WO2001096262A1 - Method for producing dendritic structures - Google Patents

Method for producing dendritic structures Download PDF

Info

Publication number
WO2001096262A1
WO2001096262A1 PCT/DE2001/002230 DE0102230W WO0196262A1 WO 2001096262 A1 WO2001096262 A1 WO 2001096262A1 DE 0102230 W DE0102230 W DE 0102230W WO 0196262 A1 WO0196262 A1 WO 0196262A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
reaction
bisubstituted
alkynyl halide
butyl
Prior art date
Application number
PCT/DE2001/002230
Other languages
German (de)
French (fr)
Inventor
Manfred Wiessler
Stefan Raddatz
Original Assignee
Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts filed Critical Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts
Publication of WO2001096262A1 publication Critical patent/WO2001096262A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical

Definitions

  • the invention relates to a method for producing dendritic structures.
  • Dendritic structures especially dendritic saccharide structures, have become increasingly important for biological applications in recent years. It has been recognized that dentritic structures play a role in biological recognition processes, e.g. in the case of metastasis or infection by viruses or bacteria (Varki, Glycobiology 1993, 3, 97). However, the reactions used to build up these structures all suffer from the disadvantage that they offer no possibility of introducing a wide variety of (sugar) structures in a few reaction steps.
  • the present invention is therefore based on the object of providing a method with which dendritic structures (in particular dendritic saccharide structures with high variability) can be produced simply, inexpensively, with high variability and in good yields.
  • the present application thus relates to a process in which highly substituted alkynyl halides are reacted with CH-acidic carbonyl compounds in the presence of a strong base.
  • Dendrimers / dendritic structures are three-dimensional, highly ordered oligomeric or polymeric compounds. These have several reactive groups. Substances are bound to these groups. In this way, first generation dendrimers are obtained. To the substances of the First generation dendrimers can be bound to other substances which can then be linked to other substances. Second generation dendrimers are obtained. By repeating this sequence of reactions, higher generation dendrimers are obtained.
  • the present invention is based on the finding that even highly substituted alkynyl halides can alkylate reactive CH-acidic compounds repeatedly (e.g. up to four times) in good to very good yields. Any ester groups or protective groups which may be present can then be split off and the remaining keto function reduced, so that an alcohol function is formed. This alcohol function can be alkylated again with a reactive alkynyl halide, which means the generation of a spacer in the resulting dendrimeric structure. Therefore, preferred spacers are saturated or unsaturated hydrocarbon chains, preferably C 2 -C 18 groups, which may contain heteroatoms, such as oxygen, sulfur or nitrogen atoms.
  • FIG. 1 A preferred reaction scheme for the production of dendrimeric saccharide structures is shown in FIG. 2.
  • any of a C-H-acidic carbonyl compound is any of a C-H-acidic carbonyl compound
  • Preferred C-H-acidic compounds are diethyl acetone dicarboxylate, acetoacetic ester, diethyl malonate, di (2-trimethylsilylethyl) acetone dicarboxylate, di-t-butyl acetone dicarboxylate.
  • an alkynyl halide is understood to mean all aliphatic, alicyclic or aromatic hydrocarbons which have an at least bisubstituted CC triple bond and have a halogen substituent.
  • the halogen substituent can be fluoride, bromide, chloride or iodide, with bromide being preferred.
  • Very preferred compounds are 2-alkynyl halides, such as 1-bromo-2-butyn-4-ol or 1-bromo-2-hexin-6-ol.
  • the alkynyl halides preferably have one on at least one of their ends -14/6
  • saccharide encompasses saccharides of all kinds, in particular monosaccharides in all stereoisomeric and enantiomeric forms, for example pentoses and hexoses, such as ⁇ - and ⁇ -D-glucose and derivatives thereof, such as with protecting groups, for example benzyl-protected saccharides and / or with functional groups Groups such as amino groups, phosphate groups or halide groups, modified saccharides.
  • Saccharides here are especially inositols, very particularly optically active derivatives of myo-inositol and quebrachitol, for example from galactinols, both from plant sources, such as sugar beets, and from milk products, or derivatives obtained by enzymatic separation of enantiomers.
  • the saccharides can be the same or different from one another. Between the actual alkyl halide and the
  • a spacer as defined above is present between the core structure originating from the C-H-acidic compound and one or at most all of the end modifications (e.g. saccharides). If there are several spacers, they can be the same or different from one another.
  • phase the necessary base (e.g. hydroxide) is dissolved in water.
  • the conditions in which the components react with one another can be determined by a person skilled in the art.
  • the ratio of the components is preferably:
  • the reaction times can be between 2 and 24, preferably between 5 and 20, very preferably 8 to 15 hours.
  • the reaction temperatures are between 0 ° C and 60 ° C, preferably between 20 and 40 ° C, very preferably at room temperature to about 30 ° C.
  • Fig. 3 shown.
  • Dendrimers produced according to the invention are notable for a number of advantageous properties. They are biodegradable. Therefore, they are easy to dispose of. Furthermore, they are essentially renewable
  • dendrimers according to the invention are present in precisely defined structures, ie there are no defects and / or inter- or intramolecular bonds. Furthermore, dendrimers according to the invention have chiral C atoms. In addition, due to their structure, they can be chemical
  • dendrimers according to the invention are able to enter into elective interactions with sugar-specific receptors and thus e.g. bind to viruses, bacteria and cells.
  • dendrimers produced according to the invention are ideally suited as column material for separating substances from mixtures of products, in particular for separating racemates into enantiomers. Furthermore, they can due to their interactions with receptors for the affinity chromatographic isolation of lectins and other glycoproteins and as cell adhesion inhibitors, for example viruses and bacteria for infection protection.
  • dendrimers produced according to the invention can be provided for a large number of other uses.
  • they can be used as catalysts in enatioselective synthesis. They are also suitable in the medical field, e.g. as a carrier of medicinal substances, in particular for use in depot medication and for the targeted injection of active substances into target cells (drug targeting). Furthermore, they can be used to prevent rejection reactions in organ transplants.
  • Dendrimers according to the invention can also be used for the surface coating of aqueous media and as micelles. Furthermore, they can, especially if they carry functional groups such as amino groups in the outermost shell
  • dendrimers according to the invention which are conjugated to solid phases, in particular derivatives of inositol, can be used for the treatment of drinking water contaminated with bacteria.
  • dendrimers according to the invention if they are linked to dyes, can be used to label lectins in histochemical and cytochemical processes.
  • Fig. 2 Structure of a dendrimeric structure starting from a galactose-modified alkynyl bromide and acetone dicarboxylic acid ester
  • Fig. 3 Structure of a dendrimeric structure based on a sugar-modified alkynyl bromide and acetoacetic ester -10/6
  • Example 1 Preparation of 1 -Brom ⁇ a'jS ' ⁇ 'je'-tetra-O-benzyl- ⁇ -D-glucopyranosyl] -but-2-in (43) and benzy! -ß-D-glucopyranosyl] -but-2-in (43ß)
  • reaction mixture was shaken with saturated sodium bicarbonate solution and the organic phase was separated off.
  • the aqueous phase was extracted twice more with dichloromethane.
  • the organic phases were combined and dried over anhydrous sodium sulfate. It was concentrated and the residue was removed using
  • Example 2 Preparation of l-Bro - -t 'jS' ⁇ '- ⁇ '-tetra ⁇ OJ-benzyl- ⁇ -D-galactopyranosyl] -but-2-in (44) 3.51 g (5.12 mmol) [2, 3, 4, 6-tetra- (O) -benzy! -Ss-D-galactogyranosyl] - trichloroacetim.dat [Schmidt 1980] and 879 mg (10.2 mmol) of 2-butyne-1, 4-diol were in 15 ml abs , Acetonitrile suspended. The mixture was cooled to 15 ° C. and 150 l ( ⁇ 184 mg, 0.82 mmol) of trimethylsilyl trifluoromethanesulfonate were added dropwise. After thirty minutes
  • Example 4 Preparation of 2,2-bis [4'- ⁇ -D-glucopyranosyI-butyl] - di-tert-butyl malonic acid (48) 20.2 mg (14.5 // mol) 2,2-bis [4 '- (2nd ", 3", 4 ", 6" -Tetra- (O) -benzyl- ⁇ -D-glucosyl) -but-2'-inyl] malonic acid di-tert-butyl ester 47 and 6.9 mg of 20% Pd / C were suspended in 1.0 ml acetone / water (9: 1) under a hydrogen atmosphere. The mixture was stirred at RT for 16 hours.
  • reaction mixture was filtered through a membrane filter and the filtrate was concentrated on a rotary evaporator.
  • the residue could be purified by filtration through silica gel using methanol as the eluent. A colorless oil was isolated.
  • Example 6 Preparation of 2 5 2,4,4-tetrakis [4 '- (»- D-glucopyranosyl) butyl] -3-oxoglutaric acid di-tert-butyl ester (50) 17.2 mg (6.56 mol) 2,2,4 , 4-TetrakisI4 '- (2 ", 3", 4 ", 6" -Tetra- (0 -benzyl- -D-glucopyranosyl) -but-2'-ynyl] -3-oxoglutaric acid di-tert-butyl ester (49 ) and 5.8 mg of 20% Pd / C were suspended under a hydrogen atmosphere in 1.0 ml of acetone / water (9: 1) and reacted and worked up as described in regulation 48. The residue was purified by column chromatography, and a colorless oil was isolated. 14

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Saccharide Compounds (AREA)

Abstract

The invention relates to a method wherein high-substituted alkynyl halogenides are reacted with CH-acid carbonyl compounds in the presence of a reducing agent.

Description

Verfahren zur Herstellung von dendritischen Strukturen Process for the production of dendritic structures
Die Erfindung betrifft ein Verfahren zur Herstellung von dendritischen Strukturen.The invention relates to a method for producing dendritic structures.
Für biologische Anwendungen haben dendritische Strukturen, insbesondere dendritische Saccharidstrukturen, in den letzten Jahren eine zunehmende Bedeutung erfahren. Man hat erkannt, daß dentritische Strukturen für biologische Erkennungsprozesse eine Rolle spielen, z.B. bei der Metastatisierung oder bei Infektionen durch Viren bzw. Bakterien (Varki, Glycobiology 1993, 3, 97). Die zum Aufbau dieser Strukturen verwendeten Reaktionen leiden jedoch allesamt unter dem Nachteil, daß sie keine Möglichkeit bieten, verschiedenste (Zucker)strukturen in wenigen Reaktionsschritten einzuführen.Dendritic structures, especially dendritic saccharide structures, have become increasingly important for biological applications in recent years. It has been recognized that dentritic structures play a role in biological recognition processes, e.g. in the case of metastasis or infection by viruses or bacteria (Varki, Glycobiology 1993, 3, 97). However, the reactions used to build up these structures all suffer from the disadvantage that they offer no possibility of introducing a wide variety of (sugar) structures in a few reaction steps.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem dendritische Strukturen (insbesondere dendritische Saccharidstrukturen mit hoher Variabilität) einfach, kostengünstig, in hoher Variabilität und in guten Ausbeuten darzustellen sind.The present invention is therefore based on the object of providing a method with which dendritic structures (in particular dendritic saccharide structures with high variability) can be produced simply, inexpensively, with high variability and in good yields.
Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.According to the invention, this is achieved by the subject matter in the claims.
Gegenstand der vorliegenden Anmeldung ist somit ein Verfahren, bei dem hochsubstituierte Alkinylhalogenide mit CH-aciden Carbonylverbindungen in Gegenwart einer starken Base umgesetzt werden.The present application thus relates to a process in which highly substituted alkynyl halides are reacted with CH-acidic carbonyl compounds in the presence of a strong base.
Dendrimere/dendritische Strukturen sind dreidimensionale, hoch geordnete oligomere bzw. -polymere Verbindungen. Diese weisen mehrere reaktionsfähige Gruppen auf. An diese Gruppen werden Substanzen gebunden. Auf diese Weise werden Dendrimere der ersten Generation erhalten. An die Substanzen des Dendrimers der ersten Generation können weitere Substanzen gebunden werden, die dann mit weiteren Substanzen verknüpft werden können. Dabei werden Dendrimere der zweiten Generation erhalten. Durch Wiederholung dieser Reaktionsfolge werden Dendrimere höherer Generationen erhalten.Dendrimers / dendritic structures are three-dimensional, highly ordered oligomeric or polymeric compounds. These have several reactive groups. Substances are bound to these groups. In this way, first generation dendrimers are obtained. To the substances of the First generation dendrimers can be bound to other substances which can then be linked to other substances. Second generation dendrimers are obtained. By repeating this sequence of reactions, higher generation dendrimers are obtained.
Die vorliegende Erfindung basiert auf dem Befund, daß auch hochsubstituierte Alkinylhalogenide in guten bis sehr guten Ausbeuten reaktive C-H-acide Verbindungen mehrfach (z. B. bis zu viermal) alkylieren können. Anschließend können ggf. vorhandene Estergruppierungen oder Schutzgruppen abgespalten und die verbleibende Ketofunktion reduziert werden, so daß eine Alkoholfunktion entsteht. Diese Alkoholfunktion kann erneut mit einem reaktiven Alkinylhalogenid alkyliert werden, was die Generierung eines Spacers in der entstehenden dendrimeren Struktur bedeutet. Als Spacer kommen deshalb bevorzugt gesättigte oder ungesättigte Kohlenwasserstoffketten, vorzugsweise C2 - C18 - Gruppen, die ggf. Heteroatome, wie Sauerstoff, Schwefel oder Stickstoffatome enthalten, vor.The present invention is based on the finding that even highly substituted alkynyl halides can alkylate reactive CH-acidic compounds repeatedly (e.g. up to four times) in good to very good yields. Any ester groups or protective groups which may be present can then be split off and the remaining keto function reduced, so that an alcohol function is formed. This alcohol function can be alkylated again with a reactive alkynyl halide, which means the generation of a spacer in the resulting dendrimeric structure. Therefore, preferred spacers are saturated or unsaturated hydrocarbon chains, preferably C 2 -C 18 groups, which may contain heteroatoms, such as oxygen, sulfur or nitrogen atoms.
Das zugrunde liegende Reaktionsschema ist in Fig. 1 gezeigt. Ein bevorzugtes Reaktionsschema zur Herstellung dendrimerer Saccharidstrukturen ist in Fig. 2 gezeigt.The underlying reaction scheme is shown in Fig. 1. A preferred reaction scheme for the production of dendrimeric saccharide structures is shown in FIG. 2.
Erfindungsgemäß soll unter einer C-H-aciden Carbonylverbindung jeglicherAccording to the invention, any of a C-H-acidic carbonyl compound
Kohlenwasserstoff mit einer -C=O-Gruppierung verstanden werden, bei denen die Abspaltung eines oder mehrerer Protonen erleichtert ist. Bevorzugte C-H-acide Verbindungen sind Acetondicarbonsäurediethylester, Acetessigester, Malonsäurediethylester, Acetondicarbonsäuredi(2-trimethylsilylethyl)ester, Acetondicarbonsäuredi-t-butylester.Hydrocarbon are to be understood with a -C = O grouping, in which the removal of one or more protons is facilitated. Preferred C-H-acidic compounds are diethyl acetone dicarboxylate, acetoacetic ester, diethyl malonate, di (2-trimethylsilylethyl) acetone dicarboxylate, di-t-butyl acetone dicarboxylate.
Erfindungsgemäß sollen unter einem Alkinylhalogenid alle aliphatischen, alicyclischen oder aromatischen Kohlenwasserstoffe verstanden werden, die eine mindestens bisubstituierte C-C-Dreifachbindung aufweisen und einen Halogen- Substituenten aufweisen. Der Halogensubstituent kann Fluorid, Bromid, Chlorid oder lodid sein, wobei Bromid bevorzugt ist. Ganz bevorzugte Verbindungen sind 2-Alkinylhalogenide, wie 1-Brom-2-butin-4-ol oder 1-Brom-2-hexin-6-ol. Die Alkinylhalogenide weisen bevorzugt an mindestens einem ihrer Ende eine -14/6According to the invention, an alkynyl halide is understood to mean all aliphatic, alicyclic or aromatic hydrocarbons which have an at least bisubstituted CC triple bond and have a halogen substituent. The halogen substituent can be fluoride, bromide, chloride or iodide, with bromide being preferred. Very preferred compounds are 2-alkynyl halides, such as 1-bromo-2-butyn-4-ol or 1-bromo-2-hexin-6-ol. The alkynyl halides preferably have one on at least one of their ends -14/6
33
Modifikation R auf. Bevorzugt haben die Alkinylhalogenide deshalb folgende Struktur: Hal-CH2-C≡C-R [mit R = chemische Schutzgruppen (z.B. Acylgruppen (z.B. Benzoyl), Alkylgruppen (z.B. Methyl-, Ethyl-, n-Propyl, iso-Propyl), tert- Butylgruppen, Benzylgruppen, Silylgruppen), pharmazeutische Wirkstoffe, wie z.B. Peptide oder Glycopeptide, bevorzugt ist R = Saccharid]. Der Ausdruck "Saccharid" umfaßt Saccharide jeglicher Art, insbesondere Monosaccharide in allen stereoisomeren und enantiomeren Formen, z.B. Pentosen und Hexosen, wie α- und ß-D-Glukose und Derivate davon, wie mit Schutzgruppen, z.B. Benzyl geschützte Saccharide und/oder mit funktioneilen Gruppen, wie Aminogruppen, Phosphatgruppen oder Halogenidgruppen, modifizierte Saccharide. Als Saccharide gelten hier besonders Inosite, ganz besonders optisch aktive Derivate von myo- Inosit und Quebrachitol, z.B. aus Galactinolen, sowohl aus pflanzlichen Quellen, wie Zuckerrüben, als auch aus Milchprodukten, oder durch enzymatische Enantiomerentrennung gewonnene Derivate. Die Saccharide können gleich oder verschieden voneinander sein. Zwischen dem eigentlichen Alkylhalogenid und derModification R on. The alkynyl halides therefore preferably have the following structure: Hal-CH 2 -C≡CR [with R = chemical protective groups (for example acyl groups (for example benzoyl), alkyl groups (for example methyl, ethyl, n-propyl, isopropyl), tert- Butyl groups, benzyl groups, silyl groups), pharmaceutical active ingredients, such as peptides or glycopeptides, R = saccharide is preferred]. The term "saccharide" encompasses saccharides of all kinds, in particular monosaccharides in all stereoisomeric and enantiomeric forms, for example pentoses and hexoses, such as α- and β-D-glucose and derivatives thereof, such as with protecting groups, for example benzyl-protected saccharides and / or with functional groups Groups such as amino groups, phosphate groups or halide groups, modified saccharides. Saccharides here are especially inositols, very particularly optically active derivatives of myo-inositol and quebrachitol, for example from galactinols, both from plant sources, such as sugar beets, and from milk products, or derivatives obtained by enzymatic separation of enantiomers. The saccharides can be the same or different from one another. Between the actual alkyl halide and the
Mdoifikationen können sich zur Verminderung von sterischen Wechselwirkungen auch Linker bzw. Spacer, wie (CH2)n- Gruppen mit n = 1-20, befinden, wobei diese auch Heteroatome, wie N, O und S enthalten können.In order to reduce steric interactions, linkages or spacers, such as (CH 2 ) n groups with n = 1-20, can also be present, whereby these can also contain heteroatoms, such as N, O and S.
In einer bevorzugten Ausführungsform einer erfindungsgemäß hergestellten dendrimeren Struktur liegt zwischen der aus der C-H-aciden Verbindung stammenden Kernstruktur und einem bis maximal allen der Endmodikationen (z.B. Sacchariden) ein wie vorstehend definierter Spacer vor. Liegen mehrere Spacer vor, können diese gleich oder verschieden voneinander sein.In a preferred embodiment of a dendrimeric structure produced according to the invention, a spacer as defined above is present between the core structure originating from the C-H-acidic compound and one or at most all of the end modifications (e.g. saccharides). If there are several spacers, they can be the same or different from one another.
Zur Kopplung der bisubstituierten Alkin-Bausteine an die C-H-aciden Verbindungen hat es sich als bevorzugt herausgestellt in einem polaren, aprotischen organischen Lösungsmittel (z.B. DMF, DMSO) unter basischen Bedingungen (z.B. unter Zusatz von NaH, Natriumethylat, Deazabicycloundecan (DBU), LIH, wobei NaH bevorzugt ist) zu arbeiten. Allgemein wurde die mehrmalige Reaktion zwischen einer C-H- aciden Verbindung und einem unsubstituierten Alkinylbromid bereits von R.K. Singh in Synthesis 1985, 54 beschrieben. Diese Reaktion läuft jedoch unter Phasentransferkatalyse ab. Alle organischen Stoffe sind in einer organischen -13/6For coupling the bisubstituted alkyne building blocks to the CH-acidic compounds, it has been found to be preferred in a polar, aprotic organic solvent (for example DMF, DMSO) under basic conditions (for example with the addition of NaH, sodium ethylate, deazabicycloundecane (DBU), LIH , with NaH being preferred). In general, the repeated reaction between a CH-acidic compound and an unsubstituted alkynyl bromide has already been described by RK Singh in Synthesis 1985, 54. However, this reaction takes place under phase transfer catalysis. All organic substances are in one organic -13/6
44
Phase, die notwendige Base (z.B. Hydroxid) ist in Wasser gelöst. Durch intensives Rühren erzeugt man ein Suspension, wobei das Hydroxid mit Hilfe eines geeigneten Gegenions (meist Tetrabutylammonium = Phasentransferkatalysator) in die organische Phase "geschleppt" werden kann und dort ein Proton abstrahieren kann. Da bei dieser Reaktion die Natronlauge in mindestens 10-20 fächernPhase, the necessary base (e.g. hydroxide) is dissolved in water. A suspension is produced by vigorous stirring, the hydroxide being able to be “dragged” into the organic phase with the aid of a suitable counterion (usually tetrabutylammonium = phase transfer catalyst) and a proton can be abstracted there. Since in this reaction the sodium hydroxide solution will fan in at least 10-20
Überschuß eingesetzt wird, läßt sich bei der Alkylierung von z.B. Malonestem keine monosubstituierte Spezies, sondern fast immer nur die bialkylierte Spezies isolieren.Excess is used in the alkylation of e.g. Malonestem is not a monosubstituted species, but almost always only isolates the bialkylated species.
Die Verhältnisse, in denen die Komponenten miteinander reagieren, können von einem Fachmann bestimmt werden. Vorzugsweise liegt das Verhältnis der Komponenten bei:The conditions in which the components react with one another can be determined by a person skilled in the art. The ratio of the components is preferably:
CH-acide Verbindung : Alkinylhalogenid : Base (z.B. NaH) = 1 : > 4 : > 4,5CH-acidic compound: alkynyl halide: base (e.g. NaH) = 1:> 4:> 4.5
Die Reaktionszeiten können zwischen 2 und 24, bevorzugt zwischen 5 und 20, ganz bevorzugt 8 bis 15 Stunden betragen.The reaction times can be between 2 and 24, preferably between 5 and 20, very preferably 8 to 15 hours.
Die Reaktionstemperaturen liegen zwischen 0°C und 60 °C, bevorzugt zwischen 20 und 40°C, ganz bevorzugt bei Raumtemperatur bis ca. 30°C.The reaction temperatures are between 0 ° C and 60 ° C, preferably between 20 and 40 ° C, very preferably at room temperature to about 30 ° C.
Im Laufe der Reaktion müssen weniger alkylierte Spezies dann nicht abgetrennt werden, wenn 2 (z.B. ausgehend vom Malonester) oder 4 (ausgehend von Acetondicarbonsäureester) gleiche Reste angefügt werden sollen. Dann handelt es sich um eine sog. erschöpfende Alkylierung, die als "Ein-Topf-Reaktion" stattfinden kann. Sollen jedoch Spezies mit verschiedenen Dendrimerarmen synthetisiert werden, sollte nach jedem Alkylierungsschritt gereinigt werden. Diese Reinigung, wie auch die Reinigung jeglicher Zwischen- oder Endprodukte, kann mittels Säulenchromatographie erfolgen, z.B. über Kieselgel 60 (Fa. Machery-Nagel) mitIn the course of the reaction, less alkylated species need not be separated if 2 (e.g. starting from the malonic ester) or 4 (starting from acetone dicarboxylic acid ester) identical residues are to be added. Then there is a so-called exhaustive alkylation, which can take place as a "one-pot reaction". However, if species with different dendrimer arms are to be synthesized, cleaning should be carried out after each alkylation step. This purification, as well as the purification of any intermediate or end products, can be carried out by means of column chromatography, e.g. over silica gel 60 (Machery-Nagel) with
Petrolether/Essigester als Laufmittel.Petroleum ether / ethyl acetate as eluent.
Bevorzugte Verbindungen, die gemäß dem erfindungsgemäßen Verfahren -12/6Preferred compounds according to the inventive method -12/6
5 hergestellt bzw. umgesetzt werden, sind die in den nachfolgenden Beispielen gezeigten Verbindungen 43α, 43ß, 44, 47, 48, 49 und 50.5 are produced or reacted, the compounds shown in the following examples are 43α, 43ß, 44, 47, 48, 49 and 50.
Das erfindungsgemäße Verfahren bietet je nach Wahl der Ausgangsverbindungen verschiedene Möglichkeiten: Bei der Wahl einer unsymmetrischen C-H-acidenDepending on the choice of the starting compounds, the process according to the invention offers various possibilities: When choosing an asymmetrical C-H-acidic
Verbindungen (z.B. Acetessigester) ist es möglich, Deprotonierung und Alkylierung zu steuern, so daß man nach und nach vier einzelne und auch unterschiedlich substituierte Alkinylhalogenide regioselektiv ankoppeln kann. Dies bietet die Möglichkeit, unterschiedliche Spacerlängen und z.B. Zuckergruppierungen einzusetzen. Die Konfiguration am anomeren Zentrum wird vorher bei derCompounds (e.g. acetoacetic esters) are able to control deprotonation and alkylation, so that little by little four individual and also differently substituted alkynyl halides can be coupled regioselectively. This offers the possibility of different spacer lengths and e.g. Use sugar groups. The configuration at the anomeric center is previously in the
Anbindung des Zuckerbausteins an das Alkinylbromid festgelegt, so daß anomerenreine Verbindungen gewonnen werden können. Nach Abspaltung eventuell vorhandener Estergruppen wird die Keto-Gruppe in die Alkoholfunktion übergeführt, so daß ein weiterer Spacer eingeführt werden kann, an den z.B. ein gewünschter Wirkstoff gekoppelt sein kann. Eine solches Reaktionsschema ist inLinkage of the sugar building block to the alkynyl bromide is fixed so that anomerically pure compounds can be obtained. After splitting off any ester groups that may be present, the keto group is converted to the alcohol function, so that a further spacer can be introduced, to which e.g. a desired active ingredient can be coupled. Such a reaction scheme is in
Fig. 3 gezeigt.Fig. 3 shown.
Erfindungsgemäß hergestellte Dendrimere zeichnen sich durch eine Reihe von vorteilhaften Eigenschaften aus. Sie sind biologisch abbaubar. Daher sind sie leicht zu entsorgen. Desweiteren sind sie im wesentlichen aus nachwachsendenDendrimers produced according to the invention are notable for a number of advantageous properties. They are biodegradable. Therefore, they are easy to dispose of. Furthermore, they are essentially renewable
Rohstoffen hergestellt. Somit werden fossile Rohstoffe geschont und die CO2- Bilanz neutral gehalten. Weiterhin liegen die erfindungsgemäßen Dendrimere in genau definierten Strukturen vor, d.h. es gibt keine Fehlstellen und/oder inter- oder intramolekulare Bindungen. Ferner weisen erfindungsgemäße Dendrimere chirale C-Atome auf. Darüberhinaus können sie aufgrund ihres Aufbaus chemischeRaw materials. This protects fossil raw materials and keeps the CO 2 balance neutral. Furthermore, the dendrimers according to the invention are present in precisely defined structures, ie there are no defects and / or inter- or intramolecular bonds. Furthermore, dendrimers according to the invention have chiral C atoms. In addition, due to their structure, they can be chemical
Verbindungen gut binden und unter geeigneten Bedingungen leicht wieder abgeben. Desweiteren sind erfindungsgemäße Dendrimere in der Lage, elektive Wechselwirkungen mit Zucker-spezifischen Rezeptoren einzugehen und somit z.B. an Viren, Bakterien und Zellen zu binden.Tie connections well and release them again under suitable conditions. Furthermore, dendrimers according to the invention are able to enter into elective interactions with sugar-specific receptors and thus e.g. bind to viruses, bacteria and cells.
Daher eignen sich erfindungsgemäß hergestellten Dendrimere bestens als Säulenmaterial zur Abtrennung von Stoffen aus Gemischen von Produkten, insbesondere zur Trennung von Racematen in Enantiomere. Ferner können sie aufgrund ihrer Wechselwirkungen mit Rezeptoren für die affinitätschromatographische Isolation von Lektinen und anderen Glycoproteinen sowie als Zeiladhäsionsinhibitoren, z.B. von Viren und Bakterien zum Infektionsschutz, eingesetzt werden.Therefore, dendrimers produced according to the invention are ideally suited as column material for separating substances from mixtures of products, in particular for separating racemates into enantiomers. Furthermore, they can due to their interactions with receptors for the affinity chromatographic isolation of lectins and other glycoproteins and as cell adhesion inhibitors, for example viruses and bacteria for infection protection.
Darüberhinaus können erfindungsgemäß hergestellte Dendrimere für eine Vielzahl weiterer Verwendungen vorgesehen werden. Beispielsweise können sie als Katalysatoren bei der enatioselektiven Synthese eingesetzt werden. Auch eignen sie sich im medizinischen Bereich, z.B. als Träger von Arzneistoffen, insbesondere zum Einsatz bei Depotmedikamenten und zur gezielten Einschleußung von Wirkstoffen in Zielzellen (drug-targeting). Desweiteren können sie zur Verhinderung von Abstoßungsreaktionen bei Organtransplantationen eingesetzt werden. Auch können erfindungsgemäße Dendrimere zur Oberflächenbeschichtung wäßriger Medien und als Micellen verwendet werden. Weiterhin können sie, insbesondere wenn sie in der äußersten Schale funktionelle Gruppen, wie Amino-Gruppen tragen, zurIn addition, dendrimers produced according to the invention can be provided for a large number of other uses. For example, they can be used as catalysts in enatioselective synthesis. They are also suitable in the medical field, e.g. as a carrier of medicinal substances, in particular for use in depot medication and for the targeted injection of active substances into target cells (drug targeting). Furthermore, they can be used to prevent rejection reactions in organ transplants. Dendrimers according to the invention can also be used for the surface coating of aqueous media and as micelles. Furthermore, they can, especially if they carry functional groups such as amino groups in the outermost shell
Transfektion, als multi-antigene Determinanten, künstliche Vaccinen oder Enzymmodelle in Analogie zu Cyclodextrinen eingesetzt werden. Ferner können erfindungsgemäße Dendrimere, die Festphasen-konjugiert sind, insbesondere Derivate von Inositol, zur Aufbereitung Bakterien-verseuchten Trinkwassers verwendet werden. Desweiteren können erfindungsgemäße Dendrimere, wenn sie mit Farbstoffen verknüpft sind, zur Markierung von Lektinen in histochemischen und zytochemischen Verfahren eingesetzt werden.Transfection, as multi-antigenic determinants, artificial vaccines or enzyme models in analogy to cyclodextrins. Furthermore, dendrimers according to the invention which are conjugated to solid phases, in particular derivatives of inositol, can be used for the treatment of drinking water contaminated with bacteria. Furthermore, dendrimers according to the invention, if they are linked to dyes, can be used to label lectins in histochemical and cytochemical processes.
Kurze Beschreibung der Zeichnungen:Brief description of the drawings:
Fig.1: Allgemeines ReaktionsschemaFig. 1: General reaction scheme
Fig.2: Aufbau einer dendrimeren Struktur ausgehend von einem Galactose- modifizierten Alkinylbromid und AcetondicarbonsäuresterFig. 2: Structure of a dendrimeric structure starting from a galactose-modified alkynyl bromide and acetone dicarboxylic acid ester
Fig.3: Aufbau einer dendrimeren Struktur ausgehend von einem Zuckermodifizierten Alkinylbromid und Acetessigester -10/6Fig. 3: Structure of a dendrimeric structure based on a sugar-modified alkynyl bromide and acetoacetic ester -10/6
7 Die folgenden Beispiele erläutern die Erfindung.7 The following examples illustrate the invention.
Beispiel 1: Herstellung von l -Brom^a'jS'^'je'-tetra-O-benzyl-α-D- glucopyranosyl]-but-2-in (43 ) und
Figure imgf000008_0001
benzy!-ß-D-glucopyranosyl]-but-2-in (43ß)
Example 1: Preparation of 1 -Brom ^ a'jS '^'je'-tetra-O-benzyl-α-D-glucopyranosyl] -but-2-in (43) and
Figure imgf000008_0001
benzy! -ß-D-glucopyranosyl] -but-2-in (43ß)
1.23 g (1.80 mmol) 2,3,4,6-Tetra-O-benzyl-α (-bzw. ß-) -D-glucopyranosyl- trichloracetimidat [Schmidt et al., Angew. Chem. 1980, 92, 763] und 373 mg (2,50 mmol) 1-Brombut-2-in-4-ol wurden in 16 ml Dichlormethan unter Argon gelöst und auf -30°C abgekühlt. Über ein Septum gab man tropfenweise 60 μ\ (72 mg, 0.32 mmol) Trimethylsilyltrifluormethansulfonat dazu. Unter Rühren ließ man den Ansatz über Nacht auf RT erwärmen. Man schüttelte die Reaktionsmischung mit gesättigter Natriumhydrogencarbonat-Lösung aus und trennte die organische Phase ab. Die wäßrige Phase wurde noch zweimal mit Dichlormethan extrahiert. Man vereinigte die organischen Phasen und trocknete über wasserfreiem Natriumsulfat. Es wurde eingeengt und der Rückstand mittels1.23 g (1.80 mmol) 2,3,4,6-tetra-O-benzyl-α (or β-) -D-glucopyranosyl-trichloroacetimidate [Schmidt et al., Angew. Chem. 1980, 92, 763] and 373 mg (2.50 mmol) of 1-bromobut-2-yn-4-ol were dissolved in 16 ml of dichloromethane under argon and cooled to -30 ° C. 60 μl (72 mg, 0.32 mmol) of trimethylsilyltrifluoromethanesulfonate was added dropwise over a septum. The mixture was allowed to warm to RT overnight with stirring. The reaction mixture was shaken with saturated sodium bicarbonate solution and the organic phase was separated off. The aqueous phase was extracted twice more with dichloromethane. The organic phases were combined and dried over anhydrous sodium sulfate. It was concentrated and the residue was removed using
Säulenchromatrographie getrennt.Column chromatography separated.
SC: KG, PE/EE (17:3)SC: KG, PE / EE (17: 3)
43α:43α:
Ausbeute: 501 mg (41%)Yield: 501 mg (41%)
DC: Rf (PE/EE 17:3): 0.17DC: R f (PE / EE 17: 3): 0.17
1H - NMR: δH (250.13 MHz; CDCI3): 3.57-3.80, 3.94-4.03 (4H, 2H, je m, H-2, H-3, H-4, H-5, H-6); 3.89 (2H, t, H-10); 4.30 (2H, t, H-7); 4.43-5.00 (8H, m, H-11a...d); 5.04 (1H, d, H-1); 7.11-7.39 (20H, m, H-13a...d, H-14a...d, H-15a...d), J7,10 = 1.9 Hz, J1ι2 = 3.6 Hz 1 H-NMR: δ H (250.13 MHz; CDCI 3 ): 3.57-3.80, 3.94-4.03 (4H, 2H, each m, H-2, H-3, H-4, H-5, H-6) ; 3.89 (2H, t, H-10); 4.30 (2H, t, H-7); 4.43-5.00 (8H, m, H-11a ... d); 5.04 (1H, d, H-1); 7.11-7.39 (20H, m, H-13a ... d, H-14a ... d, H-15a ... d), J 7.10 = 1.9 Hz, J 1ι2 = 3.6 Hz
13C - NMR: δc (62.90 MHz; CDCI3): 14.0 (C-10); 54.7 (C-7); 68.4 (C-6); 70.7, 77.5, 79.3, 81.6 (C-2, C-3, C-4, C-5); 72.9, 73.4, 75.0, 75.7 (C-11a...d); 81.5, 82.1 (C-8, C-9); 95.4 (C-1); 127.5, 127.6, 127.6, 127.8, 127.9, 128.1, 128.3, 128.4 (C- 13a...d, C-14a...d, C-15a...d); 137.8, 137.9, 138.2, 138.7 (C-12a...d) 11d-15d 13 C NMR: δ c (62.90 MHz; CDCI 3 ): 14.0 (C-10); 54.7 (C-7); 68.4 (C-6); 70.7, 77.5, 79.3, 81.6 (C-2, C-3, C-4, C-5); 72.9, 73.4, 75.0, 75.7 (C-11a ... d); 81.5, 82.1 (C-8, C-9); 95.4 (C-1); 127.5, 127.6, 127.6, 127.8, 127.9, 128.1, 128.3, 128.4 (C-13a ... d, C-14a ... d, C-15a ... d); 137.8, 137.9, 138.2, 138.7 (C-12a ... d) 11d-15d
Figure imgf000009_0001
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0002
HR-MS (FAB):Berechnet fürC38H398 BrO6Na [M+Na+]: 695.181 Gefunden: 695,181 Berechnet für C38H3979BrOeNa [M+Na*]: 693.182 Gefunden: 693.182HR-MS (FAB): Calculated for C 3 8H39 8 BrO 6 Na [M + Na + ]: 695.181 Found: 695.181 Calculated for C 38 H39 79 BrOeNa [M + Na *]: 693.182 Found: 693.182
43ß:43ß:
Ausbeute: 392 mg (32%)Yield: 392 mg (32%)
DC: Rf (PE/EE 17:3): 0.20DC: R f (PE / EE 17: 3): 0.20
1H - NMR: δH (250.13 MHz; CDCI3): 3.43-3.76 (6H, m. H-2, H-3, H-4, H-5, H-6); 3.89 (2H, t, H-10); 4.46-4.97 (11H. m, H-1, H-7, H-11a...d); 7.12-7.40 (20H, m, H- 1 H NMR: δ H (250.13 MHz; CDCI 3 ): 3.43-3.76 (6H, m. H-2, H-3, H-4, H-5, H-6); 3.89 (2H, t, H-10); 4.46-4.97 (11H. M, H-1, H-7, H-11a ... d); 7.12-7.40 (20H, m, H-
13a.„d, H-14a...d, H-15a...d); J7>10 = 2.0 Hz13a. "D, H-14a ... d, H-15a ... d); J 7> 10 = 2.0 Hz
13, C - NMR: δc (62.90 MHz; CDCl3): 14.0 (C-10); 56.3 (C-7); 68.8 (C-6); 73.5, 74.7, 74.9,13, C NMR: δ c (62.90 MHz; CDCl 3 ): 14.0 (C-10); 56.3 (C-7); 68.8 (C-6); 73.5, 74.7, 74.9,
75.6 (C-11a...d); 74.9, 77.6. 82.0, 84.6 (C-2, C-3, C-4, C-5); 81.7. 82.0 (C-8,75.6 (C-11a ... d); 74.9, 77.6. 82.0, 84.6 (C-2, C-3, C-4, C-5); 81.7. 82.0 (C-8,
C-9); 101.6 (C-1); 127.6, 127.6, 127.6, 127.7, 127.7, 127.8, 127.9, 128.2.C-9); 101.6 (C-1); 127.6, 127.6, 127.6, 127.7, 127.7, 127.8, 127.9, 128.2.
128,3 (C-13a...d, C-14a...d, C-15a...d); 138.1. 138.4, 138-6 (C-12a...d) 8a128.3 (C-13a ... d, C-14a ... d, C-15a ... d); 138.1. 138.4, 138-6 (C-12a ... d) 8a
Figure imgf000010_0001
Figure imgf000010_0001
C38H39BrO6 M = 672.6C 38 H 39 BrO 6 M = 672.6
HR- S (FAB):Berechnetfür C38H39 79BrO6Na [M+Na+]: 693.183 Gefunden: 693.181 Berechnet für C38H39 81BrO6Na [M+Na+]: 695.181 Gefunden: δ^.lδSHR- S (FAB): Calculated for C 38 H 39 79 BrO 6 Na [M + Na + ]: 693.183 Found: 693.181 Calculated for C 38 H 39 81 BrO 6 Na [M + Na + ]: 695.181 Found: δ ^. lδS
Beispiel 2: Herstellung von l-Bro - -t 'jS'^'-β'-Tetra^OJ-benzyl-α-D- galactopyranosyl]-but-2-in (44) 3.51 g (5.12 mmol) [2, 3, 4, 6-Tetra-(O)-benzy!-ß-D-galactogyranosyl]- trichloracetim.dat [Schmidt 1980] und 879 mg (10.2 mmol) 2-Butin-1 ,4-diol wurden in 15 ml abs. Acetonitril suspendiert. Man kühlte auf 15°C ab und tropfte 150 l (~ 184 mg, 0.82 mmol) Trimethylsilyltrifluormethansulfonat dazu. Nach dreißig Minuten Example 2: Preparation of l-Bro - -t 'jS' ^ '- β'-tetra ^ OJ-benzyl-α-D-galactopyranosyl] -but-2-in (44) 3.51 g (5.12 mmol) [2, 3, 4, 6-tetra- (O) -benzy! -Ss-D-galactogyranosyl] - trichloroacetim.dat [Schmidt 1980] and 879 mg (10.2 mmol) of 2-butyne-1, 4-diol were in 15 ml abs , Acetonitrile suspended. The mixture was cooled to 15 ° C. and 150 l (~ 184 mg, 0.82 mmol) of trimethylsilyl trifluoromethanesulfonate were added dropwise. After thirty minutes
b rach m a n d i e R ea kti o n d u rc h Zu g ab e vo n 250 m g f e st e m Natriumhydrogencarbonat ab. Nach weiteren 30 Minuten ließ man auf Raumtemperatur erwärmen und filtrierte. Das Filtrat wurde am Rotationsverdampfer eingeengt und der Rückstand durch Säulenchromatographie über Kieselgel mit PE/EE 7:3 gereinigt. Das Gemisch der beiden anomeren Produkte wurde als farbloses Öl mit der Masse 2.55 g gewonnen, der R-Wert betrug 0.21 auf dem DC mit PE/EE 2:1. Im ESI-Massenspektrum fand man für die errechnete Molmasse M = 608.7 des Zwischenproduktes erwartungsgemäß die Signale für [M+H]+, [M+NH4f und [M+Na]+.b rach mandie R ea cti ondu rc h Addition of 250 mgfe st em sodium bicarbonate. After a further 30 minutes, the mixture was allowed to warm to room temperature and filtered. The filtrate was concentrated on a rotary evaporator and the residue was purified by column chromatography over silica gel with PE / EE 7: 3. The mixture of the two anomeric products was obtained as a colorless oil with a mass of 2.55 g, the R value was 0.21 on TLC with PE / EE 2: 1. As expected, the signals for [M + H] + , [M + NH4f and [M + Na] + were found in the ESI mass spectrum for the calculated molar mass M = 608.7 of the intermediate.
307 mg des Zwischenproduktes wurden in 3 ml abs. CH2CI2 gelöst. Zu dieser Lösung gab man zunächst 327 mg (0.986 mmol) Tetrabrommethan und nach dessen Auflösung 318 mg (1.21 mmol) Triphenylphosphin portionsweise über 10 Minuten in fester Form. Man ließ 24 Stunden rühren und engte anschließend am Rotationsverdampfer ein. Der Rückstand wurde mit Diethylether versetzt und 30 min intensiv gerührt. Man filtrierte den Niederschlag ab und engte das Filtrat ein. Die Aufreinigung erfolgte mittels Säulenchromatorgraphie. Nur ein kleiner Teil des Eluats enthielt reines Produkt [DC: Rf (PE/Et2O 8:2): 0.09], der lauptteil bildete Mischfraktionen mit einem Nebenprodukt, vermutlich mit dem entsprechenden cc- Anomer [DC: R^ (PE/E^Ö 8:2): 0.075], die verworfen wurden.307 mg of the intermediate were abs in 3 ml. CH 2 CI 2 dissolved. 327 mg (0.986 mmol) of tetrabromomethane were first added to this solution and, after its dissolution, 318 mg (1.21 mmol) of triphenylphosphine were added in portions in solid form over a period of 10 minutes. The mixture was stirred for 24 hours and then concentrated on a rotary evaporator. The residue was mixed with diethyl ether and stirred intensively for 30 min. The precipitate was filtered off and the filtrate was concentrated. The purification was carried out by means of column chromatography. Only a small part of the eluate contained pure product [DC: R f (PE / Et 2 O 8: 2): 0.09], the main part formed mixed fractions with a by-product, presumably with the corresponding cc anomer [DC: R ^ (PE / E ^ Ö 8: 2): 0.075], which were rejected.
Ausbeute: 56.0 mg (14% über zwei Stufen)Yield: 56.0 mg (14% over two stages)
DC: R/(PE/Et2O 8:2): 0.09TLC: R / (PE / Et 2 O 8: 2): 0.09
1H - NMR: δH (250.13 MHz; CDC13): 3.51-3.60, 3.79-3.89 (je 4H, je m, H-2, H-3, H-4, H- 5, H-7, H-10); 4.40-4.79, 4.91-4.96 (11H, je m, H-l, H-6, H-l la...d); 7.27-7.42 (20H, m, H-13a...d, H-14a...d5 H-15a...d)1H-NMR: δ H (250.13 MHz; CDC1 3 ): 3.51-3.60, 3.79-3.89 (each 4H, each m, H-2, H-3, H-4, H- 5, H-7, H- 10); 4.40-4.79, 4.91-4.96 (11H, each m, Hl, H-6, Hl la ... d); 7.27-7.42 (20H, m, H-13a ... d, H-14a ... d 5 H-15a ... d)
13 'C -NMR: δc (62.90 MHz; CDC13): 14.1 (C-10); 56.0 (C-7); 68.7 (C-6); 73.1, 73.5, 74.4, 75.0 (C-lla...d); 73.4, 73.4, 79.2, 82.1 (C-2, C-3, C-4, C-5); 81.4, 82.4 (C-8, C-9); 101.7 (C-l); 127.5, 127.7, 127.8, 128.1, 128. 2, 128.2, 128.3, 128.4 (C- 13a...d, C-14a...d, C-15a...d); 137.8, 138.4, 138.5, 138.7 (C-12a...d) 9a13 'C-NMR: δ c (62.90 MHz; CDC1 3 ): 14.1 (C-10); 56.0 (C-7); 68.7 (C-6); 73.1, 73.5, 74.4, 75.0 (C-lla ... d); 73.4, 73.4, 79.2, 82.1 (C-2, C-3, C-4, C-5); 81.4, 82.4 (C-8, C-9); 101.7 (Cl); 127.5, 127.7, 127.8, 128.1, 128.2, 128.2, 128.3, 128.4 (C-13a ... d, C-14a ... d, C-15a ... d); 137.8, 138.4, 138.5, 138.7 (C-12a ... d) 9a
Figure imgf000012_0001
Figure imgf000012_0001
C38H39BrO6 M = 672.6C 38 H 39 BrO 6 M = 672.6
HR-MS (FAB):Berechnet für C38H40 79BrO6 [M+H]+ : 671.201 Gefunden: 671.193 Berechnet für C38H40 81BrO6 [M+H]+ : 673.199 Gefunden: 673.199HR-MS (FAB): Calculated for C 38 H4 0 79 BrO 6 [M + H] + : 671.201 Found: 671.193 Calculated for C 38 H 40 81 BrO 6 [M + H] + : 673.199 Found: 673.199
Beispiel 3: 2,2-Bis[4,-(2",3,,,4",6"-Tetra-(O)-benzyl-σ-D-glucosy -but-2,-inyl]- malonsäuredi-tert.-butylester (47)Example 3: 2,2-bis [4 , - (2 ", 3 " , 4 ", 6" -tetra- (O) -benzyl-σ-D-glucosy-but-2 , -inyl] - malonic acid - tert-butyl ester (47)
54 mg (80 μmol) 1-Brom-4-[2', 3', 4', 6'-tetra-(O)-benzyl-α-D-glucosyl]-but-2-in 43 und 6.9 mg (32 /mol) Malonsäure-di-tert.-butylester wurden in 0.5 ml DMF gelöst. Man fügte 3.2. mg 60%ige NaH-Suspension (80 /mol) in fester Form hinzu und ließ bei RT 16 Stunden rühren. Die Reaktion wurde durch Zugabe von.2 ml Wasser und 2 ml Diethylether abgebrochen. Man trennte die organische Phase ab und extrahierte die wäßrige Phase noch zweimal mit Diethylether. Die vereinigten organischen Extrakte wurden mit Wasser gewaschen und über wasserfreiem Natriumsulfat getrocknet. Nach dem Einrotieren reinigte man den Rückstand mittels Säulenchromatographie. 1054 mg (80 μmol) 1-bromo-4- [2 ', 3', 4 ', 6'-tetra- (O) -benzyl-α-D-glucosyl] -but-2-in 43 and 6.9 mg ( 32 / mol) malonic acid di-tert-butyl ester were dissolved in 0.5 ml DMF. 3.2 was added. mg 60% NaH suspension (80 / mol) in solid form and allowed to stir at RT for 16 hours. The reaction was stopped by adding 2 ml of water and 2 ml of diethyl ether. The organic phase was separated off and the aqueous phase was extracted twice more with diethyl ether. The combined organic extracts were washed with water and dried over anhydrous sodium sulfate. After spinning in, the residue was purified by column chromatography. 10
Ausbeute: 25.1 mg (56%)Yield: 25.1 mg (56%)
SC: KG, PE/EE, 5:1SC: KG, PE / EE, 5: 1
DC: Rf (PE/EE 5:1): 0.24DC: R f (PE / EE 5: 1): 0.24
1H - NMR: δH (250.13 MHz; CDCI3): 1.43 (18H, s, H-14); 2.92 (4H, m, H-10); 3.56-3.99 (10H, 2H, je m, H-2, H-3, H-4, H-5, H-6); 4.18 (4H. m, H-7); 4.42-4.98 (16H, m,_ H-11a...d); 5.04 (2H, d, H-1); 7.11-7.39 (20H, m, H-13a...d, H-14a...d, H- 15a...d); J1t2 = 3.6 Hz 1 H NMR: δ H (250.13 MHz; CDCI 3 ): 1.43 (18H, s, H-14); 2.92 (4H, m, H-10); 3.56-3.99 (10H, 2H, each m, H-2, H-3, H-4, H-5, H-6); 4.18 (4H. M, H-7); 4.42-4.98 (16H, m, _ H-11a ... d); 5.04 (2H, d, H-1); 7.11-7.39 (20H, m, H-13a ... d, H-14a ... d, H-15a ... d); J 1t2 = 3.6 Hz
13C - NMR: δc (62.90 MHz; CDCI3): 22.9 (C-10); 27.8, (C-14), 54.6 (C-7); 57.2 (C-11); 68.4 (C-6); 70.6, 77.5, 79.4, 81.9 (C-2, C-3, C-4, C-5); 72.7, 73.5, 74.9, 75.6 (C- 11a...d); 78.3, 81.6, 82.1 (C-8, C-9, C-13); 94.8 (C-1); 127.5, 127.5, 127.6, 127.8, 127.8, 127.9, 128.1, 128.3, 128.3, 128.3 (C-13a...d, C-14a...d. C- 15a...d); 138.0, 138.1, 138.3, 138.8 (C-12ä...d), 167.8 (C-12) 13 C NMR: δ c (62.90 MHz; CDCI 3 ): 22.9 (C-10); 27.8, (C-14), 54.6 (C-7); 57.2 (C-11); 68.4 (C-6); 70.6, 77.5, 79.4, 81.9 (C-2, C-3, C-4, C-5); 72.7, 73.5, 74.9, 75.6 (C-11a ... d); 78.3, 81.6, 82.1 (C-8, C-9, C-13); 94.8 (C-1); 127.5, 127.5, 127.6, 127.8, 127.8, 127.9, 128.1, 128.3, 128.3, 128.3 (C-13a ... d, C-14a ... d. C- 15a ... d); 138.0, 138.1, 138.3, 138.8 (C-12ä ... d), 167.8 (C-12)
15d-19d15d-19d
Figure imgf000013_0001
Figure imgf000013_0001
C87H96016 M = 1397.7C 87 H 96 0 16 M = 1397.7
HR-MS (FAB):Berechnet für CB7H9S016Na [M+Na]+ : 1419.660 Gefunden: 1419 664 11HR-MS (FAB): Calculated for C B7 H 9S 0 16 Na [M + Na] + : 1419.660 Found: 1419 664 11
Beispiel 4: Herstellung von 2,2-Bis[4'-α-D-glucopyranosyI-butyl]- malonsäuredi-tert-butylester (48) 20.2 mg (14.5 //mol) 2,2-Bis[4'-(2", 3", 4", 6"-Tetra-(O)-benzyl-α-D-glucosyl)-but-2'- inyl]malonsäuredi-tert.-butylester 47 und 6.9 mg 20%iges Pd/C wurden unter einer Wasserstoffatmosphäre in 1.0 ml Aceton/Wasser (9:1) suspendiert. Man ließ 16 Stunden bei RT rühren. Nach gründlichem Spülen des Kolbens mit Argon wurde die Reaktionsmischung über einen Membranfilter filtriert und das Filtrat am Rotationsverdampfer eingeengt. Der Rückstand konnte durch Filtration über Kieselgel mit Methanol als Eluent gereinigt werden. Man isolierte ein farbloses Öl.Example 4: Preparation of 2,2-bis [4'-α-D-glucopyranosyI-butyl] - di-tert-butyl malonic acid (48) 20.2 mg (14.5 // mol) 2,2-bis [4 '- (2nd ", 3", 4 ", 6" -Tetra- (O) -benzyl-α-D-glucosyl) -but-2'-inyl] malonic acid di-tert-butyl ester 47 and 6.9 mg of 20% Pd / C were suspended in 1.0 ml acetone / water (9: 1) under a hydrogen atmosphere. The mixture was stirred at RT for 16 hours. After thoroughly flushing the flask with argon, the reaction mixture was filtered through a membrane filter and the filtrate was concentrated on a rotary evaporator. The residue could be purified by filtration through silica gel using methanol as the eluent. A colorless oil was isolated.
Ausbeute: 9.8 mg (99%)Yield: 9.8 mg (99%)
SC: KG, EE/MeOH, 4:1SC: KG, EE / MeOH, 4: 1
DC: Rf (EE/MeOH 4:1): 0.19TLC: R f (EE / MeOH 4: 1): 0.19
1H - NMR: δH (250.13 MHz; CD3OD): 1.20-1.29, 1.60-1.79 (12H, je m, H-8, H-9, H-10); 1 H NMR: δ H (250.13 MHz; CD 3 OD): 1.20-1.29, 1.60-1.79 (12H, each m, H-8, H-9, H-10);
1.43 (18H, s, H-14); 3.22-3.81 (16H, m, H-2, H-3, H-4, H-5, H-6, H-7); 4.751.43 (18H, s, H-14); 3.22-3.81 (16H, m, H-2, H-3, H-4, H-5, H-6, H-7); 4.75
(2H, d, H-1); J., = 3.6 Hz(2H, d, H-1); J., = 3.6 Hz
13C - NMR: δc (62.90 MHz; CD3OD): 21.9, 31.1, 33.0 (C-8, C-9, C-10); 28.3 (C-14); 59.8 (C-11); 62.7 (C-6); 68.9 (C-7); 71.9 (C-3); 73.6, 73.7 (C-2, C-5); 75.2 (C-4);~ 82.4 (C-13); 100.2 (C-1); 172.6 (C-12) 13 C NMR: δ c (62.90 MHz; CD 3 OD): 21.9, 31.1, 33.0 (C-8, C-9, C-10); 28.3 (C-14); 59.8 (C-11); 62.7 (C-6); 68.9 (C-7); 71.9 (C-3); 73.6, 73.7 (C-2, C-5); 75.2 (C-4); ~ 82.4 (C-13); 100.2 (C-1); 172.6 (C-12)
Figure imgf000014_0001
Figure imgf000014_0001
C3ιH56O16 M = 684.8C 3 ιH 56 O 16 M = 684.8
HR-MS (FAB):Berechne für C31H56θ16Na [M+Na]+ : 707.347 Gefunden: 707.350 12HR-MS (FAB): Calculate for C 31 H 56 θ 16 Na [M + Na] + : 707.347 Found: 707.350 12
Beispiel 5: Herstellung von 2,2,4,4-Tetrakis[4,-(2", 3", 4", 6"-Tetra-(O)-benzyI- cr-D-glucapyranosyl)-but-2'-inyl]-3-oxoglutarsäuredi-tert.- butylester (49)Example 5: Preparation of 2,2,4,4-tetrakis [4 , - (2 ", 3", 4 ", 6" -Tetra- (O) -benzyl-cr-D-glucapyranosyl) -but-2 ' -inyl] -3-oxoglutaric acid di-tert-butyl ester (49)
90 mg (134 /mol) 1-Brom-4-[2', 3', 4', 6'-tetra-(0)-benzyl-α-D-glucosyl]-but-2-in 43 und 5.7 mg (22 / mol) 3-Oxoglutarsäuredi-tert.-butylester wurden in 0.5 ml DMF gelöst. Man fügte 4.6 mg 60%ige NaH-Suspension (110 //mol) in fester Form hinzu und ließ bei RT 24 Stunden rühren. Die Reaktion wurde durch Zugabe von 2 ml Wasser und 2 ml Diethylether abgebrochen. Man trennte die organische Phase ab und extrahierte die wäßrige Phase nach zweimal mit Diethylether. Die verunreinigten organischen Extrakte wurden mit Wasser gewaschen und über wasserfreiem Natriumsulfat getrocknet. Nach dem Einrotieren reinigte man den Rückstand mittels Säulenchromatographie.90 mg (134 / mol) 1-bromo-4- [2 ', 3', 4 ', 6'-tetra- (0) -benzyl-α-D-glucosyl] -but-2-in 43 and 5.7 mg (22 / mol) 3-oxoglutaric acid di-tert-butyl ester was dissolved in 0.5 ml DMF. 4.6 mg of 60% NaH suspension (110 // mol) in solid form were added and the mixture was stirred at RT for 24 hours. The reaction was stopped by adding 2 ml of water and 2 ml of diethyl ether. The organic phase was separated off and the aqueous phase was extracted twice with diethyl ether. The contaminated organic extracts were washed with water and dried over anhydrous sodium sulfate. After spinning in, the residue was purified by column chromatography.
Ausbeute: 19.8 mg (33%)Yield: 19.8 mg (33%)
SC: KG, PE/EE, 4:1SC: KG, PE / EE, 4: 1
DC: Rf (PE/EE 4:1): 0.12DC: R f (PE / EE 4: 1): 0.12
1H - NMR: δH (250.13 MHz; CDCI3): 1.44 (18H, s, H-14); 2.91-3.15 (8H, m, H-10, H-10a); 3.55-3.97 (20H, 4H, je m, H-2, H-2a, H-3, H-3a, H-4, H-4a, H-5, H-5a, H-6, H-6a); 4.15 (4H, m, H-7, H-7a); 4.39-4.96 (32H, m, H-11a...h); 5.05, 5.06 (je 2H, je d, H-1); 7.09-7.37 (80H, m, H-13a...h, H-14a...h, H-15a...h); J1|2 = 3.3 Hz 1 H NMR: δ H (250.13 MHz; CDCI 3 ): 1.44 (18H, s, H-14); 2.91-3.15 (8H, m, H-10, H-10a); 3.55-3.97 (20H, 4H, each m, H-2, H-2a, H-3, H-3a, H-4, H-4a, H-5, H-5a, H-6, H-6a ); 4.15 (4H, m, H-7, H-7a); 4.39-4.96 (32H, m, H-11a ... h); 5.05, 5.06 (each 2H, each d, H-1); 7.09-7.37 (80H, m, H-13a ... h, H-14a ... h, H-15a ... h); J 1 | 2 = 3.3 Hz
13 C - NMR: δc (62.90 MHz; CDCI3): 24.7, 24.8 (C-10, C10a); 27.8, (C-15), 54.5 (C-7); 62.6 (C-11); 68.5 (C-6); 70.6, 77.5, 79.4, 81.9 (C-2, C-2a, C-3, C-3a, C-4, C-4a,13 C NMR: δ c (62.90 MHz; CDCI 3 ): 24.7, 24.8 (C-10, C10a); 27.8, (C-15), 54.5 (C-7); 62.6 (C-11); 68.5 (C-6); 70.6, 77.5, 79.4, 81.9 (C-2, C-2a, C-3, C-3a, C-4, C-4a,
C-5, C-5a); 72.5, 73.5, 74.9, 75.6 (C-16a...h); 79.2, 79.2, 81.6, 81.7 (C-8, C-8a, C-9, C-9a); 83.9 (C-14); 94.8 (C-1, C-1a); 127.5, 127.5, 127.6, 127.8, 127.8, 127.9, 128.0, 128.3, 128.3," 128.3, 128.4 (C-13a...h, C-14a...h, C-15a...h); 138.0, 138.1, 138.4, 138.9 (C-12a...h), 167.6 (C-13); 197.0 (C-12) 13C-5, C-5a); 72.5, 73.5, 74.9, 75.6 (C-16a ... h); 79.2, 79.2, 81.6, 81.7 (C-8, C-8a, C-9, C-9a); 83.9 (C-14); 94.8 (C-1, C-1a); 127.5, 127.5, 127.6, 127.8, 127.8, 127.9, 128.0, 128.3, 128.3, " 128.3, 128.4 (C-13a ... h, C-14a ... h, C-15a ... h); 138.0, 138.1, 138.4, 138.9 (C-12a ... h), 167.6 (C-13); 197.0 (C-12) 13
Figure imgf000016_0001
Figure imgf000016_0001
C165H174O29 M = 2621.4C 165 H 174 O 29 M = 2621.4
MS (ESI):Berechnet für Cι65H174O29Na [M+Na+] : 2644.4 Gefunden: 2644.2MS (ESI): Calculated for Cι 65 H 174 O 29 Na [M + Na + ]: 2644.4 Found: 2644.2
Beispiel 6: Herstellung von 252,4,4-Tetrakis[4'-(»-D-glucopyranosyl)-butyl]-3- oxoglutarsäuredi-tert-butylester (50) 17.2 mg (6.56 mol) 2,2,4,4-TetrakisI4'-(2", 3", 4", 6"-Tetra-(0 -benzyl- -D- glucopyranosyl)-but-2'-inyl]-3-oxoglutarsäuredi-tert.-butyIester (49) und 5.8 mg 20%iges Pd/C wurden unter einer Wasserstoffatmosphäre in 1.0 ml Aceton/Wasser (9:1) suspendiert und analog Vorschrift 48 umgesetzt und aufgearbeitet. Der Rückstand wurde mittels Säulenchromatographie gereinigt. Man isolierte ein farbloses Öl. 14Example 6: Preparation of 2 5 2,4,4-tetrakis [4 '- (»- D-glucopyranosyl) butyl] -3-oxoglutaric acid di-tert-butyl ester (50) 17.2 mg (6.56 mol) 2,2,4 , 4-TetrakisI4 '- (2 ", 3", 4 ", 6" -Tetra- (0 -benzyl- -D-glucopyranosyl) -but-2'-ynyl] -3-oxoglutaric acid di-tert-butyl ester (49 ) and 5.8 mg of 20% Pd / C were suspended under a hydrogen atmosphere in 1.0 ml of acetone / water (9: 1) and reacted and worked up as described in regulation 48. The residue was purified by column chromatography, and a colorless oil was isolated. 14
Ausbeute: 2.1 mg (27%)Yield: 2.1 mg (27%)
SC: KG, PE/EE, 2:1SC: KG, PE / EE, 2: 1
DC: Rf (PE/EE 2:1): 0.15DC: R f (PE / EE 2: 1): 0.15
1H - NMR: - δH (250.13 MHz; CD3OD): 1.20-1.37, 1.58-1.63 (24H, je m, H-8, H-8a, H-9, H- 9a, H-10, H-10a); 1.45 (18H, s, H-15); 3.22-3.81 (16H, m, H-2, H-2a, H-3, H- 3a, H-4, H-4a, H-5, H-5a, H-δ, H-6a, H-7, H-7a); Signal für H-1 und H-1a, erwartet bei = 4.75, wird vermutlich vom starken Lösungsmitfeϊsignal bei δ = 4.78 überdeckt 1 H - NMR: - δ H (250.13 MHz; CD 3 OD): 1.20-1.37, 1.58-1.63 (24H, each m, H-8, H-8a, H-9, H- 9a, H-10, H-10a); 1.45 (18H, s, H-15); 3.22-3.81 (16H, m, H-2, H-2a, H-3, H- 3a, H-4, H-4a, H-5, H-5a, H-δ, H-6a, H- 7, H-7a); Signal for H-1 and H-1a, expected at = 4.75, is probably covered by the strong solvent signal at δ = 4.78
13C - NMR: δc (62.90 MHz; CD3OD): 22.3, 31.3, 34.1 (C-8, C-9, C-10); 28.6 (C-15); 62.9 (C-6); 66.6 (C-11); 69.1 (C-7); 72.0 (C-3); 73.8, 73.8 (C-2, C-5); 75.3 (C-4); 83.4 (C-14); 100.3 (C-1); 172.8 (C-13), 208.6 (C-12) 13 C NMR: δ c (62.90 MHz; CD 3 OD): 22.3, 31.3, 34.1 (C-8, C-9, C-10); 28.6 (C-15); 62.9 (C-6); 66.6 (C-11); 69.1 (C-7); 72.0 (C-3); 73.8, 73.8 (C-2, C-5); 75.3 (C-4); 83.4 (C-14); 100.3 (C-1); 172.8 (C-13), 208.6 (C-12)
Figure imgf000017_0001
Figure imgf000017_0001
C-53H94Ö29 M = 1195.3C- 53 H 94 Ö 29 M = 1195.3
HR-MS (FAB):Berechnet für CsaH^OasNa [M+Na+] : 1217.578 Gefunden: 1217.581 HR-MS (FAB): Calculated for CsaH ^ OasNa [M + Na + ]: 1217.578 Found: 1217.581

Claims

15 15
Patentansprücheclaims
1) Verfahren zur Herstellung von dendritischen Strukturen umfassend die1) Process for the production of dendritic structures comprising the
Reaktion eines mindestens bisubstituierten Alkinylhalogenids mit einer C-H- aciden Carbonylverbindung in Gegenwart einer Base.Reaction of an at least bisubstituted alkynyl halide with a C-H-acidic carbonyl compound in the presence of a base.
2) Verfahren nach Anspruch 1 , wobei die Base NaH, Natriumethylat, DBU oder LiH ist.2) The method of claim 1, wherein the base is NaH, sodium ethylate, DBU or LiH.
3) Verfahren nach Anspruch 1 oder 2, wobei die C-H-acide Carbonylverbindung Acetondicarbonsäurediethylester, Acetessigester, Malonsäurediethyle- ster, Acetondicarbonsäuredi(2-trimethylsilylethyl)ester oder Acetondicarbon- säuredi-t-butylester ist.3) Process according to claim 1 or 2, wherein the C-H-acidic carbonyl compound is diethyl acetone dicarboxylate, acetoacetic ester, diethyl malonate, di (2-trimethylsilylethyl) acetone dicarboxylate or di-t-butyl acetone dicarbonate.
4) Verfahren nach Anspruch 1 oder 2, wobei das mindestens bisubstituierte Alkinylhalogenid sich von 1-Brom-2-butin-4-ol oder 1-Brom-2-hexin-6-ol ableitet.4) Method according to claim 1 or 2, wherein the at least bisubstituted alkynyl halide is derived from 1-bromo-2-butyn-4-ol or 1-bromo-2-hexin-6-ol.
5) Verfahren nach Anspruch 1 oder 2, wobei das mindestens bisubstituierte Alkinylhalogenid folgende Struktur hat:5) Process according to claim 1 or 2, wherein the at least bisubstituted alkynyl halide has the following structure:
Hal-CH2-C≡C-R mit R = Benzoyl-, Ethyl-, tert-Butyl-, Benzyl-, Silylgruppe, pharmazeutische Wirkstoffe, SaccharidHal-CH 2 -C≡CR with R = benzoyl, ethyl, tert-butyl, benzyl, silyl group, active pharmaceutical ingredients, saccharide
6) Verfahren nach einem der Ansprüche 1 bis 5, wobei die Reaktion in einem polaren, aprotischen, organischen Lösungsmittel stattfindet.6) Method according to one of claims 1 to 5, wherein the reaction takes place in a polar, aprotic, organic solvent.
7) Verfahren nach einem der Ansprüche 1 bis 6, wobei die Komponenten C-H- acide Carbonylverbindung, Alkinylhalogenid und Base im Verhältnis 1 : > 4 : > 4,5 umgesetzt werden. 7) Process according to one of claims 1 to 6, wherein the components C-H-acidic carbonyl compound, alkynyl halide and base are reacted in a ratio of 1:> 4:> 4.5.
PCT/DE2001/002230 2000-06-16 2001-06-13 Method for producing dendritic structures WO2001096262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10029709A DE10029709A1 (en) 2000-06-16 2000-06-16 Process for the production of dendritic structures
DE10029709.9 2000-06-16

Publications (1)

Publication Number Publication Date
WO2001096262A1 true WO2001096262A1 (en) 2001-12-20

Family

ID=7645971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002230 WO2001096262A1 (en) 2000-06-16 2001-06-13 Method for producing dendritic structures

Country Status (2)

Country Link
DE (1) DE10029709A1 (en)
WO (1) WO2001096262A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383364B2 (en) 2011-03-07 2016-07-05 University Of Louisville Research Foundation, Inc. Predictive marker of DNMT1 inhibitor therapeutic efficacy and methods of using the marker
US9737493B2 (en) 2012-09-07 2017-08-22 University Of Louisville Research Foundation, Inc. Compositions and methods for modulating DNMT1 inhibitor activity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207381B2 (en) 2007-02-06 2012-06-26 University Of Louisville Research Foundation Therapeutic compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624705A1 (en) * 1996-06-20 1998-01-08 Deutsches Krebsforsch Saccharide-based dendrimers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624705A1 (en) * 1996-06-20 1998-01-08 Deutsches Krebsforsch Saccharide-based dendrimers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. KÖNIG ET AL.: "Synthesis of macrocyclic enediynes by twofold C-alkylation", SYNTHESIS, 1996, pages 446 - 448, XP002177791 *
R.S. ATKINSON, M.J. GRIMSHIRE: "Intramolecular reactions of N-nitrenes with alkynes: Conformational anchoring in spiro-fused 2H-azirines", J. CHEM. SOC. PERKIN TRANS. I, 1986, pages 1215 - 1224, XP002177790 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383364B2 (en) 2011-03-07 2016-07-05 University Of Louisville Research Foundation, Inc. Predictive marker of DNMT1 inhibitor therapeutic efficacy and methods of using the marker
US9737493B2 (en) 2012-09-07 2017-08-22 University Of Louisville Research Foundation, Inc. Compositions and methods for modulating DNMT1 inhibitor activity

Also Published As

Publication number Publication date
DE10029709A1 (en) 2002-01-03

Similar Documents

Publication Publication Date Title
EP0369182B1 (en) Antitumour saccharide conjugates
EP0845475B1 (en) Inositolglycans with insular activity
WO2001096262A1 (en) Method for producing dendritic structures
DE3508356A1 (en) SIALACID DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
DE60127848T2 (en) T-Butoxycarbonylaminoethylamine for the synthesis of PNA monomer units, amino acid derivatives, intermediates thereof, and methods for their preparation
WO2002100874A1 (en) Compounds for binding nucleic acids
EP0440078B1 (en) Process for the preparation of retinylglycosides and intermediates for this process
AT503400A1 (en) PROCESS FOR THE PRODUCTION OF AMINO SUGAR
DE10013328C2 (en) Process for the preparation of perbenzylated 1-O-glycosides
WO2002016378A1 (en) Method for producing water-soluble saccharide conjugates and saccharide mimetics by diels-alder reaction
EP1521761B1 (en) Treatment of congenital disorders of glycosylation (cdg) using mannose
WO2007048974A2 (en) D-glucosamine and n-acetyl-d-glucosamine heterooligomers, method for preparing same and use thereof
EP0277310A1 (en) Anthracycline derivatives with a cytostatic activity
EP1051421B1 (en) Compounds containing boron for electron microscopy and for boron neutron-capture therapy
EP0518270A1 (en) Method for the preparation of sugar epitopes
Hada et al. Syntheses of model compounds related to an antigenic epitope in pectic polysaccharides from Bupleurum falcatum L.
WO1996006103A2 (en) α-D-PENTOFURANOSIDE DERIVATIVES, PROCESS FOR PREPARING THE SAME AND THEIR USE
DE10129888C2 (en) Process for the preparation of perbenzylated 1-O-glycosides
DE10129677C2 (en) Process for the preparation of perbenzylated 1-O-glycosides
DE60117526T2 (en) ALKYLATED INOSITOLGLYCANES AND THEIR USE
DE69734192T2 (en) Acylating agents and process for their preparation
DD232052A5 (en) PROCESS FOR PREPARING SPINGOSINE DERIVATIVES
EP1404691A2 (en) Method for producing peracylated 1-o-glycosides
EP1997825A1 (en) Method for manufacturing glycosamine analoga
CH685284A5 (en) Phospholipid deriv. with drug attached at 2 position

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase