WO2002000558A1 - Treatment of contaminated waters by surface aeration and recirculation of classified sludges - Google Patents

Treatment of contaminated waters by surface aeration and recirculation of classified sludges Download PDF

Info

Publication number
WO2002000558A1
WO2002000558A1 PCT/MX2001/000041 MX0100041W WO0200558A1 WO 2002000558 A1 WO2002000558 A1 WO 2002000558A1 MX 0100041 W MX0100041 W MX 0100041W WO 0200558 A1 WO0200558 A1 WO 0200558A1
Authority
WO
WIPO (PCT)
Prior art keywords
aeration
tank
sludge
liquid
oxygen
Prior art date
Application number
PCT/MX2001/000041
Other languages
Spanish (es)
French (fr)
Inventor
Simón I. CASTAÑEDA ESCORZA
Original Assignee
Castaneda Escorza Simon I
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castaneda Escorza Simon I filed Critical Castaneda Escorza Simon I
Priority to AU2001269603A priority Critical patent/AU2001269603A1/en
Publication of WO2002000558A1 publication Critical patent/WO2002000558A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • C02F3/16Activated sludge processes using surface aeration the aerator having a vertical axis
    • C02F3/165Activated sludge processes using surface aeration the aerator having a vertical axis using vertical aeration channels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Bubble aeration system consist of the generation of bubbles at the bottom of aeration tanks, where gas bubbles are diffused in the liquid system, in some cases it is necessary that the flow of rising bubbles causes sufficient agitation, to ensure that the gas that has been transferred, diffuses enough throughout the tank, sometimes stirring equipment is installed, to improve the mixing conditions
  • one of the most relevant characteristics of this type of systems is that refers to the large amount of interface area that is generated, and that is the surface through which the gas transfer is made
  • another notable feature is the contact time that is achieved between the volume of gas confined in the bubble and the liquid, which brings as a consequence that in this type of systems high uses of oxygen are obtained, being larger the smaller the diameter of gene bubbles radas;
  • the magnitude of the interface area is a function of the average diameter of the bubbles and the amount of air supplied;
  • the contact time is a function of the bubble ascent rate, which depends on their diameter, and the depth of the tank; considering that two systems participate, one gas and one liquid, both they have a
  • the transfer can also be analyzed, considering an interphase film in the gas system, in which case it will depend on the flow conditions in the liquid interface and the concentration conditions of the liquid interface; In both cases, both the concentration factor and the renewal factor must accelerate or slow down the speed with which the mass transfer is carried out according to its magnitude.
  • Some of the disadvantages of this type of aeration system refer to the impossibility of providing effective agitation in the gaseous system, and although agitation can be applied to the liquid system, the results may not be profitable for its implementation, since due to characteristics of the gas confined in the bubble, the only thing that would be done is to transport it from one place to another, without presenting a high degree of sliding of gaseous particles, precisely in the area of the interface film, and on the other hand the volume confined per unit of generated area is relatively small, causing the effects of a long contact time to be neutralized; Bubble diffuser systems have a relatively high maintenance cost, regardless of the cost of the energy needed to compress the air, and make it reach the diffusers.
  • Contact aeration systems are formed by concrete structural tanks, which are filled with a porous material-based packaging, which can be of mineral origin such as stones, pieces of glass or prefabricated plastic material, these provide an extensive surface where microorganisms adhere forming a biological film, which remains fixed to the surface, until it reaches a thickness in which conditions arise, which allow it to be removed periodically by itself; the organisms in the film breathe the oxygen that exists in the holes formed; the drainage system allows the circulation of air up or down, depending on the temperatures of the influent and the porous medium, in order to improve the oxygen provision, especially for the film that is in the lower parts; the most usual depth is 2 meters; In these systems, the liquid is spread continuously or intermittently, for high load or low load units respectively, at the top by means of a series of nozzles mounted on sprinkler tubes, which can be fixed or have rectilinear movement or circulate, depending on the configuration of the tank; microorganisms receive food from the liquid that drains over the surface; There are currently materials, which can provide 40 to
  • An advantageous feature of this type of system is its ability to withstand sudden variations in organic load; It is also necessary that, in low load systems, a percentage of nitrification is carried out, which is due to the fact that there are types of nitrifying bacteria that develop adhered to the contact surface, for having enough time and oxygen for its development.
  • the main disadvantage consists of the large spaces, which are required for the construction of the structures; maintenance to restore operation, when flooding phenomena occur, is one of the most common problems that arise; Another effect that constitutes a disadvantage is the generation of conditions conducive to the development of flies.
  • Mechanical aeration system mechanical aeration is characterized by the use of electromechanical equipment, which works directly submerged totally or partially in the liquid, such as agitation by means of a propeller or a turbine, a vane agitator or a brush-type agitator from Kessner, which is usually installed over the course of a canal or ditch.
  • the agitator element fulfill two basic functions that are: agitation, in order to generate a certain interface surface, and secondly to provide agitation, in order to achieve a mixture that provides adequate contact, between the contaminating organic nutrients, the bacteriological organisms that will be responsible for metabolizing the organic matter and dissolved oxygen, which is transferred through the generated interface surface.
  • Another aspect that compensates for, the deficit effects of a large area of 5 interface and long contact times, in these cases, is the application of longer retention times, a concept that involves managing large structures, making this a disadvantage of economic type .
  • the main advantages refer to the excellent conditions of 0 concentration, both in the liquid and gaseous interfaces, which are very favorable, and the renewal factors are excellent in both the liquid and gaseous systems, to the extent that they compensate for the deficits of a large interface area, or a long contact time.
  • Conventional aeration this consists of subjecting the sludge to the aeration process, which can be mechanical or of bubbles, during a certain period of time from 6 to 8 hrs; recirculating, from 20 to 30% of sludge, which is mixed with the influent;
  • the conventional process may be provided with a primary sedimentation stage, and a secondary sedimentation stage. 5
  • Staggered aeration In this system, the influent is distributed in several points of the tank, and the recirculated sludge is introduced at the initial point, where the influent's waters are entered, this implies that the concentration of solids is greater at the beginning and decreases, at as the waters go or moving towards the other stages; With this modification it is possible to reduce the retention time by up to 50%, as long as the residence time of sludge is handled between 3 to 4 days, in this process the basic aeration system is by means of bubbles, although it can also be Mechanic in some cases.
  • Graduated aeration This process has the peculiarity of assuming that the largest BOD is at the beginning of the. tank, and it decreases as it progresses, so that a greater injection of air is made at the beginning, and it decreases as it approaches the effluent outlet, in this process the basic aeration system is by means of bubbles.
  • Extended aeration Also known as prolonged aeration, this process is characterized by the application of longer retention times, to achieve high levels of BOD depletion, therefore the process can be applied with bubble aeration systems and mechanics.
  • Aeration activated here the excess sewage sludge is channeled, mixed with raw sewage, subjected to aeration to condition them and thus maintain a source of active sludge, which allows intensifying or restoring the continuity of biological activity, when it is affected by the introduction of toxic substances, or sudden overloads that inhibit biological activity;
  • the basic aeration process can be mechanical or bubble.
  • Classified aeration method consists in subjecting the sludge within a treatment system, to any compatible aeration process, but with recirculation of previously classified sludge, that is, it will no longer be recirculated discreetly, based on the following:
  • Light sludge these are constituted by fine particles that have the lowest sedimentation rates, which can be of organic matter, partially stabilized matter, or that has been assimilated in the generation of new bacteria, also small flocs formed by bacteria that initiate their development, which due to their size, they settle along with light sludge; All this makes light sludge the most biologically active, a quality that must be considered, to handle them more conveniently within the plant.
  • the objective of classified aeration is to contribute to improve the operation of treatment plants in the following aspects:
  • the inert bacteria which are the ones that mainly make up the largest and heaviest flocs, that is, the most stabilized ones, being these the ones that can be removed without running the risk of eliminating new sludge, and by recirculation, of the light sludge, it is guaranteed that the sludge in the process of development or new sludge, continue its development inside the tank, until they acquire the characteristics that can make them reach the section of heavy sludge.
  • Sludges that are channeled to be removed as excess sludge can be handled with less intense unpleasant odors, since they have been classified and They correspond to the most stabilized, so in case they are applied a final stabilization treatment, this will be with shorter retention times, and by the same degree of stabilization, the concentration or thickened operation is facilitated more, for its post treatment that can be drying in sand beds.
  • Capillary aeration system as such; It consists of a set of ducts that form plates or sheets of ducts, which can be manufactured with environmentally resistant covers, such as high density polyethylene and PVC, this system provides most of the oxygen that the process demands, since a Small part of oxygen is transferred on the surface of the oxidation tank, by the action of a small-scale mechanical aeration system, which is applied for mixing purposes to facilitate the contact of 0 2 , bacteria and contaminating organic matter, in addition to achieve a complementary aeration within the same tank;
  • the set of ducts was conceived in such a way that practically 100% of the available surface can be used, which is achieved by generating a liquid sheet over the entire perimeter of the duct internally, this is achieved through the design of flow deflectors, which are illustrated in the following:
  • Figure 1 plan view of a flow deflector, within the capillary duct.
  • Figure 2 view of a section of a side section of a flow deflector.
  • Figure 3 side view of a flow deflector.
  • Figure 4 view of a front section of a flow deflector.
  • baffles The ducts formed by PVC sheets (No 1), inside which are inserted a series of baffles (No 2), which can be of the same material as the duct, or a soft rubber to allow the introduction of a tool , to uncover if any type of plugging;
  • baffles are attached to the duct sheet, by means of the baffle support (No 3), these baffles provide several features that are described below:
  • This system is one of the most manipulable treatment systems, and also predictable, allow to vary flow conditions in the liquid system, flow conditions in the gas system and biological conditions of the sludge that is recirculated, all these variations can be managed independently to be studied, they can be observed and measured, so that they make the system among other applications suitable for the implementation of prototypes for scientific and university research; during the operation of the system, at the time of exposure, and due to diffusional characteristics, an amount of oxygen is absorbed by the liquid system, to be transported to the oxidation tank in the form of microbubbles or dissolved oxygen OD, an action that is facilitated because at the interface surface, intermolecular forces are in imbalance, so this surface will be more receptive to the OD; Due to their handling characteristics, it is clear that the effects of limitation, as they are confined volumes, as in the case of bubble systems, can be compensated here with the injection of more air, without considerable increases in energy or, of higher dosage of liquid.
  • the capillary aeration system has a novel feature, which refers to the possibility of designing and building an aeration system, which allows taking advantage of both the upper and lower surface of a duct, according to the profile shown in fig. 2, with this, the contact surface of the interface is increased by the use of the entire possible surface, that is, the liquid flows throughout the inner periphery of the pipeline, this can be generated thanks to the surface tension property of the water , which allows it to slide over the upper surface, under certain conditions of slope and roughness, allowing a second internal gaseous flow to pass, such that the oxygen concentration in the gas interface is improved, at levels that favor oxygen transfer, with Low power consumption
  • Figure 5 plan view of a sheet of capillary ducts.
  • Figure 6 side view of a block of capillary duct sheets.
  • Figure 7 front view of a block of capillary duct sheets.
  • Fig. 18 shows the behavior of the concentration, in the liquid system within the capillary aerator, first of all, the graphs (No 3), represent the variation of the concentration in the liquid interface films, which have a period of time, which It is a function of the contact time and the surface renewal factor, each cycle of these graphs starts with a corresponding Ctil concentration, to which the liquid sheet has inside the duct at that precise moment, reaching the concentration that allows the exposure of a new movie; the graph (No 4) represents the behavior of the oxygen concentration, in the liquid sheet inside the duct, the initial concentration of this graph is the Cio concentration of oxygen, which is normally maintained as an average in the biological oxidation tank;
  • the Clt (No 15) output concentration is that which is reached in the time of (No 8), in the liquid film inside the duct it can reach the saturation concentration Cls (No 1) in a time tls ( No 9) if you have enough length in the ducts, or the conditions of availability of oxygen and the thickness of the liquid film allow it, but
  • the graph (No 6) shows the time (No. 10), which would take the system to reach saturation concentration within the volume of the tank, under conditions of biological equilibrium;
  • the graph (No 6) shows the time (No 11) that is necessary, to satisfy the biochemical oxygen demand, of a volume equal to that of the oxidation tank, the time to achieve the BOD satisfaction of the tank volume, is what is commonly known as retention time TR, if this time is divided by the time required for saturation of the volume of the tank, this will indicate the number of times to be saturated, completely the volume of the tank , to meet the BOD demand of the tank volume;
  • the graph (No 7) serves as a reference point, since we will always try to provide sufficient oxygen to achieve the metabolism of BOD, contained in the daily volume, in the unit of time (No 12), which is usually one day, this serves to modulate our system at the time of design;
  • the axis of the ordinates (No 10) represents the concentration of dissolved oxygen in mg / l, and the axis of the coordinates represents
  • Fig. 19 represents the behavior of the gaseous system, within a treatment system, where the transfer takes place through a contact surface, so that the mathematical model of the interface films is applicable, which can be deduced from the figure in question;
  • the graph (No 4) represents the behavior of the oxygen concentration, in the atmospheric air inside the capillary duct, where in an analogous way, if it is of sufficient length and the conditions of the liquid system allow it, the oxygen concentration can decrease up to a concentration Cgs (No 2) in the time tgs (No 6), it is also necessary that in the gas flow, within the conduit the concentration Ctg (No 9) can be reached in the contact time TC (No 5), which may be the same as that used in the liquid system;
  • the graph (No 3) represents the behavior of the concentration in the gas interface, which begins in each cycle with the concentration Ctigo, which has the gas flow, within the duct at that precise moment; The gas flow will always start with the concentration of atmospheric air.
  • the factors that determine the flow turbulence, and with it the surface renewal factors are: the thickness of the flow sheet, the slope of the sheets, the number of baffles as well as the interior dimensions of the duct, all this allows manipulate or vary the Reynolds number, which is an indicator of the turbulence conditions being handled; the way in which the energy dissipates, is producing turbulent conditions precisely in the entire liquid film, to achieve high transfer rates, with lower energy consumption, than in the mechanical aeration systems, and with retention times Lower; the energy that is supplied to the fluid begins to be released in the descent of the liquid, developing a flow rate, which is a direct function of the slope and the roughness conditions, equivalent of the diffusers that have three specific functions, induce the formation of the upper fluid sheet, increasing the interface surface, It limits the speed of the flow, improving the contact time and helping to increase the turbulence, favoring the renewal of the interface limit film.
  • transition flow in this type of flow, the liquid film of the interface zone, begins to renew slowly, so that it is very feasible that there is a Reynolds number, which limits the laminar flow in order to establish the transfer that occurs in laminar flow conditions, so that later, a reference can be made with other speed conditions, for which the Reynolds number and the transfer, can give an idea of the theoretical number of films involved in a given system.
  • Vi Speed with which the interface moves in m / s.
  • this speed depends on the slope of the ducts, the density of baffles per unit length, the thickness of the flow sheet and the kinematic viscosity of the fluid, the indicated speed corresponds to a specific design , driving water at 20 ° C with a slope
  • Vd Daily volume in m / day of sewage.
  • NC Number of ducts.
  • 0.048 and 0.08 are the interior dimensions, intended for the passage of gas flow in a given duct.
  • the kinematic viscosity considered for the liquid is: 0.00000101 m / s
  • the kinematic viscosity considered for air is: 0.0000135 m / s
  • the thickness of the gas interface film is determined based on the flow provided by the required transfer, based on the utilization coefficient of each type of system.
  • the velocity constant K is a function of the diffusion coefficient of oxygen in the liquid, the thickness of the film considered, the varying concentration conditions, and of the surface renewal factor of the FRS system, and of a Kp factor, which represents the number of times, the oxygen diffusion coefficient, referenced at 20 ° C and at sea level, is multiplied by the level of saturation in the interface zone; Considering all these aspects, it is necessary that the rate constant in the oxygen concentration change, in the flow sheet inside the duct is:
  • Kdlc Speed coefficient with which the oxygen concentration change is made, in the liquid system within the ducts.
  • the value of the oxygen coefficient must be referred to the average operating conditions of the process where it is applied, considering the temperature and concentration of suspended solids.
  • Ecl Thickness of the liquid layer inside the capillary duct.
  • FRIG Renewal factor of the interface surface in the gas system, has dimensions s "1 and the initial value that this factor can have, is 1 due to the behavior of the films or sheets in a laminar flow in the gas system, and it can increase up to a value determined by the turbulence conditions induced by some means.
  • Kpl Adjustment factor that allows to adjust the mathematical model, developed for the liquid system, represents the number of times that Kd is multiplied due to the concentration conditions.
  • FRIL Renewal factor of the interface film in the liquid system, which has dimensions s "1 and depends on the flow conditions, that is, its minimum value must be 1 and corresponds to the static conditions or laminar flow At the transition flow, its optimum value will be when the turbulence conditions are provided that provide the highest transfer rate in profitable conditions.
  • Kdgc - Kdg x FRIL x Kpg Ec 20
  • Kpg Adjustment factor that allows to handle the mathematical model developed for the gas system, represents the number of times that Kd is multiplied, due to the oxygen concentration conditions in the gas system.
  • the coefficient 0.84 is based on the consideration, that the conditions that occur in bubble aeration systems are similar in terms of the way in which the transfer is carried out, but with their respective characteristics each, so It is considered that, on equal terms, there must be the same use, which is considered 16% of atmospheric oxygen, that is, in terms of this percentage, it is said that if a system uses 100% of usable oxygen, in.
  • the system only takes advantage of 16% of the atmospheric oxygen that passes through the system;
  • this coefficient differs when there are changes in the equilibrium conditions, from the stresses on the interface surface, which determine the intensity of the surface tension, due to the forces of Van der Walls, which is very feasible , and in the event that this hypothesis is confirmed, it would be positive as shown by mechanical aeration treatment systems, in these the interface surface is very small, but its reception capacity is very large, which may be due, in addition to the favorable concentration factors, to the condition of imbalance of the intermolecular forces, characteristics on a flat surface of a liquid such as water and that determine the surface tension, because as some studies of physics, the spherical surface of a drop or a bubble, they represent a surface whose efforts due to Van der Walls forces are balanced, which implies very rigid surface structures that can constitute a resistance, to a certain transfer being made through it, and of course, it is also very This structure is likely to represent a resistance to the surface renewal process, causing the transfer to be
  • the aeration system is capable of transferring a percentage of this gas, as mentioned by Motarjemi and Jameson according to Michael A. Wintler in his book Biological treatment of wastewater, on the use of oxygen in a bubble system, in such a way that under certain considerations, some proposed values have been estimated in the capillary systems, so a practical application should be supported with laboratory tests.
  • nterfase area which in the case of capillary systems, is the internal area of the conduit in operation, which limits the liquid system of the gas system, is determined as follows:
  • ANC Nominal duct width.
  • HNC Nominal duct height
  • ENLF Nominal thickness of the flow sheet, without baffles.
  • LRL Actual length of duct sheet.
  • the interface surface may have changes, such as the height of a bubble aeration tank, or the radius equivalent of the surface area of a mechanical aeration tank, or the length of the capillary ducts, through which changes in the interface surface are presented, to consider the relevant variations for each case, that is, the change is analyzed which manifests the surface within 1 s of this path; so we would have a series of bubbles of 1 mm in diameter, will travel a length of 0.13 meters. that is, at a speed of 0.13 m / s, which would correspond to a specific time of 1 s. in such a way that if the tank is 3 meters. deep, the contact time would be 23 s; in the case of ducts with a density of 3 deflectors per m. in length, driving a
  • Another concept involved is that which refers to a correction factor for the interface area, which, in the case of bubbles, depends on the difference in pressure, to which the air is injected and the pressure at which it is released, which corresponds to atmospheric pressure;
  • the analogous factor for capillary aeration systems is to establish a correction to the original area, produced by the structure of the duct walls, depending on the thickness of the liquid fluid sheet, and the variations that will occur, when develop a growth of biological film, on the inner walls of the duct; although it is sought not to promote this film when working the system continuously, and not to allow light infiltration, so that the surface of the ducts will generally be submerged, preventing the bacteria that develop attached to the walls, do not find the conditions conducive to your development; assuming that some biological development could occur, this can be limited by maintenance actions, when a film of 0.004 meters is presented, although it is feasible that these conditions do not occur, it is assumed that in case of certain bacteriological development, this behaves in the same way, as it behaves
  • the retention time is the time that the waters in process are subjected, to reach a certain degree of treatment, depending on the process that is applied, as well as the BOD levels of the influent and the BOD admitted in the effluent, making a study comparison between bubble aeration systems, a mechanical aeration system and classified capillary aeration systems, and given that the magnitude of the interface area is considered to be reasonably exceeded to the mechanical aeration system in the extended aeration mode, and assuming that the conditions of concentration, and interface surface renewal, are the most suitable for having a high oxygen transfer rate, and with an adequate culture of microorganisms, the estimated retention times will be between 6 and 12 hrs, depending on the objectives and conditions of each case.
  • TR Retention time in s.
  • Catm O 2 concentration in atmospheric air in mg / l.
  • % 0 2 d Percentage of atmospheric oxygen, which biological treatment systems can provide.
  • % 0 spicya Percentage of oxygen available, which is used by the treatment system with the conditions of each system.
  • the instantaneous air flow is determined by:
  • BODI oxygen transfer rate that is, the demand that the waters in process, or, that the system must handle in Kg 0 2 / s, and which is determined by:
  • BOD is the biochemical demand for oxygen in Kg 0 2 / m of sewage
  • the instant transfer rate can also be obtained from the following equations:
  • TTL and TTG in mg / (l x s), Ac in m / m, VI and Vg, in m / s, TR in s and Ecl and Ecg in m.
  • Kg O The amount of oxygen in Kg 0 2 that is required to lower the BOD, of the volume of sewage entered in the TR period, for practical purposes can usually be determined experimentally in a laboratory, not to rely on bibliographic references, for the reason of that the physical chemical and biological characteristics of water change from one place to another, theoretically, the Kg O can be calculated by.
  • TTLO TTL x (ai x VI x TC x TR x Ecl) / 1000 Ec 31
  • VI Speed of liquid flow inside the duct, in m / s.
  • Vg Speed of the gas flow inside the duct, in m / s.
  • Ecl Thickness of the fluid sheet inside the duct in m.
  • Ecg Thickness of the gaseous sheet inside the duct in m.
  • the rate of change of oxygen concentration in the liquid gas system would be determined by:
  • FCIL Concentration factor in the liquid interface, which normally has an initial value of 1 and will vary depending on the conditions of each system.
  • FCIG Initial concentration factor in the gaseous interfaces, this factor is dimensionless and will have an initial value of 1, for most cases, this factor, in capillary aeration systems, usually decreases to longer duct lengths, depending on the conditions of each system.
  • (Catm -Cgs) Equations 41 and 43 represent the mathematical model of the behavior of the liquid system as can be seen in fig. 18, where; the axis of the ordinates (No 14) represents the concentration of oxygen in mg / l of the liquid system, the axis (No 13) represents the time in seconds on a logarithmic scale; mass transfer is the sum of millions of transfer events in each cycle formed by the division of each second, in a number of cycles determined by the surface renewal conditions, these events are represented by the graphs (No 3) which are derived from the graph (No 4), and represents the transfer of oxygen that is transferred in each interface film segment, which as you can see, each cycle is different in the first place because the initial concentration Ctil is increasing as the liquid sheet moves; the speed with which the transfer is carried out is not constant and finally the reference frame that corresponds to the concentrations of both one system and the other changes with respect to time, so that the constants used in the equation must consider all these adjustments; Cls saturation concentration (No 1) is a transfer limiting factor
  • Equations 42 and 44 represent the mathematical model of the behavior of the gas system as can be seen in fig.
  • the transfer capacity depends on the flows of liquid and gas, which are channeled to the set of ducts, to form the surface of the liquid and gas sheet, with the appropriate thickness, in the
  • the management of the gaseous flow does not have any handling problem, due to the low amount of energy that its management requires, referring to the liquid flow, this requires greater care in the analysis, due since it is the means of transport of dissolved oxygen, which is transferred to the oxidation tank, so that the flow of liquid must be sufficient so that the flow of oxygen is as required, and does not have obstacles due to the concentration of sewage, to operating conditions such as temperature among others;
  • the efficiency of the system will obviously depend, on handling the lowest concentration at the entrance of the ducts, to achieve the greatest difference with the liquid outlet concentration, it will depend on achieving the longest possible contact time, and on the greatest possible turbulence but with the slope that implies the lowest height, so that the energy consumption is the lowest possible.
  • the purpose of the sieve design is to strain the influent's sewage so that it passes directly from the sieve to the oxidation tank, without the need for a discharge pipe at the outlet of the flow already cast, this element significantly decreases the BOD, by separating a certain amount of organic matter in the form of small suspended solids, which if introduced into the aerators could possibly cause blockages in the capillary systems; on the other hand, if the aeration system has the capacity to provide sufficient oxygen, to process these solids biologically, they can go through a crushing process and return them to the treatment, so as not to cause a large amount of untreated organic solids, which can cause contamination problems, proper management of these could be drying in the sun for subsequent incineration, or bury them in previously sealed pits, then close them and by an anaerobic process cause degradation; in this way, the oxidizing capacity of the treatment plants that could be applied to these solids is used to achieve better effluent quality; the design of the screen, considers that the structure is balanced
  • FIG 9 plan view of the screen.
  • Figure 10 side view of the screen.
  • Figure 11 front view of the screen.
  • Its operation consists of entering the waters, through the inlet pipe (No 3) to a landfill box (No 1), which distributes all the inlet flow, along a landfill plate;
  • the sieve is designed in such a way that the waters fall directly to the aeration tank, the waters that leave the spout, fall to the sieve (No 2), all separated solids skid over the sieve and fall into a wheelbarrow, where periodically they are removed for later handling;
  • the screen box has a purge (No 4), which has the function of maintaining cleaning and unwrapping if required;
  • the construction materials normally used are:
  • the entire structure can be made of carbon steel, and optionally stainless steel, the element that forms the sieve, as it is constituted by very thin elements, it is necessary that it invariably be stainless steel.
  • Mechanical stirrer It is an optional element, which in certain circumstances, can provide agitation, to prevent the formation of sediments in the oxidation tank, can reinforce the mixing action, or it can add by agitation, a complementary transfer of oxygen, this element, is illustrated in the following:
  • Figure 12 plan view of the mechanical agitator.
  • Figure 13 front view of the mechanical stirrer.
  • Figure 14 side view of the mechanical stirrer.
  • the agitator has been designed to suction a flow vertically and project it horizontally, to induce mixing or agitation within the capillary aeration tanks, optionally it can provide a complementary aeration within the classified capillary aeration process, for the treatment of sewage , where it is required to direct the flow conveniently, the agitator consists of a deflector elbow (No 1) that is submerged in the waters under treatment, in the lower part of the elbow the propeller (No 2) is housed, formed by blades, which they are solidly screwed to a blade holder, which has a cradle that solidly fixes the arrow, which is moved by the gearmotor (No 3), which can be replaced by a speed variator, to be able to supply a larger energy at certain times; the elbow is supported by a structural steel pedestal (No. 4), which hangs from a structural base (No. 5);
  • the design of the propeller is based on the following formulation:
  • the width of the propeller blade is:
  • the design attack angle is in the following range:
  • Qag Flow generated to create the required mixing conditions, approximately 60 Ips for each Ips to be treated in case it is required to achieve an additional oxygen transfer, the corresponding analysis should be done.
  • Vtan mean tangential velocity, which for practical purposes is considered the tangential velocity of a point, located 2/3 of the center of the propeller towards the end of it.
  • Vtan RPM / 60 Dme x p ⁇ Ec 48
  • the manometric height developed by the propeller is given by:
  • the acceleration of gravity is: 9.81 m / s.
  • the length of the blade is a function of:
  • DHE outer diameter of the propeller.
  • the power transmission capacity of the arrow is given by:
  • PHE depth at which the propeller is in m.
  • the power demand of the propeller is given by:
  • Ef Volumetric efficiency of the propeller, considering approximately 0.8. Functioning:
  • Assorted capillary aeration tank consists of an aration system, which is illustrated by fig. 8, this works as follows:
  • FIG. 15 shows a flow chart, where a treatment system is schematically represented, based on capillary aeration with recirculation of 2 strata of classified sludge, of a single stage, to remove the carbonaceous matter, which is described below:
  • the influent enters through a sieve of solids (No. 7), reaching the oxidation tank (No. 1), in this tank, where the waters are aerated and agitation is provided to have adequate mixing, in addition to that optionally, a greater amount of energy can also be dosed to generate a complementary aeration; after having received sufficient aeration, the treated liquor passes to the sedimentation tank (No 2), provided with a sludge sorting system, where the aerated liquor is clarified; the clarified water leaves the settler through the outlet pourer (No 5), towards the next stage that will usually be a tank where chlorine is applied, in order to eliminate pathogenic bacteria;
  • the classification of sedimented sludge is in two strata, which are: heavy sludge (No 6), which will be removed from the system, when there is an excess of sludge in the aeration tank, so that these do not acquire anaerobic conditions, they can be recirculated by a branch in section (No 3) of
  • FIG. 16 shows a flow chart, where a treatment system is schematically represented, based on capillary aeration with recirculation of 2 sludge strata classified, in two stages, to metabolize or the BODC in a first stage, and a nitrification that starts In the first stage and complemented in a second stage, this process is described below:
  • the influent enters through a sieve of solids (No 11), when it comes to the first stage, or by going to the oxidation tank (No 1)
  • the intermediate and light sludge, sedimented in the first stage will be recirculated daily to maintain in the aeration tank of the first stage, very active biological conditions, the clarified water in the first stage of sedimentation , it passes to the biological oxidation tank of the second stage (No 3), normally provided with the same aeration systems, in this tank, depending on the objectives and the specifications of the treatment, it is feasible that the BODc is finished down and partially a good proportion of the BOD, the aerated liquor in this tank passes to the final settler (No 4), where the heavy sludge settled in this stage, can be recirculated daily to the first stage, for the reason that they will carry a good proportion of nitrifying bacteria, which are of a slow development and therefore, it is not convenient to eliminate them at this stage, since by recirculating them, it is possible to return all viable nitrifying bacteria, causing the nitrification to start from the First stage
  • a flow chart is shown, where a treatment system is schematically represented, based on capillary aeration with recirculation of 3 strata of classified sludge, of three stages, this process partially eliminates a quantity of the BODC, and a small part of the BOD in the first stage, in the second stage the remaining BODc is eliminated and gradually a greater BODn, in the third stage the elimination of the BODn is complemented;
  • the process is described below:
  • the influent enters through a sieve of solids (No. 17), arriving at the oxidation tank (No. 1), where the same conditions occur as in an aeration tank of a single stage system; After having received sufficient aeration to achieve the removal of a good part of the BOD, reaching a small part of the biochemical demand of the nitrogen organic matter (BOD), the treated liquor passes to the sedimentation tank ( No 4), provided with a classifying system of three types of sludge, where the aerated liquor is clarified in the first stage, the clarified water leaves the settler towards the second aeration stage (No 2), the heavy sludge (No 7) , sedimented in the first stage of sedimentation, together with the heavy sludge of the second stage (No 10), are recirculated or are removed as excess sludges moving towards a final stabilization stage or thickening for subsequent drying; the intermediate sludge (No.
  • the light sludge (No 9), the light sludge of the second stage (No 12) and the heavy sludge of the third stage, are recirculated to the first aeration stage, with the aim of generating a high degree of inoculation of both bacteria heterotrophic as nitrifiers of the first and second stage of nitrification, that is to say nitrosomonas and nitrobacter in this way, there is a gradual nitrification from the first stage; the liquor treated in the tank of the second stage passes to the sedimentator of the second stage (No 5), where, as already indicated, three types of sludge are obtained;
  • the nitrifying bacteria are retained, which, as already indicated, the heavy sludges that settle in this stage, are recirculated to the first stage, to promote nitrification from the first stage, and thus maintain a long time of residence, of the nitrifying bacteria that are of very very slow development, especially the nitrosomones that metabolize the ammoniacal nitrogen to nitrites; the light sludges are recirculated to the tank of the third stage, to always maintain the most intense nitrification in stage three; finally the clarified waters of this stage can pass to a chlorination tank, where chlorine disinfection is carried out, with disinfectant purposes to eliminate pathogenic bacteria; it is possible to make different combinations in the channeling of sludge, depending on the degree of contamination of the influent, the proportion of carbonaceous and nitrogen contaminants,

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

The invention relates to a surface aeration treatment with recirculation of classified sludges, which is used for treating black waters, municipal waters or, in certain cases, wastewaters, comprising the following steps: screening the influent by means of a solids screen solely for the raw waters; recirculation pumping of waters with the lowest amount of dissolved oxygen from the biological oxidation tank to the surface aerator; injecting air by means of a blade fan with the purpose of maintaining high oxygen concentrations in the air inside the aerator; stirring by means of a mechanical stirrer which optionally provides for stirring, mixing and supplementary aeration; surface aeration by recirculating the mixed liquor and injecting air, which generates the liquid and gaseous interface that provoke oxygen transfer inside the aerator formed by the surface conduits; sedimentation with sludge classification with the purpose of not using sludges whose qualitative characteristics have been activated discretely; in this step, the sludges are classified into heavy, intermediate and light sludges with the purpose of recirculating the light sludges and recirculating or removing the heavy sludges whenever there are excessive sludges. The treatment can use the potential energy that is wasted in rapid black water courses with differences in level between 5 and 30 m, thereby enabling considerable energy savings by reducing the energy required for repumping and stirring.

Description

TRATAMIENTO DE AGUAS CONTAMINADAS A BASE DE AERACIÓN CAPILAR Y RECIRCULACION DE LODOS CLASIFICADOS. TREATMENT OF POLLUTED WATER BASED ON CAPILLARY AERATION AND RECIRCULATION OF CLASSIFIED MUDS.
Campo técnico:Technical Field:
Tratamiento biológico de lodos activados para aguas negras municipales o residuales industriales:Biological treatment of activated sludge for municipal wastewater or industrial wastewater:
Antecedentes:Background:
En la actualidad, se tienen conocidos varios métodos de aeración con recirculación de lodos activados, manejados discrecionalmente en sus caracteristicas cualitativas, en tratamiento de aguas negras, municipales o residuales industriales en algunos casos, en forma general se describen, las características de sistemas que se han manejado, para establecer la diferencia con respecto al que se ha denominado como aeración capilar clasificada.At present, several aeration methods with recirculation of activated sludge are known, discretionally managed in their qualitative characteristics, in the treatment of sewage, municipal or industrial wastewater in some cases, in general, the characteristics of systems that are described are described. have managed, to establish the difference with respect to what has been termed as classified capillary aeration.
Sistema de aeración por burbujas, estos consisten en la generación de burbujas en el fondo de tanques de aeración, donde burbujas de gas se difunden en el sistema líquido, en algunas ocasiones se tiene que el flujo de las burbujas en ascenso provoca la agitación suficiente, para lograr que el gas que ha sido transferido, se difunda lo suficiente en todo el tanque, en algunas ocasiones se instalan equipos de agitación, para mejorar las condiciones de mezclado, una de las características mas relevantes de este tipo de sistemas es la que se refiere a la gran cantidad de área de interfase que se genera, y que es la superficie a través de la cual se efectúa la transferencia del gas, otra característica notable es el tiempo de contacto que se logra entre el volumen de gas confinado en la burbuja y el líquido, lo cual trae como consecuencia que en este tipo de sistemas se obtengan altos aprovechamientos del oxigeno, siendo mayor entre más pequeño es el diámetro de burbujas generadas; la magnitud del área de interfase es función del diámetro medio de las burbujas y de la cantidad de aire que se suministra; el tiempo de contacto es función de la velocidad de ascenso de la burbuja, que depende del diámetro de las mismas, y de la profundidad del tanque; considerando que participan dos sistemas, uno gaseoso y otro líquido, los dos tienen una película límite que los divide, llamada superficie de interfase gaseosa y superficie de interfase líquida respectivamente, en torno al sistema líquido, hablando de una película de interfase líquida se tiene que la transferencia del gas, es función de las condiciones de flujo existentes en el sistema gaseoso, es decir, un flujo entre laminar y de transición tendrá un factor de renovación de interfase cercano a la unidad, por lo que la transferencia en estos casos, será función únicamente del coeficiente de difusión del gas en el líquido, y del espesor de la película de interfase líquida considerada, el factor de renovación se irá incrementando cuando se incremente la turbulencia del fluido gaseoso, la transferencia de gas hacia el sistema líquido, depende también de las condiciones de concentración del sistema gaseoso que proporciona el 02.Bubble aeration system, these consist of the generation of bubbles at the bottom of aeration tanks, where gas bubbles are diffused in the liquid system, in some cases it is necessary that the flow of rising bubbles causes sufficient agitation, to ensure that the gas that has been transferred, diffuses enough throughout the tank, sometimes stirring equipment is installed, to improve the mixing conditions, one of the most relevant characteristics of this type of systems is that refers to the large amount of interface area that is generated, and that is the surface through which the gas transfer is made, another notable feature is the contact time that is achieved between the volume of gas confined in the bubble and the liquid, which brings as a consequence that in this type of systems high uses of oxygen are obtained, being larger the smaller the diameter of gene bubbles radas; The magnitude of the interface area is a function of the average diameter of the bubbles and the amount of air supplied; the contact time is a function of the bubble ascent rate, which depends on their diameter, and the depth of the tank; considering that two systems participate, one gas and one liquid, both they have a boundary film that divides them, called gaseous interface surface and liquid interface surface respectively, around the liquid system, speaking of a liquid interface film that has to transfer the gas, it is a function of the existing flow conditions in The gaseous system, that is to say, a flow between laminar and transition will have an interphase renewal factor close to the unit, so the transfer in these cases will be a function only of the diffusion coefficient of the gas in the liquid, and of the Thickness of the liquid interface film considered, the renewal factor will increase when the turbulence of the gaseous fluid increases, the transfer of gas to the liquid system, also depends on the concentration conditions of the gaseous system that provides the 0 2 .
Se puede analizar también la transferencia, considerando una película de interfase en el sistema gaseoso, en cuyo caso se dependerá de las condiciones de flujo en la interfase líquida y de las condiciones de concentración de la interfase líquida; en ambos casos se tiene que, tanto el factor de concentración como el factor de renovación, aceleran o frenan la velocidad con que se efectúa la transferencia de masa según su magnitud.The transfer can also be analyzed, considering an interphase film in the gas system, in which case it will depend on the flow conditions in the liquid interface and the concentration conditions of the liquid interface; In both cases, both the concentration factor and the renewal factor must accelerate or slow down the speed with which the mass transfer is carried out according to its magnitude.
Los materiales tensoativos, altas temperaturas y altas concentraciones de contaminantes, tienden a disminuir la velocidad de la transferencia de oxigeno, ya que la rigidez de la estructura esférica de la burbuja, sobre todo en las burbujas mas finas, demanda mas disipación de energía para que se de la renovación de la superficie de interfase líquida, específicamente esto se debe a que la tensión superficial del líquido, se incrementa y genera una mayor resistencia, a la deformación de la película esférica de ¡nterfase líquida, cuando esta superficie se encuentra en equilibrio, como sería en este caso las burbujas.The tensile materials, high temperatures and high concentrations of pollutants, tend to decrease the rate of oxygen transfer, since the stiffness of the spherical bubble structure, especially in the finest bubbles, demands more energy dissipation so that It is the renewal of the liquid interface surface, specifically this is due to the fact that the surface tension of the liquid is increased and generates a greater resistance, to the deformation of the spherical film of liquid nterfase, when this surface is in equilibrium , as it would be in this case the bubbles.
Algunas de las desventajas de este tipo de sistema de aeración, se refieren a la imposibilidad de proporcionar agitación efectiva en el sistema gaseoso, y aunque se puede aplicar agitación al sistema líquido, los resultados pueden no ser rentables para su implementación, ya que por las características del gas confinado en la burbuja, lo único que se haría es transportarlo de un lugar a otro, sin que se presente un alto grado de deslizamiento de partículas gaseosas, precisamente en la zona de la película de interfase, y por otro lado el volumen confinado por unidad de área generada es relativamente pequeño, haciendo que los efectos de un tiempo de contacto largo se neutralicen; los sistemas de difusores de burbujas tienen un costo de mantenimiento relativamente alto, independientemente del costo de la energía necesaria para comprimir el aire, y hacerlo llegar hasta los difusores.Some of the disadvantages of this type of aeration system, refer to the impossibility of providing effective agitation in the gaseous system, and although agitation can be applied to the liquid system, the results may not be profitable for its implementation, since due to characteristics of the gas confined in the bubble, the only thing that would be done is to transport it from one place to another, without presenting a high degree of sliding of gaseous particles, precisely in the area of the interface film, and on the other hand the volume confined per unit of generated area is relatively small, causing the effects of a long contact time to be neutralized; Bubble diffuser systems have a relatively high maintenance cost, regardless of the cost of the energy needed to compress the air, and make it reach the diffusers.
Sistemas de aeración por contacto; estos están formados por tanques estructurales de concreto, los cuales, están llenos de un empaque a base material poroso, que puede ser de origen mineral como piedras, trozos de vidrio o material prefabricado de plástico, estos proporcionan una extensa superficie donde se adhieren los microorganismos formando una película biológica, la cual permanece fija a la superficie, hasta llegar a un espesor en el que se presentan condiciones, que permiten que esta se remueva por si misma en forma periódica; los organismos de la película respiran el oxigeno que existe en los huecos formados; el sistema de drenaje permite la circulación de aire hacia arriba o hacia abajo, dependiendo de las temperaturas del influente y del medio poroso, con la finalidad de mejorar la disposición de oxigeno, sobre todo para la película que se encuentra en las partes bajas; la profundidad mas usual es de 2 mts; en estos sistemas, el líquido es esparcido en forma continua o intermitente, para unidades de alta carga o baja carga respectivamente, en la parte superior por medio de una serie de boquillas montadas sobre tubos aspersores, los cuales pueden estar fijos o bien tener movimiento rectilíneo o circular, dependiendo de la configuración del tanque; los microorganismos reciben el alimento del líquido que escurre sobre la superficie; en la actualidad existen materiales, que pueden proporcionar de 40 aContact aeration systems; These are formed by concrete structural tanks, which are filled with a porous material-based packaging, which can be of mineral origin such as stones, pieces of glass or prefabricated plastic material, these provide an extensive surface where microorganisms adhere forming a biological film, which remains fixed to the surface, until it reaches a thickness in which conditions arise, which allow it to be removed periodically by itself; the organisms in the film breathe the oxygen that exists in the holes formed; the drainage system allows the circulation of air up or down, depending on the temperatures of the influent and the porous medium, in order to improve the oxygen provision, especially for the film that is in the lower parts; the most usual depth is 2 meters; In these systems, the liquid is spread continuously or intermittently, for high load or low load units respectively, at the top by means of a series of nozzles mounted on sprinkler tubes, which can be fixed or have rectilinear movement or circulate, depending on the configuration of the tank; microorganisms receive food from the liquid that drains over the surface; There are currently materials, which can provide 40 to
2 32. 3
100 m /m de superficie específica, para cubrir un rango amplio de necesidades, por la forma de aplicación y disposición del área, se aprovecha aproximadamente de 40 a 85 % de la superficie, la cual es mojada a intervalos de aproximadamente cada 5 mín. para el caso de instalaciones de baja carga o bien, en forma continua para las instalaciones de alta carga; las unidades de baja carga, suelen manejar100 m / m of specific surface, to cover a wide range of needs, due to the way of application and arrangement of the area, approximately 40 to 85% of the surface is used, which is wet at intervals of approximately every 5 min. in the case of low load installations or continuously for high load installations; low load units usually handle
3 2 una carga hidráulica de 1.5 a 6 m /m x día total, y una carga orgánica de 0.08 a3 2 a hydraulic load of 1.5 to 6 m / m x total day, and an organic load of 0.08 to
33
1.5 kg/m de volumen útil del tanque; las unidades de alta carga pueden manejar1.5 kg / m useful volume of the tank; high load units can handle
3 2 3 una carga hidráulica de 7 a 25 m /m x día y una carga orgánica de 1.6 a 15 kg/m de volumen útil del tanque; los sistemas de aeración por contacto llamados también filtros goteadores, alcanzan a eliminar de 80 a 85 % para los de baja carga y 50 a 79 % para los de alta carga.3 2 3 a hydraulic load of 7 to 25 m / mx day and an organic load of 1.6 to 15 kg / m of useful volume of the tank; the contact aeration systems called also drip filters, they can eliminate from 80 to 85% for those of low load and 50 to 79% for those of high load.
En referencia, exclusivamente al proceso de aeración por contacto, se tiene que este se inicia desde el momento, en que las boquillas de los aspersores, generan el conjunto de gotas que forman una lluvia, ya sea intermitente o continua según el caso, en esta etapa el tiempo de contacto y el área de interfase son muy pequeños por lo que sus efectos son insignificantes; al llegar las gotas y hacer contacto con el medio filtrante, el líquido se extiende y va escurriendo sobre las paredes del filtro, de tal forma que el espesor de la película líquida, va siendo cada ves mas pequeño hasta que llega un momento en que, debido a las propiedades de la tensión superficial y las condiciones viscosas del líquido, este se desplaza a una menor velocidad y por los efectos de la gravedad, el líquido se irá filtrando o drenando por los pequeños intersticios de la película, dando oportunidad para el caso de la aplicación intermitente, de que la película absorba líquido y este al escurrirse por los efectos de la gravedad, ayuda a que los espacios desocupados, se llenen de aire, el cual, al llegar una nueva película de líquido y materia orgánica contaminante, se posa en los espacios desalojados por el líquido de la película anterior, atrapando microburbujas de gas; es importante mencionar que cuando se está manejando una alimentación continua, el proceso se comporta como los proceso de lodos activados, es decir, la actividad biológica en la película, baja su intensidad y se genera una gran parte de la actividad biológica, por las bacterias que se encuentran suspendidas en el líquido; otra característica de estos sistemas, consiste en que tienen una inmensa superficie de contacto, y relativamente tiempos de contacto y un tiempo de retención relativamente corto, la configuración del sistema, demanda un volumen grande para la generación de la superficie de interfase, esto es por el espacio que ocupa el material sólido del filtro y los espacios vacíos, que constituyen una de las características de este tipo de unidades.In reference, exclusively to the aeration process by contact, it has to be started from the moment, when the nozzles of the sprinklers, generate the set of drops that form a rain, either intermittent or continuous as appropriate, in this stage the contact time and the interface area are very small so their effects are insignificant; When the drops arrive and make contact with the filter medium, the liquid spreads and drains onto the walls of the filter, so that the thickness of the liquid film is becoming smaller until it reaches a time when, Due to the properties of the surface tension and the viscous conditions of the liquid, it moves at a slower speed and due to the effects of gravity, the liquid will be filtered or drained through the small interstices of the film, giving opportunity for the case of the intermittent application, that the film absorbs liquid and this when drained by the effects of gravity, helps the unoccupied spaces to be filled with air, which, upon arrival of a new film of liquid and contaminating organic matter, is it poses in the spaces evicted by the liquid from the previous film, trapping gas microbubbles; It is important to mention that when a continuous feeding is being handled, the process behaves like the activated sludge process, that is, the biological activity in the film, lowers its intensity and a large part of the biological activity is generated, by the bacteria that are suspended in the liquid; Another characteristic of these systems is that they have an immense contact surface, and relatively contact times and a relatively short retention time. The configuration of the system demands a large volume for the generation of the interface surface, that is to say the space that occupies the solid material of the filter and the empty spaces, which constitute one of the characteristics of this type of units.
Una característica ventajosa de este tipo de sistemas, es su capacidad para soportar repentinas variaciones de carga orgánica; también se tiene que, en los sistemas de baja carga se efectúa un porcentaje de nitrificación, lo cual se debe al hecho de que existen tipos de bacterias nitrificantes, que se desarrollan adheridas a la superficie de contacto, por disponer del tiempo y del oxigeno suficiente para su desarrollo.An advantageous feature of this type of system is its ability to withstand sudden variations in organic load; It is also necessary that, in low load systems, a percentage of nitrification is carried out, which is due to the fact that there are types of nitrifying bacteria that develop adhered to the contact surface, for having enough time and oxygen for its development.
La principal desventaja consiste en los grandes espacios, que se requieren para la construcción de las estructuras; el mantenimiento para restituir el funcionamiento, cuando se presentan fenómenos de encharcamiento, es uno de los problemas mas comunes que se presentan; otro efecto que constituye una desventaja, consiste en la generación de condiciones propicias para el desarrollo de moscas.The main disadvantage consists of the large spaces, which are required for the construction of the structures; maintenance to restore operation, when flooding phenomena occur, is one of the most common problems that arise; Another effect that constitutes a disadvantage is the generation of conditions conducive to the development of flies.
Existen una serie de artificios introducidos a este tipo de sistemas de aereación, con la finalidad de adecuarlos a un mayor número de necesidades en el tratamiento, tales como la recirculación de lodos del sedimentador primario, del sedimentador secundario, del mismo efluente del tanque de aereación, en distintos porcentajes; también existen los sistemas de una y dos etapas, siendo normalmente la primera etapa de alta tasa y la segunda de baja tasa.There are a number of devices introduced to this type of aeration systems, in order to adapt them to a greater number of treatment needs, such as the recirculation of sludge from the primary settler, the secondary settler, of the same effluent from the aeration tank. , in different percentages; There are also one- and two-stage systems, usually the first stage of high rate and the second stage of low rate.
Sistema de aeración mecánica; la aeración mecánica se caracteriza, por el uso de un equipo electromecánico, que trabaja en forma directa sumergido total o parcialmente en el líquido, como puede ser la agitación por medio de una hélice o una turbina, un agitador de paletas o un agitador tipo cepillo de Kessner, el cual usualmente se instala sobre el curso de un canal o zanja.Mechanical aeration system; mechanical aeration is characterized by the use of electromechanical equipment, which works directly submerged totally or partially in the liquid, such as agitation by means of a propeller or a turbine, a vane agitator or a brush-type agitator from Kessner, which is usually installed over the course of a canal or ditch.
En todos estos sistemas se busca que el elemento agitador, cumpla con dos funciones básicas que son: la de agitación, con la finalidad de generar una determinada superficie de interfase, y en segundo lugar la de proporcionar una agitación, con la finalidad de que se logre una mezcla que proporcione el adecuado contacto, entre los nutrientes orgánicos contaminantes, los organismos bacteriológicos que habrán de encargarse de metabolizar la materia orgánica y el oxigeno disuelto, que se transfiere a través de la superficie de interfase generada.In all these systems it is sought that the agitator element, fulfill two basic functions that are: agitation, in order to generate a certain interface surface, and secondly to provide agitation, in order to achieve a mixture that provides adequate contact, between the contaminating organic nutrients, the bacteriological organisms that will be responsible for metabolizing the organic matter and dissolved oxygen, which is transferred through the generated interface surface.
Las desventajas de este tipo de sistemas, consiste en que el área de interfase y el tiempo de contacto de las mismas, son pequeños en comparación con los demás sistemas que manejan grandes superficies de interfase, o mayores tiempos de contacto.The disadvantages of this type of systems, is that the interface area and the contact time of the same, are small compared to the others systems that handle large interface surfaces, or longer contact times.
Otro aspecto que permite compensar, los efectos deficitarios de una gran área de 5 interfase y largos tiempos de contacto, en estos casos, es la aplicación de mayores tiempos de retención, concepto que implica manejar grandes estructuras, convirtiéndose esto en una desventaja de tipo económica.Another aspect that compensates for, the deficit effects of a large area of 5 interface and long contact times, in these cases, is the application of longer retention times, a concept that involves managing large structures, making this a disadvantage of economic type .
Las ventajas principales se refieren a las excelentes condiciones de 0 concentración, tanto en la interfase líquida como gaseosa, que son muy favorables, además los factores de renovación son excelentes tanto en el sistema líquido como gaseoso, al grado que logran compensar los déficits de una gran área de interfase, o bien de un tiempo de contacto largo.The main advantages refer to the excellent conditions of 0 concentration, both in the liquid and gaseous interfaces, which are very favorable, and the renewal factors are excellent in both the liquid and gaseous systems, to the extent that they compensate for the deficits of a large interface area, or a long contact time.
5 Existen algunos procesos de aereación patentados, los cuales tienen como base cualquiera de los tres sistemas anteriores, pero introducen algunas modificaciones a los procesos como a continuación, se pueden resumir en los siguientes términos:5 There are some patented aeration processes, which are based on any of the three previous systems, but introduce some modifications to the processes as follows, they can be summarized in the following terms:
o Aereación convencional; esta consiste en someter los lodos al proceso de aereación, que puede ser mecánico o de burbujas, durante un determinado periodo de tiempo de 6 a 8 hrs; recirculando, del 20 al 30 % de lodos, los cuales se mezclan con el influente; el proceso convencional puede estar provisto de una etapa primaria de sedimentación, y de una etapa secundaria de sedimentación. 5o Conventional aeration; this consists of subjecting the sludge to the aeration process, which can be mechanical or of bubbles, during a certain period of time from 6 to 8 hrs; recirculating, from 20 to 30% of sludge, which is mixed with the influent; The conventional process may be provided with a primary sedimentation stage, and a secondary sedimentation stage. 5
Aeración escalonada; en este sistema, el influente es distribuido en varios puntos del tanque, y los lodos recirculados se introducen en el punto inicial, por donde se ingresan las aguas del influente, ello implica que la concentración de sólidos sea mayor al inicio y van disminuyendo, a medida que las aguas van o avanzando hacia las demás etapas; con esta modificación se logra disminuir el tiempo de retención hasta en 50 %, siempre y cuando el tiempo de residencia de lodos se maneje entre 3 a 4 días, en este proceso el sistema básico de aeración es por medio de burbujas, aunque también puede ser mecánico en algunos casos. Aeración graduada; este proceso tiene la particularidad de que supone, que la mayor DBO se encuentra al inicio del. tanque, y va disminuyendo conforme se avanza, por lo que se hace una mayor inyección de aire al inicio, y se va disminuyendo conforme se acerca a la salida del efluente, en este proceso el sistema básico de aeración es por medio de burbujas.Staggered aeration; In this system, the influent is distributed in several points of the tank, and the recirculated sludge is introduced at the initial point, where the influent's waters are entered, this implies that the concentration of solids is greater at the beginning and decreases, at as the waters go or moving towards the other stages; With this modification it is possible to reduce the retention time by up to 50%, as long as the residence time of sludge is handled between 3 to 4 days, in this process the basic aeration system is by means of bubbles, although it can also be Mechanic in some cases. Graduated aeration; This process has the peculiarity of assuming that the largest BOD is at the beginning of the. tank, and it decreases as it progresses, so that a greater injection of air is made at the beginning, and it decreases as it approaches the effluent outlet, in this process the basic aeration system is by means of bubbles.
Aereación extendida; conocido también como aeración prolongada, este proceso se caracteriza por la aplicación de mayores tiempos de retención, para lograr altos niveles de abatimiento de la DBO, por consecuencia el proceso puede ser aplicado con sistemas de aeración por burbujas y mecánica.Extended aeration; Also known as prolonged aeration, this process is characterized by the application of longer retention times, to achieve high levels of BOD depletion, therefore the process can be applied with bubble aeration systems and mechanics.
Aeración activada; aquí se canalizan los lodos residuales en exceso, se mezclan con aguas negras crudas, se someten a aeración para acondicionarlos y de esta forma mantener una fuente de lodos activos, que permiten intensificar o restituir la continuidad de la actividad biológica, cuando esta se ve afectada por la introducción de substancias tóxicas, o sobrecargas repentinas que inhiben la actividad biológica; el proceso básico de aeración puede ser mecánico o de burbujas.Aeration activated; here the excess sewage sludge is channeled, mixed with raw sewage, subjected to aeration to condition them and thus maintain a source of active sludge, which allows intensifying or restoring the continuity of biological activity, when it is affected by the introduction of toxic substances, or sudden overloads that inhibit biological activity; The basic aeration process can be mechanical or bubble.
DescripciónDescription
Método de aeración clasificado, consiste en someter los lodos dentro de un sistema de tratamiento, a cualquier proceso de aeración compatible, pero con recirculación de lodos previamente clasificados, es decir, ya no se recirculará en forma discreta, con base a lo siguiente:Classified aeration method, consists in subjecting the sludge within a treatment system, to any compatible aeration process, but with recirculation of previously classified sludge, that is, it will no longer be recirculated discreetly, based on the following:
Mediante un sedimentador clasificador de lodos, se dispone de tres posibles tipos de lodos, que son:Through a sludge classifier settler, three possible types of sludge are available, which are:
Lodos pesados; esto es en cuanto a una de sus características físicas como su alta velocidad de sedimentación, estos corresponden a los lodos que tienen un alto grado de tratamiento, que químicamente han sido reducidos por oxidación a substancias más simples y que biológicamente se pueden considerar estables; dependiendo de los objetivos que se persigan con los tratamientos, la mayor parte de los procesos se diseñan por cuestiones de rentabilidad, para lograr la estabilización de una parte de la DBO y mineralizar otra parte, dependiendo de la eficiencia de la planta, un pequeño porcentaje se va en el efluente, por lo que en estos casos, la DBO estabilizada está constituida por los lodos residuales o en exceso, esta materia incrementa innecesariamente la viscosidad de los lodos, ya que su permanencia dentro del tanque, en vez de incentivar el proceso biológico, lo inhibe al ocupar un espacio, que sería mas conveniente que lo ocuparan bacterias activas o materia orgánica; por sus características facilitará su tratamiento posterior, que puede ser su espesamiento, estabilización final o secado.Heavy sludge; This is in terms of one of its physical characteristics such as its high sedimentation rate, these correspond to sludges that have a high degree of treatment, which have been chemically reduced by oxidation to simpler substances and which can be considered biologically stable; Depending on the objectives pursued with the treatments, most of the processes are designed for reasons of profitability, to achieve the stabilization of a part of the BOD and mineralize another part, depending on the efficiency of the plant, a small percentage it goes into the effluent, so in these cases, the stabilized BOD is constituted by residual or excess sludge, this matter unnecessarily increases the viscosity of the sludge, since its permanence inside the tank, instead of encouraging the process biological, inhibits it by occupying a space, which would be more convenient for active bacteria or organic matter to occupy; Due to its characteristics, it will facilitate its subsequent treatment, which may be its thickening, final stabilization or drying.
Lodos intermedios; formados por flóculos en desarrollo, los que por sus características físicas, químicas y biológicas, tienen una velocidad de sedimentación intermedia; el contenido de materia estabilizada es regular, así como también, el contenido de partículas y bacterias de tamaños pequeños es regular; todo esto da cierta característica a los lodos, que los hace muy versátiles para hacer ajustes, en la concentración de lodos dentro de la planta, sin caer en concentraciones extremas, estos lodos permiten cualquier manejo, que obviamente, no representan ningún riesgo, pero tampoco aportan efectos de importancia considerable, como cuando se retornan, el efecto de inoculación puede ser suficiente para mantener la actividad biológica o por ejemplo, su retiro en caso necesario, los olores desagradables deben ser menos intensos, como los causarían los lodos sin clasificar y mucho menos que los lodos ligeros, que contienen una mayor concentración, de materia orgánica fresca y organismos activos.Intermediate sludge; formed by developing flocs, which, due to their physical, chemical and biological characteristics, have an intermediate sedimentation rate; the content of stabilized matter is regular, as well as the content of particles and bacteria of small sizes is regular; All this gives certain characteristics to the sludge, which makes them very versatile to make adjustments, in the concentration of sludge inside the plant, without falling into extreme concentrations, these sludges allow any handling, which obviously does not represent any risk, but neither they provide effects of considerable importance, such as when they return, the inoculation effect may be sufficient to maintain biological activity or, for example, their withdrawal if necessary, unpleasant odors should be less intense, as would be caused by unsorted sludge and much less than light sludges, which contain a higher concentration, of fresh organic matter and active organisms.
Lodos ligeros; estos están constituidos por partículas finas que tienen las más bajas velocidades de sedimentación, que pueden ser de materia orgánica, materia parcialmente estabilizada, o que ha sido asimilada en la generación de nuevas bacterias, también pequeños flóculos formados por bacterias que inician su desarrollo, que por su tamaño sedimentan junto con los lodos ligeros; todo esto convierte a los lodos ligeros en los más activos biológicamente, cualidad que debe ser considerada, para manejarlos mas convenientemente dentro de la planta. Como en muchos procesos ya conocidos, se manejan distintas proporciones de lodos, aunque esto es muy relativo, ya que el principal objetivo que se persigue con la recirculación, es la de mantener una concentración adecuada de lodos bacteriológicos, en función de la carga orgánica que se está alimentado a la planta, por lo que, el mantener esta concentración, dependerá de la habilidad del operador y de la forma de cómo se lleve a cabo, la recirculación o el retiro de los lodos en exceso, con base a esta relatividad, y con la finalidad de dar mas certeza a las operaciones del manejo de los lodos, las proporciones que sirven como base de diseño a los procesos de tratamiento de aeración clasificada, suponen que del total de los lodos que se sedimentan, los pesados corresponden a los que se recolectan sobre el 33.33 % de la longitud del sedimentador; para la mayoría de las aplicaciones se tendrán 2 secciones de 33.33 % c/u que se consideran ligeros; cuando exista una aplicación específica entonces, la sección intermedia, será considerada para los lodos intermedios.Light sludge; these are constituted by fine particles that have the lowest sedimentation rates, which can be of organic matter, partially stabilized matter, or that has been assimilated in the generation of new bacteria, also small flocs formed by bacteria that initiate their development, which due to their size, they settle along with light sludge; All this makes light sludge the most biologically active, a quality that must be considered, to handle them more conveniently within the plant. As in many processes already known, different proportions of sludge are handled, although this is very relative, since the main objective pursued with recirculation is to maintain an adequate concentration of bacteriological sludge, depending on the organic load that the plant is being fed, so maintaining this concentration will depend on the skill of the operator and the way in which it is carried out, recirculation or removal of excess sludge, based on this relativity, and with the purpose of giving more certainty to sludge management operations, the proportions that serve as a design basis for the classified aeration treatment processes, suppose that of the total of the sludges that settle, the heavy ones correspond to the that are collected over 33.33% of the length of the settler; For most applications, 2 sections of 33.33% each will be considered light; when there is a specific application then, the intermediate section will be considered for the intermediate sludge.
Con un régimen de operación de lodos bien diseñado, se tendrá la posibilidad de generar, cualquier concentración que sea efectiva para el sistema.With a well-designed sludge operation regime, it will be possible to generate any concentration that is effective for the system.
El objetivo de la aeración clasificada, es el de contribuir, a mejorar el funcionamiento de las plantas de tratamiento en los siguientes aspectos:The objective of classified aeration is to contribute to improve the operation of treatment plants in the following aspects:
Puede ayudar a mantener con mejores niveles de efectividad a los lodos activos, al poder retirar siempre lodos más estabilizados, y recircular los lodos biológicamente más activos.It can help maintain active sludge with better levels of effectiveness, being able to always remove more stabilized sludge, and recirculating the most biologically active sludge.
Permite tener un control mas adecuado en la edad de los lodos activos, por el hecho de que las bacterias inertes, que son las que conforman principalmente los flóculos más grandes y pesados, es decir los más estabilizados, siendo estos los que se pueden retirar, sin correr el riesgo de eliminar lodos nuevos, y mediante la recirculación, de los lodos ligeros, se garantiza que los lodos en vías de desarrollo o lodos nuevos, continúen su desarrollo dentro del tanque, hasta que adquieran las características que los puede hacer llegar a la sección de los lodos pesados.It allows to have a more adequate control in the age of the active sludges, due to the fact that the inert bacteria, which are the ones that mainly make up the largest and heaviest flocs, that is, the most stabilized ones, being these the ones that can be removed without running the risk of eliminating new sludge, and by recirculation, of the light sludge, it is guaranteed that the sludge in the process of development or new sludge, continue its development inside the tank, until they acquire the characteristics that can make them reach the section of heavy sludge.
Los lodos que se canalizan para ser retirados como lodos excedentes, se pueden manejar con olores desagradables menos intensos, ya que han sido clasificados y corresponden a los mas estabilizados, por lo que en caso de que se les aplique un tratamiento de estabilización final, esta será con menores tiempos de retención, y por el mismo grado de estabilización, se facilita más la operación de concentración o espesado, para su tratamiento posterior que puede ser el secado en lechos de arena.Sludges that are channeled to be removed as excess sludge, can be handled with less intense unpleasant odors, since they have been classified and They correspond to the most stabilized, so in case they are applied a final stabilization treatment, this will be with shorter retention times, and by the same degree of stabilization, the concentration or thickened operation is facilitated more, for its post treatment that can be drying in sand beds.
Independientemente de los sistemas de aeración conocidos, a los cuales se les puede implementar el método de clasificación de lodos, a continuación se presenta el desarrollo del sistema de aeración capilar como a continuación se describe.Regardless of the known aeration systems, to which the sludge classification method can be implemented, the development of the capillary aeration system is presented below as described below.
Sistema de aeración capilar como tal; consiste en un conjunto de ductos que forman placas o láminas de conductos, que pueden ser fabricados con cubiertas resistentes al medio ambiente, como el polietileno de alta densidad y PVC, este sistema proporciona la mayor parte del oxigeno que demanda el proceso, ya que una parte pequeña de oxigeno es transferida en la superficie del tanque de oxidación, por la acción de un sistema de aeración mecánica a baja escala, la cual es aplicada con fines de mezclado para facilitar el contacto de 02, bacterias y materia orgánica contaminante, además de lograr una aeración complementaria dentro del mismo tanque; el conjunto de conductos, fue concebido de forma que se puede aprovechar prácticamente el 100 % de la superficie disponible, lo cual se logra al generar una lámina líquida sobre todo el perímetro del conducto interiormente, esto se logra mediante el diseño de deflectores de flujo, los cuales se ilustran en las siguientes:Capillary aeration system as such; It consists of a set of ducts that form plates or sheets of ducts, which can be manufactured with environmentally resistant covers, such as high density polyethylene and PVC, this system provides most of the oxygen that the process demands, since a Small part of oxygen is transferred on the surface of the oxidation tank, by the action of a small-scale mechanical aeration system, which is applied for mixing purposes to facilitate the contact of 0 2 , bacteria and contaminating organic matter, in addition to achieve a complementary aeration within the same tank; The set of ducts, was conceived in such a way that practically 100% of the available surface can be used, which is achieved by generating a liquid sheet over the entire perimeter of the duct internally, this is achieved through the design of flow deflectors, which are illustrated in the following:
Figura 1 , vista en planta de un deflector de flujo, dentro del conducto capilar. Figura 2, vista de un corte de una sección lateral de un deflector de flujo. Figura 3, vista lateral de un deflector de flujo. Figura 4, vista de un corte frontal de un deflector de flujo.Figure 1, plan view of a flow deflector, within the capillary duct. Figure 2, view of a section of a side section of a flow deflector. Figure 3, side view of a flow deflector. Figure 4, view of a front section of a flow deflector.
Los conductos formados por láminas de PVC (No 1), en cuyo interior se encuentran insertados una serie de deflectores (No 2), los cuales pueden ser del mismo material del conducto, o bien de un hule blando para permitir la introducción de una herramienta, para destapar en caso de que se presente algún tipo de taponamiento; estos deflectores se unen a la lámina de conductos, mediante el soporte del deflector (No 3), estos deflectores proporcionan varias características que a continuación se describen:The ducts formed by PVC sheets (No 1), inside which are inserted a series of baffles (No 2), which can be of the same material as the duct, or a soft rubber to allow the introduction of a tool , to uncover if any type of plugging; These baffles are attached to the duct sheet, by means of the baffle support (No 3), these baffles provide several features that are described below:
Este sistema, es uno de los sistemas de tratamiento mas manipulables, y también predecibles, permiten variar condiciones de flujo en el sistema líquido, condiciones de flujo en el sistema gaseoso y condiciones biológicas de los lodos que se recirculan, todas estas variaciones se pueden manejar en forma independiente para ser estudiadas, pueden ser observadas y medidas, por lo que hacen que el sistema entre otras aplicaciones, sea apto para la implementación de prototipos para investigación científica y universitaria; durante el funcionamiento del sistema, en el momento de la exposición, y por las características difusionales, una cantidad de oxigeno es absorbido por el sistema líquido, para ser transportado al tanque de oxidación en forma de microburbujas u oxigeno disuelto OD, acción que se facilita debido a que en la superficie de interfase, las fuerzas intermoleculares están en desequilibrio, por lo que esta superficie será más receptiva para el OD; por sus características de manipulación, es evidente que los efectos de limitación, por tratarse de volúmenes confinados, como el caso de los sistemas de burbujas, aquí los podemos compensar con la inyección de más aire, sin incrementos considerables de energía o bien, de una mayor dosificación de líquido.This system, is one of the most manipulable treatment systems, and also predictable, allow to vary flow conditions in the liquid system, flow conditions in the gas system and biological conditions of the sludge that is recirculated, all these variations can be managed independently to be studied, they can be observed and measured, so that they make the system among other applications suitable for the implementation of prototypes for scientific and university research; during the operation of the system, at the time of exposure, and due to diffusional characteristics, an amount of oxygen is absorbed by the liquid system, to be transported to the oxidation tank in the form of microbubbles or dissolved oxygen OD, an action that is facilitated because at the interface surface, intermolecular forces are in imbalance, so this surface will be more receptive to the OD; Due to their handling characteristics, it is clear that the effects of limitation, as they are confined volumes, as in the case of bubble systems, can be compensated here with the injection of more air, without considerable increases in energy or, of higher dosage of liquid.
Como se está manejando una mayor superficie de ¡nterfase, en condiciones turbulentas como en los sistemas de aeración mecánica, y como se mejoran las condiciones físicas, químicas y biológicas, es lógico que habrá una mayor oxidación o mineralización de materia orgánica contaminante, que se agrega hacia la atmósfera en forma de anhídrido carbónico, o se transforma en agua, que se suma al sistema líquido, esto ultimo se presenta principalmente en la nitrificación de la materia nitrogenada; la asimilación de una parte de contaminantes que dan como resultado la generación de nuevas células, siempre estará en condiciones de desarrollarse en mejores condiciones, ya que constantemente se retira la materia estable y se retornan los lodos, que forman el sistema de inoculación en mejores condiciones y por otro lado, se puede esperar que la absorción de la materia orgánica que genera lodos estabilizados, disminuya en cierto grado, lo cual debe de implicar una mayor reducción por oxidación o mineralización, siendo esto una condición deseable en la mayoría de las plantas; es importante tener presente, que los cambios posiblemente, apenas sean perceptibles a simple vista o que estos sean mínimos, en comparación con un proceso correctamente diseñado y operado, esto obedece al hecho, de que cualquier proceso que opere correctamente, en caso de superarlo apenas será en unas cuantas centésimas de eficiencia, otros indicios serán un menor consumo de energía y el uso de instalaciones de menor tamaño, al poder manejar menores tiempos de retención.As a larger surface area is being managed, in turbulent conditions such as mechanical aeration systems, and as physical, chemical and biological conditions are improved, it is logical that there will be greater oxidation or mineralization of contaminating organic matter, which added to the atmosphere in the form of carbon dioxide, or transformed into water, which is added to the liquid system, the latter occurs mainly in the nitrification of nitrogen material; the assimilation of a part of pollutants that result in the generation of new cells, will always be in a position to develop in better conditions, since the stable matter is constantly removed and the sludge is returned, which forms the inoculation system in better conditions and on the other hand, it can be expected that the absorption of organic matter that generates stabilized sludge, decrease to some degree, which should imply a greater reduction by oxidation or mineralization, this being a desirable condition in most plants; It is important to keep in mind that the changes may be barely noticeable to the naked eye or that these are minimal, compared to a properly designed and operated process, this is due to the fact that any process that operates correctly, in case of overcoming it it will be in a few hundredths of efficiency, other indications will be lower energy consumption and the use of smaller facilities, being able to handle shorter retention times.
El sistema de aeración capilar tiene una característica novedosa, que se refiere a la posibilidad de diseñar y construir un sistema de aeración, que permite aprovechar tanto la superficie superior como inferior de un conducto, según el perfil mostrado en la fig. 2, con esto, la superficie de contacto de la interfase se incrementa por el aprovechamiento de toda la superficie posible, es decir, el líquido fluye en toda la periférie interior del ducto, esto se puede generar gracias a la propiedad de tensión superficial del agua, que permite que pueda deslizarse sobre la superficie superior, bajo ciertas condiciones de pendiente y rugosidad, permitiendo pasar un segundo flujo gaseoso interior, tal que permite mejorar la concentración de oxigeno en la interfase gaseosa, a niveles que favorecen la transferencia de oxigeno, con un bajo consumo de energía.The capillary aeration system has a novel feature, which refers to the possibility of designing and building an aeration system, which allows taking advantage of both the upper and lower surface of a duct, according to the profile shown in fig. 2, with this, the contact surface of the interface is increased by the use of the entire possible surface, that is, the liquid flows throughout the inner periphery of the pipeline, this can be generated thanks to the surface tension property of the water , which allows it to slide over the upper surface, under certain conditions of slope and roughness, allowing a second internal gaseous flow to pass, such that the oxygen concentration in the gas interface is improved, at levels that favor oxygen transfer, with Low power consumption
La forma en que se colocan una placa de conductos con respecto a otras, se ilustra en las siguientes figuras:The way in which a duct plate is placed with respect to others, is illustrated in the following figures:
Figura 5, vista en planta de una lámina de conductos capilares. Figura 6, vista lateral de un bloque de láminas de conductos capilares. Figura 7, vista frontal de un bloque de láminas de conductos capilares.Figure 5, plan view of a sheet of capillary ducts. Figure 6, side view of a block of capillary duct sheets. Figure 7, front view of a block of capillary duct sheets.
La forma que se refiere al acomodo del conjunto de ductos, que se tiene en forma de placas como se ilustra en las figuras 5, 6 y 7, de tal forma que de una manera sumamente sencilla, podemos generar la cantidad de superficie de interfase, por el hecho de que podemos apilar "N" número de placas de conductos; el espacio requerido para generar cualquier requerimiento de superficie, dentro de rangos razonables, es sumamente reducido pero sobre todo eficiente; otro detalle importante, consiste en el hecho de que las placas del aerador, van montados sobre una estructura de concreto, lo que permite que en el tanque de oxidación, se pueda suministrar la agitación necesaria para mezclado y lograr optativamente, una transferencia complementaria de oxigeno, para satisfacer altas demandas de oxigeno, en caso de requerirse.The shape that refers to the arrangement of the duct assembly, which is in the form of plates as illustrated in Figures 5, 6 and 7, so that in a very simple way, we can generate the amount of interface surface, by the fact that we can stack "N" number of duct plates; the space required to generate any surface requirement, within ranges reasonable, it is extremely small but above all efficient; Another important detail consists in the fact that the plates of the aerator are mounted on a concrete structure, which allows the agitation tank necessary to mix and optionally achieve a complementary transfer of oxygen. , to meet high oxygen demands, if required.
Teoría cinética aplicada:Applied Kinetic Theory:
La teoría que se ha tomado de base supone un modelo teórico, que cuenta con dos superficies de referencia para el estudio de la transferencia de oxigeno, muy similar al concepto planteado de dos películas de interfase, una gaseosa y otra líquida, planteadas por W.K. Lewis y W.C. Whitman en ( Principie of Absortion, Ind. Eng. Chem. ), según Gordon Maskew Fair, John Charles Geyer y Daniel Alexander Okun, en su libro Purificación de aguas, tratamiento y remoción de aguas residuales; en el sistema de aeración capilar se manejan algunos conceptos, tales como un factor de condiciones de concentración en las interfase FCIL y FCIG, que puede tener un sistema líquido o gaseoso respectivamente, para aumentar o disminuir la tasa de transferencia de una determinada cantidad de masa, en función del grado de saturación o deficiencia alcanzado por el sistema; para ilustrar este concepto, tenemos que, en un sistema de aeración mecánica, se tienen las mejores condiciones tanto para recibir en el caso del sistema líquido, o bien para ceder en el caso del sistema gaseoso, por la razón de que, el sistema líquido durante la operación, está sujeto a una intensa agitación, que permite que películas líquidas con bajas concentraciones de oxigeno se estén exponiendo una tras otra, un número de veces que está determinado por el factor de renovación de interfase líquida, y por las condiciones propias del sistema líquido, las películas que se van exponiendo, se puede considerar que inician con una concentración Ctilo, que es la concentración de inicio de la película de interfase; ahora bien, dicha interfase aumentará su concentración, tanto como lo permitan las condiciones del grado de saturación en el sistema gaseoso, que es igual a la concentración de 02 del aire atmosférico, así como del número de películas de la interfase gaseosa, que participen en dicha transferencia; en forma análoga sucede en el sistema gaseoso.The theory that has been taken as a base assumes a theoretical model, which has two reference surfaces for the study of oxygen transfer, very similar to the proposed concept of two interface films, one gas and one liquid, proposed by WK Lewis and WC Whitman in (Principie of Absortion, Ind. Eng. Chem.), according to Gordon Maskew Fair, John Charles Geyer and Daniel Alexander Okun, in his book Water Purification, Treatment and Wastewater Removal; in the capillary aeration system some concepts are handled, such as a factor of concentration conditions at the interface FCIL and FCIG, which can have a liquid or gaseous system respectively, to increase or decrease the transfer rate of a certain amount of mass , depending on the degree of saturation or deficiency achieved by the system; To illustrate this concept, we have that, in a mechanical aeration system, we have the best conditions both to receive in the case of the liquid system, or to yield in the case of the gaseous system, for the reason that, the liquid system during the operation, it is subject to intense agitation, which allows liquid films with low oxygen concentrations to be exposed one after another, a number of times that is determined by the liquid interface renewal factor, and by the conditions of the liquid system, the films that are exposed, can be considered to start with a Ctil concentration, which is the starting concentration of the interface film; However, this interface will increase its concentration, as much as the conditions of the degree of saturation in the gaseous system permit, which is equal to the concentration of 0 2 of the atmospheric air, as well as the number of films of the gas interface, participating in said transfer; similarly it happens in the gas system.
La fig. 18 muestra el comportamiento de la concentración, en el sistema líquido dentro del aerador capilar, en primer lugar, las gráficas (No 3), representan la variación de la concentración en las películas de interfase líquida, las cuales tienen un período de tiempo, que es función del tiempo de contacto y del factor de renovación de superficie, cada ciclo de estas gráficas inician con una concentración Ctilo que corresponde, a la que tiene la lámina líquida dentro del conducto en ese preciso instante, alcanzando la concentración que le permite la exposición de una nueva película; la gráfica (No 4) representa el comportamiento de la concentración de oxigeno, en la lámina líquida dentro del conducto, la concentración inicial de esta gráfica, es la concentración Cío de oxigeno, que normalmente se mantiene como promedio en el tanque de oxidación biológica; la concentración de salida Clt (No 15), es la que se alcanza en el tiempo de (No 8), en la película líquida dentro del conducto puede llegar a alcanzar, la concentración de saturación Cls (No 1) en un tiempo tls (No 9) si se tiene la suficiente longitud en los conductos, o bien las condiciones de disponibilidad de oxigeno y el espesor de la película líquida lo permiten, pero por lo general, la longitud de los conductos, debe ser la que permita alcanzar la concentración Clt (No 15) en el tiempo Te (No 8), esto se maneja por lo general por razones de rentabilidad en el nivel de aprovechamiento del oxigeno atmosférico; la gráfica (No 5) muestra el tiempo (No 10), que tardaría el sistema en alcanzar la concentración de saturación dentro del volumen del tanque, en condiciones de equilibrio biológico; la gráfica (No 6) muestra el tiempo (No 11) que es necesario, para satisfacer, la demanda bioquímica de oxigeno, de un volumen igual al del tanque de oxidación, el tiempo para lograr la satisfacción de la DBO del volumen del tanque, es el que comúnmente se conoce como tiempo de retención TR, si se divide dicho tiempo, entre el tiempo que se requiere para la saturación del volumen del tanque, esto nos indicará el número de veces que se debe de saturar, completamente el volumen del tanque, para satisfacer la demanda de la DBO del volumen del tanque; la gráfica (No 7) nos sirve como punto de referencia, pues siempre se tratará de proporcionar el oxigeno suficiente, para alcanzar la metabolización de la DBO, contenida en el volumen diario, en la unidad de tiempo (No 12), que usualmente es un día, esto nos sirve para modular nuestro sistema a la hora de diseño; el eje de las ordenadas (No 10) representa la concentración de oxigeno disuelto en mg/l, y el eje de las coordenadas representa el tiempo en segundos, a una escala logarítmica.Fig. 18 shows the behavior of the concentration, in the liquid system within the capillary aerator, first of all, the graphs (No 3), represent the variation of the concentration in the liquid interface films, which have a period of time, which It is a function of the contact time and the surface renewal factor, each cycle of these graphs starts with a corresponding Ctil concentration, to which the liquid sheet has inside the duct at that precise moment, reaching the concentration that allows the exposure of a new movie; the graph (No 4) represents the behavior of the oxygen concentration, in the liquid sheet inside the duct, the initial concentration of this graph is the Cio concentration of oxygen, which is normally maintained as an average in the biological oxidation tank; The Clt (No 15) output concentration is that which is reached in the time of (No 8), in the liquid film inside the duct it can reach the saturation concentration Cls (No 1) in a time tls ( No 9) if you have enough length in the ducts, or the conditions of availability of oxygen and the thickness of the liquid film allow it, but usually, the length of the ducts, should be the one that allows to reach the concentration Clt (No 15) in time Te (No 8), this is usually handled for reasons of profitability in the level of use of atmospheric oxygen; The graph (No. 5) shows the time (No. 10), which would take the system to reach saturation concentration within the volume of the tank, under conditions of biological equilibrium; the graph (No 6) shows the time (No 11) that is necessary, to satisfy the biochemical oxygen demand, of a volume equal to that of the oxidation tank, the time to achieve the BOD satisfaction of the tank volume, is what is commonly known as retention time TR, if this time is divided by the time required for saturation of the volume of the tank, this will indicate the number of times to be saturated, completely the volume of the tank , to meet the BOD demand of the tank volume; The graph (No 7) serves as a reference point, since we will always try to provide sufficient oxygen to achieve the metabolism of BOD, contained in the daily volume, in the unit of time (No 12), which is usually one day, this serves to modulate our system at the time of design; the axis of the ordinates (No 10) represents the concentration of dissolved oxygen in mg / l, and the axis of the coordinates represents the time in seconds, on a logarithmic scale.
La fig. 19 representa el comportamiento del sistema gaseoso, dentro de un sistema de tratamiento, donde la transferencia se da a través de una superficie de contacto, por lo que es aplicable el modelo matemático de las películas de interfase, el cual se puede deducir de la figura en cuestión; la gráfica (No 4) representa el comportamiento de la concentración de oxigeno, en el aire atmosférico dentro del conducto capilar, donde en forma análoga, si se tiene la suficiente longitud y las condiciones del sistema líquido lo permiten, la concentración del oxigeno puede descender hasta una concentración Cgs (No 2) en el tiempo tgs (No 6), también se tiene que en el flujo gaseoso, dentro del conducto se puede alcanzar la concentración Ctg (No 9) en el tiempo de contacto TC (No 5), que puede ser el mismo que se maneja en el sistema líquido; la gráfica (No 3) representa el comportamiento de la concentración en la interfase gaseosa, la cual inicia en cada ciclo con la concentración Ctigo, que tiene el flujo gaseoso, dentro del conducto en ese preciso instante; el flujo gaseoso iniciará siempre con la concentración del aire atmosférico.Fig. 19 represents the behavior of the gaseous system, within a treatment system, where the transfer takes place through a contact surface, so that the mathematical model of the interface films is applicable, which can be deduced from the figure in question; The graph (No 4) represents the behavior of the oxygen concentration, in the atmospheric air inside the capillary duct, where in an analogous way, if it is of sufficient length and the conditions of the liquid system allow it, the oxygen concentration can decrease up to a concentration Cgs (No 2) in the time tgs (No 6), it is also necessary that in the gas flow, within the conduit the concentration Ctg (No 9) can be reached in the contact time TC (No 5), which may be the same as that used in the liquid system; the graph (No 3) represents the behavior of the concentration in the gas interface, which begins in each cycle with the concentration Ctigo, which has the gas flow, within the duct at that precise moment; The gas flow will always start with the concentration of atmospheric air.
Los factores que determinan la turbulencia de flujo, y con ello los factores de renovación de superficie son: el espesor de la lámina de flujo, la pendiente de las láminas, el número de deflectores así como también las dimensiones interiores del conducto, todo esto permite manipular o variar el número de Reynolds, que es un indicador de las condiciones de turbulencia que se están manejando; la forma en que se disipa la energía, es produciendo condiciones turbulentas justamente en toda la película líquida, para lograr altas tasas de transferencia, con consumos de energía menores, a los que se tienen en los sistemas de aeración mecánica, y con tiempos de retención mas bajos; la energía que se le suministra al fluido se empieza a liberar en el descenso del líquido, desarrollando una velocidad de flujo, que es una función directa de la pendiente y de las condiciones de rugosidad, equivalente de los difusores que tienen tres funciones específicas, inducen la formación de la lámina fluida superior, incrementando la superficie de interfase, limita la velocidad del flujo, mejorando el tiempo de contacto y ayudan a incrementar la turbulencia, favoreciendo la renovación de la película límite de interfase.The factors that determine the flow turbulence, and with it the surface renewal factors are: the thickness of the flow sheet, the slope of the sheets, the number of baffles as well as the interior dimensions of the duct, all this allows manipulate or vary the Reynolds number, which is an indicator of the turbulence conditions being handled; the way in which the energy dissipates, is producing turbulent conditions precisely in the entire liquid film, to achieve high transfer rates, with lower energy consumption, than in the mechanical aeration systems, and with retention times Lower; the energy that is supplied to the fluid begins to be released in the descent of the liquid, developing a flow rate, which is a direct function of the slope and the roughness conditions, equivalent of the diffusers that have three specific functions, induce the formation of the upper fluid sheet, increasing the interface surface, It limits the speed of the flow, improving the contact time and helping to increase the turbulence, favoring the renewal of the interface limit film.
Existen otros factores que influyen en la generación y renovación de la superficie, tales como el escurrimiento lateral que se tiene dentro del conducto, el efecto de este escurrimiento, contribuye al mejoramiento del factor de renovación dentro del conducto, su efecto debe ser importante, y su determinación precisa, es factible que se pueda determinar en un prototipo, considerando que sus efectos son positivos, y por no tener mayores referencias, su efecto lo consideramos despreciable; por otro lado se tiene que el cálculo de la superficie de interfase, se hace en función del perímetro interior del conducto, formado por la lámina periférica interior del fluido, el tamaño del conducto interior, debe considerar el espacio suficiente para permitir el flujo gaseoso, aun con presencia de la película bacteriológica, aunque es importante mencionar que el sistema tiene previsto impedir la formación de la película biológica, al impedirse la incidencia de luz sobre la superficie de los conductos, y no se manejan las condiciones de intermitencia, en la aplicación del líquido sobre la superficie, por lo que las condiciones propicias para el desarrollo de una posible película biológica son mínimas.There are other factors that influence the generation and renewal of the surface, such as the lateral runoff that is inside the conduit, the effect of this runoff, contributes to the improvement of the renewal factor within the conduit, its effect must be important, and its precise determination, it is feasible that it can be determined in a prototype, considering that its effects are positive, and for not having major references, its effect we consider negligible; On the other hand, it is necessary to calculate the interface surface, based on the inner perimeter of the duct, formed by the inner peripheral sheet of the fluid, the size of the inner duct, must consider sufficient space to allow gas flow, even with the presence of the bacteriological film, although it is important to mention that the system plans to prevent the formation of the biological film, by preventing the incidence of light on the surface of the ducts, and intermittent conditions are not handled, in the application of the liquid on the surface, so that the conditions conducive to the development of a possible biological film are minimal.
Referente a la renovación que se da por la condición de la turbulencia, es decir un flujo laminar, tendrá un factor de renovación de interfase unitario y a medida que se incrementa la velocidad, la turbulencia generada provocará que la renovación de la película de interfase, se renueve con una mayor intensidad; para el caso de los aeradores capilares, estos efectos están asociados a la pendiente del aerador, es decir cuando la pendiente es cercana a cero, la velocidad del flujo es muy baja y por consecuencia, el flujo tiende a ser laminar y el factor de renovación de superficie F.R.S. tiende a la unidad; a medida que aumentamos la pendiente, aumenta la velocidad, se genera una mayor turbulencia, que ayuda a que la película de interfase se renueve con una mayor intensidad, pudiéndose manejar por cuestiones de rentabilidad pendientes entre 0.1 y 0.2, las pendientes grandes reducen significativamente, el tiempo de contacto de la interfase líquida, y demandan mayor cantidad de energía. Existe otra etapa del tipo de flujo que se desarrolla en un fluido en movimiento, llamada flujo de transición, en este tipo de flujo, la película líquida de la zona de interfase, se empieza a renovar lentamente, de tal forma que es muy factible que exista un número de Reynolds, que limite al flujo laminar con la finalidad de establecer la transferencia que se da en condiciones de flujo laminar, para que posteriormente, se pueda tener una referencia con otras condiciones de velocidad, para las cuales, el número de Reynolds y la transferencia, puedan dar una idea del número teórico de películas que intervienen en un determinado sistema.Regarding the renewal that is given by the condition of the turbulence, that is to say a laminar flow, it will have a unit interface renewal factor and as the speed increases, the turbulence generated will cause the interface film renewal, renew with greater intensity; In the case of capillary aerators, these effects are associated with the slope of the aerator, that is, when the slope is close to zero, the flow velocity is very low and consequently, the flow tends to be laminar and the renewal factor FRS surface tends to unity; As we increase the slope, the speed increases, greater turbulence is generated, which helps the interface film to be renewed with a greater intensity, being able to handle for outstanding profitability issues between 0.1 and 0.2, the large slopes significantly reduce, the contact time of the liquid interface, and demand more energy. There is another stage of the type of flow that develops in a moving fluid, called transition flow, in this type of flow, the liquid film of the interface zone, begins to renew slowly, so that it is very feasible that there is a Reynolds number, which limits the laminar flow in order to establish the transfer that occurs in laminar flow conditions, so that later, a reference can be made with other speed conditions, for which the Reynolds number and the transfer, can give an idea of the theoretical number of films involved in a given system.
En torno al número de Reynolds, y tomando como referencia el comportamiento de las diferentes etapas por las que atraviesa un flujo, tenemos que, mientras prevalezca un flujo laminar, bajo ciertas condiciones del espesor y la dimensión lineal que se involucre, la capa límite en contacto con el gas permanece en la zona de la interfase, y así puede transcurrir un cierto tiempo mientras las condiciones de flujo no cambien, esto implica, que de efectuarse una determinada transferencia de oxigeno, esta se daría muy similarmente como se da dicho fenómeno en un volumen estático, con la diferencia de que, aquí el volumen se va desplazando, y aunque existe un desplazamiento, entre partículas de la película adherida a la superficie, sobre la cual se desliza la película líquida, para los análisis de transferencia de masa que se plantean en la teoría de las dos películas de interfase en flujos capilares, definen una etapa bastante bien definida, la cual, debe estar caracterizada, porque la transferencia de gas por unidad de superficie líquida expuesta, depende directamente del coeficiente de difusión del gas en el líquido Kd; si se va determinando el Número de Reynolds, para diferentes condiciones de velocidad cuya transferencia de gas no cambia, se puede llegar a determinar un valor del número de Reynolds, para el cual la transferencia empieza a incrementarse con los incrementos de la velocidad, lo cual debe indicar las condiciones que limitan a una tasa de transferencia constante, con respecto a este número, y que determinan el inicio de una transferencia que cambia con respecto a un factor de renovación de superficie, el cual es muy probable, que guarde una relación logarítmica con el número de Reynolds. El criterio para determinar el número de Reynolds en función de parámetros análogos, quizá no se pueda determinar con precisión dada la complejidad de los distintos sistemas de tratamiento, pero puede dar una idea clara de sus efectos en el factor de renovación de superficie, considerándolo como a continuación se plantea:Around the Reynolds number, and taking as reference the behavior of the different stages through which a flow goes through, we have to, as long as a laminar flow prevails, under certain conditions of the thickness and the linear dimension involved, the boundary layer in Contact with the gas remains in the area of the interface, and so a certain time may pass as long as the flow conditions do not change, this implies that if a certain oxygen transfer is carried out, this would occur very similarly as the phenomenon occurs in a static volume, with the difference that, here the volume is shifting, and although there is a displacement, between particles of the film adhered to the surface, on which the liquid film slides, for mass transfer analyzes that they are raised in the theory of the two interface films in capillary flows, they define a fairly well defined stage, which, must be characterized, by Because the transfer of gas per unit of exposed liquid surface depends directly on the diffusion coefficient of the gas in the liquid Kd; if the Reynolds Number is determined, for different speed conditions whose gas transfer does not change, a value of the Reynolds number can be determined, for which the transfer begins to increase with the speed increases, which you must indicate the conditions that limit a constant transfer rate, with respect to this number, and that determine the beginning of a transfer that changes with respect to a surface renewal factor, which is very likely, to keep a logarithmic relationship with the Reynolds number. The criterion for determining the Reynolds number based on analogous parameters may not be determined precisely given the complexity of the different treatment systems, but can give a clear idea of its effects on the surface renewal factor, considering it as The following is stated:
No. R = Ei x Vi / ( v ) Ec 1No. R = Ei x Vi / (v) Ec 1
Donde:Where:
Ei = Espesor de la película de interfase en m.Ei = Thickness of the interface film in m.
Vi = Velocidad con que se desplaza la interfase en m/s.Vi = Speed with which the interface moves in m / s.
Para el sistema de aeración capilar, se tiene que una velocidad de referencia con que se desplaza la lámina de flujo, para un caso en particular es:For the capillary aeration system, it is necessary to have a reference speed with which the flow sheet is moved, for a particular case it is:
Vil = 0.83 m/ sVil = 0.83 m / s
Se debe tener en cuenta que esta velocidad, depende de la pendiente de los conductos, de la densidad de deflectores por unidad de longitud, del espesor de la lamina de flujo y de la viscosidad cinemática del fluido, la velocidad indicada corresponde a un diseño específico, manejando agua a 20 °C con una pendienteIt should be taken into account that this speed depends on the slope of the ducts, the density of baffles per unit length, the thickness of the flow sheet and the kinematic viscosity of the fluid, the indicated speed corresponds to a specific design , driving water at 20 ° C with a slope
-4 3 de 0.125, con un flujo por conducto de 1.25 x 10 m /s con 3 deflectores por m. de longitud de conducto, la cual puede ser de 1.25 a 2 mts; el área de interfase-4 3 of 0.125, with a flow through duct of 1.25 x 10 m / s with 3 deflectors per m. duct length, which can be from 1.25 to 2 meters; the interface area
2 para un caso particular es de 0.1818 m ./(mg / 1) de DBO, ingresada por segundo con lo cual se puede determinar la longitud de los conductos para diversas condiciones, como se plantea mas adelante; este factor resulta de considerar, que es factible lograr la misma transferencia que en un sistema de aeración mecánica, aplicando un factor, por ejemplo, 2.5 sobre un promedio de superficie aplicada, dicho factor es relativo, por lo que para una aplicación mas definida, podría ser afinado con base en observaciones a un prototipo. La velocidad del flujo gaseoso dentro del conducto, se puede determinar para un estado particular de condiciones en la forma siguiente:2 for a particular case is 0.1818 m ./(mg / 1) of BOD, entered per second with which the length of the ducts for various conditions can be determined, as discussed below; This factor results from considering that it is feasible to achieve the same transfer as in a mechanical aeration system, applying a factor, for example, 2.5 on an average of applied surface, said factor is relative, so for a more defined application, It could be tuned based on observations to a prototype. The velocity of the gas flow within the duct can be determined for a particular state of conditions in the following way:
Vig = Qge x Vd / 86400 x NC x 0.048x 0.08 Ec 2Vig = Qge x Vd / 86400 x NC x 0.048x 0.08 Ec 2
Donde:Where:
3 33 3
Qge = Flujo de aire en m /m de aguas negras.Qge = Air flow in m / m of sewage.
3 Vd = Volumen diario en m /día de aguas negras.3 Vd = Daily volume in m / day of sewage.
NC = Número de conductos.NC = Number of ducts.
0.048 y 0.08 son las dimensiones interiores, previstas para el paso del flujo de gas en un conducto determinado.0.048 and 0.08 are the interior dimensions, intended for the passage of gas flow in a given duct.
2two
= Viscosidad cinemática del fluido que conforma la interfase en m /s.= Kinematic viscosity of the fluid that forms the interface in m / s.
2two
La viscosidad cinemática considerada para el líquido es: 0.00000101 m /sThe kinematic viscosity considered for the liquid is: 0.00000101 m / s
2two
La viscosidad cinemática considerada para el aire es: 0.0000135 m /sThe kinematic viscosity considered for air is: 0.0000135 m / s
Ecl = Qs / ai Ec 3Ecl = Qs / ai Ec 3
Donde:Where:
33
Qs = Caudal o flujo de recirculación de aguas negras en m /s, necesario, paraQs = Flow or recirculation flow of sewage in m / s, necessary, for
3 transferir el oxigeno requerido en Kg/m , considerando que la capacidad receptora, depende de las concentraciones inicial y la concentración alcanzada dentro del conducto Cío y Ctlc, respectivamente :3 transfer the required oxygen in Kg / m, considering that the receiving capacity depends on the initial concentrations and the concentration reached within the Cío and Ctlc conduit, respectively:
2 ai = Área de interfase que interviene en m /s. ai = No. De laminas x A.R.L. x L = Ec 42 ai = Interface area that intervenes in m / s. ai = No. of sheets x ARL x L = Ec 4
La determinación del espesor de la película de interfase gaseosa, se hace en base al flujo que proporciona la transferencia requerida, en base al coeficiente de aprovechamiento que se tiene en cada tipo de sistema.The thickness of the gas interface film is determined based on the flow provided by the required transfer, based on the utilization coefficient of each type of system.
Ecg = Qg / ai Ec 5Ecg = Qg / ai Ec 5
Manejando las concentraciones en términos de la deficiencia de oxigeno disuelto, así como la deficiencia cubierta, se tiene que el comportamiento puede ser analizado mediante una ecuación de primer orden como sigue:By managing the concentrations in terms of the dissolved oxygen deficiency, as well as the covered deficiency, the behavior can be analyzed by a first-order equation as follows:
dD / dt = - K D Ec 6dD / dt = - K D Ec 6
Ordenando términos:Sorting terms:
dD / D = - K dt Ec 7dD / D = - K dt Ec 7
Integrando se tiene:Integrating has:
/ dD / D = / -K dt Ec 8/ dD / D = / -K dt Ec 8
Ln Dt - Ln Do + C1 = -K ( t - to ) + C2 Ec 9Ln Dt - Ln Do + C1 = -K (t - to) + C2 Ec 9
Por las reglas de logaritmos se puede escribir como:By the logarithm rules you can write as:
Ln ( Dt/ Do ) = - Kt + C3 Ec 10Ln (Dt / Do) = - Kt + C3 Ec 10
Del comportamiento gráfico se puede inferir lo siguiente:The following can be inferred from the graphic behavior:
Dt = Cs - Ct Ec 11Dt = Cs - Ct Ec 11
Do = Cs - Co Ec 12 Eliminado el logaritmo natural de la ecuación 10, y considerando que la parte constante, la podemos representar como una suma de constantes, sin alterar la igualdad, y sustituyendo las ecuaciones 11 y 12 en 9, se tiene:Do = Cs - Co Ec 12 Eliminated the natural logarithm of equation 10, and considering that the constant part, we can represent it as a sum of constants, without altering equality, and substituting equations 11 and 12 in 9, we have:
-Kt-Kt
Cs-Ct = (Cs-Co)e +Cs + Co Ec 13Cs-Ct = (Cs-Co) e + Cs + Co Ec 13
Despejando Ct se tiene:Clearing Ct you have:
-Kt-Kt
Ct = (Cs-Co)- (Cs-Co)e +Co Ec 14Ct = (Cs-Co) - (Cs-Co) e + Co Ec 14
-Kt-Kt
Ct = Co + (Cs-Co) (1 -e ) Ec15Ct = Co + (Cs-Co) (1 -e) Ec15
Como la constante de velocidad K, debe considerar factores que aceleran o desaceleran la transferencia dentro del conducto, dicha constante está en función del coeficiente de difusión del oxigeno en el líquido, del espesor de la película considerada, de las condiciones variantes de concentración, y del factor de renovación de superficie del sistema FRS, y de un factor Kp, que representa el número de veces, que se multiplica el coeficiente de difusión de oxigeno, referenciado a 20 °C y a nivel del mar, por el nivel de saturación existente en la zona de interfase; considerando todos estos aspectos, se tiene que la constante de velocidad en el cambio de concentración de oxigeno, en la lamina de flujo dentro del conducto es:As the velocity constant K, it must consider factors that accelerate or decelerate the transfer within the conduit, said constant is a function of the diffusion coefficient of oxygen in the liquid, the thickness of the film considered, the varying concentration conditions, and of the surface renewal factor of the FRS system, and of a Kp factor, which represents the number of times, the oxygen diffusion coefficient, referenced at 20 ° C and at sea level, is multiplied by the level of saturation in the interface zone; Considering all these aspects, it is necessary that the rate constant in the oxygen concentration change, in the flow sheet inside the duct is:
Kdlc = - Kdl x FRIG x Kpl Ec 16Kdlc = - Kdl x FRIG x Kpl Ec 16
Donde:Where:
Kdlc = Coeficiente de velocidad con que se efectúa el cambio de concentración de oxigeno, en el sistema líquido dentro de los conductos.Kdlc = Speed coefficient with which the oxygen concentration change is made, in the liquid system within the ducts.
Kdl = Kd/Ecl Ec17 -09 2Kdl = Kd / Ecl Ec17 -09 2
Kd 20»c = Coeficiente de difusión de oxigeno = 2.4167 x 10 cm /s.Kd 20 »c = Oxygen diffusion coefficient = 2.4167 x 10 cm / s.
(Para una aplicación específica, el valor del coeficiente de oxigeno, debe estar referido a las condiciones medias de operación del proceso donde se aplique, considerando la temperatura y la concentración de sólidos suspendidos. )(For a specific application, the value of the oxygen coefficient must be referred to the average operating conditions of the process where it is applied, considering the temperature and concentration of suspended solids.)
Ecl = Espesor de la capa líquida dentro del conducto capilar.Ecl = Thickness of the liquid layer inside the capillary duct.
FRIG = Factor de renovación de la superficie de interfase en el sistema gaseoso, tiene dimensiones s"1 y el valor inicial que puede tener este factor, es de 1 debido al comportamiento de las películas o láminas en un flujo laminar en el sistema gaseoso, y puede aumentar hasta un valor determinado por las condiciones de turbulencia inducidos por algún medio.FRIG = Renewal factor of the interface surface in the gas system, has dimensions s "1 and the initial value that this factor can have, is 1 due to the behavior of the films or sheets in a laminar flow in the gas system, and it can increase up to a value determined by the turbulence conditions induced by some means.
FRIG = Kdgi / Kdgc Ec 18FRIG = Kdgi / Kdgc Ec 18
Kpl = Factor de ajuste que permite ajusfar el modelo matemático, desarrollado para el sistema líquido, representa el número de veces que se multiplica Kd debido a las condiciones de concentración.Kpl = Adjustment factor that allows to adjust the mathematical model, developed for the liquid system, represents the number of times that Kd is multiplied due to the concentration conditions.
FRIL = Factor de renovación de la película de interfase en el sistema líquido, el cual tiene dimensiones s"1 y depende de las condiciones de flujo, es decir, su valor mínimo debe ser de 1 y corresponde a las condiciones estáticas o de flujo laminar a flujo de transición, su valor óptimo será cuando se tengan las condiciones de turbulencia que proporcionan la mayor tasa de transferencia en condiciones rentables.FRIL = Renewal factor of the interface film in the liquid system, which has dimensions s "1 and depends on the flow conditions, that is, its minimum value must be 1 and corresponds to the static conditions or laminar flow At the transition flow, its optimum value will be when the turbulence conditions are provided that provide the highest transfer rate in profitable conditions.
FRIL = Kdli / Kdlc Ec 19FRIL = Kdli / Kdlc Ec 19
En forma análoga se tiene:In an analogous way you have:
Kdgc = - Kdg x FRIL x Kpg Ec 20Kdgc = - Kdg x FRIL x Kpg Ec 20
Donde: Kdg = Kd / Ecg Ec 21Where: Kdg = Kd / Ecg Ec 21
Kpg = Factor de ajuste que permite manejar el modelo matemático desarrollado para el sistema gaseoso, representa el número de veces que se multiplica Kd, debido a las condiciones de concentración de oxigeno en el sistema gaseoso.Kpg = Adjustment factor that allows to handle the mathematical model developed for the gas system, represents the number of times that Kd is multiplied, due to the oxygen concentration conditions in the gas system.
Para los cálculos correspondientes, es necesario manejar al oxigeno disponible en el sistema gaseoso, como una proporción del volumen del gas, que el sistema de tratamiento biológico es capaz de extraer, variando la concentración en el sistema gaseoso, para lo cual, es necesario plantear una concentración análoga a la concentración Cls en el líquido, la cual la representamos como:For the corresponding calculations, it is necessary to handle the oxygen available in the gaseous system, as a proportion of the volume of the gas, which the biological treatment system is able to extract, varying the concentration in the gaseous system, for which, it is necessary to consider a concentration analogous to the Cls concentration in the liquid, which we represent as:
Cgs = 0.84 Catm. = 229.32 mg/l Ec 22Cgs = 0.84 Catm. = 229.32 mg / l Ec 22
El coeficiente 0.84 se basa en la consideración, de que las condiciones que se presentan en los sistemas de aereación por burbujas, son similares en cuanto a la forma en que se lleva a cabo la transferencia, pero con sus respectivas características cada una, por lo tanto se considera que en igualdad de condiciones, debe existir el mismo aprovechamiento, que se considera del 16 % del oxigeno atmosférico, es decir, en términos de este porcentaje, se dice que si un sistema aprovecha el 100% del oxigeno aprovechable, en. términos reales, el sistema solo viene aprovechando el 16 % del oxigeno atmosférico que pasa por el sistema; ahora bien, es posible que este coeficiente difiera al existir cambios en las condiciones de equilibrio, de los esfuerzos en la superficie de interfase, que determinan la intensidad de la tensión superficial, debida a la fuerzas de Van der Walls, lo cual es muy factible, y en el caso de que dicha hipótesis se confirmara, sería positiva como lo muestran los sistemas de tratamiento de aereación mecánica, en estos la superficie de interfase es muy reducida, pero su capacidad de recepción es muy grande, lo cual se puede deber, además de los factores favorables de concentración, a la condición de desequilibrio de las fuerzas intermoleculares, características en una superficie plana de un líquido como el agua y que determinan la tensión superficial, pues como lo plantean algunos estudios de la física, la superficie esférica de una gota o de una burbuja, representan a una superficie cuyos esfuerzos debidos a las fuerzas de Van der Walls, están equilibrados, lo que implica estructuras superficiales muy rígidas que pueden constituir una resistencia, a que se efectúe una determinada transferencia a través de esta, y desde luego, es también muy probable que dicha estructura represente una resistencia al proceso de renovación de superficie, propiciando que la transferencia, se vea obstaculizada por las limitaciones, que representan las concentraciones de saturación.The coefficient 0.84 is based on the consideration, that the conditions that occur in bubble aeration systems are similar in terms of the way in which the transfer is carried out, but with their respective characteristics each, so It is considered that, on equal terms, there must be the same use, which is considered 16% of atmospheric oxygen, that is, in terms of this percentage, it is said that if a system uses 100% of usable oxygen, in. real terms, the system only takes advantage of 16% of the atmospheric oxygen that passes through the system; However, it is possible that this coefficient differs when there are changes in the equilibrium conditions, from the stresses on the interface surface, which determine the intensity of the surface tension, due to the forces of Van der Walls, which is very feasible , and in the event that this hypothesis is confirmed, it would be positive as shown by mechanical aeration treatment systems, in these the interface surface is very small, but its reception capacity is very large, which may be due, in addition to the favorable concentration factors, to the condition of imbalance of the intermolecular forces, characteristics on a flat surface of a liquid such as water and that determine the surface tension, because as some studies of physics, the spherical surface of a drop or a bubble, they represent a surface whose efforts due to Van der Walls forces are balanced, which implies very rigid surface structures that can constitute a resistance, to a certain transfer being made through it, and of course, it is also very This structure is likely to represent a resistance to the surface renewal process, causing the transfer to be hampered by the limitations that represent saturation concentrations.
Ahora bien, de la masa de gas disponible, el sistema de aeración es capaz de transferir un porcentaje de este gas, como lo mencionan Motarjemi y Jameson según Michael A. Wintler en su libro Tratamiento biológico de aguas de desecho, sobre el aprovechamiento del oxigeno en un sistema de burbujas, de tal manera que bajo ciertas consideraciones, en los sistemas capilares han sido estimados algunos valores propuestos, por lo que una aplicación práctica deberá ser apoyada con pruebas de laboratorio.However, from the mass of gas available, the aeration system is capable of transferring a percentage of this gas, as mentioned by Motarjemi and Jameson according to Michael A. Wintler in his book Biological treatment of wastewater, on the use of oxygen in a bubble system, in such a way that under certain considerations, some proposed values have been estimated in the capillary systems, so a practical application should be supported with laboratory tests.
El cálculo del área de ¡nterfase, que para el caso de los sistemas capilares, es el área interna del conducto en operación, que limita al sistema líquido del sistema gaseoso, se determina como sigue:The calculation of the nterfase area, which in the case of capillary systems, is the internal area of the conduit in operation, which limits the liquid system of the gas system, is determined as follows:
aic = NC x (ANC + HNC - ENLF ) x 2 x LRL Ec 23aic = NC x (ANC + HNC - ENLF) x 2 x LRL Ec 23
Donde:Where:
ANC = Ancho nominal del conducto.ANC = Nominal duct width.
HNC = Altura nominal del conducto.HNC = Nominal duct height.
ENLF = Espesor nominal de la lamina de flujo, sin deflectores.ENLF = Nominal thickness of the flow sheet, without baffles.
LRL = Longitud real de la lamina de conductos.LRL = Actual length of duct sheet.
Es importante definir la dirección en la cual, la superficie de interfase puede tener cambios, tales como la altura de un tanque de aeración por burbujas, o el radio equivalente del área superficial de un tanque de aeración mecánica, o la longitud de los conductos capilares, a través de los cuales se van presentando cambios en la superficie de interfase, para considerar las variaciones pertinentes para cada caso, es decir, se analiza el cambio que manifiesta la superficie en 1 s de este trayecto; así tendríamos que una serie de burbujas de un 1 mm de diámetro, recorrerá una longitud de 0.13 mts. es decir, a una velocidad de 0.13 m/s, lo que correspondería a un tiempo específico de 1 s. de tal manera que si el tanque es de 3 mts. de profundidad, el tiempo de contacto sería de 23 s; para el caso de conductos con una densidad de 3 deflectores por m. de longitud, manejando unIt is important to define the direction in which the interface surface may have changes, such as the height of a bubble aeration tank, or the radius equivalent of the surface area of a mechanical aeration tank, or the length of the capillary ducts, through which changes in the interface surface are presented, to consider the relevant variations for each case, that is, the change is analyzed which manifests the surface within 1 s of this path; so we would have a series of bubbles of 1 mm in diameter, will travel a length of 0.13 meters. that is, at a speed of 0.13 m / s, which would correspond to a specific time of 1 s. in such a way that if the tank is 3 meters. deep, the contact time would be 23 s; in the case of ducts with a density of 3 deflectors per m. in length, driving a
3 flujo de 0.000125 m /s por conducto, donde se tiene que la velocidad desarrollada por el flujo es de 0.83 m/s, con una pendiente de 0.125 y para un diseño en particular, tendríamos:3 flow of 0.000125 m / s per duct, where the speed developed by the flow is 0.83 m / s, with a slope of 0.125 and for a particular design, we would have:
TC = tiempo de contacto en s.TC = contact time in s.
Tci = 1 / FRS Ec 24Tci = 1 / FRS Ec 24
La definición de los tiempos TC y Tci, permiten hacer un análisis teórico de los cambios que experimenta cada elemento de área de interfase que pueden ser en la lamina fluida dentro del conducto, o bien una película de ¡nterfase respectivamente.The definition of the times TC and Tci, allow to make a theoretical analysis of the changes that each element of interface area undergoes that can be in the fluid sheet inside the duct, or a nterfase film respectively.
Otro concepto que interviene, es el que se refiere a un factor de corrección para el área de interfase, el cual, en el caso de las burbujas depende de la diferencia de la presión, a la que se inyecta el aire y la presión a que es liberado, que corresponde a la presión atmosférica; el factor análogo para los sistemas de aeración capilar, consiste en establecer una corrección al área original, producida por la estructura de las paredes del conducto, en función del espesor de la lámina del fluido líquido, y de las variaciones que se presentarán, cuando se desarrolle un crecimiento de película biológica, sobre las paredes internas del conducto; aunque se busca no fomentar esta película al trabajar el sistema en forma continua, y no permitir infiltración de luz, por lo que la superficie de los conductos generalmente estará sumergida, impidiendo que las bacterias que se desarrollan adheridas a las paredes, no encuentren las condiciones propicias para su desarrollo; suponiendo que se pudiera presentar algún desarrollo biológico, este puede ser limitado por acciones de mantenimiento, cuando se presente una película de 0.004 mts, aunque es factible que estas condiciones no se presenten, se supone que en caso de que se diera cierto desarrollo bacteriológico, este se comportase de la misma manera, como se comporta en los filtros percoladores o sistemas de cultivo fijo, es decir, la película como parte de su ciclo de desarrollo, inicia, crece y llega hasta un espesor que promueve que las células que están adheridas a la pared, mueran propiciando el desprendimiento de la película, y en el ultimo de los casos, el diseño del aereador puede permitir, con el uso de una herramienta adecuada destapar los conductos de una forma sencilla, por lo tanto para fines de diseño, con las dimensiones del conducto y espesor de lamina biológica indicados, se puede establecer que:Another concept involved is that which refers to a correction factor for the interface area, which, in the case of bubbles, depends on the difference in pressure, to which the air is injected and the pressure at which it is released, which corresponds to atmospheric pressure; The analogous factor for capillary aeration systems is to establish a correction to the original area, produced by the structure of the duct walls, depending on the thickness of the liquid fluid sheet, and the variations that will occur, when develop a growth of biological film, on the inner walls of the duct; although it is sought not to promote this film when working the system continuously, and not to allow light infiltration, so that the surface of the ducts will generally be submerged, preventing the bacteria that develop attached to the walls, do not find the conditions conducive to your development; assuming that some biological development could occur, this can be limited by maintenance actions, when a film of 0.004 meters is presented, although it is feasible that these conditions do not occur, it is assumed that in case of certain bacteriological development, this behaves in the same way, as it behaves in percolating filters or fixed culture systems, that is, the film as part of its development cycle, starts, grows and reaches a thickness that promotes the cells that are attached to the wall, die leading to the detachment of the film, and in the latter case, the design of the aerator can allow, with the use of a suitable tool to uncover the ducts in a simple way, therefore for design purposes, with the dimensions of the duct and thickness of biological lamina indicated, it can be established that:
FCS = ai / ac = 0.62 Ec 25FCS = ai / ac = 0.62 Ec 25
El tiempo de retención es el tiempo que las aguas en proceso son sometidas, para alcanzar cierto grado de tratamiento, dependiendo del proceso que se aplique, así como de los niveles de DBO del influente y de la DBO admitida en el efluente, haciendo un estudio comparativo entre sistemas de aeración por burbujas, un sistema de aeración mecánica y sistemas de aeración capilar clasificada, y dado que se considera que la magnitud del área de interfase, es superada en forma razonable al sistema de aeración mecánica en la modalidad de aeración extendida, y suponiendo que las condiciones de concentración, y de renovación de superficie de interfase, sean los mas adecuados para tener una alta tasa de transferencia de oxigeno, y con un adecuado cultivo de microorganismos, los tiempos de retención estimados estarán entre 6 y 12 hrs, dependiendo de los objetivos y condiciones de cada caso.The retention time is the time that the waters in process are subjected, to reach a certain degree of treatment, depending on the process that is applied, as well as the BOD levels of the influent and the BOD admitted in the effluent, making a study comparison between bubble aeration systems, a mechanical aeration system and classified capillary aeration systems, and given that the magnitude of the interface area is considered to be reasonably exceeded to the mechanical aeration system in the extended aeration mode, and assuming that the conditions of concentration, and interface surface renewal, are the most suitable for having a high oxygen transfer rate, and with an adequate culture of microorganisms, the estimated retention times will be between 6 and 12 hrs, depending on the objectives and conditions of each case.
TR = Tiempo de retención en s.TR = Retention time in s.
Habiendo definido la mayoría de los parámetros, que de alguna manera intervienen en la determinación de la transferencia de oxigeno, podemos definir en los términos de la teoría de las películas de interfase, la tasa con la que se da dicha transferencia como sigue: DBO = Qge x Catm x % O d x % O, a / ( 1000 x 10000 ) Ec 26Having defined most of the parameters, which in some way intervene in the determination of oxygen transfer, we can define in the terms of the interface film theory, the rate with which said transfer is given as follows: BOD = Qge x Catm x% O dx% O, a / (1000 x 10000) Ec 26
Donde:Where:
3 33 3
Qge = caudal de gas suministrado en m /m de aguas negras.Qge = flow of gas supplied in m / m of sewage.
Catm = Concentración de O2 en el aire atmosférico en mg/l.Catm = O 2 concentration in atmospheric air in mg / l.
%02 d = Porcentaje de oxigeno atmosférico, que los sistemas de tratamiento biológico pueden disponer.% 0 2 d = Percentage of atmospheric oxygen, which biological treatment systems can provide.
%0„ a = Porcentaje de oxigeno disponible, que es aprovechado por el sistema de tratamiento con las condiciones propias de cada sistema.% 0 „a = Percentage of oxygen available, which is used by the treatment system with the conditions of each system.
El flujo instantáneo de aire, está determinado por:The instantaneous air flow is determined by:
Qgi = Qge x Vd / 86400 Ec 27Qgi = Qge x Vd / 86400 Ec 27
Puede ser práctico establecer una demanda bioquímica instantánea, o tasa de transferencia de oxigeno DBOi, es decir, la demanda que las aguas en proceso, o bien, que el sistema debe manejar en Kg 02/s, y la cual está determinada por:It may be practical to establish an instantaneous biochemical demand, or BODI oxygen transfer rate, that is, the demand that the waters in process, or, that the system must handle in Kg 0 2 / s, and which is determined by:
DBOi = DBO x Qli Ec 28BODi = BOD x Qli Ec 28
3 Donde la DBO es la demanda bioquímica de oxigeno en Kg 02/ m de aguas negras;3 Where BOD is the biochemical demand for oxygen in Kg 0 2 / m of sewage;
La tasa de transferencia instantánea, también la podemos obtener a partir de las siguientes ecuaciones:The instant transfer rate can also be obtained from the following equations:
DBOil = TTL x ac x FCS x VI x TC x Ecl / 1000 Ec 29DBOil = TTL x ac x FCS x VI x TC x Ecl / 1000 Ec 29
DBOig = TTG x ac x FCS x Vg x TC x Ecg / 1000 Ec 30 Las unidades empleadas son:BOD = TTG x ac x FCS x Vg x TC x Ecg / 1000 Ec 30 The units used are:
TTL y TTG en mg/(l x s), Ac en m / m, VI y Vg, en m/s, TR en s y Ecl y Ecg en m.TTL and TTG in mg / (l x s), Ac in m / m, VI and Vg, in m / s, TR in s and Ecl and Ecg in m.
La cantidad de oxigeno en Kg 02 que se requieren para abatir la DBO, del volumen de aguas negras ingresadas en el periodo TR, para fines prácticos normalmente puede ser determinada experimentalmente en un laboratorio, para no basarse en referencias bibliográficas, por la razón de que las características físicas químicas y biológicas del agua, cambian de un lugar a otro, teóricamente, los Kg O pueden ser calculados mediante.The amount of oxygen in Kg 0 2 that is required to lower the BOD, of the volume of sewage entered in the TR period, for practical purposes can usually be determined experimentally in a laboratory, not to rely on bibliographic references, for the reason of that the physical chemical and biological characteristics of water change from one place to another, theoretically, the Kg O can be calculated by.
TTLO = TTL x ( ai x VI x TC x TR x Ecl ) / 1000 Ec 31TTLO = TTL x (ai x VI x TC x TR x Ecl) / 1000 Ec 31
TTGO = TTG x ( ai x Vg x TC x TR x Ecg ) / 1000 Ec 32TTGO = TTG x (ai x Vg x TC x TR x Ecg) / 1000 Ec 32
2 ai = Área de interfase en m /m de longitud de conductos.2 ai = Interface area in m / m duct length.
VI = Velocidad del flujo líquido dentro del conducto, en m/s.VI = Speed of liquid flow inside the duct, in m / s.
Vg = Velocidad del flujo gaseoso dentro del conducto, en m/s.Vg = Speed of the gas flow inside the duct, in m / s.
TC = Tiempo de contactoTC = Contact time
Ecl = Espesor de la lamina fluida dentro del conducto en m.Ecl = Thickness of the fluid sheet inside the duct in m.
Ecg = Espesor de la lamina gaseosa dentro del conducto en m.Ecg = Thickness of the gaseous sheet inside the duct in m.
La tasa de cambio de concentración de oxigeno en el sistema líquido gaseoso, estaría determinado por:The rate of change of oxygen concentration in the liquid gas system would be determined by:
TTL = 1000 x DBOI / ( a x VI x TC x TR x Ecl ) Ec 33TTL = 1000 x BODI / (at x VI x TC x TR x Ecl) Ec 33
TTG = 1000 x DBOg / ( a x Vg x TC x TR x Ecg ) Ec 34 Partiendo de que la transferencia es un flujo de masa, que se da a través de una sucesión de películas de interfase, se puede plantear una ecuación que nos permita determinar la variación de la concentración de oxigeno, que el sistema experimenta en la unidad de tiempo y por unidad de área, y considerando solo para este planteamiento, que los cambios en las películas de interfase, fueran uniformes, manejando las concentraciones en mg/l, se podría escribir:TTG = 1000 x DBOg / (ax Vg x TC x TR x Ecg) Ec 34 Starting from the fact that the transfer is a mass flow, which occurs through a succession of interface films, an equation can be raised that allows us to determine the variation of the oxygen concentration, which the system experiences in the unit of time and per unit area, and considering only for this approach, that the changes in the interface films were uniform, handling the concentrations in mg / l, one could write:
TTL = ( Ctil - Cltio ) x FRIL / x 1000 Ec 35TTL = (Ctil - Cltio) x FRIL / x 1000 Ec 35
O bien:O well:
TTL = ( Ctlc - Cloc ) / (TC x 1000 ) Ec 36TTL = (Ctlc - Cloc) / (TC x 1000) Ec 36
Donde:Where:
Ctil = Concentración de oxigeno en la película líquida de interfase, lograda en un periodo de tiempo t = 1/ FRIL.Ctil = Oxygen concentration in the liquid interface film, achieved in a period of time t = 1 / FRIL.
Cltio = Concentración inicial para la película líquida de interfase, como se está considerando que la magnitud del cambio en la concentración, es uniforme, la representación esquemática de este planteamiento, solo es posible, haciendo la suposición de que Cltio = Cío, en t = 0.Cltio = Initial concentration for the liquid interface film, as it is being considered that the magnitude of the change in concentration is uniform, the schematic representation of this approach is only possible, making the assumption that Cltio = Cio, at t = 0.
Ctlc = Concentración de la lamina líquida que sale del conducto para t = TC.Ctlc = Concentration of the liquid sheet leaving the duct for t = TC.
Cío = Concentración inicial para la lamina líquida dentro del conducto en t=0.Cío = Initial concentration for the liquid sheet inside the duct at t = 0.
Análogamente se tiene:Similarly you have:
TTG = ( Ctig - Cgtio ) x FRIG / 1000 Ec 37TTG = (Ctig - Cgtio) x FRIG / 1000 Ec 37
O bien:O well:
TTG = ( Ctgc - Catm ) / ( TC x1000 ) Ec 38 Donde:TTG = (Ctgc - Catm) / (TC x1000) Ec 38 Where:
Ctig = Concentración de oxigeno en la película gaseosa de interfase, que se tiene en un periodo de tiempo t= 1/FRIG.Ctig = Oxygen concentration in the gaseous interface film, which has a period of time t = 1 / FRIG.
Cgtio = Concentración inicial para la película gaseosa de interfase, de igual manera, como se está considerando que la magnitud del cambio en la concentración, es uniforme, este planteamiento, solo es posible, haciendo la suposición de que Cgtio = Catm, en t = 0.Cgtio = Initial concentration for the gaseous interphase film, in the same way, as the magnitude of the change in concentration is being considered, is uniform, this approach is only possible, making the assumption that Cgtio = Catm, at t = 0.
Cgtc = Concentración de lamina de gas que sale del conducto en el tiempo t = TC.Cgtc = Concentration of gas sheet leaving the duct at time t = TC.
Catm = Concentración inicial para la lamina gaseosa dentro del conducto, en el tiempo t = 0.Catm = Initial concentration for the gaseous lamina inside the duct, at time t = 0.
A partir de la ecuaciones 35 y 37, y con la misma consideración de cambios de concentración uniformes, las concentraciones que alcanzarían las películas de interfase, líquida y gaseosa, con esta perspectiva sería:From equations 35 and 37, and with the same consideration of uniform concentration changes, the concentrations that would reach the interface films, liquid and gas, with this perspective would be:
Ctil = ( TTL x 1000 / FRIL ) + Cltio Ec 39Ctil = (TTL x 1000 / FRIL) + Cltio Ec 39
En forma análoga se tiene:In an analogous way you have:
Ctig = (TTG x 1000 / FRIG ) + Catm Ec 40Ctig = (TTG x 1000 / FRIG) + Catm Ec 40
En realidad, los cambios de concentración de oxigeno, tanto en el sistema líquido, como en el sistema gaseoso, no son uniformes, como se puede apreciar en las figs. 18 y 19, por lo que se puede aplicar las ecuaciones 16,17,18,19 20 y 21 en la ecuación 15, con lo cual se llega a las ecuaciones 41 , 42, 43 y 44 siguientes:Actually, the changes in oxygen concentration, both in the liquid system and in the gas system, are not uniform, as can be seen in figs. 18 and 19, so you can apply equations 16,17,18,19 20 and 21 in equation 15, which leads to the following equations 41, 42, 43 and 44:
La concentración inicial en la interfase líquida, para la ultima película expuesta considerando que, en el tiempo Tci = 1 seg, se exponen FRIL películas, para t = TC-1/FRIL es: Λ -Kdlcx FRIGx(TC-Tci/FRIL)XKp¡lThe initial concentration in the liquid interface, for the last film exposed considering that, in the time Tci = 1 sec, FRIL films are exposed, for t = TC-1 / FRIL is: Λ -Kdlcx FRIGx (TC-Tci / FRIL) XKp¡l
Ctloι,=TC-ι/FRiL=Cltoc+(Cls-Cltoc)xFCIGx(1-e ) Ec 41Ctloι, = TC -ι / FRiL = Cltoc + (Cls-Cltoc) xFCIGx (1-e) Ec 41
En forma análoga se tiene que la concentración inicial en la interfase gaseosa, para t = TC-1/FRIG es:In an analogous way, the initial concentration at the gas interface must be considered, for t = TC-1 / FRIG is:
Λ -Kdgcx FRILx(TC-Tc¡/FRIG)XKpig Λ -Kdgcx FRILx (TC-Tc¡ / FRIG) XKpig
Ctgoι,=τc-ι/FRig=Cgtoc+(Cgs-Cgtoc)xFCILx(1-e ) Ec 42Ctgoι, = τc-ι / FR ig = Cgtoc + (Cgs-Cgtoc) xFCILx (1-e) Ec 42
Aplicando las ecuaciones de la 16 a la 21 respectivamente, en la ecuación 15, y desarrollándola, se llega a las ecuaciones 41 , 42, 43 y 44, que describen la concentración en las laminas fluidas, y también para las películas de interfase, para la concentración en t = TC, considerando la ganancia que se tiene en la ultima película de interfase respectivamente como sigue:Applying equations 16 to 21 respectively, in equation 15, and developing it, you get to equations 41, 42, 43 and 44, which describe the concentration in the fluid sheets, and also for the interface films, to the concentration in t = TC, considering the gain that is had in the last interface film respectively as follows:
-Kdl¡xFRIGx(Tci/FRIL)xKp¡l Ctlct=τc=Ctloit=τc-1/FRiL+(Cls-Ctloit=τc-ι/FRi )xFCIGx(1-e ) Ec 43-Kdl¡xFRIGx (Tci / FRIL) xKp¡l Ctlc t = τc = Ctloi t = τc-1 / FR i L + (Cls-Ctloi t = τc-ι / FR i) xFCIGx (1-e) Ec 43
-Kdl¡xFRILx(Tci/FRIG)xKpig-Kdl¡xFRILx (Tci / FRIG) xKpig
CtgCt=τc=Ctgoit=τc-ι/FRig+(Cgs-Ctgoi,=Tc-ι/FRig)xFCILx(1-e ) Ec 44CtgC t = τc = Ctgoi t = τc-ι / FR ig + (Cgs-Ctgoi, = T c-ι / FR ig) xFCILx (1-e) Ec 44
FCIL = Factor de concentración en la interfase líquida, el cual, normalmente tiene un valor inicial de 1 y variará en función de las condiciones de cada sistema.FCIL = Concentration factor in the liquid interface, which normally has an initial value of 1 and will vary depending on the conditions of each system.
( Cls - CI c )(Cls - CI c)
FCIL = Ec 45 ( Cls - Cío )EASY = Ec 45 (Cls - Cío)
FCIG = Factor de concentración inicial en la interfaces gaseosa, este factor es adimensional y tendrá un valor inicial de 1 , para la mayoría de los casos, este factor, en los sistemas de aeración capilar, normalmente disminuye a mayor longitud de conductos, según las condiciones de cada sistema.FCIG = Initial concentration factor in the gaseous interfaces, this factor is dimensionless and will have an initial value of 1, for most cases, this factor, in capillary aeration systems, usually decreases to longer duct lengths, depending on the conditions of each system.
( Cg -Cgs )(Cg -Cgs)
FCIG = Ec 46FCIG = Ec 46
( Catm -Cgs ) Las ecuaciones 41 y 43 representan el modelo matemático del comportamiento del sistema líquido que como se puede ver en la fig. 18, donde; el eje de las ordenadas (No 14) representa la concentración de oxigeno en mg/l del sistema líquido, el eje (No 13) representa al tiempo en segundos a escala logarítmica; la transferencia de masa, es la suma de millones de eventos de transferencia en cada ciclo formado por la división de cada segundo, en un número de ciclos determinado por las condiciones de renovación de superficie, estos eventos son representados por las gráficas (No 3) que se derivan a partir de la gráfica (No 4), y representa la transferencia de oxigeno que es transferido en cada segmento de película de interfase, que como se puede ver, cada ciclo es diferente en primer lugar porque la concentración inicial Ctilo va aumentando conforme se va desplazando la lámina líquida; la velocidad con que se efectúa la transferencia no es constante y finalmente el marco de referencia que corresponde a las concentraciones tanto de un sistema como del otro van cambiando con respecto 5 al tiempo, de tal forma que las constantes empleadas en la ecuación, deben de considerar todos estos ajustes; la concentración de saturación Cls (No 1) es un factor limitante de la transferencia; la concentración Cío inicial dentro de los conductos (No 2) al ir desplazándose el flujo de la lámina líquida varía hasta que alcanza la concentración Ctlc (No 15) en el tiempo de contacto (No 8) 0 determinado por la longitud de los conductos y por la velocidad del flujo, por lo que, de tener la longitud suficiente alcanzaría la saturación en un tiempo Tls (No 9); la gráfica (No 5) muestra el tiempo (No 10) que el sistema tardaría, en saturar el volumen del tanque en condiciones biológicamente estables; la gráfica (No 6), muestra el tiempo TR (No 11) que el sistema tardaría en satisfacer la DBO del 5 volumen del tanque y finalmente la gráfica (No 7) muestra el tiempo de referencia y que corresponde a un día, este marca el tiempo (No 12) en que el sistema debe de satisfacer la DBO del volumen diario.(Catm -Cgs) Equations 41 and 43 represent the mathematical model of the behavior of the liquid system as can be seen in fig. 18, where; the axis of the ordinates (No 14) represents the concentration of oxygen in mg / l of the liquid system, the axis (No 13) represents the time in seconds on a logarithmic scale; mass transfer is the sum of millions of transfer events in each cycle formed by the division of each second, in a number of cycles determined by the surface renewal conditions, these events are represented by the graphs (No 3) which are derived from the graph (No 4), and represents the transfer of oxygen that is transferred in each interface film segment, which as you can see, each cycle is different in the first place because the initial concentration Ctil is increasing as the liquid sheet moves; the speed with which the transfer is carried out is not constant and finally the reference frame that corresponds to the concentrations of both one system and the other changes with respect to time, so that the constants used in the equation must consider all these adjustments; Cls saturation concentration (No 1) is a transfer limiting factor; The initial Cio concentration within the ducts (No 2) as the flow of the liquid sheet shifts varies until it reaches the Ctlc concentration (No 15) at the contact time (No 8) 0 determined by the length of the ducts and by the velocity of the flow, therefore, if it were of sufficient length it would reach saturation in a time Tls (No 9); the graph (No 5) shows the time (No 10) that the system would take to saturate the volume of the tank under biologically stable conditions; the graph (No 6), shows the time TR (No 11) that the system would take to satisfy the BOD of the 5 volume of the tank and finally the graph (No 7) shows the reference time and that corresponds to a day, this mark the time (No 12) in which the system must satisfy the BOD of the daily volume.
Para la aplicación de las ecuaciones 41 y 43 en la interfase líquida, representada o por la gráfica (No 3) de la fig. 18 es importante hacer notar que el coeficiente de proporcionalidad es el factor de renovación de la superficie de interfase considerado para el sistema líquido, es decir: Las ecuaciones 42 y 44 representan el modelo matemático del comportamiento del sistema gaseoso que como se puede ver en la fig. 19, es una gráfica análoga a la de la figura 21, pero en este caso en vez de que la masa entre, esta sale del sistema; en primer lugar se tiene que el flujo gaseoso entra a los conductos con la concentración del oxigeno atmosférico Catm (No 1), por otro lado existe una concentración crítica Cgs (No 2) de oxigeno, alcanzada por la gráfica (No 4) que es la concentración, hasta donde la mayoría de los sistemas biológicos aerobios, son capaces de funcionar, siempre y cuando, las demás condiciones necesarias de su ecosistema, existan en la forma que se requiera, en este caso, si los conductos tienen la longitud suficiente, se alcanzará la concentración Cgs (No 2) en el tiempo tgs (No 6), la gráfica (No 4) muestra también el tiempo TC (No 5) que tarda el sistema en condiciones biológicas estables, en descender hasta la concentración Ctg (No 9), la gráfica (No 3) representa la transferencia en una película de interfase; el eje de las ordenadas (No 8), representa la concentración de oxigeno en mg/l, y el eje de las coordenadas (No 7), representa al tiempo en segundos, a una escala logarítmica.For the application of equations 41 and 43 in the liquid interface, represented or by the graph (No 3) of fig. 18 it is important to note that the proportionality coefficient is the renewal factor of the interface surface considered for the liquid system, that is: Equations 42 and 44 represent the mathematical model of the behavior of the gas system as can be seen in fig. 19, is a graph analogous to that of Figure 21, but in this case instead of the mass entering, it leaves the system; In the first place it is necessary that the gas flow enters the ducts with the concentration of atmospheric oxygen Catm (No 1), on the other hand there is a critical concentration Cgs (No 2) of oxygen, reached by the graph (No 4) which is the concentration, to the extent that most aerobic biological systems are capable of functioning, as long as the other necessary conditions of their ecosystem exist in the manner required, in this case, if the ducts are of sufficient length, the Cgs concentration (No 2) will be reached in time tgs (No 6), the graph (No 4) also shows the time TC (No 5) that the system takes in stable biological conditions, to descend to the Ctg concentration (No 9), the graph (No 3) represents the transfer in an interface film; the axis of the ordinates (No 8), represents the concentration of oxygen in mg / l, and the axis of the coordinates (No 7), represents the time in seconds, on a logarithmic scale.
Como se puede ver en el sistema capilar, la capacidad de transferencia depende de los flujos de líquido y gas, que se logren canalizar hacia el conjunto de conductos, para formar la superficie de la lámina líquida y gaseosa, con el espesor adecuado, en la forma más económica y práctica, de inmediato se puede observar que el manejo del flujo gaseoso no tiene ningún problema de manejo, por la baja cantidad de energía que requiere su manejo, referente al flujo líquido, este requiere de mayores cuidados en el análisis, debido a que es el medio de transporte del oxigeno disuelto, que se transfiere al tanque de oxidación, por lo que el flujo de líquido debe ser suficiente para que el flujo de oxigeno sea el requerido, y no tenga obstáculos por la concentración de aguas negras, a las condiciones de operación tales como la temperatura entre otros; la eficacia del sistema dependerá obviamente, de manejar a la entrada de los conductos la menor concentración, para lograr la mayor diferencia con la concentración de salida del líquido, dependerá de lograr el mayor tiempo de contacto posible, y de la mayor turbulencia posible pero con la pendiente que implique la menor altura, para que el consumo de energía sea el menor posible. A continuación, se describen las generalidades de los componentes, que integran el sistema mostrado en la fig. 8 en forma independiente .As can be seen in the capillary system, the transfer capacity depends on the flows of liquid and gas, which are channeled to the set of ducts, to form the surface of the liquid and gas sheet, with the appropriate thickness, in the In a more economical and practical way, it can be immediately observed that the management of the gaseous flow does not have any handling problem, due to the low amount of energy that its management requires, referring to the liquid flow, this requires greater care in the analysis, due since it is the means of transport of dissolved oxygen, which is transferred to the oxidation tank, so that the flow of liquid must be sufficient so that the flow of oxygen is as required, and does not have obstacles due to the concentration of sewage, to operating conditions such as temperature among others; The efficiency of the system will obviously depend, on handling the lowest concentration at the entrance of the ducts, to achieve the greatest difference with the liquid outlet concentration, it will depend on achieving the longest possible contact time, and on the greatest possible turbulence but with the slope that implies the lowest height, so that the energy consumption is the lowest possible. Next, the generalities of the components, which make up the system shown in fig. 8 independently.
Criba de sólidos; el diseño de la criba tiene por objeto colar las aguas negras del influente para que pasen directamente del cedazo al tanque de oxidación, sin ser necesaria una tubería de descarga a la salida del flujo ya colado, este elemento disminuye en forma importante la DBO, al separar una determinada cantidad de materia orgánica en forma de pequeños sólidos suspendidos, que de introducirse a los aeradores posiblemente provocarían taponamientos en los sistemas capilares; por otro lado, si el sistema de aeración tiene capacidad para proporcionar el oxigeno suficiente, para procesar biológicamente estos sólidos, se pueden pasar por un proceso de trituración y reincorporarlos al tratamiento, para no provocar una cantidad grande de sólidos orgánicos sin tratar, que pueden ocasionar problemas de contaminación, un manejo adecuado de estos podría ser el secado al sol para su posterior incineración, o bien enterrarlos en fosas previamente selladas, para posteriormente cerrarlas y por un proceso anaerobio provocar su degradación; de esta manera, la capacidad oxidante de las plantas de tratamiento que se pudiera aplicar a estos sólidos, se aprovecha en lograr mejor calidad del efluente; el diseño de la criba, considera que la estructura esté balanceada con la finalidad de facilitar su montaje, su construcción puede ser de acero al carbón, con un recubrimiento adecuado; las especificaciones de cribado que normalmente satisfacen los requerimientos son:Solids Screen; The purpose of the sieve design is to strain the influent's sewage so that it passes directly from the sieve to the oxidation tank, without the need for a discharge pipe at the outlet of the flow already cast, this element significantly decreases the BOD, by separating a certain amount of organic matter in the form of small suspended solids, which if introduced into the aerators could possibly cause blockages in the capillary systems; on the other hand, if the aeration system has the capacity to provide sufficient oxygen, to process these solids biologically, they can go through a crushing process and return them to the treatment, so as not to cause a large amount of untreated organic solids, which can cause contamination problems, proper management of these could be drying in the sun for subsequent incineration, or bury them in previously sealed pits, then close them and by an anaerobic process cause degradation; in this way, the oxidizing capacity of the treatment plants that could be applied to these solids is used to achieve better effluent quality; the design of the screen, considers that the structure is balanced in order to facilitate its assembly, its construction can be made of carbon steel, with a suitable coating; The screening specifications that normally meet the requirements are:
Diámetro máximo del paso de sólidos 0.00095 mts. Capacidad de flujo, según requerimiento. Pendiente nominal del cedazo: 1.428Maximum diameter of solids passage 0.00095 mts. Flow capacity, as required. Nominal sieve slope: 1,428
Siendo la criba también un elemento importante dentro del proceso, a continuación se ilustra en las siguientes figuras:The screening being also an important element in the process, the following figures are illustrated in the following figures:
Figura 9, vista en planta de la criba. Figura 10, vista lateral de la criba. Figura 11 , vista frontal de la criba. La operación de esta consiste en ingresar las aguas, a través del tubo de entrada (No 3) hacia una caja vertedora (No 1), la cual distribuye todo el flujo de entrada, a lo largo de una placa vertedora; la criba está diseñada de tal forma que las aguas caen directamente hacia el tanque de aeración, las aguas que salen del vertedor, caen al cedazo (No 2), todos los sólidos separados derrapan sobre el cedazo y caen a una carretilla, donde periódicamente son retirados para su manejo posterior; la caja de la criba, tiene una purga (No 4), la cual tiene la función de dar mantenimiento de limpieza y desazolve en caso de requerirse; los materiales de construcción normalmente empleados son:Figure 9, plan view of the screen. Figure 10, side view of the screen. Figure 11, front view of the screen. Its operation consists of entering the waters, through the inlet pipe (No 3) to a landfill box (No 1), which distributes all the inlet flow, along a landfill plate; The sieve is designed in such a way that the waters fall directly to the aeration tank, the waters that leave the spout, fall to the sieve (No 2), all separated solids skid over the sieve and fall into a wheelbarrow, where periodically they are removed for later handling; the screen box has a purge (No 4), which has the function of maintaining cleaning and unwrapping if required; The construction materials normally used are:
Toda la estructura puede ser de acero al carbón, y opcionalmente de acero inoxidable, el elemento que forma el cedazo, como está constituido por elementos muy delgados, se hace necesario que invariablemente sea de acero inoxidable.The entire structure can be made of carbon steel, and optionally stainless steel, the element that forms the sieve, as it is constituted by very thin elements, it is necessary that it invariably be stainless steel.
Agitador mecánico; es un elemento opcional, que en determinadas circunstancias, puede proporcionar una agitación, para impedir la formación de sedimentos en el tanque de oxidación, puede reforzar la acción de mezclado, o bien, puede adicionar mediante la agitación, una transferencia complementaria de oxigeno, este elemento, es ilustrado en las siguientes:Mechanical stirrer; It is an optional element, which in certain circumstances, can provide agitation, to prevent the formation of sediments in the oxidation tank, can reinforce the mixing action, or it can add by agitation, a complementary transfer of oxygen, this element, is illustrated in the following:
Figura 12; vista en planta del agitador mecánico. Figura 13; vista frontal del agitador mecánico. Figura 14; vista lateral del agitador mecánico.Figure 12; plan view of the mechanical agitator. Figure 13; front view of the mechanical stirrer. Figure 14; side view of the mechanical stirrer.
El agitador ha sido diseñado para succionar un flujo verticalmente y proyectarlo en forma horizontal, para inducir un mezclado o agitación dentro de los tanques de aeración capilar, opcionalmente puede proporcionar una aeración complementaria dentro del proceso de aeración capilar clasificado, para el tratamiento de aguas negras, donde se requiere dirigir el flujo convenientemente, el agitador consta de un codo deflector (No 1) que va sumergido en las aguas en tratamiento, en la parte inferior del codo se encuentra alojada la hélice (No 2), formada por aspas, que están sólidamente atornilladas a un porta aspas, que lleva un cunero que fija sólidamente la flecha, que es movida por el motorreductor (No 3), el cual puede ser sustituido por un variador de velocidad, para poder suministrar una mayor energía a determinadas horas; el codo está soportado por un pedestal de acero estructural (No 4), el cual cuelga de una base estructural (No 5); el diseño de la hélice se basa en las siguiente formulación:The agitator has been designed to suction a flow vertically and project it horizontally, to induce mixing or agitation within the capillary aeration tanks, optionally it can provide a complementary aeration within the classified capillary aeration process, for the treatment of sewage , where it is required to direct the flow conveniently, the agitator consists of a deflector elbow (No 1) that is submerged in the waters under treatment, in the lower part of the elbow the propeller (No 2) is housed, formed by blades, which they are solidly screwed to a blade holder, which has a cradle that solidly fixes the arrow, which is moved by the gearmotor (No 3), which can be replaced by a speed variator, to be able to supply a larger energy at certain times; the elbow is supported by a structural steel pedestal (No. 4), which hangs from a structural base (No. 5); The design of the propeller is based on the following formulation:
El ancho de la aspa de la hélice es:The width of the propeller blade is:
a = Qag / ( L x Vtan x Cos ang x Tan ang x 4 ) Ec 47a = Qag / (L x Vtan x Cos ang x Tan ang x 4) Ec 47
Donde:Where:
El ángulo de ataque de diseño se encuentra en el siguiente rango:The design attack angle is in the following range:
ang = ( 30° a 36° )ang = (30 ° to 36 °)
Qag = Flujo generado para crear las condiciones de mezclado requeridos, aproximadamente 60 Ips por cada Ips a tratar en caso de que se requiera lograr una transferencia de oxigeno adicional, se deberá hacer el análisis correspondiente.Qag = Flow generated to create the required mixing conditions, approximately 60 Ips for each Ips to be treated in case it is required to achieve an additional oxygen transfer, the corresponding analysis should be done.
Vtan = velocidad tangencial media, que para fines prácticos se considera la velocidad tangencial de un punto, ubicado a 2/3 del centro de la hélice hacia el extremo de esta.Vtan = mean tangential velocity, which for practical purposes is considered the tangential velocity of a point, located 2/3 of the center of the propeller towards the end of it.
Vtan = RPM / 60 Dme x p¡ Ec 48Vtan = RPM / 60 Dme x p¡ Ec 48
Número de aspas = 4.Number of blades = 4.
La altura manométrica desarrollada por la hélice viene dada por:The manometric height developed by the propeller is given by:
HMT = Vtan x Tan ang / ( 2 x 9.81 ) Ec 49HMT = Vtan x Tan ang / (2 x 9.81) Ec 49
Donde:Where:
2two
La aceleración de la gravedad es: 9.81 m/s . La longitud del aspa está en función de:The acceleration of gravity is: 9.81 m / s. The length of the blade is a function of:
L = 0.5 x0.9xDHE Ec50L = 0.5 x0.9xDHE Ec50
Donde 0.9 es un factor que depende del tamaño del mamelón del porta aspas.Where 0.9 is a factor that depends on the size of the blade holder's mamelon.
DHE = diámetro exterior de la hélice.DHE = outer diameter of the propeller.
La capacidad de transmisión de potencia de la flecha esta dada por:The power transmission capacity of the arrow is given by:
2 21/22 21/2
P = NDf x (( S ( 2 x F / pi x Df ) ) Ec51P = NDf x ((S (2 x F / pi x Df)) Ec51
Donde:Where:
F = empuje axial = P/m x PHE + peso de la hélice + Ke x HMT. Ec 52F = axial thrust = P / m x PHE + propeller weight + Ke x HMT. Ec 52
P/m = Peso de la flecha en Kg por m. de longitud.P / m = Weight of the arrow in Kg per m. of length.
PHE = profundidad a que se encuentra la hélice en m.PHE = depth at which the propeller is in m.
Constante de empuje axial de la hélice.Axial thrust constant of the propeller.
Ke = 234.25 x DHE2 Ec53Ke = 234.25 x DHE 2 Ec53
Diámetro medio de la hélice en m.Mean diameter of the propeller in m.
Dme = 2 x DHE/ 3 Ec54Dme = 2 x DHE / 3 Ec54
La demanda de potencia de la hélice está dada por:The power demand of the propeller is given by:
BHP = QagxHMTxPe/76xEf Ec55BHP = QagxHMTxPe / 76xEf Ec55
Pe = Peso específico de las aguas en procesoPe = Specific weight of the waters in process
Ef = Eficiencia volumétrica de la hélice, considerando aproximadamente 0.8. Funcionamiento:Ef = Volumetric efficiency of the propeller, considering approximately 0.8. Functioning:
Tanque de aeración capilar clasificado consiste en un sistema de aración, el cual se ilustra mediante la fig. 8, este funciona de la manera siguiente:Assorted capillary aeration tank consists of an aration system, which is illustrated by fig. 8, this works as follows:
Las aguas del influente, junto con los lodos clasificados que se recirculan y que pueden proceder de una etapa cualesquiera que esta sea, de tratamiento primario o secundario, según sea el objetivo, ingresan por un tubo de entrada (No 5) y normalmente en la primer etapa, pasan a una criba (No 11), la cual separa todos los sólidos de las aguas frescas que pudieran obstruir, el sistema de conductos del aerador; las aguas negras ya cribadas o coladas, ingresan al tanque de oxidación (No 10) de donde el licor mezclado, es recirculado mediante un equipo de bombeo (No 8) hasta el tanque distribuidor No (No 4), para ser distribuido en forma de regadera mediante la placa perforada (No 2); a todas las láminas de conductos, los cuales forman bloques de placas o láminas de conductos (No 1), que van colocados sobre una rampa de concreto, la cual es construida con la pendiente requerida, y va soportada por columnas de apoyo (No 9); al estar en operación el sistema, ventiladores de aspas (No 3) inducen un flujo de aire, el cual es inducido a circular por todos los conductos, para mantener siempre altas concentraciones de oxigeno en la interfase gaseosa; se puede aplicar opcionalmente una agitación moderada y una aeración, mediante un agitador, formado por un motorreductor (No 7) y un codo deflector (No 6) el cual aloja en su interior la hélice, este codo sirve para dirigir convenientemente las corrientes de flujo dentro del tanque, dependiendo del objetivo que se persiga; las aguas tratadas, salen hacia el sedimentador por el tubo de salida ubicado en el punto mas bajo del piso del tanque, con la finalidad de estar retirando todos los flóculos que se formen, con buenas características de sedimentabilidad, el fondo tiene una pendiente mayor a 15 % con la finalidad de que con poca agitación, se puedan inducir los lodos pesados hacia la tubería de salida, la cual debe de contar con un registro de purga de sedimentos pesados, tales como arena fina que se pudiera inducir y acumular como sedimento, esto es con la finalidad de evitar azolve dentro del tanque y tubería de salida; el sistema de aeración capilar, formado únicamente por el aerados (No 1) y el ventilador de aspas (No 3), se pueden acondicionar, para ser instalados en estructuras de tanques, construidos sobre el curso de arroyos o ríos de aguas negras, suprimiendo el uso de las bombas de recirculación y de los agitadores, generando los sistemas de tratamiento intensivo con menor consumo de energía.The influent's waters, together with the classified sludge that is recirculated and that can come from any stage that is, of primary or secondary treatment, depending on the objective, enter through an inlet pipe (No 5) and normally in the First stage, they pass to a sieve (No. 11), which separates all the solids from the fresh waters that could obstruct, the aerator duct system; sewage already screened or strained, enters the oxidation tank (No. 10) from which the mixed liquor is recirculated by means of a pumping equipment (No. 8) to the distributor tank No. (No. 4), to be distributed as watering can by means of the perforated plate (No 2); to all duct sheets, which form blocks of plates or duct sheets (No 1), which are placed on a concrete ramp, which is constructed with the required slope, and is supported by supporting columns (No 9 ); when the system is in operation, blade fans (No 3) induce an air flow, which is induced to circulate through all the ducts, to always maintain high concentrations of oxygen in the gas interface; Moderate agitation and aeration can be optionally applied, by means of a stirrer, formed by a geared motor (No 7) and a deflector elbow (No 6) which houses the propeller inside, this elbow serves to conveniently direct the flow currents inside the tank, depending on the objective pursued; the treated waters, leave the settler through the outlet pipe located at the lowest point of the tank floor, in order to be removing all the flocs that are formed, with good sedimentability characteristics, the bottom has a slope greater than 15% in order that with little agitation, heavy sludge can be induced to the outlet pipe, which must have a record of heavy sediment purge, such as fine sand that could be induced and accumulated as sediment, this is in order to avoid azolve inside the tank and outlet pipe; the capillary aeration system, formed only by the aerados (No 1) and the fan of blades (No 3), can be conditioned, to be installed in tank structures, built on the course of streams or rivers of sewage, suppressing the use of recirculation pumps and agitators, generating intensive treatment systems with lower energy consumption.
Aplicaciones típicas de un tratamiento a base aeración capilar, con recirculación de lodos clasificados; a continuación se muestran tres tipos de procesos de tratamiento, los cuales es factible desarrollar, pero aquí lo único que debe quedar claro, es la "forma de manipular" los diferentes extractos de lodos, en las diferentes etapas por las que atraviezan, los cuales habrá que analizar para cada caso en particular, tomando en consideración el tipo de carga orgánica, que puede ser baja, media y alta; la constitución de la naturaleza de la carga orgánica, como materia orgánica carbonosa y materia orgánica nitrogenada, así como las posibilidades de cada tipo de proceso, para proporcionar el oxigeno y la concentración de organismos requeridos.Typical applications of a treatment based on capillary aeration, with recirculation of classified sludge; Below are three types of treatment processes, which it is feasible to develop, but here the only thing that should be clear is the "way of handling" the different sludge extracts, in the different stages they go through, which it will be necessary to analyze for each particular case, taking into account the type of organic load, which can be low, medium and high; the constitution of the nature of the organic load, such as carbonaceous organic matter and nitrogen organic matter, as well as the possibilities of each type of process, to provide oxygen and the concentration of required organisms.
En la fig. 15 se muestra un diagrama de flujo, donde se representa esquemáticamente un sistema de tratamiento, con base a aeración capilar con recirculación de 2 estratos de lodos clasificados, de una sola etapa, para eliminar la materia carbonosa, el cual se describe a continuación:In fig. 15 shows a flow chart, where a treatment system is schematically represented, based on capillary aeration with recirculation of 2 strata of classified sludge, of a single stage, to remove the carbonaceous matter, which is described below:
El influente hace su ingreso a través de una criba de sólidos (No 7), llegando al tanque de oxidación (No 1), en este tanque, es donde se aeran las aguas y se les proporciona agitación para tener un mezclado adecuado, además de que opcionalmente, también se puede dosificar una mayor cantidad de energía para generar una aeración complementaria; después de haber recibido la aeración suficiente, el licor tratado, pasa al tanque de sedimentación (No 2), provisto de un sistema clasificador de lodos, donde se clarifica el licor aerado; el agua clarificada sale del sedimentador a través del vertedor de salida (No 5), hacia la siguiente etapa que por lo general, será un tanque donde se aplica cloro, con el objeto de eliminar bacterias patógenas; en este caso, la clasificación de los lodos sedimentados, es en dos estratos, que son: los lodos pesados (No 6), son los que se retirarán del sistema, cuando se tenga un exceso de lodos en el tanque de aeración, para que estos no adquieran condiciones anaerobias, se pueden recircular mediante una derivación en la sección (No 3) de la tubería de lodos pesados; los lodos intermedios y ligeros, formarán el segundo estrato (No 4), que se recircularán en forma cotidiana; con esta operación, siempre que se produzcan excesos de lodos, se retirarán siempre los lodos más estabilizados y se ejercitará una inoculación mas intensa, mediante la recirculación de los lodos mas activos, 5 lo que mejorará la actividad biológica de la planta.The influent enters through a sieve of solids (No. 7), reaching the oxidation tank (No. 1), in this tank, where the waters are aerated and agitation is provided to have adequate mixing, in addition to that optionally, a greater amount of energy can also be dosed to generate a complementary aeration; after having received sufficient aeration, the treated liquor passes to the sedimentation tank (No 2), provided with a sludge sorting system, where the aerated liquor is clarified; the clarified water leaves the settler through the outlet pourer (No 5), towards the next stage that will usually be a tank where chlorine is applied, in order to eliminate pathogenic bacteria; In this case, the classification of sedimented sludge is in two strata, which are: heavy sludge (No 6), which will be removed from the system, when there is an excess of sludge in the aeration tank, so that these do not acquire anaerobic conditions, they can be recirculated by a branch in section (No 3) of the sludge pipe heavy the intermediate and light sludge will form the second layer (No. 4), which will be recirculated on a daily basis; With this operation, whenever excess sludge occurs, the most stabilized sludge will always be removed and more intense inoculation will be exercised, by recirculating the most active sludge, 5 which will improve the biological activity of the plant.
En la fig. 16 se muestra un diagrama de flujo, donde se representa esquemáticamente un sistema de tratamiento, a base de aeración capilar con recirculación de 2 estratos de lodos clasificados, en dos etapas, para metabolizar o la DBOc en una primer etapa, y una nitrificación que inicia en la primer etapa y se complementa en una segunda etapa, este proceso se describe a continuación:In fig. 16 shows a flow chart, where a treatment system is schematically represented, based on capillary aeration with recirculation of 2 sludge strata classified, in two stages, to metabolize or the BODC in a first stage, and a nitrification that starts In the first stage and complemented in a second stage, this process is described below:
El influente hace su ingreso a través de una criba de sólidos (No 11), cuando se trata de la primer etapa, o bien pasando al tanque de oxidación (No 1)The influent enters through a sieve of solids (No 11), when it comes to the first stage, or by going to the oxidation tank (No 1)
5 directamente cuando se trata de las etapas subsiguientes, donde se dan las mismas condiciones que en un tanque de aeración de un sistema de una sola etapa; después de haber recibido la aeración suficiente, para lograr la remoción de una buena parte de la DBOc, se alcanza a nitrificar una pequeña parte de materia orgánica nitrogenada, dicho en otras palabras, se abate una pequeña o parte de la demanda bioquímica de la materia orgánica nitrogenada (DBOn), el licor tratado, pasa al tanque de sedimentación (No 2), provisto de un sistema clasificador de lodos, donde se clarifica el licor aerado en la primer etapa, el agua clarificada sale del sedimentador hacia la segunda etapa de aeración, los lodos pesados (No 5), sedimentados en la primer etapa de sedimentación, se5 directly when it comes to subsequent stages, where the same conditions occur as in an aeration tank of a single stage system; After having received sufficient aeration, to achieve the removal of a good part of the BODC, a small part of nitrogenous organic matter is achieved, said in other words, a small or part of the biochemical demand of the matter is reduced Organic nitrogen (BOD), the treated liquor passes to the sedimentation tank (No 2), provided with a sludge sorting system, where the aerated liquor is clarified in the first stage, the clarified water leaves the settler towards the second stage of aeration, heavy sludge (No. 5), sedimented in the first stage of sedimentation, is
5 recircularán o retirarán según requiera el sistema, los lodos intermedios y ligeros, sedimentados en la primer etapa, se recircularán cotidianamente para mantener en el tanque de aeración de la primer etapa, condiciones biológicas muy activas, el agua clarificada en la primer etapa de sedimentación, pasa al tanque de oxidación biológica de la segunda etapa (No 3), provista normalmente de los o mismos sistemas de aeración, en este tanque, dependiendo de los objetivos y las especificaciones del tratamiento, es factible que se termine de abatir la DBOc y parcialmente una buena proporción de la DBOn, el licor aerado en este tanque pasa al sedimentador final (No 4), donde los lodos pesados sedimentados en esta etapa, cotidianamente se pueden recircular a la primer etapa, por la razón de que llevarán una buena proporción de bacterias nitrificantes, las cuales son de un desarrollo lento y por lo mismo, no es conveniente eliminarlos en esta etapa, ya que al recircularlos, se logra retornar todas las bacterias nitrificantes viables, propiciando que la nitrificación se inicie desde la primer etapa, los lodos intermedios y ligeros, se recirculan en este proceso al tanque (No 3) para no perder los lodos nitrificantes, que se desarrollan principalmente en este tanque; las aguas clarificadas en la segunda etapa, nitrificadas en gran parte, salen del sedimentador de la segunda etapa, para pasar a un tanque de cloración donde se desinfecta mediante la aplicación de cloro, con el objeto de eliminar bacterias patógenas; con la clasificación de los lodos, el control biológico de la planta de tratamiento, se facilita, al tener la posibilidad de hacer ajustes mas objetivos, pues siempre se podrán retirar los lodos más estabilizados y se recircularán los lodos mas activos según la etapa de que se trate, lo que mejorará la actividad biológica de la planta.5 will recirculate or remove as required by the system, the intermediate and light sludge, sedimented in the first stage, will be recirculated daily to maintain in the aeration tank of the first stage, very active biological conditions, the clarified water in the first stage of sedimentation , it passes to the biological oxidation tank of the second stage (No 3), normally provided with the same aeration systems, in this tank, depending on the objectives and the specifications of the treatment, it is feasible that the BODc is finished down and partially a good proportion of the BOD, the aerated liquor in this tank passes to the final settler (No 4), where the heavy sludge settled in this stage, can be recirculated daily to the first stage, for the reason that they will carry a good proportion of nitrifying bacteria, which are of a slow development and therefore, it is not convenient to eliminate them at this stage, since by recirculating them, it is possible to return all viable nitrifying bacteria, causing the nitrification to start from the First stage, the intermediate and light sludge, are recirculated in this process to the tank (No 3) so as not to lose the nitrifying sludge, which develops mainly in this tank; the clarified waters in the second stage, largely nitrified, leave the settler of the second stage, to pass to a chlorination tank where it is disinfected by the application of chlorine, in order to eliminate pathogenic bacteria; With the classification of sludge, the biological control of the treatment plant is facilitated by having the possibility of making more objective adjustments, since the most stabilized sludge can always be removed and the most active sludge will be recirculated according to the stage of concerned, which will improve the biological activity of the plant.
En la fig. 17 se muestra un diagrama de flujo, donde se representa esquemáticamente un sistema de tratamiento, a base de aeración capilar con recirculación de 3 estratos de lodos clasificados, de tres etapas, este proceso elimina parcialmente una cantidad de la DBOc, y una pequeña parte de la DBOn en la primer etapa, en la segunda etapa se elimina las DBOc restante y gradualmente una mayor DBOn, en la tercer etapa se complementa la eliminación de la DBOn; el proceso se describe a continuación:In fig. 17 a flow chart is shown, where a treatment system is schematically represented, based on capillary aeration with recirculation of 3 strata of classified sludge, of three stages, this process partially eliminates a quantity of the BODC, and a small part of the BOD in the first stage, in the second stage the remaining BODc is eliminated and gradually a greater BODn, in the third stage the elimination of the BODn is complemented; The process is described below:
El influente hace su ingreso a través de una criba de sólidos (No 17), llegando al 5 tanque de oxidación (No 1), donde se dan las mismas condiciones que en un tanque de aeración de un sistema de una sola etapa; después de haber recibido la aeración suficiente para lograr la remoción de una buena parte de la DBOc, alcanzando a nitrificar una pequeña parte, de la demanda bioquímica de la materia orgánica nitrogenada (DBOn), el licor tratado, pasa al tanque de o sedimentación (No 4), provisto de un sistema clasificador de tres tipos de lodos, donde se clarifica el licor aerado en la primer etapa, el agua clarificada sale del sedimentador hacia la segunda etapa de aeración (No 2), los lodos pesados (No 7), sedimentados en la primer etapa de sedimentación, junto con los lodos pesados de la segunda etapa (No 10), se recirculan o bien, se eliminan como lodos excedentes pasando hacia una etapa de estabilización final o espesamiento para su secado posterior; los lodos intermedios (No 8) de la primera y segunda etapa (No 11), se recirculan al tanque de aeración (No 2) de la segunda etapa, con la finalidad de mantener una actividad biológica equilibrada en la segunda etapa de aeración, en esta etapa se puede remover una proporción importante de la DBOc, y gradualmente una mayor remoción de la DBOn, en situaciones donde la carga orgánica es mixta y relativamente alta; los lodos ligeros (No 9), los lodos ligeros de la segunda etapa (No 12) y los lodos pesados de la tercer etapa, son recirculados a la primer etapa de aeración, con el objetivo de generar un alto grado de inoculación tanto de bacterias heterotróficas como nitrificantes de la primera y segunda etapa de nitrificación, es decir nitrosomonas y nitrobacter de esta manera, se tiene una gradual nitrificación desde la primera etapa; el licor tratado en el tanque de la segunda etapa, pasa al sedimentador de la segunda etapa (No 5), donde como ya se indico, se obtienen tres tipos de lodos; el agua clarificada en este sedimentador, pasa al tanque de oxidación biológica (No 3), de la tercer etapa, donde se efectúa predominantemente el proceso de nitrificación, de tal forma que el licor tratado pasa al tanque sedimentador (No 6), donde por medio de la sedimentación, se retienen las bacterias nitrificantes, que como ya se indico, los lodos pesados que sedimentan en esta etapa, se recirculan a la primer etapa, para propiciar la nitrificación desde la primer etapa, y de esta manera mantener un largo tiempo de residencia, de las bacterias nitrificantes que son de mucho muy lento desarrollo, especialmente las nitrosomonas que metabolizan el nitrógeno amoniacal a nitritos; los lodos ligeros, se recirculan al tanque de la tercer etapa, para mantener siempre la mas intensa nitrificación en la etapa tres; finalmente las aguas clarificadas de esta etapa, pueden pasar a un tanque de cloración, donde se lleva a cabo una desinfección mediante cloro, con propósitos desinfectantes para eliminar bacterias patógenas; es posible hacer diferentes combinaciones en la canalización de lodos, en función del grado de contaminación del influente, la proporción de contaminantes carbonosos y nitrogenados, de la capacidad del proceso y de la calidad deseada en el efluente, por ejemplo; el carbón orgánico que contienen los lodos pesados, e intermedios, pueden ser recirculados, para proporcionar una parte del carbón orgánico necesario para la desnitrificación de las aguas provenientes de una etapa de nitrificación. The influent enters through a sieve of solids (No. 17), arriving at the oxidation tank (No. 1), where the same conditions occur as in an aeration tank of a single stage system; After having received sufficient aeration to achieve the removal of a good part of the BOD, reaching a small part of the biochemical demand of the nitrogen organic matter (BOD), the treated liquor passes to the sedimentation tank ( No 4), provided with a classifying system of three types of sludge, where the aerated liquor is clarified in the first stage, the clarified water leaves the settler towards the second aeration stage (No 2), the heavy sludge (No 7) , sedimented in the first stage of sedimentation, together with the heavy sludge of the second stage (No 10), are recirculated or are removed as excess sludges moving towards a final stabilization stage or thickening for subsequent drying; the intermediate sludge (No. 8) of the first and second stage (No. 11), is recirculated to the aeration tank (No. 2) of the second stage, in order to maintain a balanced biological activity in the second stage of aeration, in this stage can remove an important proportion of the BODc, and gradually a greater removal of the BOD, in situations where the organic load is mixed and relatively high; The light sludge (No 9), the light sludge of the second stage (No 12) and the heavy sludge of the third stage, are recirculated to the first aeration stage, with the aim of generating a high degree of inoculation of both bacteria heterotrophic as nitrifiers of the first and second stage of nitrification, that is to say nitrosomonas and nitrobacter in this way, there is a gradual nitrification from the first stage; the liquor treated in the tank of the second stage passes to the sedimentator of the second stage (No 5), where, as already indicated, three types of sludge are obtained; the clarified water in this settler, passes to the biological oxidation tank (No. 3), of the third stage, where the nitrification process is predominantly carried out, so that the treated liquor passes to the settling tank (No. 6), where By means of sedimentation, the nitrifying bacteria are retained, which, as already indicated, the heavy sludges that settle in this stage, are recirculated to the first stage, to promote nitrification from the first stage, and thus maintain a long time of residence, of the nitrifying bacteria that are of very very slow development, especially the nitrosomones that metabolize the ammoniacal nitrogen to nitrites; the light sludges are recirculated to the tank of the third stage, to always maintain the most intense nitrification in stage three; finally the clarified waters of this stage can pass to a chlorination tank, where chlorine disinfection is carried out, with disinfectant purposes to eliminate pathogenic bacteria; it is possible to make different combinations in the channeling of sludge, depending on the degree of contamination of the influent, the proportion of carbonaceous and nitrogen contaminants, the capacity of the process and the desired quality in the effluent, for example; The organic carbon that contains the heavy sludge, and intermediate, can be recirculated, to provide a part of the organic carbon necessary for the denitrification of the waters coming from a nitrification stage.

Claims

Reindicaciones Reindications
Habiendo descrito suficientemente mi invención, considero como una novedad y por tanto, reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:Having sufficiently described my invention, I consider as a novelty and therefore, claim as my exclusive property, what is contained in the following clauses:
1- El tratamiento de aguas contaminadas a base de aeración capilar y recirculación de lodos clasificados, que consta de las siguientes etapas:1- The treatment of contaminated water based on capillary aeration and recirculation of classified sludge, consisting of the following stages:
a) Cribado de sólidos; consiste en colar las aguas crudas en la primer etapa, mediante una estructura para cribado, diseñada para poder verter las aguas cribadas directamente al tanque de oxidación biológica, sin necesidad de una extremidad bridada en la descarga, la criba tiene la función de separar todos los sólidos que pueden obstruir el aerador capilar.a) Solids screening; It consists of casting the raw water in the first stage, through a screening structure, designed to be able to pour the screened water directly to the biological oxidation tank, without the need for a flanged tip in the discharge, the screen has the function of separating all the solids that can clog the capillary aerator.
b) Bombeo de recirculación; mediante bombas de flujo axial, que bombean grandes volúmenes a poca altura de licor mezclado dentro del tanque de oxidación biológica, y desde un punto donde la concentración de oxigeno, ha descendido a los niveles mas bajos, para enviar a la etapa de aeración, las aguas mas receptiva de oxigeno, hacia un tanque distribuidor, que distribuye mediante una placa en forma de cedazo el flujo en forma de regadera, a todos los conductos capilares, para que de esta forma se genere una superficie de interfase líquida, dentro de los bloques de láminas de conductos; cuando el proceso se instala sobre el curso rápido de un arroyo o río, el bombeo de recirculación puede no ser requerido.b) Recirculation pumping; by means of axial flow pumps, which pump large volumes at a low height of mixed liquor inside the biological oxidation tank, and from a point where the oxygen concentration has dropped to the lowest levels, to send to the aeration stage, the more receptive oxygen waters, to a distributor tank, which distributes through a lattice-shaped plate the flow in the form of a shower, to all capillary ducts, so that a surface of liquid interface is generated, within the blocks of duct sheets; When the process is installed on the rapid course of a stream or river, recirculation pumping may not be required.
c) Inyección de aire; mediante un ventilador de aspas, que maneja grandes volúmenes a baja presión, cuya cubierta está acondicionada para generar el flujo gaseoso, a través de los conductos capilares, donde el líquido en forma de película deslizante sobre la pared interior, pasa a ser el contorno de un segundo conducto, donde se genera la superficie de interfase gaseosa; el flujo de aire, no vence ninguna carga estática de líquido, venciendo únicamente las perdidas por fricción que se generan, y que son mínimas. d) Agitación; mediante un agitador mecánico opcional se proporciona agitación para tener un mezclado adecuado, además de que también, se puede dosificar una mayor cantidad de energía para generar una aeración complementaria, este agitador mediante un codo deflector, toma un flujo de líquido en posición vertical y lo proyecta en forma horizontal, para dirigir el flujo hacia el punto de entrada del influente y propiciar la difusión de este, también puede desarrollar funciones de mezclado y evitar sedimentación dentro del tanque; cuando el proceso de instala sobre un curso rápido de un río o arrollo de aguas negras, el agitador puede no ser necesario, con un diseño apropiado del tanque .c) Air injection; by means of a fan of blades, which handles large volumes at low pressure, whose cover is conditioned to generate the gaseous flow, through the capillary ducts, where the liquid in the form of a sliding film on the inner wall, becomes the contour of a second conduit, where the gas interface surface is generated; The air flow does not overcome any static charge of liquid, overcoming only the friction losses that are generated, and which are minimal. d) Agitation; Stirring is provided by means of an optional mechanical stirrer to have a suitable mixing, in addition to that, a greater amount of energy can also be dosed to generate a complementary aeration, this agitator by means of a deflector elbow, takes a liquid flow in a vertical position and projects horizontally, to direct the flow to the point of entry of the influent and promote its diffusion, it can also develop mixing functions and prevent sedimentation inside the tank; When the process installs over a rapid course of a river or sewage stream, the agitator may not be necessary, with an appropriate tank design.
e) Aeración capilar, con recirculación de lodos clasificados, función que se realiza al estar funcionando la recirculación del licor mezclado y la inyección de aire, dentro del aerador capilar, donde se generan las condiciones para que se efectúe, la transferencia de oxigeno, para mantener niveles adecuados de oxigeno disuelto en el tanque de oxidación biológica.e) Capillary aeration, with recirculation of classified sludge, a function that is performed when the recirculation of the mixed liquor and the injection of air is working, within the capillary aerator, where the conditions are generated for it to be carried out, the transfer of oxygen, for maintain adequate levels of dissolved oxygen in the biological oxidation tank.
f) Sedimentación y clasificación de los lodos, que salen del tanque de oxidación biológica por la tubería de salida, que se ubica preferentemente en la parte más baja del fondo del tanque de oxidación biológica, con la finalidad de que no se acumulen sedimentos en el fondo, esta salida conduce las aguas tratadas hacia la etapa de sedimentación, donde, en ves de manejar lodos activados en forma discrecional en cuanto a sus características cualitativas, se clasifican en esta etapa, en activos, intermedios y estabilizados, recirculando al tanque de aeración los lodos mas activos biológicamente y retirando los mas estabilizados cuando se generan excesos, logrando mejores condiciones biológicas en el tanque de oxidación biológica, que dan como resultado un efluente de buena calidad, con un consumo de energía bajo.f) Sedimentation and classification of sludges, which leave the biological oxidation tank through the outlet pipe, which is preferably located in the lower part of the biological oxidation tank bottom, so that sediments do not accumulate in the In the background, this outlet leads the treated waters to the sedimentation stage, where, instead of handling sludge activated in a discretionary way in terms of its qualitative characteristics, they are classified in this stage, in active, intermediate and stabilized, recirculating to the aeration tank the most biologically active sludge and removing the most stabilized when excesses are generated, achieving better biological conditions in the biological oxidation tank, which result in a good quality effluent, with low energy consumption.
Características del tratamiento:Treatment characteristics:
a) Control más sencillo, fácil y confiable, sobre el tiempo de residencia de los lodos activos, particular mente útil en los procesos de nitrificación. b) Facilidad para mantener una mayor proporción de bacterias activas dentro del proceso y por consecuencia, disminuir la proporción de materia estabilizada dentro de este tanque, lo que permite manejar menores concentraciones de sólidos en suspensión, lo que implica incrementar la concentración de saturación de oxigeno, en las aguas que se envían al aerador, aumentando las posibilidades de transferencia de oxigeno.a) Simpler, easier and more reliable control over the residence time of active sludge, particularly useful in nitrification processes. b) Ease of maintaining a higher proportion of active bacteria within the process and, consequently, reducing the proportion of stabilized matter within this tank, which allows handling lower concentrations of suspended solids, which implies increasing the oxygen saturation concentration , in the waters that are sent to the aerator, increasing the possibilities of oxygen transfer.
c) Inoculación mas efectiva, al tener la posibilidad de recircular los lodos mas activos biológicamente.c) More effective inoculation, having the possibility of recirculating the most biologically active sludge.
d) Mejor calidad en el grado de estabilización de los lodos pesados, que se recirculan o retiran cuando constituyen, un exceso de lodos en el tanque de oxidación, con lo que facilita las etapas de su tratamiento posterior.d) Better quality in the degree of stabilization of heavy sludge, which is recirculated or removed when they constitute an excess of sludge in the oxidation tank, thus facilitating the stages of its subsequent treatment.
e) Mayor posibilidad de manipulación de las condiciones de interfase, tanto en el sistema líquido como gaseoso, para lograr buenos niveles de eficiencia global.e) Greater possibility of manipulating the interface conditions, both in the liquid and gaseous systems, to achieve good levels of overall efficiency.
2. -El tanque de aeración capilar, en su conjunto, ilustrado en la (fig. 8) el cual está formado por los componentes siguientes:2. -The capillary aeration tank, as a whole, illustrated in (fig. 8) which is formed by the following components:
a) La estructura del tanque en cuyo interior se encuentra una estructura soportada por columnas, que sirve para montar sobre rampas, los bloques de láminas de conductos, la misma estructura sirve para montar sobre esta, las bombas de recirculación, los agitadores mecánicos y los ventiladores; sobre una parte de la pared del tanque, se monta una criba, cuando se trata de la primer etapa de aeración; el fondo del tanque lleva una pendiente mayor de 15 %, para propiciar con una suave agitación, que los sedimentos sean inducidos hacia, la tubería de salida, que puede llevar en el punto mas estratégico, un registro para purga de sedimentos pesados.a) The structure of the tank in whose interior there is a structure supported by columns, which is used to mount on ramps, the blocks of duct sheets, the same structure is used to mount on it, the recirculation pumps, the mechanical agitators and the fans; on a part of the tank wall, a sieve is mounted, when it is the first aeration stage; The bottom of the tank has a slope greater than 15%, to facilitate with gentle agitation, that the sediments are induced towards the outlet pipe, which can take at the most strategic point, a record for purging heavy sediments.
b) El agitador mecánico opcional, tiene la función de propiciar un mezclado adecuado y evitar la formación de sedimentos, dirigiendo convenientemente el flujo del líquido, pudiéndose a través del mismo suministrar la energía suficiente para generar una transferencia complementaria de oxigeno, para de esta manera, tener mayor transferencia de oxigeno, lo cual se puede manejar opcionaimente en las horas críticas de mayor carga orgánica, generando un ahorro de energía y generando la capacidad, en el sistema para proporcionar una transferencia adicional, cuando esta es requerida a determinadas horas, esto es factible mediante el accionamiento por medio de un variador de velocidad en vez del motorreductor; este agitador, en cuanto a la especificación de los materiales, es factible su construcción de los materiales siguientes: pedestal de soporte en acero al carbón, flecha de acero inoxidable, hélice y chumaceras de bronce, o bien fabricación total en acero inoxidable, para atender distintas necesidades en cuanto a la calidad química del agua.b) The optional mechanical agitator has the function of promoting adequate mixing and preventing sediment formation, conveniently directing the flow of the liquid, being able to supply enough energy through it to generate a complementary transfer of oxygen, thus stopping , have greater oxygen transfer, which can be optionally handled in the critical hours of higher organic load, generating energy savings and generating the capacity, in the system to provide an additional transfer, when this is required at certain times, this is feasible by actuating by means of a speed variator instead of the gearmotor; This agitator, in terms of the specification of the materials, is feasible for its construction of the following materials: support pedestal in carbon steel, stainless steel arrow, propeller and bronze bearings, or total manufacturing in stainless steel, to meet different needs regarding the chemical quality of the water.
c) El ventilador de aspas, quel proporciona el flujo de aire necesario para generar el flujo gaseoso dentro de los conductos capilares; y cuya configuración de cubierta, es adecuada a las necesidades estructurales del sistema de aeración capilar; siendo la cubierta de dicho ventilador de acero inoxidable, por la razón de que está expuesto a salpicaduras de las aguas en proceso, las cuales por lo general pueden tener características corrosivas, el espesor de la lámina, no se requiere que sea grueso, pues la estructura, aunque manejará grandes volúmenes de aire, trabajará a presiones muy bajas; la hélice puede ser de aluminio y el motor recomendable puede ser de armazón TCCVE.c) The blade fan, which provides the necessary air flow to generate the gas flow inside the capillary ducts; and whose roof configuration is adequate to the structural needs of the capillary aeration system; the cover of said stainless steel fan being, for the reason that it is exposed to splashing of the waters in process, which generally can have corrosive characteristics, the thickness of the sheet, is not required to be thick, since the structure, although it will handle large volumes of air, will work at very low pressures; The propeller can be made of aluminum and the recommended motor can be TCCVE frame.
d) Criba de sólidos, la cual es diseñada para poder verter el agua cruda, libre de sólidos que pueden obstruir el aerador capilar, directamente al tanque de oxidación biológica, sin necesidad de un tubo de descarga adicional, es decir, la estructura en el fondo, está abierta con la finalidad de permitir el drenado de las aguas coladas al 100 % de tal forma que su funcionamiento es mas sencillo, por otro lado la estructura es balanceada, con la finalidad de que su colocación se pueda hacer de la manera mas fácil sobre cualquier punto de la pared del tanque.d) Screening of solids, which is designed to be able to pour raw water, free of solids that can obstruct the capillary aerator, directly to the biological oxidation tank, without the need for an additional discharge tube, that is, the structure in the bottom, it is open with the purpose of allowing the drainage of the 100% cast water so that its operation is simpler, on the other hand the structure is balanced, so that its placement can be done in the most Easy on any point of the tank wall.
e) El aerador capilar, que sirve para lograr la formación de películas líquidas y gaseosas, en una forma controlada, con la finalidad de manipular los diferentes factores que intervienen en la transferencia de oxigeno, de los procesos de aeración, en el tratamiento aerobio de aguas contaminadas, mediante el conjunto de conductos construidos, en forma de placas, y cuya instalación, se puede hacer dentro de un tanque, fuera del líquido como se ilustra en la (fig. 8). e) The capillary aerator, which serves to achieve the formation of liquid and gaseous films, in a controlled manner, in order to manipulate the different factors involved in the transfer of oxygen, of the aeration processes, in the aerobic treatment of Contaminated water, through the set of constructed ducts, in the form of plates, and whose installation can be done inside a tank, outside the liquid as illustrated in (fig. 8).
PCT/MX2001/000041 2000-06-23 2001-06-22 Treatment of contaminated waters by surface aeration and recirculation of classified sludges WO2002000558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001269603A AU2001269603A1 (en) 2000-06-23 2001-06-22 Treatment of contaminated waters by surface aeration and recirculation of classified sludges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXJL/A/2000/000003 2000-06-23
MXJL00000003A MXJL00000003A (en) 2000-06-23 2000-06-23 Treatment of polluted waters, using capillary aeration and.

Publications (1)

Publication Number Publication Date
WO2002000558A1 true WO2002000558A1 (en) 2002-01-03

Family

ID=33028893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2001/000041 WO2002000558A1 (en) 2000-06-23 2001-06-22 Treatment of contaminated waters by surface aeration and recirculation of classified sludges

Country Status (3)

Country Link
AU (1) AU2001269603A1 (en)
MX (1) MXJL00000003A (en)
WO (1) WO2002000558A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133130A (en) * 1959-09-24 1964-05-12 Dorr Oliver Inc Treatment tank for aerobically purifying waste liquids
US4961854A (en) * 1988-06-30 1990-10-09 Envirex Inc. Activated sludge wastewater treatment process
WO1992000249A1 (en) * 1990-06-23 1992-01-09 Dunlop Limited Fluid supply device
ES2144864T3 (en) * 1996-06-26 2000-06-16 Gb Odobez S R L A REACTOR FOR THE TREATMENT OF CONTAMINATED WASTEWATER.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133130A (en) * 1959-09-24 1964-05-12 Dorr Oliver Inc Treatment tank for aerobically purifying waste liquids
US4961854A (en) * 1988-06-30 1990-10-09 Envirex Inc. Activated sludge wastewater treatment process
WO1992000249A1 (en) * 1990-06-23 1992-01-09 Dunlop Limited Fluid supply device
ES2144864T3 (en) * 1996-06-26 2000-06-16 Gb Odobez S R L A REACTOR FOR THE TREATMENT OF CONTAMINATED WASTEWATER.

Also Published As

Publication number Publication date
AU2001269603A1 (en) 2002-01-08
MXJL00000003A (en) 2002-08-29

Similar Documents

Publication Publication Date Title
US5861095A (en) Method and device for treating wastewater
CN105008289B (en) Waste Water Treatment and method
US7678266B2 (en) Integrated water treatment apparatus and methods for natural water improvement
WO2015034338A1 (en) System and multi-functional method for treating wastewater
WO2009108032A1 (en) Plant and method for the simultaneous treatment of wastewater and generated sludge
WO2010090551A1 (en) Plant for biochemically treating wastewater
EA023425B1 (en) Apparatus for deep biochemical wastewater treatment
BR102018068943A2 (en) system for the implantation or depollution and revitalization of artificial or natural lakes
TW442443B (en) Carrier separating screen and waste water treatment facility having the screen
US7101483B2 (en) Process for treating a body of water
US8216456B2 (en) Water treatment apparatus adaptible to natural water environment
US7008539B2 (en) Submerged ammonia removal system and method
WO2002000558A1 (en) Treatment of contaminated waters by surface aeration and recirculation of classified sludges
CN207159057U (en) A kind of integrated effluent disposal system
CN107129116B (en) Floating type comprehensive water treatment equipment and water treatment method using same
Tansel et al. Volatile organic contaminant emissions from wastewater treatment plants during secondary treatment
RU2422379C1 (en) Effluents biochemical treatment plant
RU2390503C1 (en) Apparatus for biochemical waste water treatment
RU2051129C1 (en) Device for biological sewage treatment
JP3026529U (en) Water purification equipment
RU2120419C1 (en) Complex of constructions for biological waste water treatment
Johnson Airlift assisted wastewater treatment
RU2004120207A (en) UNIFIED MODULAR PLANT FOR BIOCHEMICAL WASTE WATER TREATMENT
RU33760U1 (en) Installation for sewage treatment "EKO-B"
DE2355463A1 (en) Transportable aerating appts. for stagnant and waste water - gyrating funnel sprays above water level from any depth

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CO CU DE ES GB ID IL IN JP KP KR MA MK RO RU SD TR TZ UA US VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP