WO2001096464A1 - Ethylene/vinyl alcohol copolymer resin composition - Google Patents

Ethylene/vinyl alcohol copolymer resin composition Download PDF

Info

Publication number
WO2001096464A1
WO2001096464A1 PCT/JP2001/004870 JP0104870W WO0196464A1 WO 2001096464 A1 WO2001096464 A1 WO 2001096464A1 JP 0104870 W JP0104870 W JP 0104870W WO 0196464 A1 WO0196464 A1 WO 0196464A1
Authority
WO
WIPO (PCT)
Prior art keywords
mfr
resin composition
content
acid
carboxylic acid
Prior art date
Application number
PCT/JP2001/004870
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Shindome
Original Assignee
Kuraray Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co. Ltd. filed Critical Kuraray Co. Ltd.
Priority to JP2002510593A priority Critical patent/JP5093959B2/en
Priority to AU2001264229A priority patent/AU2001264229A1/en
Publication of WO2001096464A1 publication Critical patent/WO2001096464A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material

Definitions

  • the present invention has excellent color appearance, low unevenness of film surface, excellent appearance, long run and low odor even at the time of melt molding at a high temperature, such as during co-extrusion molding or co-injection molding with a resin having a high melting point.
  • TECHNICAL FIELD The present invention relates to an ethylene-vinyl alcohol copolymer resin composition excellent in water resistance and a multilayer structure using the same. Background art
  • Ethylene-Biel alcohol copolymer (hereinafter sometimes abbreviated as EVOH) is a useful polymer material with excellent oxygen-shielding properties, oil resistance, antistatic properties, mechanical strength, etc., and various types of films, sheets, containers, etc. Widely used as packaging material.
  • Such packaging materials are usually produced by melt molding, and have a long run property during melt molding (a molded article free of fish eyes is obtained even over a long period of time), and the appearance of the molded article ( (A molded product with little coloring and no generation of fish eyes) is required.
  • the discharge speed is at least up to 10 hours.
  • E styrene content of 20 to 80 mole 0/0, a saponification degree of 95 mol% or more E styrene monoacetate Bulle copolymer saponified composition acetate Bulle component is disclosed (JP-a-2 — 23 5952; USP 5194474).
  • EVOH is often used by being laminated with another thermoplastic resin, and there are many embodiments in which EVOH is laminated with polyolefin through an adhesive resin made of modified polyolefin.
  • both the polyolefin and the adhesive resin laminated with EVOH usually have a lower melting point than EVOH, and can be molded at the most desirable molding temperature for molding EVOH. Even when the EVOH resin compositions described in (1) and (2) were used, there were not many problems during molding.
  • polyamide, polyester, etc. are higher than EVOH!
  • a multi-layer structure is molded by co-injection molding with a resin having a melting point.
  • molding is performed at a high molding temperature suitable for molding polyamide or polyester.
  • EVOH tends to deteriorate due to heating.
  • the moldability may be insufficient because the polyamide or polyester is not sufficiently melted. Therefore, even when molding at a high molding temperature suitable for molding polyamide or polyester, there is a need for the development of EVOH with low thermal degradation.
  • the techniques disclosed in the above (1) and (2) do not dissolve at high temperatures. There is no description about melt molding, and the EVOH compositions described in (1) and (2) cannot provide sufficient performance at the time of melt molding at high temperatures. Specifically, the EVOH composition described in the prior art (1) has unsatisfactory coloring resistance and long-run property at the time of molding at a high temperature.
  • the prior art (2) aims to reduce the generation of odor components, but the effect of improving odor is not always satisfactory.
  • the composition described in the prior art (2) is not suitable for melt-molding at high temperatures. Things left room for improvement.
  • the problem described above is that the content of carboxylic acid (A) is 0.05 to 2.5 ⁇ / g and the content of alkaline earth metal salt (B) is 10 ppm or less (metal).
  • the problem is solved by providing an ethylene-butyl alcohol copolymer resin composition that is an element-converted value and satisfies the following formula (1).
  • a carboxylic acid having a molecular weight of 75 or more (a 1) is used.
  • a salt thereof is used.
  • the content of the phosphoric acid compound (C) in the resin composition of the present invention is 8 Oppm or less (in terms of phosphate radical).
  • the resin composition of the present invention contains the boron compound (E) in an amount of 50 to 2000 ppm in terms of elemental boron.
  • the MFR (MFR (6 min.); 270 ° C, 2160 g load) when the resin composition is maintained at 270 ° C for 6 minutes in a melt indexer; MFR when held at 270 ° C for 10 minutes, 20 minutes, and 30 minutes (MFR (10 min.), MFR (20 min.) ⁇ MFR (30 min.); Deviation is 270 ° (:, 2160 g load) satisfies all of the following equations (2) to (4).
  • the present invention relates to a multilayer structure obtained by laminating a thermoplastic resin on at least one surface of a layer made of the resin composition.
  • a thermoplastic resin is a polyamide or a polyester.
  • the above-mentioned multilayer structure is formed by co-extrusion or co-injection molding.
  • the present invention also relates to a method for producing a multilayer structure in which a die temperature or a nozzle temperature during melt molding is 250 ° C. or higher.
  • the content of the carboxylic acid (A) is 0.05 to 2.5 ⁇ ⁇ / g, and the content of the alkaline earth metal salt (B) is 10 ppm or less
  • An ethylene-butyl alcohol copolymer (EVOH) resin composition which is a metal element conversion value and satisfies the following formula (1).
  • the EVOH used in the present invention those obtained by saponifying an ethylene-bi-ester copolymer are preferable, and those obtained by saponifying an ethylene-bi-butyl acetate copolymer are particularly preferable.
  • the ethylene content Ri preferably 2 0-6 5 mol% der, more preferably 2 5-5 5 mol 0/0 , and the ones optimally 2 5-5 0 mole 0/0 are preferred.
  • the saponification degree of the butyl acetate component is preferably at least 80%, and from the viewpoint of obtaining a molded article having excellent gas barrier properties, is more preferably at least 95%, further preferably at least 98%. Particularly preferably, it is 99%.
  • the ethylene content exceeds 65 mol%, there is a possibility that the barrier property, printability and the like may be insufficient.
  • the saponification degree is less than 80%, noriability, thermal stability and moisture resistance may be deteriorated. '
  • EVOH may contain Bierushiran compound 0. 0 0 0 2 to 0.2 moles 0/0 as a copolymer component.
  • examples of the butylsilane-based compound include vinyltrimethoxysilane, butyltriethoxysilane, vinyltri (] 3-methoxy-1-ethoxy) silane, and ⁇ -methacryloxypropylmethoxysilane. Among them, biertrimethoxysilane and burtriethoxysilane are preferably used.
  • the polymerization of ethylene and butyl acetate is not limited to solution polymerization, but may be any of solution polymerization, suspension polymerization, chemical polymerization, and Balta polymerization, and may be any of continuous type and batch type.
  • the polymerization conditions for batch solution polymerization are as follows.
  • Alcohols are preferred, but other organic solvents (such as dimethyl sulfoxide) that can dissolve ethylene, biel acetate, and ethylene-butyl acetate copolymer Can be used.
  • organic solvents such as dimethyl sulfoxide
  • methyl alcohol, ethyl alcohol, propyl alcohol, n-butyl alcohol, t-butyl alcohol and the like can be used, and methyl alcohol is particularly preferable.
  • Cumyl peroxy cineeodecanoate disopropyl peroxy carbonate, di-n-propyl peroxy dicarbonate, t-butyl peroxy neo decanoate, lauper peroxide, benzoyl peroxide, t- An organic peroxide initiator such as butynole hydroperoxide can be used.
  • Time 2 to: 15 hours, preferably 3 to: 11 hours.
  • Polymerization rate 10 to 90%, preferably 30 to 80% based on the charged vinyl ester.
  • Resin content in the solution after polymerization 5 to 85%, preferably 20 to 70%.
  • Ethylene content of the copolymer preferably 2 0-6 5 mol 0/0, further preferably 2 5-6 0 mole percent, and optimally 2 5-5 0 mol 0/0.
  • ⁇ -olefins such as pyrene pyrene, isobutylene, ⁇ -otaten, and a-dodecene
  • nitriles such as atarilonitrile and methacrylonitrile
  • amides such as acrylyl amide and methacrylamide
  • ethylene Olefin sulfonic acids such as sulfonic acid, arylsulfonic acid, and metharylsulfonic acid or salts thereof
  • alkyl vinyl ethers, vinyl ketone, ⁇ -butylpyrrolidone, butyl chloride, chloridylidene, and the like coexist in small amounts. It is also possible
  • the copolymer solution is continuously supplied at a constant rate from the upper part of a tower filled with Raschig rings.
  • An organic solvent vapor such as methanol is blown from the bottom of the tower, and a mixed vapor of an organic solvent such as methanol and unreacted vinyl acetate is distilled out from the section of the tower, and the copolymer solution from which unreacted vinyl acetate is removed is removed from the bottom of the tower.
  • a method is adopted.
  • the saponification method can be either continuous or batch.
  • the alkali catalyst include sodium hydroxide, hydroxylated lime, and alkali metal alkoxide.
  • the saponification conditions for the batch system are as follows.
  • Amount of catalyst used 0.02 to 0.6 equivalents (per butyl acetate component).
  • the degree of saponification after the saponification reaction varies depending on the purpose, it is preferably at least 80%, more preferably at least 95%, still more preferably at least 98%, particularly preferably at least 99% of the butyl acetate component. is there.
  • the saponification degree can be arbitrarily adjusted depending on the conditions.
  • the ethylene-butyl alcohol copolymer after the reaction contains an alkali catalyst, by-product salts, and other impurities, it is preferable to remove these by neutralizing and washing as necessary.
  • Examples of the carboxylic acid (A) used in the resin composition of the present invention include: saturated aliphatic carboxylic acids such as acetic acid and propionic acid; unsaturated aliphatic carboxylic acids such as oleic acid; Examples thereof include hydroxycarboxylic acids such as glycolic acid and lactic acid, and aromatic carboxylic acids such as benzoic acid.
  • Their pKa at 25 ° C. is preferably 3.5 or more. If the pKa at 25 ° C is less than 3.5, it may be difficult to control the pH of the resin composition composed of EVOH, and the color resistance and interlayer adhesion may be unsatisfactory. .
  • the upper limit of the pKa of the carboxylic acid (A) at 25 ° C. is preferably 5 or less, more preferably 4.5 or less, and still more preferably 4 or less.
  • Examples of the carboxylic acid having a molecular weight of 75 or more (a1) used in the present invention include succinic acid, adipic acid, benzoic acid, acetic acid, lauric acid, glycolic acid, lactic acid and the like, and include succinic acid, adipic acid and the like.
  • the dicarboxylic acid of the above is used, gel-bubbles may easily occur during molding.
  • the use of hydroxycarboxylic acids such as dalicholic acid and lactic acid does not cause the above-mentioned problems and is preferable from the viewpoint of excellent water solubility. Among them, lactic acid is particularly preferable.
  • carboxylic acid (al) having a molecular weight of 75 or more used in the present invention a carboxylic acid having a molecular weight of 80 or more is more preferable, a molecular weight of 85 or more is more preferable, and a molecular weight of 90 or more is particularly preferable. It is.
  • a strong carboxylic acid having a high molecular weight volatile components can be effectively reduced. Specifically, it exhibits excellent low odor and long run properties even at high temperatures such as co-extrusion molding or co-injection molding with a high melting point thermoplastic resin such as polyamide or polyester. be able to.
  • lactic acid when lactic acid is used as the carboxylic acid (al) having a molecular weight of 75 or more, it is preferable because it has excellent water solubility as described above and has extremely low volatility as compared with acetic acid.
  • a pellet made of EVOH resin yarn When a pellet made of EVOH resin yarn is produced, it is usually necessary to dry the water-containing pellet, and lactic acid must be used in the drying step. As a result, the volatilization of the acid component is greatly suppressed, and a more stable quality product can be produced.
  • acetic acid pKa at 4.75 ° C
  • the content of the carboxylic acid (A) in the resin composition of the present invention is 0.05 to 2.5 ⁇ / g.
  • the content of the carboxylic acid (A) is less than 0.05 ⁇ / g, the coloring at the time of melting is remarkable, particularly at the time of molding at a high temperature. Also, 2.5 Even when the temperature exceeds the above range, coloring of the resin becomes remarkable during molding at a high temperature.
  • the content of the carboxylic acid (A) is more than 2.5 zmol / g, the tangling property at the time of molding at a high temperature is significantly reduced, and the effect of improving the low odor property and the coloring resistance, and The effect of improving the adhesive force with the adhesive resin in the coextrusion molding becomes insufficient, and a sufficient long-run property cannot be obtained.
  • the lower limit of the content of the carboxylic acid (A) is preferably at least 0.1 AtmolZg, and more preferably at least 0.2 fflolZg. Further, the upper limit of the content of the carboxylic acid (A) is more preferably 2 ⁇ / g or less, still more preferably 1. S ⁇ umol / g or less, and most preferably 1.0 ⁇ umol / g or less. g or less.
  • a carboxylic acid such as acetic acid
  • a salt thereof having a molecular weight of less than 75 it is preferable that the content of the carboxylic acid having a molecular weight of less than 75 is small.
  • the resin composition of the present invention satisfies the following formula (1).
  • the resin composition of the present invention has an alkaline earth metal salt (B) content of 10 ppm or less (in terms of metal element).
  • the content of the alkaline earth metal salt (B) is more preferably 5 ppm or less (in terms of a metal element), and particularly preferably substantially no content.
  • Such an alkaline earth metal salt (B) is not particularly limited, and examples thereof include a magnesium salt, a calcium salt, a barium salt, a beryllium salt and the like.
  • the anion species of the alkaline earth metal salt (B) is not particularly limited, and examples thereof include aion acetate, aion lactate, and anion phosphate.
  • the content of alkaline earth metal salt (B) is 10 ppm (metal element conversion). Values) tend to improve the long-run property during melt molding.
  • the melting point of polyamide or polyester is high! /
  • the Al-Li earth metal salt (B) If the content exceeds l Op p pm (converted to metal element), the formability will be unsatisfactory. Specifically, the state of the film surface between the EVOH and other thermoplastic resin to be laminated becomes extremely poor, and the EVOH layer is markedly colored, and the long run property is also observed. It becomes bad.
  • the content of the carboxylic acid (A) is 0.05 to 2.5 ⁇ mol / g
  • the content of the alkaline earth metal salt (B) is 10 ppm or less (in terms of metal element).
  • the present inventors have found for the first time that the use of an ethylene-vinyl alcohol copolymer resin composition that satisfies the following formula (1) significantly improves moldability at high temperatures. From this viewpoint, the present invention is significant.
  • the content of the phosphoric acid compound (C) is 80 ppm or less (in terms of phosphate radical).
  • the phosphate compound (C) include, but are not limited to, various acids such as phosphoric acid and phosphorous acid, and salts thereof. May be contained in any form of a first phosphate, a second phosphate, and a third phosphate, and the cation species is not particularly limited.
  • sodium dihydrogen phosphate examples include potassium dihydrogen phosphate, disodium hydrogen phosphate, and dihydrogen phosphate.
  • Example 3 of the above-mentioned prior art (2) discloses an EVOH composition containing acetic acid, sodium acetate and potassium dihydrogen phosphate and having a calcium content of 5 ppm.
  • a composition in which the carboxylic acid is composed of only acetic acid and (al) Z (A) is less than 0.7 provides a sufficiently low odor.
  • Example 3 of this specification containing lactic acid, sodium lactate and dihydrogen phosphate phosphate, and having a content of alkaline earth metal salt of less than 10 ppm in terms of metal element. Although the low odor property was greatly improved, there was room for improvement in the long-run property during melt molding at high temperatures.
  • the content of carboxylic acid (A) was 0.05 to 2.5 ⁇ / g, and the content of alkaline earth metal salt (B) was 10 ppm or less.
  • the content of the phosphoric acid compound (C) was 8 Opm or less, it has been clarified that the long-run property at the time of melt molding at a high temperature is further improved, and the effect of the present invention can be more remarkably exhibited.
  • the content of the carboxylic acid (A) is 0.05 to 2.5 molZg
  • the content of the alkaline earth metal salt (B) is 10 ppm or less (in terms of metal element)
  • ( al) / In the case of the EVOH resin composition of the present invention in which (A) is 0.7 or more and 1.0 or less, there is a tendency that the long-run property is adversely reduced by the addition of the phosphoric acid compound (C). Was first discovered by the present inventors.
  • the upper limit of the phosphate compound (C) is preferably 80 ppm or less.
  • Such an EVOH resin composition has excellent coloring, low unevenness on the film surface, excellent appearance and excellent odor and low odor even at the time of melt molding at a high temperature. Benefits can be obtained.
  • the upper limit of the phosphoric compound (C) is more preferably 60 ppm or less, still more preferably 40 ppm or less, particularly preferably 20 ppm or less, and it is not substantially contained! /, That is optimal.
  • the resin composition of the present invention preferably contains an alkali metal salt (D) from the viewpoint of improving adhesiveness.
  • An example of a preferred embodiment using the EVOH resin composition of the present invention is, for example, laminating polyamide or polyester on one surface of an EVOH resin composition layer, and laminating with polyolefin or the like via an adhesive resin on the other surface. And a laminated multilayer structure. In such embodiments, it is particularly preferred that the EVOH resin composition exhibit good adhesion.
  • the upper limit of the content of the alkali metal salt (D) is preferably 500 ppm or less, It is more preferably less than 500 ppm, even more preferably 400 ppm or less, particularly preferably 300 ppm or less.
  • the lower limit of the content of the alkali metal salt (D) is preferably at least 10 ppm, more preferably at least 3 ppm, even more preferably at least 50 ppm. It is particularly preferred that it is p or more.
  • by blending the alkali metal salt (D) it is possible to improve the adhesive strength between the resin composition of the present invention and the adhesive resin.
  • the alkali metal salt (D) is not particularly limited, but preferred examples thereof include a sodium salt and a potassium salt.
  • the aeon species of the alkali metal salt (D) is not particularly limited, but preferred examples include anion acetate, aion lactate, and anion phosphate, with aion lactate being particularly preferred.
  • the resin composition of the present invention contains the boron compound (E) in an amount of 50 to 2000 ppm in terms of a boron element.
  • the boron compound (E) include, but are not limited to, boric acids, borate esters, borates, and borohydrides.
  • the boric acids include orthoboric acid, metaboric acid, tetraboric acid, and the like.
  • the borate esters include triethyl borate, trimethyl borate, and the like.
  • orthoboric acid hereinafter sometimes simply referred to as boric acid is preferable.
  • the lower limit of the content of the boron compound (E) is preferably at least 50 ppm, more preferably at least 100 ppm, and even more preferably at least 15 ppm in terms of boron element.
  • the upper limit of the content of the boron compound (E) is preferably 1500 ppm or less in terms of a boron element, and more preferably 1 OOOppm or less. If the content of the boron compound (E) is less than 50 ppm, the generation of gel and pop may increase as the molding time becomes longer. May worsen. On the other hand, if the content of the boron compound (E) exceeds 2000 ppm, there is a possibility that Görich will be chewy and the moldability will be poor.
  • Suitable melt flow rate (MFR) of the resin composition comprising EVOH of the present invention (measured at 190 ° C under a load of 2160 g; if the melting point is around 190 ° C or exceeds 190 ° C, the load is 2160 g
  • MFR melt flow rate
  • the lower limit of the MFR is more preferably not less than 0.2 g / l 0 min., More preferably not less than 0.5 gZl 0 min., And most preferably not less than l gZl Omin. It is.
  • the upper limit of the MFR is more preferably 50 g / 1 Omin. Or less, still more preferably 10 g / 1 Omin. Or less, and most preferably 7 g / 10 min. Or less. If the melt flow rate is smaller than the above range, the inside of the extruder will be in a high torque state at the time of molding and extrusion processing will be difficult, and if it is larger than this range, the mechanical strength of the molded product will be insufficient. Not preferred.
  • the resin composition of the present invention may be blended with an ethylene-vinyl alcohol copolymer having a different degree of polymerization, an ethylene content, and a different degree of saponification within a range that does not impair the object of the present invention, and melt-molded.
  • an ethylene-vinyl alcohol copolymer having a different degree of polymerization, an ethylene content, and a different degree of saponification within a range that does not impair the object of the present invention, and melt-molded.
  • other various plasticizers, stabilizers, surfactants, coloring agents, ultraviolet absorbers, slip agents, antistatic agents, drying agents, and crosslinking agents may be added to the resin composition as long as the object of the present invention is not impaired. It is also possible to add appropriate amounts of metal salts, fillers, reinforcing agents for various fibers, and the like.
  • thermoplastic resins include various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methylenol 1-pentene, ethylene-propylene copolymer, copolymer of ethylene and ct-olefin with 4 or more carbon atoms, polyolefin and anhydrous Copolymers with maleic acid, ethylene-polyester copolymers, ethylene-acrylate copolymers, or modified polyolefins obtained by graft-modifying these with unsaturated carboxylic acids or derivatives thereof, and various nylons (nylon 6, Nylon-6,6, Nylon-6 / 6,6 copolymer), Polychlorinated vinyl, Polyvinylidene chloride, Polyester, Polystyrene, Polyacrylonitrile, Polyurethane, Polyacetal-modified polyvinyl alcohol resin Is used.
  • polyolefins polyethylene, polypropylene, poly 1-butene, poly 4-methylenol 1-pentene,
  • an ethylene-butyl alcohol copolymer contains a carboxylic acid (A) and, if necessary, an alkali metal salt (D) and a boron compound (E).
  • the law is not particularly limited. For example, there are a method of immersing the EVOH in a solution in which the compound is dissolved, a method of melting the EVOH and mixing the compound, a method of dissolving the EVOH in an appropriate solvent and mixing the compound, and the like. .
  • a method of immersing EVOH in a solution of the above compound is desirable.
  • This processing can be performed by either the patch method or the continuous method.
  • the shape of the EVOH may be any shape such as powder, granule, sphere, and columnar pellet.
  • the ethylene-vinyl alcohol copolymer When the ethylene-vinyl alcohol copolymer is immersed in a solution containing the carboxylic acid (A) and, if necessary, the alkali metal salt (D) and the boron compound (E), the carboxylic acid (A) in the above solution,
  • the respective concentrations of the alkali metal salt (D) and the boron compound (E) added as necessary are not particularly limited.
  • the solvent of the solution is not particularly limited, but is preferably an aqueous solution for reasons of handling.
  • the suitable range of the immersion time varies depending on the form of the ethylene-butyl alcohol copolymer, but is preferably 1 hour or more, and more preferably 2 hours or more in the case of a pellet of about 1 to 10 mm.
  • the immersion treatment of the above-mentioned various compounds in a solution may be carried out by dividing into a plurality of solutions and immersion at once. Above all, it is preferable from the viewpoint of simplification of the process that the treatment is carried out with a solution containing the carboxylic acid (A), and further the alkali metal salt (D) and the boron compound (E) which are added as necessary.
  • the treatment is performed by immersion in the solution as described above, the final drying is performed to obtain the desired ethylene-butyl alcohol copolymer composition.
  • the MFR (MFR (10 min .;), MFR (20 min.), MFR (30 min.), Respectively; 270. C, 2160 g load) when held for 30 minutes is calculated by the following formulas (2) to (4 It is preferable that all of the above conditions are satisfied from the viewpoint of moldability of the resin composition. 0.5 ⁇ MFR (lOmin.) MFR (6min.) ⁇ 1.5 (2)
  • the lower limit is more preferably 0.6 or more, and even more preferably 0.8 or more.
  • the upper limits of MF R (lOmin.), MF R (6 min.), MFR (20 min.), Z MF R (6 min.) And MF R (30 min.) Z MFR (6 min.) Are more preferably 1. 4 or less, more preferably 1.2 or less.
  • the resin composition of the present invention is a resin composition which has not been subjected to a heat treatment.
  • FR (0) and the resin composition heated at 220 ° C in a nitrogen atmosphere, the resin I and the MF of the resin I, 50 hours after 8 hours, 16 hours, and 24 hours from the start of heating R (respectively, MFR (8hr), MFR (16hr), MFR (24hr), MFR (50hr); all at 230 ° C, 10.9 kg load) is the total of the following formulas (5) to (8) It is preferable to satisfy
  • the resin composition of the present invention is preferably subjected to co-extrusion molding or co-injection molding with a resin having a high melting point such as polyamide or polyester, and the die temperature or the nozzle temperature during molding is preferably 250 °. C or more.
  • the change in the melting behavior of the resin composition over a long period of time at a heating temperature of 220 ° C. satisfies all of the above formulas (5) to (8). It is preferred that It is not clear why the melting behavior of the resin composition at a heating temperature of 220 ° C affects the moldability at high temperatures, but it satisfies all of the above equations (5) to (8) and increases slowly. Due to the tendency to stick, it is possible to effectively suppress the generation of gel / bubbles in the EVOH resin composition layer at the time of molding at a high temperature, and to improve the coloring resistance.
  • the obtained resin composition of the present invention is formed into various molded articles such as films, sheets, containers, pipes, and fibers by melt molding. These molded products can be pulverized for re-use and molded again. It is also possible to uniaxially or biaxially stretch films, sheets, fibers and the like.
  • melt molding method extrusion molding, inflation extrusion, blow molding, melt spinning, injection molding and the like are possible.
  • the melting temperature varies depending on the melting point of the copolymer and the like, but is preferably about 150 to 270 ° C.
  • the resin composition of the present invention is, as described above, a multilayer structure having at least one layer of a molded product such as a composition film or sheet of the present invention, in addition to the production of a resin molded product having only a single layer of the resin composition. Often used for practical use.
  • the layer composition of the multilayer structure is represented by E for the resin composition of the present invention, Ad for the adhesive resin, and T for the thermoplastic resin, E / T, T / EZT, E / Ad / T, T / AdZE / Ad / T, etc., but are not limited thereto.
  • Each layer may be a single layer or, in some cases, a multilayer.
  • the method for producing the above-described multilayer structure is not particularly limited. For example, a method of melt-extruding a thermoplastic resin into the molded article (film, sheet, etc.), a method of co-extruding the resin composition and another thermoplastic resin on a base material such as a thermoplastic resin, Plastic resin And a method of co-injecting a resin composition comprising EVOH and an organic titanium compound, an isocyanate compound, a polyester compound, and a molded product obtained from the resin composition of the present invention and a film or sheet of another substrate. And laminating using a known adhesive.
  • the thermoplastic resin used includes linear low-density polyethylene, low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, polypropylene, and propylene- ⁇ Polyolefins such as olefin copolymers (polyolefins having 4 to 20 carbon atoms), polybutene, polypentene, etc.
  • polyesters such as polyethylene terephthalate, polyester elastomers, nylon-16, nylon-16 And 6 etc., polystyrene, polychlorinated polyvinyl chloride, polychlorinated polyvinylidene, acrylic resin, vinyl ester resin, polyurethane elastomer, polycarbonate, chlorinated polyethylene, chlorinated polypropylene, etc. .
  • polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-butyl acetate copolymer, polyamide, polystyrene and polyester are preferably used.
  • an adhesive resin When laminating the resin composition of the present invention and a thermoplastic resin, an adhesive resin may be used, and in this case, an adhesive resin made of a carboxylic acid-modified polyolefin is preferable.
  • the carboxylic acid-modified polyolefin is a modified resin containing a carboxyl group obtained by chemically (for example, adding or grafting) an ethylenically unsaturated carboxylic acid or an anhydride thereof to an olefin polymer. This refers to an olefin polymer.
  • the olefin polymer is defined as polyethylene (low pressure, medium pressure, high pressure), linear low density polyethylene, polyolefin such as propylene, boreptene, or a comonomer capable of copolymerizing olefin and the olefin.
  • polyethylene low pressure, medium pressure, high pressure
  • polyolefin such as propylene, boreptene
  • a comonomer capable of copolymerizing olefin and the olefin.
  • unsaturated carboxylic acid esters such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate It means a stele copolymer or the like.
  • linear low density polyethylene ethylene monoacetate Bulle copolymer (content of acetic Bulle 5-5 5 weight 0 /.), Echirenaku acrylic acid Echiruesuteru copolymer (content of Akuriru acid Echiruesuteru 8-3 5 The weight is preferably 0 /.), And linear low-density polyethylene and ethylene monoacetate copolymer are particularly preferred.
  • Ethylenically unsaturated carboxylic acids or anhydrides include ethylenically unsaturated monocarboxylic acids, their esters, ethylenically unsaturated dicarboxylic acids, their mono- or diesters, and their anhydrides, of which ethylenically unsaturated Dicarboxylic anhydrides are preferred.
  • Maleic anhydride is particularly preferred.
  • the amount of addition or grafting (degree of modification) of the ethylenically unsaturated carboxylic acid or its anhydride to the olefin polymer is 0.0001 to 15% by weight, preferably 0.0%, based on the olefin polymer. 0 to 10% by weight.
  • the addition reaction and the graft reaction of the ethylenically unsaturated carboxylic acid or its anhydride to the olefin polymer are obtained by, for example, a radical polymerization method in the presence of a solvent (such as xylene) or a catalyst (such as peroxide).
  • melt flow rate (MFR) of the carboxylic acid-modified polyolefin thus obtained measured at 190 ° C under a load of 210 g should be 0.2 to 30 g / 10 minutes. And more preferably 0.5 to :! O g Z l O minutes.
  • MFR melt flow rate
  • These adhesive resins may be used alone or as a mixture of two or more.
  • a high melting point thermoplastic resin such as polyamide or polyester and the resin composition of the present invention are bonded from the viewpoint that the effect of the present invention, which is excellent in moldability at high temperatures, can be particularly effectively exerted.
  • An embodiment in which the layers are directly laminated without the intervention of a conductive resin or the like is preferable.
  • a high melting point thermoplastic resin such as polyamide or polyester and the resin composition of the present invention are co-extruded or co-injected to form a multilayer structure. are particularly preferred.
  • the method of coextrusion molding of the composition of the present invention and a thermoplastic resin is not particularly limited, and examples thereof include a multi-manifold merging method T-die method, a feedblock merging method T-die method, and an infusion method. Is done.
  • the method of coinjection molding is not particularly limited, and a general method can be used. From the viewpoint that the effect of the present invention, which is excellent in moldability at high temperatures, can be particularly effectively exerted, a multilayer structure composed of the resin composition of the present invention and another thermoplastic resin is produced by co-extrusion molding or co-injection molding. In this case, it is particularly preferable to use a production method in which the die temperature or the nozzle temperature is 250 ° C. or higher.
  • Multi-layer co-stretched sheet or film obtained by uniaxially or biaxially stretching or biaxially stretching a multilayer structure (such as a sheet or film) and heat-treating it.
  • Multi-layered structure sheet or film, etc.
  • Multi-layer tray cup-shaped container formed by thermoforming, vacuum forming, pressure forming, vacuum forming, etc.
  • Multilayer structure (such as parison) Bottle-shaped container made by biaxial stretching blow molding of force
  • the co-extruded multilayer structure and co-injection multilayer structure obtained in this way have excellent low odor, low fish eyes, and are transparent and have few streaks, so they can be used as food container materials, such as deep drawn containers and cups. It is suitably used as a material for shaped containers and bottles.
  • the MFR (MFR (20 min.)) For a retention time of 10 minutes, the MFR (MFR (20 min.)) For 20 minutes, and the MFR (MFR (30 min.)) For 30 minutes ).
  • X At least one of MFR (lOmin.) / MFR (6rain.), MFR (20min.) / MFR (6rain.) And MFR (30min.) / MFR (6min.) Is 0.5 to: I Not included in range 5.
  • MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / MFR (0) and MFR (50hr) ZMFR (0) are all in the range of 0.02 to 1. Included in the box.
  • X at least one of MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / MFR (0) and MFR (50hr) / MFR (0) is 0.02 Not included in the range of ⁇ 1.
  • T die 300 arm width coat hanger die (Plastic Engineering Laboratory)
  • the state of the interface between the EVOH layer and the polyamide layer of the multilayer film produced by the above method was visually observed and determined as follows.
  • the multilayer film produced by the above method is wound around a paper tube, Was visually determined and determined as follows.
  • the film was sampled, the polyimide layer was swollen with trifluoroethanol, peeled off, and only the EVOH layer was taken out.
  • the gel-like bulk in the EVOH layer (approximately 100 ⁇ visible to the naked eye) Above).
  • a 5 mm chip was obtained, and the obtained chip was washed with 1 g ZL of an aqueous acetic acid solution, and the operation of adding a large amount of water and removing water was repeated, and the obtained EVOH chip had a water content of 110%. (Dry base).
  • the EVOH thus obtained (ethylene content 38 mol%, saponification degree 99.4%, 10 kg of a water-containing chip having an intrinsic viscosity of 0.085 1 / g) was immersed in 18 L of an aqueous solution containing 0.53 g / L of boric acid at 25 ° C for 5 hours, and then immersed.
  • the content of carboxylic acid (A) in the obtained dried chips is 0.33 / zmolZg, and the total content of carboxylic acid (A) and its salt is 7.9 ⁇ 1 / g (molecular weight in The content of 75 or more carboxylic acids (a 1) and its salts is 7.9 ⁇ 1 / g), the content of metal salts is 20 ppm in terms of metal elements, and the content of boron compounds is boron elements The converted value was 280 ppm.
  • MFR is 1.7 gZl O
  • FIG. 1 is a graph showing the relationship between the heating time and the MFR (270 ° C, 2160 g load) when the resin composition composed of EVOH is maintained at 270 ° C in a melt indexer.
  • the odor test result was A.
  • a dried pellet was prepared in the same manner as in Example 1 except that the composition was changed as shown in Table 1, and evaluation was performed in the same manner as in Example 1. Table 3 shows the evaluation results.
  • Example 3 shows the evaluation results.
  • Table 1 shows the composition of the liquid used to immerse the water-containing EVOH chip using a water-containing chip of EVOH (water content: 110%: dry base) with a saponification degree of 99.5% and an intrinsic viscosity of 0.097 lZg.
  • a dried pellet was prepared in the same manner as in Example 1 except that the composition was changed to, and the evaluation was performed in the same manner as in Example 1.
  • Table 3 shows the evaluation results.
  • Example 1 Using the water-containing EVOH chip obtained in Example 1 before immersion treatment (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g), the water-containing EVOH chip is immersed A dried pellet was produced in the same manner as in Example 1 except that the composition of the solution to be used was changed as shown in Table 1.
  • the obtained dried chips are held in a melt indexer at 270 ° C., and the MFR (270 ° C., 2160 g load) of each resin composition at the holding time of 6, 10, 20, and 30 minutes was measured.
  • the measurement results are shown below and are also shown in Figure 1.
  • the obtained dried chips were placed in a stainless steel metal container under a nitrogen atmosphere and sealed.
  • the MFR when this sample container was heated at 220 ° C for 8, 16, 24, and 50 hours and the MFR (MFR (O)) of the resin not subjected to the heat treatment were measured.
  • the measurement results are shown below and are also shown in Figure 2.
  • Example 2 Using hydrous EVOH chips before immersion treatment obtained in Example 2 (ethylene content 38 molar 0/0, saponification degree 99.4%, intrinsic viscosity 0. 1 12 1 / g), the water EV OH A dried bellet was produced in the same manner as in Example 1 except that the composition of the liquid in which the chip was immersed was changed as shown in Table 1.
  • the obtained dried chips are held in a melt indexer at 270 ° C., and the MFR (270 ° C., 2160 g load) of each resin composition at the holding time of 6, 10, 20, and 30 minutes is measured. It was measured.
  • the measurement results are as follows, which is also shown in Figure 1. Show.
  • the obtained dried chips were placed in a stainless steel metal container under a nitrogen atmosphere and sealed.
  • the MFR when the sample container was heated at 220 for 8, 16, 24, and 50 hours and the MFR (MFR (O)) of the resin not subjected to the heat treatment were as follows. The measurement results are shown below and are also shown in Figure 2.
  • Example 2 Using the water-containing EVOH chip (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g) obtained in Example 1 before immersion treatment, 10 kg of the OH chip was immersed in 18 L of an aqueous solution containing 0.53 g / L of boric acid at 25 ° C for 5 hours.
  • the content of carboxylic acid (A) in the obtained dried chips was 2.2 ⁇ 1 / g, and the total content of carboxylic acid (A) and its salts was 5.5 mo 1 / g (of which The content of carboxylic acid (al) with a molecular weight of 75 or more (al) and its salt is 0 ⁇ 1 Zg), the content of alkali metal salt is 200 ppm in metal element conversion, and the content of boron compound is boron element conversion value At 280 ppm.
  • the MFR was 1.9 gZlO content (190 ° C, 2160 g load).
  • Example 1 Using the water-containing EVOH chip obtained in Example 1 before immersion treatment (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g), the water-containing EVOH chip was immersed. A dried pellet was prepared in the same manner as in Example 1 except that the composition of the solution to be used was changed as shown in Table 1, and evaluation was performed in the same manner as in Example 1. Table 3 shows the evaluation results. table 1
  • X is the concentration of aqueous solution containing only boric acid
  • Y is the concentration of aqueous solution containing boric acid and metal salt
  • X at least any of MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / FR (0), MFR (50hr) / MFR (0) is 0 2 to 1 Out of range.
  • Example 3 In Example 3 in which the content of the phosphoric acid compound (C) exceeds 80 ppm (in terms of phosphate radical), the long-run property was further reduced.
  • Example 4 in which the content of the alkali metal salt (D) was more than 30 Oppm (in terms of metal element), the surface of the film was slightly uneven at the time of multilayer film formation, and the color resistance and the long run property were slightly inferior. .
  • Example 5 in which (& 1) da () is less than 0.98 (provided that (A): the total content of carboxylic acid (A) and its salts ( ⁇ / g), (a 1): The content of the carboxylic acid (a1) having a molecular weight of 75 or more (a1) and its salt (mol / g)) was slightly inferior in the effect of improving the low odor.
  • Comparative Example 1 in which the content of the carboxylic acid was more than 2.5 / molZg, the long run property and the coloring resistance during the multilayer film formation were remarkably inferior.
  • Comparative Example 2 in which the content of the alkaline earth metal salt (B) exceeds l Op pm (converted to a metal element), severe film surface unevenness occurs during coextrusion molding with polyamide, and the color resistance is remarkably high. Dropped.
  • the present invention can provide an ethylene-vinyl alcohol copolymer resin composition having excellent properties and low odor, and a multilayer structure using the same.
  • the multilayer structure of the present invention is useful as various food containers, for example, deep drawing containers, cup-shaped containers, bottles and the like.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

An ethylene/vinyl alcohol copolymer resin composition having a content of carboxylic acids (A) of 0.05 to 2.5 νmol/g and a content of alkaline earth metal salts (B) of 10 ppm or below (in terms of metal elements) and satisfying the following relationship (1); and multilayer structures made by using the composition (1); wherein (A) is the total content (νmol/g) of carboxylic acids (A) and salts thereof; and (a1) is the content (νmol/g) of carboxylic acids (a1) having molecular weights of 75 or above and salts thereof.

Description

明細書 エチレン一ビュルアルコール共重合体樹脂組成物 技術分野  Description Ethylene monobutyl alcohol copolymer resin composition
本発明は、 融点の高い樹脂との共押出成形または共射出成形の際など、 高温で の溶融成形時においても着色、 膜面むらが少なく外観性に優れ、 かつロングラン 性およぴ低臭性に優れたェチレン—ビニルアルコール共重合体樹脂組成物および それを用いた多層構造体に関するものである。 背景技術  The present invention has excellent color appearance, low unevenness of film surface, excellent appearance, long run and low odor even at the time of melt molding at a high temperature, such as during co-extrusion molding or co-injection molding with a resin having a high melting point. TECHNICAL FIELD The present invention relates to an ethylene-vinyl alcohol copolymer resin composition excellent in water resistance and a multilayer structure using the same. Background art
エチレン一ビエルアルコール共重合体 (以下、 EVOHと略すことがある) は 酸素遮蔽性、 耐油性、 非帯電性、 機械強度等に優れた有用な高分子材料であり、 フィルム、 シート、 容器など各種包装材料として広く用いられている。 このよう な包装材料は通常溶融成形によつて製造されており、 溶融成形時のロングラン性 (長時間の成形においてもフィッシュアイゃスジのない成形物が得られる) 、 成 形物の外観性 (着色が少なく、 フィッシュアイの発生が見られない成形物) が要 求される。  Ethylene-Biel alcohol copolymer (hereinafter sometimes abbreviated as EVOH) is a useful polymer material with excellent oxygen-shielding properties, oil resistance, antistatic properties, mechanical strength, etc., and various types of films, sheets, containers, etc. Widely used as packaging material. Such packaging materials are usually produced by melt molding, and have a long run property during melt molding (a molded article free of fish eyes is obtained even over a long period of time), and the appearance of the molded article ( (A molded product with little coloring and no generation of fish eyes) is required.
そこで従来、 かかる対策として、 種々の酸や金属塩で EVOHを処理して良好 な成形品を製造しようとする以下のような提案がなされている。  Therefore, conventionally, as a countermeasure for this, the following proposals have been made for producing a good molded product by treating EVOH with various acids and metal salts.
例えば、 着色、 外観、 層間接着性を改善するために、 (1) ヒドロキシカルボ ン酸および/またはその塩をヒドロキシカルボン酸換算で 100〜5000 p p m、 アル力リ金属塩を金属元素換算で 50〜500 p pm、 アル力リ土類金属塩 を金属元素換算で 20〜200 p pm含むことを特徴とする EVOH組成物が開 示されている (特開平 10— 67898号公報) 。 さらに、 (2) アルカリ金属 の酢酸塩をアル力リ金属元素換算で 20〜200 p p m、周期律表第 II族に属す る金属 10 p pm以下、 酢酸 30〜250 p p mおよびりん酸またはアルカリ金 属のりん酸水素塩をりん酸根換算で 5〜 500 p p m含有し、 酢酸含有率/アル 力リ金属の酢酸塩含有率の値が 0. 1〜 1であり、 かつ融点より 10〜 80 °C高 い温度の少なくとも 1点における高化式フローテスターでの加熱時間と吐出速度 の関係において、 少なくとも 10時間までは吐出速度が実質的に増加しない、 ェ チレン含有率 20〜80モル0 /0、 酢酸ビュル成分のけん化度 95モル%以上のェ チレン一酢酸ビュル共重合体けん化物組成物が開示されている (特開平 2— 23 5952号公報; USP 5194474) 。 For example, in order to improve coloring, appearance, and interlayer adhesion, (1) 100 to 5000 ppm of hydroxycarboxylic acid and / or its salt in terms of hydroxycarboxylic acid, and 50 to 50 ppm in terms of metal An EVOH composition characterized by containing 500 ppm of an alkaline earth metal salt in an amount of 20 to 200 ppm in terms of a metal element has been disclosed (JP-A-10-67898). In addition, (2) alkali metal acetates are 20 to 200 ppm in terms of metal elements and belong to Group II of the periodic table. 10 ppm or less of metal, 30-250 ppm of acetic acid and 5-500 ppm of phosphoric acid or alkali metal hydrogen phosphate in terms of phosphate group, the acetic acid content / alkaline metal acetate content In the relationship between the heating time and the discharge speed in the Koka type flow tester at at least one point at a temperature of 0.1 to 1 and 10 to 80 ° C higher than the melting point, the discharge speed is at least up to 10 hours. not substantially increase, E styrene content of 20 to 80 mole 0/0, a saponification degree of 95 mol% or more E styrene monoacetate Bulle copolymer saponified composition acetate Bulle component is disclosed (JP-a-2 — 23 5952; USP 5194474).
EVOHは他の熱可塑性榭脂と積層されて用いられることが多く、 変性ポリオ レフインからなる接着性樹脂などを介して、 ポリオレフインと積層する実施態様 が多く見られる。 このような場合、 EVOHと積層されるポリオレフインおよび 接着性榭脂のいずれもが、 通常、 EVOHよりも低融点であり、 EVOHを成形 するのに最も好ましい成形温度で成形できるため、 上述の先行技術 (1) および (2) に記載の EVOH樹脂組成物を用いた場合においても、 成形時に問題を生 じることは多くはなかった。  EVOH is often used by being laminated with another thermoplastic resin, and there are many embodiments in which EVOH is laminated with polyolefin through an adhesive resin made of modified polyolefin. In such a case, both the polyolefin and the adhesive resin laminated with EVOH usually have a lower melting point than EVOH, and can be molded at the most desirable molding temperature for molding EVOH. Even when the EVOH resin compositions described in (1) and (2) were used, there were not many problems during molding.
これに対し、 別の実施態様として、 ポリアミドやポリエステルなど、 EVOH より高!/、融点を有する樹脂と共押出成形ある 、は共射出成形により多層構造体に 成形される実施態様も多く見られる。 しかしながら、 共押出成形あるいは共射出 成形により EVOH層おょぴ、 ポリアミド層および/またはポリエステル層から なる多層構造体を作製する場合、 ポリアミドやポリエステルを成形するのに好適 な高い成形温度で成形を行うと、 EVOHが加熱により劣化する傾向がある。 逆 に、 EVOHを成形するのに最も好ましい成形温度で成形した場合は、 ポリアミ ドまたはポリエステルが充分に溶融しないため、 成形性が不充分になる場合があ る。 このため、 ポリアミドやポリエステルを成形するのに好適な高い成形温度で 成形を行う場合でも、 熱劣化の小さい EVOHの開発が求められている。  On the other hand, in another embodiment, polyamide, polyester, etc. are higher than EVOH! There are many embodiments in which a multi-layer structure is molded by co-injection molding with a resin having a melting point. However, when producing a multilayer structure composed of an EVOH layer, a polyamide layer and / or a polyester layer by co-extrusion molding or co-injection molding, molding is performed at a high molding temperature suitable for molding polyamide or polyester. EVOH tends to deteriorate due to heating. Conversely, when molding is performed at the most preferable molding temperature for molding EVOH, the moldability may be insufficient because the polyamide or polyester is not sufficiently melted. Therefore, even when molding at a high molding temperature suitable for molding polyamide or polyester, there is a need for the development of EVOH with low thermal degradation.
しかしながら、 上述した (1) および (2) の開示技術にはかかる高温での溶 融成形に関する記載はなく、 かつ、 (1) および (2) に記載されている EVO H組成物では、 高温での溶融成形時において充分な性能が得られない。 具体的に は、 先行技術 (1) 記載の EVOH組成物では、 高温での成形時において、 耐着 色性およびロングラン性が不満足なものとなる。 However, the techniques disclosed in the above (1) and (2) do not dissolve at high temperatures. There is no description about melt molding, and the EVOH compositions described in (1) and (2) cannot provide sufficient performance at the time of melt molding at high temperatures. Specifically, the EVOH composition described in the prior art (1) has unsatisfactory coloring resistance and long-run property at the time of molding at a high temperature.
一方、 先行技術 (2) においては、 臭気成分の発生を少なくすることを目的と しているが、 その臭気性の改善効果は必ずしも満足なものではなかった。 また、 ポリアミドゃポリエステルなど、 EVOHより高い融点を有する樹脂と共押出成 形あるいは共射出成形をするときなどの高温での溶融成形時の口ングラン性にお いて、 先行技術 (2) 記載の組成物には改善の余地が残されていた。  On the other hand, the prior art (2) aims to reduce the generation of odor components, but the effect of improving odor is not always satisfactory. In addition, in the case of co-extrusion molding or co-injection molding with a resin having a higher melting point than EVOH, such as polyamide-polyester, the composition described in the prior art (2) is not suitable for melt-molding at high temperatures. Things left room for improvement.
以上のように、 融点の高い樹脂との共押出成形または共射出成形の際など、 高 温での溶融成形時においても着色、 膜面むらが少なく外観性に優れ、 かつロング ラン性およぴ低臭性に優れた E V O H樹脂組成物は未だ見出されておらず、 その 開発が強く求められている。 発明の開示  As described above, even during melt molding at a high temperature, such as during co-extrusion molding or co-injection molding with a resin having a high melting point, coloration, film surface unevenness is excellent, appearance is excellent, and long run properties and An EVOH resin composition with excellent low odor has not been found yet, and its development is strongly demanded. Disclosure of the invention
上記に示した課題は、 カルボン酸(A) の含有量が 0. 0 5〜2. 5 μιηοΐ/g であり、 アル力リ土類金属塩(B) の含有量が 1 0 p p m以下 (金属元素換算値) であり、 かつ下記式 (1) を満たす、 エチレン一ビュルアルコール共重合体樹脂 組成物を提供することによつて解決される。  The problem described above is that the content of carboxylic acid (A) is 0.05 to 2.5 μιηοΐ / g and the content of alkaline earth metal salt (B) is 10 ppm or less (metal The problem is solved by providing an ethylene-butyl alcohol copolymer resin composition that is an element-converted value and satisfies the following formula (1).
0. 7≤ (a l) / (A) ≤ 1. 0 (1)  0.7 ≤ (a l) / (A) ≤ 1.0 (1)
ただし、 However,
(A) :カルボン酸 (A) およびその塩の総含有量 ( molZg)  (A): Total content of carboxylic acid (A) and its salts (molZg)
(a 1 ) :分子量 7 5以上のカルボン酸 (a 1) およびその塩の含有量 (μπιοΐ 好適な実施態様では、本発明に用いられる分子量 7 5以上のカルボン酸(a 1) 力 ヒドロキシカルボン酸であり、 特に好ましくは乳酸である。 好適な実施態様では、 本発明の樹脂組成物のリン酸化合物 (C) の含有量が 8 O p pm以下 (リン酸根換算値) である。 (a 1): the content of a carboxylic acid having a molecular weight of 75 or more (a 1) and a salt thereof (μπιοΐ In a preferred embodiment, a carboxylic acid having a molecular weight of 75 or more (a 1) is used. And particularly preferably lactic acid. In a preferred embodiment, the content of the phosphoric acid compound (C) in the resin composition of the present invention is 8 Oppm or less (in terms of phosphate radical).
好適な実施態様では、 本発明の榭脂組成物はホウ素化合物 (E) をホウ素元素 換算値で 5 0〜2 0 0 0 p pmを含有してなる。  In a preferred embodiment, the resin composition of the present invention contains the boron compound (E) in an amount of 50 to 2000 ppm in terms of elemental boron.
好適な実施態様では、 樹脂組成物をメルトインデクサ一中、 2 70°Cで 6分保 持した時の MFR (MFR(6min.); 2 7 0°C、 2 1 6 0 g荷重) と、 2 7 0°Cで 1 0分、 2 0分、 3 0分保持した際の MFR (それぞれ、 MFR(10min.), MF R(20min. )ヽ MFR(30min.);ぃずれも 2 70° (:、 2 1 6 0 g荷重)が下記式(2) 〜 (4) の総てを満たす。  In a preferred embodiment, the MFR (MFR (6 min.); 270 ° C, 2160 g load) when the resin composition is maintained at 270 ° C for 6 minutes in a melt indexer; MFR when held at 270 ° C for 10 minutes, 20 minutes, and 30 minutes (MFR (10 min.), MFR (20 min.) ヽ MFR (30 min.); Deviation is 270 ° (:, 2160 g load) satisfies all of the following equations (2) to (4).
0. 5≤MFR (lOmin. ) / MF R (6min. )≤ 1. 5 (2)  0.5≤MFR (lOmin.) / MFR (6min.) ≤1.5 (2)
0. 5≤MFR (20min. ) / MFR(6min. )≤ 1. 5 (3)  0.5≤MFR (20min.) / MFR (6min.) ≤1.5 (3)
0. 5≤MFR (30min. ) / MFR(6min. )≤ 1. 5 (4)  0.5≤MFR (30min.) / MFR (6min.) ≤1.5 (4)
また、 本発明は、 上記樹脂組成物からなる層の少なくとも片面に熱可塑性樹脂 を積層してなる多層構造体に関する。 好適な実施態様では、 かかる熱可塑性榭脂 がポリアミ ドまたはポリエステルである。 さらに、 好適な実施態様では上記の多 層構造体が共押出成形または共射出成形によつて成形されてなる。  Further, the present invention relates to a multilayer structure obtained by laminating a thermoplastic resin on at least one surface of a layer made of the resin composition. In a preferred embodiment, such a thermoplastic resin is a polyamide or a polyester. Further, in a preferred embodiment, the above-mentioned multilayer structure is formed by co-extrusion or co-injection molding.
また、 本発明は、 溶融成形時のダイ温度またはノズル温度が 2 5 0°C以上であ る多層構造体の製造方法に関する。  The present invention also relates to a method for producing a multilayer structure in which a die temperature or a nozzle temperature during melt molding is 250 ° C. or higher.
本発明の樹脂組成物は、 カルボン酸 (A) の含有量が 0. 0 5〜2. 5 βΐαοΐ /gであり、 アル力リ土類金属塩 (B) の含有量が 1 0 p p m以下 (金属元素換 算値) であり、 かつ下記式 (1 ) を満たす、 エチレン—ビュルアルコール共重合 体 (EVOH) 樹脂組成物である。  In the resin composition of the present invention, the content of the carboxylic acid (A) is 0.05 to 2.5 βΐαο 、 / g, and the content of the alkaline earth metal salt (B) is 10 ppm or less ( An ethylene-butyl alcohol copolymer (EVOH) resin composition which is a metal element conversion value and satisfies the following formula (1).
0. 7≤ (a l) / (A) ≤ l . 0 (1)  0.7 ≤ (a l) / (A) ≤ l. 0 (1)
ただし、 However,
(A) :カルボン酸 (A) およびその塩の総含有量 moL g)  (A): Total content of carboxylic acid (A) and its salt moL g)
(a 1) :分子量 7 5以上のカルボン酸 (a 1 ) およびその塩の含有量 (//mol Z g ) (a 1): Content of carboxylic acid (a 1) having a molecular weight of 75 or more and its salt (// mol Z g)
本発明に用いられる E V O Hとしては、 エチレン一ビエルエステル共重合体を ケン化して得られるものが好ましく、 中でも、 エチレン一酢酸ビュル共重合体を ケン化して得られるものが特に好ましい。 ガスバリァ性と溶融成形性に優れた成 形物を得るという観点からは、 エチレン含有量は好適には 2 0〜6 5モル%であ り、 さらに好適には 2 5〜 5 5モル0 /0であり、 最適には 2 5〜5 0モル0 /0である ものが好ましい。 さらに、 酢酸ビュル成分のケン化度は好ましくは 8 0 %以上で あり、 ガスバリア性に優れた成形物を得るという観点からは、 より好ましくは 9 5 %以上、 更に好ましくは 9 8 %以上であり、 特に好ましくは 9 9 %である。 ェ チレン含有量が 6 5モル%を超える場合は、 バリァ性ゃ印刷適性等が不足する虞 がある。 また、 ケン化度が 8 0 %未満では、 ノ リア性、 熱安定性、 耐湿性が悪く なる虞がある。 ' As the EVOH used in the present invention, those obtained by saponifying an ethylene-bi-ester copolymer are preferable, and those obtained by saponifying an ethylene-bi-butyl acetate copolymer are particularly preferable. The From the viewpoint of obtaining excellent forming shape thereof in Gasubaria properties and melt moldability, the ethylene content Ri preferably 2 0-6 5 mol% der, more preferably 2 5-5 5 mol 0/0 , and the ones optimally 2 5-5 0 mole 0/0 are preferred. Further, the saponification degree of the butyl acetate component is preferably at least 80%, and from the viewpoint of obtaining a molded article having excellent gas barrier properties, is more preferably at least 95%, further preferably at least 98%. Particularly preferably, it is 99%. When the ethylene content exceeds 65 mol%, there is a possibility that the barrier property, printability and the like may be insufficient. On the other hand, if the saponification degree is less than 80%, noriability, thermal stability and moisture resistance may be deteriorated. '
また、 エチレンと酢酸ビニルを共重合する際に、 その他の脂肪酸ビニルエステ ル (プロピオン酸ビニル、 ビバリン酸ビュルなど) も併用することもできる。 ま た、 E V O Hは共重合成分としてビエルシラン化合物 0 . 0 0 0 2〜0 . 2モル0 /0 を含有することができる。 ここで、 ビュルシラン系化合物としては、 たとえば、 ビニルトリメ トキシシラン、 ビュルトリエトキシシラン、 ビニルトリ ( ]3—メ ト キシ一エトキシ) シラン、 γ—メタクリルォキシプロピルメ トキシシランが挙げ られる。 なかでも、 ビエルトリメ トキシシラン、 ビュルトリエトキシシランが好 適に用いられる。 In addition, when copolymerizing ethylene and vinyl acetate, other fatty acid vinyl esters (such as vinyl propionate and vivalate) can also be used in combination. Also, EVOH may contain Bierushiran compound 0. 0 0 0 2 to 0.2 moles 0/0 as a copolymer component. Here, examples of the butylsilane-based compound include vinyltrimethoxysilane, butyltriethoxysilane, vinyltri (] 3-methoxy-1-ethoxy) silane, and γ-methacryloxypropylmethoxysilane. Among them, biertrimethoxysilane and burtriethoxysilane are preferably used.
以下に E V O Hの製造方法を具体的に説明する。 エチレンと酢酸ビュルの重合 は溶液重合に限るものではなく、 溶液重合、 懸濁重合、 化重合、 バルタ重合の いずれであっても良く、また連続式、回分式のいずれであってもよいが、例えば、 回分式の溶液重合の場合の重合条件は次の通りである。  Hereinafter, a method for producing EVOH will be specifically described. The polymerization of ethylene and butyl acetate is not limited to solution polymerization, but may be any of solution polymerization, suspension polymerization, chemical polymerization, and Balta polymerization, and may be any of continuous type and batch type. For example, the polymerization conditions for batch solution polymerization are as follows.
溶媒;アルコール類が好ましいが、 その他エチレン、 酢酸ビエルおよびェチレ ンー酢酸ビュル共重合体を溶解し得る有機溶剤 (ジメチルスルホキシドなど) を 用いることができる。 アルコール類としてはメチルアルコール、 ェチルアルコー ル、 プロピルアルコール、 n—ブチルアルコール、 t—プチルアルコール等を用 いることができ、 特にメチルアルコールが好ましい。 Solvents: alcohols are preferred, but other organic solvents (such as dimethyl sulfoxide) that can dissolve ethylene, biel acetate, and ethylene-butyl acetate copolymer Can be used. As alcohols, methyl alcohol, ethyl alcohol, propyl alcohol, n-butyl alcohol, t-butyl alcohol and the like can be used, and methyl alcohol is particularly preferable.
触媒; 2, 2—ァゾビスイソプチロニトリル、 2, 2—ァゾビス一 (2, 4 - ジメチルバレロニトリル) 、 2, 2—ァゾビス一 (4—メチル一2, 4—ジメチ ルパレロニトリル) 、 2 , 2—ァゾビス一 (4—メ トキシ一 2 , 4—ジメチルバ レロニトリル) 、 2 , 2—ァゾビス一 (2—シクロプロピルプロピオ二トリル) 等のァゾニトリル系開始剤おょぴィソブチリルパーォキサイド、 クミルパーォキ シネオデカノエイト、 ジィソプロピルパーォキシカーボネート、 ジ一 n—プロピ ルパーォキシジカーボネート、 t一ブチルパーォキシネオデカノエイ ト、 ラウ口 ィルパーオキサイド、 ベンゾィルパーオキサイド、 tーブチノレハイドロパーォキ サイド等の有機過酸ィヒ物系開始剤等を用いることができる。  Catalyst; 2,2-azobisisobutyronitrile, 2,2-azobis- (2,4-dimethylvaleronitrile), 2,2-azobis- (4-methyl-1,2,4-dimethylpareronitrile), 2, Azonitrile initiators such as 2-azobis (4-methoxy-1,2,4-dimethylvaleronitrile) and 2,2-azobis (2-cyclopropylpropionitrile), etc. , Cumyl peroxy cineeodecanoate, disopropyl peroxy carbonate, di-n-propyl peroxy dicarbonate, t-butyl peroxy neo decanoate, lauper peroxide, benzoyl peroxide, t- An organic peroxide initiator such as butynole hydroperoxide can be used.
温度; 2 0〜 9 0 °C、 好ましくは 4 0 °C〜 7 0 °C。  Temperature; 20-90 ° C, preferably 40-70 ° C.
時間; 2〜: 1 5時間、 好ましくは 3〜: 1 1時間。  Time; 2 to: 15 hours, preferably 3 to: 11 hours.
重合率;仕込みビニルエステルに対して 1 0〜9 0 %、好ましくは 3 0〜8 0 %。 重合後の溶液中の樹脂分; 5〜 8 5 %、 好ましくは 2 0〜 7 0 %。  Polymerization rate: 10 to 90%, preferably 30 to 80% based on the charged vinyl ester. Resin content in the solution after polymerization; 5 to 85%, preferably 20 to 70%.
共重合体中のエチレン含有率;好ましくは 2 0〜 6 5モル0 /0、 さらに好適には 2 5〜 6 0モル%、 最適には 2 5〜 5 0モル0 /0Ethylene content of the copolymer; preferably 2 0-6 5 mol 0/0, further preferably 2 5-6 0 mole percent, and optimally 2 5-5 0 mol 0/0.
なお、 エチレンと酢酸ビュル以外にこれらと共重合し得る単量体、 例えば、 プ 口ピレン、 ィソブチレン、 α—オタテン、 a -ドデセン等の α—ォレフイン;了 クリル酸、 メタクリル酸、 クロトン酸、 マレイン酸、 イタコン酸等の不飽和酸ま たはその無水物、 塩、 あるいはモノまたはジアルキルエステル等;アタリロニト リル、 メタクリロニトリル等の二トリル類;ァクリルアミ ド、 メタクリルアミ ド 等のアミ ド類;エチレンスルホン酸、 ァリルスルホン酸、 メタァリルスルホン酸 等のォレフインスルホン酸またはその塩;アルキルビニルエーテノレ類、 ビニルケ トン、 Ν—ビュルピロリ ドン、 塩化ビュル、 塩ィヒビユリデン等を少量共存させる ことも可能である。 In addition to ethylene and butyl acetate, monomers that can be copolymerized with these, for example, α-olefins such as pyrene pyrene, isobutylene, α-otaten, and a-dodecene; acrylic acid, methacrylic acid, crotonic acid, Unsaturated acids such as acid and itaconic acid, or anhydrides, salts or mono- or dialkyl esters thereof; nitriles such as atarilonitrile and methacrylonitrile; amides such as acrylyl amide and methacrylamide; ethylene Olefin sulfonic acids such as sulfonic acid, arylsulfonic acid, and metharylsulfonic acid or salts thereof; alkyl vinyl ethers, vinyl ketone, Ν-butylpyrrolidone, butyl chloride, chloridylidene, and the like coexist in small amounts. It is also possible.
所定時間の重合後、 所定の重合率に達した後、 必要に応じて重合禁止剤を添カロ し、 未反応のエチレンガスを蒸発除去した後、 未反応酢酸ビエルを追い出す。 ェ チレンを蒸発除去したエチレン一酢酸ビュル共重合体から未反応の酢酸ビニルを 追い出す方法としては、 例えば、 ラシヒリングを充填した塔の上部から該共重合 体溶液を一定速度で連続的に供給し、 塔下部よりメタノール等の有機溶剤蒸気を 吹き込み塔項部よりメタノール等の有機溶剤と未反応酢酸ビュルの混合蒸気を留 出させ、 塔底部より未反応酢酸ビニルを除去した該共重合体溶液を取り出す方法 などが採用される。  After the polymerization for a predetermined period of time, after reaching a predetermined polymerization rate, if necessary, a polymerization inhibitor is added, and the unreacted ethylene gas is removed by evaporating and removing unreacted ethylene gas. As a method of driving out unreacted vinyl acetate from the ethylene monoacetate copolymer obtained by evaporating and removing the ethylene, for example, the copolymer solution is continuously supplied at a constant rate from the upper part of a tower filled with Raschig rings. An organic solvent vapor such as methanol is blown from the bottom of the tower, and a mixed vapor of an organic solvent such as methanol and unreacted vinyl acetate is distilled out from the section of the tower, and the copolymer solution from which unreacted vinyl acetate is removed is removed from the bottom of the tower. A method is adopted.
未反応酢酸ビニルを除去した該共重合体溶液にアル力リ触媒を添加し、 該共重 合体中の酢酸ビニル成分をケン化する。 ケン化方法は連続式、 回分式いずれも可 能である。 アルカリ触媒としては水酸化ナトリゥム、 水酸化力リゥム、 アル力リ 金属アルコラートなどが用いられる。 例えば、 回分式の場合のケン化条件は次の 通りである。  An alcohol catalyst is added to the copolymer solution from which unreacted vinyl acetate has been removed, and the vinyl acetate component in the copolymer is saponified. The saponification method can be either continuous or batch. Examples of the alkali catalyst include sodium hydroxide, hydroxylated lime, and alkali metal alkoxide. For example, the saponification conditions for the batch system are as follows.
該共重合体溶液濃度; 1 0〜 5 0 %。  Concentration of the copolymer solution: 10 to 50%.
反応温度; 3 0〜 6 0 °C。  Reaction temperature; 30-60 ° C.
触媒使用量; 0 . 0 2〜0 . 6当量 (酢酸ビュル成分当り) 。  Amount of catalyst used: 0.02 to 0.6 equivalents (per butyl acetate component).
時間; 1〜 6時間。  Time; 1-6 hours.
ケン化反応後のケン化度は目的により異なるが好ましくは酢酸ビュル成分の 8 0 %以上、 より好ましくは 9 5 %以上、 更に好ましくは 9 8 %以上、 特に好まし くは 9 9 %以上である。 ケン化度は条件によって任意に調整できる。  Although the degree of saponification after the saponification reaction varies depending on the purpose, it is preferably at least 80%, more preferably at least 95%, still more preferably at least 98%, particularly preferably at least 99% of the butyl acetate component. is there. The saponification degree can be arbitrarily adjusted depending on the conditions.
反応後のエチレン—ビュルアルコール共重合体はアルカリ触媒、 副生塩類、 そ の他不純物等を含有するため、 これらを必要に応じて中和、 洗浄することにより 除去することが好ましい。  Since the ethylene-butyl alcohol copolymer after the reaction contains an alkali catalyst, by-product salts, and other impurities, it is preferable to remove these by neutralizing and washing as necessary.
本発明の樹脂組成物に用いられるカルボン酸 (A) としては、 酢酸、 プロピオ ン酸などの飽和脂肪族カルボン酸、 ォレイン酸などの不飽和脂肪族カルボン酸、 グリコール酸、 乳酸などのヒドロキシカルポン酸、 安息香酸などの芳香族力ルボ ン酸、 などが例示されるが、 それらの 25°Cにおける pKaは 3. 5以上である ことが好ましい。 25°Cにおける pKaが 3. 5に満たない場合、 EVOHから なる樹脂組成物の p Hの制御が困難となる虞があり、 耐着色性や層間接着性が不 満足なものとなる虞がある。 しかしながら、 pKaが大きく、 酸としての強さが 弱い場合は、 酸の使用量が増加し、 コスト的なデメリットを招く他、 EVOH榭 脂組成物の生産工程における、 系外への酸成分の流出が大きくなる虞がある。 こ のため、カルボン酸(A)の 25°Cにおける p K aの上限は 5以下が好適であり、 4. 5以下がより好適であり、 4以下がさらに好適である。 Examples of the carboxylic acid (A) used in the resin composition of the present invention include: saturated aliphatic carboxylic acids such as acetic acid and propionic acid; unsaturated aliphatic carboxylic acids such as oleic acid; Examples thereof include hydroxycarboxylic acids such as glycolic acid and lactic acid, and aromatic carboxylic acids such as benzoic acid. Their pKa at 25 ° C. is preferably 3.5 or more. If the pKa at 25 ° C is less than 3.5, it may be difficult to control the pH of the resin composition composed of EVOH, and the color resistance and interlayer adhesion may be unsatisfactory. . However, if the pKa is large and the strength as an acid is weak, the amount of acid used increases, resulting in cost disadvantages, and the outflow of acid components out of the system in the EVOH resin composition production process. May increase. For this reason, the upper limit of the pKa of the carboxylic acid (A) at 25 ° C. is preferably 5 or less, more preferably 4.5 or less, and still more preferably 4 or less.
本発明に用いられる分子量 75以上のカルボン酸 (a 1) としてはコハク酸、 アジピン酸、 安息香酸、 力プリン酸、 ラウリン酸、 グリコール酸、 乳酸などが例 示されるが、 コハク酸、 アジピン酸等のジカルボン酸を用いた場合は成形時にゲ ル ·ブッが発生しやすくなる虞がある。 ダリコール酸、 乳酸等のヒドロキシカル ボン酸を用いた場合は上記のような問題が生じず、 かつ水溶性に優れる観点で好 適であり、 中でも乳酸を用いることが好適である。  Examples of the carboxylic acid having a molecular weight of 75 or more (a1) used in the present invention include succinic acid, adipic acid, benzoic acid, acetic acid, lauric acid, glycolic acid, lactic acid and the like, and include succinic acid, adipic acid and the like. When the dicarboxylic acid of the above is used, gel-bubbles may easily occur during molding. The use of hydroxycarboxylic acids such as dalicholic acid and lactic acid does not cause the above-mentioned problems and is preferable from the viewpoint of excellent water solubility. Among them, lactic acid is particularly preferable.
本発明に用いられる分子量 75以上のカルボン酸 (a l) としては、 分子量 8 0以上のカルボン酸がより好適であり、 分子量 85以上がさらに好適であり、 分 子量 90以上であることが特に好適である。 力かる分子量の高いカルボン酸を用 いることにより、 揮発成分を効果的に低減可能である。 具体的には、 ポリアミ ド またはポリエステルなどの高融点の熱可塑性榭脂との共押出成形あるいは共射出 成形などの、 高温での成形時においても、 優れた低臭性およびロングラン性を発 揮することができる。  As the carboxylic acid (al) having a molecular weight of 75 or more used in the present invention, a carboxylic acid having a molecular weight of 80 or more is more preferable, a molecular weight of 85 or more is more preferable, and a molecular weight of 90 or more is particularly preferable. It is. By using a strong carboxylic acid having a high molecular weight, volatile components can be effectively reduced. Specifically, it exhibits excellent low odor and long run properties even at high temperatures such as co-extrusion molding or co-injection molding with a high melting point thermoplastic resin such as polyamide or polyester. be able to.
特に、 分子量 75以上のカルボン酸 (a l) として乳酸を使用した場合、 上記 の通り水溶性に優れる他、酢酸と比較して揮発性が極めて小さい点で好適である。 EVOH樹脂糸且成物からなるペレッ トを生産する場合、 通常、 含水状態の当該ぺ レットを乾燥する必要があるが、 かかる乾燥工程においても、 乳酸を用いること により酸成分の揮発が大幅に抑制され、 より安定した品質の製品を生産すること ができる。 また、 乳酸 (2 5°Cにおける p K a = 3. 8 5 8) は酢酸 (2 5°Cに おける p K a =4. 7 5 6) よりも強い酸であるため、 使用する酸の量を低減す ることが可能である。 揮発性が小さく、 使用量が少なくて済むため、 EVOH榭 脂組成物の生産工程における、 系外への酸成分の流出が顕著に低下させることが 可能であり、 作業者の負担を軽減することができ、 さらに生産設備 (工場など) の周辺の環境への負荷を大幅に軽減できる、 In particular, when lactic acid is used as the carboxylic acid (al) having a molecular weight of 75 or more, it is preferable because it has excellent water solubility as described above and has extremely low volatility as compared with acetic acid. When a pellet made of EVOH resin yarn is produced, it is usually necessary to dry the water-containing pellet, and lactic acid must be used in the drying step. As a result, the volatilization of the acid component is greatly suppressed, and a more stable quality product can be produced. Lactic acid (pKa at 25 ° C = 3.858) is a stronger acid than acetic acid (pKa at 4.75 ° C). It is possible to reduce the amount. Since it has low volatility and requires a small amount of use, it is possible to significantly reduce the outflow of acid components out of the system in the EVOH resin composition production process, thereby reducing the burden on workers. And greatly reduce the environmental impact of production facilities (such as factories).
本発明の樹脂組成物中のカルボン酸 (A) の含有量は 0. 0 5〜2. 5 μϊαοΐ /gである。 カルボン酸 (A) の含有量が 0. 0 5 μπιοΐ/g以下の場合、溶融時 の着色が著しく、特に高温での成形時においてその傾向が顕著である。また、 2. 5
Figure imgf000011_0001
を超える場合においても、高温での成形時において樹脂の着色が著し くなる。 さらに、 カルボン酸 (A) の含有量が 2. 5 zmol/gを超える場合は高 温での成形時における口ングラン性が大幅に低下する他、 低臭性および耐着色性 の改善効果、 ならびに共押出成形における接着性榭脂との接着力の改善効果が不 充分となる他、 充分なロングラン性が得られなくなる。
The content of the carboxylic acid (A) in the resin composition of the present invention is 0.05 to 2.5 μϊαοΐ / g. When the content of the carboxylic acid (A) is less than 0.05 μπιοΐ / g, the coloring at the time of melting is remarkable, particularly at the time of molding at a high temperature. Also, 2.5
Figure imgf000011_0001
Even when the temperature exceeds the above range, coloring of the resin becomes remarkable during molding at a high temperature. Further, when the content of the carboxylic acid (A) is more than 2.5 zmol / g, the tangling property at the time of molding at a high temperature is significantly reduced, and the effect of improving the low odor property and the coloring resistance, and The effect of improving the adhesive force with the adhesive resin in the coextrusion molding becomes insufficient, and a sufficient long-run property cannot be obtained.
カルボン酸(A) の含有量の下限は好適には 0. 1 AtmolZg以上であり、 さら に好適には 0. 2 fflolZg以上である。 また、 カルボン酸(A) の含有量の上限 は、 より好適には 2 μπιοΐ/g以下であり、 さらに好適には 1. S ^umol/g以下 であり、 最適には 1. 0 ^umol/ g以下である。  The lower limit of the content of the carboxylic acid (A) is preferably at least 0.1 AtmolZg, and more preferably at least 0.2 fflolZg. Further, the upper limit of the content of the carboxylic acid (A) is more preferably 2 μπιοΐ / g or less, still more preferably 1. S ^ umol / g or less, and most preferably 1.0 ^ umol / g or less. g or less.
本発明の樹脂組成物中には、 本発明の効果を阻害しない範囲で分子量 7 5未満 のカルボン酸 (酢酸など) およびその塩を添加することは任意である。 し力 しな がら、 充分な低臭性を得る観点からは、 分子量 7 5未満のカルボン酸の含有量が 少ないことが好ましい。 具体的には、 本発明の樹脂組成物は下記式 (1) を満た すことが必須である。  It is optional to add a carboxylic acid (such as acetic acid) and a salt thereof having a molecular weight of less than 75 to the resin composition of the present invention as long as the effects of the present invention are not impaired. However, from the viewpoint of obtaining sufficient low odor, it is preferable that the content of the carboxylic acid having a molecular weight of less than 75 is small. Specifically, it is essential that the resin composition of the present invention satisfies the following formula (1).
0. 7≤ (a l) / (A) ≤ l . 0 ( 1)  0.7 ≤ (a l) / (A) ≤ l. 0 (1)
ただし、 (A) :カルボン酸 (A) およびその塩の総含有量 (wmol/g) However, (A): Total content of carboxylic acid (A) and its salts (wmol / g)
(a 1) :分子量 75以上のカルボン酸 (a 1) およびその塩の含有量 ( zmol (a 1): Content of carboxylic acid (a 1) having a molecular weight of 75 or more and its salt (zmol
/g) / g)
上記式 (1) において、 (a l) / (A) が 0. 7以上であることが必須であ る。 (a l) Z (A) が 0. 7に満たない場合は、 低臭性、 ロングラン性おょぴ 耐着色性の改善効果が不充分なものとなる。 本発明の樹脂組成物は高温での成形 性に優れているが、 かかる高温での溶融成形時において、 特にその傾向が顕著で ある。 (a 1) ノ (A) の下限は 0. 8以上がより好適であり、 特に好ましくは 0. 9以上であり、 最適には 0. 98以上である。  In the above formula (1), it is essential that (al) / (A) is 0.7 or more. (A l) When Z (A) is less than 0.7, the effect of improving low-odor and long-running color resistance is insufficient. Although the resin composition of the present invention has excellent moldability at high temperatures, the tendency is particularly remarkable during melt molding at such high temperatures. (A1) NO The lower limit of (A) is more preferably 0.8 or more, particularly preferably 0.9 or more, and most preferably 0.98 or more.
また、 本発明の樹脂組成物はアル力リ土類金属塩 (B) の含有量が 10 p p m 以下 (金属元素換算値) であることが必須である。 アルカリ土類金属塩 (B) の 含有量は 5 p pm以下 (金属元素換算値) であることがより好ましく、 実質的に 含有されないことが特に好ましい。 かかるアルカリ土類金属塩 (B) は特に限定 されるものではないが、 マグネシウム塩、 カルシウム塩、 バリウム塩、 ベリリウ ム塩などが挙げられる。 アルカリ土類金属塩 (B) のァニオン種は特に限定され るものではないが、 酢酸ァユオン、 乳酸ァユオンおよびリン酸ァニオンなどが例 示される。  It is essential that the resin composition of the present invention has an alkaline earth metal salt (B) content of 10 ppm or less (in terms of metal element). The content of the alkaline earth metal salt (B) is more preferably 5 ppm or less (in terms of a metal element), and particularly preferably substantially no content. Such an alkaline earth metal salt (B) is not particularly limited, and examples thereof include a magnesium salt, a calcium salt, a barium salt, a beryllium salt and the like. The anion species of the alkaline earth metal salt (B) is not particularly limited, and examples thereof include aion acetate, aion lactate, and anion phosphate.
ポリオレフインとの積層体を得る場合など、 通常の EVOHの成形温度 (22 0°C前後) で溶融成形を行う場合は、 アルカリ土類金属塩 (B) の含有量が 10 p pm (金属元素換算値) を超える場合の方が、 むしろ溶融成形時のロングラン 性が改善する傾向にある。 ところが、 ポリアミドまたはポリエステルなどの融点 の高!/、熱可塑性樹脂との共押出成形または共射出成形時など、 ダイ温度またはノ ズル温度が 250°C以上となる高温での溶融成形時においては、 アル力リ土類金 属塩 (B) の含有量が l O p pm (金属元素換算値) を超えると、 成形性が不満 足なものとなる。 具体的には、 EVOHと積層する他の熱可塑性榭脂との膜面の 状態が著しく不良になる他、 EVOH層の著しい着色が見られ、 ロングラン性も 不良となる。 When melt molding at the normal EVOH molding temperature (around 220 ° C), such as when obtaining a laminate with polyolefin, the content of alkaline earth metal salt (B) is 10 ppm (metal element conversion). Values) tend to improve the long-run property during melt molding. However, the melting point of polyamide or polyester is high! / In the case of co-extrusion molding or co-injection molding with a thermoplastic resin, and at the time of melt molding at a high temperature where the die temperature or nozzle temperature is 250 ° C or higher, the Al-Li earth metal salt (B) If the content exceeds l Op p pm (converted to metal element), the formability will be unsatisfactory. Specifically, the state of the film surface between the EVOH and other thermoplastic resin to be laminated becomes extremely poor, and the EVOH layer is markedly colored, and the long run property is also observed. It becomes bad.
このように、 カルボン酸 (A) の含有量が 0. 05〜2. 5 ^mol/gであり、 アル力リ土類金属塩(B)の含有量が 10 p p m以下(金属元素換算値)であり、 かつ下記式 (1) を満たす、 エチレン一ビニルアルコール共重合体樹脂組成物を 用いることにより、 高温での成形性が著しく改善されることは、 本発明者によつ て初めて見出されたことであり、 かかる観点からも、 本発明の意義は大きい。  Thus, the content of the carboxylic acid (A) is 0.05 to 2.5 ^ mol / g, and the content of the alkaline earth metal salt (B) is 10 ppm or less (in terms of metal element). The present inventors have found for the first time that the use of an ethylene-vinyl alcohol copolymer resin composition that satisfies the following formula (1) significantly improves moldability at high temperatures. From this viewpoint, the present invention is significant.
0. 7≤ (a 1) / (A) ≤ 1. 0 (1)  0.7 ≤ (a 1) / (A) ≤ 1.0 (1)
ただし、 However,
(A) :カルボン酸 (A) およびその塩の総含有量 mol/g)  (A): Total content of carboxylic acid (A) and its salt mol / g)
(a 1) :分子量 75以上のカルボン酸 (a 1) およびその塩の含有量 (μπιοΐ また、 本発明の樹脂組成物は、 リン酸化合物 (C) の含有量が 80 p p m以下 (リン酸根換算値) であることが特に好ましい。 リン酸化合物 (C) としては、 リン酸、 亜リン酸等の各種の酸やその塩等が例示されるが、 これらに限定されな い。 リン酸塩としては第 1リン酸塩、 第 2リン酸塩、 第 3リン酸塩のいずれの形 で含まれていても良く、そのカチオン種も特に限定されるものではなく、例えば、 リン酸二水素ナトリウム、 リン酸二水素カリウム、 リン酸水素ニナトリウム、 リ ン酸水素二力リゥムなどが例示される。  (a1): Content of carboxylic acid (a1) having a molecular weight of 75 or more (a1) and a salt thereof (μπιοΐ) In the resin composition of the present invention, the content of the phosphoric acid compound (C) is 80 ppm or less (in terms of phosphate radical). Examples of the phosphate compound (C) include, but are not limited to, various acids such as phosphoric acid and phosphorous acid, and salts thereof. May be contained in any form of a first phosphate, a second phosphate, and a third phosphate, and the cation species is not particularly limited. For example, sodium dihydrogen phosphate, Examples include potassium dihydrogen phosphate, disodium hydrogen phosphate, and dihydrogen phosphate.
上述した先行技術 (2) の実施例 3には、 酢酸、 酢酸ナトリウムおよびリン酸 二水素カリウムを含み、 カルシウム含有率が 5 p pmの EVOH組成物が開示さ れている。 し力 しながら、 本願明細書比較例 4から明らかなように、 カルボン酸 が酢酸のみからなり、 (a l) Z (A) が 0. 7に満たない組成物では充分な低 臭性が得られず、 さらに、 高温での溶融成形時のロングラン性に改善の余地が残 されていた。  Example 3 of the above-mentioned prior art (2) discloses an EVOH composition containing acetic acid, sodium acetate and potassium dihydrogen phosphate and having a calcium content of 5 ppm. However, as is clear from Comparative Example 4 of the present specification, a composition in which the carboxylic acid is composed of only acetic acid and (al) Z (A) is less than 0.7 provides a sufficiently low odor. In addition, there is still room for improvement in long-run properties during melt molding at high temperatures.
—方、 乳酸、 乳酸ナトリゥムおよびリン酸二水素力リゥムを含み、 アル力リ土 類金属塩の含有量が金属元素換算で 10 p pmに満たない本願明細書の実施例 3 では、 低臭性が大幅に改善されたが、 高温での溶融成形時のロングラン性に改善 の余地が残されていた。 —Example 3 of this specification containing lactic acid, sodium lactate and dihydrogen phosphate phosphate, and having a content of alkaline earth metal salt of less than 10 ppm in terms of metal element. Although the low odor property was greatly improved, there was room for improvement in the long-run property during melt molding at high temperatures.
ところ力 本発明者が銳意検討を行った結果、カルボン酸(A)の含有量が 0. 05〜2. 5 μπιοΐ/gであり、 アルカリ土類金属塩(B) の含有量が 10 p p m 以下 (金属元素換算値) であり'、 かつ下記式 (1) を満たす、 エチレン一ビニル アルコール共重合体樹脂組成物において、 リン酸化合物 (C) の含有量を 8 O p m以下とすることで、 高温での溶融成形時におけるロングラン性がさらに向上 し、 本発明の効果をさらに顕著に奏することができることが明らかになつた。  However, as a result of intensive studies by the present inventors, the content of carboxylic acid (A) was 0.05 to 2.5 μπιοΐ / g, and the content of alkaline earth metal salt (B) was 10 ppm or less. (In terms of metal element), and in the ethylene-vinyl alcohol copolymer resin composition that satisfies the following formula (1), by setting the content of the phosphoric acid compound (C) to 8 Opm or less, It has been clarified that the long-run property at the time of melt molding at a high temperature is further improved, and the effect of the present invention can be more remarkably exhibited.
0. 7≤ (a 1) / (A) ≤ 1. 0 (1)  0.7 ≤ (a 1) / (A) ≤ 1.0 (1)
本願明細書比較例 3およぴ比較例 4を対比すれば明らかなように、 力ルポン酸 (A) が酢酸のみからなる場合、 すなわち、 (a 1) / (A) が 0. 7に満たな い場合は、 リン酸ィ匕合物 (C) を配合することにより、 高温での溶融成形時にお いて、 ロングラン性が改善される。 また、 耐着色性も顕著に改善される。 しかし ながら、 満足な低臭性は得られていない。 さらに、 高温での溶融成形時における ロングラン性にはさらに改善の余地が残されていた。  As is clear from comparison of Comparative Example 3 and Comparative Example 4 of the present specification, in the case where the sulfonic acid (A) is composed of only acetic acid, that is, when (a1) / (A) satisfies 0.7. If not, by blending the phosphoric acid conjugate (C), the long-run property is improved at the time of melt molding at a high temperature. Also, the coloring resistance is remarkably improved. However, satisfactory low odor has not been obtained. Furthermore, there was room for further improvement in long-run properties during melt molding at high temperatures.
ところが、 カルボン酸 (A) の含有量が 0. 05〜2. 5 molZgであり、 ァ ルカリ土類金属塩 (B) の含有量が 10 p pm以下 (金属元素換算値) であり、 かつ (a l) / (A) が 0. 7以上 1. 0以下である本発明の EVOH樹脂組成 物の場合は、 リン酸化合物 (C) の配合により、 ロングラン性が逆に低下する傾 向があることが、 本発明者によって初めて見出された。 (a l) / (A) が 0. 7に満たない場合は、 リン酸化合物 (C) の配合により、 高温での溶融成形時の ロングラン性が改善されるのに対し、 (a l) / (A) が 0. 7以上 1. 0以下 である場合には、 リン酸化合物 (C) の配合によるロングラン性の改善効果が得 られず、 むしろ低下させる傾向にある理由は不明であり、 極めて驚くべき現象で ある。  However, the content of the carboxylic acid (A) is 0.05 to 2.5 molZg, the content of the alkaline earth metal salt (B) is 10 ppm or less (in terms of metal element), and ( al) / In the case of the EVOH resin composition of the present invention in which (A) is 0.7 or more and 1.0 or less, there is a tendency that the long-run property is adversely reduced by the addition of the phosphoric acid compound (C). Was first discovered by the present inventors. When (al) / (A) is less than 0.7, the long run property at the time of melt molding at a high temperature is improved by adding the phosphoric acid compound (C), whereas (al) / (A) ) Is not less than 0.7 and not more than 1.0, the reason why the compound of the phosphoric acid compound (C) does not have the effect of improving the long-run property and rather tends to lower it is extremely surprising. It is a phenomenon.
以上のことから、 本発明の樹脂糸且成物においては、 高温での溶融成形時におけ るロングラン性の観点からは、 リン酸化合物 (C) の上限は 80 p pm以下であ ることが好ましい。 かかる E VOH樹脂組成物は、 高温での溶融成形時において も着色、 膜面むらが少なく外観性に優れ、 力つ低臭性に優れる他、 特に高温での 溶融成形時における口ングラン性で大きな利点を得ることができる。 リン酸化合 物 (C) の上限は 60 p pm以下であることがより好ましく、 40 p pm以下で あることがさらに好ましく、 20 p pm以下であることが特に好ましく、 実質的 に含有されな!/、ことが最適である。 From the above, in the resin yarn composition of the present invention, when melt molding at a high temperature, From the viewpoint of long running property, the upper limit of the phosphate compound (C) is preferably 80 ppm or less. Such an EVOH resin composition has excellent coloring, low unevenness on the film surface, excellent appearance and excellent odor and low odor even at the time of melt molding at a high temperature. Benefits can be obtained. The upper limit of the phosphoric compound (C) is more preferably 60 ppm or less, still more preferably 40 ppm or less, particularly preferably 20 ppm or less, and it is not substantially contained! /, That is optimal.
本発明の樹脂組成物は、 アルカリ金属塩 (D) を含有することが接着性を向上 させる観点から好適である。 本発明の EVOH樹脂組成物を用いた好適な実施態 様の一例は、 例えば EVOH樹脂組成物層の片面にポリアミドまたはポリエステ ルを積層し、 他の面に接着性樹脂を介してポリオレフインなどと積層した積層し た多層構造体などが挙げられる。 このような実施態様においては、 EVOH樹脂 組成物が良好な接着性を示すことが特に好ましい。 接着性と耐着色性のバランス の観点、 特に高温での溶融成形時における樹脂の着色の観点からは、 アルカリ金 属塩 (D) の含有量の上限は 500 p pm以下であることが好ましく、 500 p pm未満であることがより好ましく、 400 p pm以下であることがさらに好ま しく、 300 p pm以下であることが特に好ましい。 また、 アルカリ金属塩(D) の含有量の下限は、 10 p pm以上であることが好ましく、 3 O p pm以上であ ることがより好ましく、 50 p pm以上であることがさらに好ましく、 100 p 以上であることが特に好ましい。 また、 アルカリ金属塩 (D) を配合するこ とにより、 本発明の榭脂組成物と接着性樹脂との接着力を改善することも可能で ある。  The resin composition of the present invention preferably contains an alkali metal salt (D) from the viewpoint of improving adhesiveness. An example of a preferred embodiment using the EVOH resin composition of the present invention is, for example, laminating polyamide or polyester on one surface of an EVOH resin composition layer, and laminating with polyolefin or the like via an adhesive resin on the other surface. And a laminated multilayer structure. In such embodiments, it is particularly preferred that the EVOH resin composition exhibit good adhesion. From the viewpoint of a balance between adhesion and coloring resistance, particularly from the viewpoint of coloring the resin during melt molding at a high temperature, the upper limit of the content of the alkali metal salt (D) is preferably 500 ppm or less, It is more preferably less than 500 ppm, even more preferably 400 ppm or less, particularly preferably 300 ppm or less. Further, the lower limit of the content of the alkali metal salt (D) is preferably at least 10 ppm, more preferably at least 3 ppm, even more preferably at least 50 ppm. It is particularly preferred that it is p or more. Further, by blending the alkali metal salt (D), it is possible to improve the adhesive strength between the resin composition of the present invention and the adhesive resin.
アルカリ金属塩 (D) は特に限定されるものではないが、 ナトリウム塩、 カリ ゥム塩等が好適なものとして挙げられる。 アルカリ金属塩 (D) のァ-オン種は 特に限定されるものではないが、 酢酸ァニオン、 乳酸ァユオンおよびリン酸ァニ オンが好適なァェオン種として例示され、 中でも乳酸ァユオンが好ましい。 また、 本発明の樹脂組成物に対し、 ホウ素化合物 (E) をホウ素元素換算値で 50〜2000 p pm含有させることも好適である。 ホウ素化合物 (E) として は、 ホウ酸類、 ホウ酸エステル、 ホウ酸塩、 水素化ホウ素類等が挙げられるが、 これらに限定されない。 具体的には、 ホウ酸類としては、 オルトホウ酸、 メタホ ゥ酸、 四ホウ酸などが挙げられ、 ホウ酸エステルとしてはホウ酸トリエチル、 ホ ゥ酸トリメチルなどが挙げられ、 ホウ酸塩としては上記の各種ホウ酸類のアル力 リ金属塩、 アルカリ土類金属塩、 ホウ砂などが挙げられる。 これらの化合物の中 でもオルトホウ酸 (以下、 単にホウ酸と表示する場合がある) が好ましい。 The alkali metal salt (D) is not particularly limited, but preferred examples thereof include a sodium salt and a potassium salt. The aeon species of the alkali metal salt (D) is not particularly limited, but preferred examples include anion acetate, aion lactate, and anion phosphate, with aion lactate being particularly preferred. It is also preferable that the resin composition of the present invention contains the boron compound (E) in an amount of 50 to 2000 ppm in terms of a boron element. Examples of the boron compound (E) include, but are not limited to, boric acids, borate esters, borates, and borohydrides. Specifically, the boric acids include orthoboric acid, metaboric acid, tetraboric acid, and the like.The borate esters include triethyl borate, trimethyl borate, and the like. Alkali metal salts of various boric acids, alkaline earth metal salts, borax and the like. Of these compounds, orthoboric acid (hereinafter sometimes simply referred to as boric acid) is preferable.
EVOHからなる樹脂組成物にホウ素化合物を添カ卩した場合、 低重合度の E V OHを用いた場合でも、 溶融粘度を高めることが可能であり、 かかる低重合度の EVOHを用いることによって、 通常の EVOHよりもゲル ·ブッの発生を抑制 することができ、 融点の高い樹脂との共押出成形または共射出成形の際など、 高 温での溶融成形時においてロングラン性を向上させることが可能である。 ホウ素 化合物 (E) の含有量の下限はホウ素元素換算値で 50 p pm以上であることが 好ましく、 より好ましくは 100 p pm以上であり、 さらに好ましくは 15 O p pm以上である。 また、 ホウ素化合物 (E) の含有量の上限はホウ素元素換算値 で 1500 p p m以下であることが好ましく、 より好ましくは l O O O p pm以 下である。 ホウ素化合物 (E) の含有量が 50 p pmに満たない場合は、 成形時 間が長くなるに従いゲル ·プッの発生が増加する虞があるため、 長期間連続運転 を行う場合は成形品の外観が悪化する虞がある。 また、 ホウ素化合物 (E) の含 有量が 2000 p pmを超えるとゲルィヒしゃすく、 成形性不良となる虞がある。 本発明の EVOHからなる樹脂組成物の好適なメルトフローレート (M F R ) ( 190°C、 2160 g荷重下で測定;ただし、 融点が 190°C付近あるいは 1 90°Cを越えるものは 2160 g荷重下、 融点以上の複数の温度で測定し、 片対 数グラフで絶対温度の逆数を横軸、 メルトフローレートを縦軸 (対数) としてプ ロットし、 190。Cに外挿した値) は好適には 0. :!〜 S O O gZl Omi n. である。 MFRの下限はより好適には 0. 2 g/l 0m i n. 以上であり、 さら に好適には 0. 5 gZl 0m i n. 以上であり、 最適には l gZl Om i n. 以 上である。 また、 MFRの上限はより好適に 50 g/1 Om i n. 以下であり、 さらに好適には 10 g/1 Omi n. 以下であり、 最適には 7 g/10 m i n . 以下である。 該メルトフローレートが該範囲よりも小さい場合には、 成形時に押 出機内が高トルク状態となって押出加工が困難となり、 また該範囲よりも大きい 場合には成形物の機械強度が不足して好ましくない。 When a boron compound is added to a resin composition composed of EVOH, the melt viscosity can be increased even when EVOH having a low degree of polymerization is used. It is possible to suppress the generation of gels and bubbles compared to EVOH, and to improve the long run property during melt molding at high temperatures, such as during co-extrusion molding or co-injection molding with a resin having a high melting point. is there. The lower limit of the content of the boron compound (E) is preferably at least 50 ppm, more preferably at least 100 ppm, and even more preferably at least 15 ppm in terms of boron element. Further, the upper limit of the content of the boron compound (E) is preferably 1500 ppm or less in terms of a boron element, and more preferably 1 OOOppm or less. If the content of the boron compound (E) is less than 50 ppm, the generation of gel and pop may increase as the molding time becomes longer. May worsen. On the other hand, if the content of the boron compound (E) exceeds 2000 ppm, there is a possibility that Görich will be chewy and the moldability will be poor. Suitable melt flow rate (MFR) of the resin composition comprising EVOH of the present invention (measured at 190 ° C under a load of 2160 g; if the melting point is around 190 ° C or exceeds 190 ° C, the load is 2160 g Below, measured at multiple temperatures above the melting point, plotted with the reciprocal of absolute temperature on the horizontal axis and the melt flow rate on the vertical axis (logarithm) in a semilogarithmic graph, 190; Is 0.:! ~ SOO gZl Omi n. It is. The lower limit of the MFR is more preferably not less than 0.2 g / l 0 min., More preferably not less than 0.5 gZl 0 min., And most preferably not less than l gZl Omin. It is. The upper limit of the MFR is more preferably 50 g / 1 Omin. Or less, still more preferably 10 g / 1 Omin. Or less, and most preferably 7 g / 10 min. Or less. If the melt flow rate is smaller than the above range, the inside of the extruder will be in a high torque state at the time of molding and extrusion processing will be difficult, and if it is larger than this range, the mechanical strength of the molded product will be insufficient. Not preferred.
また、 本発明の樹脂組成物に本発明の目的を阻害しない範囲で、 重合度、 ェチ レン含有率およぴケン化度の異なるエチレン一ビニルアルコール共重合体をブレ ンドし溶融成形することも可能である。また、本発明の目的を阻害しない範囲で、 該樹脂組成物に他の各種可塑剤、 安定剤、 界面活性剤、 色剤、 紫外線吸収剤、 ス リップ剤、 帯電防止剤、 乾燥剤、 架橋剤、 金属塩、 充填剤、 各種繊維等の補強剤 等を適量添加することも可能である。  Further, the resin composition of the present invention may be blended with an ethylene-vinyl alcohol copolymer having a different degree of polymerization, an ethylene content, and a different degree of saponification within a range that does not impair the object of the present invention, and melt-molded. Is also possible. In addition, other various plasticizers, stabilizers, surfactants, coloring agents, ultraviolet absorbers, slip agents, antistatic agents, drying agents, and crosslinking agents may be added to the resin composition as long as the object of the present invention is not impaired. It is also possible to add appropriate amounts of metal salts, fillers, reinforcing agents for various fibers, and the like.
また、 本発明の目的を阻害しない範囲で該樹脂組成物以外の熱可塑性樹脂を適 量配合することも可能である。 熱可塑性樹脂としては各種ポリオレフイン (ポリ エチレン、 ポリプロピレン、 ポリ 1ーブテン、 ポリ 4—メチノレー 1 _ペンテン、 エチレン一プロピレン共重合体、 エチレンと炭素数 4以上の ctーォレフインとの 共重合体、 ポリオレフインと無水マレイン酸との共重合体、 エチレン一ビュルェ ステル共重合体、 エチレン一アクリル酸エステル共重合体、 またはこれらを不飽 和カルボン酸またはその誘導体でグラフト変性した変性ポリオレフインなど) 、 各種ナイロン (ナイロン一 6、 ナイロン一 6, 6、 ナイロン一 6/6, 6共重合 体など) 、 ポリ塩化ビュル、 ポリ塩化ビニリデン、 ポリエステル、 ポリスチレン、 ポリアクリロニトリル、 ポリウレタン、 ポリアセタールぉよぴ変性ポリビュルァ ルコ一ル榭脂などが用いられる。  It is also possible to mix an appropriate amount of a thermoplastic resin other than the resin composition as long as the object of the present invention is not impaired. Examples of thermoplastic resins include various polyolefins (polyethylene, polypropylene, poly 1-butene, poly 4-methylenol 1-pentene, ethylene-propylene copolymer, copolymer of ethylene and ct-olefin with 4 or more carbon atoms, polyolefin and anhydrous Copolymers with maleic acid, ethylene-polyester copolymers, ethylene-acrylate copolymers, or modified polyolefins obtained by graft-modifying these with unsaturated carboxylic acids or derivatives thereof, and various nylons (nylon 6, Nylon-6,6, Nylon-6 / 6,6 copolymer), Polychlorinated vinyl, Polyvinylidene chloride, Polyester, Polystyrene, Polyacrylonitrile, Polyurethane, Polyacetal-modified polyvinyl alcohol resin Is used.
エチレン一ビュルアルコール共重合体 (EVOH) にカルボン酸 (A) 、 さら に必要に応じてアルカリ金属塩 (D) およびホウ素化合物 (E) を含有させる方 法は特に限定されなレ、。 例えば、 上記化合物が溶解している溶液に該 EVOHを 浸漬する方法、 該 EVOHを溶融して上記化合物を混合する方法、 該 EVOHを 適当な溶媒に溶解して上記化合物を混合する方法等がある。 A method in which an ethylene-butyl alcohol copolymer (EVOH) contains a carboxylic acid (A) and, if necessary, an alkali metal salt (D) and a boron compound (E). The law is not particularly limited. For example, there are a method of immersing the EVOH in a solution in which the compound is dissolved, a method of melting the EVOH and mixing the compound, a method of dissolving the EVOH in an appropriate solvent and mixing the compound, and the like. .
なかでも、 本発明の効果をより顕著に発揮させるためには、 EVOHを上記化 合物の溶液に浸漬させる方法が望ましい。 この処理は、 パッチ方式、 連続方式の いずれによる操作でも実施可能である。また、その際該 EVOHの形状は、粉末、 粒状、 球状、 円柱形ペレット状等の任意の形状であってよい。  Above all, in order to more remarkably exert the effects of the present invention, a method of immersing EVOH in a solution of the above compound is desirable. This processing can be performed by either the patch method or the continuous method. In this case, the shape of the EVOH may be any shape such as powder, granule, sphere, and columnar pellet.
エチレン一ビニルアルコール共重合体をカルボン酸 (A) 、 さらに必要に応じ てアルカリ金属塩 (D) およびホウ素化合物 (E) を含む溶液に浸漬する場合、 上記溶液中のカルボン酸 (A) 、 さらに必要に応じて添加されるアルカリ金属塩 (D) およびホウ素化合物 (E) のそれぞれの濃度は、 特に限定されるものでは ない。 また溶液の溶媒は特に限定されないが、 取扱い上の理由等から水溶液であ ることが好ましレ、。 浸漬時間はエチレン一ビュルアルコール共重合体の形態によ つてその好適範囲は異なるが、 1〜10mm程度のペレツトの場合には 1時間以 上、 好ましくは 2時間以上が望ましい。  When the ethylene-vinyl alcohol copolymer is immersed in a solution containing the carboxylic acid (A) and, if necessary, the alkali metal salt (D) and the boron compound (E), the carboxylic acid (A) in the above solution, The respective concentrations of the alkali metal salt (D) and the boron compound (E) added as necessary are not particularly limited. The solvent of the solution is not particularly limited, but is preferably an aqueous solution for reasons of handling. The suitable range of the immersion time varies depending on the form of the ethylene-butyl alcohol copolymer, but is preferably 1 hour or more, and more preferably 2 hours or more in the case of a pellet of about 1 to 10 mm.
上記各種化合物の溶液への浸漬処理は、 複数の溶液に分けて浸漬してもよく、 一度に処理しても構わない。 なかでも、 カルボン酸 (A) 、 さらに必要に応じて 添加されるアルカリ金属塩 (D) およびホウ素化合物 (E) の総てを含む溶液で 処理することが、 工程の簡素化の点から好ましい。 上記のように溶液に浸漬して 処理した場合、 最後に乾燥を行い、 目的とするエチレン一ビュルアルコール共重 合体組成物が得られる。  The immersion treatment of the above-mentioned various compounds in a solution may be carried out by dividing into a plurality of solutions and immersion at once. Above all, it is preferable from the viewpoint of simplification of the process that the treatment is carried out with a solution containing the carboxylic acid (A), and further the alkali metal salt (D) and the boron compound (E) which are added as necessary. When the treatment is performed by immersion in the solution as described above, the final drying is performed to obtain the desired ethylene-butyl alcohol copolymer composition.
また、 榭脂糸且成物をメルトインデクサ一中、 270°Cで 6分保持した時の MF R (MFR (6min. ) ; 270 °C、 2160 g荷重) と、 270 で 10分、 20分、 30分保持した際の MFR (それぞれ、 MFR(10min.;)、 MFR(20min.), MF R (30min. ) ;いずれも 270。C、 2160 g荷重) が下記式 (2) 〜 (4) の総 てを満たすことが、 樹脂組成物の成形性の観点から好ましい。 0. 5≤MFR (lOmin. ) MFR(6min. )≤ 1. 5 (2) The MFR (MFR (6 min.); 270 ° C, 2160 g load) when the fat yarn composition was kept at 270 ° C for 6 minutes in the melt indexer, and 270 for 10 minutes and 20 minutes The MFR (MFR (10 min .;), MFR (20 min.), MFR (30 min.), Respectively; 270. C, 2160 g load) when held for 30 minutes is calculated by the following formulas (2) to (4 It is preferable that all of the above conditions are satisfied from the viewpoint of moldability of the resin composition. 0.5≤MFR (lOmin.) MFR (6min.) ≤1.5 (2)
0. 5≤MFR (20min. ) MFR(6min. )≤ 1. 5 (3)  0.5≤MFR (20min.) MFR (6min.) ≤1.5 (3)
0. 5≤MFR (30min. ) MFR(6min. )≤ 1. 5 (4)  0.5 ≤ MFR (30min.) MFR (6min.) ≤ 1.5 (4)
上記式 (2) 〜 (4) の総てを満たすことは、 EVOHの一般的な成形温度よ りかなり高い温度である 270°Cで加熱処理を行う場合においても、 MFRの短 期的な経時変化が小さいことを示している。 力かる特性を有する EVOHからな る榭脂組成物は、 ポリアミドゃポリエステルなどの高融点の樹脂と共押出成形若 しくは共射出成形を行う場合にも、 優れた成形性を示す。 具体的には、 EVOH と他の樹脂との界面にむらが生じにくくなり、 得られる多層構造体は外観に優れ たものとなる。  Satisfying all of the above formulas (2) to (4) means that even when the heat treatment is performed at 270 ° C, which is considerably higher than the general molding temperature of EVOH, the short-term aging of MFR This indicates that the change is small. A resin composition composed of EVOH having powerful properties exhibits excellent moldability even when co-extrusion or co-injection molding is performed with a resin having a high melting point such as polyamide / polyester. Specifically, unevenness is less likely to occur at the interface between EVOH and another resin, and the resulting multilayer structure has an excellent appearance.
上記式 (2) 〜 (4) において、 MFR (lOmin. ) / MFR(6min. )、 MFR (20min. ) / MF R (6min. )および MF R (30min. ) / MF R (6min. )の下限は より好適には 0. 6以上であり、 さらに好適には 0. 8以上である。 また、 MF R (lOmin. ) ノ MF R (6min. )、 MFR (20min. ) Z MF R (6min. )および MF R (30min. ) Z MFR(6min.)の上限はより好適には 1. 4以下であり、 さらに 好適には 1. 2以下である。  In the above equations (2) to (4), MFR (lOmin.) / MFR (6min.), MFR (20min.) / MFR (6min.) And MFR (30min.) / MFR (6min.) The lower limit is more preferably 0.6 or more, and even more preferably 0.8 or more. The upper limits of MF R (lOmin.), MF R (6 min.), MFR (20 min.), Z MF R (6 min.) And MF R (30 min.) Z MFR (6 min.) Are more preferably 1. 4 or less, more preferably 1.2 or less.
上記式 (2) 〜 (4) はより好適には、  The above formulas (2) to (4) are more preferably
0. 6≤MFR (lOmin. ) / MF R (6min. )≤ 1. 4 (2' )  0.6 ≤ MFR (lOmin.) / MF R (6min.) ≤ 1.4 (2 ')
0. 6≤MFR (20min. ) MFR(6min. )≤ 1. 4 (3' )  0.6≤MFR (20min.) MFR (6min.) ≤1.4 (3 ')
0. 6≤MFR (30min. ) MFR(6min. )≤ 1. 4 (4' ) であり、 さらに好適には、  0.6≤MFR (30min.) MFR (6min.) ≤1.4 (4 '), and more preferably,
0. 8≤MFR (lOmin. ) MFR(6min. )≤ 1 2 (2" )  0.8 ≤MFR (lOmin.) MFR (6min.) ≤ 1 2 (2 ")
0. 8≤MFR (20min. ) MFR(6min. )≤ 1 2 (3,, )  0.8 ≤MFR (20min.) MFR (6min.) ≤1 2 (3 ,,)
0. 8≤MFR (30min. ) / M F R (6min. )≤ 2 (4,, ) である。  0.8≤MFR (30min.) / MFR (6min.) ≤2 (4 ,,).
また、本発明の樹脂組成物は、加熱処理を施していない樹脂組成物の MF R (M FR(0)) と、榭脂組成物を窒素雰囲気下 220°Cで加熱した場合に、加熱開始か ら 8時間、 16時間、 24時間おょぴ 50時間後の樹脂 I且成物の MF R (それぞ れ、 MFR (8hr) 、 MFR (16hr) 、 MFR (24hr) 、 MFR (50hr) ;いずれ も 230°C、 10. 9 k g荷重) が下記式 (5) 〜 (8) の総てを満足すること が好ましい。 Further, the resin composition of the present invention is a resin composition which has not been subjected to a heat treatment. FR (0)) and the resin composition heated at 220 ° C in a nitrogen atmosphere, the resin I and the MF of the resin I, 50 hours after 8 hours, 16 hours, and 24 hours from the start of heating R (respectively, MFR (8hr), MFR (16hr), MFR (24hr), MFR (50hr); all at 230 ° C, 10.9 kg load) is the total of the following formulas (5) to (8) It is preferable to satisfy
0. 02≤MFR (8hr) / MFR(0)≤ 1 (5)  0.02≤MFR (8hr) / MFR (0) ≤ 1 (5)
0. 02≤MFR (16hr) / MFR(0)≤ 1 (6)  0.02≤MFR (16hr) / MFR (0) ≤ 1 (6)
0. 02≤MFR (24hr) / MFR(0)≤ 1 (7)  0.02≤MFR (24hr) / MFR (0) ≤ 1 (7)
0. 02≤MFR (50hr) / MFR (0)≤ 1 (8)  0.02≤MFR (50hr) / MFR (0) ≤ 1 (8)
本発明の樹脂組成物は、 好適にはポリアミドまたはポリエステルなどのような 高融点の樹脂との共押出成形あるいは共射出成形などに供され、 成形時における ダイ温度またはノズル温度は好適には 250°C以上である。 かかる高温の成形時 において良好な成形性を得るためには、 加熱温度 220°Cにおける長時間に渡る 樹脂組成物の溶融挙動の変化が上記の (5) 〜 (8) 式の総てを満足することが 好ましい。 加熱温度 220°Cにおける樹脂組成物の溶融挙動が、 高温での成形性 に影響を与える理由は明らかではないが、 上記の (5) 〜 (8) 式の総てを満足 し、 ゆっくりと増粘する傾向にあることにより、 高温の成形時において、 EVO H樹脂組成物層のゲル.ブッの発生を効果的に抑制可能であり、 耐着色性を改善 させることができる。  The resin composition of the present invention is preferably subjected to co-extrusion molding or co-injection molding with a resin having a high melting point such as polyamide or polyester, and the die temperature or the nozzle temperature during molding is preferably 250 °. C or more. In order to obtain good moldability during such high-temperature molding, the change in the melting behavior of the resin composition over a long period of time at a heating temperature of 220 ° C. satisfies all of the above formulas (5) to (8). It is preferred that It is not clear why the melting behavior of the resin composition at a heating temperature of 220 ° C affects the moldability at high temperatures, but it satisfies all of the above equations (5) to (8) and increases slowly. Due to the tendency to stick, it is possible to effectively suppress the generation of gel / bubbles in the EVOH resin composition layer at the time of molding at a high temperature, and to improve the coloring resistance.
上記式 (5) 〜 (8) において、 MFR (8hr) / MFR(0)、 MFR (I6hr) / MFR(0)、 MFR (24hr) / MFR(O)ぉょぴ MFR (50hr) / MFR(O) の下限はより好適には 0. 03であり、 さらに好適には 0. 05である。 また、 MFR (8hr) / MFR(0)、 MFR (I6hr)ノ MFR(0)、 MFR (24hr) / M FR(O)および MFR (50hr) / MF R (0)の上限はより好適には 0. 8であり、 さらに好適には 0. 6である。  In the above formulas (5) to (8), MFR (8hr) / MFR (0), MFR (I6hr) / MFR (0), MFR (24hr) / MFR (O), MFR (50hr) / MFR ( The lower limit of O) is more preferably 0.03, and still more preferably 0.05. Also, the upper limit of MFR (8hr) / MFR (0), MFR (I6hr) MFR (0), MFR (24hr) / MFR (O) and MFR (50hr) / MFR (0) is more preferably 0.8, and more preferably 0.6.
上記式 ( 5 ) 〜 ( 8 ) はより好適には、 0. 03≤MFR (8hr) / MFR(0)≤ 0. 8 (5 ' The above formulas (5) to (8) are more preferably 0.03≤MFR (8hr) / MFR (0) ≤ 0.8 (5 '
0. 03≤MFR (16hr) / MFR(0)≤O. 8 (6 '  0.03≤MFR (16hr) / MFR (0) ≤O. 8 (6 '
0. 03≤MFR (24hr) / MFR(0)≤ 0. 8 (7' 0. 03≤MFR (50hr) / MF R (0)≤ 0. 8 (8 ' であり、 さらに好適には、  0.03≤MFR (24hr) / MFR (0) ≤ 0.8 (7 '0.03≤MFR (50hr) / MFR (0) ≤ 0.8 (8', more preferably
0. 05≤MFR (8hr) / MFR (0)≤ 0. 6 (5"  0. 05≤MFR (8hr) / MFR (0) ≤ 0.6 (5 "
0. 05≤MFR (16hr) / MFR(0)≤ 0. 6 (6"  0.05≤MFR (16hr) / MFR (0) ≤ 0.6 (6 "
0. 05≤MFR (24hr) / MFR(0)≤ 0. 6 (7"  0. 05≤MFR (24hr) / MFR (0) ≤ 0.6 (7 "
0. 05≤MFR (50hr) / MFR(0)≤ 0. 6 (8" である。  0. 05 ≤ MFR (50hr) / MFR (0) ≤ 0.6 (8 ".
得られた本発明の樹脂組成物は溶融成形によりフィルム、 シート、 容器、 パイ プ、 繊維等、 各種の成形体に成形される。 これらの成形物は再使用の目的で粉碎 し再度成形することも可能である。 また、 フィルム、 シート、 繊維等を一軸また は二軸延伸することも可能である。 溶融成形法としては押出成形、 インフレーシ ヨン押出、 ブロー成形、 溶融紡糸、 射出成形等が可能である。 溶融温度は該共重 合体の融点等により異なるが 150〜270°C程度が好ましい。  The obtained resin composition of the present invention is formed into various molded articles such as films, sheets, containers, pipes, and fibers by melt molding. These molded products can be pulverized for re-use and molded again. It is also possible to uniaxially or biaxially stretch films, sheets, fibers and the like. As the melt molding method, extrusion molding, inflation extrusion, blow molding, melt spinning, injection molding and the like are possible. The melting temperature varies depending on the melting point of the copolymer and the like, but is preferably about 150 to 270 ° C.
本発明の樹脂組成物は、 上述した如く該樹脂組成物のみを単層とする樹脂成形 物の製造以外に、 本発明の組成物フィルム、 シート等の成形物を少なくとも 1層 とする多層構造体として実用に供せられることが多い。 該多層構造体の層構成と しては、 本発明の樹脂組成物を E、 接着性樹脂を Ad、 熱可塑性榭脂を Tで表わ すと、 E/T、 T/EZT、 E/Ad/T、 T/AdZE/Ad/T等が挙げら れるが、 これに限定されない。 それぞれの層は単層であってもよいし、 場合によ つては多層であってもよい。  The resin composition of the present invention is, as described above, a multilayer structure having at least one layer of a molded product such as a composition film or sheet of the present invention, in addition to the production of a resin molded product having only a single layer of the resin composition. Often used for practical use. When the layer composition of the multilayer structure is represented by E for the resin composition of the present invention, Ad for the adhesive resin, and T for the thermoplastic resin, E / T, T / EZT, E / Ad / T, T / AdZE / Ad / T, etc., but are not limited thereto. Each layer may be a single layer or, in some cases, a multilayer.
上記に示す多層構造体を製造する方法は特に限定されない。 例えば、 該成形物 (フィルム、 シート等) に熱可塑性樹脂を溶融押出する方法、 逆に熱可塑性樹脂 等の基材に該榭脂組成物と他の熱可塑性樹脂とを共押出する方法、 熱可塑性樹脂 と E V O Hからなる樹脂組成物を共射出する方法、 更には本発明の樹脂組成物よ り得られた成形物と他の基材のフィルム、 シートとを有機チタン化合物、 イソシ ァネート化合物、 ポリエステル系化合物等の公知の接着剤を用いてラミネートす る方法等が挙げられる。 The method for producing the above-described multilayer structure is not particularly limited. For example, a method of melt-extruding a thermoplastic resin into the molded article (film, sheet, etc.), a method of co-extruding the resin composition and another thermoplastic resin on a base material such as a thermoplastic resin, Plastic resin And a method of co-injecting a resin composition comprising EVOH and an organic titanium compound, an isocyanate compound, a polyester compound, and a molded product obtained from the resin composition of the present invention and a film or sheet of another substrate. And laminating using a known adhesive.
用いられる熱可塑性樹脂としては、 直鎖状低密度ポリエチレン、 低密度ポリエ チレン、 中密度ポリエチレン、 高密度ポリエチレン、 エチレン一酢酸ビニル共重 合体、 エチレン一プロピレン共重合体、 ポリプロピレン、 プロピレン一 α—ォレ フィン共重合体 (炭素数 4〜2 0のひ一ォレフィン) 、 ポリブテン、 ポリペンテ ン等のォレフインの単独またはその共重合体、 ポリエチレンテレフタレート等の ポリエステル、 ポリエステルエラストマ一、 ナイロン一 6、 ナイロン一 6, 6等 のポリアミ ド樹脂、 ポリスチレン、 ポリ塩化ビュル、 ポリ塩ィ匕ビユリデン、 ァク リル系樹脂、 ビニルエステル系樹脂、 ポリウレタンエラストマ一、 ポリカーボネ ート、 塩素化ポリエチレン、 塩素化ポリプロピレンなどが挙げられる。 上記の中 でも、 ポリプロピレン、 ポリエチレン、 エチレン一プロピレン共重合体、 ェチレ ンー酢酸ビュル共重合体、 ポリアミ ド、 ポリスチレン、 ポリエステルが好ましく 用いられる。 The thermoplastic resin used includes linear low-density polyethylene, low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, polypropylene, and propylene- α Polyolefins such as olefin copolymers (polyolefins having 4 to 20 carbon atoms), polybutene, polypentene, etc. alone or copolymers thereof, polyesters such as polyethylene terephthalate, polyester elastomers, nylon-16, nylon-16 And 6 etc., polystyrene, polychlorinated polyvinyl chloride, polychlorinated polyvinylidene, acrylic resin, vinyl ester resin, polyurethane elastomer, polycarbonate, chlorinated polyethylene, chlorinated polypropylene, etc. . Among them, polypropylene, polyethylene, ethylene-propylene copolymer, ethylene-butyl acetate copolymer, polyamide, polystyrene and polyester are preferably used.
本発明の樹脂組成物と熱可塑性樹脂とを積層するに際し、 接着性樹脂を使用す る場合があり、 この場合の接着性樹脂としてはカルボン酸変性ポリオレフィンか らなる接着性樹脂が好ましい。 ここでカルボン酸変性ポリオレフインとは、 ォレ フィン系重合体にエチレン性不飽和カルボン酸またはその無水物を化学的 (たと えば付加反応、 グラフト反応により) 結合させて得られるカルボキシル基を含有 する変性ォレフィン系重合体のことをいう。 また、 ここでォレフィン系重合体と はポリエチレン (低圧、 中圧、 高圧) 、 直鎖状低密度ポリエチレン、 ポリプロピ レン、 ボリプテンなどのポリオレフイン、 ォレフィンと該ォレフインとを共重合 し得るコモノマー (ビュルエステル、 不飽和カルボン酸エステルなど) との共重 合体、 たとえばエチレン一酢酸ビニル共重合体、 エチレン一アクリル酸ェチノレエ ステル共重合体などを意味する。 このうち直鎖状低密度ポリエチレン、 エチレン 一酢酸ビュル共重合体 (酢酸ビュルの含有量 5〜 5 5重量0/。) 、 ェチレンーァク リル酸ェチルエステル共重合体 (ァクリル酸ェチルエステルの含有量 8〜 3 5重 量0 /。) が好適であり、 直鎖状低密度ポリエチレン及ぴエチレン一酢酸ビュル共重 合体が特に好適である。 エチレン性不飽和カルボン酸またはその無水物とはェチ レン性不飽和モノカルボン酸、 そのエステル、 エチレン性不飽和ジカルボン酸、 そのモノまたはジエステル、 その無水物があげられ、 このうちエチレン性不飽和 ジカルボン酸無水物が好適である。 具体的にはマレイン酸、 フマル酸、 ィタコン 酸、 無水マレイン酸、 無水ィタコン酸、 マレイン酸モノメチノレエステノレ、 マレイ ン酸モノェチノレエステル、 マレイン酸ジェチルエステル、 フマル酸モノメチルェ ステルなどが挙げられ、 なかんずく、 無水マレイン酸が好適である。 When laminating the resin composition of the present invention and a thermoplastic resin, an adhesive resin may be used, and in this case, an adhesive resin made of a carboxylic acid-modified polyolefin is preferable. Here, the carboxylic acid-modified polyolefin is a modified resin containing a carboxyl group obtained by chemically (for example, adding or grafting) an ethylenically unsaturated carboxylic acid or an anhydride thereof to an olefin polymer. This refers to an olefin polymer. Here, the olefin polymer is defined as polyethylene (low pressure, medium pressure, high pressure), linear low density polyethylene, polyolefin such as propylene, boreptene, or a comonomer capable of copolymerizing olefin and the olefin. (E.g., unsaturated carboxylic acid esters), such as ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate It means a stele copolymer or the like. Among linear low density polyethylene, ethylene monoacetate Bulle copolymer (content of acetic Bulle 5-5 5 weight 0 /.), Echirenaku acrylic acid Echiruesuteru copolymer (content of Akuriru acid Echiruesuteru 8-3 5 The weight is preferably 0 /.), And linear low-density polyethylene and ethylene monoacetate copolymer are particularly preferred. Ethylenically unsaturated carboxylic acids or anhydrides include ethylenically unsaturated monocarboxylic acids, their esters, ethylenically unsaturated dicarboxylic acids, their mono- or diesters, and their anhydrides, of which ethylenically unsaturated Dicarboxylic anhydrides are preferred. Specifically, maleic acid, fumaric acid, itaconic acid, maleic anhydride, itaconic anhydride, monomethinoleestenole maleate, monoethynole maleate, getyl maleate, monomethyl fumarate, etc. Maleic anhydride is particularly preferred.
ェチレン性不飽和カルボン酸またはその無水物のォレフィン系重合体への付加 量またはグラフト量 (変性度) はォレフイン系重合体に対し 0 . 0 0 0 1〜1 5 重量%、 好ましくは 0 . 0 0 1〜1 0重量%である。 エチレン性不飽和カルボン 酸またはその無水物のォレフィン系重合体への付加反応、 グラフト反応は、 たと えば溶媒 (キシレンなど) 、 触媒 (過酸化物など) の存在下でラジカル重合法な どにより得られる。 このようにして得られたカルボン酸変性ポリオレフインの 1 9 0 °C、 2 1 6 0 g荷重下で測定したメルトフローレート (MF R) は 0 . 2〜 3 0 g / 1 0分であることが好ましく、より好ましくは 0 . 5〜:! O g Z l O 分 である。 これらの接着性樹脂は単独で用いてもよいし、 また二種以上を混合して 用いることもできる。  The amount of addition or grafting (degree of modification) of the ethylenically unsaturated carboxylic acid or its anhydride to the olefin polymer is 0.0001 to 15% by weight, preferably 0.0%, based on the olefin polymer. 0 to 10% by weight. The addition reaction and the graft reaction of the ethylenically unsaturated carboxylic acid or its anhydride to the olefin polymer are obtained by, for example, a radical polymerization method in the presence of a solvent (such as xylene) or a catalyst (such as peroxide). Can be The melt flow rate (MFR) of the carboxylic acid-modified polyolefin thus obtained measured at 190 ° C under a load of 210 g should be 0.2 to 30 g / 10 minutes. And more preferably 0.5 to :! O g Z l O minutes. These adhesive resins may be used alone or as a mixture of two or more.
これらの実施態様の中でも、 高温での成形性に優れるという本発明の効果を特 に有効に発揮できる観点から、 ポリアミドまたはポリエステルなどの高融点の熱 可塑性樹脂と本発明の樹脂組成物を、 接着性樹脂等を介さずに直接積層する実施 態様が好ましレ、。 また、 ポリアミドまたはポリエステルなどの高融点の熱可塑性 樹脂と本発明の樹脂組成物を、 共押出成形または共射出成形により多層構造体と する実施態様が特に好ましい。 Among these embodiments, a high melting point thermoplastic resin such as polyamide or polyester and the resin composition of the present invention are bonded from the viewpoint that the effect of the present invention, which is excellent in moldability at high temperatures, can be particularly effectively exerted. An embodiment in which the layers are directly laminated without the intervention of a conductive resin or the like is preferable. Further, a high melting point thermoplastic resin such as polyamide or polyester and the resin composition of the present invention are co-extruded or co-injected to form a multilayer structure. Are particularly preferred.
本発明の組成物と熱可塑性樹脂との共押出成形の方法は特に限定されず、 マル チマ二ホールド合流方式 Tダイ法、 フィードプロック合流方式 Tダイ法、 ィンフ レーシヨン法などが好適なものとして例示される。 また、 共射出成形の方法も特 に限定されず、 一般的な手法を用いることができる。 高温での成形性に優れると いう本発明の効果を特に有効に発揮できる観点から、 本発明の樹脂組成物および 他の熱可塑性樹脂からなる多層構造体を共押出成形または共射出成形により製造 する際において、 ダイ温度またはノズル温度が 2 5 0 °C以上である製造方法を揉 用することが特に好ましい。 力かる高温での共押出成形もしくは共射出成形を行 うにあたっても、 E V O Hからなる樹脂組成物層と他の熱可塑性樹脂層との界面 でむらが生じず、 かつ、 樹脂組成物層のゲル ·ブッの発生が少ない、 外観良好な 多層構造体が得られる観点からも本発明の意義は大きい。  The method of coextrusion molding of the composition of the present invention and a thermoplastic resin is not particularly limited, and examples thereof include a multi-manifold merging method T-die method, a feedblock merging method T-die method, and an infusion method. Is done. The method of coinjection molding is not particularly limited, and a general method can be used. From the viewpoint that the effect of the present invention, which is excellent in moldability at high temperatures, can be particularly effectively exerted, a multilayer structure composed of the resin composition of the present invention and another thermoplastic resin is produced by co-extrusion molding or co-injection molding. In this case, it is particularly preferable to use a production method in which the die temperature or the nozzle temperature is 250 ° C. or higher. Even when co-extrusion molding or co-injection molding is performed at a high temperature, there is no unevenness at the interface between the resin composition layer made of EVOH and another thermoplastic resin layer, and the gel of the resin composition layer The present invention is also significant from the viewpoint of obtaining a multi-layer structure with good appearance and little occurrence of fuzz.
このようにして得られた共押出多層構造体を二次加工することにより、 各種成 形品 (フィルム、 シート、 チューブ、 ボトルなど) を得ることができ、 たとえば 以下のようなものが挙げられる。  By subjecting the co-extruded multilayer structure obtained in this way to secondary processing, various molded articles (films, sheets, tubes, bottles, etc.) can be obtained.
( 1 ) 多層構造体 (シート又はフィルムなど) を一軸または二軸方向に延伸、 又 は二軸方向に延伸、 熱処理することによる多層共延伸シート又はフィルム (1) Multi-layer co-stretched sheet or film obtained by uniaxially or biaxially stretching or biaxially stretching a multilayer structure (such as a sheet or film) and heat-treating it.
( 2 ) 多層構造体 (シート又はフィルムなど) を圧延することによる多層圧延シ 一ト又はフィルム (2) Multi-layer rolling sheet or film by rolling a multi-layer structure (sheet or film, etc.)
( 3 ) 多層構造体 (シート又はフィルムなど) 真空成形、 圧空成形、 真空圧空成 形、 等熱成形加工することによる多層トレーカップ状容器  (3) Multi-layered structure (sheet or film, etc.) Multi-layer tray cup-shaped container formed by thermoforming, vacuum forming, pressure forming, vacuum forming, etc.
( 4 ) 多層構造体 (パイプなど) からのストレッチブロー成形等によるボトル、 カップ状容器  (4) Bottles and cup-shaped containers made by stretch blow molding from multilayer structures (pipe etc.)
( 5 ) 多層構造体 (パリソンなど) 力 の二軸延伸ブロー成形等によるボトル状 容器  (5) Multilayer structure (such as parison) Bottle-shaped container made by biaxial stretching blow molding of force
このような二次加工法には特に制限はなく、 上記以外の公知の二次加工法 (プ ロー成形など) も採用できる。 There is no particular limitation on such a secondary processing method. Low molding etc.) can also be adopted.
このようにして得られた共押出多層構造体、共射出多層構造体は低臭性に優れ、 フィッシュアイが少なく、 透明で、 スジが少ないので、 食品容器の材料、 たとえ ば深絞り容器、 カップ状容器、 ボトル等の材料として好適に用いられる。 発明を実施するための最良の形態  The co-extruded multilayer structure and co-injection multilayer structure obtained in this way have excellent low odor, low fish eyes, and are transparent and have few streaks, so they can be used as food container materials, such as deep drawn containers and cups. It is suitably used as a material for shaped containers and bottles. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明をさらに詳細に説明するが、 本発明はこの実施例に 限定されるものではない。 以下 「%」 、 「部」 とあるのは特に断わりのない限り 重量基準である。 尚、 水はすべてイオン交換水を使用した。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Hereinafter, “%” and “parts” are based on weight unless otherwise specified. The water used was ion-exchanged water.
(1) カルボン酸 (A) の含有量の定量  (1) Determination of carboxylic acid (A) content
試料とする乾燥ペレツト 20 gをイオン交換水 10 Omlに投入し、 95°Cで 6時間加熱抽出した。 抽出液をフエノールフタレインを指示薬として、 1 50 規定の N a OHで中和滴定し、 カルボン酸 (A) の含有量を定量した。  20 g of a dry pellet as a sample was put into 10 Oml of ion-exchanged water, and heated and extracted at 95 ° C for 6 hours. The extract was subjected to neutralization titration with 150 N NaOH using phenolphthalein as an indicator to determine the content of carboxylic acid (A).
(2) (a 1) / (A) の定量  (2) Quantification of (a 1) / (A)
試料とする乾燥べレット 20 gをィオン交換水 100mlに投入し、 95 °Cで 6時間加熱抽出した。 該抽出液を用いて、 カラムに (株) 横河電機製の SCS 5 -252を使用し、 溶離液として 0. 1 %のリン酸水溶液を用いたイオンクロマ トグラフィ一により乳酸ァニオンおよび酢酸ァェオンの含有量を定量し、 カルボ ン酸 (A) およびその塩の総含有量 (μΐηοΐ/g) 、 ならびに分子量 75以上の力 ルボン酸 (a l) およびその塩の含有量 (/ molZg) を求めた。  20 g of a dry bellet as a sample was put into 100 ml of ion-exchanged water, and the mixture was heated and extracted at 95 ° C for 6 hours. Using the extract, ion chromatography was performed by ion chromatography using SCS 5-252 manufactured by Yokogawa Electric Corporation as a column and a 0.1% phosphoric acid aqueous solution as an eluent. The content was quantified to determine the total content of carboxylic acid (A) and its salt (μΐηοΐ / g), and the content of carboxylic acid (al) and its salt having a molecular weight of 75 or more (/ molZg).
(3) Na、 K、 Mg、 Caイオンの定量  (3) Determination of Na, K, Mg, Ca ions
試科とする乾燥ペレツト 10 gを 0.01規定の塩酸水溶液 50mlに投入し、 95 °Cで 6時間撹拌した。 撹拌後の水溶液をイオンクロマトグラフィーを用いて 定量分析し、 Na、 K、 Mg、 C aイオンの量を定量した。 カラムは、 (株) 横 河電機製の I C S— C 25を使用し、 溶離液は 5. 0 mMの酒石酸と 1. 0 mM の 2, 6 _ピリジンジカルボン酸を含む水溶液とした。 なお、 定量に際してはそ れぞれ塩化ナトリゥム水溶液、 塩ィ匕カリゥム水溶液、 塩化マグネシウム水溶液お よぴ塩ィ匕カルシウム水溶液で作成した検量線を用いた。 こうして得られた N a、 K、 Mg、 C aイオンの量から、 乾燥ペレット中のアルカリ土類金属塩 (B) お よびアルカリ金属塩 (D) の量を金属元素換算値で得た。 10 g of the dried pellet to be used as a sample was poured into 50 ml of a 0.01 N hydrochloric acid aqueous solution, and the mixture was stirred at 95 ° C for 6 hours. The aqueous solution after stirring was quantitatively analyzed using ion chromatography, and the amounts of Na, K, Mg, and Ca ions were quantified. The column used was ICS-C25 manufactured by Yokogawa Electric Corporation, and the eluent was an aqueous solution containing 5.0 mM tartaric acid and 1.0 mM 2,6-pyridinedicarboxylic acid. When quantifying, Calibration curves prepared with an aqueous sodium chloride solution, an aqueous solution of sodium chloride, an aqueous solution of magnesium chloride and an aqueous solution of calcium salt were used, respectively. From the amounts of Na, K, Mg, and Ca ions thus obtained, the amounts of the alkaline earth metal salt (B) and the alkali metal salt (D) in the dried pellets were obtained in terms of metal element.
(4) リン酸イオンの定量  (4) Determination of phosphate ion
試料とする乾燥べレッ ト 1 0 gを 0. 0 1規定の塩酸水溶液 5 0m lに投入し、 9 5°Cで 6時間撹拌した。 撹拌後の水溶液をイオンクロマトグラフィーを用いて 定量分析し、 リン酸イオンの量を定量した。 カラムは、 (株) 横河電機製の I C S—A 2 3を使用し、 溶離液は 2. 5mMの炭酸ナトリウムと 1. 0 mMの炭酸 水素ナトリゥムを含む水溶液とした。 なお、 定量に際してはリン酸ニ水素ナトリ ゥム水溶液で作成した検量線を用いた。こうして得られたリン酸イオンの量から、 リン酸化合物 (C) の含有量をリン酸根換算で得た。  10 g of a dry velvet as a sample was poured into 50 ml of a 0.01 N aqueous hydrochloric acid solution, and the mixture was stirred at 95 ° C for 6 hours. The aqueous solution after stirring was quantitatively analyzed using ion chromatography to determine the amount of phosphate ions. The column used was ICS-A23 manufactured by Yokogawa Electric Corporation, and the eluent was an aqueous solution containing 2.5 mM sodium carbonate and 1.0 mM sodium hydrogen carbonate. For the determination, a calibration curve prepared with an aqueous solution of sodium dihydrogen phosphate was used. From the amount of phosphate ions thus obtained, the content of the phosphate compound (C) was obtained in terms of phosphate groups.
(5) ホウ素化合物 (E) の定量  (5) Determination of boron compound (E)
試料とする乾燥ペレツト 1 00 gを磁性ルツボに入れ、電気炉内で灰化させた。 得られた灰分を 0. 0 1規定の硝酸水溶液 20 OmLに溶解し、 原子吸光分析に よって定量し、 ホウ素化合物 (E) の含有量をホウ素元素換算値で得た。  100 g of a dry pellet as a sample was placed in a magnetic crucible and ashed in an electric furnace. The obtained ash was dissolved in 20 OmL of a 0.01 N aqueous nitric acid solution and quantified by atomic absorption spectrometry, and the content of the boron compound (E) was obtained in terms of elemental boron.
(6) 固有粘度  (6) Intrinsic viscosity
EVOHからなる樹脂組成物の試料ペレツト 0. 2 0 gを精秤し、 これを含水 フエノール (水 Zフヱノ一ル= 1 5 / 8 5 w t %) 40 m 1に 6 0 °Cにて 3〜 4 時間加熱溶解させ、 温度 3 0°Cにて、 ォストワルド型粘度計にて測定し (t 0 = 9 0秒) 、 下式により固有 (極限) 粘度 [ 77 ] を求めた。  0.20 g of a sample pellet of a resin composition composed of EVOH was precisely weighed, and this was hydrated with phenol (water Z-phenol = 15/85 wt%) at 40 ° C at 60 ° C for 3 to 3 ° C. The mixture was heated and melted for 4 hours, and measured with an Ostwald viscometer at a temperature of 30 ° C. (t 0 = 90 seconds).
[η ] = (2 X ( 77 SP- 1 η ηΐβΐ) ) 1/2 /C ( 1 /g) [η] = (2 X (77 SP- 1 η ηΐβΐ)) 1/2 / C (1 / g)
7] sp= t / t O— l (specific viscosity)  7] sp = t / t O— l (specific viscosity)
77 rel= tZ t 0 (relative viscosity)  77 rel = tZ t 0 (relative viscosity)
C ; EVOH濃度 (g/ 1 )  C: EVOH concentration (g / 1)
• t O :ブランク (含水フヱノール) が粘度計を通過する時間 - t :サンプルを溶解させた含水フエノール溶液が粘度計を通過する時間• t O: Time for blank (hydrous phenol) to pass through viscometer -t: Time when the aqueous phenol solution in which the sample is dissolved passes through the viscometer
(7) 加熱時間と MFRの関係 (1) : 2 70°Cでの溶融挙動 (7) Relationship between heating time and MFR (1): 2 Melting behavior at 70 ° C
試料とする乾燥ペレツト 5 gをメルトインデクサ一に入れ、 270°Cにて 2 1 60 k gの荷重をかけた状態で 6分間保持した後、 1分間にメルトインデクサ一 力 ら吐出された樹脂の重量を 3分間測定した。 すなわち、 加熱開始から 6分〜 7 分の吐出量、 7分〜 8分の吐出量、 および 8〜 9分の吐出量を測定し、 その平均 値を求めた。 得られた 1分当たりの吐出量の平均値を 1 0倍し、 保持時間 6分間 における MFR (MFR(6min.)) とした (n = 3) 。  Put 5 g of the dried pellet as a sample into the melt indexer, hold it at 270 ° C under a load of 2160 kg for 6 minutes, and then weigh the resin discharged from the melt indexer per minute. Was measured for 3 minutes. That is, the discharge amount for 6 to 7 minutes, the discharge amount for 7 to 8 minutes, and the discharge amount for 8 to 9 minutes from the start of heating were measured, and the average value was obtained. The average value of the obtained discharge amount per minute was multiplied by 10 to obtain the MFR (MFR (6 min.)) At a retention time of 6 minutes (n = 3).
上記の方法と同様の測定方法を用いて、 保持時間 1 0分間における MFR (M FRdOmin.)) 、 20分間における MFR (MF R (20min. )) および 30分間に おける MFR (MFR(30min. )) を求めた。  Using the same measurement method as above, the MFR (MFR (20 min.)) For a retention time of 10 minutes, the MFR (MFR (20 min.)) For 20 minutes, and the MFR (MFR (30 min.)) For 30 minutes ).
•判定  • Judgment
以下の基準に従って判定した。 It was determined according to the following criteria.
〇: M F R (lOmin. ) /M F R (6min. )、 M F R (20min. ) /M F R (6min. )および M FR(30min.)ZMFR(6min·)がぃずれもO. 5〜: 1. 5の範囲に含まれる。 〇: MFR (lOmin.) / MFR (6min.), MFR (20min.) / MFR (6min.) And MFR (30min.) ZMFR (6min. Included in the range.
X: MFR (lOmin. ) /M F R (6rain. )、 M F R (20min. ) /M F R (6rain. )およぴ M FR(30min. )/MFR(6min.)の少なくとも一つが 0. 5〜: I . 5の範囲に含まれ ない。 X: At least one of MFR (lOmin.) / MFR (6rain.), MFR (20min.) / MFR (6rain.) And MFR (30min.) / MFR (6min.) Is 0.5 to: I Not included in range 5.
( 8 ) 加熱時間と M F Rの関係 ( 2 ) : 220 °Cでの溶融挙動  (8) Relationship between heating time and MFR (2): Melting behavior at 220 ° C
試料とする乾燥ペレツト 5 gを窒素雰囲気下でステンレス製の金属容器に入れ 封管した。 この試料容器を 220°Cで加熱処理した。 該加熱処理時間が 8時間、 1 6時間、 24時間および 50時間における榭脂組成物の M F Rを、 230 °C、 1 0. 9 k g荷重下で測定し、それぞれ MF R (8hr)、 MF R (16hr)、 MF R (24hr) および MFR(50hr)とした (n= 3) 。 また、 該加熱処理を施していない樹脂に ついて 230°C、 1 0. 9 k g荷重下で MFRを測定し、 MFR (0) とした (n =3) 。 得られた測定結果を基に、 以下のように判定した。 5 g of a dry pellet as a sample was placed in a stainless steel metal container under a nitrogen atmosphere and sealed. This sample container was heated at 220 ° C. The MFR of the resin composition at the heat treatment time of 8, 16, 24, and 50 hours was measured at 230 ° C under a load of 10.9 kg, and the MFR (8 hr) and MF R (16 hr), MFR (24 hr) and MFR (50 hr) (n = 3). The MFR of the resin not subjected to the heat treatment was measured at 230 ° C. under a load of 10.9 kg, and was determined as MFR (0) (n = 3). Based on the obtained measurement results, the following judgment was made.
〇: MFR(8hr)/MFR (0) 、 MFR(16hr) /MFR (0) 、 MFR(24hr) /MFR (0) および MFR(50hr)ZMFR (0) がいずれも 0. 02〜 1の範 囲に含まれる。 〇: MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / MFR (0) and MFR (50hr) ZMFR (0) are all in the range of 0.02 to 1. Included in the box.
X : MFR (8hr)/MFR (0) 、 MF R (16hr)/MF R (0) 、 MFR(24hr) /MFR (0) および MFR(50hr)/MFR (0) の少なくとも一つが 0. 02 〜1の範囲に含まれない。 X: at least one of MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / MFR (0) and MFR (50hr) / MFR (0) is 0.02 Not included in the range of ~ 1.
(9) 多層製膜試験  (9) Multi-layer film forming test
得られた乾燥チップとポリアミド樹脂 [宇部興産製 「宇部ナイロン 1024 F DX41」 ] を用い、 以下の方法で 2種 3層の多層フィルム (ポリアミド ZEV OH/ポリアミ
Figure imgf000028_0001
Ο/ζΖΐ Ο/ζ) を作製し、 耐着色性、 膜面むらお よび外観を評価した。
Using the obtained dried chips and a polyamide resin [Ube Nylon 1024 F DX41] manufactured by Ube Industries, a two-layer, three-layer multilayer film (polyamide ZEV OH / polyamide)
Figure imgf000028_0001
Ο / ζΖΐ Ο / ζ) were prepared and evaluated for color resistance, film surface unevenness and appearance.
本試験に用いた押出機及び Τダイの仕様並びに押出温度は以下の通りである。 EVOH用押出機; 20 φ押出機 ラボ機 ME型 CO— ΕΧΤ (東洋精機製) ポリアミド用押出機; 25 φ押出機 P 25—18 AC (大阪精機製) The specifications of the extruder and die used in this test and the extrusion temperature are as follows. Extruder for EVOH; 20 φ extruder Laboratory machine ME type CO—ΕΧΤ (Toyo Seiki) Extruder for polyamide; 25 φ extruder P 25-18 AC (Osaka Seiki)
Tダイ ; 300腕幅コートハンガーダイ (プラスチック工学研究所製) T die; 300 arm width coat hanger die (Plastic Engineering Laboratory)
EVOH押出温度; EVOH extrusion temperature;
C 1/C 2/C 3/ダイ = 180/220/220/260 °C  C 1 / C 2 / C 3 / die = 180/220/220/260 ° C
ポリアミド押出温度; Polyamide extrusion temperature;
C 1/C 2/C 3/ダイ = 230/240/260/260 °C  C 1 / C 2 / C 3 / die = 230/240/260/260 ° C
(9一 a) 膜面むら  (9-1a) Unevenness of membrane surface
上記方法で作製された多層フィルムの E V O H層とポリアミ ド層の界面の状態 を目視により観察し、 以下のように判定した。  The state of the interface between the EVOH layer and the polyamide layer of the multilayer film produced by the above method was visually observed and determined as follows.
A ; 良好 B ; やや膜面むら有り C ; 膜面むら激しい (梨地状)  A; good B; slight unevenness of film surface C: severe unevenness of film surface
(9-b) 耐着色性  (9-b) Coloring resistance
上記方法で作製された多層フィルムを紙管に巻き取り、 フィルム端面の着色度 を肉眼で判定し以下のように判定した。 The multilayer film produced by the above method is wound around a paper tube, Was visually determined and determined as follows.
A;着色なし B ;やや黄変 C;黄変 D;激しい着色 A; no coloring B; slightly yellowing C; yellowing D; intense coloring
(9一 c) ロングラン性  (9-1c) Long run
多層製膜開始から 8時間後のフィルムをサンプリングし、 ポリアミ ド層をトリ フルォロエタノールで膨潤 .剥離し、 EVOH層のみを取り出し、 EVOH層中 のゲル状ブッ (肉眼で確認できる約 100 μπι以上のもの) を数えた。  Eight hours after the start of multilayer film formation, the film was sampled, the polyimide layer was swollen with trifluoroethanol, peeled off, and only the EVOH layer was taken out. The gel-like bulk in the EVOH layer (approximately 100 μπι visible to the naked eye) Above).
プッの個数を、 1. Om 2あたりの個数に換算し、 以下のように判定した。 The number of the puts was converted into the number per 1. Om 2 and determined as follows.
A ; 20個未満 B ; 20〜40個 C ; 40〜60個 D; 60個以上 (10) 臭気性  A: less than 20 B; 20 to 40 C; 40 to 60 D; 60 or more (10) Odor
EVOHからなる樹脂組成物の試料ペレツト208を1001111ガラス製サン プル管に入れ、 アルミホイルで口部を蓋をした後、 熱風乾燥機内で 150°Cで 9 0分加熱した。 乾燥機から取り出し、 室温で 1時間放冷した後、 サンプル管を 2 〜3回振り混ぜた後、 アルミホイルの蓋を取り臭気を評価した。 試料ペレットの 臭気の強さを以下のような基準で判定した。 Samples Peretsuto 20 8 of a resin composition composed of EVOH placed in 100 1 111 glass sample tube, after the mouth was covered with aluminum foil and heated 9 0 min 0.99 ° C in a hot air dryer. After taking it out of the dryer and allowing it to cool at room temperature for 1 hour, the sample tube was shaken 2-3 times, then the lid of the aluminum foil was removed and the odor was evaluated. The odor intensity of the sample pellet was determined based on the following criteria.
A ;臭いなし B ;弱いにおい C ;明らかに感じる臭い D ;かなり強い臭い 実施例 1 A: no odor B; weak odor C; obvious odor D; fairly strong odor
エチレン含有量 38モル0 /0のエチレン一酢酸ビュル共重合体の 45%メタノー ル溶液をケン化反応器に仕込み、 苛性ソーダ/メタノール溶液 (80 g/"L) を 共重合体中の酢酸ビュル成分に対し、 0. 4当量となるように添加し、 メタノー ルを添加して共重合体濃度が 20 %になるように調整した。 60 °Cに昇温し反応 器内に窒素ガスを吹き込みながら約 4時間反応させた。 4時間後、 酢酸で中和し 反応を停止させ、 円形の開口部を有する金板から水中に押し出して析出させ、 切 断することで直径約 3 mm、 長さ約 5 mmのチップを得た。 得られたチップは 1 gZLの酢酸水溶液で洗浄し、 更に大量の水を加え脱液する操作を繰り返した。 得られた EVOHチップの含水率は 110%であった (ドライベース) 。 They were charged 45% methanol solution of ethylene monoacetate Bulle copolymer ethylene content 38 mole 0/0 to saponification reactor, acetic Bulle component of sodium hydroxide / methanol solution (80 g / "L) copolymer Of the copolymer was adjusted to 0.4 equivalents, and methanol was added to adjust the copolymer concentration to 20%, while the temperature was raised to 60 ° C and nitrogen gas was blown into the reactor. After 4 hours, the reaction was neutralized with acetic acid to stop the reaction, extruded out of a metal plate with a circular opening into water and precipitated, and cut to obtain a diameter of about 3 mm and a length of about 3 mm. A 5 mm chip was obtained, and the obtained chip was washed with 1 g ZL of an aqueous acetic acid solution, and the operation of adding a large amount of water and removing water was repeated, and the obtained EVOH chip had a water content of 110%. (Dry base).
こうして得られた EVOH (エチレン含有量 38モル%、ケン化度 99. 4%、 固有粘度 0. 08 5 1 /g) の含水チップ 1 0 k gを、 ホウ酸 0. 5 3 g/Lを 含有する水溶液 1 8 Lに 25°Cで 5時間浸漬し、 浸漬後脱液した。 The EVOH thus obtained (ethylene content 38 mol%, saponification degree 99.4%, 10 kg of a water-containing chip having an intrinsic viscosity of 0.085 1 / g) was immersed in 18 L of an aqueous solution containing 0.53 g / L of boric acid at 25 ° C for 5 hours, and then immersed.
更に上記含水チップ 3. 3 k gをホウ酸 0. 1 3 gZL、 乳酸 0. 046 g/ L、 乳酸ナトリウム 0. 85 5 g ZLを含有する水溶液 30 Lに 25 で 6時間 浸漬 ·攪拌した。 その後脱液し、 80 °Cにて 3時間、 1 0 7 °Cにて 24時間熱風 乾燥を行い、 乾燥チップを得た。  Further, 3.3 kg of the above hydrated chip was immersed and stirred in 30 L of an aqueous solution containing 0.13 g ZL of boric acid, 0.46 g / L of lactic acid, and 0.855 g of sodium lactate for 25 hours at 25. Thereafter, the solution was drained and dried with hot air at 80 ° C. for 3 hours and at 107 ° C. for 24 hours to obtain a dry chip.
得られた乾燥チップ中のカルボン酸 (A) の含有量は 0. 3 3/zmo lZg、 カルボン酸 (A) およびその塩の総含有量は 7. 9 μΐηο 1 /g (その内の分子 量 75以上のカルボン酸(a 1)およびその塩の含有量は 7. 9 μταο 1 /g)、 アル力リ金属塩の含有量は金属元素換算で 20◦ p p m、 ホウ素化合物の含有量 はホウ素元素換算値で 280 p pmであった。 また、 MFRは 1. 7 gZl O分 The content of carboxylic acid (A) in the obtained dried chips is 0.33 / zmolZg, and the total content of carboxylic acid (A) and its salt is 7.9 μΐηο 1 / g (molecular weight in The content of 75 or more carboxylic acids (a 1) and its salts is 7.9 μταο 1 / g), the content of metal salts is 20 ppm in terms of metal elements, and the content of boron compounds is boron elements The converted value was 280 ppm. MFR is 1.7 gZl O
(1 90°C、 2 1 60 g荷重) であった。 (190 ° C, 2160 g load).
得られた乾燥チップを、 270°Cでメルトインデクサ一中に保持し、 保持時間 6 分、 1 0分、 20分、 30分におけるそれぞれの樹脂組成物の MFR (2 70°C、 2 1 60 g荷重) を測定した。 測定結果は以下のとおりであり、 それを図 1にも 示す。 図 1は EVOHからなる樹脂組成物をメルトインデクサ一中、 2 70°Cで 保持した際の、 加熱時間と MFR (2 70°C、 2 1 60 g荷重) の関係を示す図 である。 The obtained dried chips were held in a melt indexer at 270 ° C, and the MFR (270 ° C, 2160 ° C) of each of the resin compositions at a holding time of 6 minutes, 10 minutes, 20 minutes, and 30 minutes. g load) was measured. The measurement results are shown below and are also shown in Figure 1. FIG. 1 is a graph showing the relationship between the heating time and the MFR (270 ° C, 2160 g load) when the resin composition composed of EVOH is maintained at 270 ° C in a melt indexer.
MFR (6min. ) = 1 0. l g/1 0分  MFR (6min.) = 10.lg / 1 0min
MFRdOmin. ) = 8. 9 g/1 0分  MFRdOmin.) = 8.9 g / 10 min
(MFR (lOmin. ) /MF R (6min. ) = 0. 88)  (MFR (lOmin.) / MFR (6min.) = 0.88)
MFR(20rain.) = 9. 4 g/l 0分  MFR (20rain.) = 9.4 g / l 0 min
(MFR (20min. ) /MF R (6min. ) = 0. 93)  (MFR (20min.) / MFR (6min.) = 0.93)
MFR(30min.) = 1 1. 8 g/l 0分  MFR (30min.) = 1 1.8 g / l 0min
(MFR (30min. ) /MF R (6min. ) = 1. 1 7)  (MFR (30min.) / MFR (6min.) = 1.17)
得られた乾燥チップを窒素雰囲気下でステンレス製の金属容器に入れ封管した。 この試料容器を 220°Cで 8、 16、 24、 50時間加熱処理した時の、 それぞ れの樹脂組成物の M F R及び該加熱処理を施していなレ、樹脂の M FR (MFR (0)) を測定した。 測定結果は以下のとおりであり、 それを図 2にも示す。 図 2は EVOHからなる樹脂組成物を窒素雰囲気下 220°Cで保持した際の、 加熱時間 と MFR (230°C、 10. 9 k g荷重) の関係を示す図である。 The obtained dried chips were placed in a stainless steel metal container under a nitrogen atmosphere and sealed. When this sample container was heated at 220 ° C for 8, 16, 24, and 50 hours, the MFR of each resin composition and the MFR (MFR (0) ) Was measured. The measurement results are shown below and are also shown in Figure 2. Figure 2 shows the relationship between heating time and MFR (230 ° C, 10.9 kg load) when the resin composition composed of EVOH was kept at 220 ° C in a nitrogen atmosphere.
MFR (0) =40 gZl 0分  MFR (0) = 40 gZl 0 min
MFR (8hr) =12 gZl O分  MFR (8hr) = 12 gZl O min
(MFR (8hr) /MFR(0) = O. 30)  (MFR (8hr) / MFR (0) = O. 30)
MFR (16hr) = l l gZl O分  MFR (16hr) = l l gZl O min
(MFR (I6hr) /MFR(0) = 0. 28)  (MFR (I6hr) / MFR (0) = 0.28)
MFR (24hr) =10 gZl 0分  MFR (24hr) = 10 gZl 0 min
(MFR (24hr) /MFR(0) = O. 25)  (MFR (24hr) / MFR (0) = O. 25)
MFR (50hr) =9 g/l 0分  MFR (50hr) = 9 g / l 0 min
(MFR (50hr) /MFR(0)-0. 23)  (MFR (50hr) /MFR(0)-0.23)
得られた乾燥チップとポリアミド樹脂 [宇部興産製 「宇部ナイロン 1024 F DX41」 ] を用い、 上記方法に従ってポリアミド ZEVOHノポリアミドの 2 種 3層の多層製膜を行い、 膜面むら、 耐着色性およびロングラン性の試験を実施 した。 得られた多層フィルムの膜面むら、 端面の着色度およびロングラン性はい ずれも A判定であった。  Using the obtained dried chips and polyamide resin [Ube Nylon 1024F DX41] manufactured by Ube Industries, two or three layers of polyamide ZEVOH no-polyamide are formed according to the above method, and the film surface unevenness, coloring resistance and Long run test was conducted. The resulting multilayer film was evaluated as A for both the unevenness of the film surface, the degree of coloring of the end surface, and the long run property.
得られた乾燥チップを用い、 上記の方法に従い臭気性の試験を行った。 臭気性 の試験結果は、 A判定だった。  Using the obtained dried chips, an odor test was conducted in accordance with the above method. The odor test result was A.
実施例 2 Example 2
エチレン含有量 38モル0 /0、 ケン化度 99. 4%、 固有粘度 0. 112 lZgの EVOHの含水チップ (含水率 110% : ドライベース) を用い、 当該含水 EV OHチップを浸漬する液の組成を表 1に示すように変更することを除いては実施 例 1と同様にして乾燥ペレツトを作製し、 実施例 1と同様にして評価を行った。 評価結果を表 3に示す。 Ethylene content 38 mole 0/0, saponification degree 99.4%, intrinsic viscosity 0. 112 lZg of water-containing EVOH chips (water content 110%: dry basis) using a liquid immersing the hydrous EV OH chip A dried pellet was prepared in the same manner as in Example 1 except that the composition was changed as shown in Table 1, and evaluation was performed in the same manner as in Example 1. Table 3 shows the evaluation results.
実施例 3〜 5 Examples 3 to 5
実施例 1で得られた浸漬処理前の含水 EVOHチップ (エチレン含有量 38モ ル%、 ケン化度 99. 4%、 固有粘度 0. 085 1/g) を用い、 当該含水 EV OHチップを浸漬する液の組成を表 1にまとめて示すように変更することを除い ては実施例 1と同様にして乾燥ペレツトを作製し、 実施例 1と同様にして評価を 行った。 評価結果を表 3に示す。  Using the water-containing EVOH chip obtained in Example 1 before immersion treatment (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g), the water-containing EVOH chip is immersed A dried pellet was prepared in the same manner as in Example 1 except that the composition of the solution to be used was changed as shown in Table 1, and evaluation was performed in the same manner as in Example 1. Table 3 shows the evaluation results.
実施例 6 Example 6
エチレン含有量 32モル0 /。、 ケン化度 99. 5%、 固有粘度 0. 097 lZgの EVOHの含水チップ (含水率 1 10% : ドライベース) を用い、 当該含水 EV OHチップを浸漬する液の組成を表 1に示すように変更することを除いては実施 例 1と同様にして乾燥ペレツトを作製し、 実施例 1と同様にして評価を行った。 評価結果を表 3に示す。 Ethylene content 3 2 mole 0 /. Table 1 shows the composition of the liquid used to immerse the water-containing EVOH chip using a water-containing chip of EVOH (water content: 110%: dry base) with a saponification degree of 99.5% and an intrinsic viscosity of 0.097 lZg. A dried pellet was prepared in the same manner as in Example 1 except that the composition was changed to, and the evaluation was performed in the same manner as in Example 1. Table 3 shows the evaluation results.
比較例 1 Comparative Example 1
実施例 1で得られた浸漬処理前の含水 EVOHチップ (エチレン含有量 38モ ル%、 ケン化度 99. 4%、 固有粘度 0. 085 1/g) を用い、 当該含水 EV OHチップを浸漬する液の組成を表 1に示すように変更することを除いては実施 例 1と同様にして乾燥ペレツトを作製した。  Using the water-containing EVOH chip obtained in Example 1 before immersion treatment (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g), the water-containing EVOH chip is immersed A dried pellet was produced in the same manner as in Example 1 except that the composition of the solution to be used was changed as shown in Table 1.
得られた乾燥チップを、 270 °Cでメルトインデクサ一中に保持し、保持時間 6分、 10分、 20分、 30分におけるそれぞれの榭脂組成物の MFR (270°C、 2160 g荷重) を測定した。 測定結果は以下のとおりであり、 それを図 1にも 示す。  The obtained dried chips are held in a melt indexer at 270 ° C., and the MFR (270 ° C., 2160 g load) of each resin composition at the holding time of 6, 10, 20, and 30 minutes Was measured. The measurement results are shown below and are also shown in Figure 1.
MFR(6min. ) =10. l gZl O分  MFR (6min.) = 10.l gZl O min
MFR (lOmin. )= 8. 5 g/l 0分  MFR (lOmin.) = 8.5 g / l 0 min
(MFR (lOmin. ) /MF R (6min. ) = 0. 84)  (MFR (lOmin.) / MFR (6min.) = 0.84)
MFR (20min. )= 9. O gノ 10分 (MFR (20rain. ) /MF R (6min. ) = 0. 89) MFR (20min.) = 9.O g no 10min (MFR (20rain.) / MFR (6min.) = 0.89)
MFR (30min. )= 10. 8 g/l 0分  MFR (30min.) = 10.8 g / l 0min
(MFR (30min. ) /M F R (6min. ) = 1. 07)  (MFR (30min.) / MFR (6min.) = 1.07)
また、 得られた乾燥チップを窒素雰囲気下でステンレス製の金属容器に入れ封 管した。 この試科容器を 220°Cで 8、 16、 24、 50時間加熱処理した時の MFR及ぴ該加熱処理を施していない樹脂の MFR (MFR(O)) を測定した。測 定結果は以下のとおりであり、 それを図 2にも示す。  The obtained dried chips were placed in a stainless steel metal container under a nitrogen atmosphere and sealed. The MFR when this sample container was heated at 220 ° C for 8, 16, 24, and 50 hours and the MFR (MFR (O)) of the resin not subjected to the heat treatment were measured. The measurement results are shown below and are also shown in Figure 2.
MFR(O) =35. 2 g/10分  MFR (O) = 35.2 g / 10min
MFR (8hr) =10. l g/10分  MFR (8hr) = 10.l g / 10min
(MFR (8hr) /MFR(0) = O. 29)  (MFR (8hr) / MFR (0) = O. 29)
MFR (I6hr) = 5. 7 g/10分  MFR (I6hr) = 5.7 g / 10min
(MFR (I6hr) /MFR(0) = O. 16)  (MFR (I6hr) / MFR (0) = O. 16)
MFR (24hr) =3. 5 g/l 0分  MFR (24hr) = 3.5 g / l 0 min
(MFR (24hr) /MFR(0) = O. 10)  (MFR (24hr) / MFR (0) = O. 10)
MFR (50hr) =0. 35 g/10分  MFR (50hr) = 0.35 g / 10min
(MFR (50hr) /MFR(0) = O. 01)  (MFR (50hr) / MFR (0) = O. 01)
得られた乾燥チップを用いて、 実施例 1と同様の評価を行った。 評価結果を表 3に示す。 '  The same evaluation as in Example 1 was performed using the obtained dried chips. Table 3 shows the evaluation results. '
比較例 2 Comparative Example 2
実施例 2で得られた浸漬処理前の含水 EVOHチップ (エチレン含有量 38モ ル0 /0、 ケン化度 99. 4%、 固有粘度 0. 1 12 1/g) を用い、 当該含水 EV OHチップを浸漬する液の組成を表 1に示すように変更することを除いては実施 例 1と同様にして乾燥べレットを作製した。 Using hydrous EVOH chips before immersion treatment obtained in Example 2 (ethylene content 38 molar 0/0, saponification degree 99.4%, intrinsic viscosity 0. 1 12 1 / g), the water EV OH A dried bellet was produced in the same manner as in Example 1 except that the composition of the liquid in which the chip was immersed was changed as shown in Table 1.
得られた乾燥チップを、 270°Cでメルトインデクサ一中に保持し、保持時間 6分、 10分、 20分、 30分におけるそれぞれの樹脂組成物の MFR (270°C、 2160 g荷重) を測定した。 測定結果は以下のとおりであり、 それを図 1にも 示す。 The obtained dried chips are held in a melt indexer at 270 ° C., and the MFR (270 ° C., 2160 g load) of each resin composition at the holding time of 6, 10, 20, and 30 minutes is measured. It was measured. The measurement results are as follows, which is also shown in Figure 1. Show.
MFR(6rain. ) =14. O gZl O分  MFR (6rain.) = 14. O gZl O min
MFRdOmin. ) = 31. 2 g/10分  MFRdOmin.) = 31.2 g / 10min
(MFR (lOmin. ) /MF R (6min. ) = 2. 23)  (MFR (lOmin.) / MFR (6min.) = 2.23)
MFR(20min.)= 101 gZl 0分  MFR (20 min.) = 101 gZl 0 min
(MFR (20min. ) /MF R (6min. ) = 7. 21)  (MFR (20min.) / MFR (6min.) = 7.21)
MFR(30min. )= 105 g/10分  MFR (30 min.) = 105 g / 10 min
(MFR (30min. ) /MF R (6min. ) = 7. 50)  (MFR (30min.) / MFR (6min.) = 7.50)
また、 得られた乾燥チップを窒素雰囲気下でステンレス製の金属容器に入れ封 管した。 この試料容器を 220でで 8、 16、 24、 50時間加熱処理した時の MFR及び該加熱処理を施していない樹脂の MFR (MFR(O))は以下の通りで あった。 測定結果は以下のとおりであり、 それを図 2にも示す。  The obtained dried chips were placed in a stainless steel metal container under a nitrogen atmosphere and sealed. The MFR when the sample container was heated at 220 for 8, 16, 24, and 50 hours and the MFR (MFR (O)) of the resin not subjected to the heat treatment were as follows. The measurement results are shown below and are also shown in Figure 2.
MFR(O) = 40. O gZl O分  MFR (O) = 40. O gZl O min
MFR (8hr) = 70. l gZl O分  MFR (8hr) = 70.l gZl O min
(MFR (8hr) /MFR(0) = 1. 75)  (MFR (8hr) / MFR (0) = 1.75)
MFR (16hr) l O l gZl O分  MFR (16hr) l O l gZl O min
(MFR (8hr) /MFR(0) = 2. 53)  (MFR (8hr) / MFR (0) = 2.53)
MFR (24hr) =124gZl O分  MFR (24hr) = 124gZl O min
(MFR (lOhr) /MFR(0) = 3. 10)  (MFR (lOhr) / MFR (0) = 3.10)
MFR (50hr) =42. 4 gZl O分  MFR (50hr) = 42.4 gZl O min
(MFR (50hr) /MFR(0)= 1. 06)  (MFR (50hr) / MFR (0) = 1.06)
得られた乾燥チップを用いて、 実施例 1と同様の評価を行った。 評価結果を表 3に示す。  The same evaluation as in Example 1 was performed using the obtained dried chips. Table 3 shows the evaluation results.
比較例 3 Comparative Example 3
実施例 1で得られた浸漬処理前の含水 EVOHチップ (エチレン含有量 38モ ル%、 ケン化度 99. 4%、 固有粘度 0. 085 1/g) を用い、 当該含水 EV OHチップ 10 k gを、 ホウ酸 0. 53 g/Lを含有する水溶液 18 Lに 25°C で 5時間浸漬し、 浸漬後脱液した。 Using the water-containing EVOH chip (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g) obtained in Example 1 before immersion treatment, 10 kg of the OH chip was immersed in 18 L of an aqueous solution containing 0.53 g / L of boric acid at 25 ° C for 5 hours.
更に上記含水チップ 3. 3 k gをホウ酸 0. 13 g/L、 酢酸 0. 3 g/L, 酢酸ナトリウム 0. 54 g/Lを含有する水溶液 30 Lに 25 °Cで 6時間浸漬 · 攪拌した。 その後脱液し、 80°Cにて 3時間、 107°Cにて 24時間熱風乾燥を 行い、 乾燥チップを得た。  Further, 3.3 kg of the above hydrated chip is immersed in 30 L of an aqueous solution containing 0.13 g / L of boric acid, 0.3 g / L of acetic acid, and 0.54 g / L of sodium acetate at 25 ° C for 6 hours with stirring. did. Thereafter, the solution was drained and dried with hot air at 80 ° C for 3 hours and at 107 ° C for 24 hours to obtain dried chips.
得られた乾燥チップ中のカルボン酸 (A) の含有量は 2. 2 μ ϊΆθ 1 /g, 力 ルボン酸 (A) およびその塩の総含有量は 5. 5 mo 1 /g (その内の分子量 75以上のカルボン酸 (a l) およびその塩の含有量は 0 μπιο 1 Zg) 、 アル カリ金属塩の含有量は金属元素換算で 200 p pm、 ホウ素化合物の含有量はホ ゥ素元素換算値で 280 p pmであった。 また、 MFRは 1. 9 gZl O分 (1 90°C、 2160 g荷重) であった。  The content of carboxylic acid (A) in the obtained dried chips was 2.2 μϊΆθ 1 / g, and the total content of carboxylic acid (A) and its salts was 5.5 mo 1 / g (of which The content of carboxylic acid (al) with a molecular weight of 75 or more (al) and its salt is 0 μπιο1 Zg), the content of alkali metal salt is 200 ppm in metal element conversion, and the content of boron compound is boron element conversion value At 280 ppm. The MFR was 1.9 gZlO content (190 ° C, 2160 g load).
得られた乾燥チップを用いて、 実施例 1と同様の評価を行った。 評価結果を表 3に示す。  The same evaluation as in Example 1 was performed using the obtained dried chips. Table 3 shows the evaluation results.
比較例 4 Comparative Example 4
実施例 1で得られた浸漬処理前の含水 E V O Hチップ (ェチレン含有量 38モ ル%、 ケン化度 99. 4%、 固有粘度 0. 085 1/g) を用い、 当該含水 EV OHチップを浸漬する液の組成を表 1に示すように変更することを除いては実施 例 1と同様にして乾燥ペレツトを作製し、 実施例 1と同様にして評価を行った。 評価結果を表 3に示す。 表 1 Using the water-containing EVOH chip obtained in Example 1 before immersion treatment (ethylene content 38 mol%, saponification degree 99.4%, intrinsic viscosity 0.085 1 / g), the water-containing EVOH chip was immersed. A dried pellet was prepared in the same manner as in Example 1 except that the composition of the solution to be used was changed as shown in Table 1, and evaluation was performed in the same manner as in Example 1. Table 3 shows the evaluation results. table 1
Figure imgf000036_0001
Figure imgf000036_0001
*X/Y (g/L): Xはホウ酸のみを含有する水溶液の濃度、 Yはホウ酸及ぴ金属塩を含有する水溶液の濃度 * X / Y (g / L): X is the concentration of aqueous solution containing only boric acid, Y is the concentration of aqueous solution containing boric acid and metal salt
表 2 Table 2
Figure imgf000037_0001
Figure imgf000037_0001
表 3 Table 3
Figure imgf000038_0001
Figure imgf000038_0001
* 3  * 3
O; MFR(10min.)/MFR(6min.)、 MFR(20min.)/MFR(6min.), FR(30min.)/ FR(6min.) がいずれも 0·5〜1.5の範囲に入る。  O: MFR (10min.) / MFR (6min.), MFR (20min.) / MFR (6min.), FR (30min.) / FR (6min.) All fall within the range of 0.5 to 1.5.
X; MFR(10min.)/MFR(6min.)s MFR(20min.)/MFR(6min.)、 MFR(30min.)/MFR(6min.) の少なくともいずれかが 0.5〜1.5の範囲に入らない。 X: MFR (10min.) / MFR (6min.) S At least one of MFR (20min.) / MFR (6min.), MFR (30min.) / MFR (6min.) Does not fall in the range of 0.5 to 1.5 .
* 4  * Four
O ; MFR(8hr)/MFR(0)、 MFR(16hr)/MFR(0), MFR(24hr)/ FR(0), MFR(50hr)/ FR(0) がいずれも 0.02〜1の範囲に入る。  O; MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / FR (0), MFR (50hr) / FR (0) all within the range of 0.02 ~ 1 enter.
X; MFR(8hr)/MFR(0)、 MFR(16hr)/MFR(0), MFR(24hr)/ FR(0), MFR(50hr)/MFR(0) の少なくともいずれがが 0 2〜1の範囲に入らない。 本発明の構成を有する実施例 1〜6の EVOHからなる樹脂組成物は、 ナイ口X: at least any of MFR (8hr) / MFR (0), MFR (16hr) / MFR (0), MFR (24hr) / FR (0), MFR (50hr) / MFR (0) is 0 2 to 1 Out of range. The resin compositions comprising EVOH of Examples 1 to 6 having the constitution of the present invention
!
ンとの高温での共押出成形時においても、 膜面むらおよぴ着色の少なく、 ゲル · プッの発生が少ない外観に優れた成形品を得ることができた。 実施例 1と比較した場合、 ホウ素化合物を含有していない実施例 2では、 多層 製膜時のロングラン性がやや劣った。 また、 リン酸化合物 (C) の含有量が 80 p p m (リン酸根換算値) を超える実施例 3では、 さらにロングラン性が低下し た。 Even at the time of co-extrusion molding with the resin at high temperature, it was possible to obtain a molded article excellent in appearance with less unevenness of the film surface and less coloring and less generation of gel and pop. As compared with Example 1, in Example 2, which did not contain a boron compound, the long-run property during multilayer film formation was slightly inferior. In Example 3 in which the content of the phosphoric acid compound (C) exceeds 80 ppm (in terms of phosphate radical), the long-run property was further reduced.
アルカリ金属塩 (D) の含有量が 30 O p pm (金属元素換算) を超える実施 例 4では、 多層製膜時にやや膜面むらが発生し、 耐着色性及びロングラン性が若 干劣っていた。  In Example 4 in which the content of the alkali metal salt (D) was more than 30 Oppm (in terms of metal element), the surface of the film was slightly uneven at the time of multilayer film formation, and the color resistance and the long run property were slightly inferior. .
また、 (& 1) ダ ( ) が0. 98に満たない実施例 5 (ただし、 (A) :カ ルボン酸 (A) およびその塩の総含有量 (μπιοΐ/g) 、 (a 1) :分子量 75以 上のカルボン酸 (a 1) およびその塩の含有量 ( mol/g) ) では、 若干低臭性 の改善効果が劣つていた。  Also, Example 5 in which (& 1) da () is less than 0.98 (provided that (A): the total content of carboxylic acid (A) and its salts (μπιοΐ / g), (a 1): The content of the carboxylic acid (a1) having a molecular weight of 75 or more (a1) and its salt (mol / g)) was slightly inferior in the effect of improving the low odor.
一方、 カルボン酸の含有量が 2. 5 / mo lZgを超える比較例 1では、 多層 製膜時のロングラン性および耐着色性が著しく劣っていた。 また、 アルカリ土類 金属塩 (B) の含有量が l O p pm (金属元素換算値) を超える比較例 2では、 ポリアミドとの共押出成形時に激しい膜面むらを生じ、 耐着色性も著しく低下し た。  On the other hand, in Comparative Example 1 in which the content of the carboxylic acid was more than 2.5 / molZg, the long run property and the coloring resistance during the multilayer film formation were remarkably inferior. In Comparative Example 2 in which the content of the alkaline earth metal salt (B) exceeds l Op pm (converted to a metal element), severe film surface unevenness occurs during coextrusion molding with polyamide, and the color resistance is remarkably high. Dropped.
さらに、 ( a 1 ) / (A) が 0. 7に満たない比較例 3の場合は、 ポリアミド との共押出成形時に充分な耐着色性の改善効果が得られず、 かつ臭気性の改善効 果も得られなかった。 (a 1) / (A)が 0. 7に満たないが、 リン酸化合物(C) が配合されている比較例 4では、 耐着色性は改善されていたが、 臭気性の改善効 果は依然乏しかった。  Further, in the case of Comparative Example 3 in which (a 1) / (A) is less than 0.7, a sufficient effect of improving coloration resistance cannot be obtained at the time of coextrusion molding with polyamide and an effect of improving odor. No fruit was obtained. In Comparative Example 4 in which (a 1) / (A) was less than 0.7, but the phosphoric acid compound (C) was blended, the coloring resistance was improved, but the effect of improving the odor was not improved. It was still scarce.
産業上の利用可能性 本発明によれば、 ポリアミドまたはポリエステルなどの融点の高い樹脂との共 押出成形または共射出成形の際など、 高温での溶融成形時においても着色、 膜面 むらが少なく外観性に優れ、 かつロングラン性およぴ低臭性に優れたエチレン一 ビュルアルコール共重合体樹脂組成物およびそれを用いた多層構造体を提供する ことができる。 Industrial applicability According to the present invention, even when co-extrusion molding or co-injection molding with a resin having a high melting point such as polyamide or polyester, coloring, film surface unevenness is excellent, appearance is excellent, and long-running is achieved even during high-temperature melt molding. The present invention can provide an ethylene-vinyl alcohol copolymer resin composition having excellent properties and low odor, and a multilayer structure using the same.
本発明の多層構造体は各種食品容器、 たとえば深絞り容器、 カップ状容器、 ボ トル等として有用である。  The multilayer structure of the present invention is useful as various food containers, for example, deep drawing containers, cup-shaped containers, bottles and the like.

Claims

請求の範囲 The scope of the claims
1. カルボン酸 (A) の含有量が 0. 05〜2. 5 μηιο1/§であり、 アルカリ土 類金属塩 (Β) の含有量が 10 p pm以下 (金属元素換算値) であり、 かつ下記 式 (1) を満たす、 エチレン一ビュルアルコール共重合体樹脂組成物。 1. The content of the carboxylic acid (A) is 0.05 to 2.5 μηιο1 / § , the content of the alkaline earth metal salt (Β) is 10 ppm or less (in terms of metal element), and An ethylene-butyl alcohol copolymer resin composition satisfying the following formula (1).
0. 7≤ (a l) / (A) ≤ l. 0 (1)  0.7 ≤ (a l) / (A) ≤ l. 0 (1)
ただし、 However,
(A) :カルボン酸 (A) およびその塩の総含有量 ( imolZg)  (A): Total content of carboxylic acid (A) and its salt (imolZg)
(a 1) :分子量 75以上のカルボン酸 (a 1) およびその塩の含有量 (μιηοΐ /g)  (a 1): Content of carboxylic acid with molecular weight of 75 or more (a 1) and its salt (μιηοΐ / g)
2. 分子量 75以上のカルボン酸 (a l) I ヒドロキシカルボン酸である請求 項 1記載の樹脂組成物。  2. The resin composition according to claim 1, which is a carboxylic acid (al) I hydroxycarboxylic acid having a molecular weight of 75 or more.
3. 分子量 75以上のカルボン酸 ( a 1 ) が乳酸である請求項 1記載の樹脂糸且成 物。  3. The resin yarn composition according to claim 1, wherein the carboxylic acid (a1) having a molecular weight of 75 or more is lactic acid.
4. リン酸化合物 (C) の含有量が 80 p p m以下 (リン酸根換算値) である請 求項:!〜 3のいずれかに記載の樹脂組成物。 4. Claims in which the content of the phosphate compound (C) is 80 ppm or less (converted to phosphate radical):! 4. The resin composition according to any one of items 1 to 3.
5. ホウ素化合物 (E) をホウ素元素換算値で 50〜2000 p pm含有してな る請求項 1〜 4のいずれかに記載の樹脂組成物。  5. The resin composition according to claim 1, which contains the boron compound (E) in an amount of 50 to 2,000 ppm in terms of a boron element.
6.樹脂組成物をメルトインデクサ一中、 270°Cで 6分保持した時の MFR (M FR (6min. ) ; 270 °C、 2160 g荷重) と、 270でで 10分、 20分、 30 分保持した際の MFR (それぞれ、 MFR(10min.)、 MFR(20min. )、 MFR (30min. ) ;いずれも 270°C、 2160 g荷重) が下記式 (2) 〜 (4) の総て を満たす請求項 1〜 5のいずれかに記載の樹脂組成物。  6. MFR (MFR (6min.); 270 ° C, 2160g load) when the resin composition is held at 270 ° C for 6 minutes in the melt indexer, and 270 for 10 minutes, 20 minutes, 30 The MFR (MFR (10 min.), MFR (20 min.), MFR (30 min.); All at 270 ° C and 2160 g load) when held for minutes is calculated by the following formulas (2) to (4). The resin composition according to any one of claims 1 to 5, which satisfies the following.
0. 5≤MFR (lOmin. ) / MFR(6min.)≤ 1. 5 (2)  0.5≤MFR (lOmin.) / MFR (6min.) ≤1.5 (2)
0. 5≤MFR (20min. ) / MFR(6min. )≤ 1. 5 (3)  0.5≤MFR (20min.) / MFR (6min.) ≤1.5 (3)
0. 5≤MFR (30min. ) / MFR(6min.)≤ 1. 5 (4) 0.5≤MFR (30min.) / MFR (6min.) ≤1.5 (4)
7 . 請求項 1〜 6のいずれかに記載の榭脂組成物からなる層の少なくとも片面に 熱可塑性樹脂を積層してなることを特徴とする多層構造体。 7. A multilayer structure comprising a layer made of the resin composition according to any one of claims 1 to 6 and a thermoplastic resin laminated on at least one surface of the layer.
8 . 熱可塑'性樹脂が、 ポリアミドまたはポリエステルである請求項 7記載の多層 構造体。  8. The multilayer structure according to claim 7, wherein the thermoplastic resin is polyamide or polyester.
9 . 共押出成形または共射出成形してなる請求項 7または 8記載の多層構造体。 9. The multilayer structure according to claim 7 or 8, which is formed by co-extrusion molding or co-injection molding.
1 0 . 溶融成形時のダイ温度またはノズル温度が 2 5 0 °C以上である請求項 7〜 9記載の多層構造体の製造方法。 10. The method for producing a multilayer structure according to claim 7, wherein a die temperature or a nozzle temperature during melt molding is 250 ° C. or higher.
PCT/JP2001/004870 2000-06-14 2001-06-08 Ethylene/vinyl alcohol copolymer resin composition WO2001096464A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002510593A JP5093959B2 (en) 2000-06-14 2001-06-08 Ethylene-vinyl alcohol copolymer resin composition
AU2001264229A AU2001264229A1 (en) 2000-06-14 2001-06-08 Ethylene/vinyl alcohol copolymer resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000177752 2000-06-14
JP2000-177752 2000-06-14

Publications (1)

Publication Number Publication Date
WO2001096464A1 true WO2001096464A1 (en) 2001-12-20

Family

ID=18679297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004870 WO2001096464A1 (en) 2000-06-14 2001-06-08 Ethylene/vinyl alcohol copolymer resin composition

Country Status (3)

Country Link
JP (1) JP5093959B2 (en)
AU (1) AU2001264229A1 (en)
WO (1) WO2001096464A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189940A (en) * 2002-02-18 2008-08-21 Kuraray Co Ltd Ethylene-vinyl alcohol copolymer resin composition and pellet comprising the same
US7473735B2 (en) 2003-08-01 2009-01-06 Kuraray Co., Ltd. Resin composition and method for producing the same
US8137775B2 (en) 2003-08-11 2012-03-20 Kuraray Co., Ltd. Blow molded container and method for producing the same
WO2013005807A1 (en) * 2011-07-07 2013-01-10 株式会社クラレ Ethylene-vinyl alcohol copolymer resin composition and method for producing same
US11407880B2 (en) 2014-12-24 2022-08-09 Kuraray Co., Ltd. Polymethallyl alcohol resin composition and molding containing same
US11865815B2 (en) 2014-12-24 2024-01-09 Kuraray Co., Ltd. Polymethallyl alcohol resin composition and molding containing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430090A (en) * 1993-02-22 1995-07-04 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Hot-melt adhesive
JPH07329253A (en) * 1994-06-07 1995-12-19 Kuraray Co Ltd Laminated film, laminate and use of them
JPH1121320A (en) * 1997-05-09 1999-01-26 Kuraray Co Ltd Molding comprising ethylene/vinyl alcohol copolymer
EP1067152A1 (en) * 1999-07-07 2001-01-10 Kuraray Co., Ltd. Resin composition comprising ethylene-vinyl alcohol copolymer with good interlayer adhesiveness

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523679B2 (en) * 1993-02-22 2004-04-26 日本合成化学工業株式会社 Polyvinyl alcohol-based resin composition, hot melt adhesive and method for producing the same
JP4722270B2 (en) * 1999-09-07 2011-07-13 株式会社クラレ Resin composition comprising ethylene-vinyl alcohol copolymer excellent in low odor and interlayer adhesion, and multilayer structure using the same
JP5307960B2 (en) * 1999-12-16 2013-10-02 株式会社クラレ Ethylene-vinyl alcohol copolymer resin composition having improved long run properties and molded article thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430090A (en) * 1993-02-22 1995-07-04 Nippon Gohsei Kagaku Kogyo Kabushiki Kaisha Hot-melt adhesive
JPH07329253A (en) * 1994-06-07 1995-12-19 Kuraray Co Ltd Laminated film, laminate and use of them
JPH1121320A (en) * 1997-05-09 1999-01-26 Kuraray Co Ltd Molding comprising ethylene/vinyl alcohol copolymer
EP1067152A1 (en) * 1999-07-07 2001-01-10 Kuraray Co., Ltd. Resin composition comprising ethylene-vinyl alcohol copolymer with good interlayer adhesiveness

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189940A (en) * 2002-02-18 2008-08-21 Kuraray Co Ltd Ethylene-vinyl alcohol copolymer resin composition and pellet comprising the same
JP2008189941A (en) * 2002-02-18 2008-08-21 Kuraray Co Ltd Melt-molded product comprising ethylene-vinyl alcohol copolymer resin composition
US7473735B2 (en) 2003-08-01 2009-01-06 Kuraray Co., Ltd. Resin composition and method for producing the same
KR101132962B1 (en) * 2003-08-01 2012-04-10 가부시키가이샤 구라레 Resin composition and method for producing the same
US8137775B2 (en) 2003-08-11 2012-03-20 Kuraray Co., Ltd. Blow molded container and method for producing the same
KR101132963B1 (en) * 2003-08-11 2012-04-09 가부시키가이샤 구라레 Blow molded container and method for producing the same
WO2013005807A1 (en) * 2011-07-07 2013-01-10 株式会社クラレ Ethylene-vinyl alcohol copolymer resin composition and method for producing same
JPWO2013005807A1 (en) * 2011-07-07 2015-02-23 株式会社クラレ Ethylene-vinyl alcohol copolymer resin composition and method for producing the same
US9951199B2 (en) 2011-07-07 2018-04-24 Kuraray Co., Ltd. Ethylene-vinyl alcohol copolymer resin composition and method for producing same
US11407880B2 (en) 2014-12-24 2022-08-09 Kuraray Co., Ltd. Polymethallyl alcohol resin composition and molding containing same
US11865815B2 (en) 2014-12-24 2024-01-09 Kuraray Co., Ltd. Polymethallyl alcohol resin composition and molding containing same

Also Published As

Publication number Publication date
AU2001264229A1 (en) 2001-12-24
JP5093959B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
US6242087B1 (en) Multilayer structure and process for producing the same
JP3590498B2 (en) Saponified ethylene-vinyl ester copolymer composition and co-extruded multilayer molded article using the same
JP5285953B2 (en) Ethylene-vinyl alcohol copolymer resin composition and pellets comprising the same
CA2321320C (en) Resin composition of good long-run workability comprising ethylene-vinyl alcohol copolymer
JP5700898B2 (en) Resin composition comprising ethylene-vinyl alcohol copolymer excellent in long-running property and multilayer structure using the same
KR100489724B1 (en) Resin composition comprising ethylene-vinyl alcohol copolymer with good interlayer adhesiveness
KR100460560B1 (en) Ethylene-vinyl alcohol copolymer resin composition of improved long-run workability, and its shaped article
JP5813202B2 (en) Resin composition comprising an ethylene-vinyl alcohol copolymer excellent in low odor
JP2021028356A (en) Pellets and melt-molded products made from them, and method for producing them
JP4722270B2 (en) Resin composition comprising ethylene-vinyl alcohol copolymer excellent in low odor and interlayer adhesion, and multilayer structure using the same
JP2001164070A (en) Resin composition composed of ethylene-vinyl alcohol copolymer having low odor
JP5781648B2 (en) Resin composition and pellet made of ethylene-vinyl alcohol copolymer having excellent long-running property
WO2001096464A1 (en) Ethylene/vinyl alcohol copolymer resin composition
JP4647065B2 (en) Resin composition comprising ethylene-vinyl alcohol copolymer and multilayer structure using the same
JP5307960B2 (en) Ethylene-vinyl alcohol copolymer resin composition having improved long run properties and molded article thereof
US20210061975A1 (en) Resin composition including ethylene/vinyl alcohol copolymer, and molded object and packaging material both comprising same
JP2000177068A (en) Multilayered structure and production thereof
JP7079270B2 (en) Method for Producing Ethylene-Vinyl Alcohol Copolymer-Containing Resin Composition
JP4684589B2 (en) Resin composition and method for producing the same
JP5307959B2 (en) Ethylene-vinyl alcohol copolymer resin composition excellent in long run properties
JPWO2002053639A1 (en) Ethylene-vinyl alcohol copolymer resin composition
JP2001302710A (en) Resin composition and laminate
JP2021138824A (en) Ethylene-vinyl alcohol copolymer-containing resin composition and molded article
JP2000177067A (en) Multilayered structure obtained by co-extrusion coating and production thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase