WO2002014676A1 - Method of controlling exhaust recirculation valve - Google Patents

Method of controlling exhaust recirculation valve Download PDF

Info

Publication number
WO2002014676A1
WO2002014676A1 PCT/JP2000/005480 JP0005480W WO0214676A1 WO 2002014676 A1 WO2002014676 A1 WO 2002014676A1 JP 0005480 W JP0005480 W JP 0005480W WO 0214676 A1 WO0214676 A1 WO 0214676A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
valve
motor
deviation
value
Prior art date
Application number
PCT/JP2000/005480
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Kawamura
Sotsuo Miyoshi
Toshihiko Miyake
Youichi Fujita
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2000/005480 priority Critical patent/WO2002014676A1/en
Priority to JP2002519785A priority patent/JP4480938B2/en
Publication of WO2002014676A1 publication Critical patent/WO2002014676A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P.I., P.I.D.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/67Pintles; Spindles; Springs; Bearings; Sealings; Connections to actuators

Definitions

  • the present invention relates to an exhaust gas recirculation system provided in an exhaust gas recirculation system.
  • FIG. 1 is a configuration diagram in which a control valve 11 of an EGR valve is disposed in an exhaust gas recirculation passage c that connects an exhaust passage a and an intake passage b of an engine E.
  • the control device of the EGR valve includes, for example, an engine controller unit (hereinafter referred to as an ECU) 51 that drives and controls a stepping motor M such as a hybrid PM type four-phase motor.
  • the opening and closing of the control valve 11 is adjusted by performing open-loop control of the stepping motor M in increments of step angles.
  • the conventional method of controlling an EGR valve uses a control valve 11
  • a predetermined return torque is applied in the opening or closing direction of 1 and the control valve 11 can be changed in the closing or opening direction by energizing one direction of the DC motor M (hereinafter referred to as "M").
  • the control valve 11 is opened and closed by applying a torque to the motor and the torque balance of the motor.
  • a feedback control system that performs PID control of the motor based on the deviation of the motor, and an I-gain clear means of the feedback control system when the deviation falls within a predetermined allowable range. For example, it is described in Japanese Patent Application Laid-Open No. Hei 10-222609.
  • line A is the operating characteristic when the control valve 11 is opened by increasing the motor torque
  • line B is the operating characteristic when the control valve 11 is closed by decreasing the motor torque, and the return torque is given.
  • the inclination of the operating characteristics A and B changes according to the spring constant of the spring, and the operating characteristics A and B shift right and left in Fig. 2 depending on the magnitude of the set torque.
  • the P (proportional) gain and the I (integral) gain are required to execute the control along the operating characteristic A in FIG. Must be increased.
  • the motor torque is increased by PI control under such control, as soon as the control valve 11 opens to the target opening position, the deviation of the opening position of the control valve becomes “0”, The P component is "0”, the I component is cleared, and the return torque causes the control valve 11 to start closing.
  • the P and I components are both small, the torque cannot overcome the return torque and the deviation becomes large.
  • reference numeral 1 denotes a valve body in which a passage forming a part of an exhaust gas recirculation passage c interposed in the exhaust gas recirculation system is formed, and the control valve 11 moves upward as shown in the figure. Then, the exhaust gas recirculation passage c is closed by coming into contact with the seat 12, and the exhaust recirculation passage c is opened by moving the control valve 11 downward and separating from the seat 12.
  • valve shaft 14 is urged upward, that is, in the closing direction of the control valve 11. For this, a spring 19 is interposed.
  • the control valve 11 configured as described above is driven by the torque balance method as described above. That is, the EGR valve is provided with a predetermined return torque in the valve closing direction of the control valve 11 by the return spring 19 as an urging means, and the valve opening direction of the control valve 11 is supplied by one-way energization of the motor M. A variable motor torque is applied to the motor, and the control valve 11 is controlled to open and close by the torque balance.
  • FIG. 5 is a circuit block diagram showing an engine controller unit 51 (referred to as an ECU) for supplying a control signal to the motor M.
  • Reference numeral 50 denotes a control in the form of a computer having a microphone port for determining a motor drive voltage.
  • 52 is a battery
  • 53 is a motor drive voltage converter that converts the output of the controller 50 and supplies it to the motor M. It is composed of a diode 53b with current flowing in only one direction, an FET (electrolytic effect transistor) 53c, and an interface 53d provided between the control unit 50 and the FET 53c.
  • Reference numeral 56 denotes a regulation for securing the drive voltage (5 V) of the control unit 50.
  • the control unit 50 includes sensors provided at various parts of the vehicle, for example, a detection signal from an operation state quantity sensor 57 such as a crank angle sensor, and a detection signal from the position sensor 40, respectively. Is entered via The position sensor 40 of this example includes a movable contact part 42 that moves on a resistor 41 to which a constant voltage (5 V) is applied from a voltage supply part 60. As the rotor 21 moves with the rotation of the rotor 21, a voltage corresponding to the moving position of the motor shaft 31 is output from the movable contact portion 42 as a detection signal.
  • the motor drive voltage converter 53 turns on and off the voltage applied to the motor M in a fixed cycle, and the FET is controlled by a PWM signal corresponding to the ratio (drive duty) between the on-time and the off-time per cycle.
  • the average drive voltage applied to the motor M is controlled by switching the 5 3c.
  • FIG. 6 is a configuration diagram of the control unit 50.
  • reference numeral 61 denotes a target position calculation unit for determining an optimal opening / closing position of the control valve 11 based on a detection signal of the operating state sensor 57, and a voltage corresponding to the target position. (Hereinafter referred to as “target value”).
  • 62 outputs an AZD conversion unit (hereinafter referred to as “current value”) that performs AZD conversion of the detection signal of the position sensor 40.
  • 7 1 is the addition / subtraction unit between the target value and the current value.
  • 6 3 is the PI control amount (voltage) that combines the proportional component (P component) and the integral component (I component) based on the deviation between the target value and the current value. What is the PI control amount calculation unit that outputs the data? 1
  • Control amount calculation section 63 This is a drive duty calculation unit for calculating
  • the current value detected by the position sensor 40 and the target value are added / subtracted by the addition / subtraction unit 71 to obtain a deviation.
  • the PI control amount calculation unit 63 calculates the PI control amount from the obtained deviation and outputs it to the drive duty calculation unit 64.
  • the drive duty calculation unit 64 calculates the drive duty based on the PI control amount. And supply it to Moryu M.
  • the present invention has been made to solve the above-described problems, and it is intended to improve the responsiveness, secure operation stability in the vicinity of a target value, and prevent an overshoot / undershoot. It is intended to provide a method for controlling a gas recirculation valve. Disclosure of the invention
  • a biasing means applies a return torque to an opening / closing valve in one direction in a valve opening direction or a valve closing direction, and the motor is opposed to the return torque in a moment.
  • a torque is applied overnight, and the valve is opened and closed by the torque balance of these two torques. If the deviation is small and within the specified range, control is switched to PI control.
  • the control method of the exhaust gas recirculation valve according to the present invention is based on the binary control.
  • PI control is started using the stable manipulated variable in the previous PI control stored in memory.
  • the method for controlling the exhaust gas recirculation valve according to the present invention Is a binary control if the function value determined by the deviation between the target value and the present value of the on-off valve and the opening / closing speed of the on-off valve is large and out of the specified range, and PI control if the function value is small and within the specified range.
  • the threshold value that shifts from PI control to binary control is wider than the threshold value that shifts from binary control to PI control. -As a result, the switching operation from PI control to binary control can be performed smoothly and stably.
  • FIG. 1 is a schematic explanatory view of an engine exhaust system.
  • Fig. 2 is a characteristic diagram of the motor torque versus the open / close position of the control valve in the EGR valve of the torque balance drive system.
  • Fig. 3 is a characteristic diagram showing the relationship between time and the operating position of the motor shaft.
  • FIG. 5 is a configuration diagram of a control device using a so-called torque balance driving method using a motor.
  • FIG. 6 is a configuration diagram of a control unit in the control device.
  • FIG. 7 is a configuration diagram of a control unit that implements the control method of the present invention.
  • FIG. 8 is a flowchart illustrating a control method according to the first embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the valve opening operation.
  • FIG. 10 is a flowchart illustrating a control method according to Embodiment 2 of the present invention.
  • FIG. 7 is a block diagram of a control unit for implementing the control method of the present invention.
  • reference numeral 61 denotes a control valve based on the detection signal of the lotus rotation state sensor 57.
  • 62 outputs an A / D converter (hereinafter, referred to as “current value”) for A / D converting the detection signal of the position sensor 40.
  • 7 1 is the addition / subtraction unit between the target value and the current value.
  • 6 3 is the PI control amount (voltage) that combines the proportional component (P component) and the integral component (I component) based on the deviation between the target value and the current value.
  • PI control amount calculation unit that outputs the detected value 65 is a binary control amount calculation unit, 66 detects the deviation between the target value and the current value, and if the detected deviation is outside the predetermined range, the switching switch is used.
  • FIG. 8 is a flowchart illustrating a control method according to the first embodiment.
  • a target value is given from the outside
  • the current value detected by the position sensor 40 and the target value are added and subtracted by the addition / subtraction unit 71.
  • the control area is determined based on the obtained deviation (step ST 3), and it is determined whether it is the PI control area based on the determination result (step ST 4). If NO, the switching switches 67 a and 67 b are calculated as binary control amounts. Switching to the section 65, the calculation of the binary control amount operation direction is performed (step ST5).
  • the switching switches 67a and 67b are switched to the PI control amount calculating section 63 to calculate the PI operation manipulated variable (step ST6). Then, a driving force is supplied to the motor M via the driving duty calculating section 64 (step ST 7).
  • step ST17 if the above determination is YES, the switching switches 67a and 67b are switched to the PI control amount calculating section 63 (step ST17). Then, a driving force is supplied to the motor M via the driving duty calculation section 64 (step ST18).
  • Embodiment 3-In Embodiments 1 and 2 when shifting from the binary control to the PI control, the PI control is started using the stable operation amount at the time of the previous PI control stored in the memory. By doing so, when shifting from binary control to PI control, the change in the manipulated variable is small, and the switching operation from binary control to PI control can be performed stably.
  • the threshold for shifting from PI control to binary control is wider than the threshold for shifting from binary control to PI control. In this way, when shifting from PI control to binary control, the switching operation can be performed smoothly and stably.
  • PI control has been described. Therefore, PID control may be used because it is a kind of PI control. Industrial applicability
  • a part of the exhaust gas in the exhaust passage a is returned to the intake passage b in a rapid response to a change in the operating state of the engine. Especially suitable for.

Abstract

A motor for driving an exhaust recirculation valve of an exhaust recirculation system undergoes binary control when either the difference between a target value and the actual value or a function defined by the difference and the valve operating speed is large beyond a predetermined range. When the difference or the function is small within the range, on the other hand, the drive motor undergoes PI control. As a result, response and control are stabilized.

Description

明 細 書 排気ガス再循環パルプの制御方法 技術分野  Description Control method of exhaust gas recirculating pulp Technical field
この発明は、 排気ガスの再循環系中に備わる排気ガス再循環 「以下、 The present invention relates to an exhaust gas recirculation system provided in an exhaust gas recirculation system.
E GR (E x h a u s t G a s R e c i r c u l a t i o n) と称 する」 バルブの制御装置に関するものである。 背景技術 EGR (ExhaustGasRecirculationi)). This relates to a valve control device. Background art
第 1図はエンジン Eの排気通路 aと吸気通路 bを連通する排気還流通 路 cに E GRバルブの制御弁 1 1を配置した構成図である。 この E G R バルブの制御装置は、 例えば、 エンジンコントローラユニッ ト (以下、 E C Uと称する) 5 1によって、 ハイブリッ ド P M型 4相などのステツ ビングモータ Mを駆動制御し、 このステッピングモータ Mによって制御 弁 1 1 を開閉制御するようになつており、 そのステッピングモータ Mを ステツプ角単位でオープンループ制御することにより、 制御弁 1 1の開 度が調整される。  FIG. 1 is a configuration diagram in which a control valve 11 of an EGR valve is disposed in an exhaust gas recirculation passage c that connects an exhaust passage a and an intake passage b of an engine E. The control device of the EGR valve includes, for example, an engine controller unit (hereinafter referred to as an ECU) 51 that drives and controls a stepping motor M such as a hybrid PM type four-phase motor. The opening and closing of the control valve 11 is adjusted by performing open-loop control of the stepping motor M in increments of step angles.
ところで、 このようなステッピングモータ Mを用いた制御方法は、 ス テツピングモータ Mのステツプ角単位でしか制御弁 1 1の開度を制御す ることができないため、 制御弁 1 1の調整開度の分解能に限界があった 。 また、 ステッピングモータ Mのオープンループ制御においては、 脱調 現象が生じることがあるため応答性にも限界があり、 また一度脱調した 場合には、 制御量に誤差が発生したままとなるため信頼性が悪化すると いう問題があった。  By the way, such a control method using the stepping motor M can control the opening of the control valve 11 only in the unit of the step angle of the stepping motor M. Had a limited resolution. In the open-loop control of the stepping motor M, the step-out phenomenon may occur, which limits the responsiveness. There was a problem that the sex deteriorated.
そこで、 従来の E GRバルブの制御方法は、 付勢手段によって制御弁 1 1の開方向または閉方向に所定のリターントルクを付与し、 かつ直流 モータ M (以下、 モ一夕 Mと称する) の一方向の通電によって、 制御弁 1 1を閉方向または開方向に可変するモータトルクを付与し、 それらの トルクパランスにより制御弁 1 1 を開閉するもので、 このような制御装 置の目標開閉位置に対応する入力データと前記制御弁の現開閉位置の検 出データとの偏差に基づいて、 前記モータを P I D制御するフィードバ ック制御系と、 前記偏差が所定の許容範囲内に収まったときに、 前記フ ィ一ドバック制御系の Iゲインクリァ手段とを備えたものが例えば、 特 開平 1 0— 2 2 0 6 1 9号公報に記載されている。 Therefore, the conventional method of controlling an EGR valve uses a control valve 11 A predetermined return torque is applied in the opening or closing direction of 1 and the control valve 11 can be changed in the closing or opening direction by energizing one direction of the DC motor M (hereinafter referred to as "M"). The control valve 11 is opened and closed by applying a torque to the motor and the torque balance of the motor. A feedback control system that performs PID control of the motor based on the deviation of the motor, and an I-gain clear means of the feedback control system when the deviation falls within a predetermined allowable range. For example, it is described in Japanese Patent Application Laid-Open No. Hei 10-222609.
このようなモータを用いた E G Rバルブの駆動方法は、 いわゆるトル クバランス方法を採用し、 付勢手段としてのスプリングによって閉方向 に所定のリターントルクを付与し、 かつモータの開方向の駆動によって 開方向に可変のモータ トルクを付与し、 それらのトルクパランスにより 開閉制御しょうとする。  The method of driving the EGR valve using such a motor adopts a so-called torque balance method, in which a predetermined return torque is applied in the closing direction by a spring as a biasing means, and the motor is opened by driving the motor in the opening direction. A variable motor torque is applied in the direction, and opening and closing control is attempted by the torque balance.
このような駆動方法の場合、 E G Rバルブには、 常にリタ一ントルク が付与されることになるため、 第 2図のようなフリクショ ンによるヒス テリシスを持ったライン A, Bの傾きによって開閉位置 (シフト量) が 変化することになる。  In such a driving method, since the return torque is always applied to the EGR valve, the opening / closing position ( Shift amount).
ここで、 ライン Aはモータ トルクを増大させて制御弁 1 1 を開く とき の作動特性、 ライン Bはモータ トルクを減少させて制御弁 1 1を閉じる ときの作動特性であり、 リターントルクを付与するスプリングのばね定 数により作動特性 A , Bの傾きが変化し、 そのセッ ト トルクの大きさに より作動特性 A, Bが第 2図中の左右にシフトする。  Here, line A is the operating characteristic when the control valve 11 is opened by increasing the motor torque, and line B is the operating characteristic when the control valve 11 is closed by decreasing the motor torque, and the return torque is given. The inclination of the operating characteristics A and B changes according to the spring constant of the spring, and the operating characteristics A and B shift right and left in Fig. 2 depending on the magnitude of the set torque.
いま、 このような作動特性の制御弁 1 1を制御するために、 単に、 制 御弁 1 1の目標開閉位置に対応する入力データと該制御弁の現開閉位置 の検出データとの偏差に基づいて、 モ一夕を P (比例) 、 I (積分) 制 御する方法を採用した場合を想定する。 この場合には、 第 2図のような 作動特性との関連から、 制御弁 1 1 を目標開口位置に安定させることが 難しくなる。 Now, in order to control the control valve 11 having such operating characteristics, it is necessary to simply calculate the deviation between input data corresponding to the target opening / closing position of the control valve 11 and detection data of the current opening / closing position of the control valve. P (proportional), I (integral) It is assumed that the control method is adopted. In this case, it becomes difficult to stabilize the control valve 11 at the target opening position in relation to the operation characteristics as shown in FIG.
すなわち、 モータ トルクを増大させて制御弁 1 1 を目標開口位置まで 開かせるためには、 第 2図の作動特性 A上に沿つた制御を実行すべく P (比例) ゲインと I (積分) ゲインを増加させなければならない。 しか し、 このような制御下において、 P I制御によってモータ トルクを増大 させた場合には、 制御弁 1 1が目標開口位置まで開くやいなや該制御弁 の開口位置の偏差が " 0 " となって、 P成分が " 0 " 、 I成分がクリア され、 リターントルクによって制御弁 1 1が閉じ始めてしまう。 それが 閉じ始めた初期の段階 (小偏差時) では、 P, I成分が共に小さいため 、 モ一夕 トルクがリターントルクに打ち勝つことができず、 偏差が大き くなる。 その後、 偏差がある程度大きくなつてモータ トルクとリタ一ン トルクが釣り合ったとしても、 モータ Mのイナーシャのために制御弁 1 1の閉じ動作は急停止できず、 直ちに制御弁 1 1 を開き動作させること ができない。 仮に、 小偏差時においても比較的大きなモータ トルクを発 生させるようにゲインを大きく した場合には、 第 3図のようにオーバ一 シュートとアンダーシユートの増加を招く悪循環に陥ってしまう。  That is, in order to increase the motor torque and open the control valve 11 to the target opening position, the P (proportional) gain and the I (integral) gain are required to execute the control along the operating characteristic A in FIG. Must be increased. However, when the motor torque is increased by PI control under such control, as soon as the control valve 11 opens to the target opening position, the deviation of the opening position of the control valve becomes “0”, The P component is "0", the I component is cleared, and the return torque causes the control valve 11 to start closing. At the initial stage when it starts to close (at the time of small deviation), since the P and I components are both small, the torque cannot overcome the return torque and the deviation becomes large. Then, even if the deviation increases to some extent and the motor torque and the return torque are balanced, the closing operation of the control valve 11 cannot be stopped suddenly due to the inertia of the motor M, and the control valve 11 is opened immediately. I can't do that. If the gain is increased so as to generate a relatively large motor torque even at the time of a small deviation, a vicious circle occurs, as shown in FIG. 3, which causes an increase in overshoot and undershoot.
このような事態を考慮し、 モ一タ Mを用いたいわゆる トルクバランス の駆動方法による制御弁 1 1の制御方法の構成を第 4図から第 6図によ り説明する。 第 4図において、 1は排気ガスの再循環系中に介在する排 気還流通路 cの一部をなす通路が内部に形成されたバルブボディであり 、 制御弁 1 1が図のように上動してシート 1 2に接することによって排 気還流通路 cが閉じられ、 制御弁 1 1が下動してシート 1 2から離れる ことによつて排気還流通路 cが開かれる。  In consideration of such a situation, a configuration of a control method of the control valve 11 by a so-called torque balance driving method using the motor M will be described with reference to FIGS. In FIG. 4, reference numeral 1 denotes a valve body in which a passage forming a part of an exhaust gas recirculation passage c interposed in the exhaust gas recirculation system is formed, and the control valve 11 moves upward as shown in the figure. Then, the exhaust gas recirculation passage c is closed by coming into contact with the seat 12, and the exhaust recirculation passage c is opened by moving the control valve 11 downward and separating from the seat 12.
2はモー夕 Mを内蔵するモータケースである。 このモ一夕ケース 2内 において、 2 1はコイル 2 2が巻回されたロータ、 2 3はマグネッ ト 2 4を備えたヨークであり、 ロー夕 2 1の下端部は、 ベアリング 2 7によ つてバルブボディ 1に回転自在に支持されている。 Reference numeral 2 denotes a motor case containing a motor M. In this mo overnight case 2 , 21 is a rotor around which a coil 22 is wound, 23 is a yoke provided with a magnet 24, and the lower end of the rotor 21 is rotatable to the valve body 1 by a bearing 27. It is supported by.
ロー夕 2 1の内部にはモータシャフト 3 1が螺合されており、 そのモ 一夕シャフト 3 1は、 ボディ 1のガイ ドブッシュ 1 3によって回り止め されている。 したがって、 ロータ 2 1の回動量に応じてモータシャフ ト 3 1が上下動することになる。 モ一タシャフト 3 1の下端には弁シャフ ト 1 4が当接されており、 その弁シャフ ト 1 4の中間部は、 ガイ ドシー ル 1 5 とガイ ドプレート 1 6によってバルブボディ 1に上下動自在にガ ィ ドされ、 また弁シャフ ト 1 4の下端には制御弁 1 1が取り付けられて いる。  A motor shaft 31 is screwed into the inside of the rotor 21, and the motor shaft 31 is prevented from rotating by a guide bush 13 of the body 1. Therefore, the motor shaft 31 moves up and down according to the amount of rotation of the rotor 21. A valve shaft 14 is in contact with the lower end of the motor shaft 31, and an intermediate portion of the valve shaft 14 is moved up and down on the valve body 1 by the guide seal 15 and the guide plate 16. It is freely guided, and a control valve 11 is attached to the lower end of the valve shaft 14.
1 7はガイ ドシールカバーである。 弁シャフ ト 1 4の上端に取り付け られたスプリングシート 1 8 とガイ ドプレート 1 6 との間には、 弁シャ フ ト 1 4を上方、 つまり、 制御弁 1 1の閉動方向に付勢するためのリ夕 ーンスプリング 1 9が介在されている。  17 is a guide seal cover. Between the spring seat 18 attached to the upper end of the valve shaft 14 and the guide plate 16, the valve shaft 14 is urged upward, that is, in the closing direction of the control valve 11. For this, a spring 19 is interposed.
このように構成された制御弁 1 1は、 前述したようなトルクバランス 方式により駆動される。 すなわち、 E G Rバルブは、 付勢手段としての リターンスプリング 1 9によって制御弁 1 1の閉弁方向に所定のリター ントルクを付与され、 かつモータ Mの一方向の通電によって制御弁 1 1 の開弁方向に可変のモータ トルクを付与され、 それらのトルクバランス により制御弁 1 1 を開閉制御する。  The control valve 11 configured as described above is driven by the torque balance method as described above. That is, the EGR valve is provided with a predetermined return torque in the valve closing direction of the control valve 11 by the return spring 19 as an urging means, and the valve opening direction of the control valve 11 is supplied by one-way energization of the motor M. A variable motor torque is applied to the motor, and the control valve 11 is controlled to open and close by the torque balance.
第 5図は、 モータ Mに制御信号を供給するエンジンコントローラュニ ッ ト 5 1 ( E C Uと称する) を示す回路ブロック図であり、 5 0はモー 夕駆動電圧を決定するマイク口コンピュータ形態の制御部、 5 2はバッ テリ、 5 3は制御部 5 0の出力を変換してモータ Mに供給するモータ駆 動電圧変換部であり、 ツエナーダイオード 5 3 a、 モータ Mに流れる電 流を一方向のみとするダイオード 5 3 b、 F E T (電解効果形トランジ ス夕) 5 3 c、 制御部 5 0 と F E T 5 3 c との間に設けたイン夕フエ一 ス 5 3 dにより構成されている。 5 6は制御部 5 0の駆動電圧 ( 5 V ) を確保するためのレギユレ一夕である。 FIG. 5 is a circuit block diagram showing an engine controller unit 51 (referred to as an ECU) for supplying a control signal to the motor M. Reference numeral 50 denotes a control in the form of a computer having a microphone port for determining a motor drive voltage. , 52 is a battery, 53 is a motor drive voltage converter that converts the output of the controller 50 and supplies it to the motor M. It is composed of a diode 53b with current flowing in only one direction, an FET (electrolytic effect transistor) 53c, and an interface 53d provided between the control unit 50 and the FET 53c. Have been. Reference numeral 56 denotes a regulation for securing the drive voltage (5 V) of the control unit 50.
制御部 5 0には、 車両各部に設けられたセンサ例えばクランク角セン サ等の運転状態量センサ 5 7からの検出信号と、 ポジションセンサ 4 0 からの検出信号がそれぞれィンタフエース 5 8 , 5 9を介して入力され る。 本例のポジションセンサ 4 0は、 電圧供給部 6 0から定電圧 ( 5 V ) が印加される抵抗体 4 1上にて移動する可動接点部 4 2を備えており 、 その可動接点部 4 2がロータ 2 1の回動に伴って移動することにより 、 その可動接点部 4 2から、 モ一タシャフ ト 3 1の移動位置に応じた電 圧が検出信号として出力される。  The control unit 50 includes sensors provided at various parts of the vehicle, for example, a detection signal from an operation state quantity sensor 57 such as a crank angle sensor, and a detection signal from the position sensor 40, respectively. Is entered via The position sensor 40 of this example includes a movable contact part 42 that moves on a resistor 41 to which a constant voltage (5 V) is applied from a voltage supply part 60. As the rotor 21 moves with the rotation of the rotor 21, a voltage corresponding to the moving position of the motor shaft 31 is output from the movable contact portion 42 as a detection signal.
また、 上記モータ駆動電圧変換部 5 3は、 モータ Mに加える電圧を一 定周期でオン、 オフさせ、 その 1周期当たりのオン時間とオフ時間の比 (駆動デューティ) に応じた P W M信号により F E T 5 3 cをスィッチ 動作させて、 モータ Mに加える平均駆動電圧を制御するようになってい る。  The motor drive voltage converter 53 turns on and off the voltage applied to the motor M in a fixed cycle, and the FET is controlled by a PWM signal corresponding to the ratio (drive duty) between the on-time and the off-time per cycle. The average drive voltage applied to the motor M is controlled by switching the 5 3c.
第 6図は制御部 5 0の構成図である。 第 6図において、 6 1は運転状 態量センサ 5 7の検出信号に基づいて制御弁 1 1の最適な開閉位置を求 めるための目標位置演算部であり、 その目標位置に対応する電圧 (以下 、 「目標値」 と称する) を出力する。 6 2はポジションセンサ 4 0の検 出信号を A Z D変換する A Z D変換部 (以下、 「現在値」 と称する) を 出力する。 7 1は目標値と現在値の加減算部、 6 3は目標値と現在値の 偏差に基づいて、 比例成分 (P成分) 、 積分成分 ( I成分) を合わせた P I制御量 (電圧) を演算して出力する P I制御量演算部、 6 4は? 1 制御量演算部 6 3の出力に基づいてモータ Mに供給するデューティを演 算する駆動デューティ演算部である。 FIG. 6 is a configuration diagram of the control unit 50. In FIG. 6, reference numeral 61 denotes a target position calculation unit for determining an optimal opening / closing position of the control valve 11 based on a detection signal of the operating state sensor 57, and a voltage corresponding to the target position. (Hereinafter referred to as “target value”). 62 outputs an AZD conversion unit (hereinafter referred to as “current value”) that performs AZD conversion of the detection signal of the position sensor 40. 7 1 is the addition / subtraction unit between the target value and the current value. 6 3 is the PI control amount (voltage) that combines the proportional component (P component) and the integral component (I component) based on the deviation between the target value and the current value. What is the PI control amount calculation unit that outputs the data? 1 Control amount calculation section 63 This is a drive duty calculation unit for calculating
次に動作について説明する。  Next, the operation will be described.
外部から目標値が与えられると、 ポジションセンサ 4 0で検出された 現在値と上記目標値を加減算部 7 1で加減算して偏差を求める。 P I制 御量演算部 6 3は得られた偏差から P I制御量を演算して駆動デューテ ィ演算部 6 4に出力し、 駆動デューティ演算部 6 4はその P I制御量に 基づいて駆動デューティを演算してモー夕 Mに供給する。  When a target value is given from the outside, the current value detected by the position sensor 40 and the target value are added / subtracted by the addition / subtraction unit 71 to obtain a deviation. The PI control amount calculation unit 63 calculates the PI control amount from the obtained deviation and outputs it to the drive duty calculation unit 64.The drive duty calculation unit 64 calculates the drive duty based on the PI control amount. And supply it to Moryu M.
従来の排気ガス再循環バルブの制御方法は以上のように構成されてい るので、 P I制御であるため、 応答性が低いという課題があった。  Since the conventional method of controlling the exhaust gas recirculation valve is configured as described above, there is a problem that the response is low because of the PI control.
この発明は上記のような課題を解消するためになされたもので、 応答 性の向上を図るとともに目標値の近傍における動作の安定性を確保し、 オーバーシュ一トゃアンダーシユートを防止できる排気ガス再循環バル ブの制御方法を提供することを目的とする。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is intended to improve the responsiveness, secure operation stability in the vicinity of a target value, and prevent an overshoot / undershoot. It is intended to provide a method for controlling a gas recirculation valve. Disclosure of the invention
この発明に係る排気ガス再循環バルブの制御方法は、 付勢手段で開閉 弁に開弁方向または閉弁方向の一方向にリターン トルクを付与し、 モ一 夕で上記リターン トルクに対向してモ一夕 トルクを付与し、 この両トル クのトルクパランスにより弁開閉を行い、 開閉弁の閧弁目標値または閉 弁目標値と現在値との偏差が大きく規定範囲外の場合は二値制御、 前記 偏差が小さ く規定範囲内の場合は P I制御に制御を切り換える。  According to a control method of an exhaust gas recirculation valve according to the present invention, a biasing means applies a return torque to an opening / closing valve in one direction in a valve opening direction or a valve closing direction, and the motor is opposed to the return torque in a moment. A torque is applied overnight, and the valve is opened and closed by the torque balance of these two torques. If the deviation is small and within the specified range, control is switched to PI control.
このことによって、 偏差が大きいときは二値制御で高速動作させるの で、 応答性に優れ、 偏差の小さい目標値近傍では P I制御により低速動 作させることにより、 オーバ一シユートゃアンダーシュ一トのない動作 の安定性を確保することができる。  As a result, when the deviation is large, high-speed operation is performed by binary control, so that the response is excellent, and near the target value where the deviation is small, low-speed operation is performed by PI control. No operational stability can be ensured.
この発明に係る排気ガス再循環バルブの制御方法は、 二値制御から P I制御に移るときは、 メモリに記憶しておいた前回の P I制御時におけ る安定していた操作量を用いて P I制御を開始する。 The control method of the exhaust gas recirculation valve according to the present invention is based on the binary control. When shifting to I control, PI control is started using the stable manipulated variable in the previous PI control stored in memory.
このことによって、 二値制御から P I制御に移るとき、 操作量の変動 が少なく、 二値制御から P I制御への切換動作を安定に行うことができ この発明に係る排気ガス再循環バルブの制御方法は、 開閉弁の目標値 と現在値との偏差および開閉弁の開閉速度とにより決まる関数値が大き く規定範囲外の場合は二値制御、 前記関数値が小さく規定範囲内の場合 は P I制御とする。  Thus, when shifting from the binary control to the PI control, the change in the manipulated variable is small, and the switching operation from the binary control to the PI control can be stably performed. The method for controlling the exhaust gas recirculation valve according to the present invention Is a binary control if the function value determined by the deviation between the target value and the present value of the on-off valve and the opening / closing speed of the on-off valve is large and out of the specified range, and PI control if the function value is small and within the specified range. And
このことによって、 関数値が大きいときは二値制御により高速動作さ せることにより、 応答性に優れ、 関数値の小さい目標値近傍では P I制 御により低速動作させることにより、 オーバ一シュートやアンダーシュ ―トのない安定性のある動作を確保することができる。  As a result, when the function value is large, high-speed operation is performed by binary control, and excellent responsiveness is achieved. Near the target value with a small function value, low-speed operation is performed by PI control, resulting in overshoot and undershoot. -A stable operation without any trouble can be secured.
この発明に係る排気ガス再循環バルブの制御方法は、 二値制御から P I制御に移るしきい値より P I制御から二値制御に移るしきい値を広く した。 - このことによって、 P I制御から二値制御への切換動作を円滑に、 か つ安定に行うことができる。 図面の簡単な説明  In the control method of the exhaust gas recirculation valve according to the present invention, the threshold value that shifts from PI control to binary control is wider than the threshold value that shifts from binary control to PI control. -As a result, the switching operation from PI control to binary control can be performed smoothly and stably. BRIEF DESCRIPTION OF THE FIGURES
第 1図はエンジン排気系の概略説明図である。  FIG. 1 is a schematic explanatory view of an engine exhaust system.
第 2図はトルクバランス駆動方式の E G Rバルブにおけるモータ トル ク対制御弁の開閉位置の特性図である。  Fig. 2 is a characteristic diagram of the motor torque versus the open / close position of the control valve in the EGR valve of the torque balance drive system.
第 3図は時間とモ一タシャフ トの動作位置との関係を示す特性図であ る o  Fig. 3 is a characteristic diagram showing the relationship between time and the operating position of the motor shaft.
第 4図は E G Rバルブの縦断面 I である。 第 5図はモ一夕を用いたいわゆるトルクバランスの駆動方式による制 御装置の構成図である。 Figure 4 shows a longitudinal section I of the EGR valve. FIG. 5 is a configuration diagram of a control device using a so-called torque balance driving method using a motor.
第 6図はその制御装置における制御部の構成図である。  FIG. 6 is a configuration diagram of a control unit in the control device.
第 7図はこの発明の制御方法を実施する制御部の構成図である。  FIG. 7 is a configuration diagram of a control unit that implements the control method of the present invention.
第 8図はこの発明の実施の形態 1による制御方法を説明するフローチ ヤー卜である。  FIG. 8 is a flowchart illustrating a control method according to the first embodiment of the present invention.
第 9図は開弁動作を説明する図である。  FIG. 9 is a diagram for explaining the valve opening operation.
第 1 0図はこの発明の実施の形態 2による制御方法を説明するフロー チヤ一トである。 発明を実施するための最良の形態  FIG. 10 is a flowchart illustrating a control method according to Embodiment 2 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従って説明する。  Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態 1 . Embodiment 1
第 7図はこの発明の制御方法を実施する制御部の構成図である。 第 7 図において、 6 1は蓮転状態量センサ 5 7の検出信号に基づいて制御弁 FIG. 7 is a block diagram of a control unit for implementing the control method of the present invention. In FIG. 7, reference numeral 61 denotes a control valve based on the detection signal of the lotus rotation state sensor 57.
1 1の最適な開閉位置を求めるための目標位置演算部であり、 その目標 位置に対応する電圧 (以下、 「目標値」 と称する) を出力する。 6 2は ポジションセンサ 4 0の検出信号を A / D変換する A / D変換部 (以下 、 「現在値」 と称する) を出力する。 7 1は目標値と現在値の加減算部 、 6 3は目標値と現在値の偏差に基づいて、 比例成分 (P成分) 、 積分 成分 ( I成分) を合わせた P I制御量 (電圧) を演算して出力する P I 制御量演算部、 6 5は二値制御量演算部、 6 6は目標値と現在値の偏差 を検出し、 検出した偏差が予め定めた規定範囲外の場合は切換スィツチ11 A target position calculation unit for obtaining the optimal open / close position, and outputs a voltage (hereinafter, referred to as a “target value”) corresponding to the target position. 62 outputs an A / D converter (hereinafter, referred to as “current value”) for A / D converting the detection signal of the position sensor 40. 7 1 is the addition / subtraction unit between the target value and the current value. 6 3 is the PI control amount (voltage) that combines the proportional component (P component) and the integral component (I component) based on the deviation between the target value and the current value. PI control amount calculation unit that outputs the detected value, 65 is a binary control amount calculation unit, 66 detects the deviation between the target value and the current value, and if the detected deviation is outside the predetermined range, the switching switch is used.
6 7 , 6 7 bを二値制御量演算部に、 偏差が規定範囲内の場合は切換 スィッチ 6 7 a , 6 7 bを P I制御量演算部 6 3に切り換える動作状態 切換部である。 なお、 上記規定範囲 Wは、 第 9図に示すように、 目標位 置 Xを許容できる + · —のずれ分の範囲に対応する大きさに設定されて いる。 Operation state in which 67, 67b is switched to the binary control variable calculation section, and when the deviation is within the specified range, the switching switches 67a, 67b are switched to the PI control variable calculation section 63. It is a switching unit. As shown in FIG. 9, the specified range W is set to a size corresponding to the range of the deviation of the target position X that can be allowed.
次に動作について説明する。  Next, the operation will be described.
第 8図は実施の形態 1による制御方法を説明するフローチャートであ り、 外部から目標値が与えられると、 ポジションセンサ 4 0で検出され た現在値と上記目標値を加減算部 7 1で加減算して偏差を求める (ステ ップ S T 1, S T 2 ) 。 得られた偏差で制御領域判定を行い (ステップ S T 3 ) 、 判定結果から P I制御領域かを判定し (ステップ S T 4) 、 NOならば切換スィツチ 6 7 a, 6 7 bを二値制御量演算部 6 5に切り 換えて二値制御量操作方向の演算を行う (ステップ S T 5 ) 。 一方、 上 記の判断が Y E Sの場合は、 切換スィッチ 6 7 a , 6 7 bを P I制御量 演算部 6 3に切り換えて P I動作操作量の演算を行う (ステップ S T 6 ) 。 そして、 駆動デュ一ティ演算部 6 4を介してモ一夕 Mに駆動力を供 給する (ステップ S T 7 ) 。  FIG. 8 is a flowchart illustrating a control method according to the first embodiment. When a target value is given from the outside, the current value detected by the position sensor 40 and the target value are added and subtracted by the addition / subtraction unit 71. To calculate the deviation (steps ST1, ST2). The control area is determined based on the obtained deviation (step ST 3), and it is determined whether it is the PI control area based on the determination result (step ST 4). If NO, the switching switches 67 a and 67 b are calculated as binary control amounts. Switching to the section 65, the calculation of the binary control amount operation direction is performed (step ST5). On the other hand, if the above judgment is YES, the switching switches 67a and 67b are switched to the PI control amount calculating section 63 to calculate the PI operation manipulated variable (step ST6). Then, a driving force is supplied to the motor M via the driving duty calculating section 64 (step ST 7).
以上のように、 この実施の形態 1によれば、 偏差が大きく規定範囲外 の時は二値制御によつて高速に動作させることができ、 偏差が小さく規 定範囲内の時は P I制御によって動作の安定性を確保することができる  As described above, according to the first embodiment, when the deviation is large and out of the specified range, high-speed operation can be performed by the binary control. When the deviation is small and within the specified range, PI operation is performed. Operational stability can be ensured
実施の形態 2. Embodiment 2.
第 1 0図はこの発明の実施の形態 2による制御方法を説明するフロー チャートであり、 外部から目標値が与えられると、 ポジションセンサ 4 0で検出された現在値と上記目標値を加減算部 7 1で加減算して偏差を 求める (ステップ S T 1 1 , S T 1 2 ) 。 次いで現在値から前回現在値 を減算して開閉弁の動作速度を求め (ステップ S T 1 3 ) 、 得られた偏 差と速度から決まる関数値で制御領域判定を行い (ステップ S T 1 4 ) 、 判定結果から P I制御領域かを判定し (ステップ S T 1 5 ) 、 N Oな らば切換スィツチ 6 7 a, 6 7 bを二値制御量演算部 6 5に切り換える (ステップ S T 1 6 ) 。 一方、 上記の判断が Y E Sの場合は、 切換スィ ツチ 6 7 a, 6 7 bを P I制御量演算部 6 3に切り換える (ステップ S T 1 7 ) 。 そして、 駆動デューティ演算部 6 4を介してモータ Mに駆動 力を供給する (ステップ S T 1 8 ) 。 FIG. 10 is a flow chart for explaining a control method according to Embodiment 2 of the present invention. When a target value is given from the outside, the adder / subtracter 7 subtracts the current value detected by the position sensor 40 from the target value. The deviation is obtained by adding and subtracting 1 (step ST11, ST12). Next, the operating speed of the on-off valve is obtained by subtracting the previous current value from the current value (step ST13), and the obtained bias The control area is determined by the function value determined from the difference and the speed (step ST14), and the PI control area is determined from the determination result (step ST15). If NO, the switching switches 67a, 67b Is switched to the binary control amount calculation section 65 (step ST16). On the other hand, if the above determination is YES, the switching switches 67a and 67b are switched to the PI control amount calculating section 63 (step ST17). Then, a driving force is supplied to the motor M via the driving duty calculation section 64 (step ST18).
以上のように、 この実施の形態 2によれば、 関数値が大きく規定範囲 外のときは、 二値制御によって高速に動作させることができ、 関数値が 小さく規定範囲内の時は P I制御によって動作の安定性を確保すること ができるので、 弁開閉動作をより高速かつ安定性の向上を図ることがで きる。 実施の形態 3 - 実施の形態 1 , 2において、 二値制御から P I制御に移るときは、 メ モリに記憶した前回の P I制御時における安定していた操作量を用いて P I制御を開始する。 このようにすることにより、 二値制御から P I制 御に移るとき、 操作量の変動が少なく、 二値制御から P I制御への切換 動作を安定に行う ことができる。 実施の形態 4 .  As described above, according to the second embodiment, when the function value is large and out of the specified range, high-speed operation can be performed by the binary control, and when the function value is small and within the specified range, PI control is performed. Since the operation stability can be ensured, the valve opening / closing operation can be performed at higher speed and the stability can be improved. Embodiment 3-In Embodiments 1 and 2, when shifting from the binary control to the PI control, the PI control is started using the stable operation amount at the time of the previous PI control stored in the memory. By doing so, when shifting from binary control to PI control, the change in the manipulated variable is small, and the switching operation from binary control to PI control can be performed stably. Embodiment 4.
二値制御から P I制御に移るしきい値より P I制御から二値制御に移 るしきい値を広く した。 このようにすることにより、 P I制御から二値 制御に移るとき、 切換動作をスムーズに、 かつ安定に行うことができる 上記各実施の形態では、 P I制御について述べたが、 当然のことなが ら、 P I制御の一種であるから、 P I D制御を用いてもよい。 産業上の利用可能性 The threshold for shifting from PI control to binary control is wider than the threshold for shifting from binary control to PI control. In this way, when shifting from PI control to binary control, the switching operation can be performed smoothly and stably. In each of the above embodiments, PI control has been described. Therefore, PID control may be used because it is a kind of PI control. Industrial applicability
以上のように、 この発明に係る排気ガス再循環バルブの制御方法は、 排気通路 aの排気の一部を吸気通路 bに戻すことを、 エンジンの作動状 態の変化に迅速に応答して行うことに適している。  As described above, in the control method of the exhaust gas recirculation valve according to the present invention, a part of the exhaust gas in the exhaust passage a is returned to the intake passage b in a rapid response to a change in the operating state of the engine. Especially suitable for.

Claims

請 求 の 範 囲 The scope of the claims
1 . 付勢手段で開閉弁を開弁方向または閉弁方向の一方向に移動させる リターントルクを付与し、 モー夕で上記リターントルクに対向するモー 夕 トルクを付与し、 この両トルクのトルクバランスにより弁開閉を行い 、 開閉弁の開弁目標値または閉弁目標値と現在値との偏差が規定値より 大きい場合は二値制御、 前記偏差が規定値より小さい場合は P I制御に 制御を切り換えることを特徴とする排気ガス再循環バルブの制御方法。 1. A return torque for moving the on-off valve in one direction of the valve opening or valve closing direction by the urging means, and a motor torque opposite to the above-mentioned return torque in the motor and the motor, and a torque balance of these two torques. When the deviation between the target value for opening or closing the valve and the current value is greater than the specified value, the control is switched to binary control.If the deviation is smaller than the specified value, the control is switched to PI control. A method for controlling an exhaust gas recirculation valve.
2 . 二値制御から P I制御に移るときは、 メモリに記憶した前回の P I 制御時における安定していた操作量を用いて P I制御を開始することを 特徴とする請求の範囲第 1項記載の排気ガス再循環バルブの制御方法。 2. When shifting from the binary control to the PI control, the PI control is started using the operation amount that was stable in the previous PI control and stored in the memory, wherein the PI control is started. Exhaust gas recirculation valve control method.
3 . 開閉弁の目標値と現在値との偏差と開閉弁の開閉速度の関数値が大 きい場合は二値制御、 前記関数値が小さい場合は P I制御とすることを 特徴とする請求の範囲第 1項記載の排気ガス再循環バルブの制御方法。 3. Binary control when the function value of the deviation between the target value and the current value of the on-off valve and the on-off speed of the on-off valve is large, and PI control when the function value is small. 2. The method for controlling an exhaust gas recirculation valve according to claim 1.
4 . 二値制御から P I制御に移るしきい値より P I制御からニ値制御に 移るしきい値を広く したことを特徴とする請求の範囲第 1項記載の排気 ガス再循環バルブの制御方法。 4. The control method for an exhaust gas recirculation valve according to claim 1, wherein a threshold value for shifting from the PI control to the binary control is wider than a threshold value for shifting from the binary control to the PI control.
PCT/JP2000/005480 2000-08-16 2000-08-16 Method of controlling exhaust recirculation valve WO2002014676A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/005480 WO2002014676A1 (en) 2000-08-16 2000-08-16 Method of controlling exhaust recirculation valve
JP2002519785A JP4480938B2 (en) 2000-08-16 2000-08-16 Exhaust gas recirculation valve control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005480 WO2002014676A1 (en) 2000-08-16 2000-08-16 Method of controlling exhaust recirculation valve

Publications (1)

Publication Number Publication Date
WO2002014676A1 true WO2002014676A1 (en) 2002-02-21

Family

ID=11736360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005480 WO2002014676A1 (en) 2000-08-16 2000-08-16 Method of controlling exhaust recirculation valve

Country Status (2)

Country Link
JP (1) JP4480938B2 (en)
WO (1) WO2002014676A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580120A (en) * 1978-12-13 1980-06-17 Nippon Sanso Kk Temperature control method
JPS57129246A (en) * 1981-02-03 1982-08-11 Nippon Soken Inc Exhaust gas recirculating device
JPS5960060A (en) * 1982-09-08 1984-04-05 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Exhaust gas recirculation apparatus of internal combustion engine
US4782811A (en) * 1987-03-30 1988-11-08 Robertshaw Controls Company Exhaust gas recirculation valve construction and method of making the same
JPH10213017A (en) * 1997-01-31 1998-08-11 Unisia Jecs Corp Controller for egr valve
JPH10220619A (en) * 1997-02-07 1998-08-21 Unisia Jecs Corp Controller for egr valve
JPH10288052A (en) * 1997-04-15 1998-10-27 Hitachi Ltd Throttle valve control device
JPH11351075A (en) * 1998-06-12 1999-12-21 Toyota Motor Corp Exhaust gas reflux control system of internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580120A (en) * 1978-12-13 1980-06-17 Nippon Sanso Kk Temperature control method
JPS57129246A (en) * 1981-02-03 1982-08-11 Nippon Soken Inc Exhaust gas recirculating device
JPS5960060A (en) * 1982-09-08 1984-04-05 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Exhaust gas recirculation apparatus of internal combustion engine
US4782811A (en) * 1987-03-30 1988-11-08 Robertshaw Controls Company Exhaust gas recirculation valve construction and method of making the same
JPH10213017A (en) * 1997-01-31 1998-08-11 Unisia Jecs Corp Controller for egr valve
JPH10220619A (en) * 1997-02-07 1998-08-21 Unisia Jecs Corp Controller for egr valve
JPH10288052A (en) * 1997-04-15 1998-10-27 Hitachi Ltd Throttle valve control device
JPH11351075A (en) * 1998-06-12 1999-12-21 Toyota Motor Corp Exhaust gas reflux control system of internal combustion engine

Also Published As

Publication number Publication date
JP4480938B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
US7549407B2 (en) Method and system for controlling a valve device
KR101202575B1 (en) Egr valve control device
US6155231A (en) Throttle valve controller
KR100509145B1 (en) Controller of exhaust gas recirculation valve
JPH10214102A (en) Method and device for estimating and controlling nonlinear disturbance inside feedback control system
JPH11194825A (en) Position controller for actuator
US6662790B1 (en) Method for controlling exhaust gas recirculation valve
US5333584A (en) Throttle control system
JPH10122059A (en) Egr valve controller
WO2002014676A1 (en) Method of controlling exhaust recirculation valve
JPH10213016A (en) Controller for egr valve
JP4705602B2 (en) Drive amount control device
KR100514336B1 (en) Exhaust gas recirculation valve controller
WO2002014674A1 (en) Control device of exhaust recirculation valve
JPH11159405A (en) Control device for egr valve
JP2927212B2 (en) Throttle control device for internal combustion engine
JPH10220620A (en) Controller for egr valve
JPH10220619A (en) Controller for egr valve
JP4989252B2 (en) Electronic control device and feedback control method
JP2000234564A (en) Control device for egr valve
JPH10213017A (en) Controller for egr valve
JPH10213018A (en) Controller for egr valve
JP3041156B2 (en) Throttle valve control device for internal combustion engine
US20080236544A1 (en) Driving amount controller
KR20050088861A (en) Predictive pid control for an automobile throttle valve actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 519785

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase