WO2002014750A1 - Dispositif de conditionnement d'air a liquide de type geothermique - Google Patents

Dispositif de conditionnement d'air a liquide de type geothermique Download PDF

Info

Publication number
WO2002014750A1
WO2002014750A1 PCT/CN2001/000062 CN0100062W WO0214750A1 WO 2002014750 A1 WO2002014750 A1 WO 2002014750A1 CN 0100062 W CN0100062 W CN 0100062W WO 0214750 A1 WO0214750 A1 WO 0214750A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
geothermal
air conditioner
pipe
liquid
Prior art date
Application number
PCT/CN2001/000062
Other languages
English (en)
French (fr)
Inventor
Shengheng Xu
Original Assignee
Shengheng Xu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengheng Xu filed Critical Shengheng Xu
Priority to US10/333,528 priority Critical patent/US6772605B2/en
Priority to KR1020037001221A priority patent/KR100571973B1/ko
Priority to EP01903568A priority patent/EP1310745B1/en
Priority to NZ523499A priority patent/NZ523499A/en
Priority to DE60136821T priority patent/DE60136821D1/de
Priority to AU2001231479A priority patent/AU2001231479A1/en
Publication of WO2002014750A1 publication Critical patent/WO2002014750A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/021Compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present invention relates to a heat exchange system for a fixed tubular channel assembly for two heat exchange media. Background technique
  • the heating system people use mainly uses coal, natural gas or crude oil as energy.
  • Coal, natural gas and crude oil not only have limited reserves, but also generate a lot of ash, dust or waste gas after combustion, which not only pollutes the environment, but also changes the nature of the atmosphere, causing the greenhouse effect, warming the earth, melting icebergs, rising sea levels...
  • the refrigeration equipment used is based on electric energy.
  • the electric energy is not only expensive, but also a part of the electric energy is taken from fuels such as coal, natural gas or crude oil. It also has problems such as polluting the environment and changing the nature of the atmosphere.
  • underground, rivers, rivers, lakes, and seawater store a large number of low-level cold and heat sources, they cannot be directly used for heating or cooling. Summary of the invention
  • the geothermal liquid air conditioner of the present invention comprises a geothermal heat collector, a heat exchanger, an energy booster, an outlet pump, a liquid return pump, an air conditioner placed underground, and a set of the geothermal collector is arranged on the liquid outlet tube.
  • the energy booster comprising a compressor, a condenser, a liquid reservoir, a drying filter, a throttle, an evaporator, and a gas liquid a heating circuit and a heat exchange circuit formed by sequentially connecting the separators through a pipeline, wherein the outlet pipe of the heat exchange circuit coupled with the condenser in the heat exchange circuit passes through the air inlet pipe and the outlet pump of the air conditioner
  • the air conditioner is connected, the liquid return pipe of the air conditioner is connected to the liquid inlet pipe of the heat exchange circuit coupled with the condenser, and the liquid discharge pipe of the heat exchange circuit coupled with the evaporator is passed through the liquid return pump and A liquid return pipe on the output side of the heat exchanger is connected, and an outlet pipe on the output side of the heat exchanger is connected to a liquid inlet pipe of a heat exchange circuit coupled to the evaporator.
  • the geothermal liquid air conditioner of the present invention further comprises two two-position four-way valves, and an outlet pipe of the heat exchange circuit coupled with the condenser is connected to the first interface of the first two-position four-way valve, and the The liquid pipe is connected to the first interface of the second two-position four-way valve; the liquid inlet pipe of the air conditioner is connected to the second interface of the first two-position four-way valve, the liquid return pipe of the air conditioner and the second two-position four-way valve
  • the fourth interface is connected; the liquid discharge pipe of the heat exchange circuit coupled with the evaporator is connected to the third interface of the first two-position four-way valve, and the liquid inlet pipe and the second two-position four-way ceramic
  • the third interface is connected; the output side inlet pipe of the heat exchanger is connected to the fourth interface of the first two-position four-way valve, and the outlet pipe is connected to the second interface of the second two-position four-way valve.
  • the geothermal liquid air conditioner of the present invention further includes a solar collector, the solar collector comprising a solar water heater, a solar energy storage device, and a circulating water pump, which are sequentially connected in series by a pipeline, wherein the solar energy storage An inlet and an outlet valve and an outlet node valve are disposed on the inlet and outlet of the energy device, wherein the solar energy storage device is provided with a heat exchanger, and the inlet and outlet pipes of the heat exchanger are connected to the heat exchanger On the outlet pipe of the output side, the inlet pipe is provided with a heat exchanger inlet stop valve.
  • the geothermal liquid air conditioner of the present invention wherein the solar water heater is connected with a tap water inlet pipe and a domestic hot water outlet pipe, and a tap water pipe check valve and a living heat are respectively installed on the tap water inlet pipe and the domestic hot water outlet pipe; Water outlet pipe stop valve.
  • the geothermal liquid air conditioner of the present invention further includes an electric water heater, wherein the electric water heater is provided with a transducer, and the inlet and outlet pipes of the transducer are connected to the outlet of the heat exchanger.
  • a transducer inlet stop valve is mounted on the inlet line of the transducer.
  • the geothermal liquid air conditioner of the present invention wherein the electric water heater is provided with a waste heat heater, and the inlet and outlet pipes of the waste heat heater are connected to the inlet pipe of the heat exchange circuit coupled with the evaporator And a residual heat heater stop valve is installed on the inlet pipe or the outlet pipe of the waste heat heater.
  • the geothermal liquid air conditioner of the present invention wherein the geothermal heat collector is a geothermal accumulator, and the geothermal accumulator comprises an energy storage body, and a plurality of layers stacked in the energy storage body are filled with phase change substances.
  • a liquid inlet is arranged between the upper walls of the body, and a liquid outlet is arranged between the support plate and the lower wall of the energy storage body, and both ends of each of the energy storage cylinders have shoulders forming a liquid flow gap between the energy storage cylinders.
  • the outer wall of the energy storage body is provided with a plurality of fins.
  • the fins are arranged in a shape of a rice.
  • the geothermal heat collector is a geothermal heat collecting pipe system in which a plurality of heat collecting pipe groups are connected in series, and each of the geothermal heat collecting pipe groups is composed of a plurality of tandem heat collecting pipes, each An outer heat exchange tube coaxially mounted together, an energy storage cylinder located in the outer heat exchange cylinder, an outlet pipe located in the energy storage cylinder and a top connected to the outer heat exchange cylinder The composition of the inlet tube.
  • geothermal liquid air conditioner of the present invention wherein the geothermal heat collecting tube is composed of a three-stage heat collecting tube group, wherein an outer heat exchange tube of the first heat collecting tube group has a length of 6 meters, and an outer heat exchange tube of the second heat collecting tube group a length of 4 m, a length of the heat transfer tube of the heat pipe third set of groups is 2 m.
  • the outer heat exchange cylinder has an outer diameter of 10 0 mm, the outer diameter of the accumulator cylinder is 80 mm, and the outer diameter of the water outlet pipe is 25 mm. .
  • geothermal liquid air conditioner of the present invention wherein the heat exchange circuit is filled with an antifreeze liquid.
  • the geothermal liquid air conditioner of the invention can utilize the characteristics of small temperature changes in the underground all year round, collect and store a large number of low-level underground cold heat sources in the underground, and collect the geothermal heat through the liquid.
  • the low heat of the device can be transferred to the energy booster, and then the elevated high heat energy can be transferred to the hot and cold demand (ie, load) through the liquid.
  • the device collects low-level thermal energy (including latent heat generated during sensible heat and phase change) from the ground, and returns the heat to the ground in the summer. Therefore, it is the best benign circulation device taken from the underground and returned to the underground. It does not produce any toxic or hazardous substances, is pollution-free, pollution-free, and is inexpensive.
  • FIG. 1 is a schematic structural view of a system of a geothermal liquid air conditioner according to the present invention
  • FIG. 2 is a schematic structural view of a geothermal accumulator used in the geothermal liquid air conditioner of the present invention
  • Figure 3 is a cross-sectional view taken along line A - A of Figure 2;
  • Figure 4 is a schematic view showing the arrangement of the rich cylinder of the geothermal accumulator of Figure 2;
  • Figure 5 is a schematic structural view of a heat collecting tube used in the geothermal liquid air conditioner of the present invention.
  • Fig. 6 is a schematic view showing the structure of a geothermal heat collector composed of three sets of heat collecting tubes used in the geothermal liquid air conditioner of the present invention.
  • Fig. 1 is a schematic view showing the structure of a geothermal liquid air conditioner unit of the present invention.
  • the geothermal liquid air conditioner of the present invention comprises a geothermal heat collector 1, a heat exchanger 2, an energy riser 3, an outlet pump 4, a liquid return pump 5, and an air conditioner 6, which will be described in detail below.
  • the liquid discharge pipe 1 of the geothermal heat collector 1 is equipped with a collector discharge pump 1 2 to increase the liquid flow speed in the heat collector 1 and improve the heat exchange efficiency.
  • the heat exchanger 2 can be connected to a conventional plate heat exchanger, and the liquid discharge pipe 1 of the heat collector 1 is connected to the input side 2a of the heat exchanger 2.
  • the energy riser 3 includes a heating circuit 30 and a heat exchange circuit 3 8, and the heating circuit 30 is the same as the heating (cold) circuit used in ordinary air conditioners and refrigerators.
  • the heating circuit 30 is filled with a medium for the heating cycle R 2
  • the energy riser 3 comprises a compressor 3 1 , a condenser 3 2 , a reservoir 3 3 , a drying filter 34, a throttle 35, an evaporator 36 and a gas-liquid separator 37 connected in series by pipes.
  • the outlet pipe 3 2 a of the heat exchange circuit coupled with the condenser 32 in the heat exchange circuit 38 is connected to the first port 8 a of the first 2/2-way valve 8;
  • the inlet pipe 3 2 b of the condenser 3 2 coupled heat exchange circuit is connected to the first interface 9 a of the second two-position wide 9 , and the heat coupled to the evaporator 36 in the heat exchange circuit 38
  • the air conditioner 6 can adopt a common fan coil unit.
  • the liquid inlet pipe 10 of the air conditioner 6 is connected to the second port 8 b of the first two-position four-way valve 8 via the liquid discharge pump 4; the liquid return pipe 1 0 3 of the air conditioner 6 and the second two-position four-way valve
  • the fourth interface 9 of 9 is connected.
  • An expansion tank 1 0 3 a is installed in the liquid return pipe 10 of the air conditioner 6, and the function of the expansion tank 1 0 3 a is to store the volume of the liquid which is increased by the thermal expansion of the liquid in the heat exchange circuit 38.
  • the inlet pipe 2 2 b of the output side 2 b of the heat exchanger 2 is connected to the fourth port 8 d of the first 2/2-way valve 8 via a liquid return pump 5; the output side 2 b of the heat exchanger 2
  • the liquid pipe 2 2 a is connected to the second port 9 b of the second two-position four-way valve 9 via a throttle valve 2 2 c mounted on the discharge pipe 2 2 a .
  • the purpose of the above two two-position four-way valves is to make the geothermal liquid air conditioner of the present invention suitable for use in the winter and summer seasons. If it is only used for heating in winter, the two-position four-way valve may not be installed.
  • the outlet pipe 3 2 a of the heat exchange circuit coupled with the condenser 32 in the heat exchange circuit 38 can be directly connected to the inlet pipe 1 0 2 of the air conditioner 6 via the outlet pump 4;
  • each of the two-position four-way valves can be replaced by four common stop valves as shown in the figure.
  • the solar collector 7 can be installed on the geothermal liquid air conditioner of the present invention.
  • the solar collector can provide an auxiliary heat source for the geothermal collector 1 and provide domestic hot water for the residents.
  • Solar collector 7 by solar water heater 7 1, solar energy accumulator 7 2, circulating water pump 7 3 is connected by pipeline.
  • An inlet stop valve 74 and an outlet throttle valve 7 5 are installed in the inlet and outlet lines of the solar energy accumulator 72.
  • a heat exchanger 76 is installed in the solar energy accumulator 72.
  • the inlet and outlet lines 7 6 1 and 7 6 2 of the heat exchanger 76 are connected to the outlet pipe 2 2 a of the output side 2 b of the heat exchanger 2.
  • a heat exchanger inlet stop valve 7 6 3 is installed on the inlet line 716, and the heat exchanger 76 can be connected to the outlet pipe 2 2 a as an auxiliary heat source depending on weather conditions.
  • a tap water cold water inlet pipe 7 7 and a domestic hot water outlet pipe 7 8 are connected to the solar water heater 7 1 , and a water pipe stop valve 7 7 1 and a domestic hot water outlet pipe stop valve 7 8 1 are respectively installed on the top.
  • the electric heater 8 can be added to the geothermal liquid air conditioner of the present invention as an auxiliary energy source.
  • the electric water heater 8 is equipped with a transducer 8 1 , and the transducer 8 1 can also adopt a plate heat exchanger structure.
  • the inlet and outlet pipes 8 1 1 , 8 1 2 of the transducer 8 1 are connected to the heat exchanger 2 On the output side 2 b of the outlet tube 2 2 a.
  • a transducer inlet stop valve 8 1 3 is mounted on the inlet line 8 1 1 of the transducer 8 1 .
  • the outlet pipe check valve 2 2 c can also be closed.
  • the electric heater can be used to heat the domestic hot water.
  • the electric heater 8 is equipped with a tap water inlet pipe 8 3 and a domestic hot water outlet pipe 8 4. Also in the electric water heater 8 can be equipped with a residual heat heater 8 2 .
  • the function of the residual heat heater 8 2 is to use the waste heat of the geothermal liquid air conditioner of the present invention to heat the water in the electric water heater in the winter and summer, to achieve the purpose of saving electricity and providing domestic hot water, and the inlet pipe 8 of the waste heat heater 8 2 2 1 is equipped with a stop valve 8 2 3, when the residual heat heater 8 2 is not used, the knot can be closed 8 2 1 ⁇
  • FIG. 1 are schematic views showing the structure of a geothermal accumulator used in the geothermal liquid air conditioner of the present invention.
  • the accumulator can be made in a cylindrical manner, which comprises an energy storage body 1 1 , an energy storage cylinder filled with phase change substances such as water, glycerin, brine or ethanol, which are placed in an alternating manner in the energy storage body 11 . 1 2, an upper equalizing plate 13 having a uniform through hole placed on the upper storage tank and a support plate 14 having a uniform bore under the lower storage tank, and the upper flow plate A liquid inlet 15 is provided between the upper wall of the energy storage body 1 1 and a liquid outlet 16 is formed between the support plate 14 and the lower wall of the energy storage body 1 1 .
  • the outer wall of the energy storage body 1 1 is provided with a plurality of heat dissipating fins 8 in a shape of a mica (see Fig. 2). Both ends of each of the accumulator tubes 12 have shoulders 17 which form a liquid flow gap between the accumulator tubes, wherein the accumulator tubes 12 can be made of high-strength, corrosion-resistant plastic.
  • the shoulders 1 7 create a gap between the accumulator tubes 12 to ensure that liquid flows around the accumulator (see Figure 4).
  • the liquid transfers energy to the accumulator tube for storage during the flow. When the liquid requires energy, it flows around the accumulator through the liquid, and the accumulator transfers the energy to the liquid. , 'There is the purpose of storing and releasing energy to the accumulator.
  • the accumulator is placed underground, because the underground is a constant temperature zone with little temperature change. It is also known as the warm winter and summer cool belt.
  • the accumulator is placed underground, in addition to the heat exchange between the flowing liquid and the accumulator in the accumulator, it also has an accumulator and a ground. Heat exchange under the constant temperature zone. In the summer, the cold is passed to the accumulator, and in the winter the heat is transferred to the accumulator.
  • phase change energy storage Another important feature of accumulators is phase change energy storage.
  • the phase transition temperature of water is 0 ° C.
  • the temperature of lm 3 water is increased or decreased by 1 °C, and energy lk W h/°Cm 3 is required .
  • the energy required for ice is 4 8.
  • 4 kwh/ra 3 that is, when the phase change occurs at 0 °C, the energy provided by 1 m 3 of water is 4 8 . 4 kwh/m
  • the accumulator buried underground in winter is basically the same as the underground temperature 1 (re. Now calculate the energy stored in the accumulator.
  • the flowing liquid in the accumulator is lm 3
  • the liquid in the accumulator is 2m 3
  • the liquid volume 2 + l 3m 3.
  • the kinetic energy reduced to 0 °C is 3m 3
  • the energy storage in the storage tank is 2 m 3 when the phase change occurs.
  • X 4 8. 4 kwh/m 3 9 6. 8 kwh.
  • Accumulator total energy storage 3 0 + 9 6. 8 1 2 6. 8 kwh.
  • the energy time available for the accumulator is: 1 2 6. 8kwh/
  • the underground temperature in summer is 15 °C
  • the outdoor heat dissipation temperature of the air conditioner is 50 °C
  • geothermal accumulators are suitable for buildings with scattered living space and large space.
  • FIG. 5 is a structural schematic view of a geothermal heat collecting tube used in the geothermal liquid air conditioner of the present invention.
  • the figure shows the structure of two geothermal heat collecting tubes 1 0 0 and 1 0 0 ' in series.
  • the heat collecting pipe 100 is installed by the coaxial heat exchanger tube 10, which is coaxially mounted together, and the energy storage cylinder 1 0 2 located in the outer heat exchange cylinder 1 0 1 is located at the storage tube.
  • the outlet pipe 1 0 3 in the cylinder 1 0 2 and the inlet pipe 1 0 4 connected to the top of the outer heat exchange cylinder 1 0 1 are composed.
  • Accumulator tube 1 0 2 can be used with several fixing pieces (not shown) welded to the outer heat exchange tube 1
  • the outlet pipe 1 0 3 can be directly welded to the upper and lower walls of the energy storage cylinder 102.
  • the outlet pipe 1 0 3 of the geothermal heat collecting pipe 100 is connected to the inlet pipe 1 0 4 ' of the geothermal heat collecting pipe 100, and the geothermal collecting pipe 1 0 0, the outlet pipe 1 Q 3 ' can be combined with A liquid inlet pipe of a geothermal heat collecting pipe (not shown) is connected, so that a plurality of geothermal heat collecting pipes can be connected in series as a group of heat collecting tubes as needed.
  • Fig. 6 is a schematic view showing the structure of a geothermal heat collector constructed by connecting three sets of heat collecting tubes in series in the geothermal liquid air conditioner of the present invention.
  • the geothermal heat collecting tube group is 100 G, assuming that it consists of 8 geothermal heat collecting tubes (see Figure 1), each geothermal heat collecting tube has a length of 6 m; the second geothermal heat collecting tube group has a hypothesis of 2 0 0 G.
  • the composition of two geothermal heat collecting tubes see Figure 1
  • the length of each geothermal heat collecting tube is 4 m
  • the third geothermal heat collecting tube group is assumed to be
  • each geothermal heat collecting tube has a length of 2 m.
  • the outlet pipes of the last set of heat collecting tubes are connected to the total outlet pipes 1 1 of the geothermal collector.
  • a throttle valve 13 is installed in front of the discharge pump 1 2
  • a throttle valve 1 4 is installed behind the discharge pump 1 2 in order to repair and replace the discharge pump 1 2 use.
  • the geothermal heat collecting tubes 1 0 0 G, 2 0 0 G and 300 0 G are vertically buried in the 10 deep underground to extract the heat from the soil from low to high, and finally reach the temperature we need.
  • the water of 7 ⁇ is raised to 8 ⁇ through the first heat collecting tube group 100 G, and the water temperature is raised to 10 V through the second heat collecting tube group 200 G.
  • the third set of heat pipe sets 300 G increased the water temperature to 12 °C.
  • the water at 1 2 °C passes through the heat exchanger 2 to transfer heat to the output side 2 b of the heat exchanger. After rushing to 7 °C, it is reflowed to the first heat collecting tube group 1 Q 0 G, and then heated again by the second and third heat collecting tubes 2 0 0 G, 300 ° G, and thus circulated.
  • the outer diameter of the outer tube of the geothermal heat collecting tube 1 0 1 can be, for example, 1 0 0 ram, the outer diameter of the energy storage tube 1 0 2 can be selected as 80 ram, and the outer diameter of the outlet pipe 1 0 3 can be selected as 2 5 legs.
  • the left side of Figure 6 shows the relationship between the temperature and the depth below the formation.
  • the advantage of the geothermal heat collecting tube is that it is small in size and visible in the seam pin, which is suitable for use in places under densely populated space.
  • an antifreeze liquid can be used as a working medium in the heat exchange circuit and the geothermal collector.
  • the helium water is sent to the input side 2 a of the heat exchanger 2, and the heat is transferred to the heat exchanger output side 2 b through the heat exchanger 2.
  • the water of the 1 1 ⁇ in the output side 2 b is 2 2 c wide, and the second 2/2-way valve 9 and the pipes 8 2 1 and 3 6 b are fed into the heat exchange circuit 3 coupled with the evaporator 36.
  • Heat exchange takes place in the evaporator 36 to transfer heat to the evaporator 36.
  • the heat-exchanged liquid flows back to the heat exchanger 2 through the liquid outlet pipe 3 6 a, the first two-position four-way valve 8, the liquid return pump 5, and the liquid return pipe 2 2 b of the heat exchanger 2.
  • the working fluid R 2 2 in the evaporator 36 is converted into a low-temperature low-pressure gas into the separator 3 7 by the action of the evaporator 36, and is sent to the gas-liquid separator 37 by gas-liquid separation.
  • the low pressure low temperature gas is converted into high temperature and high pressure gas by the compressor and sent to the condenser 32.
  • the condenser 3 2 the high temperature and high pressure gas sent from the compressor 3 1 and the heat exchange circuit 3 coupled with the condenser 3 2
  • the working medium in 8 is subjected to heat exchange. After the heat exchange, the heated liquid working medium passes through the outlet pipe 3 2 a, the first two-position four-way valve 8, the outlet pump 4 and the inlet pipe of the air conditioner 6 2 Flow into the air conditioner to heat the indoor air.
  • the liquid working medium after being dissipated by the air conditioner passes through the liquid return pipe 1 0 3 of the air conditioner, the second 2/2-way valve 9 , and the inlet pipe 3 2 b flows back to the heat exchange circuit 3 coupled with the condenser 3 2 8, complete the work cycle.
  • the first two-position four-way valve 8 and the second two-position four-way valve 9 in the figure should be reversed.
  • the blackened flow passages of the first and second two-position four-way valves are exchanged with the blank flow passages, and the opening and closing portions are exactly opposite to the portions shown in the figure.
  • the first two-position four-way valve 8 is connected to the outlet pipe 3 6 a of the heat exchange circuit 38 coupled to the evaporator 36 and the inlet pipe 1 0 2 of the air conditioner, and is connected to the condenser 3
  • the two-phase coupled heat exchange circuit 38 has a liquid outlet pipe 3 2 a and a heat exchanger 2 liquid return pipe 2 2 b ; at the same time, the second two-position four-way ceramic 9 is connected to the heat coupled with the evaporator 36 Switching loop
  • the liquid discharge pipe 2 2 a connects the low temperature working medium in the heat exchange circuit 38 coupled with the evaporator 36 to the air conditioner, thereby providing cold air to the room.
  • the geothermal liquid air conditioner of the present invention generally operates in an intermittent manner, for example, one hour of operation, two hours of stopping, or half an hour of operation, and one hour of stopping, so that the geothermal collector stores sufficient energy. Jl industry practicality
  • the geothermal liquid air conditioner of the present invention receives a large number of low-level underground cold heat sources in the ground for use in geothermal heat collectors.
  • the set is stored, and the low-level cold heat energy of the geothermal collector is sent to the energy booster through the liquid, and then the elevated high-level cold heat energy is transferred to the hot and cold demand through the liquid.
  • It does not produce any toxic or hazardous substances, is pollution-free, pollution-free, and is inexpensive. It can be used for indoor heating or cooling in buildings, and it can also be used to provide domestic water.

Description

地热式液体空调装置 技术领域
本发明涉及一种用于两种热交换介质的固定管状通道组件的热交换系统。 背景技术
目前, 人们使用的供热系统主要以煤、 天然气或原油作能源。 煤、 天然气和原油不 仅储量有限, 而且燃烧后产生大量灰渣、 粉尘或废气, 不仅污染环境, 而且会改变大气 的性质, 造成温室效应, 使地球变暖, 冰山融化, 海平面上升……人们使用的致冷设备 是以电能作为能源, 电能不仅价格贵, 而且一部分电能也是取自煤、 天然气或原油等燃 料, 同样存在污染环境, 改变大气性质等问题。 地下、 江、 河、 湖、 海水中虽储存有大 量的低位冷热源, 但不能直接用来采暖或致冷。 发明内容
本发明的目的在于提供一种利用地热作能源的无污染的地热式液体空调装置。
本发明地热式液体空调装置, 包括置于地下的地热集热器, 换热器, 能量提升器, 出液泵, 回液泵, 空调器, 所述地热集热器的出液管上装有集热器出液泵, 所述出液管 与换热器的输入侧相连接, 所述能量提升器包括由压缩机、 冷凝器、 贮液器、 干燥过滤 器、 节流器、 蒸发器和气液分离器通过管道依次连接而组成的制热回路、 热交换回路, 所述热交换回路中的与所述冷凝器相偶合的热交换回路的出液管通过空调器进液管和出 液泵与空调器相连, 所述空调器的回液管和与所述冷凝器相偶合的热交换回路的进液管 相连, 与所述蒸发器相偶合的热交换回路的出液管通过回液泵与所述换热器的输出侧的 回液管相连, 所述换热器的输出侧的出液管和与所述蒸发器相偶合的热交换回路的进液 管相连接。
本发明地热式液体空调装置, 其中还包括两个两位四通阀, 与所述冷凝器相偶合的 热交换回路的出液管与第一二位四通阀的第一接口相连, 其进液管与第二二位四通阀的 第一接口相连; 空调器的进液管与第一二位四通阀的第二接口相连, 空调器的回液管与 第二二位四通阀的第四接口相连; 与所述蒸发器相偶合的热交换回路的出液管与所述第 一二位四通阀的第三接口相连, 其进液管与第二二位四通陶的第三接口相连; 所述换热 器的输出侧进液管与第一二位'四通阀的第四接口相连, 其出液管与第二二位四通阀的第 二接口相连。
本发明地热式液体空调装置, 其中还包括有太阳能集热器, 所述太阳能集热器包括 太阳能热水器、 太阳能储能器、 循环水泵通过管路依次串接组成的循环回路, 在所述太 阳能储能器的进出口管路上设有进口节止阀和出口节止阀, 所述太阳能储能器内装有热 交换器, 所述热交换器的进、 出口管路并连在所述换热器的输出侧的出液管上, 所述进 口管路上装有热交换器进口节止阀。 本发明地热式液体空调装置, 其中所述太阳能热水器上连接有自来水进水管和生活 热水出水管, 在所述自来水进水管和生活热水出水管上分别装有自来水管节止阀和生活 热水出水管节止阀。
本发明地热式液体空调装置, 其中还包括有电热水器, 所述电热水器内装有换能器, 所述换能器的进、 出口管路并连在所述换热器的输出侧的出液管上, 在所述换能器的进 口管路上装有换能器进口节止阀。
本发明地热式液体空调装置, 其中在所述电热水器内装有余热加热器, 所述余热加 热器的进、 出口管路并连在与所述蒸发器相偶合的热交换回路的进液管上, 在所述余热 加热器的进口管路或出口管路上装有余热加热器节止阀。
本发明地热式液体空调装置, 其中所述的地热集热器为地热蓄能器, 所述地热蓄能 器包括蓄能体、 置于蓄能体内呈交错堆放的若干层充有相变物质的蓄能筒、 置于上层蓄 能筒之上的具有均布通孔的上均流板和置于下层蓄能筒之下的具有均布通孔的支撑板, 在上均流板和蓄能体的上壁之间设有液体进口, 在支撑板和蓄能体的下壁之间设有液体 出口, 每个蓄能筒的两端具有在蓄能筒之间形成液体流动缝隙的突肩; 所述蓄能体的外 壁上装有若干个翅片。
本发明地热式液体空调装置, 其中所述翅片成米字形排列。
本发明地热式液体空调装置, 其中所述地热集热器为若千个集热管组串接组成的地 热集热管系, 每个所述地热集热管组由若干个串接的集热管组成, 每个集热管由共轴线 安装在一起的外换热筒, 位于所述外换热筒内的蓄能筒, 位于所述蓄能筒内的出液管和 连接在所述外换热筒顶部的进液管组成。
本发明地热式液体空调装置, 其中所述地热集热管系由三级集热管组组成, 其中第 一集热管组的外换热筒的长度为 6米, 第二集热管组的外换热筒的长度为 4 m, 第三集 热管组的外换热筒的长度为 2 m。
本发明地热式液体空调装置, 其中所述外换热筒的外径为 1 0 O mm, 蓄能筒的外径 为 8 0 mm, 出水管的外径为 2 5 mm。 .
本发明地热式液体空调装置, 其中所述热交换回路中填充有防冻液。
本发明地热式液体空调装置, 它可利用一年四季地下温度变化小的特性, 将地下所 含的大量的低位的地下冷热源用地热集热器收集储存起来, 并通过液体将地热集热器的 低位冷热能输送到能量提升器, 然后再通过液体把提升后的高位冷热能输送到冷热需要 之处 〔即负载)。 在冬季, 该装置从地下收集低位热能 (包括显热和相变时产生的潜热), 而到夏季再把热能归还地下, 因此, 它是一种取自地下, 归还地下的最佳良性循环装置, 其工作时不产生任何有毒有害物质, 无公害, 无污染, 且价格便宜。 附图简要说明
图 1是本发明地热式液体空调装置的系统结构原理图;
图 2是本发明地热式液体空调装置采用的地热蓄能器的结构示意图; 图 3是图 2中的 A— A剖面图;
图 4是图 2中的地热蓄能器的富能筒的配置示意图;
图 5是本发明地热式液体空调装置釆用的集热管的结构示意图;
图 6是本发明地热式液体空调装置采用的由三组集热管组组成的地热集热器的结构 示意图。 本发明的实施方式
下面结合附图对本发明地热式液体空调装置的最佳实施方式进行详细说明。
参照图 1。 图 1是本发明地热式液体空调装置系统结构原理图。 本发明地热式液体 空调装置包括下文将要详细阐述的地热集热器 1、 换热器 2、 能量提升器 3、 出液泵 4、 回液泵 5和空调器 6。 地热集热器 1的出液管 1 1上装有集热器出液泵 1 2, 以提高集 热器 1内的液体流动速度, 提高热交换效率。 换热器 2可以釆用普通的板式热交换器, 集热器 1的出液管 1 1与换热器 2的输入侧 2 a相连接。
能量提升器 3包括制热回路 3 0和热交换回路 3 8, 制热回路 3 0与普通空调机、 冰箱上采用的制热 (冷) 回路相同。 在制热回路 3 0中填充有用于制热循环的介质 R 2
2。 能量提升器 3包括由压缩机 3 1、 冷凝器 3 2、 贮液器 3 3、 干燥过滤器 3 4、 节 流器 3 5、 蒸发器 3 6和气液分离器 3 7通过管道依次连接而组成的制热回路 3 0和热 交换回路 3 8。 热交换回路 3 8中的与冷凝器 3 2相偶合的热交换回路的出液管 3 2 a与 第一二位四通阀 8的第一接口 8 a相连; 热交换回路 3 8中的与冷凝器 3 2相偶合的热交 换回路的进液管 3 2 b 与第二二位四通阔 9的第一接口 9 a相连, 热交换回路 3 8中的与 蒸发器 3 6相偶合的热交换回路的出液管 3. 6 a与第一二位四通阔 8的第三接口 8 c 相 连; 热交换回路 3 8中的与蒸发器 3 6相偶合的热交换回路的进液管 3 6 b经与下文将要 阐述的余热加热器 8 2的连接管路 8 2 1与第二二位四通阀 9的第三接口 9 C相连。
空调器 6可采用普通的风机盘管组。 空调器 6的进液管 1 0 2经出液泵 4与第一二 位四通阀 8的第二接口 8 b相连; 空调器 6的回液管 1 0 3与第二二位四通阀 9的第四接 口 9 d相连。 在空调器 6的回液管 1 0 3上装有膨胀罐 1 0 3 a, 膨胀罐 1 0 3 a的作用在 于储存热交换回路 3 8中的液体因热膨胀而增加的液体体积。
换热器 2的输出侧 2 b 的进液管 2 2 b通过回液泵 5与第一二位四通阀 8的第四接口 8 d相连接; 换热器 2的输出侧 2 b的出液管 2 2 a经安装在出液管 2 2 a上的节止阀 2 2 c 与第二二位四通阀 9的第二接口 9 b相连。
设置上述二个二位四通阀的目的在于使本发明地热式液体空调装置适用于冬夏二季 使用, 如果只作为冬季取暖, 则可不安装二位四通阀。 此时, 可将热交换回路 3 8中的 与冷凝器 3 2相偶合的热交换回路的出液管 3 2 a经出液泵 4直接与空调器 6的进液管 1 0 2相连; 空调器 6的回液管 1 0 3和与冷凝器 3 2相偶合的热交换回路 3 8的进液管
3 2 b 相连, 与蒸发器 3 6相偶合的热交换回路 3 8的出液管 3 6 a通过回液泵 5直接与 换热器 2的输出侧 2 b的回液管 2 2 b相连, 换热器 2的输出侧 2 b的出液管 2 2 a直接和 与蒸发器 3 6相偶合的热交换回路 3 8的进液管 3 6 b相连。
显然, 每个二位四通阀均可用 4个普通的节止阀按图示的连接方式来代替。
当天气寒冷, 由地热集热器提供的热量不足时, 可在本发明地热式液体空调装置上 加装太阳能集热器 7。 太阳能集热器既可为地热集热器 1提供辅助热源, 又可为居民提 供生活热水。 太阳能集热器 7由太阳能热水器 7 1、 太阳能蓄能器 7 2、 循环水泵 7 3 用管路连接而成。 在太阳能蓄能器 7 2的进、 出口管路上装有进口节止阀 7 4和出口节 止阀 7 5。 在太阳能蓄能器 7 2装有热交换器 7 6。 热交换器 7 6的进、 出口管路 7 6 1、 7 6 2并连在换热器 2的输出侧 2 b 的出液管 2 2 a上。 在进口管路 7 6 1上装有热 交换器进口节止阀 7 6 3, 可根据天气状况将热交换器 7 6并连在出液管 2 2 a上, 作为 辅助热源。
在太阳能热水器 7 1上连接有自来水冷水进水管 7 7和生活热水出水管 7 8, 并在 上面分别安装有自来水管节止阀 7 7 1和生活热水出水管节止阀 7 8 1。
在寒冷地区, 天气特别寒冷时, 当由地热集热器 1和太阳能集热器 7提供的热量仍 然不足时还可在本发明地热式.液体空调装置上加装电热器 8作为辅助能源。 电热水器 8 内装有换能器 8 1, 换能器 8 1同样可以采用板式热交换器结构, 换能器 8 1的进、 出 口管路 8 1 1 , 8 1 2并连在换热器 2的输出侧 2 b 的出液管 2 2 a上。 在换能器 8 1的 进口管路 8 1 1上装有换能器进口节止阀 8 1 3。 在使用换能器 8 1时, 也可将出液管 节止阀 2 2 c 关闭。 在春秋二季地热式液体空调装置不运行时, 可利用电加热器加热生活 热水。 电加热器 8上装有自来水进水管 8 3和生活热水出水管 8 4。 在电热水器 8内还. 可装有余热加热器 8 2。 余热加热器 8 2的作用在于冬夏二季可利用本发明地热式液体 空调装置的余热加热电热水器中的水, 达到省电并提供生活热水的目的, 在余热加热器 8 2的进口管路 8 2 1上装有节止阀 8 2 3, 不使用余热加热器 8 2时, 可关闭节止阔 8 2 1 ο
参看图 2〜图 4。 图 2〜图 4是本发明地热式液体空调装置采用的地热蓄能器结构 示意图。 蓄能器可制成圆筒式方式, 它包括蓄能体 1 1、 置于蓄能体 1 1内呈交错堆放 的若干层充有相变物质, 如水、 甘油、 盐水或乙醇的蓄能筒 1 2、 置于上层蓄能筒之上 的具有均布通孔的上均流板 1 3和置于下层蓄能筒之下的具有均布琅孔的支撑板 1 4, 且上均流板 1 3和蓄能体 1 1的上壁之间设有液体进口 1 5, 支撑板 1 4和蓄能体 1 1 的下壁之间形成液体出口 1 6。 蓄能体 1 1的外壁上设有若干个呈米字形排列的散热翅 片 1 8 (见图 2 )。 每个蓄能筒 1 2的两端具有在蓄能筒之间形成液体流动缝隙的凸肩 1 7 , 其中蓄能筒 1 2可由高强耐腐蚀的塑料制成。 凸肩 1 7使蓄能筒 1 2之间产生缝隙, 从而保证液体绕着蓄能筒流动 (见图 4 )。 在流动过程中液体把能量传递给蓄能筒储存起 来。 在液体需要能量时, 通过液体围绕蓄能筒流动, 蓄能筒把能量又传递给液体。, '从而 使蓄能筒达到储存和释放能量的目的。
蓄能器置于地下, 因为地下是一个温度变化不大的恒温带。 也就是俗称的冬暖夏凉 带。 蓄能器置于地下, 除蓄能器内流动液体与蓄能筒之间的换热外, 还具有蓄能器和地 下恒温带的换热。 夏天把冷传给蓄能器, 冬天把热传给蓄能器。
蓄能器另一重要特点是相变蓄能。 以水为例, 水的相变温度为 0°C, 水在液态时 lm3 水温度升高或降低 1 °C需能量 lkWh/°Cm3。 在发生相变时, (TC的水变成 0 Ό的冰需能 量 4 8. 4 kwh/ra3, 也就是水在 0 °C发生相变时, 1 m3水可提供的能量为 4 8. 4 kwh/m
3
在冬季埋入地下的蓄能器与地下温度 1 (re基本一致。 现在计算一下蓄能器储存的 能量。 假设蓄能器中流动液体为 lm3, 蓄能筒内液体为 2m3, 液体体积为 2 + l = 3m3。 降低到 0 °C的显能为 3m3X 1 kwh/Om3 X 1 0 °C= 3 0 kwh。 蓄能筒内液体发生相变时蓄 能为 2 m3X 4 8. 4 kwh/m3 = 9 6. 8 kwh。 蓄能器共蓄能 3 0 + 9 6. 8 = 1 2 6. 8 kwh。 如液体空调器每小时需能为 1 0 KW, 蓄能器可供能量时间为: 1 2 6. 8kwh/
1 0 KW= 1 2. 6 8h, 也就是蓄能器在绝热状态下可提供液体空调器所需能量为 1
2. 6 8h。
夏季地下温度为 1 5 °C, 空调器往室外散热温度为 5 0 °C, 温差为 5 0 V- 1 5 °C = 3 5 V, 冷却蓄能共 1 kwh/°Cm3 X 3 5 °CX 3 m3= 1 0 5 kwh, 每小时耗能 1 0 kw, 可 解决供冷时间为 1 0 5kwh/ 1 Okw= 1 0. 5h, 这是绝热状态下的情况。 如果考虑到 地下恒温带与蓄能器的换热实际值远远大于此值。
地热蓄能器因其体积较大, 适用于居住分散, 空间场地较大的建筑使用。
参照图 5。 图 5是本发明地热式液体空调装置采用的地热集热管的结构示意图。 图 中绘制出了二个地热集热管 1 0 0和 1 0 0 ' 相互串接的结构示意图。 以地热集热管 1. 0 0为例, 集热管 1 0 0由共轴线安装在一起的外换热筒 1 0 1, 位于外换热筒 1 0 1 内的蓄能筒 1 0 2, 位于蓄能筒 1 0 2内的出液管 1 0 3和连接在外换热筒 1 0 1顶部 的进液管 1 0 4组成。 蓄能筒 1 0 2可用几枚固定片 (图中未示出) 焊接在外换热筒 1
0 1内。 出液管 1 0 3可直接焊接在蓄能筒 1 0 2的上、 下壁上。 地热集热管 1 0 0的 出液管 1 0 3与地热集热管 1 0 0, 的进液管 1 0 4 ' 相连接, 地热集热管 1 0 0, 的 出液管 1 Q 3 ' 可与下一个地热集热管 (图中未示出) 的进液管相连接, 如此可根据需 要将多个地热集热管串接在一起成为一组集热管组。
参照图 6。 图 6是本发明地热式液体空调装置采用的由三组集热管组串联构成的地 热集热器的结构示意图。 第一.地热集热管组 1 0 0 G, 假设由 8根地热集热管组成 (见 图 1 ), 每根地热集热管的长度为 6 m; 第二地热集热管组 2 0 0 G假设由 1 2根地热集 热管组成 (见图 1 ), 每根地热集热管的长度为 4 m, 第三地热集热管组 3 0 0 G假设由
1 6根地热集热管组成 (见图 1 ), 每根地热集热管的长度为 2 m。 最后一组集热管组的 出水管与地热集热器的总出液管 1 1相接。 在出液管 1 1的管路上, 在出液泵 1 2前面 装有节止阀 1 3, 在出液泵 1 2的后面装有节止阀 1 4 , 以便修理更换出液泵 1 2时使 用。 地热集热管组 1 0 0 G、 2 0 0 G和 3 0 0 G均竖直埋入 1 0深的地下, 以便由低 到高分段提取土壤内的热量, 最后达到我们所需要的温度。 例如将 7 Ό的水经第一集热 管组 1 0 0 G使其温度提高至 8 Ό, 经第二集热管组 2 0 0 G使水温提高至 1 0 V, 经 第三集热管组 3 0 0 G使水温提高至 1 2 °C。 1 2 °C的水经换热器 2将热量传递给换热 器的输出侧 2 b后。 隆至 7 °C再回流至第一集热管组 1 Q 0 G, 再经第二、 第三集热管组 2 0 0 G、 3 0 0 G再升温, 如此循环不已。 地热集热管的外换筒 1 0 1的外径例如可 选为 1 0 0 ram, 蓄能筒 1 0 2的外径可选为 8 0 ram,出水管 1 0 3的外径可选为 2 5腿。 图 6中左侧给出了地层下面的温度与深度之间的变化关系, 地热集热管的优点是体积小, 可见缝插针, 适用于住房密集空间场地下的地方使用。
本发明地热式液体空调装置, 其热交换回路和地热集热器内可用防冻液作为工作介 质。
下面结合附图描述一下本发明地热式液体空调装置的工作过程。 参照图 1。 图 1中 第一二位四通阀 8和第二二位四通阀 9中涂黑的部分表示关闭的流道。 在冬季, 如上文 所述, 地热集热器 1将集热器内的水升温至 1 2 。C , 出液泵 1 2通过阀 1 3 、 1 4将 1
2 Ό的水送到换热器 2的输入侧 2 a, 通过换热器 2将热量传递给换热器输出侧 2 b。 输 出侧 2 b 内的 1 1 Ό的水经节止阔 2 2 c , 第二二位四通阀 9、 管道 8 2 1 、 3 6 b送入 与蒸发器 3 6相偶合的热交换回路 3 8。 在蒸发器 3 6内进行热交换, 将热量传递给蒸 发器 3 6。 经热交换后的液体经出液管 3 6 a,第一二位四通阀 8、 回液泵 5、 换热器 2 的回液管 2 2 b流回至换热器 2。 与此同时, 蒸发器 3 6中的工质 R 2 2通过蒸发器 3 6 的作用被转换为低温低压气体送入分离器 3 7 , 在气液分离器 3 7中经气液分离后被送 入压缩机 3 1。 低压低温气体通过压缩机变为高温高压气体并被送至冷凝器 3 2。 在冷 凝器 3 2中, 由压縮机 3 1送出的高温高压气体和与冷凝器 3 2相偶合的热交换回路 3
8内的工作介质进行热交换, 热交换后, 被加热的液体工作介质经出液管 3 2 a, 第一二 位四通阀 8, 出液泵 4及空调器 6的进液管 1 0 2流入空调器给室内空气升温。 经空调 器散热后的液体工作介质通过空调器的回液管 1 0 3, 第二二位四通阀 9 , 进液管 3 2 b 流回至与冷凝器 3 2相偶合的热交换回路 3 8, 完成工作循环。
在夏季制冷时, 应将该图中第一二位四通阀 8和第二二位四通阀 9换向。 即将第一、 第二二位四通阀涂黑的流道与空白的流道交换, 启闭部分正好与图中所示的部分相反。 其中, 第一二位四通阀 8接通与蒸发器 3 6相偶合的热交换回路 3 8的出液管 3 6 a和空 调器的进液管 1 0 2, 并接通与冷凝器 3 2相偶合的热交换回路 3 8的出液管 3 2 a和换 热器 2的回液管 2 2 b ; 同时, 第二二位四通陶 9接通与蒸发器 3 6相偶合的热交换回路
3 8的进液管 3 6 b和空调器 6的回液管 1 0 3, 并接通与冷凝器 3 2相偶合的热交换回 路 3 8的进液管 3 2 b 和换热器 2的出液管 2 2 a, 使与蒸发器 3 6相偶合的热交换回路 3 8内的低温工作介质与空调器相连, 从而实现向室内提供冷气。
本发明地热式液体空调器的工作通用采用间歇式工作,例如工作 1小时, 停止 2小时, 或工作半小时, 停止 1小时, 以便使地热集热器储存足够的能量。 jl业实用性
' 本发明地热式液体空调装置 , 将地下所含的大量的低位的地下冷热源用地热集热器收 集储存起来, 并通过液体将地热集热器的低位冷热能输送到能量提升器, 然后再通过液 体把提升后的高位冷热能输送到冷热需要处。 其工作时不产生任何有毒有害物质, 无公 害, 无污染, 且价格便宜。 用于建筑物室内采暖或致冷, 也可用其提供生活用水。

Claims

权 利 要 求
1、 一种地热式液体空调装置, 其特征在于: 包括置于地下的地热集热器 ( 1 ), 换 热器 ( 2 ), 能量提升器 ( 3 ), 出液泵 ( 4 ), 回液泵 ( 5 ), 空调器 ( 6 ), 所述地热集 热器的出液管 ( 1 1 ) 上装有集热器出液泵 ( 1 2 ), 所述出液管 ( 1 1 ) 与换热器 ( 2 ) 的输入侧 ( 2 a) 相连接, 所述能量提升器 ( 3 ) 包括由压缩机 ( 3 1 )、 冷凝器 (3 2 )、 贮液器(3 3)、 干燥过滤器(3 4)、 节流器(3 5)、 蒸发器(3 6 )和气液分离器( 3 7 ) 通过管道依次连接而组成的制热回路 ( 3 0 )、 热交换回路 ( 3 8 ), 所述热交换回 路 ( 3 8 ) 中的与所述冷凝器'( 3 2 ) 相偶合的热交换回路的出液管 ( 3 2a) 通过空调 器进液管 ( 1 0 2 ) 和出液泵 ( 4 ) 与空调器 ( 6 ) 相连, 所述空调器 ( 6 ) 的回液管 ( 1 0 3 ) 和与所述冷凝器相偶合的热交换回路 ( 3 8 ) 的进液管 ( 3 2b) 相连, 与所 述蒸发器 ( 3 6 ) 相偶合的热交换回路 (3 8 ) 的出液管 ( 3 6a) 通过回液泵 ( 5 ) 与 所述换热器 ( 2 ) 的输出侧 ( 2b) 的回液管 ( 2 2b) 相连, 所述换热器 ( 2 ) 的输出 侧 ( 2b ) 的出液管 ( 2 2a) 和与所述蒸发器 ( 3 6 ) 相偶合的热交换回路 ( 3 8 ) 的 进液管 (3 6b) 相连接。
2、 按照权利要求 1所述的地热式液体空调装置, 其特征在于: 还包括两个两位四 通阀 ( 8、 9 ), 与所述冷凝器 (3 2 ) 相偶合的热交换回路 (3 8 ) 的出液管 (3 2a) 与第一二位四通阀 ( 8 ) 的第一接口 (8a) 相连, 其进液管 (3 2b) 与第二二位四通阀.
( 9 )的第一接口 ( 9 a)相连; 空调器( 6 )的进液管( 1 0 2 )与第一二位四通阀( 8 ) 的第二接口 ( 8b) 相连, 空调器 ( 6 ) 的回液管 ( 1 0 3 ) 与第二二位四通阀 ( 9 ) 的 第四接口 ( 9d)相连; 与所述蒸发器(3 6 )相偶合的热交换回路( 3 8 ) 的出液管( 3 6a) 与所述第一二位四通阀 ( 8 ) 的第三接口 ( 8c) 相连, 其进液管 ( 3 6b) 与第二 二位四通阀 ( 9 ) 的第三接口 ( 9c) 相连; 所述换热器的输出侧 ( 2b) 进液管 ( 2 2b) 与第一二位四通阀 ( 8 ) 的第四接口 (8d) 相连, 其出液管 (2 2a) 与第二二位四通阀
( 9 ) 的第二接口 ( 9b) 相连。
3、 按照权利要求 2所述的地热式液体空调装置, 其特征在于: 还包括有太阳能集 热器 ( 7 ), 所述太阳能集热器 ( 7 ) 包括太阳能热水器 ( 7 1 )、 太阳能储能器(7 2 )、 循环水泵 ( 7 3 ) 通过管路依次串接组成的循环回路, 在所述太阳能储能器 ( 7 2 ) 的 进出口管路上设有进口节止阀 (7 4 )和出口节止阀 (7 5), 所述太阳能储能器 (7 2 ) 内装有热交换器 ( 7 6 ), 所述热交换器 (7 6 ) 的进、 出口管路 ( 7 6 1、 7 6 2 ) 并 连在所述换热器 ( 2 ) 的输出侧 ( 2b) 的出液管 ( 2 2a) 上, 所述进口管路 (7 6 1 ) 上装有热交换器进口节止阀 ( 7 6 3 )。
4、 按照权利要求 3所述的地热式液体空调装置, 其特征在于: 所述太阳能热水器 ( 7 1 ) 上连接有自来水进水管 ( 7 7 ) 和生活热水出水管 (7 8 ), 在所述自来水进水 管 ( 7 7 ) 和生活热水出水管 ( 7 8 ) 上分别装有自来水管节止阀 ( 7 7 1 ) 和生活热 水出水管节止阀 (7 8 1 )。
5、 按照权利要求 4所述的地热式液体空调装置, 其特征在于: 还包括有电热水器 ( 8 ), 所述电热水器 ( 8 ) 内装有换能器 ( 8 1 ), 所述换能器的进、 出口管路 ( 8 1 1、 8 1 2 ) 并连在所述换热器 ( 2 ) 的输出侧 ( 2b) 的出液管 ( 2 2a)上, 在所述换 能器的进口管路 ( 8 1 1 ) 上装有换能器进口节止阀 ( 8 1 3)。
6、按照权利要求 5所述的地热式液体空调装置, 其特征在于: 在所述电热水器( 8 ) 内装有余热加热器 ( 8 2 ), 所述余热加热器 ( 8 2 ) 的进、 出口管路 ( 82 1、 8 2 2 ) 并连在与所述蒸发器 ( 3 6 ) 相偶合的热交换回路 (3 8 ) 的进液管 ( 36b) 上, 在所 述余热加热器 ( 8 2 ) 的进口管路或出口管路上装有余热加热器节止阀 ( 8 2 3 )。
7、 按照权利要求 1至 6之一所述的地热式液体空调装置, 其特征在于: 所述的地 热集热器 ( 1 ) 为地热蓄能器, 所述地热蓄能器包括蓄能体 ( 1 1 )、 置于蓄能体 ( 1 1 ) 内呈交错堆放的若干层充有相变物质的蓄能筒 ( 1 2 )、 置于上层蓄能筒之上的具有均布 通孔的上均流板 ( 1 3 ) 和置于下层蓄能筒之下的具有均布通孔的支撑板 ( 1 4), 在上 均流板 ( 1 3 ) 和蓄能体 ( 11 ) 的上壁之间设有液体进口 ( 1 5 ), 在支撑板 ( 1 4 ) 和蓄能体 ( 1 1 ) 的下壁之间设有液体出口 ( 1 6 ), 每个蓄能筒 ( 1 2) 的两端具有在 蓄能筒之间形成液体流动缝隙的突肩 ( 1 7); 所述蓄能体 ( 1 1 ) 的外壁上装有若干个 翅片 ( 1 8 )。
8、 按照权利要求 7所述的地热式液体空调装置, 其特征在于: 所述翅片 ( 1 8 ) 成米字形排列。
9、 按照权利要求 1至 6之一所述的地热式液体空调装置, 其特征在于: 所述地热 集热器 (1) 为若干个集热管组串接组成的地热集热管系, 每个所述地热集热管组由若干 个串接的集热管组成, 每个集热管由共轴线安装在一起的外换热筒 ( 1 0 1 ), 位于所述 外换热筒 ( 1 0 1 ) 内的蓄能筒 ( 1 0 2 ), 位于所述蓄能筒 ( 1 0 2 ) 内的出液管 ( 1 0 3 ) 和连接在所述外换热筒 ( 1 0 1 )顶部的进液管 ( 1 04 ) 组成。
1 0、 按照权利要求 9所述的地热式液体空调装置, 其特征在于: 所述地热集热管 系由三级集热管组组成, 其中第一集热管组 ( 1 0 0 G) 的外换热筒的长度为 6米, 第 二集热管组 ( 2 0 0 G) 的外换热筒的长度为 4 m, 第三集热管组 ( 3 0 0 G) 的外换 热筒的长度为 2 m。
1 1、 按照权利要求 1 Q所述的地热式液体空调装置, 其特征在于: 所述外换热筒 ( 1 0 1 ) 的外径为 1 0 0 mm, 蓄能筒 ( 1 0 2 ) 的外径为 8 0 mm, 出水管 ( 1 0 3 ) 的外径为 2 5mnio
1 2、 按照权利要求 8或 1 1所述的地热式液体空调装置, 其特征在于: 所述热交 换回路中填充有防冻液。
PCT/CN2001/000062 2000-08-18 2001-01-18 Dispositif de conditionnement d'air a liquide de type geothermique WO2002014750A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/333,528 US6772605B2 (en) 2000-08-18 2001-01-18 Liquid air conditioner of ground energy type
KR1020037001221A KR100571973B1 (ko) 2000-08-18 2001-01-18 지열에너지형 액체공조장치
EP01903568A EP1310745B1 (en) 2000-08-18 2001-01-18 Liquid air conditioner of ground energy type
NZ523499A NZ523499A (en) 2000-08-18 2001-01-18 Liquid air conditioner of geothermal energy type
DE60136821T DE60136821D1 (de) 2000-08-18 2001-01-18 Geothermische flüssigkeits-klimaanlage
AU2001231479A AU2001231479A1 (en) 2000-08-18 2001-01-18 Liquid air conditioner of ground energy type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00123495A CN1120339C (zh) 2000-08-18 2000-08-18 地热式液体冷热源装置
CN00123495.1 2000-08-18

Publications (1)

Publication Number Publication Date
WO2002014750A1 true WO2002014750A1 (fr) 2002-02-21

Family

ID=4589913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000062 WO2002014750A1 (fr) 2000-08-18 2001-01-18 Dispositif de conditionnement d'air a liquide de type geothermique

Country Status (9)

Country Link
US (1) US6772605B2 (zh)
EP (1) EP1310745B1 (zh)
KR (1) KR100571973B1 (zh)
CN (1) CN1120339C (zh)
AU (1) AU2001231479A1 (zh)
DE (1) DE60136821D1 (zh)
HK (1) HK1043186B (zh)
NZ (1) NZ523499A (zh)
WO (1) WO2002014750A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152348A (zh) * 2016-08-23 2016-11-23 西南交通大学 一种用于地下空间的空调系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004231B2 (en) * 2003-04-07 2006-02-28 Tai-Her Yang Natural thermo carrier fluid exchange system for heat reclaim
CN100365356C (zh) * 2004-09-30 2008-01-30 北京北控恒有源科技发展有限公司 江河湖海低品位能量提取系统
CN1306233C (zh) * 2004-10-26 2007-03-21 北京永源热泵有限责任公司 提取土壤能量的热泵系统
KR100585517B1 (ko) * 2005-01-05 2006-06-07 전석영 지열과 냉동싸이클을 보조수단으로 이용하는 태양열냉/난방장치
WO2007070905A2 (de) * 2005-12-19 2007-06-28 Atlas Copco Mai Gmbh Wärmetauscher
KR101152472B1 (ko) * 2006-05-19 2012-07-03 엘지전자 주식회사 지열을 이용한 공기조화기
KR101175385B1 (ko) * 2006-06-16 2012-08-20 엘지전자 주식회사 지열을 이용한 공기조화기
DE102007009196B4 (de) * 2007-02-26 2010-07-01 Kioto Clear Energy Ag Auf Basis erneuerbarer Energieträger arbeitendes Warmwasser- und Heizungssystem
CA2593906A1 (en) * 2007-07-18 2009-01-18 Hydroplex Inc. Irrigation reservoir cooling system
KR20130004527A (ko) * 2007-12-31 2013-01-10 노블 지오퍼니스 인코퍼레이티드 지열 교환 시스템 및 방법
US9115935B2 (en) * 2008-11-17 2015-08-25 Tai-Her Yang Single flow circuit heat absorbing/release device for periodic positive and reverse directional pumping
DE202009018043U1 (de) * 2009-03-09 2010-12-02 Rawema Countertrade Handelsgesellschaft Mbh Wärmespeichersystem
WO2010120343A2 (en) * 2009-04-01 2010-10-21 Thar Geothermal, Inc. Geothermal energy system
US20110126563A1 (en) * 2009-11-30 2011-06-02 General Electric Company Absorption chiller and system incorporating the same
CN101893327B (zh) * 2010-08-16 2012-05-09 上海盛合新能源科技有限公司 一种太阳能热水热电转换装置
FR2993348A1 (fr) * 2012-07-10 2014-01-17 Stephane Boulet Dispositif d'optimisation des performances d'une pompe a chaleur en periode hivernale, par stockage d'energie en sol profond
WO2015015244A1 (de) * 2013-07-29 2015-02-05 Jan Franck Temperatur-management-system
WO2015099547A1 (en) 2014-01-31 2015-07-02 Uni-Heat Sp. Z.O.O. Feed collector, particularly for a multiple source heat pump
US9933187B2 (en) 2014-11-05 2018-04-03 SaeHeum Song System and method for geothermal heat exchange
US11067317B2 (en) * 2015-01-20 2021-07-20 Ralph Feria Heat source optimization system
CN104864606B (zh) * 2015-04-30 2018-03-02 魏磊 全天候太阳能智能生态系统
CN105423466B (zh) * 2015-11-17 2018-11-13 广东美的制冷设备有限公司 热泵空调系统及其控制方法
CN106416831B (zh) * 2016-08-30 2019-07-02 湖南中大经纬地热开发科技有限公司 地表水源用于地热农业育苗的装置
CN107036205A (zh) * 2017-03-22 2017-08-11 青岛新欧亚能源有限公司 利用相变热的水、地源热泵系统及制冷与制热工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217451A (ja) * 1983-05-25 1984-12-07 Matsushita Electric Ind Co Ltd 太陽熱利用集熱装置
JPS60164178A (ja) * 1984-02-06 1985-08-27 Matsushita Electric Ind Co Ltd 太陽熱集熱装置
JPS60221658A (ja) * 1984-04-16 1985-11-06 Mitsubishi Electric Corp ソ−ラ−ヒ−トポンプ装置
CN1239770A (zh) * 1999-03-10 1999-12-29 海阳市富尔达热工程有限公司 供热制冷两用系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2233871A5 (zh) * 1973-06-14 1975-01-10 Mengin Ets Pierre
US4158291A (en) * 1977-06-20 1979-06-19 Sunterra Corporation Environmentally assisted heating and cooling system
DE2919855A1 (de) * 1979-05-16 1980-11-20 Kohler Gmbh C Erdreich-waermepumpenanlage
DE2938891A1 (de) * 1979-09-26 1981-04-16 Volker 2000 Hamburg Rebhan Verfahren und vorrichtung zum einsetzen von erdreichkollektoren
US4375831A (en) * 1980-06-30 1983-03-08 Downing Jr James E Geothermal storage heating and cooling system
US4394814A (en) * 1981-04-01 1983-07-26 Wardman John C Energy generation system
US4376435A (en) * 1981-04-08 1983-03-15 Pittman Charles D Solar powered air conditioning system
US4355683A (en) * 1981-05-11 1982-10-26 Midland-Ross Corporation System of moisture and temperature conditioning air using a solar pond
FR2505990B1 (fr) * 1981-05-14 1986-03-28 Calories Geothermiques Solaire Systeme de chauffage pour locaux, notamment pour locaux d'habitation
US4776171A (en) * 1986-11-14 1988-10-11 Perry Oceanographics, Inc. Self-contained renewable energy system
US5081848A (en) * 1990-11-07 1992-01-21 Rawlings John P Ground source air conditioning system comprising a conduit array for de-icing a nearby surface
DE4138774A1 (de) * 1991-11-26 1993-05-27 Heinrich Banse Waermepumpe
US5394935A (en) * 1993-09-17 1995-03-07 Glover; Mike Earth coupled thermal barrier system
US5685147A (en) * 1995-06-12 1997-11-11 Brassea; Angel Buoyancy and thermal differentials energy generator
US5937665A (en) * 1998-01-15 1999-08-17 Geofurnace Systems, Inc. Geothermal subcircuit for air conditioning unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217451A (ja) * 1983-05-25 1984-12-07 Matsushita Electric Ind Co Ltd 太陽熱利用集熱装置
JPS60164178A (ja) * 1984-02-06 1985-08-27 Matsushita Electric Ind Co Ltd 太陽熱集熱装置
JPS60221658A (ja) * 1984-04-16 1985-11-06 Mitsubishi Electric Corp ソ−ラ−ヒ−トポンプ装置
CN1239770A (zh) * 1999-03-10 1999-12-29 海阳市富尔达热工程有限公司 供热制冷两用系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1310745A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152348A (zh) * 2016-08-23 2016-11-23 西南交通大学 一种用于地下空间的空调系统

Also Published As

Publication number Publication date
KR20030023717A (ko) 2003-03-19
DE60136821D1 (de) 2009-01-15
HK1043186B (zh) 2004-03-05
KR100571973B1 (ko) 2006-04-17
CN1120339C (zh) 2003-09-03
NZ523499A (en) 2003-07-25
EP1310745B1 (en) 2008-12-03
US6772605B2 (en) 2004-08-10
HK1043186A1 (en) 2002-09-06
CN1339685A (zh) 2002-03-13
US20040000159A1 (en) 2004-01-01
EP1310745A1 (en) 2003-05-14
EP1310745A4 (en) 2005-12-14
AU2001231479A1 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
WO2002014750A1 (fr) Dispositif de conditionnement d'air a liquide de type geothermique
KR101041745B1 (ko) 솔라 싱크 지열원 히트펌프 시스템과 그 제어방법
CN107143948B (zh) 可蓄能可大温差的梯级冷热源系统
WO2017016224A1 (zh) 一种谷电相变储热式采暖热水系统
CN201028893Y (zh) 一种地源热泵空调系统
CN101226016B (zh) 太阳能-地能双热源复合热泵装置
CN201163124Y (zh) 空气—太阳能—地能三热源复合热泵装置
CN101893299A (zh) 基于相变蓄冷的太阳能吸附式空调系统
WO2014111061A1 (zh) 一种冷热内平衡机组
JP3839811B2 (ja) 蓄地熱空調システム
CN201259282Y (zh) 全热回收蓄能型地能热泵中央空调系统
CN101307939B (zh) 热回收型模块化风冷热水机组
CN203615646U (zh) 一种蓄热型地源热泵装置
CN202853199U (zh) 竖直地埋管式地源热泵热水及空调系统
Kanog˘ lu et al. Incorporating a district heating/cooling system into an existing geothermal power plant
CN1161568C (zh) 地热式液体空调装置
CN201779922U (zh) 基于空调制冷、空调制热和卫生热水的户式三联供地源热泵机组
CN2489251Y (zh) 竖式地热蓄能空调系统
CN1137352C (zh) 竖式地热蓄能空调系统
CN102705984B (zh) 地能和空气能同步供热于水源热泵的装置
MacCracken Electrification, heat pumps and thermal energy storage
CN2460931Y (zh) 地热式液体空调装置
Duman et al. Exergy Analysis of a Ground Source Heat Pump System for Cold Climatic Condition of Sivas, Turkey
CN220828916U (zh) 单井多埋管式地埋管空调系统
CN1257372C (zh) 能够提供热水的地热蓄能空调系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 523499

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2001903568

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10333528

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037001221

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037001221

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001903568

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 523499

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 523499

Country of ref document: NZ

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 1020037001221

Country of ref document: KR