube.
(1 - 3) 骨髄細胞の播種  (1-3) Seeding bone marrow cells
( 1— 2) において遠沈管に回収された骨髄細胞の懸濁液に基本培地を適量加 え (ラッ ト 1匹 2本の大腿骨より採取した骨髄細胞を用いる場合、 基本培地の総 量をおよそ 3 0cc~4 Occとした)、十分に撹拌した。そして、フラスコ (80cm2、 Greiner labortechnik Germany) に骨髄細胞の懸濁液を播種した。 Add an appropriate amount of basal medium to the suspension of bone marrow cells collected in the centrifuge tube in (1-2). (If bone marrow cells collected from two femurs per rat are used, the total amount of (Approximately 30 cc to 4 Occ), and the mixture was sufficiently stirred. Then, a suspension of bone marrow cells was seeded in a flask (80 cm 2 , Greiner labortechnik Germany).
( 1 -4) 接着性細胞の選択、 及び培養  (1-4) Selection and culture of adherent cells
骨髄細胞を播種したフラスコをィンキュベ一夕内に移し、 5%C02、 37での条件 で培養した。 培養液中に含まれる血球系の細胞を除去し、 接着性の細胞を選択し て培養するために、骨髄細胞の播種から 24時間後に培地交換を行った。その後、 培養液中で、 サブコンフルェントになるまで約 7日間培養を続けた。 その間、 培 地交換を 2 日に一回の頻度で行った。 尚、 初期培養 3日目の細胞の様子を図 1に 示した。 The flask in which the bone marrow cells were seeded was transferred into Incube overnight, and cultured under the conditions of 5% CO 2 and 37. The medium was replaced 24 hours after seeding of the bone marrow cells in order to remove the blood cells contained in the culture solution and to select and culture the adherent cells. Thereafter, culturing was continued for about 7 days in the culture solution until the cells became subconfluent. During that time, medium exchange was performed once every two days. The state of the cells on the third day of the initial culture is shown in FIG.
続いて、 0.05%トリプシンを用いて細胞を剥離し、 面積比にして 2〜4倍とな るように播種して継代培養した。  Subsequently, the cells were detached using 0.05% trypsin, inoculated so that the area ratio became 2 to 4 times, and subcultured.
(1 - 5) 骨髄細胞の分化誘導  (1-5) Induction of bone marrow cell differentiation
まず、継代から約 14日間培養し、サブコンフルェントに達したのを確認して、 培養液に 3 -glycerophosphate ( Sigma Chemical Co., St Louis, US )、 Dexamethasone ( Sigma Chemical Co., St Louis, USA )、 及び VitaminC phosphate(L-ascorbic acid phosphate magnesium salt n- hydrate、 Sigma Chemical Co., St Louis, USA)を、 それぞれ、 10 mM、 10·8 M、 及び 80〃g/ml となるように添加して培養を続けた。 培地交換は 2 日毎に行い、 そのつど上記と 同 様 に 3 -glycerophosphate 、 Dexamethasone 、 及 ひ VitaminC phosphate (jj-ascorbic acid phosphate magnesium salt n-hydrate)を培 ¾i液に添 加した。 このようにして、 フラスコ内で石灰化が確認されるまで、 約 2週間培養 した。 First, after culturing for about 14 days from the passage, it was confirmed that subconfluence was reached, and the culture broth was added to 3-glycerophosphate (Sigma Chemical Co., St Louis, US), Dexamethasone (Sigma Chemical Co., St Louis , USA), and VitaminC phosphate (L-ascorbic acid phosphate magnesium salt n- hydrate, Sigma Chemical Co., St Louis, USA) and, respectively, 10 mM, 10 · 8 M , And the culture was continued at 80 μg / ml. The medium was exchanged every two days, and each time, 3-glycerophosphate, Dexamethasone, and Vitamin C phosphate (jj-ascorbic acid phosphate magnesium salt n-hydrate) were added to the medium as described above. In this way, the cells were cultured for about 2 weeks until calcification was confirmed in the flask.
尚、 継代培養 1 0日目の細胞の様子を図 2に示した。 図 3では、 さらに 4日間 培養 (継代培養 1 4日目) した時点での細胞の様子が示される。 骨髄細胞は多角 形に観察され、細胞の周囲には細胞外マトリックス様の構造が観察できる。また、 図 4の写真は、 継代培養 1 4日目の細胞をアルカリフォスファターゼ染色したも のである。 細胞が部分的に凝集し、 石灰化結節を形成していることがわかる。 即 ち、 結節を中心にアル力リフォスファタ一ゼ陽性反応が観察できる。  The state of the cells on day 10 of the subculture is shown in FIG. FIG. 3 shows the state of the cells after further culturing for 4 days (subculture day 14). Bone marrow cells are observed in a polygonal shape, and extracellular matrix-like structures can be observed around the cells. In addition, the photograph in FIG. 4 shows cells on the 14th day of subculture stained with alkaline phosphatase. It can be seen that the cells are partially aggregated and form calcified nodules. Immediately, positive reaction of lipophosphatase can be observed mainly in the nodules.
( 1 一 6 ) 細胞成分の回収  (1-6) Recovery of cell components
フラスコ内の培地を少量の培地を残して、 フラスコ内の培地を除去した。 そし て、 セル 'スクレイパ一 (Nunc Inter Med) を用いて細胞をフラスコから剥離し た。 剥離した細胞は、 培地とともに遠沈管 (FALCON ECTON DICKINSON USA) に移し、 遠沈処理(1500rpm, 5min)に供した。 上清を吸引し、 細胞成分を 回収した。  The medium in the flask was removed except for a small amount of the medium in the flask. The cells were then detached from the flask using Cell'Scraper (Nunc Inter Med). The detached cells were transferred to a centrifuge tube (FALCON ECTON DICKINSON USA) together with the medium, and subjected to centrifugation (1500 rpm, 5 min). The supernatant was aspirated and the cell components were collected.
[実施例 2 ] 骨形成用医薬組成物 (細胞含有 -TCPペースト) の調製 [Example 2] Preparation of osteogenic pharmaceutical composition (cell-containing -TCP paste)
( 2— 1 ) /3 -TCP粉末の調製  Preparation of (2-1) / 3-TCP powder
/3 -TCP (ォリンパス光学工業株式会社 製、 気孔率 9 0 % ) を機械的に粉砕 し、粒子径を平均 2 x m程に調整した。 このようにして調製した ]3 -TCP粉末をォ —トクレーブ滅菌した。 / 3 -TCP (manufactured by Olympus Optical Co., Ltd., porosity: 90%) was mechanically pulverized to adjust the particle diameter to an average of about 2 xm. The 3-TCP powder thus prepared —Treclave sterilized.
