WO2002005840A1 - Medicinal compositions for promoting fixation of transplanted cells - Google Patents

Medicinal compositions for promoting fixation of transplanted cells Download PDF

Info

Publication number
WO2002005840A1
WO2002005840A1 PCT/JP2001/006166 JP0106166W WO0205840A1 WO 2002005840 A1 WO2002005840 A1 WO 2002005840A1 JP 0106166 W JP0106166 W JP 0106166W WO 0205840 A1 WO0205840 A1 WO 0205840A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
hgf
cells
pharmaceutical composition
diabetic
Prior art date
Application number
PCT/JP2001/006166
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Sawa
Satoshi Taketani
Shigeru Miyagawa
Original Assignee
Cardio, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardio, Inc. filed Critical Cardio, Inc.
Priority to AU2001271064A priority Critical patent/AU2001271064A1/en
Publication of WO2002005840A1 publication Critical patent/WO2002005840A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1833Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a pharmaceutical composition for promoting cell colonization of transplanted cells to a disease-damaged site, comprising a hepatocyte growth factor (HGF) or an HGF gene as an active ingredient, and apoptosis of transplanted cells to a disease-damaged site.
  • HGF hepatocyte growth factor
  • the present invention relates to a pharmaceutical composition for suppressing fibrosis at a diseased site. More specifically, a pharmaceutical composition containing HGF or an HGF gene as an active ingredient for promoting the transplantation of transplanted cardiomyocytes to a damaged myocardial site and suppressing apoptosis of transplanted cardiomyocytes or fibrosis at a damaged myocardial site
  • the present invention relates to a pharmaceutical composition for medical use.
  • the present invention also relates to a method for treating ischemic or diabetic organ diseases, which comprises injecting transplantation cells and HGF or the HGF gene into a diseased site. More specifically, the present invention relates to a method for treating ischemic or diabetic heart disease, which comprises injecting cardiomyocytes and HGF or HGF gene into a damaged myocardial site. In particular, the present invention relates to a method for treating myocardial infarction or cardiomyopathy by administering cardiomyocytes for transplantation and HGF or the HGF gene to a site of cardiac ischemia due to myocardial infarction or an injured myocardial site due to cardiomyopathy.
  • Myocardial infarction is a disease in which ischemic ischemia occurs in the perfused area due to severe stenosis or occlusion due to various lesions of the coronary artery.
  • classifications for determining the severity of myocardial infarction and by using these in combination, individual pathological conditions can be more clearly understood. For example, classification based on time course, morphological classification based on the extent and location of the myocardium, the size of the necrosis, ventricular reconstruction after myocardial death and infarction, and hemodynamics related to treatment and prognosis Classification, classification by clinical severity, and the like. What is judged to be high in severity according to these classifications is severe myocardial infarction according to the present invention. There is no accurate treatment method for severe myocardial infarction to date. It is a situation where only the plant is left.
  • Cardiomyopathy is a general term for diseases caused by structural and functional abnormalities of the myocardium.Secondary cardiomyopathy secondary to underlying diseases such as hypertension, metabolic disorders, and ischemia, and obvious underlying diseases It is classified as idiopathic cardiomyopathy (ICM) that develops without any. Pathological changes include myocardial hypertrophy, fibrosis, and degeneration.
  • ICM idiopathic cardiomyopathy
  • cardiomyopathy has a fairly widespread spectrum, from relatively obvious causes to those with completely unknown causes.
  • research is being carried out to identify the cause and elucidate the pathogenic mechanism, and no reliable treatment method has yet been found.
  • Heart failure is a condition in which the heart itself is impaired, such as cardiac insufficiency, circulatory insufficiency, and reduced contractile force, and the inability to circulate the required quantity and quality of blood to the organs throughout the body is called heart failure.
  • cardiomyopathy is a terminal symptom of heart disease. Severe heart failure is defined as severe heart failure, also known as end-stage heart failure.
  • transplantation of own atrial cells and right ventricular cells into affected areas of the heart disorder is now being considered as a new trial for the treatment of severe heart failure, severe myocardial infarction and cardiomyopathy (Cell Engineering, 19, 860- 863 (2000)).
  • transplantation rate of transplanted cardiomyocytes is only about 20 to 30% at most.
  • An object of the present invention is to provide a pharmaceutical composition for promoting cell colonization of transplanted cells for treating ischemic or diabetic organ diseases. More specifically, it is an object of the present invention to provide a therapeutic method for transplanting cardiomyocytes suitable for treating severe myocardial infarction or cardiomyopathy, for which no effective therapeutic method has been found based on these drugs and compositions.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that colonization of transplanted cells is promoted by performing cell transplantation using HGF or an HGF gene in combination.
  • HGF or the HGF gene was used in cardiomyocyte cell transplantation. It was found that when used, the colonization of the cardiomyocytes was promoted, and the apoptosis of the transplanted cardiomyocytes and the fibrosis of the cardiomyocytes at the damaged site of the transplantation destination were suppressed. The cardiac function was significantly improved, and a comparison of the cell findings showed that the cardiomyocytes were clearly mature.
  • the present inventor has found that by injecting HGF or HGF gene and cardiomyocytes directly into the affected myocardium, colonization of the transplanted cardiomyocytes and regeneration of the cardiomyocytes become possible, and without performing heart transplantation. It has been found that cardiomyocyte transplantation can be used to treat severe heart failure, severe myocardial infarction and cardiomyopathy.
  • the use of the HGF or the HGF gene of the present invention is also effective for cell transplantation therapy for ischemic organ disease.
  • ischemic organ disease For example, not only cardiomyocyte transplantation to the above-mentioned myocardial infarction site, but also cerebral ischemia, transplantation of neural progenitor cells to the site of cerebral infarction or cells that can be differentiated into nerve cells, myocardial infarction site, skeletal muscle ischemia Transplantation of vascular endothelial cells or cells that can be divided into vascular endothelial cells into the site has become possible.
  • the use of the HGF or the HGF gene of the present invention is also effective for a cell transplantation method for diabetic organ disease.
  • the gist of the present invention is:
  • a pharmaceutical composition comprising hepatocyte growth factor (HGF) or an HGF gene as an active ingredient, for promoting cell colonization of transplanted cells at a disease-damaged site;
  • HGF hepatocyte growth factor
  • composition according to (6) which is administered together with a hepatic insulin secreting cell having a reduced insulin secretion ability, or administered together with a cell capable of differentiating into a vascular endothelial cell to a limb having impaired circulation.
  • a pharmaceutical composition comprising HGF or an HGF gene as an active ingredient, for suppressing apoptosis of transplanted cells into a diseased lesion or fibrosis at the diseased lesion,
  • (23) a method of promoting colonization of transplanted cells, which comprises administering HGF or an HGF gene to the diseased lesion when administering the cells for transplantation to the diseased lesion,
  • transplanted cells are cardiomyocytes
  • transplanted cells are cells capable of differentiating into insulin-secreting cells or vascular endothelial cells
  • (29) a method for treating ischemic or diabetic organ disease, comprising administering an HGF or HGF gene together with transplanted cells to an ischemic or diabetic disease disorder site;
  • HGF gene is in the form of a viral vector or a non-viral vector capable of expressing HGF.
  • biocompatible material is a copolymer of silicone, collagen, gelatin or glycolic acid / lactic acid.
  • transplanted cells are cells capable of differentiating into insulin-secreting cells or vascular endothelial cells
  • transplanted cell is a cell capable of transferring to insulin-secreting cells or vascular endothelial cells
  • biocompatible material is a copolymer of silicone, collagen, gelatin or glycolic acid / lactic acid
  • FIG. 1 is a graph showing comparative data of improvement in cardiac function.
  • FIG. 2 is a graph showing the degree of improvement in myocardial blood flow at the injured myocardial site (infarct lesion).
  • FIG. 3 is a tissue fragment micrograph showing the fixation of transplanted cardiomyocytes at the administration site stained with HF.
  • FIG. 4 is a micrograph of a tissue slice showing that cell adhesion factors (connexin43, Desmin) were confirmed between cardiomyocytes and that a Gap junction was formed.
  • cell adhesion factors connexin43, Desmin
  • FIG. 5 is a tissue fragment micrograph showing the viability of the transplanted cardiomyocytes.
  • FIG. 6 is a graph showing the inhibitory effect of cardiomyocyte fibrosis by the combined use of the HGF gene.
  • the HGF used in the present invention is a known substance. As long as it is purified to the extent that it can be used as a medicine, HGF prepared by various methods can be used. For example, Toyobo Code No. HGF-101 etc.) May be used.
  • the HGF can be obtained by culturing primary cultured cells or cell lines that produce HGF, and separating and purifying it from a culture supernatant or the like.
  • an HGF-encoding gene is incorporated into an appropriate vector by genetic engineering techniques, inserted into an appropriate host, and transformed to obtain the desired recombinant HGF from the culture supernatant of this transformant. (For example,
  • the host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques, for example, Escherichia coli, yeast, or animal cells can be used.
  • the HGF thus obtained may have one or more amino acids in its amino acid sequence replaced, deleted and Z or added, as long as it has substantially the same action as natural HGF.
  • the sugar chain may be substituted, deleted and Z- or added.
  • the HGF gene used in the present invention refers to a gene capable of expressing HGF, and includes a part of the gene sequence as long as the expressed polypeptide is substantially the same as HGF. Also include a gene in which is deleted or replaced by another base, another base sequence is inserted into the base, or a base is bonded to the 5 'end and the Z or 3' end. Further, a gene that hybridizes with a gene encoding HGF under stringent conditions and encodes a protein having the same function as HGF may be used. Examples of such a gene include the HGF gene described in Nature, 342, 440 (1989), JP-A-5-111383, Biochem. Biophys. Res. Thus, these genes can be used in the present invention. These genes can be obtained by the well-known PCR method or can be chemically synthesized. In addition, these methods can be combined with, for example, site-directed mutagenesis, ordinary hybridization, and the like.
  • the dosage form When administering the HGF gene to a patient, the dosage form may be a non-viral vector dosage form, a viral vector dosage form, or a naked DNA It is roughly divided into three types of administration by the indirect injection method, and its preparation method and administration method are described in detail in experimental manuals and other documents. (Separate volume experimental medicine, basic technology of gene therapy, Yodosha, 1996, separate volume experiment Medicine, Gene Transfer & Expression Analysis Experimental Method, Yodosha, 1997). The details are described below.
  • a method of incorporating DNA encoding the HGF of the present invention into a gene expression vector and introducing a DNA molecule using a liposome ribosome method, HVJ-ribosome method, catonic ribosome method, ribofectin method, ribofector method) Mining method), microinjection method, transfer of DNA molecule into cells together with carrier (metal particles) by gene gun (Gene Gun), etc.
  • expression vectors used here include pCAGGS (Gene 108, 193-200 (1991)), pBK-CMV, pcDN A3.1, pZeo SV (Invitrogen, Stratagene) and the like. Vector.
  • HVJ-ribosome encapsulates DNA in ribosomes made of lipid bilayer, and then fuses this liposome with inactivated Sendai virus (Hemagglutinating virus of Japan: HVJ). Things.
  • the HV J-liposome method is characterized by having a very high fusion activity with the cell membrane as compared with the conventional liposome method, and is a preferable introduction form.
  • HVJ-Liposome preparation method is described in the literature (Experimental Medicine Separate Volume, Basic Techniques for Gene Therapy, Yodosha, 1996, Gene Transfer & Expression Analysis Experimental Method, Yodosha, 1997, J. Clin. Invest. 93, 1458- 1464 (1994), Am. J. Physiol.
  • the HVJ is preferably the Z strain (available from ATCC), but basically other HVJ strains (eg, ATCC VR-907 and ATCC VR-105) can also be used.
  • a typical example of a virus vector is a method using a virus vector such as a recombinant adenovirus or retrovirus. More specifically, for example, detoxified retrovirus, adenovirus, adeno-associated virus, herpes virus
  • the DNA of the present invention is introduced into a DNA virus such as Nores, vaccinia-inoles, box-inoles, poliovirus, Cymbis virus, Sendai virus, SV40, immunodeficiency virus (HIV) or RNA virus, and the DNA is introduced into cells.
  • HIV immunodeficiency virus
  • RNA virus RNA virus
  • the direct DNA injection method is, for example, a method in which the above-mentioned expression plasmid, which is a non-viral vector, is dissolved in physiological saline and administered as it is.
  • Circulation, 96 (Suppl. ⁇ ), 382-388 (1997) Can be directly injected into tissues such as skeletal muscle, myocardium, subcutaneous, liver, and thyroid.
  • HGF human endothelial growth factor
  • various preparation forms for example, liquid preparations suitable for each of the above-mentioned administration forms can be taken.
  • a route of administration of HGF it can be directly administered to tissues such as skeletal muscle, myocardium, spleen, liver, and thyroid.
  • the preparation may be, for example, an injection containing HGF or an HGF gene as an active ingredient.
  • the injection can be prepared by a conventional method. For example, after dissolving in an appropriate solvent (buffer such as PBS, physiological saline, sterilized water, etc.), sterilizing by filtration with a filter or the like, and then aseptically It can be prepared by filling in a suitable container. A conventional carrier or the like may be added to the injection as needed.
  • ribosomes such as HV J-ribosome used when administering the HGF gene can be in the form of a ribosome preparation such as a suspending agent, a freezing agent, and a centrifugal concentrated cryogenic agent.
  • the HVJ ribosome preparation is a gene preparation prepared for administering the HGF gene, and is preferably administered parenterally.
  • administration methods using a non-invasive catheter or non-invasive syringe can be.
  • injection of the HGF gene directly into the myocardium from the intraventricular cavity can be mentioned.
  • a sustained-release preparation mini-pellet preparation, etc.
  • implant it near the affected part or use an osmotic pump or the like. It can also be used for continuous and gradual administration to the affected area.
  • the biocompatible material that can be used in such a sustained-release preparation is not particularly limited as long as it is biocompatible.
  • specific examples of the non-degradable synthetic polymer include, for example, silicone and ethylene-butyl acetate. Examples include copolymers, polyurethane, polyethylene, polytetrafluoroethylene, polypropylene, polyatalylate, and polymethacrylate. Silicone is preferred from the viewpoint of easy molding.
  • biodegradable synthetic polymers include, for example, collagen, gelatin, monohydroxycarponic acids (eg, glycolic acid, lactic acid, hydroxybutyric acid, etc.), hydroxydicarboxylic acids (eg, malic acid, etc.), hydroxy Polymers, copolymers, or mixtures thereof synthesized from one or more of tricarboxylic acids (eg, cunic acid, etc.) by non-catalytic dehydration polycondensation, poly (1-cyanoacrylate), polyamino acids (eg, polyamino acids) Poly-anhydrides such as mono- ⁇ -benzyl-L-glutamic acid) and maleic anhydride copolymers (eg, styrene-maleic acid copolymer).
  • monohydroxycarponic acids eg, glycolic acid, lactic acid, hydroxybutyric acid, etc.
  • hydroxydicarboxylic acids eg, malic acid, etc.
  • the type of polymerization may be random, block, or graft.
  • monohydroxycarboxylic acids, hydroxydicarboxylic acids, or hydroxytricarboxylic acids have an optically active center in the molecule, D-, L-, or DL- Any of the bodies can be used.
  • a copolymer of glycolic acid and lactic acid can be used.
  • silicone, collagen, gelatin, or a glycolic acid / lactic acid copolymer is particularly preferred as a biocompatible material for a sustained-release preparation.
  • the dosage form of the sustained-release preparation is not particularly limited as long as it is a dosage form suitable for achieving the object of the present invention, and examples thereof include a rod shape (pellet shape, cylinder shape, needle shape, etc.), a tablet shape, and a disc shape. Shaped, spherical, and sheet-like preparations can also be made.
  • the HGF gene content of the preparation of the present invention can be appropriately adjusted depending on the disease to be treated, the age and weight of the patient, etc., and usually, a viral vector containing the DNA of the present invention. Alternatively, it is 0.0001 to 100 mg, preferably 0.001 to 10 mg as a non-viral vector, and it is preferable to administer it once every several days to several months.
  • the dose of the HGF gene is selected from the range of about 1 to about 4000 ⁇ g, preferably about 10 to about 400 g per adult patient, as the amount of the HGF gene encoding HGF.
  • the HGF content of the preparation of the present invention can be appropriately adjusted in the same manner according to the disease to be treated, the age and weight of the patient, etc., but usually 6 // g to 600 mg, preferably Is 60 g to 6 Omg, which is preferably administered once every few days to several months.
  • any cell can be appropriately used as long as the cell can be transplanted to a site of a damaged tissue associated with an ischemic or diabetic organ disease.
  • ischemic or diabetic organ disease For example, in heart diseases such as severe heart failure and severe myocardial infarction, cardiomyocytes, smooth muscle cells, fibroblasts, skeletal muscle-derived cells (particularly satellite cells), bone marrow cells (particularly myocardium) Bone marrow cells differentiated into like cells) and the like.
  • transplantation cells can be appropriately selected for other organs.
  • transplantation of neural progenitor cells into cerebral ischemia / cerebral infarct site or cells capable of differentiating into neural cells, differentiation into vascular endothelial cells or vascular endothelial cells into myocardial infarction site / skeletal muscle ischemic site Transplantation of natural cells is an example of the transplanted cells.
  • cells used for cell transplantation for diabetic organ damage are variously examined for diseases such as impaired blood circulation of the kidney, knee, peripheral nerves, eyes, and limbs, can be mentioned.
  • the dose of the transplanted cells can be appropriately adjusted depending on the disease to be treated, the age of the patient, the transplanted cells to be treated, and the like.
  • the dose of the transplanted cells of the present invention is 1 ⁇ 10 4 to 10 11. It is preferable to administer HGF or the HGF gene once a few days to several months at the same time.
  • the range is 1 ⁇ 10 4 to 10 11 , preferably 1 ⁇ 10 6 to 10 9.
  • the dose is selected from the box.
  • an endogenous cardioprotective factor or a cardiomyocyte regeneration factor can be used in combination.
  • factors such as TGF- and heat shock protein (HSP), which are highly expressed during cardiomyocyte injury, reduce myocardial injury and are involved in myocardial repair. I can do it.
  • HGF- and heat shock protein HSP
  • EGF repair various cell damages in tissues, and these genes can also be used.
  • factors involved in myocardial protection and regeneration can be considered.
  • the HGF or HGF gene can be introduced into cardiac myocardial cells alone or in combination as described above, and highly expressed, thereby synthesizing a target protein necessary for damaged cardiomyocytes and the like.
  • the myocardial cells and the like can be restored and regenerated, and the recovery and normalization of the cardiac function that has fallen into cardiomyopathy can be performed. Therefore, it can be used not only for patients with severe cardiomyopathy, but also for those with mild ongoing disease.
  • the present invention is particularly effective in heart disease. According to the present invention, it becomes possible to repair the injured myocardium that has fallen into heart failure and to improve the heart function. Thus, a new rescue path was possible for patients with severe heart failure, severe myocardial infarction, cardiomyopathy, etc., for whom there was no cure other than heart transplantation.
  • Example 1 Effect of HGF gene administration on transplantation of cultured cardiomyocytes to rat ischemic heart
  • the HGF gene used was prepared as follows. First, 2 ml of an HVJ-liposome preparation was prepared from 200 ⁇ of 11 GF cDNA plasmid. The HGF cDNA plasmid content in the liposome preparation was 20% of the plasmid used (40 ⁇ g of plasmid was contained in the preparation). 0.2 ml of this 2 ml HV J-liposome preparation was administered.
  • Administration was performed by injecting and administering cardiomyocytes and the HGF gene to three sites of the injured myocardium, respectively.
  • EF ejection fraction
  • Figure 2 shows an example of the results.
  • a comparison between the control (Ligation model) and the case of cardiomyocyte transplantation + HGF gene administration (cellTx + HGF) showed an improvement in myocardial blood flow at the injured myocardial site (infarct lesion).
  • Sections of the administration site were prepared and confirmed by microscopic histological evaluation.
  • HF dyeing As shown in Fig. 3 after the color, in the cardiomyocyte transplantation + HGF gene administration group (cellTx + HGF), the transplanted cardiomyocytes settled in the injured myocardium (infarct lesion), and the transplanted cardiomyocytes developed well. However, the increase in cell diameter was histologically observed.
  • cell adhesion factors such as connexin43 and Desmin were confirmed between cardiomyocytes, and formation of Gap junction was observed.
  • apoptosis cells were searched by TUNEL staining.
  • Fig. 5 shows the stained image. According to the results, apoptosis of the transplanted cardiomyocytes was observed in the cardiomyocyte transplantation group (cellTx), but not in the cardiomyocyte transplantation + HGF gene administration group (cellTx + HGF).
  • Administration is performed by injecting and administering cardiomyocytes and HGF to the three sites of the injured myocardium, respectively.
  • the following methods are used to evaluate the improvement of cardiac function and the improvement of myocardial blood flow at 4 and 8 weeks after cardiomyocyte transplantation.
  • ejection fraction Is measured.
  • the evaluation of cardiac function improvement can also be evaluated by expressing the degree of improvement assuming that the value of one solid before transplantation is 1. Compared with the control group and the cardiomyocyte transplantation group (cellTx), marked improvement is seen in the cardiomyocyte transplantation + HGF administration group (cellTx + HGF).
  • Apoptosis cells can be evaluated by TUNEL staining. Apoptosis of the transplanted cardiomyocytes is observed in the cardiomyocyte transplantation group (cellTx), but not in the cardiomyocyte transplantation + HGF administration group (cellTx + HGF).
  • a rat myocardial infarction model was prepared as in Example 2, two weeks later, divided into three groups,
  • For the control group 0.2 ml of the medium alone is administered into the ischemic area around the infarct area.
  • the cardiomyocyte transplantation group 1 ⁇ 10 7 cultured cardiomyocytes are injected together with the medium into the ischemic site around the infarct area.
  • the cardiomyocyte transplantation + HGF sustained release preparation administration group 0.2 ml of a liquid HGF sustained release preparation is administered. Administration is performed by injecting and administering cardiomyocytes and HGF to three sites of the affected myocardium, respectively.
  • the HGF gene or HGF can promote the colonization of cardiomyocytes transplanted into the affected area of the injured myocardium, and can also suppress apoptosis of the transplanted cardiomyocytes and fibrosis at the damaged site. Therefore, the HGF gene or HGF can be effectively used for treatment of severe myocardial infarction or cardiomyopathy by cardiomyocyte transplantation.

Abstract

In the treatment of severe myocardial infarction or myocardiopathy by transplanting myocardial cells into the affected site of severe myocardial infarction or myocardiopathy, the fixation of the transplanted myocardial cells can be promoted and apoptosis of the transplanted myocardial cells and fibrosis of the damaged myocardial site can be inhibited by administering HGF gene or HGF to the damaged myocardial site. Thus severe myocardial infarction or myocardiopathy can be effectively treated.

Description

明 細 書 移植細胞定着促進用医薬組成物 技術分野  Description Pharmaceutical composition for promoting cell transplantation
本発明は、 肝実質細胞増殖因子 (H G F) または H G F遺伝子を有効成分とし て含む、 疾患障害部位への移植細胞の細胞定着促進用医薬組成物およぴ疾患障害 部位への移植細胞のアポトーシスまたは疾患障害部位の線維化抑制用医薬組成物 に関する。 更に詳しくは、 H G Fまたは H G F遺伝子を有効成分として含む、 障 害心筋部位への移植心筋細胞の定着促進用医薬組成物および障害心筋部位への移 植心筋細胞のアポトーシスまたは障害心筋部位の線維化抑制用医薬組成物に関す る。 また、 移植用細胞と H G Fまたは H G F遺伝子を疾患障害部位に注入するこ とからなる虚血性あるいは糖尿病性の臓器疾患治療法に関する。 更に詳しくは、 心筋細胞と H G Fまたは H G F遺伝子を障害心筋部位に注入することからなる虚 血性あるいは糖尿病性の心臓疾患治療法に関する。 特に、 心筋梗塞による心虚血 部位あるいは心筋症による障害心筋部位に移植用心筋細胞と H G Fまたは H G F 遺伝子を投与する心筋梗塞あるいは心筋症の治療法に関する。  The present invention relates to a pharmaceutical composition for promoting cell colonization of transplanted cells to a disease-damaged site, comprising a hepatocyte growth factor (HGF) or an HGF gene as an active ingredient, and apoptosis of transplanted cells to a disease-damaged site. The present invention relates to a pharmaceutical composition for suppressing fibrosis at a diseased site. More specifically, a pharmaceutical composition containing HGF or an HGF gene as an active ingredient for promoting the transplantation of transplanted cardiomyocytes to a damaged myocardial site and suppressing apoptosis of transplanted cardiomyocytes or fibrosis at a damaged myocardial site The present invention relates to a pharmaceutical composition for medical use. The present invention also relates to a method for treating ischemic or diabetic organ diseases, which comprises injecting transplantation cells and HGF or the HGF gene into a diseased site. More specifically, the present invention relates to a method for treating ischemic or diabetic heart disease, which comprises injecting cardiomyocytes and HGF or HGF gene into a damaged myocardial site. In particular, the present invention relates to a method for treating myocardial infarction or cardiomyopathy by administering cardiomyocytes for transplantation and HGF or the HGF gene to a site of cardiac ischemia due to myocardial infarction or an injured myocardial site due to cardiomyopathy.
背景技術 Background art
循環器領域においては、 近年のめざましい医療技術の向上に拘わらず、 心臓移 植以外に治療の道のない疾患が残されている。 例えば、 重症心不全、 重度心筋梗 塞あるいは心筋症がそのような疾患として挙げられる。  In the circulatory field, despite the remarkable improvement in medical technology in recent years, there remains a disease that cannot be treated except for heart transplantation. For example, severe heart failure, severe myocardial infarction or cardiomyopathy are such diseases.
心筋梗塞とは、 冠状動脈の種々の病変による高度狭窄、 閉塞によってその灌流 領域に虚血性壌死が生じる疾患である。 心筋梗塞の重症度判定にはいくつかの分 類があり、 これらを併用することで個々の病態をより明確に把握することができ る。 例えば、 時間的経過による分類、 心筋層内範囲 ·部位 ·壊死の大きさなどに よる形態学的分類、 心筋の壌死形態や梗塞後の心室再構築 ·治療や予後と関連し た血行動態的分類、 臨床的重症度による分類などが挙げられる。 これらの分類に より重症度が高いと判断されるものが本発明で言うところの重度心筋梗塞である。 重度心筋梗塞の治療方法としては、 現在に至るも的確な治療方法がなく、 心臓移 植が残されているに過ぎなレ、状況である。 Myocardial infarction is a disease in which ischemic ischemia occurs in the perfused area due to severe stenosis or occlusion due to various lesions of the coronary artery. There are several classifications for determining the severity of myocardial infarction, and by using these in combination, individual pathological conditions can be more clearly understood. For example, classification based on time course, morphological classification based on the extent and location of the myocardium, the size of the necrosis, ventricular reconstruction after myocardial death and infarction, and hemodynamics related to treatment and prognosis Classification, classification by clinical severity, and the like. What is judged to be high in severity according to these classifications is severe myocardial infarction according to the present invention. There is no accurate treatment method for severe myocardial infarction to date. It is a situation where only the plant is left.
心筋症とは心筋の器質的および機能的異常に起因する疾患の総称であり、 高血 圧、 代謝異常症、 虚血等の基礎疾患に続発する二次性心筋症と、 明らかな基礎疾 患なしに発症する突発性心筋症 (I CM) に分類される。 病理的変化としては心 筋肥大 ·線維化、 変性などが認められる。  Cardiomyopathy is a general term for diseases caused by structural and functional abnormalities of the myocardium.Secondary cardiomyopathy secondary to underlying diseases such as hypertension, metabolic disorders, and ischemia, and obvious underlying diseases It is classified as idiopathic cardiomyopathy (ICM) that develops without any. Pathological changes include myocardial hypertrophy, fibrosis, and degeneration.
以上のように、 心筋症に関しては、 原因の比較的明らかなものから、 原因が全 く不明なものまで、 かなり広範な広がりを持っている。 現在の状況は、 その原因 の特定と発症機構の解明についての研究が行われている状況であり、 確実な治療 方法というものは未だ見出されていない。  As described above, cardiomyopathy has a fairly widespread spectrum, from relatively obvious causes to those with completely unknown causes. At present, research is being carried out to identify the cause and elucidate the pathogenic mechanism, and no reliable treatment method has yet been found.
心不全とは、 心機能不全、 循環機能不全、 収縮力減退など心臓自体に障害があ つて、 全身の臓器へ必要な量と質の血液を循環し得なくなった状態を心不全とい レ、、 心筋梗塞、 心筋症等の心臓疾患の末期の症状である。 重症心不全とは、 その 程度が重いものを言い、 末期心不全とも言われる。  Heart failure is a condition in which the heart itself is impaired, such as cardiac insufficiency, circulatory insufficiency, and reduced contractile force, and the inability to circulate the required quantity and quality of blood to the organs throughout the body is called heart failure. However, cardiomyopathy is a terminal symptom of heart disease. Severe heart failure is defined as severe heart failure, also known as end-stage heart failure.
重症心不全患者の治療には、 心移植以外に道はなく、 また移植が行われても、 拒絶反応等の種々の問題があり、 多くの点でいまだ完全なものではなかった。 そこで、 現在、 新しい試みとして重症心不全、 重度心筋梗塞や心筋症の治療に、 自己の心房細胞や右心室細胞を心臓障害患部に移植することが検討され始めてい る (細胞工学、 19、 860-863 (2000) ) 。  There is no other way to treat patients with severe heart failure than heart transplantation, and even if transplantation is performed, there are various problems such as rejection, and it has not been perfect in many respects. Therefore, transplantation of own atrial cells and right ventricular cells into affected areas of the heart disorder is now being considered as a new trial for the treatment of severe heart failure, severe myocardial infarction and cardiomyopathy (Cell Engineering, 19, 860- 863 (2000)).
し力 しながら、 このような心筋細胞移植においては、 移植心筋細胞の定着の良 否が治療の成否を決めることになる。 現在のところでは、 移植心筋細胞の定着率 は精々 2〜 3割程度のものでしかなかった。  However, in such cardiomyocyte transplantation, the quality of transplantation of the transplanted cardiomyocytes determines the success or failure of the treatment. At present, the transplantation rate of transplanted cardiomyocytes is only about 20 to 30% at most.
発明の開示 Disclosure of the invention
本発明の目的は、 虚血性あるいは糖尿病性の臓器疾患治療に対して移植細胞の 細胞定着促進用医薬組成物を提供することである。 さらに詳しく言えば、 これら 医薬,組成物に基づき、 これまで有効な治療法が見出せていない重症心筋梗塞や心 筋症の治療に好適な心筋細胞を移植する治療法を提供することにある。  An object of the present invention is to provide a pharmaceutical composition for promoting cell colonization of transplanted cells for treating ischemic or diabetic organ diseases. More specifically, it is an object of the present invention to provide a therapeutic method for transplanting cardiomyocytes suitable for treating severe myocardial infarction or cardiomyopathy, for which no effective therapeutic method has been found based on these drugs and compositions.
本発明者は上記の課題を解決すベく鋭意検討した結果、 H G Fまたは H G F遺 伝子を併用して細胞移植を行うことにより、 移植細胞の定着化が促進されること を見出した。 即ち、 心筋細胞の細胞移植において H G Fまたは H G F遺伝子を併 用すれば、 心筋細胞の定着化が促進され、 移植心筋細胞のアポトーシスおょぴ移 植先の障害部位の心筋細胞の線維化が抑制されることを見出した。 そして、 心機 能が大幅に改善され、 細胞所見を比較しても、 明らかに心筋細胞が成熟している ことが示された。 The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that colonization of transplanted cells is promoted by performing cell transplantation using HGF or an HGF gene in combination. In other words, HGF or the HGF gene was used in cardiomyocyte cell transplantation. It was found that when used, the colonization of the cardiomyocytes was promoted, and the apoptosis of the transplanted cardiomyocytes and the fibrosis of the cardiomyocytes at the damaged site of the transplantation destination were suppressed. The cardiac function was significantly improved, and a comparison of the cell findings showed that the cardiomyocytes were clearly mature.
本発明者は、 このように、 HGFまたは HGF遺伝子と心筋細胞を直接患部心 筋層に注入することにより、 移植心筋細胞の定着と心筋細胞の再生が可能となり、 心移植を行うことなく、 この心筋細胞移植治療方法により、 重症心不全、 重度心 筋梗塞と心筋症の治療が行えることを見出した。  As described above, the present inventor has found that by injecting HGF or HGF gene and cardiomyocytes directly into the affected myocardium, colonization of the transplanted cardiomyocytes and regeneration of the cardiomyocytes become possible, and without performing heart transplantation. It has been found that cardiomyocyte transplantation can be used to treat severe heart failure, severe myocardial infarction and cardiomyopathy.
更に本発明者等は、 虚血性の臓器疾患に対する細胞移植療法にも、 本発明の H GFまたは HGF遺伝子の使用が有効であることを見出した。 例えば、 上記の心 筋梗塞部位への心筋細胞移植だけではなく、 脳虚血 ·脳梗塞部位への神経前駆細 胞または、 神経細胞に分化可能な細胞の移植、 心筋梗塞部位 ·骨格筋虚血部位へ の血管内皮細胞または血管内皮細胞に分ィ匕可能な細胞の移植なども可能となった。 また、 糖尿病性の臓器疾患に対する細胞移植法にも、 本発明の HGFまたは H GF遺伝子の使用が有効であることを見出した。 即ち、 糖尿病患者では腎臓、 膝 臓、 末梢神経、 眼、 四肢の血行障害など種々の臓器障害が高率で起こる事が知ら れている。 現在、 これらの疾患に対して、 細胞移植による治療法が種々検討され ている。 例えば、 インスリン分泌能が低下した瞎臓にィンスリン分泌細胞を移植 する試みや、 四肢の血行障害に対する骨髄由来細胞の移植などが検討されている 1S 細胞の生着率の低さが問題となっていた。 しかし、 本発明の HGFまたは H GF遺伝子を使用することにより、 糖尿病の患者に対する細胞移植において、 そ の生着を促進し、 効果を高める事ができる。  Furthermore, the present inventors have found that the use of the HGF or the HGF gene of the present invention is also effective for cell transplantation therapy for ischemic organ disease. For example, not only cardiomyocyte transplantation to the above-mentioned myocardial infarction site, but also cerebral ischemia, transplantation of neural progenitor cells to the site of cerebral infarction or cells that can be differentiated into nerve cells, myocardial infarction site, skeletal muscle ischemia Transplantation of vascular endothelial cells or cells that can be divided into vascular endothelial cells into the site has become possible. In addition, it has been found that the use of the HGF or the HGF gene of the present invention is also effective for a cell transplantation method for diabetic organ disease. That is, it is known that in diabetic patients, various organ disorders such as impaired blood circulation of the kidney, knee, peripheral nerves, eyes, and limbs occur at a high rate. At present, various treatments for these diseases by cell transplantation are being studied. For example, attempts are being made to transplant insulin-secreting cells into the spleen with reduced insulin secretion, and transplantation of bone marrow-derived cells for impaired limb blood circulation.The low engraftment rate of 1S cells has become a problem. Was. However, by using the HGF or the HGF gene of the present invention, in cell transplantation to a diabetic patient, the engraftment can be promoted and the effect can be enhanced.
すなわち本発明の要旨は、  That is, the gist of the present invention is:
(1) 肝実質細胞増殖因子 (HGF) または HGF遺伝子を有効成分として含 む、 疾患障害部位への移植細胞の細胞定着を促進するための医薬組成物、  (1) a pharmaceutical composition comprising hepatocyte growth factor (HGF) or an HGF gene as an active ingredient, for promoting cell colonization of transplanted cells at a disease-damaged site;
(2) 疾患障害部位が虚血性または糖尿病性の障害部位である上記 (1) の医 薬組成物、  (2) the pharmaceutical composition according to (1), wherein the diseased site is an ischemic or diabetic site;
(3) 疾患障害部位が障害心筋部位または心虚血部位である上記 (1) または (2) の医薬組成物、 ( 4 ) 疾患障害部位が心筋梗塞による心虚血部位または心筋症による障害心筋 部位である上記 (1) から (3) のいずれかの医薬組成物、 (3) The pharmaceutical composition according to (1) or (2), wherein the diseased site is a damaged myocardial site or a cardiac ischemic site; (4) The pharmaceutical composition according to any of (1) to (3) above, wherein the diseased site is a cardiac ischemic site due to myocardial infarction or a damaged myocardial site due to cardiomyopathy;
( 5 ) 糖尿病性の障害部位がィンスリン分泌能が低下した膝臓または血行障害 のある四肤である上記 (2) の医薬組成物、  (5) The pharmaceutical composition according to the above (2), wherein the diabetic disorder site is a knee with impaired insulin secretion ability or a blood vessel disorder 40.
(6) 疾患障害部位へ移植用細胞と共に投与するための上記 (1) 力 ら (5) のいずれかの医薬組成物、  (6) The pharmaceutical composition according to any one of (1) Riki et al. (5) above, which is administered together with a cell for transplantation to a site of disease.
( 7 ) 障害心筋部位または心虚血部位へ移植用心筋細胞と共に投与するための 上記 (6) の医薬組成物、  (7) The pharmaceutical composition according to (6), which is administered together with a cardiomyocyte for transplantation to a damaged myocardial site or a cardiac ischemic site.
( 8 ) 心筋梗塞による心虚血部位または心筋症による障害心筋部位へ移植用心 筋細胞と共に投与するための上記 (6) または (7) の医薬組成物、  (8) The pharmaceutical composition according to (6) or (7) above, which is administered together with a cardiac muscle cell for transplantation to a site of cardiac ischemia due to myocardial infarction or a site of injured myocardium due to cardiomyopathy.
(9) インスリン分泌能が低下した膝臓ヘインスリン分泌細胞と共に投与する あるいは血行障害のある四肢へ血管内皮細胞へ分化可能な細胞と共に投与するた めの上記 (6) の医薬組成物、  (9) The pharmaceutical composition according to (6), which is administered together with a hepatic insulin secreting cell having a reduced insulin secretion ability, or administered together with a cell capable of differentiating into a vascular endothelial cell to a limb having impaired circulation.
(10) 虚血性または糖尿病性の疾患障害部位へ移植用細胞と共に投与して虚 血性または糖尿病性の臓器疾患を治療するための上記 (1) の医薬組成物、 (10) The pharmaceutical composition of (1) above, which is administered together with cells for transplantation to a site of ischemic or diabetic disease to treat ischemic or diabetic organ disease.
(1 1) 移植用細胞が心筋細胞であり心臓疾患を治療するための上記 (10) の医薬組成物、 (11) The pharmaceutical composition of the above (10), wherein the transplant cell is a cardiomyocyte, and for treating a heart disease,
(1 2) 心筋梗塞による心虚血部位または心筋症による障害心筋部位へ移植用 心筋細胞と共に投与して心筋梗塞または心筋症を治療するための上記 (1 0) ま たは (1 1) の医薬組成物、  (1 2) The medicament according to the above (10) or (11) for treating myocardial infarction or cardiomyopathy by administering together with myocardial cells for transplantation to a site of cardiac ischemia due to myocardial infarction or to an injured myocardium due to cardiomyopathy Composition,
(1 3) インスリン分泌能が低下した脾臓ヘインスリン分泌細胞と共に投与し てあるいは血行障害のある四肢へ血管内皮細胞へ分ィヒ可能な細胞と共に投与して 糖尿病性の臓器疾患を治療する上記 (10) の医薬組成物、  (13) Treatment of diabetic organ disease by administration together with spleen hesin-secreting cells with reduced insulin secretion ability, or administration to limbs with impaired blood circulation together with cells that can be distributed to vascular endothelial cells. 10) a pharmaceutical composition,
(14) HGFまたは HGF遺伝子を有効成分として含む、 疾患障害部位への 移植細胞のアポトーシスまたは疾患障害部位の線維化を抑制するための医薬糸且成 物、  (14) a pharmaceutical composition comprising HGF or an HGF gene as an active ingredient, for suppressing apoptosis of transplanted cells into a diseased lesion or fibrosis at the diseased lesion,
(1 5) 疾患障害部位が虚血性または糖尿病性の障害部位である上記 (14) の医薬組成物、  (15) The pharmaceutical composition according to the above (14), wherein the diseased site is an ischemic or diabetic site.
(16) 疾患障害部位が障害心筋部位または心虚血部位である上記 (14) ま たは (15) の医薬組成物、 (16) The above-mentioned (14), wherein the diseased site is a damaged myocardial site or a cardiac ischemic site. Or a pharmaceutical composition of (15),
(1 7) 移植細胞が心筋細胞である上記 (14) から (1 6) のいずれ の医 薬組成物、  (17) The pharmaceutical composition according to any of (14) to (16), wherein the transplanted cells are cardiomyocytes,
(18) 糖尿病性の障害部位がインスリン分泌能が低下した腾臓または血行障 害のある四肢である上記 (15) の医薬組成物、  (18) The pharmaceutical composition according to the above (15), wherein the diabetic disorder site is a stomach with impaired insulin secretion ability or a limb with impaired blood circulation,
(1 9) HGF遺伝子が HGFを発現しうるウィルスベクターまたは非ウィル スベクターの形態にある上記 (1) から (i s) のいずれかの医薬組成物、  (19) the pharmaceutical composition according to any of (1) to (is), wherein the HGF gene is in the form of a viral vector or a non-viral vector capable of expressing HGF;
(20) HGF遺伝子が HV Jリボソームの形態にある上記 (1 9) の医薬組 成物、  (20) the pharmaceutical composition according to (19), wherein the HGF gene is in the form of HV J ribosome;
(2 1) 医薬組成物が生体親和性材料からなる徐放性製剤の形態にある上記 (1) から (20) のいずれかの医薬組成物、  (2 1) The pharmaceutical composition according to any of (1) to (20) above, wherein the pharmaceutical composition is in the form of a sustained-release preparation comprising a biocompatible material,
(22) 生体親和性材料がシリコーン、 コラーゲン、 ゼラチンあるいはグリコ ール酸 ·乳酸の共重合体である上記 (21) の医薬組成物、  (22) The pharmaceutical composition according to the above (21), wherein the biocompatible material is silicone, collagen, gelatin or a copolymer of glycolic acid and lactic acid.
(23) 疾患障害部位へ移植用細胞を投与する際に、 H G Fまたは H G F遺伝 子を該疾患障害部位へ投与することを含む移植細胞の定着を促進する方法、  (23) a method of promoting colonization of transplanted cells, which comprises administering HGF or an HGF gene to the diseased lesion when administering the cells for transplantation to the diseased lesion,
(24) 疾患障害部位が虚血性または糖尿病性の障害部位である上記 (23) の方法、  (24) The method according to (23), wherein the diseased site is an ischemic or diabetic site.
(25) 疾患障害部位が障害心筋部位または心虚血部位である上記 (23) ま たは (24) の方法、  (25) The method according to (23) or (24) above, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site.
(26) 移植細胞が心筋細胞である上記 (23) から (25) のいずれかの方 法、  (26) The method according to any of (23) to (25) above, wherein the transplanted cells are cardiomyocytes,
(27) 糖尿病性の障害部位がインスリン分泌能が低下した瞵臓または血行障 害のある四肢である上記 (24) の方法、  (27) The method according to (24) above, wherein the diabetic disorder site is a limb with impaired insulin secretion or a limb with impaired blood circulation,
(28) 移植細胞がィンスリン分泌細胞または血管内皮細胞へ分化可能な細胞 である上記 (27) の方法、  (28) The method according to (27) above, wherein the transplanted cells are cells capable of differentiating into insulin-secreting cells or vascular endothelial cells,
(29) 虚血性または糖尿病性の疾患障害部位へ移植細胞と共に HGFまたは HG F遺伝子を投与することを含む、 虚血性または糖尿病性の臓器疾患治療方法、 (29) a method for treating ischemic or diabetic organ disease, comprising administering an HGF or HGF gene together with transplanted cells to an ischemic or diabetic disease disorder site;
(30) 障害心筋部位または心虚血部位へ移植用心筋細胞と共に HGFまたは HGF遺伝子を投与して心臓疾患を治療する上記 (29) の治療方法、 (31) インスリン分泌能が低下した膝臓ヘインスリン分泌細胞と共にあるい は血行障害のある四肢へ血管内皮細胞へ分化可能な細胞と共に H G Fまたは H G F遺伝子を投与して糖尿病性の臓器疾患を治療する上記 (29) の治療方法、(30) the method of the above (29), wherein the HGF or the HGF gene is administered together with a cardiomyocyte for transplantation to a damaged myocardial site or a cardiac ischemic site to treat a heart disease; (31) Treat diabetic organ disease by administering HGF or HGF gene together with hepatic insulin secreting cells with reduced insulin secretion ability or cells capable of differentiating into vascular endothelial cells to limbs with impaired blood circulation The treatment method of the above (29),
(32) HGF遺伝子が HGFを発現しうるウィルスベクターまたは非ウィル スベクターの形態にある上記 (29) から (31) のいずれかの治療方法、(32) The therapeutic method according to any of (29) to (31) above, wherein the HGF gene is in the form of a viral vector or a non-viral vector capable of expressing HGF.
(33) HGF遺伝子が HV Jリボソームの形態にある上記 (32) の治療方 法、 (33) The treatment method according to (32), wherein the HGF gene is in the form of HV J ribosome,
(34) HGFまたは HGF遺伝子を、 生体親和性材料からなる徐放性製剤の 形態で投与する上記 (27) から (33) のいずれかの治療方法、  (34) The therapeutic method according to any of (27) to (33), wherein the HGF or the HGF gene is administered in the form of a sustained-release preparation comprising a biocompatible material,
(35) 生体親和性材料がシリコーン、 コラーゲン、 ゼラチンあるいはグリコ ール酸 ·乳酸の共重合体である上記 (34) の治療方法、  (35) The method according to the above (34), wherein the biocompatible material is a copolymer of silicone, collagen, gelatin or glycolic acid / lactic acid.
(36) 疾患障害部位への移植細胞の定着を促進するための医薬組成物を製造 するための H G Fまたは H G F遺伝子の使用、  (36) use of an HGF or HGF gene for producing a pharmaceutical composition for promoting transplantation of transplanted cells to a disease / lesion site,
(37) 疾患障害部位が虚血性または糖尿病性の障害部位である上記 (36) の使用、  (37) Use according to the above (36), wherein the disease lesion is an ischemic or diabetic lesion.
(38) 疾患障害部位が障害心筋部位または心虚血部位である上記 (36) ま たは (37) の使用、  (38) The use of (36) or (37) above, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site;
(39) 移植細胞が心筋細胞である上記 (36) から (38) のいずれかの使 用、  (39) Use of any of (36) to (38) above, wherein the transplanted cells are cardiomyocytes,
(40) 糖尿病性の障害部位がィンスリン分泌能が低下した藤臓または血行障 害のある四肢である上記 (37) の使用、  (40) The use of the above (37), wherein the diabetic disorder site is a wisteria with reduced insulin secretion ability or a limb with impaired blood circulation,
(41) 移植細胞がィンスリン分泌細胞または血管内皮細胞へ分化可能な細胞 である上記 (40) の使用、  (41) Use of the above (40), wherein the transplanted cells are cells capable of differentiating into insulin-secreting cells or vascular endothelial cells,
(42) 疾患障害部位への移植細胞のアポトーシスまたは疾患障害部位の線維 化を抑制するための医薬組成物を製造するための HGFまたは HGF遺伝子の使 用、  (42) use of HGF or an HGF gene for producing a pharmaceutical composition for suppressing apoptosis of transplanted cells into a diseased lesion or fibrosis at the diseased lesion,
(43) 疾患障害部位が虚血性または糖尿病性の障害部位である上記 (42) の使用、  (43) The use according to (42) above, wherein the diseased site is an ischemic or diabetic site.
(44) 疾患障害部位が障害心筋部位または心虚血部位である上記 (42) ま たは (43) の使用、 (44) The above (42) or the above, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site. Or use of (43),
(45) 移植細胞が心筋細胞である上記 (42) から (44) のいずれかの使 用、  (45) Use of any of (42) to (44) above, wherein the transplanted cells are cardiomyocytes,
(46) 糖尿病性の障害部位がィンスリン分泌能が低下した藤臓または血行障 害のある四肢である上記 (43) の使用、  (46) The use of the above (43), wherein the diabetic disorder site is a wisteria with reduced insulin secretion ability or a limb with impaired blood circulation,
(47) 移植細胞がィンスリン分泌細胞または血管内皮細胞へ分ィヒ可能な細胞 である上記 (46) の使用、  (47) Use of the above (46), wherein the transplanted cell is a cell capable of transferring to insulin-secreting cells or vascular endothelial cells,
(48) HGF遺伝子が HGFを発現しうるウィルスベクターまたは非ウィル スベクターの形態にある上記 (3 6) から (47) のいずれかの使用、 (48) Use of any of the above ( 36 ) to (47), wherein the HGF gene is in the form of a viral vector or a non-viral vector capable of expressing HGF,
(49) HGF遺伝子が HV Jリボソームの形態にある上記 (48) の使用、 (50) 医薬組成物が生体親和性材料からなる徐放性製剤の形態にある上記 (36) から (49) のいずれかの使用、  (49) The use of the above (48), wherein the HGF gene is in the form of HV J ribosome, (50) the use of the above (36) to (49), wherein the pharmaceutical composition is in the form of a sustained-release preparation comprising a biocompatible material. Any use,
(51) 生体親和性材料がシリコーン、 コラーゲン、 ゼラチンあるいはグリコ ール酸 ·乳酸の共重合体である上記 (50) の使用、  (51) Use of the above (50), wherein the biocompatible material is a copolymer of silicone, collagen, gelatin or glycolic acid / lactic acid,
である。 It is.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 心機能向上の比較データを示すグラフである。  FIG. 1 is a graph showing comparative data of improvement in cardiac function.
図 2は、 障害心筋部位 (梗塞巣) の心筋血流量の改善度を示すグラフである。 図 3は、 H F染色した投与部位の移植心筋細胞の定着性を示す組織断片顕微鏡 写真である。  FIG. 2 is a graph showing the degree of improvement in myocardial blood flow at the injured myocardial site (infarct lesion). FIG. 3 is a tissue fragment micrograph showing the fixation of transplanted cardiomyocytes at the administration site stained with HF.
図 4は、 心筋細胞間に細胞接着因子 (connexin43、 Desmin) が確認され、 Gap junctionの形成が見られたことを示す組織新片顕微鏡写真である。  FIG. 4 is a micrograph of a tissue slice showing that cell adhesion factors (connexin43, Desmin) were confirmed between cardiomyocytes and that a Gap junction was formed.
図 5は、 移植心筋細胞の生存度を示す組織断片顕微鏡写真である。  FIG. 5 is a tissue fragment micrograph showing the viability of the transplanted cardiomyocytes.
図 6は、 H G F遺伝子の併用による心筋細胞の線維化抑制効果を表すグラフで ある。  FIG. 6 is a graph showing the inhibitory effect of cardiomyocyte fibrosis by the combined use of the HGF gene.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明で使用される HGFは公知物質であり、 医薬として使用できる程度に精 製されたものであれば、 種々の方法で調製されたものを用いることができ、 また 既に市販されている製品 (例えば、 東洋紡 C o d e No. HGF— 101等) を使用してもよい。 HGFの製造法としては、 例えば、 HGFを産生する初代培 養細胞や株化細胞を培養し、 培養上清等から分離、 精製して該 HGFを得ること ができる。 あるいは遺伝子工学的手法により HGFをコードする遺伝子を適切な ベクターに組み込み、 これを適当な宿主に揷入して形質転換し、 この形質転換体 の培養上清から目的とする組換え H G Fを得ることができる (例えば The HGF used in the present invention is a known substance. As long as it is purified to the extent that it can be used as a medicine, HGF prepared by various methods can be used. For example, Toyobo Code No. HGF-101 etc.) May be used. As a method for producing HGF, for example, the HGF can be obtained by culturing primary cultured cells or cell lines that produce HGF, and separating and purifying it from a culture supernatant or the like. Alternatively, an HGF-encoding gene is incorporated into an appropriate vector by genetic engineering techniques, inserted into an appropriate host, and transformed to obtain the desired recombinant HGF from the culture supernatant of this transformant. (For example,
Na t u r e, 342, 440 (1989) 、 特開平 5— 1 1 1383号公報、 B i o c h em. B i o p hy s . Re s. Co mmu n . 1 63, 967 丄 989) など参照) 。 上記の宿主細胞は特に限定されず、 従来から遺伝子工学的 手法で用いられている各種の宿主細胞、 例えば大腸菌、 酵母又は動物細胞などを 用いることができる。 このようにして得られた HGFは、 天然型 HGFと実質的 に同じ作用を有する限り、 そのアミノ酸配列中の 1若しくは複数のアミノ酸が置 換、 欠失及び Z又は付加されていてもよく、 また同様に糖鎖が置換、 欠失及び Z 又は付カ卩されていてもよい。  Nature, 342, 440 (1989), Japanese Patent Application Laid-Open No. Hei 5-111383, Biochem. Biophys. Res. Commun. 163, 967-989)). The host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques, for example, Escherichia coli, yeast, or animal cells can be used. The HGF thus obtained may have one or more amino acids in its amino acid sequence replaced, deleted and Z or added, as long as it has substantially the same action as natural HGF. Similarly, the sugar chain may be substituted, deleted and Z- or added.
本発明で使用される HGF遺伝子とは、 HGFを発現し得る遺伝子を言い、 当 該遺伝子には、 発現されるポリペプチドが HGFと実質的に同効である限り、 そ の遺伝子配列の一部が欠失又は他の塩基により置換されていたり、 他の塩基配列 がー部挿入されていたり、 5' 末端及び Z又は 3' 末端に塩基が結合したような 遺伝子も包含される。 また、 HGFをコードする遺伝子とス トリンジェントな条 件でハイプリダイズし H G Fと同様の機能を有する蛋白質をコードする遺伝子で もよい。 このような遺伝子としては、 例えば、 Nature, 342, 440 (1989)、 特開平 5- 111383号公報、 Biochem. Biophys. Res. Co匪 un. 163, 967 (1989)などに記載の HGF遺伝子が例示され、 これらの遺伝子を本発明で使用することが出来る。 こ れらの遺伝子は、 周知の PC R法により得ることもでき、 また化学的に合成する こともできる。 またこれらの方法と例えば部位特異的突然変異誘発法、 通常のハ イブリダイゼーション法などを組みあわせて得ることもできる。  The HGF gene used in the present invention refers to a gene capable of expressing HGF, and includes a part of the gene sequence as long as the expressed polypeptide is substantially the same as HGF. Also include a gene in which is deleted or replaced by another base, another base sequence is inserted into the base, or a base is bonded to the 5 'end and the Z or 3' end. Further, a gene that hybridizes with a gene encoding HGF under stringent conditions and encodes a protein having the same function as HGF may be used. Examples of such a gene include the HGF gene described in Nature, 342, 440 (1989), JP-A-5-111383, Biochem. Biophys. Res. Thus, these genes can be used in the present invention. These genes can be obtained by the well-known PCR method or can be chemically synthesized. In addition, these methods can be combined with, for example, site-directed mutagenesis, ordinary hybridization, and the like.
次に、 本発明において用いられる HGF遺伝子の投与法、 投与形態等について 記述する。  Next, the administration method and administration form of the HGF gene used in the present invention will be described.
前記 HGF遺伝子を患者に投与する場合、 その投与形態としては非ウィルスべ クタ一による投与形態、 ウィルスベクターによる投与形態おょぴ naked DNA直 接注射法による投与形態の三つに大別され、 実験手引書などにその調製法、 投与 法が詳しく解説されている (別冊実験医学,遺伝子治療の基礎技術,羊土社, 1996、 別冊実験医学,遺伝子導入 &発現解析実験法,羊土社, 1997) 。 以下、 具体的に説 明する。 When administering the HGF gene to a patient, the dosage form may be a non-viral vector dosage form, a viral vector dosage form, or a naked DNA It is roughly divided into three types of administration by the indirect injection method, and its preparation method and administration method are described in detail in experimental manuals and other documents. (Separate volume experimental medicine, basic technology of gene therapy, Yodosha, 1996, separate volume experiment Medicine, Gene Transfer & Expression Analysis Experimental Method, Yodosha, 1997). The details are described below.
A. 非ウィルスベクターを用いる場合 A. When using non-viral vectors
遺伝子発現ベクターに本発明の HGFをコードする DNAを組み込み、 リポソ ームを用いて DN A分子を導入する方法 (リボソーム法、 HV J—リボソーム法、 カチォニックリボソーム法、 リボフヱクチン法、 リボフヱクトァミン法) 、 マイ クロインジェクション法、 遺伝子銃 (Gene Gun) で坦体 (金属粒子) とともに D N A分子を細胞に移入する方法等の何れかの方法により組換え発現ベクターを細 胞内に取り込ませることが可能である。 ここで用いられる発現ベクターとしては、 例えば p CAGGS (Gene 108, 193- 200(1991)) や、 p BK— CMV、 p c DN A3. 1、 p Z e o SV (インビトロゲン社、 ストラタジーン社) などの発現べ クタ一が挙げられる。  A method of incorporating DNA encoding the HGF of the present invention into a gene expression vector and introducing a DNA molecule using a liposome (ribosome method, HVJ-ribosome method, catonic ribosome method, ribofectin method, ribofector method) Mining method), microinjection method, transfer of DNA molecule into cells together with carrier (metal particles) by gene gun (Gene Gun), etc. Is possible. Examples of expression vectors used here include pCAGGS (Gene 108, 193-200 (1991)), pBK-CMV, pcDN A3.1, pZeo SV (Invitrogen, Stratagene) and the like. Vector.
このうち HV J—リボソームは、 脂質二重膜で作られたリボソーム中に DNA を封入し、 さ らにこの リ ポソームと不活化したセ ンダイ ウィルス (Hemagglutinating virus of Japan : HVJ) とを融合させたものである。 当 該 HV J—リポソ一ム法は従来のリポソーム法と比較して、 細胞膜との融合活性 が非常に高いことを特徴とするものであり、 好ましい導入形態である。 HVJ— リポソームの調製法については文献 (実験医学別冊,遺伝子治療の基礎技術,羊土 社, 1996、 遺伝子導入 &発現解析実験法,羊土社, 1997、 J. Clin. Invest.93, 1458- 1464(1994)、 Am. J. Physiol.271, R1212- 1220(1996) ) などに詳しく述べられてお り、 また後述の実施例にも詳しく記載されているため、 それらを参照されたい。 なお HVJとしては Z株 (ATCCより入手可能) が好ましいが、 基本的には他の H V J株 (例えば ATCC VR-907や ATCC VR - 105など) も用いることができる。  Among these, HVJ-ribosome encapsulates DNA in ribosomes made of lipid bilayer, and then fuses this liposome with inactivated Sendai virus (Hemagglutinating virus of Japan: HVJ). Things. The HV J-liposome method is characterized by having a very high fusion activity with the cell membrane as compared with the conventional liposome method, and is a preferable introduction form. HVJ-Liposome preparation method is described in the literature (Experimental Medicine Separate Volume, Basic Techniques for Gene Therapy, Yodosha, 1996, Gene Transfer & Expression Analysis Experimental Method, Yodosha, 1997, J. Clin. Invest. 93, 1458- 1464 (1994), Am. J. Physiol. 271, R1212-1220 (1996)) and the like, and are described in detail in the examples described later. The HVJ is preferably the Z strain (available from ATCC), but basically other HVJ strains (eg, ATCC VR-907 and ATCC VR-105) can also be used.
B. ウィルスベクターを用いる場合 B. When using viral vectors
ウィルスベクターとしては、 組換えアデノウイルス、 レトロウイルス等のウイ ルスベクターを用いた方法が代表的なものである。 より具体的には、 例えば、 無 毒化したレトロウイルス、 アデノウイルス、 アデノ随伴ウィルス、 ヘルぺスウイ ノレス、 ワクシニアゥイノレス、 ボックスゥイノレス、 ポリオウイルス、 シンビスウイ ルス、 センダイウィルス、 SV40、 免疫不全症ウィルス (H I V) 等の DNA ウィルスまたは RN Aウィルスに本発明の DN Aを導入し、 細胞に組換えウィル スを感染させることによって、 細胞内に遺伝子を導入することが可能である。 前記ウィルスベクターの内、 アデノウイルスの感染効率が他のウィルスベクタ 一を用いた場合よりもはるかに高いことが知られており、 この観点からは、 アデ ノウィルスベクター系を用いることが好ましい。 A typical example of a virus vector is a method using a virus vector such as a recombinant adenovirus or retrovirus. More specifically, for example, detoxified retrovirus, adenovirus, adeno-associated virus, herpes virus The DNA of the present invention is introduced into a DNA virus such as Nores, vaccinia-inoles, box-inoles, poliovirus, Cymbis virus, Sendai virus, SV40, immunodeficiency virus (HIV) or RNA virus, and the DNA is introduced into cells. By infecting the recombinant virus, it is possible to introduce the gene into cells. It is known that the adenovirus infection efficiency among the above virus vectors is much higher than when other virus vectors are used. From this viewpoint, it is preferable to use an adenovirus vector system.
C. DN A直接注射法 (naked DNA法) C. DNA direct injection method (naked DNA method)
D N A直接注射法とは、 例えば上記した非ウィルスベクターである発現プラス ミ ドを生理食塩水に溶解しそのまま投与する方法であり、 例えば、 Circulation, 96(Suppl. Π) , 382- 388 (1997)に記載の方法により、 骨格筋、 心筋、 皮下、 肝臓、 甲状腺等の組織に直接注入することができる。  The direct DNA injection method is, for example, a method in which the above-mentioned expression plasmid, which is a non-viral vector, is dissolved in physiological saline and administered as it is.For example, Circulation, 96 (Suppl.Π), 382-388 (1997) Can be directly injected into tissues such as skeletal muscle, myocardium, subcutaneous, liver, and thyroid.
次に、 本発明の治療において用いられる上記した HG F遺伝子の製剤形態およ び投与量、 並びに HGFを用いる場合の投与経路、 製剤形態および投与量等につ いて述べる。  Next, the preparation form and dosage of the above-mentioned HGF gene used in the treatment of the present invention, and the administration route, preparation form and dosage when HGF is used, will be described.
上記した H G F遺伝子の製剤形態としては、 上記の各投与形態に合った種々の 製剤形態 (例えば液剤など) をとり得る。 また H G Fを投与する場合の投与経路 としては、 骨格筋、 心筋、 脾臓、 肝臓、 甲状腺等の組織に直接投与することがで さる。  As the above-mentioned preparation form of the HGF gene, various preparation forms (for example, liquid preparations) suitable for each of the above-mentioned administration forms can be taken. As a route of administration of HGF, it can be directly administered to tissues such as skeletal muscle, myocardium, spleen, liver, and thyroid.
製剤形態としては、 例えば有効成分である H G Fまたは H G F遺伝子を含有す る注射剤とすることができる。 当該注射剤は常法により調製することができ、 例 えば適切な溶剤 (PB S等の緩衝液、 生理食塩水、 滅菌水等) に溶解した後、 フ ィルター等で濾過滅菌し、 次いで無菌的な容器に充填することにより調製するこ とができる。 当該注射剤には必要に応じて慣用の担体等を加えてもよい。 また、 HGF遺伝子を投与する場合に用いられる HV J—リボソーム等のリボソームに おいては、 懸濁剤、 凍結剤、 遠心分離濃縮凍結剤などのリボソーム製剤の形態と することができる。 特に、 HV Jリボソーム製剤は HGF遺伝子を投与するため に調製された遺伝子製剤であり、 非経口的に投与することが好ましい。 例えば、 非侵襲的なカテーテルあるいは非侵襲的な注射器等による投与方法を挙げること ができる。 非侵襲的なカテーテルを用いる投与方法としては、 例えば、 心室内腔 より心筋内に直接 H G F遺伝子を注入することが挙げられる。 The preparation may be, for example, an injection containing HGF or an HGF gene as an active ingredient. The injection can be prepared by a conventional method. For example, after dissolving in an appropriate solvent (buffer such as PBS, physiological saline, sterilized water, etc.), sterilizing by filtration with a filter or the like, and then aseptically It can be prepared by filling in a suitable container. A conventional carrier or the like may be added to the injection as needed. In addition, ribosomes such as HV J-ribosome used when administering the HGF gene can be in the form of a ribosome preparation such as a suspending agent, a freezing agent, and a centrifugal concentrated cryogenic agent. In particular, the HVJ ribosome preparation is a gene preparation prepared for administering the HGF gene, and is preferably administered parenterally. For example, administration methods using a non-invasive catheter or non-invasive syringe Can be. As an administration method using a non-invasive catheter, for example, injection of the HGF gene directly into the myocardium from the intraventricular cavity can be mentioned.
また、 疾患部位の周囲に H G Fまたは H G F遺伝子を存在し易くするために、 徐放性の製剤 (ミニペレット製剤等) を調製し患部近くに埋め込むことも可能で あり、 あるいはォスモチックポンプなどを用いて患部に連続的に徐々に投与する ことも可能である。  In order to facilitate the presence of HGF or HGF gene around the diseased site, it is possible to prepare a sustained-release preparation (mini-pellet preparation, etc.) and implant it near the affected part, or use an osmotic pump or the like. It can also be used for continuous and gradual administration to the affected area.
このような徐放性の製剤に使用できる生体親和性材料としては、 生体適合性で あれば特に制限はないが、 非分解性合成高分子の具体例としては、 例えばシリコ ーン、 エチレンビュル酢酸共重合体、 ポリウレタン、 ポリエチレン、 ポリテトラ フルォロエチレン、 ポリプロピレン、 ポリアタリ レート、 ポリメタタリレートな どが挙げられる。 成形が容易などの点からシリコーンが好ましい。 生分解性合成 高分子の具体例としては、 例えばコラーゲン、 ゼラチン、 ひ一ヒドロキシカルポ ン酸類 (例、 グリコール酸、 乳酸、 ヒドロキシ酪酸等) 、 ヒ ドロキシジカルボン 酸類 (例、 リンゴ酸等) 、 ヒドロキシトリカルボン酸 (例、 クェン酸等) 等の 1 種以上から無触媒脱水重縮合で合成された重合体、 共重合体、 あるいはこれらの 混合物、 ポリ一ひ一シァノアクリル酸エステル、 ポリアミノ酸 (例、 ポリ一γ— ベンジル— L—グルタミン酸等) 、 無水マレイン酸系共重合体 (例、 スチレン一 マレイン酸共重合体等) 等のポリ酸無水物等が挙げられる。 重合の形式は、 ラン ダム、 ブロック、 グラフトのいずれでもよく、 ひ一ヒドロキシカルボン酸類, ヒ ドロキシジカルボン酸類、 ヒドロキシトリカルボン酸類が分子内に光学活性中心 を有する場合、 D―、 L―、 D L—体のいずれも用いることができる。 好ましく は、 グリコール酸 .乳酸の共重合体を挙げることができる。  The biocompatible material that can be used in such a sustained-release preparation is not particularly limited as long as it is biocompatible. Specific examples of the non-degradable synthetic polymer include, for example, silicone and ethylene-butyl acetate. Examples include copolymers, polyurethane, polyethylene, polytetrafluoroethylene, polypropylene, polyatalylate, and polymethacrylate. Silicone is preferred from the viewpoint of easy molding. Specific examples of biodegradable synthetic polymers include, for example, collagen, gelatin, monohydroxycarponic acids (eg, glycolic acid, lactic acid, hydroxybutyric acid, etc.), hydroxydicarboxylic acids (eg, malic acid, etc.), hydroxy Polymers, copolymers, or mixtures thereof synthesized from one or more of tricarboxylic acids (eg, cunic acid, etc.) by non-catalytic dehydration polycondensation, poly (1-cyanoacrylate), polyamino acids (eg, polyamino acids) Poly-anhydrides such as mono-γ-benzyl-L-glutamic acid) and maleic anhydride copolymers (eg, styrene-maleic acid copolymer). The type of polymerization may be random, block, or graft. When monohydroxycarboxylic acids, hydroxydicarboxylic acids, or hydroxytricarboxylic acids have an optically active center in the molecule, D-, L-, or DL- Any of the bodies can be used. Preferably, a copolymer of glycolic acid and lactic acid can be used.
これらのなかでも、 特にシリコーン、 コラーゲン、 ゼラチン、 あるいはグリコ ール酸 ·乳酸共重合体が徐放性製剤の生体親和性材料として好ましい。  Among these, silicone, collagen, gelatin, or a glycolic acid / lactic acid copolymer is particularly preferred as a biocompatible material for a sustained-release preparation.
徐放性製剤の剤形は、 本発明の目的を達成するのに適した剤形であればとくに 限定されないが、 例えばロッド状 (ペレット状、 シリンダー状、 針状等) 、 タブ レット状、 ディスク状、 球状、 シート状の製剤にすることもできる。  The dosage form of the sustained-release preparation is not particularly limited as long as it is a dosage form suitable for achieving the object of the present invention, and examples thereof include a rod shape (pellet shape, cylinder shape, needle shape, etc.), a tablet shape, and a disc shape. Shaped, spherical, and sheet-like preparations can also be made.
本発明製剤の H G F遺伝子含量は、 治療目的の疾患、 患者の年齢、 体重等によ り適宜調節することができるが、 通常、 本発明の D NAを含むウィルスベクター あるいは非ウィルスベクターとして 0. 0001〜100mg、 好ましくは 0. 001〜10mgであり、 これを数日ないし数ケ月に 1回投与するのが好ましい。 HGF遺伝子の投与量は、 HGFをコードする HGF遺伝子の量としては、 成人 患者当たり約 1〜約 4000 μ gの範囲、 好ましくは約 10〜約 400 gの範 囲から投与量が選択される。 The HGF gene content of the preparation of the present invention can be appropriately adjusted depending on the disease to be treated, the age and weight of the patient, etc., and usually, a viral vector containing the DNA of the present invention. Alternatively, it is 0.0001 to 100 mg, preferably 0.001 to 10 mg as a non-viral vector, and it is preferable to administer it once every several days to several months. The dose of the HGF gene is selected from the range of about 1 to about 4000 μg, preferably about 10 to about 400 g per adult patient, as the amount of the HGF gene encoding HGF.
有効成分として HGFを使用する場合の本発明製剤の HGF含量は、 同様に治 療目的の疾患、 患者の年齢、 体重等により適宜調節することができるが、 通常、 6 // g〜600mg、 好ましくは 60 g〜6 Omgであり、 これを数日ないし 数ケ月に 1回投与するのが好ましい。  When HGF is used as an active ingredient, the HGF content of the preparation of the present invention can be appropriately adjusted in the same manner according to the disease to be treated, the age and weight of the patient, etc., but usually 6 // g to 600 mg, preferably Is 60 g to 6 Omg, which is preferably administered once every few days to several months.
本発明で使用される移植細胞としては、 虚血性および糖尿病性の臓器疾患に伴 う障害組織部位に細胞移植を行えるものであれば、 適宜利用することができる。 例えば、 重症心不全、 重度心筋梗塞等の心臓疾患においては、 自家および他家か ら摘出した心筋細胞、 平滑筋細胞、 線維芽細胞、 骨格筋由来細胞 (特にサテライ ト細胞) 、 骨髄細胞 (特に心筋様細胞に分化させた骨髄細胞) などが使用できる 移植細胞として挙げられる。 更に、 他の臓器においても、 適宜移植細胞を選択す ることができる。 例えば、 脳虚血 ·脳梗塞部位への神経前駆細胞または、 神経細 胞に分化可能な細胞の移植、 心筋梗塞部位 ·骨格筋虚血部位への血管内皮細胞ま たは血管内皮細胞に分化可能な細胞の移植などが移植細胞として挙げられる。 さらには、 糖尿病性の臓器障害に対する細胞移植に使用される細胞が挙げられ る。 例えば、 腎臓、 膝臓、 末梢神経、 眼、 四肢の血行障害などの疾患に対して、 種々検討されている細胞移植治療法用の細胞が挙げられる。 即ち、 インスリン分 泌能が低下した瞎臓にィンスリン分泌細胞を移植する試みや、 四肢の血行障害に 対する血管内皮細胞へ分化可能な細胞や骨髄由来細胞の移植などが検討されてお り、 このような細胞を使用することができる。  As the transplant cell used in the present invention, any cell can be appropriately used as long as the cell can be transplanted to a site of a damaged tissue associated with an ischemic or diabetic organ disease. For example, in heart diseases such as severe heart failure and severe myocardial infarction, cardiomyocytes, smooth muscle cells, fibroblasts, skeletal muscle-derived cells (particularly satellite cells), bone marrow cells (particularly myocardium) Bone marrow cells differentiated into like cells) and the like. Furthermore, transplantation cells can be appropriately selected for other organs. For example, transplantation of neural progenitor cells into cerebral ischemia / cerebral infarct site or cells capable of differentiating into neural cells, differentiation into vascular endothelial cells or vascular endothelial cells into myocardial infarction site / skeletal muscle ischemic site Transplantation of natural cells is an example of the transplanted cells. Furthermore, there are cells used for cell transplantation for diabetic organ damage. For example, cells for cell transplantation therapy, which are variously examined for diseases such as impaired blood circulation of the kidney, knee, peripheral nerves, eyes, and limbs, can be mentioned. In other words, attempts are being made to transplant insulin-secreting cells into the spleen with reduced insulin secretion ability, and to transplant cells that can differentiate into vascular endothelial cells or bone marrow-derived cells for impaired limb blood circulation. Such cells can be used.
また、 移植細胞の投与量としては、 治療目的の疾患、 患者の年齢、 対象となる 移植細胞等により適宜調節することができるが、 通常、 本発明の移植細胞として 1 X 104〜 101 1個の範囲であり、 HGFまたは HGF遺伝子と同時に、 こ れを数日ないし数ケ月に 1回投与するのが好ましい。 例えば心筋細胞を使用する 場合には、 1 X 104〜101 1個の範囲、 好ましくは 1 X 106〜109個の範 囲から投与量が選択される。 The dose of the transplanted cells can be appropriately adjusted depending on the disease to be treated, the age of the patient, the transplanted cells to be treated, and the like. Usually, the dose of the transplanted cells of the present invention is 1 × 10 4 to 10 11. It is preferable to administer HGF or the HGF gene once a few days to several months at the same time. For example, when cardiomyocytes are used, the range is 1 × 10 4 to 10 11 , preferably 1 × 10 6 to 10 9. The dose is selected from the box.
本発明で導入される H G Fまたは H G F遺伝子以外に、 内因性の心筋保護因子 や心筋細胞における再生因子を併用することが可能である。 例えば、 心筋細胞障 害時に高度に発現される T G F— や熱ショック蛋白 (H S P ) 等の因子は心筋 障害を軽減し心筋修復に関与することが報告されており、 これらの遺伝子を使用 することが出来る。 また、 E G F等の増殖因子は、 組織の種々の細胞障害を修復 することが報告されており、 これらの遺伝子を用いることも可能である。 更には、 これらの心筋保護因子や再生因子以外にも、 心筋保護や再生に関与する因子が考 えられる。  In addition to the HGF or HGF gene introduced in the present invention, an endogenous cardioprotective factor or a cardiomyocyte regeneration factor can be used in combination. For example, it has been reported that factors such as TGF- and heat shock protein (HSP), which are highly expressed during cardiomyocyte injury, reduce myocardial injury and are involved in myocardial repair. I can do it. In addition, it has been reported that growth factors such as EGF repair various cell damages in tissues, and these genes can also be used. Furthermore, in addition to these myocardial protective factors and regeneration factors, factors involved in myocardial protection and regeneration can be considered.
本発明では、 このように H G Fまたは H G F遺伝子を単独に或いは組み合わせ て心臓の心筋細胞に導入し、 高度に発現させて、 損傷を受けた心筋細胞等に必要 な目的蛋白を合成させることができる。 そしてこれにより、 損傷を受けた心筋細 胞等の賦活化を図って心筋細胞等を修復再生させ、 心筋症に陥った心機能の回復 正常化が出来ることになる。 それ故、 重症の心筋症患者だけでなく、 進行中の軽 度の患者にも使用することができる。  In the present invention, the HGF or HGF gene can be introduced into cardiac myocardial cells alone or in combination as described above, and highly expressed, thereby synthesizing a target protein necessary for damaged cardiomyocytes and the like. Thus, by activating the damaged myocardial cells and the like, the myocardial cells and the like can be restored and regenerated, and the recovery and normalization of the cardiac function that has fallen into cardiomyopathy can be performed. Therefore, it can be used not only for patients with severe cardiomyopathy, but also for those with mild ongoing disease.
本発明の製剤、 治療方法を適用することにより、 重症心不全、 重度心筋梗塞、 心筋症等を持った心臓疾患患者に対して積極的な心筋移植治療を行うことができ るだけでなく、 虚血性あるいは糖尿病性に起因する臓器疾患に対しても、 細胞移 植による手段で有効な治療ができることを見出した。 例えば、 虚血性あるいは糖 尿病性に起因する骨格筋障害、 あるいは虚血性あるいは糖尿病性に起因する膝臓 障害、 肝臓障害に対しても、 それぞれ臓器移植ではなく細胞移植で障害臓器の障 害部位の治療が可能になったのである。  By applying the preparation and treatment method of the present invention, it is possible to not only perform aggressive myocardial transplantation treatment for heart disease patients with severe heart failure, severe myocardial infarction, cardiomyopathy, etc. Alternatively, it has been found that effective treatment for organ diseases caused by diabetes can be achieved by means of cell transplantation. For example, for skeletal muscle damage due to ischemia or diabetes, or knee damage or liver damage due to ischemia or diabetic, use the cell transplantation instead of the organ transplantation to indicate the damaged area of the damaged organ. It became possible to treat.
本発明は、 特に心臓疾患において有効であり、 本発明により、 心不全に陥った 障害心筋の修復が可能となり、 心機能の向上が図れることとなったのである。 そ れ故、 心臓移植以外には治療の手段がなかった、 重症心不全や重度心筋梗塞、 心 筋症等の患者に対して新しい救済の道を可能にしたのである。  The present invention is particularly effective in heart disease. According to the present invention, it becomes possible to repair the injured myocardium that has fallen into heart failure and to improve the heart function. Thus, a new rescue path was possible for patients with severe heart failure, severe myocardial infarction, cardiomyopathy, etc., for whom there was no cure other than heart transplantation.
以下、 実施例により本発明を具体的に説明するが、 本発明はこれらの実施例に よりなんら限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.
実施例 1 ラット虚血心への培養心筋細胞移植における HGF遺伝子の投与効果 Example 1 Effect of HGF gene administration on transplantation of cultured cardiomyocytes to rat ischemic heart
Lewisラット (3週齢、 雄) の左前下行枝を結紮して、 ラット心筋梗塞モデルを 作製した。 その 2週間後、 梗塞エリア周辺の虚血部位内に培地のみを注入し、 control群 (n= 5 ) とした。 心筋細胞移植群 (n=7) では、 培地と共に I X 10 個 の培養心筋細胞を注入し、 心筋細胞移植 +HGF遺伝子投与群 (n=5) では、 同量の 培養心筋細胞を注入すると共に同一の注入部位に 4 gの H G F遺伝子を HVJ - liposome法により投与した。  The left anterior descending branch of a Lewis rat (3 weeks old, male) was ligated to produce a rat myocardial infarction model. Two weeks later, only the medium was injected into the ischemic site around the infarct area, and a control group (n = 5) was obtained. In the cardiomyocyte transplantation group (n = 7), IX 10 cultured cardiomyocytes were injected together with the medium, and in the cardiomyocyte transplantation + HGF gene administration group (n = 5), the same amount of cultured cardiomyocytes was injected and the same. 4 g of the HGF gene was administered by the HVJ-liposome method to the injection site.
使用する H G F遺伝子は、 以下のようにして調製した。 まず、 2 0 0 §の11 G F c D NAプラスミドから 2 mlの HVJ- liposome製剤を作成した。 リポソーム製 剤中の H G F c D NAプラスミド含量は、 使用プラスミドの 2 0 %であった (プ ラスミド 4 0 μ gを製剤中に含有) 。 この 2 mlの HV J - liposome製剤を 0. 2ml分取 し投与した。 The HGF gene used was prepared as follows. First, 2 ml of an HVJ-liposome preparation was prepared from 200 § of 11 GF cDNA plasmid. The HGF cDNA plasmid content in the liposome preparation was 20% of the plasmid used (40 μg of plasmid was contained in the preparation). 0.2 ml of this 2 ml HV J-liposome preparation was administered.
投与は障害心筋部位の 3力所に、 それぞれ心筋細胞と H G F遺伝子を注入、 投 与した。  Administration was performed by injecting and administering cardiomyocytes and the HGF gene to three sites of the injured myocardium, respectively.
心筋細胞の移植後、 4週間後と 8週間後の心機能の向上や心筋血流量等の改善 を以下の方法で評価した。  Improvement of cardiac function and improvement of myocardial blood flow at 4 and 8 weeks after cardiomyocyte transplantation were evaluated by the following methods.
①心機能の向上:  ① Improvement of heart function:
超音波 dimensional echocardiographyリ 用!/ヽて ejection fraction (EF) を測定した。 心機能向上の評価は、 1固体の移植前の値を 1として、 向上度を表 した。 コントロール群では心機能は全く向上しなかったが、 図 1に示す様に心筋 細胞移植群 (cellTx) では軽度の心機能改善が見られた。 さらに、 心筋細胞移植 +HGF遺伝子投与群 (cellTx+HGF) では著明な改善が見られた。  For ultrasonic dimensional echocardiography! The ejection fraction (EF) was measured. In the evaluation of cardiac function improvement, the degree of improvement was represented by setting the value of one solid before transplantation to 1. Cardiac function did not improve at all in the control group, but mild cardiac function improvement was observed in the cardiomyocyte transplant group (cellTx) as shown in FIG. In addition, marked improvement was seen in the cardiomyocyte transplantation + HGF gene administration group (cellTx + HGF).
②障害心筋部位 (梗塞巣) の心筋血流量の改善:  ②Improved myocardial blood flow at the affected myocardial site (infarct lesion):
contrast echocardiographyにより評価した。 図 2に結果の 1例を示す。 コン トロール (Ligation model) と心筋細胞移植 + HGF遺伝子投与例 (cellTx+HGF) とを比較したところ、 障害心筋部位 (梗塞巣) において心筋血流量の改善が見ら れた。  It was evaluated by contrast echocardiography. Figure 2 shows an example of the results. A comparison between the control (Ligation model) and the case of cardiomyocyte transplantation + HGF gene administration (cellTx + HGF) showed an improvement in myocardial blood flow at the injured myocardial site (infarct lesion).
③移植心筋細胞の定着性:  ③ Adherence of transplanted cardiomyocytes:
投与部位の切片を作成し、 顕微鏡による組織学的評価により確認した。 H F染 色後の図 3に示すように、 心筋細胞移植 +HGF遺伝子投与群 (cellTx+HGF) で、 移植した心筋細胞が障害心筋部位 (梗塞巣) において定着し、 移植心筋細胞のサ ルコメァが良く発達し、 細胞径が増大している事が組織学的に見られた。 Sections of the administration site were prepared and confirmed by microscopic histological evaluation. HF dyeing As shown in Fig. 3 after the color, in the cardiomyocyte transplantation + HGF gene administration group (cellTx + HGF), the transplanted cardiomyocytes settled in the injured myocardium (infarct lesion), and the transplanted cardiomyocytes developed well. However, the increase in cell diameter was histologically observed.
また、 図 4に示すように心筋細胞間に connexin43や Desminと言った細胞接着因 子が確認され、 Gap junctionの形成が見られた。  In addition, as shown in Fig. 4, cell adhesion factors such as connexin43 and Desmin were confirmed between cardiomyocytes, and formation of Gap junction was observed.
④移植心筋細胞の生存度: 生存 Viability of transplanted cardiomyocytes:
TUNEL染色により apoptosis細胞を検索した。 染色像を図 5に示す。 これによる と、 移植心筋細胞のアポトーシスは、 心筋細胞移植群 (cellTx) では見られたが、 心筋細胞移植 +HGF遺伝子投与群 (cellTx+HGF) では見られなかった。  The apoptosis cells were searched by TUNEL staining. Fig. 5 shows the stained image. According to the results, apoptosis of the transplanted cardiomyocytes was observed in the cardiomyocyte transplantation group (cellTx), but not in the cardiomyocyte transplantation + HGF gene administration group (cellTx + HGF).
⑤ H G F遺伝子の併用による心筋細胞の線維化抑制効果: 抑制 Inhibitory effect of cardiomyocyte fibrosis by combined use of HGF gene:
障害心筋部位 (梗塞巣) の細胞切片をマッソン · トリクローム染色し、 繊維化 を評価した。 心筋細胞は赤に染色され、 線維芽細胞おょぴ繊維化した領域は青に 染色されるので、 これをコンピューター処理し、 全面積に対する青の領域の占め る割合で算出し評価した。 図 6に示すように、 心筋細胞移植群 (cellTx) と比較 し、 心筋細胞移植 +HGF遺伝子投与群 (cellTx+HGF) では線維化が有意に抑制さ れていた。  Cell sections from the injured myocardium (infarct lesion) were stained with Masson's trichrome to evaluate fibrosis. Cardiomyocytes were stained red, and fibroblasts and fibrotic areas were stained blue. This was processed by computer and calculated and evaluated based on the ratio of the blue area to the total area. As shown in FIG. 6, compared to the cardiomyocyte transplantation group (cellTx), fibrosis was significantly suppressed in the cardiomyocyte transplantation + HGF gene administration group (cellTx + HGF).
実施例 2 Example 2
ラット虚血心への培養心筋細胞移植における HGFの投与効果 Effect of HGF on transplantation of cultured cardiomyocytes to rat ischemic heart
Lewisラット (3週齢、 雄) の左前下行枝を結紮して、 ラット心筋梗塞モデルを 作製する。 その 2週間後、 梗塞エリア周辺の虚血部位内に培地のみを注入し、 control群 (n=5〜10) とする。 心筋細胞移植群 (n=5〜10) では、 培地と共に 1 X 107個の培養心筋細胞を注入し、 心筋細胞移植 +HGF投与群 (n=5~10) では、 同量の培養心筋細胞を注入すると共に同一の注入部位に 1〜100 ^/1¾の H G Fを 投与する。 投与は障害心筋部位の 3力所に、 それぞれ心筋細胞と H G Fを注入、 投与する。 The left anterior descending branch of a Lewis rat (3 weeks old, male) is ligated to prepare a rat myocardial infarction model. Two weeks later, only the medium is injected into the ischemic area around the infarct area, and a control group (n = 5 to 10) is used. In the cardiomyocyte transplantation group (n = 5 to 10), 1 × 10 7 cultured cardiomyocytes were injected together with the medium, and in the cardiomyocyte transplantation + HGF administration group (n = 5 to 10), the same amount of cultured cardiomyocytes And 1 to 100 ^ / 1¾ HGF is administered to the same injection site. Administration is performed by injecting and administering cardiomyocytes and HGF to the three sites of the injured myocardium, respectively.
心筋細胞の移植後、 4週間後と 8週間後の心機能の向上や心筋血流量等の改善 について以下の方法で評価を行う。  The following methods are used to evaluate the improvement of cardiac function and the improvement of myocardial blood flow at 4 and 8 weeks after cardiomyocyte transplantation.
①心機能の向上: ① Improvement of heart function:
超音波 dimensional echocardiography) 用レヽて ejection fraction (EF) を測定する。 心機能向上の評価は、 1固体の移植前の値を 1として、 向上度を表 す事によっても評価可能である。 コントロール群、 心筋細胞移植群 (cellTx) と 比較して、 心筋細胞移植 +HGF投与群 (cellTx+HGF) では著明な改善が見られる。Ultrasonic three-dimensional echocardiography) ejection fraction (EF) Is measured. The evaluation of cardiac function improvement can also be evaluated by expressing the degree of improvement assuming that the value of one solid before transplantation is 1. Compared with the control group and the cardiomyocyte transplantation group (cellTx), marked improvement is seen in the cardiomyocyte transplantation + HGF administration group (cellTx + HGF).
②障害心筋部位 (梗塞巣) の心筋血流量の改善: ②Improved myocardial blood flow at the affected myocardial site (infarct lesion):
contrast echocardiographyにより評価する。 コントロール群と比較し、 心筋 細胞移植 +HGF投与例 (cellTx+HGF) では、 障害心筋部位 (梗塞巣) において心 筋血流量の改善が見られる。  Evaluate by contrast echocardiography. Compared with the control group, cardiac muscle blood flow was improved in the injured myocardial site (infarct lesion) in the case of cardiomyocyte transplantation + HGF administration (cellTx + HGF).
③移植心筋細胞の定着性:  ③ Adherence of transplanted cardiomyocytes:
投与部位の H E染色切片を作成し、 顕微鏡による組織学的評価により確認する。 心筋細胞移植 +HGF投与群 (cellTx+HGF) で、 移植した心筋細胞が障害心筋部位 (梗塞巣) において定着し、 移植心筋細胞のサルコメァが良く発達し、 細胞径が 増大している。  Make HE-stained sections at the site of administration and confirm by microscopic histological evaluation. In the cardiomyocyte transplantation + HGF administration group (cellTx + HGF), the transplanted cardiomyocytes are established at the injured myocardium (infarct lesion), the sarcomere of the transplanted cardiomyocytes is well developed, and the cell diameter is increasing.
④移植心筋細胞の生存度:  生存 Viability of transplanted cardiomyocytes:
TUNEL染色により apoptosis細胞を評価できる。 移植心筋細胞のアポトーシスは、 心筋細胞移植群 (cellTx) では見られるが、 心筋細胞移植 + HGF投与群 (cellTx +HGF) では見られない。  Apoptosis cells can be evaluated by TUNEL staining. Apoptosis of the transplanted cardiomyocytes is observed in the cardiomyocyte transplantation group (cellTx), but not in the cardiomyocyte transplantation + HGF administration group (cellTx + HGF).
⑤ H G Fの併用による心筋細胞の線維ィヒ抑制効果:  効果 Inhibitory effect of cardiomyocyte fibrosis by combined use of HGF:
障害心筋部位 (梗塞巣) の細胞切片をマッソン · トリクローム染色し、 線維化 を評価する。 心筋細胞は赤に染色され、 線維芽細胞および線維化した領域は青に 染色されるので、 これをコンピューター処理し、 全面積に対する青の領域の占め る割合で算出し評価する。 心筋細胞移植群 (cellTx) と比較し、 心筋細胞移植 + HGF投与群 (cellTx+HGF) では線維化が抑制される。  Cell sections of the injured myocardium (infarct lesion) are stained with Masson's trichrome to evaluate fibrosis. Cardiomyocytes are stained red, and fibroblasts and fibrotic areas are stained blue. This is processed by computer, and the ratio of the blue area to the total area is calculated and evaluated. Compared with the cardiomyocyte transplantation group (cellTx), fibrosis is suppressed in the cardiomyocyte transplantation + HGF administration group (cellTx + HGF).
実施例 3 Example 3
ラット虚血心への培養心筋細胞移植における H G F徐放性製剤の投与効果 Administration effect of sustained release preparation of HGF on transplantation of cultured cardiomyocytes to rat ischemic heart
(1) H G F徐放性製剤の作製 (1) Preparation of sustained-release HGF preparation
2 %コラーゲン含有水溶液に H G Fを溶解し、 0 . 6〜6 0 § /111 1の110 F溶液を調製して溶液状の H G F徐放性製剤を作製した。 Was dissolved HGF 2% collagen-containing aqueous solution, 0.6 to 6 0 § / 111 1 of 110 F solutions were prepared to prepare a solution form of HGF sustained release formulation.
(2) H G F徐放性製剤の投与効果 (2) Administration effect of sustained-release HGF preparation
実施例 2と同様にラット心筋梗塞モデルを作製し、 その 2週後、 3群に分け、 コントロール群には、 梗塞エリア周辺の虚血部位内に培地のみを 0.2m 1投与す る。 心筋細胞移植群では、 梗塞エリア周辺の虚血部位内に培地と共に 1 X 107 個の培養心筋細胞を注入する。 心筋細胞移植 +HGF徐放性製剤投与群では、 0.2mlの液状の HGF徐放性製剤を投与する。 投与は障害心筋部位の 3箇所にそ れぞれ心筋細胞と HGFを注入、 投与する。 A rat myocardial infarction model was prepared as in Example 2, two weeks later, divided into three groups, For the control group, 0.2 ml of the medium alone is administered into the ischemic area around the infarct area. In the cardiomyocyte transplantation group, 1 × 10 7 cultured cardiomyocytes are injected together with the medium into the ischemic site around the infarct area. In the cardiomyocyte transplantation + HGF sustained release preparation administration group, 0.2 ml of a liquid HGF sustained release preparation is administered. Administration is performed by injecting and administering cardiomyocytes and HGF to three sites of the affected myocardium, respectively.
HGF製剤の投与後、 前項と同様の手法で 4週間後と 8週間後の心機能の向上 や心筋血流量等の改善について評価を行う。  After administration of the HGF preparation, the improvement of cardiac function and the improvement of myocardial blood flow at 4 weeks and 8 weeks after the administration are evaluated in the same manner as in the previous section.
心機能の向上、 障害心筋部位の血流量の改善、 移植心筋細胞の定着性、 移植心 筋細胞の生存度等に優れた効果が見られる。  It has excellent effects such as improvement of cardiac function, improvement of blood flow at the injured myocardium, fixation of transplanted cardiomyocytes, and survival of transplanted cardiomyocytes.
産業上の利用の可能性 Industrial applicability
HG F遺伝子または HG Fは、 障害心筋患部に移植した心筋細胞の定着を促進 すると共に、 移植心筋細胞のアポトーシスと障害部位の線維化を抑制することが できる。 従って H G F遺伝子または HG Fは心筋細胞移植による重症心筋梗塞や 心筋症の治療に有効に使用することができる。  The HGF gene or HGF can promote the colonization of cardiomyocytes transplanted into the affected area of the injured myocardium, and can also suppress apoptosis of the transplanted cardiomyocytes and fibrosis at the damaged site. Therefore, the HGF gene or HGF can be effectively used for treatment of severe myocardial infarction or cardiomyopathy by cardiomyocyte transplantation.

Claims

請 求 の 範 囲 The scope of the claims
I . 肝実質細胞増殖因子 (H G F ) または H G F遺伝子を有効成分として含 む、 疾患障害部位への移植細胞の細胞定着を促進するための医薬組成物。 I. A pharmaceutical composition comprising liver hepatocyte growth factor (HGF) or the HGF gene as an active ingredient, for promoting cell colonization of transplanted cells at a disease / lesion site.
2 . 疾患障害部位が虚血性または糖尿病性の障害部位である請求項 1の医薬 組成物。  2. The pharmaceutical composition according to claim 1, wherein the diseased site is an ischemic or diabetic site.
3 . 疾患障害部位が障害心筋部位または心虚血部位である請求項 1または 2 の医薬組成物。  3. The pharmaceutical composition according to claim 1 or 2, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site.
4 . 疾患障害部位が心筋梗塞による心虚血部位または心筋症による障害心筋 部位である請求項 1から 3のいずれかの医薬組成物。  4. The pharmaceutical composition according to any one of claims 1 to 3, wherein the diseased site is a site of cardiac ischemia due to myocardial infarction or a site of damaged myocardium due to cardiomyopathy.
5 . 糖尿病性の障害部位がィンスリン分泌能が低下した膝臓または血行障害 のある四肢である請求項 2の医薬糸且成物。  5. The pharmaceutical composition of claim 2, wherein the diabetic disorder site is a knee with reduced insulin secretion ability or a limb with impaired blood circulation.
6 . 疾患障害部位へ移植用細胞と共に投与するための請求項 1から 5のいず れかの医薬組成物。  6. The pharmaceutical composition according to any one of claims 1 to 5, for administration together with cells for transplantation to a site of a disease.
7 . 障害心筋部位または心虚血部位へ移植用心筋細胞と共に投与するための 請求項 6の医薬組成物。  7. The pharmaceutical composition according to claim 6, which is administered to a site of a damaged myocardium or a site of cardiac ischemia together with a cardiomyocyte for transplantation.
8 . 心筋梗塞による心虚血部位または心筋症による障害心筋部位へ移植用心 筋細胞と共に投与するための請求項 6または 7の医薬組成物。  8. The pharmaceutical composition according to claim 6 or 7, which is administered to a site of cardiac ischemia due to myocardial infarction or a site of injured myocardium due to cardiomyopathy together with cardiac muscle cells for transplantation.
9 . インスリン分泌能が低下した勝臓ヘインスリン分泌細胞と共に投与する あるいは血行障害のある四肢へ血管内皮細胞に分ィヒ可能な細胞と共に投与するた めの請求項 6の医薬組成物。  9. The pharmaceutical composition according to claim 6, which is to be administered together with insulin-secreting cells of a visceral mouse whose insulin secretion ability has been reduced, or to a limb having impaired blood circulation together with cells capable of dividing vascular endothelial cells.
1 0 . 虚血性または糖尿病性の疾患障害部位へ移植用細胞と共に投与して虚 血性または糖尿病性の臓器疾患を治療するための請求項 1の医薬組成物。  10. The pharmaceutical composition according to claim 1 for treating an ischemic or diabetic organ disease by administering it to an ischemic or diabetic disease disorder site together with cells for transplantation.
I I . 移植用細胞が心筋細胞であり心臓疾患を治療するための請求項 1 0の 医薬組成物。  11. The pharmaceutical composition according to claim 10, wherein the cells for transplantation are cardiomyocytes and are used for treating heart disease.
1 2 . 心筋梗塞による心虚血部位または心筋症による障害心筋部位へ移植用 心筋細胞と共に投与して心筋梗塞または心筋症を治療するための請求項 1 0また は 1 1の医薬組成物。  12. The pharmaceutical composition of claim 10 or 11 for treating myocardial infarction or cardiomyopathy by administering it to a site of cardiac ischemia due to myocardial infarction or to a site of impaired myocardium due to cardiomyopathy together with cardiomyocytes for transplantation.
1 3 . インスリン分泌能が低下した脖臓ヘインスリン分泌細胞と共に投与し てあるいは血行障害のある四肢へ血管内皮細胞に分化可能な細胞と共に投与して 糖尿病性の臓器疾患を治療する請求項 1 0の医薬組成物。 1 3. Administered together with hepatic insulin secreting cells with reduced insulin secretion 10. The pharmaceutical composition according to claim 10, wherein the composition is administered to a limb having blood circulation disorders together with cells capable of differentiating vascular endothelial cells to treat diabetic organ diseases.
1 4 . H G Fまたは H G F遺伝子を有効成分として含む、 疾患障害部位への 移植細胞のァポトーシスまたは疾患障害部位の線維ィヒを抑制するための医薬組成 物。  14. A pharmaceutical composition for inhibiting apoptosis of transplanted cells into a diseased lesion or fibrosis at a diseased lesion, comprising a HGF or HGF gene as an active ingredient.
1 5 . 疾患障害部位が虚血性または糖尿病性の障害部位である請求項 1 4の 医薬組成物。  15. The pharmaceutical composition according to claim 14, wherein the diseased site is an ischemic or diabetic site.
1 6 . 疾患障害部位が障害心筋部位または心虚血部位である請求項 1 4また は 1 5の医薬組成物。  16. The pharmaceutical composition according to claim 14 or 15, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site.
1 7 . 移植細胞が心筋細胞である請求項 1 4から 1 6のいずれかのの医薬糸且 成物。  17. The pharmaceutical composition according to any one of claims 14 to 16, wherein the transplanted cells are cardiomyocytes.
1 8 . 糖尿病性の障害部位がィンスリン分泌能が低下した瞎臓または血行障 害のある四肢である請求項 1 5の医薬組成物。  18. The pharmaceutical composition according to claim 15, wherein the diabetic disorder site is a spleen with reduced insulin secretion ability or a limb with impaired blood circulation.
1 9 . H G F遺伝子が H G Fを発現しうるウィルスベクターまたは非ウィル スベクターの形態にある請求項 1から 1 8のいずれかの医薬組成物。  19. The pharmaceutical composition according to any one of claims 1 to 18, wherein the HGF gene is in the form of a viral vector or a non-viral vector capable of expressing HGF.
2 0 . H G F遺伝子が H V Jリボソームの形態にある請求項 1 9の医薬糸且成 物。  20. The pharmaceutical composition of claim 19, wherein the HGF gene is in the form of HVJ ribosome.
2 1 · 医薬組成物が生体親和性材料からなる徐放性製剤の形態にある請求項 1から 2 0のいずれかの医薬組成物。  21. The pharmaceutical composition according to any one of claims 1 to 20, wherein the pharmaceutical composition is in the form of a sustained-release preparation comprising a biocompatible material.
2 2 . 生体親和性材料がシリコーン、 コラーゲン、 ゼラチンあるいはグリコ ール酸 ·乳酸の共重合体である請求項 2 1の医薬組成物。  22. The pharmaceutical composition according to claim 21, wherein the biocompatible material is silicone, collagen, gelatin or a copolymer of glycolic acid and lactic acid.
2 3 . 疾患障害部位へ移植用細胞を投与する際に、 H G Fまたは H G F遺伝 子を該疾患障害部位へ投与することを含む移植細胞の定着を促進する方法。  23. A method for promoting colonization of transplanted cells, which comprises administering HGF or an HGF gene to the diseased lesion when administering the cells for transplantation to the diseased lesion.
2 4 . 疾患障害部位が虚血性または糖尿病性の障害部位である請求項 2 3の 方法。  24. The method according to claim 23, wherein the diseased lesion is an ischemic or diabetic lesion.
2 5 . 疾患障害部位が障害心筋部位または心虚血部位である請求項 2 3また は 2 4の方法。  25. The method according to claim 23 or claim 24, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site.
2 6 . 移植細胞が心筋細胞である請求項 2 3から 2 5のいずれかの方法。  26. The method according to any one of claims 23 to 25, wherein the transplanted cells are cardiomyocytes.
2 7 . 糖尿病性の障害部位がィンスリン分泌能が低下した瞎臓または血行障 害のある四肢である請求項 24の方法。 2 7. Spleen or blood circulation disorder in which diabetic lesion has decreased insulin secretion ability 25. The method of claim 24, which is a harmful limb.
28. 移植細胞がィンスリン分泌細胞または血管内皮細胞に分ィヒ可能な細胞 である請求項 27の方法。  28. The method according to claim 27, wherein the transplanted cell is a cell that can be separated into insulin-secreting cells or vascular endothelial cells.
29. 虚血性または糖尿病性の疾患障害部位へ移植細胞と共に HGFまたは HGF遺伝子を投与することを含む、 虚血性または糖尿病性の臓器疾患治療方法。  29. A method for treating ischemic or diabetic organ disease, comprising administering HGF or an HGF gene together with transplanted cells to an ischemic or diabetic disease disorder site.
30. 障害心筋部位または心虚血部位へ移植用心筋細胞と共に H G Fまたは HGF遺伝子を投与して心臓疾患を治療する請求項 29の治療方法。  30. The method according to claim 29, wherein the HGF or HGF gene is administered to a site of a damaged myocardium or a site of cardiac ischemia together with a cardiomyocyte for transplantation to treat a heart disease.
31. インスリン分泌能が低下した膝臓ヘインスリン分泌細胞と共にあるい は血行障害のある四肢へ血管内皮細胞に分ィヒ可能な細胞と共に H G Fまたは H G F遺伝子を投与して糖尿病性の臓器疾患を治療する請求項 29の治療方法。  31. Treat diabetic organ disease by administering HGF or HGF gene together with hepatic insulin secreting cells with reduced insulin secretion ability or cells capable of dividing vascular endothelial cells to limbs with impaired blood circulation 30. The method of claim 29, wherein the method comprises:
32. HGF遺伝子が HGFを発現しうるウィルスベクターまたは非ウィル スベクターの形態にある請求項 29から 31のいずれかの治療方法。  32. The method according to any one of claims 29 to 31, wherein the HGF gene is in the form of a viral vector or a non-viral vector capable of expressing HGF.
33. HGF遺伝子が HV Jリボソームの形態にある請求項 32の治療方法。  33. The method of claim 32, wherein the HGF gene is in the form of an HV J ribosome.
34. HGFまたは HGF遺伝子を、 生体親和性材料からなる徐放性製剤の 形態で投与する請求項 27から 33のいずれかの治療方法。 34. The method according to any one of claims 27 to 33, wherein HGF or the HGF gene is administered in the form of a sustained-release preparation comprising a biocompatible material.
35. 生体親和性材料がシリコーン、 コラーゲン、 ゼラチンあるいはグリコ ール酸 ·乳酸の共重合体である請求項 34の治療方法。  35. The method according to claim 34, wherein the biocompatible material is silicone, collagen, gelatin, or a copolymer of glycolic acid and lactic acid.
36. 疾患障害部位への移植細胞の定着を促進するための医薬組成物を製造 するための HGFまたは HGF遺伝子の使用。  36. Use of HGF or an HGF gene for producing a pharmaceutical composition for promoting transplantation of transplanted cells to a site of disease.
37. 疾患障害部位が虚血性または糖尿病性の障害部位である請求項 36の 使用。  37. Use according to claim 36, wherein the disease site is an ischemic or diabetic site.
38. 疾患障害部位が障害心筋部位または心虚血部位である請求項 36また は 37の使用。  38. The use according to claim 36 or 37, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site.
39. 移植細胞が心筋細胞である請求項 36から 38のいずれかの使用。  39. Use according to any of claims 36 to 38, wherein the transplanted cells are cardiomyocytes.
40. 糖尿病性の障害部位がィンスリン分泌能が低下した膝臓または血行障 害のある四肢である請求項 37の使用。 40. Use according to claim 37, wherein the diabetic disorder site is a knee with reduced insulin secretion capacity or a limb with impaired blood circulation.
41. 移植細胞がィンスリン分泌細胞または血管内皮細胞に分化可能な細胞 である請求項 40の使用。  41. Use according to claim 40, wherein the transplanted cells are cells capable of differentiating into insulin secreting cells or vascular endothelial cells.
42. 疾患障害部位への移植細胞のアポトーシスまたは疾患障害部位の線維 化を抑制するための医薬組成物を製造するための HGFまたは HGF遺伝子の使 用。 42. Apoptosis of transplanted cells into diseased lesion or fiber at diseased lesion Use of HGF or an HGF gene for producing a pharmaceutical composition for suppressing the activation.
43. 疾患障害部位が虚血性または糖尿病性の障害部位である請求項 42の 使用。  43. Use according to claim 42, wherein the disease site is an ischemic or diabetic site.
44. 疾患障害部位が障害心筋部位または心虚血部位である請求項 42また は 43の使用。  44. Use according to claim 42 or 43, wherein the diseased site is a damaged myocardial site or a cardiac ischemic site.
45. 移植細胞が心筋細胞である請求項 42カゝら 44のいずれかの使用。 45. The use according to any one of claims 42 to 44, wherein the transplanted cell is a cardiomyocyte.
46. 糖尿病性の障害部位がィンスリン分泌能が低下した薛臓または血行障 害のある四肢である請求項 43の使用。 46. Use according to claim 43, wherein the diabetic disorder site is the excretory limb with impaired insulin secretion or blood circulation disorders.
47. 移植細胞がィンスリン分泌細胞または血管内皮細胞に分化可能な細胞 である請求項 46の使用。  47. Use according to claim 46, wherein the transplanted cells are cells capable of differentiating into insulin-secreting cells or vascular endothelial cells.
48. HGF遺伝子が HGFを発現しうるウィルスベクターまたは非ウィル スベクターの形態にある請求項 36から 47のいずれかの使用。  48. Use according to any of claims 36 to 47, wherein the HGF gene is in the form of a viral or non-viral vector capable of expressing HGF.
49. HGF遺伝子が HV Jリボソームの形態にある請求項 48の使用。  49. Use according to claim 48, wherein the HGF gene is in the form of the HV J ribosome.
50. 医薬組成物が生体親和性材料からなる徐放性製剤の形態にある請求項 36から 49のいずれかの使用。 50. Use according to any of claims 36 to 49, wherein the pharmaceutical composition is in the form of a sustained release formulation comprising a biocompatible material.
51 · 生体親和性材料がシリコーン、 コラーゲン、 ゼラチンあるいはグリコ ール酸 ·乳酸の共重合体である請求項 50の使用。  51. Use according to claim 50, wherein the biocompatible material is a copolymer of silicone, collagen, gelatin or glycolic acid / lactic acid.
PCT/JP2001/006166 2000-07-18 2001-07-17 Medicinal compositions for promoting fixation of transplanted cells WO2002005840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001271064A AU2001271064A1 (en) 2000-07-18 2001-07-17 Medicinal compositions for promoting fixation of transplanted cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000217617A JP2005097118A (en) 2000-07-18 2000-07-18 Cell transplanting colonization promoter composed of hgf gene
JP2000-217617 2000-07-18

Publications (1)

Publication Number Publication Date
WO2002005840A1 true WO2002005840A1 (en) 2002-01-24

Family

ID=18712696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006166 WO2002005840A1 (en) 2000-07-18 2001-07-17 Medicinal compositions for promoting fixation of transplanted cells

Country Status (3)

Country Link
JP (1) JP2005097118A (en)
AU (1) AU2001271064A1 (en)
WO (1) WO2002005840A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077675A1 (en) * 2005-01-24 2006-07-27 Kringle Pharma Inc. Fibrosis inhibitor for implanted organ
EP1810696A1 (en) * 2004-10-29 2007-07-25 AnGes MG, Inc. Gene therapy for treatment of cardiac failure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026694A1 (en) * 1999-10-08 2001-04-19 Medgene Bioscience, Inc. Gene therapy for cardiomyopathy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026694A1 (en) * 1999-10-08 2001-04-19 Medgene Bioscience, Inc. Gene therapy for cardiomyopathy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOSAI KENICHIRO ET AL.: "Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice", HEPATOLOGY, vol. 30, no. 1, 1999, pages 151 - 159, XP002947537 *
MIZUNO SHINYA ET AL.: "Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease", J. CLIN. INVEST., vol. 101, no. 9, 1998, pages 1827 - 1837, XP002947538 *
NAKANO M. ET AL.: "Hepatocyte growth factor is essential for amelioration of hyperglycemia in streptozotocin-induced diabetic mice receiving a marginal mass of intrahepatic islet grafts", TRANSPLANTATION, vol. 69, no. 2, 27 January 2000 (2000-01-27), pages 214 - 221, XP002947536 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1810696A1 (en) * 2004-10-29 2007-07-25 AnGes MG, Inc. Gene therapy for treatment of cardiac failure
EP1810696A4 (en) * 2004-10-29 2008-03-05 Anges Mg Inc Gene therapy for treatment of cardiac failure
WO2006077675A1 (en) * 2005-01-24 2006-07-27 Kringle Pharma Inc. Fibrosis inhibitor for implanted organ
US7696170B2 (en) 2005-01-24 2010-04-13 Kringle Pharma Inc. Fibrosis inhibitor for implanted organ
US8076289B2 (en) 2005-01-24 2011-12-13 Kringle Pharma Inc. Fibrosis inhibitor for implanted organ
US8383588B2 (en) 2005-01-24 2013-02-26 Kringle Pharma Inc. Fibrosis inhibitor for implanted organ

Also Published As

Publication number Publication date
JP2005097118A (en) 2005-04-14
AU2001271064A1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
Bonadio et al. Gene therapy for tissue repair and regeneration
US20160250290A1 (en) Gene therapy for diabetic ischemic disease
JP2002502608A (en) Vessel endothelial cell growth factor, a proangiogenic factor: a variant of VEGF
AU770384B2 (en) Methods of altering cardiac cell phenotype
US8404653B2 (en) Membrane bound stem cell factor therapy for ischemic heart
WO2021233346A1 (en) Targetedly modified exosome loaded with drug, and preparation method and use therefor
WO1997018829A1 (en) Cartilage/bone inducing materials for reparation
US20080102059A1 (en) Treatment for arthritis
WO2006077675A1 (en) Fibrosis inhibitor for implanted organ
JP3867160B2 (en) Gene preparation
CN110237237A (en) Application of the BMP4 albumen as preparation treatment autoimmune disease drug
JP3030386B2 (en) Anticancer agent
WO2002005840A1 (en) Medicinal compositions for promoting fixation of transplanted cells
WO2003103721A1 (en) Gene therapeutic for cerebrovascular disorders
JPWO2003059375A1 (en) Tissue regeneration combination therapy
US20190307688A1 (en) Novel stem cell carrier and method for preparing the same
US20030139361A1 (en) Drug for gene therapy
KR102638021B1 (en) Recombinant fusion protein for preventing or treating fibrosis disease
Law et al. Therapeutic angiomyogenesis using human non-viral transduced VEGF 165-myoblasts
KR20210127618A (en) Recombinant fusion protein for preventing or treating fibrosis disease
KR20220084052A (en) GNE as a Therapeutic
Luo et al. 974. Increased Collateral Development by Transplantation of Skeletal Myoblasts Infected with Adenoviral Vectors Expressing Hybrid Hypoxia-Inducible Factor 10. in a Rat Model of Hind Limb Ischemia
WO2005084700A1 (en) An agent for promoting induction of vascular differentiation, comprising hepatocyte growth factor
CN110577589A (en) Insulin-like growth factor binding protein 4 mutant and pharmaceutical application thereof
CN103239714A (en) Protein and pharmaceutical composition for treating ischemic diseases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP