WO2002016095A1 - Planing cutter - Google Patents

Planing cutter Download PDF

Info

Publication number
WO2002016095A1
WO2002016095A1 PCT/SE2001/001775 SE0101775W WO0216095A1 WO 2002016095 A1 WO2002016095 A1 WO 2002016095A1 SE 0101775 W SE0101775 W SE 0101775W WO 0216095 A1 WO0216095 A1 WO 0216095A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting element
grooves
wall
recess
peg
Prior art date
Application number
PCT/SE2001/001775
Other languages
French (fr)
Inventor
Anders Engman
Original Assignee
Anders Engman
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anders Engman filed Critical Anders Engman
Priority to AU2001282768A priority Critical patent/AU2001282768A1/en
Priority to DE60117275T priority patent/DE60117275T2/en
Priority to JP2002521001A priority patent/JP4903348B2/en
Priority to CA002420223A priority patent/CA2420223C/en
Priority to US10/362,124 priority patent/US6926051B2/en
Priority to EP01961507A priority patent/EP1315603B1/en
Publication of WO2002016095A1 publication Critical patent/WO2002016095A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27GACCESSORY MACHINES OR APPARATUS FOR WORKING WOOD OR SIMILAR MATERIALS; TOOLS FOR WORKING WOOD OR SIMILAR MATERIALS; SAFETY DEVICES FOR WOOD WORKING MACHINES OR TOOLS
    • B27G13/00Cutter blocks; Other rotary cutting tools
    • B27G13/02Cutter blocks; Other rotary cutting tools in the shape of long arbors, i.e. cylinder cutting blocks
    • B27G13/04Securing the cutters by mechanical clamping means

Definitions

  • the present invention refers to a planing cutter for planing of wood as described in the introductory part of claim
  • the invention refers to a cutting element as described in the introductory part of claim 8.
  • a planing cutter In a planing machine of the kind using this kind of cutter, there are usually several cutter units, normally six, arranged for simultaneous planing of the upper, lower and lateral faces of a board.
  • a planing cutter should preferably have a relatively large number of seats with cutting elements.
  • a large number of cutting elements allows larger cutting capacity, better surface smoothness of the planed faces and lower noise level.
  • On a cutter with 160 mm diameter there are normally seats for six cutting elements. Clamping and locking of the elements is an important aspect here. Of course, it must be safe, it must be simple and it should have small peripheral dimension.
  • the number of cutting elements to be applied to a planing cutter is normally limited by the peripheral space needed for the clamping mechanism.
  • each cutting element is located in a recessed seat in the cutter and clamped against one of the walls of the recess.
  • Such a clamping constitutes a force defined connection, where the defining force is a frictional force.
  • the clamping it is previously known to supplement it with a shape de- fined connection.
  • EP 455 196 shows in figure 1 how a cutting element is clamped to a recess in the body of the cutter by a clamping wedge.
  • the cutting element is further locked by a peg located in one wall of the recess and penetrating through a hole in the element.
  • the cutting element is then not adjustable in the radial direction.
  • this type of clamping has the disadvantage of requiring providing of a hole through the cutting element, which reduces its strength and increases its cost of manufacture.
  • WO 94/07665 describes a clamping device with a positioning device for the cutting element.
  • One wall of the recess is furthermore provided with serrations matching serrations on one wall of the cutting element.
  • the cutting element can be radially relocated and placed in a new operative position where the serrations match again. Since this device requires that the wall of the recess as well as one side of the element are provided with serrations, it will be complicated and costly from a manufacturing viewpoint.
  • CA 2135146 describes a device where the cutting element is clamped by a tensioning element. Furthermore, one side of the cutting element is provided with a groove interacting with a groove in a support plate rigidly attached to the cutter body. The interaction is by means of a locking element protruding into the grooves of the cutting element as well as the support plate. This locks the cutter element to the recess by a shape connection.
  • the support plate has a number of grooves to let the locking element interact with an arbitrary groove of the support plate. In this way the radial position of the cutting element can be adjusted.
  • This device must also be regarded as complicated to manufacture, since the cutting element must be provided with a groove, and the support plat with a number of grooves.
  • the purpose of the present invention is to provide a planing cutter which in a simpler way than previously known will allow a stable and safe clamping of the cutting element, even at high rotational velocities, and which will permit adjustment of the radial position of the cutting element.
  • this purpose is achieved when a planing cutter of the kind described in the introductory part of claim 1 is provided with the special features described in the characterizing part of the claim.
  • a safe shape defined locking of the cutting element is achieved, capable of resisting high rotational velocities without noticeable outward displacement of the cutting element. Since the cutting element has a range of grooves at each lateral edge, the radial adjustment is easily achieved. Such grooves at the lateral edges of the cutting element can be easily provided by profile grinding. Provision of pegs at the wall of the recess is also easily achieved. According to the present invention stable clamping and radial adjustability can be combined in a simpler and less costly way than in prior art.
  • the peg or pegs protrude from the wall of the recess means that they may protrude directly from the wall. It should also be interpreted so that the pegs can protrude from a separate element rigidly connected to the wall, such as a plate adjoining and attached to the wall by screws.
  • two grooves within each range of grooves each interact with a peg protruding from the wall of the recess.
  • the provision of two pegs on each side provides improved stability and safety of the clamping.
  • the number of grooves interacting with pegs is less than the total number of grooves in the range. This is an efficient and simple way to facilitate radial adjustment of the cut- ting element.
  • each peg has a circular cross-section. This allows a simple mechanical design, optimal strength and simple removal from the wall.
  • each groove has a circular arc profile. This ensures good contact between groove and peg, to spread the force over a larger surface.
  • each peg is fastened to the wall by having its end portion inserted in a drilled hole in the wall.
  • the clamping device comprises a clamping element in contact with one face of the cutting element and covering both ranges of grooves. With such a clamping element the risk of loosening of the pegsjs eliminated.
  • a cutting element with the features of the characterizing part of claim 8.
  • Such a cutting element is suitable for use in a planing cutter according to the invention, and will provide advantages corresponding to what was mentioned above.
  • Figure 1 shows a radial section through a part of a planing cutter according to the invention.
  • Figure 2 is an axial section along the line ll-ll of figure 1.
  • Figure 3 is an enlarged section corresponding to figure 1 and shows the cutting element in a second position.
  • the cutter comprises a cutter body 1 arranged to rotate in the direction of arrow A when planing.
  • a number of recesses 3 in the example shown twelve such recesses.
  • In each recess is located one cutting element 7 and one clamping device 2.
  • the clamping device 2 comprises a wedge-shaped body 21 and a clamping screw 22. Their function will be further described below in connection with figure 3.
  • the wedge-shaped body keeps the cutting element 7 pressed against the front wall 4 of the recess, locking the element between the wedge-shape body 21 and the wall 4.
  • the cutting element is laterally limited by two lateral edges, and in each of those a range of grooves 14 is provided.
  • a range of grooves 14 is provided in the front wall 4 of the recess 3 .
  • holes 19,20 are provided in the front wall 4 of the recess 3 , and in each of those a peg 17,18 is located, protruding from the wall 4.
  • Each peg 17,18 interacts with one groove each 15,16 in the range of grooves.
  • FIG. 2 which is a section along the line ll-ll in figure 1 further explains the shape of the cutting element 7.
  • the figure shows the rear face 13 of the cutting element 7, the face oriented to the rear relative to the direction of rotation.
  • the cutting edge 8 At the upper part of the figure is the cutting edge 8 and in the bottom part the lower edge 9.
  • This figure clearly shows how each lateral edge 10,11 of the cutting element is provided with a range of grooves 14a, 14b.
  • the number of grooves may of course be different, and the profile may be otherwise.
  • the profile may be V-shaped for instance.
  • FIG 2 is also indicated the front wall 4 of the recess in the cutter body.
  • the recess is somewhat broader than the length of the cutting element 7, to let an outer part of the front wall 4 extend a few mm past each lateral edge 10,11.
  • the pegs are shown as cylindrical tubes.
  • the cutting element 7 is shown in figures 1 and 2 as new, without having been re-sharpened, and its lower edge is then close to the bottom of the recess.
  • One common size of a cutting element as in the example shown is 106 x 35 mm.
  • the grooves in the range of grooves 14a, 14b may have a radius of 1 mm.
  • the pegs 17a, 18a, 17b, 18b may then have a diameter of 2 mm and a total length of 10,3 mm.
  • the centre distance between adjacent pegs 17a, 18a on one side may be 4 mm.
  • FIG 3 which is similar to figure 1 but in enlarged scale the cutting element is shown in its radially outermost position, where the inner peg 18 inter- acts with the innermost groove.
  • a clamping element 21 covers the openings of the grooves at the rear face 13 of the cutting element.
  • the clamping element 21 has a width corresponding to the breadth of the recess.
  • the clamping element 21 is wedge-shaped and the recess3 also has a corresponding wedge shape section.
  • the clamping element is loosened or tightened with one or more clamping screws 22. By screwing them inward the clamping element 21 is pressed upward to contact against the rear wall 5 of the recess 3 and against the rear side 13 of the cutting element 7, thereby locking the cutting element 7 between the clamping element 21 and the front wall 4 of the recess.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Details Of Cutting Devices (AREA)
  • Milling, Drilling, And Turning Of Wood (AREA)
  • Knives (AREA)
  • Soil Working Implements (AREA)
  • Dovetailed Work, And Nailing Machines And Stapling Machines For Wood (AREA)
  • Handling Of Sheets (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Shearing Machines (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Harvester Elements (AREA)

Abstract

The invention is a planing cutter with a cylindrical cutter body (1) with recesses (3) along its enveloping surface. Each recess is delimited by a front wall (4) a rear wall (5) and a bottom (6) and contains a cutting element (7). Each cutting element (7) has a cutting edge (8), a lower edge (9), two lateral edges (10, 11), a front face (12) and a rear face (13). One clamping device (2) is also located in each recess. According to the invention each lateral edge (10, 11) of the cutting element (7) has a range (14) of grooves. At least one groove in each range interacts with a peg (17, 18) protruding from one of the walls (4, 5) of the recess (3). The invention also concerns a cutting element (7) for use with the cutter of the invention.

Description

PLANING CUTTER
In a first aspect, the present invention refers to a planing cutter for planing of wood as described in the introductory part of claim Un a second aspect, the invention refers to a cutting element as described in the introductory part of claim 8.
In a planing machine of the kind using this kind of cutter, there are usually several cutter units, normally six, arranged for simultaneous planing of the upper, lower and lateral faces of a board. A planing cutter should preferably have a relatively large number of seats with cutting elements. A large number of cutting elements allows larger cutting capacity, better surface smoothness of the planed faces and lower noise level. On a cutter with 160 mm diameter there are normally seats for six cutting elements. Clamping and locking of the elements is an important aspect here. Of course, it must be safe, it must be simple and it should have small peripheral dimension. The number of cutting elements to be applied to a planing cutter is normally limited by the peripheral space needed for the clamping mechanism.
It is especially desirable to allow high rotational velocity of the cutter, if possible to reach velocities around 10-12 000 rpm. At such velocities the stability and safety of the clamping has a decisive importance. When centrifugal forces are as great as in this velocity region, there is a tendency for the cutting elements of the cutter to move radially outward. The clamping must be such that this is prevented or at least reduced to an acceptable level even at such high velocities. The clamping position of the cutting elements should also be radially adjustable to al- low regrinding of the edges.
Conventionally, each cutting element is located in a recessed seat in the cutter and clamped against one of the walls of the recess. Such a clamping constitutes a force defined connection, where the defining force is a frictional force. To make the clamping safer, it is previously known to supplement it with a shape de- fined connection.
Examples of such clamping of the cutting elements to the body of a cutter are described in EP 455 196, WO 94/07665, DE 3701053 and CA 2135146.
EP 455 196 shows in figure 1 how a cutting element is clamped to a recess in the body of the cutter by a clamping wedge. The cutting element is further locked by a peg located in one wall of the recess and penetrating through a hole in the element. The cutting element is then not adjustable in the radial direction. Furthermore, this type of clamping has the disadvantage of requiring providing of a hole through the cutting element, which reduces its strength and increases its cost of manufacture.
WO 94/07665 describes a clamping device with a positioning device for the cutting element. One wall of the recess is furthermore provided with serrations matching serrations on one wall of the cutting element. The cutting element can be radially relocated and placed in a new operative position where the serrations match again. Since this device requires that the wall of the recess as well as one side of the element are provided with serrations, it will be complicated and costly from a manufacturing viewpoint.
DE 3701053 describes a device which in principle corresponds to the above, and also suffers from the same disadvantages. CA 2135146 describes a device where the cutting element is clamped by a tensioning element. Furthermore, one side of the cutting element is provided with a groove interacting with a groove in a support plate rigidly attached to the cutter body. The interaction is by means of a locking element protruding into the grooves of the cutting element as well as the support plate. This locks the cutter element to the recess by a shape connection. The support plate has a number of grooves to let the locking element interact with an arbitrary groove of the support plate. In this way the radial position of the cutting element can be adjusted. This device must also be regarded as complicated to manufacture, since the cutting element must be provided with a groove, and the support plat with a number of grooves.
In relation to this background, the purpose of the present invention is to provide a planing cutter which in a simpler way than previously known will allow a stable and safe clamping of the cutting element, even at high rotational velocities, and which will permit adjustment of the radial position of the cutting element. Ac- cording to the invention, this purpose is achieved when a planing cutter of the kind described in the introductory part of claim 1 is provided with the special features described in the characterizing part of the claim.
Due to interaction between a groove in the cutting element and a peg projecting from the wall of the recess, a safe shape defined locking of the cutting element is achieved, capable of resisting high rotational velocities without noticeable outward displacement of the cutting element. Since the cutting element has a range of grooves at each lateral edge, the radial adjustment is easily achieved. Such grooves at the lateral edges of the cutting element can be easily provided by profile grinding. Provision of pegs at the wall of the recess is also easily achieved. According to the present invention stable clamping and radial adjustability can be combined in a simpler and less costly way than in prior art.
The characterizing feature of claim 1 that the peg or pegs protrude from the wall of the recess means that they may protrude directly from the wall. It should also be interpreted so that the pegs can protrude from a separate element rigidly connected to the wall, such as a plate adjoining and attached to the wall by screws.
According to one preferred embodiment of the invention, two grooves within each range of grooves each interact with a peg protruding from the wall of the recess. The provision of two pegs on each side provides improved stability and safety of the clamping.
According to another preferred embodiment of the invention, the number of grooves interacting with pegs is less than the total number of grooves in the range. This is an efficient and simple way to facilitate radial adjustment of the cut- ting element.
According to another preferred embodiment each peg has a circular cross-section. This allows a simple mechanical design, optimal strength and simple removal from the wall.
According to another preferred embodiment each groove has a circular arc profile. This ensures good contact between groove and peg, to spread the force over a larger surface.
According to another preferred embodiment each peg is fastened to the wall by having its end portion inserted in a drilled hole in the wall. This makes attachment of the peg to the wall very simple. According to another preferred embodiment the clamping device comprises a clamping element in contact with one face of the cutting element and covering both ranges of grooves. With such a clamping element the risk of loosening of the pegsjs eliminated.
The preferred embodiments mentioned above are described in the claims dependent on claim 1.
The purpose stated can according to a second aspect of the invention be achieved with a cutting element with the features of the characterizing part of claim 8. Such a cutting element is suitable for use in a planing cutter according to the invention, and will provide advantages corresponding to what was mentioned above.
The invention will be further explained by the following detail description of a preferred embodiment of it with reference to the accompanying figures. Figure 1 shows a radial section through a part of a planing cutter according to the invention.
Figure 2 is an axial section along the line ll-ll of figure 1. Figure 3 is an enlarged section corresponding to figure 1 and shows the cutting element in a second position. In figure 1 is shown a radial section of a planing cutter according to the in- vention. The cutter comprises a cutter body 1 arranged to rotate in the direction of arrow A when planing. In the enveloping surface of the,body 1 is located a number of recesses 3, in the example shown twelve such recesses. In each recess is located one cutting element 7 and one clamping device 2. In front of each cutting element there is a chip-breaker 23 made as a arcuate ditch. The clamping device 2 comprises a wedge-shaped body 21 and a clamping screw 22. Their function will be further described below in connection with figure 3. The wedge-shaped body keeps the cutting element 7 pressed against the front wall 4 of the recess, locking the element between the wedge-shape body 21 and the wall 4.
The cutting element is laterally limited by two lateral edges, and in each of those a range of grooves 14 is provided. In the front wall 4 of the recess 3 are provided holes 19,20, and in each of those a peg 17,18 is located, protruding from the wall 4. Each peg 17,18 interacts with one groove each 15,16 in the range of grooves.
Figure 2 which is a section along the line ll-ll in figure 1 further explains the shape of the cutting element 7. The figure shows the rear face 13 of the cutting element 7, the face oriented to the rear relative to the direction of rotation. At the upper part of the figure is the cutting edge 8 and in the bottom part the lower edge 9. This figure clearly shows how each lateral edge 10,11 of the cutting element is provided with a range of grooves 14a, 14b. In the example shown there are twelve such grooves located at each lateral edge, each with a semicircular profile. The number of grooves may of course be different, and the profile may be otherwise. The profile may be V-shaped for instance.
In figure 2 is also indicated the front wall 4 of the recess in the cutter body. As shown the recess is somewhat broader than the length of the cutting element 7, to let an outer part of the front wall 4 extend a few mm past each lateral edge 10,11. From the wall 4 the two pegs 17a, 18a, 17b, 18b extend at each lateral edge at right angle to the plane of the figure. The pegs are shown as cylindrical tubes. By these pegs 17a, 18a, 17b, 18b interacting with the corresponding grooves the cutting element is locked without possibility to move.
The cutting element 7 is shown in figures 1 and 2 as new, without having been re-sharpened, and its lower edge is then close to the bottom of the recess. One common size of a cutting element as in the example shown is 106 x 35 mm. The grooves in the range of grooves 14a, 14b may have a radius of 1 mm. The pegs 17a, 18a, 17b, 18b may then have a diameter of 2 mm and a total length of 10,3 mm. The centre distance between adjacent pegs 17a, 18a on one side may be 4 mm.
In figure 3 which is similar to figure 1 but in enlarged scale the cutting element is shown in its radially outermost position, where the inner peg 18 inter- acts with the innermost groove. This figure shows that a clamping element 21 covers the openings of the grooves at the rear face 13 of the cutting element. The clamping element 21 has a width corresponding to the breadth of the recess. The clamping element 21 is wedge-shaped and the recess3 also has a corresponding wedge shape section. The clamping element is loosened or tightened with one or more clamping screws 22. By screwing them inward the clamping element 21 is pressed upward to contact against the rear wall 5 of the recess 3 and against the rear side 13 of the cutting element 7, thereby locking the cutting element 7 between the clamping element 21 and the front wall 4 of the recess.
When a new cutting element as shown in figures 1 and 2 becomes worn and blunt, the cutting element is released by loosening the clamping screws 22. The clamping element 21 can the be moved down into the recess where it becomes loose and can be pulled out axially from the cutter. The cutting element 7 can then be removed from the position shown in figure 1 to be re-sharpened. The cutting element is then ground off an amount corresponding to the centre distance between two grooves. The cutting element is then replaced between the pegs, but now radially displaced so far that each peg interacts with a groove located radially nearest below the groove it formerly interacted with. After replacing and re-ten- sioning of the clamping element 21 , the cutter is again ready for planing. Re-sharpening and adjusting can be made several times until finally the innermost of the grooves is used for interaction with a peg as shown in figure 3.
It should be obvious that all dimensions mentioned above are only to be interpreted as examples.

Claims

PATENT CLAIMS
1. Planing cutter comprising a cylindrical cutter body (1) with recesses (3) provided at its enveloping surface, said recesses (3) delimited by a front wall (4), a rear wall (5) and a bottom (6), each recess containing a cutting element (7) with a cutting edge (8), a lower edge (9), two lateral edges (10,11), a front face (12) and a rear side (13), said recess (3) also containing a clamping device (2), characterized by each lateral edge of the cutting element having a range (14) of grooves, and at least one groove (15) in each range interacting with a peg (17,18) project- ing from one wall (4,5) of the recess (3), and by the number of grooves (15,16) in each range interacting with a peg (17,18) being less than the total number of grooves in the range (14).
2. Planing cutter according to claim 1 , characterized by two grooves (15,16) in each range interacting with each one peg (17,18) projecting from the wall.
3. Planing cutter according to any of claims 1 - 2, characterized by each peg (17,18) having a circular section.
4. Planing cutter according to any of claims 1 - 3, characterized by each groove (14) having a circular arc section.
5. Planing cutter according to any of claims 1 - 4, characterized by each peg (17,18) being attached to the wall (4) by having one end portion inserted in a hole (19,20) drilled in the wall.
6. Planing cutter according to any of claims 1 - 5, characterized by the clamping device (2) comprising a clamping element (21) in contact with one face (13) of the cutting element (7) and covering both ranges of grooves (14).
PCT/SE2001/001775 2000-08-21 2001-08-20 Planing cutter WO2002016095A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2001282768A AU2001282768A1 (en) 2000-08-21 2001-08-20 Planing cutter
DE60117275T DE60117275T2 (en) 2000-08-21 2001-08-20 PLANE BLADE HEAD
JP2002521001A JP4903348B2 (en) 2000-08-21 2001-08-20 Planar cutter
CA002420223A CA2420223C (en) 2000-08-21 2001-08-20 Planing cutter
US10/362,124 US6926051B2 (en) 2000-08-21 2001-08-20 Planing cutter
EP01961507A EP1315603B1 (en) 2000-08-21 2001-08-20 Planing cutter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0002961-1 2000-08-21
SE0002961A SE517196C2 (en) 2000-08-21 2000-08-21 cutterblock

Publications (1)

Publication Number Publication Date
WO2002016095A1 true WO2002016095A1 (en) 2002-02-28

Family

ID=20280744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2001/001775 WO2002016095A1 (en) 2000-08-21 2001-08-20 Planing cutter

Country Status (8)

Country Link
EP (1) EP1315603B1 (en)
JP (1) JP4903348B2 (en)
AT (1) ATE317752T1 (en)
AU (1) AU2001282768A1 (en)
CA (1) CA2420223C (en)
DE (1) DE60117275T2 (en)
SE (1) SE517196C2 (en)
WO (1) WO2002016095A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757416A1 (en) * 2005-08-25 2007-02-28 Erhophal Maschinenmesser GmbH Attachment device for planing cutter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2703610A1 (en) * 1993-04-06 1994-10-14 Aob Cutting tip and tool equipped with such tips
DE9415111U1 (en) * 1994-06-20 1994-12-08 TIGRA Hartstoff GmbH, 86405 Meitingen Device for the detachable mounting of hard metal cutting inserts on cutter heads
DE19818625A1 (en) * 1998-04-25 1999-10-28 Utensilea S A S Knife holding device in knife heads for woodworking

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110434A (en) * 1997-06-24 1999-01-19 Mitsubishi Materials Corp Throw-away type rotary cutting tool
SE514591C2 (en) * 1997-10-15 2001-03-19 Sandvik Ab Milling Tools

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2703610A1 (en) * 1993-04-06 1994-10-14 Aob Cutting tip and tool equipped with such tips
DE9415111U1 (en) * 1994-06-20 1994-12-08 TIGRA Hartstoff GmbH, 86405 Meitingen Device for the detachable mounting of hard metal cutting inserts on cutter heads
DE19818625A1 (en) * 1998-04-25 1999-10-28 Utensilea S A S Knife holding device in knife heads for woodworking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757416A1 (en) * 2005-08-25 2007-02-28 Erhophal Maschinenmesser GmbH Attachment device for planing cutter

Also Published As

Publication number Publication date
EP1315603A1 (en) 2003-06-04
SE0002961D0 (en) 2000-08-21
CA2420223A1 (en) 2002-02-28
SE0002961L (en) 2002-02-22
DE60117275T2 (en) 2006-10-12
ATE317752T1 (en) 2006-03-15
SE517196C2 (en) 2002-05-07
JP2004506544A (en) 2004-03-04
EP1315603B1 (en) 2006-02-15
DE60117275D1 (en) 2006-04-20
CA2420223C (en) 2009-11-10
JP4903348B2 (en) 2012-03-28
AU2001282768A1 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
KR100884179B1 (en) Rotary slot milling cutter and cutting insert therefor
EP0878260B1 (en) Tool for grooving and parting
US5658101A (en) Milling head
CA1289741C (en) Cutter head
US5800079A (en) Milling tool having insert-carrying cartridges secured by wedges
CA2085301C (en) Milling cutter
RU2111093C1 (en) Milling head
EP0781184B1 (en) Drilling tool
RU2412025C2 (en) Cutter with strain reduction device
EP0997218B1 (en) Rotating cutting tool with a cutting insert
US4754789A (en) Three-edged woodworking tool for a woodworking machine
JP2005517539A (en) Rotary cutting tool with replaceable cutting edge insert
CA2208169A1 (en) Round bar blade and cutter head
US10434582B2 (en) Tool coupling between two coupling parts, and coupling part for such a tool coupling
GB2117295A (en) Milling cutter
KR100259549B1 (en) Multi-handed milling cutter having indexable wedges and inserts
CA1304925C (en) Cutting tool bit support
US4932813A (en) Milling tool and a cassette
US6926051B2 (en) Planing cutter
EP1315603B1 (en) Planing cutter
IL164538A (en) Cutting tool
US5957628A (en) Face milling cutter or angular milling cutter
AU683180B2 (en) Wood lathe tooling
US20090290944A1 (en) Cartridge assembly for cutting tool
US4696434A (en) Cutter head for meat cutter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002521001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10362124

Country of ref document: US

Ref document number: 2420223

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001961507

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001961507

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001961507

Country of ref document: EP