( 2 - 2 ) 細胞含有 β -TCPペーストの調製  (2-2) Preparation of β-TCP paste containing cells
最終的に必要な量より少ない量の滅菌水と ) 3 -TCP 粉末とを攪拌混合し、 ぺ一 スト状にした。 より粘性が必要なときは滅菌水に代えてアルギン酸ナトリゥム溶 液を使用することができる。  An amount of sterile water smaller than the amount required finally) and 3) -TCP powder were mixed by stirring to form a paste. If more viscosity is required, sodium alginate solution can be used instead of sterile water.
他方、 少量の滅菌水を用いて、 ( 1 — 6 ) で回収された細胞成分を懸濁し、 細胞 懸濁液とした。 On the other hand, the cell components recovered in (1-6) were suspended using a small amount of sterile water to obtain a cell suspension.
3 -TCPのペーストと細胞懸濁液とを撹拌混合して、 細胞含有 )3 -TCPペースト とした。 この際、 最終的に |3 -TCPの含有量が、 ]3 -TCPペースト全体に対して約 6 7重量パーセントとなるように滅菌水で調整した。 これにより、 ペースト状の )3 -TCPペーストとなる。 このようにして調製した細胞含有 j3 -TCPペーストは凍 結もしくは凍結乾燥して保存することもできる。  The 3-TCP paste and the cell suspension were stirred and mixed to obtain a cell-containing) 3-TCP paste. At this time, sterile water was used to adjust the content of | 3-TCP to about 67% by weight based on the whole] -TCP paste. This gives a paste-like) 3-TCP paste. The cell-containing j3-TCP paste thus prepared can be frozen or lyophilized for storage.
[実施例 3 ] 細胞含有 13 -TCPペーストを用いた骨形成 [Example 3] Bone formation using 13-TCP paste containing cells
実施例 2で得られた細胞含有 )3 -TCP ペーストを 5cc のシリンジに移した。 一 方、 エーテルにより麻酔させた F i s c h e r系雄ラッ ト (7週令) の背部を剃 毛した。 剃毛後、 除毛クリームで剃毛部における残りの毛を完全に除去した。 続 いて、 除毛クリーム及び剃毛部に残存する毛を十分に洗い流した。 その後、 余分 な水分を十分に除去した。 次に、 ラットを腹ばいの状態に固定し、 術野をヒビデ ンでよく拭って消毒した。 その後、 シリンジを用いて実施例 2で得られた細胞含 有) 3 -TCPぺ一ストを背部皮下におよそ 3 cc注入した。  The cell-containing) 3-TCP paste obtained in Example 2 was transferred to a 5 cc syringe. On the other hand, the back of a 7-year-old male male rat (7 weeks old) anesthetized with ether was shaved. After shaving, the remaining hair in the shaved area was completely removed with a depilatory cream. Subsequently, the hair removal cream and the hair remaining on the shaved part were sufficiently washed away. Thereafter, excess water was sufficiently removed. Next, the rats were fixed on their stomachs, and the surgical field was thoroughly wiped with hibiden to disinfect them. Thereafter, approximately 3 cc of the cell-containing (3-TCP paste) obtained in Example 2 was injected subcutaneously into the back using a syringe.
その後、 細胞含有 )3 -TCP ペースト注入部における骨形成を光学顕微鏡で観察 した。 その結果を図 5に示す。 図 5は、 細胞含有 i8 -TCP ペースト移植後 8週目 における移植部の脱灰 H.E. (へマトキシレンーェォジン)染色組織像( 1 0 0倍) である。 白く抜けている部分は脱灰された /3 -TCP である。 形成された骨組織に は規則性のある層板構造が認められ、 骨小腔は狭小化し、 全体的に成熟した骨組 織が観察される。 Then, the bone formation at the cell-containing) -TCP paste injection site was observed with an optical microscope. Figure 5 shows the results. Fig. 5 is a demineralized HE (hematoxylene eosin) -stained tissue image (100-fold) of the transplanted portion 8 weeks after transplantation of the cell-containing i8-TCP paste. The part missing in white is decalcified / 3-TCP. On the formed bone tissue Has a regular lamellar structure, narrowed bone lacunae, and an overall mature bone structure is observed.
[実施例 4 ] 培養方法の違いによる骨形成能の比較 [Example 4] Comparison of bone formation ability by different culture methods
実施例 1で得られた骨髄細胞を、 物理的刺激の存在下及び非存在下で継代培養 し、 培養後の各細胞の骨形成能を比較した。  The bone marrow cells obtained in Example 1 were subcultured in the presence and absence of physical stimulation, and the bone formation ability of each of the cultured cells was compared.
( 4 - 1 ) 物理的刺激存在下での培養  (4-1) Culture in the presence of physical stimulus
気層圧を変ィ匕させることにより、間欠的に物理的刺激を加えることができる培養装 置を用意した。即ち、密閉空間(箱状容器)にチューブを通じて連続的に減圧と加圧 を繰り返すポンプを取り付け、これを培養装置とした。かかる装置では、密閉空間は約 10Hzの速度にて約 1〜; 1 . 2気圧の減圧と加圧を繰り返すことになり、内部に設置し たシャーレ中の培養細胞へ物理的刺激を加えることができる。  A culture device capable of intermittently applying a physical stimulus by changing the air pressure was prepared. That is, a pump that repeatedly repeats decompression and pressurization through a tube was attached to a closed space (box-shaped container), and this was used as a culture device. In such a device, the enclosed space is repeatedly depressurized and pressurized at a speed of about 10 Hz to about 1 to 1.2 atm, and physical stimulation can be applied to cultured cells in a petri dish installed inside. it can.
以上の培養装置を用いて、上記実施例 1で調製した骨髄細胞を培養した(刺激群)。 まず、実施例 1で調製した細胞を培養シャーレに播種した(大腿骨 1本から得られた骨 髄細胞を培養シャーレ 80cm2に播種)。続いて、培養液中に含まれる血球系の細胞 を除去し、 接着性の細胞を選択して培養するために、 骨髄細胞の播種から 24 時 間後に培地交換を行った。 その後、 サブコンフルェントになるまで約 10 日間培 養を続けた (初代培養)。 続いて、 0.05%トリプシンを用いて細胞を剥離し、 1枚 のシャーレで培養した細胞を 2枚のシャーレに分けて播種することにより(面積比にして 2倍)継代培養した。物理的刺激は、初代培養時及び各継代翌日より毎日、 8時間 Z 日行った。また、培地交換は毎日行い、刺激時以外には培養シャーレを密閉空間より 取り出し、換気を行った。 Using the above culture apparatus, the bone marrow cells prepared in Example 1 above were cultured (stimulation group). First, the cells prepared in Example 1 were seeded on a culture dish (bone marrow cells obtained from one femur were seeded on a culture dish of 80 cm 2 ). Subsequently, the medium was replaced 24 hours after the seeding of the bone marrow cells in order to remove the hemocyte cells contained in the culture medium and to select and culture the adherent cells. After that, the culture was continued for about 10 days until it became subconfluent (primary culture). Subsequently, the cells were detached using 0.05% trypsin, and the cells cultured in one Petri dish were divided into two Petri dishes and inoculated (two times in area ratio) for subculture. Physical stimulation was performed for 8 hours on Z days during the primary culture and every day from the day following each passage. In addition, the medium was changed every day, and the culture dish was taken out of the closed space except at the time of stimulation and ventilated.
対照群については、上記培養装置の代わりに汎用的なインキュベータを用いて、初 代培養及び継代培養を行った。その他の条件は、刺激群と同じである。  For the control group, primary culture and subculture were performed using a general-purpose incubator instead of the culture device. Other conditions are the same as those of the stimulus group.
以上の条件で、刺激群及ぴ対照群についてそれぞれ 6継代まで培養した。 ( 4 - 2 ) 移植準備 Under the above conditions, each of the stimulation group and the control group was cultured up to 6 passages. (4-2) Preparation for transplantation
以上の方法により得られた各継代培養後の細胞を、 それぞれ /3 -TCP ブロック 内に播種し、 さらに培養した。 この場合の培地には、 -glycerophosphate (Sigma Chemical Co., St Louis, US)、 Dexamethasone (Sigma Chemical Co., St Louis, USA)、 及び VitaminC p osphate(L-ascorbic acid phosphate magnesium salt n-hydrate, Sigma Chemical Co., St Louis, USA)を、 それぞれ、 10 mM、 10-8 M、 及び 50 W g/ml となるように添加した。 これらを添加することにより、骨芽細胞への 分化が誘導される。尚、刺激群には、この |9" TCP ブロックを用いた培養時においても、 上述の方法による物理的刺激を与えた。  The cells after each subculture obtained by the above method were seeded in a 3-TCP block, respectively, and further cultured. In this case, the medium includes -glycerophosphate (Sigma Chemical Co., St Louis, US), Dexamethasone (Sigma Chemical Co., St Louis, USA), and VitaminC osphate (L-ascorbic acid phosphate magnesium salt n-hydrate, Sigma Chemical Co., St Louis, USA) were added to 10 mM, 10-8 M, and 50 Wg / ml, respectively. Addition of these induces differentiation into osteoblasts. The stimulus group was also given a physical stimulus by the above-mentioned method even during culture using the | 9 "TCP block.
( 4一 3 ) 移植  (4-1-3) Transplant
以下の方法により、 - TCP内で培養した骨髄細胞を i3 -TCPブロックごと同系 ラッ ト (7週令、 雄) に移植した。 まず、 ペントバルビ夕一ル全身麻酔下、 背部 皮膚を切開し、 筋膜まで露出させた。 そして、 上記細胞含有の /3 -TCP ブロック を筋膜上に静置し、 その後縫合した。  By the following method:-Bone marrow cells cultured in TCP were transplanted together with i3-TCP blocks into syngeneic rats (7 weeks old, male). First, under general anesthesia with pentobarbi, the back skin was incised to expose the fascia. Then, the cell-containing / 3-TCP block was left on the fascia, and then sutured.
( 4 - 4 ) 骨形成能の評価  (4-4) Evaluation of bone formation ability
移植後 4週経過した細胞含有 β -TCP ブロックの肉眼的およぴ脱灰標本を作製 し、 骨形成量を組織学的に評価した。 組織標本は各サンプルについて複数枚用意 し、 これらの中の新生骨組織量を当該サンプルの骨形成量とした。 初代培養細胞 を用いたサンプルの骨形成量を 1 0 0とし、 これに対する各サンプルの骨形成量 (面積比) を各サンプルの骨形成能とした。 各サンプルの骨形成能をまとめた表 を図 6に示した。図 6において、 C及び Eは、対照群及び剌激群をそれぞれ表す。 同図に示されるように、 刺激群では、 継代による骨形成能の低下が、 対照群に比 較して優位に抑制されていることがわかる。 即ち、 物理的刺激の存在下で培養す ることにより、 骨形成能を維持させた状態で繰り返し継代培養を行えることが示 された。 [実施例 5 ] 分化誘導時の培養方法の違いによる骨分化誘導促進効果の検討 ヒト間葉系幹細胞を用いて、 物理的刺激が分化誘導に与える影響を検討した。 まず、 lOcc用のシリンジ (テルモ株式会社 製) に、 ヒト腸骨より骨髄穿刺針 を用 いて腸骨骨髄液を採取 し 、 基本培地 ( eagle minimal essential medium(GIBCO Laboratories Life Technologies, NY USA 、 15% Fetal BovineFour weeks after transplantation, macroscopic and decalcified specimens of the cell-containing β-TCP block were prepared, and the amount of bone formation was evaluated histologically. A plurality of tissue specimens were prepared for each sample, and the amount of new bone tissue in these was used as the amount of bone formation of the sample. The amount of bone formation of the sample using the primary cultured cells was defined as 100, and the amount of bone formation (area ratio) of each sample was defined as the bone formation ability of each sample. Fig. 6 shows a table summarizing the osteogenic ability of each sample. In FIG. 6, C and E represent a control group and a stimulation group, respectively. As shown in the figure, it can be seen that in the stimulus group, the decrease in bone formation ability due to the passage is suppressed significantly as compared to the control group. In other words, it was shown that by subculturing in the presence of physical stimulus, subculture can be repeated while maintaining the osteogenic ability. [Example 5] Examination of promotion effect of bone differentiation induction by difference in culture method at the time of differentiation induction Using human mesenchymal stem cells, the effect of physical stimulation on differentiation induction was examined. First, iliac bone marrow fluid was collected from a human iliac bone using a bone marrow puncture needle into a lOcc syringe (manufactured by Terumo Corporation), and the basic medium (eagle minimal essential medium (GIBCO Laboratories Life Technologies, NY USA, 15% Fetal Bovine
Serum ( GIBCO Laboratories Life Technologies, NY USA)、 lOOU/ml penicillinSerum (GIBCO Laboratories Life Technologies, NY USA), lOOU / ml penicillin
G (明治製菓株式会社 製)、 lOO i g/ml streptomycin ( Sigma Chemical Co., StG (manufactured by Meiji Seika Co., Ltd.), lOO ig / ml streptomycin (Sigma Chemical Co., St.
Louis, USA ) 、 0. 25 g/ml amphotericine B 、 GIBCO Laboratories Lite Technologies, NY USA) 含有) の入った遠沈菅に注入した。 Louis, USA), 0.25 g / ml amphotericine B, containing GIBCO Laboratories Lite Technologies, NY USA).
続いて、 遠沈管に回収された骨髄液の懸濁液に基本培地を適量 (濃度 30 % ) 加 えた後、 フラスコ (80cm2、 Greiner labortec nik Germany) に播種した。 次に、 骨髄液を播種したフラスコをインキュベータ内に移し、 5 % C02、 37での 条件で培養した。 培養液中に含まれる血球系の細胞を除去し、 接着性の細胞を選 択して培養するために、 骨髄細胞の播種から 24 時間後に培地交換を行った。 そ の後、 培養液中で、 サブコンフルェントになるまで約 7 日間培養を続けた。 その 間、培地交換を 3日に一回の頻度で行った。 尚、培養液中には、 MSCGM、 50U/ml penicillin G, 50pg/ml streptomycin (Poietics 社製) を添加した。続いて、 0.05% トリプシンを用いて細胞を剥離し、 面積比にして 2 ~ 4倍となるように播種して 継代培養した。 Subsequently, an appropriate amount (concentration: 30%) of a basal medium was added to the suspension of bone marrow fluid collected in the centrifuge tube, and then seeded in a flask (80 cm 2 , Greiner labortec nik Germany). Then, the flask seeded with bone marrow fluid was transferred to an incubator, and cultured under the conditions at 5% C0 2, 37. The culture medium was replaced 24 hours after seeding the bone marrow cells in order to remove the blood cells contained in the culture medium and to select and culture the adherent cells. Thereafter, culturing was continued for about 7 days in the culture medium until the cells became subconfluent. During that time, the medium was changed once every three days. In addition, MSCGM, 50 U / ml penicillin G, and 50 pg / ml streptomycin (manufactured by Poietics) were added to the culture solution. Subsequently, the cells were detached using 0.05% trypsin, inoculated at an area ratio of 2 to 4 times, and subcultured.
このよう にして得られた骨髄細胞 (ヒ ト間葉系幹細胞) の培養液に)3  In the culture of bone marrow cells (human mesenchymal stem cells) obtained in this way) 3
■glyceroDhos hate Sigma chemical Uo., St Louis, US )、 DexamethasoneGlyceroDhoshate Sigma chemical Uo., St Louis, US), Dexamethasone
(Sigma Chemical Co., St Louis, USAハ 及び VitaminC pliosphate(L-ascorbic acid phosphate magnesium salt n-hydrate ,' Sigma Chemical Co., St Louis, USA)を、 それぞれ、 10 mM、 100nM、 及ぴ 0.05mMとなるように添加 (誘導培 地) して培養を続けた。 誘導培地に変更後、 伸展刺激装置 (スカラテック社製) を用いて細胞伸展刺激を加えた。 刺激は伸展率 10~ 20 %および周波数 0.05〜 0.2Hzの範囲で変化させ、それぞれの条件について骨芽細胞分化効果を評価した。 対照としては、 誘導培地を用いず伸展刺激も加えない群、 誘導培地を用い伸展刺 激を加えない群、 及び誘導培地を用いず伸展刺激のみを加える群を用意した。 評 価は、 誘導培地に変更後、 一週間経過した時点における培地中のアルカリフォス ファタ一ゼ (ALP) 活性を測定することにより行った。 (Sigma Chemical Co., St Louis, USA) and VitaminC pliosphate (L-ascorbic acid phosphate magnesium salt n-hydrate, 'Sigma Chemical Co., St Louis, USA) at 10 mM, 100 nM, and 0.05 mM, respectively. (Induction medium And the culture was continued. After changing to the induction medium, cell expansion stimulation was applied using an expansion stimulator (manufactured by Scalatec Corporation). The stimulus was changed at an extension rate of 10 to 20% and a frequency of 0.05 to 0.2 Hz, and the osteoblast differentiation effect was evaluated under each condition. As controls, there were prepared a group to which no extension stimulus was applied without using an induction medium, a group to which no extension stimulus was applied using an induction medium, and a group to which only extension stimulus was used without using an induction medium. The evaluation was performed by measuring the alkaline phosphatase (ALP) activity in the culture medium one week after the change to the induction medium.
図 7 ~ 9に各群の ALP 活性をまとめたグラフを示す。 図 7は、 伸展率 15 % (mec al5 % ) , 5サイクル 分 (5cycle/min、 約 0.083Hz) の条件での結果であ る。 同様に、 図 8及び図 9はそれぞれ、 伸展率 15 % (mechal5 % )、 10サイクル ノ分(10cycle/min、約 0.167Hz)の条件での結果、及び伸展率 20 % (mec a20 % ) , 5サイクル 分 (5cycle/min、 約 0.083Hz) の条件での結果である。 各グラフに おいて、 SC 1及び SC2は誘導培地を用いず伸展刺激も加えない群の結果、 SC+S1 及ぴ SC+S2は誘導培地を用いず伸展刺激のみを加える群の結果、 indl及ぴ ind2 は誘導培地を用い伸展刺激を加えない群の結果、 indl+Sl〜indl+S4 は誘導培地 を用い伸展刺激を加える群の結果である。  Figures 7 to 9 show graphs summarizing the ALP activity of each group. Figure 7 shows the results under the conditions of an extension rate of 15% (mecal 5%) and 5 cycles (5 cycles / min, about 0.083Hz). Similarly, FIGS. 8 and 9 show the results under the conditions of an extension rate of 15% (mechal5%), 10 cycles / min (10 cycles / min, about 0.167 Hz), and an extension rate of 20% (mec a20%), The results are for five cycles (5 cycles / min, about 0.083 Hz). In each graph, SC1 and SC2 show the results of the group without using the induction medium and no extension stimulus, and SC + S1 and SC + S2 show the results of the group without the induction medium and only the extension stimulus.ぴ ind2 is the result of the group using an induction medium and no extension stimulus was applied, and indl + Sl to indl + S4 is the result of the group using an induction medium and extension stimulation was applied.
各グラフに示されるように、 誘導培地を用いた場合において伸展刺激を加える ことにより ALPが有意に上昇することがわかる。 尚、 伸展刺激を加えた群では若 干の細胞増殖の抑制も見られた (デ一夕示さず)。 一方、 誘導培地を用いない場合 においては伸展刺激を加えることによる ALP 活性の変化はほとんど見られなか つた。 また、 細胞数についても大きな変化は認められなかった (データ示さず)。 以上の結果から、 化学的分化誘導時 (誘導培地の使用) に伸展刺激 (物理的刺 激)を加えることにより、骨系細胞への分化促進効果が得られることが示された。 細胞増殖能の若干の減少は、 間葉系幹細胞が骨芽.細胞により多く分化した影響を 反映したものと考えられる。 一方、 誘導培地を用いない場合には骨分化が認めら れなかったことより、 細胞伸展刺激自体には骨芽細胞への分化を促す効果のない ことが予測される。 As shown in each graph, it can be seen that ALP is significantly increased by the application of the stretching stimulus when the induction medium is used. In the group to which the stretching stimulation was added, a slight suppression of cell proliferation was also observed (data not shown overnight). On the other hand, when the induction medium was not used, there was almost no change in ALP activity due to the application of the stretching stimulus. No significant change was observed in cell number (data not shown). From the above results, it was shown that the addition of a stretching stimulus (physical stimulation) at the time of inducing chemical differentiation (using an induction medium) has an effect of promoting differentiation into bone cells. The slight decrease in cell proliferation is considered to reflect the effect of mesenchymal stem cells becoming more differentiated into osteoblasts. On the other hand, when no induction medium was used, bone differentiation was observed. It is predicted from the fact that stimulation of cell extension itself has no effect of promoting differentiation into osteoblasts.
この発明は、 上記発明の実施の形態及び実施例の説明に何ら限定されるもので はない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。 産業上の利用の可能性  The present invention is not limited to the description of the embodiment and the example of the above invention. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art. Industrial applicability
本発明の骨又は歯周組織形成用医薬組成物は、 骨組織又は歯周組織の修復、 再 生が必要とされる各種の分野に適用することができるものである。例えば、外傷、 各種骨疾患により生ずる骨 (軟骨) 欠損部における骨組織 (軟骨組織) の再生、 骨 (軟骨) の補強又は補填に適用することができる。 また、 歯周病等による歯槽 骨の欠損部における歯槽骨、歯周組織の再生に適用することができるものである。 適用方法としては、 ペースト状等の骨形成医薬組成物を適用部位に注入、 塗布等 する。  The pharmaceutical composition for forming bone or periodontal tissue of the present invention can be applied to various fields that require repair and regeneration of bone tissue or periodontal tissue. For example, the present invention can be applied to regeneration of bone tissue (cartilage tissue) at a bone (cartilage) defect caused by trauma or various bone diseases, and reinforcement or supplementation of bone (cartilage). Further, the present invention can be applied to regeneration of alveolar bone and periodontal tissue in a defective portion of alveolar bone due to periodontal disease or the like. As an application method, a bone-forming pharmaceutical composition in a paste form or the like is injected, applied, or the like to an application site.
本発明の骨又は歯周組織形成用医薬組成物は、 骨系細胞への分化能を獲得した 細胞を含むため、 それ自身による直接的な骨又は歯周組織の再生が期待できる。 また、 細胞の担体ないしは足場として用いる無機系生体吸収性材料は、 将来骨又 は歯周組織への置き換えが行われるものであって、 その安全性が高い。 さらに、 流動性を有することにより、骨欠損部の形状に合わせて予め成型する必要がなく、 汎用的であり、 また、 その取り扱いが容易である。 更に、 本発明の骨又は歯周組 織形成用医薬組成物は、 注射針を用いて経皮又は経粘膜的に注入することができ るため、 創部を開放することなく適用が可能である。 即ち、 適用時に低侵襲的応 用が可能となるものである。 また、 本発明の骨又は歯周組織形成用医薬組成物で は、 既存技術と異なり、 適用時において適用部位を搔爬する必要性がなくなる。 また、 本発明の第 3の局面では骨系細胞への分化能を保持した細胞の調製方法 が提供され、 骨系細胞への分化能を保持させた状態でより多くの継代培養を行う ことができる。 その結果、 大量の骨系細胞への分化能を保持した細胞を得ること が可能となる。 また、 本発明の第 3の局面では骨系細胞の調製方法も提供され、 骨系細胞を大量に得ることが可能となる。 同時に骨系細胞の細胞外基質を大量に 得ることも可能となる。 Since the pharmaceutical composition for forming bone or periodontal tissue of the present invention contains cells that have acquired the ability to differentiate into bone cells, direct regeneration of bone or periodontal tissue by itself can be expected. In addition, inorganic bioabsorbable materials used as cell carriers or scaffolds will be replaced with bone or periodontal tissue in the future, and their safety is high. Furthermore, since it has fluidity, it is not necessary to mold it in advance according to the shape of the bone defect, and it is versatile and easy to handle. Furthermore, since the pharmaceutical composition for forming bone or periodontal tissue of the present invention can be injected transdermally or transmucosally using a needle, it can be applied without opening the wound. In other words, minimally invasive application is possible when applied. In addition, unlike the existing technology, the pharmaceutical composition for forming a bone or periodontal tissue of the present invention eliminates the need to apply the application site at the time of application. Further, according to a third aspect of the present invention, a method for preparing a cell having the ability to differentiate into bone cells is provided. Thus, more subcultures can be carried out while maintaining the ability to differentiate into bone cells. As a result, it is possible to obtain cells that retain the ability to differentiate into large amounts of bone cells. Further, in the third aspect of the present invention, a method for preparing a bone cell is also provided, and a large amount of the bone cell can be obtained. At the same time, it is possible to obtain a large amount of extracellular matrix of bone cells.
更に、 本発明の第 4の局面における骨系細胞の調製方法によれば、 間葉系幹細 胞から骨系細胞への分化誘導を促進でき、 その結果、 骨形成能を有する細胞を効 率的に調製することが可能となる。  Furthermore, according to the method for preparing bone cells in the fourth aspect of the present invention, differentiation induction from mesenchymal stem cells to bone cells can be promoted, and as a result, cells having osteogenic ability can be efficiently used. It can be prepared in a suitable manner.

Claims

請 求 の 範 囲 The scope of the claims
1 . 骨系細胞への分化能を獲得した間葉系幹細胞と、 無機系生体吸収性材料とを 含んでなり、 使用時において流動性を有する骨又は歯周組織形成用医薬組成物。 1. A pharmaceutical composition for forming bone or periodontal tissue which has fluidity at the time of use, comprising mesenchymal stem cells having acquired the ability to differentiate into bone cells, and an inorganic bioabsorbable material.
2 . 骨系細胞への分化能を獲得した間葉系幹細胞と、 該間葉系幹細胞の細胞外基 質と、 無機系生体吸収性材料とを含んでなり、 使用時において流動性を有する骨 又は歯周組織形成用医薬組成物。 2. Bone comprising a mesenchymal stem cell that has acquired the ability to differentiate into a bone cell, an extracellular matrix of the mesenchymal stem cell, and an inorganic bioabsorbable material, and having fluidity during use. Or a pharmaceutical composition for periodontal tissue formation.
3 . 前記骨又は歯周組織形成用医薬組成物は、 使用時において注封容器を用いて 注入可能な流動性を有する、 ことを特徴とする請求の範囲第 1項又は第 2項に記 载の骨又は歯周組織形成用医薬組成物。 3. The pharmaceutical composition for forming a bone or periodontal tissue according to claim 1 or 2, wherein the pharmaceutical composition has a fluidity that can be injected using a potting container at the time of use. A pharmaceutical composition for forming bone or periodontal tissue.
4 . 前記無機系生体吸収性材料は、 /3—リン酸三カルシウム、 α —リン酸三カル シゥム、 リン酸四カルシウム、 リン酸八カルシウム、 及び非結晶質リン酸カルシ ゥムからなる群から選択される一又は二以上の無機系生体吸収性材料である、 こ とを特徴とする請求の範囲第 1項ないし第 3項のいずれかに記載の骨又は歯周組 織形成用医薬組成物。 4. The inorganic bioabsorbable material is selected from the group consisting of / 3-tricalcium phosphate, α-tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate. The pharmaceutical composition for forming a bone or periodontal tissue according to any one of claims 1 to 3, wherein the pharmaceutical composition is one or more selected inorganic bioabsorbable materials. .
5 . 前記無機系生体吸収性材料は、 平均粒子径が 0 . 5 μ π!〜 5 0 μ πιである、 ことを特徴とする請求の範囲第 1項ないし第 4項のいずれかに記載の骨又は歯周 組織形成用医薬組成物。 5. The inorganic bioabsorbable material has an average particle size of 0.5 μπ! The pharmaceutical composition for forming a bone or periodontal tissue according to any one of claims 1 to 4, wherein the pharmaceutical composition has a viscosity of from 50 to πι.
6 . 前記無機系生体吸収性材料は、 5 0重量%〜 7 5重量%含有される、 ことを 特徴とする請求の範囲第 1項ないし第 5項のいずれかに記載の骨又は歯周組織形 成用医薬組成物。  6. The bone or periodontal tissue according to any one of claims 1 to 5, wherein the inorganic bioabsorbable material is contained in an amount of 50% by weight to 75% by weight. Pharmaceutical compositions for formation.
7 . ゲル化材料をさらに含んでなり、 適用後にゲル化する、 ことを特徴とする請 求の範囲第 1項ないし第 6項のいずれかに記載の骨又は歯周組織形成用医薬組成 物。  7. The pharmaceutical composition for forming a bone or periodontal tissue according to any one of claims 1 to 6, further comprising a gelling material, wherein the composition gels after application.
8 . 前記ゲル化材料は、 コラーゲン及び/又はフイブリン糊である、 ことを特徵 とする請求の範囲第 7項に記載の骨又は歯周組織形成用医薬組成物。 8. The pharmaceutical composition for forming a bone or periodontal tissue according to claim 7, wherein the gelling material is collagen and / or fibrin glue.
9 . 前記骨又は齒周組織形成用医薬組成物は、 使用時に凍結状態から解凍されて 使用される、 ことを特徴とする請求の範囲第 1項ないし第 8項のいずれかに記載 の骨又は歯周組織形成用医薬組成物。 9. The bone or the bone according to any one of claims 1 to 8, wherein the pharmaceutical composition for forming bone or periodontal tissue is used after being thawed from a frozen state at the time of use. A pharmaceutical composition for periodontal tissue formation.
1 0 . 請求の範囲第 1項ないし第 9項のいずれかに記載の骨又は歯周組織形成用 医薬組成物を注射容器に封入してなる骨又は歯周組織形成用注射剤。  10. An injection for forming bone or periodontal tissue, wherein the pharmaceutical composition for forming bone or periodontal tissue according to any one of claims 1 to 9 is enclosed in an injection container.
1 1 . 以下の a)ないし c)のステップを含む、 使用時において流動性を有する骨又 は歯周組織形成用医薬組成物の調製方法、  11. A method for preparing a pharmaceutical composition for forming bone or periodontal tissue having fluidity during use, comprising the following steps a) to c):
a)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステップ、 b)ステップ a)で選択した間葉系幹細胞を骨系細胞への分化を誘導する条件下で 培養するステップ、  a) selecting mesenchymal stem cells having adhesiveness from a mesenchymal stem cell source, b) culturing the mesenchymal stem cells selected in step a) under conditions that induce differentiation into bone cells,
c)ステップ b)により骨系細胞への分化能を獲得した間葉系幹細胞と、 無機系生 体吸収性材料とを水系溶媒中で混合して流動性組成物を形成するステップ。 c) a step of mixing a mesenchymal stem cell that has acquired the differentiation ability into a bone cell in step b) with an inorganic bioabsorbable material in an aqueous solvent to form a flowable composition.
1 2 . 前記ステップ c)において、 コラーゲン及び/又はフイブリン糊をさらに混 合して流動性組成物を形成する、 ことを特徴とする請求の範囲第 1 1項に記載の 骨又は歯周組織形成用医薬組成物の調製方法、 12. The bone or periodontal tissue formation according to claim 11, wherein in step c), collagen and / or fibrin glue are further mixed to form a flowable composition. Method for preparing a pharmaceutical composition for
1 3 . 以下の a)ないし c)の.ステップを含む、 使用時において流動性を有する骨又 は歯周組織形成用医薬組成物の調製方法、  13. A method for preparing a pharmaceutical composition for forming bone or periodontal tissue having fluidity during use, comprising the following steps a) to c):
a)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステップ、 b)ステップ a)で選択した間葉系幹細胞を骨系細胞への分化を誘導する条件下で 培養するステップ、  a) selecting mesenchymal stem cells having adhesiveness from a mesenchymal stem cell source, b) culturing the mesenchymal stem cells selected in step a) under conditions that induce differentiation into bone cells,
c)ステップ b)により骨系細胞への分化能を獲得した間葉系幹細胞と、 該細胞の 細胞外基質と、 及び無機系生体吸収性材料とを水系溶媒中で混合して流動性組成 物を形成するステップ。  c) A fluid composition obtained by mixing a mesenchymal stem cell having acquired the differentiation ability into a bone cell in step b), an extracellular matrix of the cell, and an inorganic bioabsorbable material in an aqueous solvent. Forming a.
1 4 . 前記ステップ c)において、 コラーゲン及ぴノ又はフイブリン糊をさらに混 合して流動性組成物を形成する、 ことを特徵とする請求の範囲第 1 3項に記載の 骨又は歯周組織形成用医薬組成物の調製方法。 14. The method according to claim 13, wherein, in the step (c), a flowable composition is formed by further mixing collagen and fibrin glue. A method for preparing a pharmaceutical composition for forming bone or periodontal tissue.
1 5 . 前記ステップ a)の後、 さらに以下のステップ a-1)を行う、 ことを特徴とす る請求の範囲第 1 1項ないし第 1 4項のいずれかに記載の骨又は歯周組織形成用 医薬組成物の調製方法、  15. The bone or periodontal tissue according to any one of claims 11 to 14, wherein the following step a-1) is further performed after the step a). A method of preparing a pharmaceutical composition for forming,
a- 1)ステップ a)により選択された間葉系幹細胞を物理的刺激の存在下で培養す るステップ。  a-1) A step of culturing the mesenchymal stem cells selected in step a) in the presence of a physical stimulus.
1 6 . 前記ステップ c)の後、 さらに以下のステップ d)を行う、 ことを特徴とする 請求の範囲第 1 1項ないし第 1 5項のいずれかに記載の骨又は歯周組織形成用医 薬組成物の調製方法、  16. The bone or periodontal tissue forming physician according to any one of claims 11 to 15, wherein the following step d) is further performed after the step c). Preparation method of drug composition,
d)ステップ c)により得られた流動性組成物を凍結するステップ。  d) freezing the flowable composition obtained according to step c).
1 7 . 前記ステップ c)の後、 さらに以下のステップ e)を行う、 ことを特徴とする 請求の範囲第 1 1項ないし第 1 5項のいずれかに記載の骨又は歯周組織形成用医 薬組成物の調製方法、  17. The bone or periodontal tissue forming physician according to any one of claims 11 to 15, wherein the following step e) is further performed after the step c). Preparation method of drug composition,
e)ステップ c)により得られた流動性組成物を凍結乾燥するステップ。  e) freeze-drying the flowable composition obtained in step c).
1 8 . 前記無機系生体吸収性材料は、 )3—リン酸三カルシウム、 α —リン酸三力 ルシゥム、 リン酸四カルシウム、 リン酸八カルシウム、 及び非結晶質リン酸カル シゥムからなる群から選択される一又は二以上の無機系生体吸収性材料である、 ことを特徴とする請求の範囲第 1 1項ないし第 1 7項のいずれかに記載の骨又は 歯周組織形成用医薬組成物の調製方法。  18. The inorganic bioabsorbable material is selected from the group consisting of) 3-tricalcium phosphate, α-triphosphate phosphate, tetracalcium phosphate, octacalcium phosphate, and amorphous calcium phosphate. The pharmaceutical composition for forming a bone or periodontal tissue according to any one of claims 11 to 17, which is one or more inorganic bioabsorbable materials selected. Preparation method.
1 9 .前記無機系生体吸収性材料は、平均粒子径が 0 . 5 μ π!〜 5 0 πιである、 ことを特徴とする請求の範囲第 1 1項ないし第 1 8項のいずれかに記載の骨又は 歯周組織形成用医薬組成物の調製方法。  19. The inorganic bioabsorbable material has an average particle size of 0.5 μπ! The method for preparing a pharmaceutical composition for forming bone or periodontal tissue according to any one of claims 11 to 18, wherein the pharmaceutical composition is in a range of from 50 to 50πι.
2 0 . 前記無機系生体吸収性材料は、 5 0重量%〜 7 5重量%含有される、 こと を特徴とする請求の範囲第 1 1項ないし第 1 9項のいずれかに記載の骨又は歯周 組織形成用医薬組成物の調製方法。 20. The bone or bone according to any one of claims 11 to 19, wherein the inorganic bioabsorbable material is contained in an amount of 50% by weight to 75% by weight. A method for preparing a pharmaceutical composition for periodontal tissue formation.
2 1 . 以下の A)及び B)のステップを含む、 骨又は歯周組織形成用注射剤の調製 方法、 21. A method for preparing an injection for bone or periodontal tissue formation, comprising the following steps A) and B):
A)請求の範囲第 1 1項ないし第 1 5項、 及び第 1 8項ないし第 2 0項のいずれ かに記載の調製方法により得られる骨又は歯周組織形成医薬組成物を注射容器に 封入するステップ、 及び  A) A bone or periodontal tissue forming pharmaceutical composition obtained by the preparation method according to any one of claims 11 to 15 and 18 to 20 is enclosed in an injection container. Steps to perform, and
B)ステツプ A)で得られる注射容器に封入された前記骨又は歯周組織形成用医 薬組成物を凍結又は凍結乾燥するステツプ。  B) Step of freezing or freeze-drying the medical composition for forming bone or periodontal tissue enclosed in the injection container obtained in A).
2 2 . 以下のステップを含む、 骨系細胞への分化能を保持した細胞の調製方法、 i)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステップ、 及び ii)ステップ i)により選択された間葉系幹細胞を物理的刺激の存在下で培養する ステツプ。  2 2. A method for preparing cells having the ability to differentiate into bone cells, comprising the following steps: i) selecting mesenchymal stem cells having adhesion from a mesenchymal stem cell source; and ii) step i. A) culturing the mesenchymal stem cells selected by the above) in the presence of a physical stimulus.
2 3 . 以下のステップを含む、 骨系細胞の調製方法、  23. A method for preparing bone cells, comprising the following steps:
i)間葉系幹細胞源より接着性を有する間葉系幹細胞を選択するステップ、 ii)ステップ i)により選択された間葉系幹細胞を物理的刺激の存在下で培養する ステップ、 及び  i) selecting a mesenchymal stem cell having adhesiveness from a mesenchymal stem cell source, ii) culturing the mesenchymal stem cell selected in step i) in the presence of a physical stimulus, and
iii) 骨系細胞への分化を誘導する条件下で培養するステップ。  iii) culturing under conditions that induce differentiation into bone cells.
2 . 間葉系幹細胞を骨系細胞へと分化誘導する際に物理的刺激の存在下で培養 する、 ことを特徴とする骨系細胞の調製方法。  2. A method for preparing bone cells, which comprises culturing mesenchymal stem cells in the presence of a physical stimulus when inducing differentiation into bone cells.
PCT/JP2001/007289 2000-08-28 2001-08-24 Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same WO2002017983A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001280164A AU2001280164A1 (en) 2000-08-28 2001-08-24 Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000258077 2000-08-28
JP2000-258077 2000-08-28
JP2001-154869 2001-05-24
JP2001154869 2001-05-24

Publications (1)

Publication Number Publication Date
WO2002017983A1 true WO2002017983A1 (en) 2002-03-07

Family

ID=26598636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007289 WO2002017983A1 (en) 2000-08-28 2001-08-24 Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same

Country Status (2)

Country Link
AU (1) AU2001280164A1 (en)
WO (1) WO2002017983A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006123579A1 (en) * 2005-05-17 2006-11-23 National University Corporation Nagoya University Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
US7497686B2 (en) 2004-09-02 2009-03-03 Odontis Ltd. Bone regeneration
WO2010064680A1 (en) * 2008-12-03 2010-06-10 国立大学法人東京大学 Method for producing granular cultured bone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345267A (en) * 1989-07-12 1991-02-26 Mitsubishi Materials Corp Filling material for bone-defective part and bone-vacant part
JPH07194373A (en) * 1993-12-30 1995-08-01 Nitta Gelatin Inc Method for culturing bone marrow cell, mixture for culturing the same cell and material for transplanting to defective part of hard tissue
WO1998017791A1 (en) * 1996-10-23 1998-04-30 Advanced Tissue Sciences, Inc. Production of cartilage tissue using cells isolated from wharton's jelly
WO1998022573A1 (en) * 1996-11-20 1998-05-28 Advanced Tissue Sciences, Inc. Application of shear flow stress to chondrocytes
JPH10243996A (en) * 1997-03-07 1998-09-14 Kagaku Gijutsu Shinko Jigyodan Vital material for promoting hard tissue calcification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345267A (en) * 1989-07-12 1991-02-26 Mitsubishi Materials Corp Filling material for bone-defective part and bone-vacant part
JPH07194373A (en) * 1993-12-30 1995-08-01 Nitta Gelatin Inc Method for culturing bone marrow cell, mixture for culturing the same cell and material for transplanting to defective part of hard tissue
WO1998017791A1 (en) * 1996-10-23 1998-04-30 Advanced Tissue Sciences, Inc. Production of cartilage tissue using cells isolated from wharton's jelly
WO1998022573A1 (en) * 1996-11-20 1998-05-28 Advanced Tissue Sciences, Inc. Application of shear flow stress to chondrocytes
JPH10243996A (en) * 1997-03-07 1998-09-14 Kagaku Gijutsu Shinko Jigyodan Vital material for promoting hard tissue calcification

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7497686B2 (en) 2004-09-02 2009-03-03 Odontis Ltd. Bone regeneration
WO2006123579A1 (en) * 2005-05-17 2006-11-23 National University Corporation Nagoya University Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
JPWO2006123579A1 (en) * 2005-05-17 2008-12-25 国立大学法人名古屋大学 Method for preparing cells for bone tissue formation and utilization of cells for bone tissue formation
WO2010064680A1 (en) * 2008-12-03 2010-06-10 国立大学法人東京大学 Method for producing granular cultured bone

Also Published As

Publication number Publication date
AU2001280164A1 (en) 2002-03-13

Similar Documents

Publication Publication Date Title
Tahmasebi et al. Current biocompatible materials in oral regeneration: a comprehensive overview of composite materials
JP5408578B2 (en) Composition for autologous or allogeneic transplantation using dental pulp stem cells and use thereof
Zippel et al. Biomaterials and mesenchymal stem cells for regenerative medicine
WO2002040071A1 (en) Compositions for forming bone or periodontium and injections for forming bone or periodontium
Zhao et al. Osteogenic media and rhBMP-2-induced differentiation of umbilical cord mesenchymal stem cells encapsulated in alginate microbeads and integrated in an injectable calcium phosphate-chitosan fibrous scaffold
CN101564553B (en) Humanization active forging bone and preparation method thereof
US8722404B2 (en) Sheet for guiding regeneration of mesenchymal tissue and production method thereof
EP1900809A1 (en) Method of preparing cell for bone tissue formation and application of cell for bone tissue formation
Yazdanian et al. Decellularized and biological scaffolds in dental and craniofacial tissue engineering: A comprehensive overview
Cheng et al. A novel animal model treated with tooth extraction to repair the full-thickness defects in the mandible of rabbits
CN112587729A (en) Bone repair material
US20190015551A1 (en) Construct for preventing immunological rejection generated when used in transplants, and method for using collagen in a gel state, in the form of dry lyophilised spongy mouldings and 3d matrices
Mouli et al. stem cells in dentistry-A review
Mauth et al. Restorative applications for dental pulp therapy
Nowicka et al. Tissue engineering application in regenerative endodontics
JPWO2005014070A1 (en) Bone regeneration method
WO2002017983A1 (en) Medicinal compositions for forming tissue around bone or tooth, process for preparing the same, injections for forming tissue around bone or tooth and process for preparing the same
CN112618798A (en) Preparation method of bone repair material
Keyhan et al. Tissue engineering applications in maxillofacial surgery
JP2006122518A (en) Composition for forming bone or periodontium
Xi et al. Reconstruction of caprine mandibular segmental defect by tissue engineered bone reinforced by titanium reticulum
RU2818176C1 (en) Method for producing tissue-engineered periosteum from cell spheroids for repairing bone defects in patients
RU2692452C1 (en) Method of jaw bone defects replacement
Stepanova The use of fibroblasts in periodontology and implantology
Kremmyda The role of stem cells in oral bone regeneration.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP