WO2001094501A2 - Procede de separation d'un fluide liphophile contenant des emulsions presentant avec une coalescence electrique - Google Patents

Procede de separation d'un fluide liphophile contenant des emulsions presentant avec une coalescence electrique Download PDF

Info

Publication number
WO2001094501A2
WO2001094501A2 PCT/US2001/018193 US0118193W WO0194501A2 WO 2001094501 A2 WO2001094501 A2 WO 2001094501A2 US 0118193 W US0118193 W US 0118193W WO 0194501 A2 WO0194501 A2 WO 0194501A2
Authority
WO
WIPO (PCT)
Prior art keywords
lipophilic fluid
agents
water
emulsion
process according
Prior art date
Application number
PCT/US2001/018193
Other languages
English (en)
Other versions
WO2001094501A3 (fr
Inventor
John Christopher Deak
Paul Amaat Raymond France
Anna Vadimovna Noyes
Arseni V. Radomyselski
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/849,842 external-priority patent/US6828292B2/en
Priority claimed from US09/849,839 external-priority patent/US6840963B2/en
Priority claimed from US09/849,556 external-priority patent/US6706076B2/en
Priority claimed from US09/849,843 external-priority patent/US6939837B2/en
Priority claimed from US09/849,893 external-priority patent/US6691536B2/en
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to EP01941948A priority Critical patent/EP1292375A2/fr
Priority to AU7525901A priority patent/AU7525901A/xx
Publication of WO2001094501A2 publication Critical patent/WO2001094501A2/fr
Publication of WO2001094501A3 publication Critical patent/WO2001094501A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/06Separation of liquids from each other by electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/02Dewatering or demulsification of hydrocarbon oils with electrical or magnetic means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0094Process for making liquid detergent compositions, e.g. slurries, pastes or gels
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/162Organic compounds containing Si
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3945Organic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • C11D7/5004Organic solvents
    • C11D7/5009Organic solvents containing phosphorus, sulfur or silicon, e.g. dimethylsulfoxide
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/02Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using organic solvents
    • D06L1/10Regeneration of used chemical baths
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06LDRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
    • D06L1/00Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods
    • D06L1/12Dry-cleaning or washing fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods using aqueous solvents
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/005Compositions containing perfumes; Compositions containing deodorants
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3932Inorganic compounds or complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/24Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/263Ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3209Amines or imines with one to four nitrogen atoms; Quaternized amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • C11D7/3218Alkanolamines or alkanolimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/30Drying processes 

Definitions

  • the present invention relates to a method for electrically coalescing emulsions especially those containing lipophilic fluid.
  • the present invention is also directed to a method to treat fabrics wherein such an emulsion is created during the treatment process and requires electric coalescence prior to reuse of the lipophilic fluid.
  • non-aqueous, lipophilic fluids While a broad range of non-aqueous, lipophilic fluids are available, many require the presence of low levels of water in the form of emulsions or microemulsions to maximize cleaning efficiency without sacrificing the "safety" accorded fabrics via dry cleaning.
  • a cost-effective, efficient, and safe way to break these emulsions is desired, particularly when adjuncts such as emulsifiers are utilized.
  • the need remains for a cost effective, efficient, and safe separation method for lipophilic fluids and water, particularly when an emulsifier is present.
  • the present invention provides a process for separating an emulsion, the process comprising exposing an emulsion comprising a continuous phase, a discontinuous phase, and an emulsifier to an electric field effecting coalescence of the discontinuous phase into droplets of a size for effective gravitation from the emulsion, where the continuous phase and the discontinuous phase have different dielectric constants and densities.
  • the present invention provides a method for treating fabrics comprising, a fabric treatment step comprising exposing said fabrics to lipophilic fluid and water, a collection step comprising collecting at least a portion of said lipophilic fluid and said water (wherein one is the continuous phase and the other is the discontinuous phase) in a stable or semi-stable emulsion; and, a processing step comprising passing said emulsion through an electric field effecting coalescence of the discontinuous phase into droplets of a size for effective gravitation from said mixture.
  • fabrics used herein is intended to mean any article that is customarily cleaned in a conventional laundry process or in a dry cleaning process. As such the term encompasses articles of clothing, linen, drapery, and clothing accessories. The term also encompasses other items made in whole or in part of fabric, such as tote bags, furniture covers, tarpaulins and the like.
  • continuous phase used herein means a component of an emulsion that comprises greater than 50% by weight of the emulsion.
  • the continuous phase may comprise a lipophilic fluid or water.
  • discontinuous phase used herein means a component of an emulsion that comprises less than 50% by weight of the emulsion.
  • the discontinuous phase may comprise a lipophilic fluid or water.
  • the continuous phase and the discontinuous phase are present in the emulsion in equal amounts by weight of the emulsion, the continuous phase shall be the non- conductive or least conductive of the two phases.
  • lipophilic fluid used herein is intended to mean any non-aqueous fluid capable of removing sebum, as qualified by the test described below.
  • adjunct ingredients such as surfactants, bleaches, and the like may be added either prior to fabric application (directly into the lipophilic fluid and/or water) or at some point during fabric application. These optional adjunct ingredients are also described in more detail below.
  • the lipophilic fluid herein is one having a liquid phase present under operating conditions.
  • such a fluid can be fully liquid at ambient temperature and pressure, can be an easily melted solid, e.g., one which becomes liquid at temperatures in the range from about 0 deg. C to about 60 deg. C, or can comprise a mixture of liquid and vapor phases at ambient temperatures and pressures, e.g., at 25 deg. C and 1 arm. pressure.
  • the essential lipohilic fluid is not a compressible gas such as carbon dioxide. It is preferred that the lipophilic fluid herein be inflammable or, have relatively high flash points and/or low NOC characteristics, these terms having their conventional meanings as used in the dry cleaning industry, to equal or, preferably, exceed the characteristics of known conventional dry cleaning fluids.
  • Suitable lipophilic fluids herein- readily flow and are non- viscous.
  • the lipophilic fluids -herein are required to be fluids capable of at least partially dissolving sebum or body soil as defined in the test hereinafter. Mixtures of lipophilic fluid are also suitable, and provided that the requirements of the test are met, the lipophilic fluid can include any fraction of dry-cleaning solvents, especially newer types including non- fluorinated solvents, or perfluorinated amines. Some perfluorinated amines such as perfluorotributylamines while unsuitable for use as lipohilic fluid may be present as one of many possible adjuncts present in the lipohilic fluid.
  • lipohilic fluids include diol solvent systems e.g., higher diols such as C6- or C8- or higher diols; organosilicon solvents including both cyclic and acyclic types, and the like; and mixtures thereof.
  • a preferred group of nonaqueous liquids suitable for incorporation as the major component of the lipophilic fluid includes low-volatility non-fluorinated organics, silicones, especially those other than amino-functional silicones, and mixtures thereof.
  • Low volatility nonfluorinated organics include for example OLEAN and other polyol esters, or certain relatively nonvolatile biodegradable mid-chain branched petroleum fractions.
  • Suitable silicones for use as a major component, e.g., more than 50%, of the lipophilic fluid include cyclopentasiloxane, sometimes termed "D5", or linear analogs having approximately similar volatility, optionally complemented by other compatible silicones.
  • Suitable silicones are well known in the literature, see, for example, Kirk Othmer's Encyclopedia of Chemical Technology, and are available from a number of commercial sources, including General Electric, Toshiba Silicone, Bayer, and Dow Corning. Other suitable fluids are commercially available from Procter & Gamble or from Dow Chemical and other suppliers.
  • one suitable silicone is SF-1528 available from GE silicone fluids. It is worth noting that SF-1528 fluid is 90% cyclopentasiloxane (D5).
  • the lipophilic fluid may be removed mechanically, evaporatively, or any combination thereof.
  • the purpose of the treatment is to provide cleaning it will be desirable to mechanically remove from the fabric articles at least 50% of the textile treatment liquid, for example by spinning.
  • the purpose of the treatment is to deposit a conditioning agent into the fabric, the liquid is preferably removed evaporatively.
  • any non-aqueous fluid that is both capable of meeting known requirements for a dry-cleaning fluid (e.g, flash point etc.) and is capable of at least partially dissolving sebum, as indicated by the test method described below, is suitable as a lipophilic fluid herein.
  • the ability of a particular material to remove sebum can be measured by any known technique.
  • perfluorobutylamine (Fluorinert FC-43®) on its own (with or without adjuncts) is a reference material that, by definition, is unsuitable as the lipophilic fluid herein (it is essentially a non-solvent) while D5 dissolves sebum.
  • the following is the method for investigating and qualifying other materials, e.g., other low- viscosity, free-flowing silicones, for use as the lipophilic fluid.
  • the method uses commercially available Crisco ® canola oil, oleic acid (95% pure, available from Sigma Aldrich Co.) and squalene (99% pure, available from J.T. Baker) as model soils for sebum.
  • the test materials should be substantially anhydrous and free from any added adjuncts, or other materials during evaluation.
  • the fluid qualifies as suitable for use as a "lipophilic fluid" in accordance with the invention.
  • the amount of fluid dissolved in the oil phase will need to be further determined before rejecting or accepting the fluid as qualified.
  • a syringe carefully extract a 200 microliter sample from each layer in each vial.
  • the syringe-extracted layer samples are placed in GC autosampler vials and subjected to conventional GC analysis after determining the retention time of calibration samples of each of the three models soils and the fluid being tested.
  • test fluid is also qualified for use as a lipophilic fluid. If needed, the method can be further calibrated using heptacosafluorotributylamine, i.e., Fluorinert FC-43 (fail) and cyclopentasiloxane (pass).
  • heptacosafluorotributylamine i.e., Fluorinert FC-43 (fail) and cyclopentasiloxane (pass).
  • a suitable GC is a Hewlett Packard Gas Chromatograph HP5890 Series II equipped with a split/splitless injector and FID.
  • a suitable column used in determining the amount of lipophilic fluid present is a J&W Scientific capillary column DB-1HT, 30 meter, 0.25mm id, 0.1 um film thickness cat# 1221131.
  • the GC is suitably operated under the following conditions: Carrier Gas: Hydrogen Column Head Pressure: 9 psi
  • Preferred lipophilic fluids suitable for use herein can further be qualified for use on the basis of having an excellent garment care profile.
  • Garment care profile testing is well known in the art and involves testing a fluid to be qualified using a wide range of garment or fabric article components, including fabrics, threads and elastics used in seams, etc., and a range of buttons.
  • Preferred lipophilic fluids for use herein have an excellent garment care profile, for example they have a good shrinkage or fabric puckering profile and do not appreciably damage plastic buttons.
  • a lipophilic fluid for use in the lipophilic fluid can be present in a mixture, e.g., with water, at approximately the ratio to be used in the final lipophilic fluid which will come into contact with fabric articles.
  • Other lipophilic fluids, D5 for example meets the garment care requirements commendably.
  • Lipophilic solvents can include linear and cyclic polysiloxanes, hydrocarbons and chlorinated hydrocarbons. More preferred are the linear and cyclic polysiloxanes and hydrocarbons of the glycol ether, acetate ester, lactate ester families. Preferred lipophilic solvents include cyclic siloxanes having a boiling point at 760 mm Hg. of below about 250°C. Specifically preferred cyclic siloxanes for use in this invention are octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • the cyclic siloxane comprises decamethylcyclopentasiloxane (D5, pentamer) and is substantially free of octamethylcyclotetrasiloxane (tetramer) and dodecamethylcyclohexasiloxane (hexamer).
  • useful cyclic siloxane mixtures might contain, in addition to the preferred cyclic siloxanes, minor amounts of other cyclic siloxanes including octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane or higher cyclics such as tetradecamethylcycloheptasiloxane.
  • cyclic siloxanes in useful cyclic siloxane mixtures will be less than about 10 percent based on the total weight of the mixture.
  • the industry standard for cyclic siloxane mixtures is that such mixtures comprise less than about 1% by weight of the mixture of octamethylcyclotetrasiloxane.
  • the lipophilic fluid of the present invention preferably comprises more than about 50%>, more preferably more than about 75%, even more preferably at least about 90%, most preferably at least about 95%> by weight of the lipophilic fluid of decamethylcyclopentasiloxane.
  • the lipophilic fluid may comprise siloxanes which are a mixture of cyclic siloxanes having more than about 50%, preferably more than about 75%, more preferably at least about 90%, most preferably at least about 95%) up to about 100%> by weight of the mixture of decamethylcyclopentasiloxane and less than about 10%o, preferably less than about 5%, more preferably less than about 2%, even more preferably less than about 1%>, most preferably less than about 0.5%> to about 0%) by - weight of the mixture of octamethylcyclotetrasiloxane and/or dodecamethylcyclohexasiloxane.
  • siloxanes which are a mixture of cyclic siloxanes having more than about 50%, preferably more than about 75%, more preferably at least about 90%, most preferably at least about 95%) up to about 100%> by weight of the mixture of decamethylcyclopentasiloxane and less than about 10%o, preferably less than about 5%,
  • Emulsifiers are well known in the chemical art. Essentially, an emulsifier acts to bring two or more insoluble or semi-soluble phases together to create a stable or semi- stable emulsion. It is preferred in the claimed invention that the emulsifier serves a dual purpose wherein it is capable of acting not only as an emulsifier but also as a treatment performance booster. For example, the emulsifier may also act as a surfactant thereby boosting cleaning performance. Both ordinary emulsifiers and emulsifier/surfactants are commercially available.
  • Adjunct materials can vary widely and can be used at widely ranging levels.
  • detersive enzymes such as proteases, amylases, cellulases, Upases and the like as well as bleach catalysts including the macrocyclic types having manganese or similar transition metals all useful in laundry and cleaning products can be used herein at very low, or less commonly, higher levels.
  • Adjunct materials that are catalytic, for example enzymes can be used in "forward" or "reverse” modes, a discovery independently useful from the specific appliances of the present invention.
  • a lipolase or other hydrolase may be used, optionally in the presence of alcohols as adjuncts, to convert fatty acids to esters, thereby increasing their solubility in the lipohilic fluid.
  • This is a "reverse" operation, in contrast with the normal use of this hydrolase in water to convert a less water-soluble fatty ester to a more water-soluble material.
  • any adjunct ingredient must be suitable for use in combination with the lipophilic fluid.
  • cleaning additives include, but are not limited to, builders, surfactants, enzymes, bleach activators, bleach catalysts, bleach boosters, bleaches, alkalinity sources, antibacterial agents, colorants, perfumes, pro-perfumes, finishing aids, lime soap dispersants, composition malodor control agents, odor neutralizers, polymeric dye transfer inhibiting agents, crystal growth inhibitors, photobleaches, heavy metal ion sequestrants, anti-tarnishing agents, anti-microbial agents, anti-oxidants, anti-redeposition agents, soil release polymers, electrolytes, pH modifiers, thickeners, abrasives, divalent or trivalent ions, metal ion salts, enzyme stabilizers, corrosion inhibitors, diamines or polyamines and/or their alkoxylates, suds stabilizing polymers, solvents, process aids, fabric softening agents, optical brighteners, hydrotropes, suds or foam suppressors, suds or foam boosters, fabric softeners, antistatic agents, dye
  • surfactant conventionally refers to materials that are surface-active either in the water, the lipophilic fluid, or the mixture of the two.
  • Some illustrative surfactants include nonionic, cationic and silicone surfactants as used in conventional aqueous detergent systems.
  • polyoxyethylene lauryl ether with 4 or 23 oxyethylene groups
  • polyoxyethylene cetyl ether with 2, 10 or 20 oxyethylene groups
  • polyoxyethylene stearyl ether with 2, 10, 20, 21 or 100 oxyethylene groups
  • polyoxyethylene (2), (10) oleyl ether with 2 or 10 oxyethylene groups.
  • Suitable cationic surfactants include, but are not limited to dialkyldimethylammonium salts having the formula:
  • Examples include: didodecyldimethylammonium bromide (DDAB), dihexadecyldimethyl ammonium chloride, dihexadecyldimethyl ammonium bromide, dioctadecyldimethyl ammonium chloride, dieicosyldimethyl ammonium chloride, didocosyldimethyl ammonium chloride, dicoconutdimethyl ammonium chloride, ditallowdimethyl ammonium bromide (DTAB).
  • DDAB didodecyldimethylammonium bromide
  • DTAB didodecyldimethylammonium bromide
  • Suitable silicone surfactants include, but are not limited to the polyalkyleneoxide polysiloxanes having a dimethyl polysiloxane hydrophobic moiety and one or more hydrophilic polyalkylene side chains and have the general formula:
  • R 1 (CH 3 ) 2 SiO— [(CH 3 ) 2 SiO] a — [(CH 3 )(R 1 )SiO] b — Si(CH 3 ) 2 — 1
  • a + b are from about 1 to about 50, preferably from about 3 to about 30 , more preferably from about 10 to about 25, and each R 1 is the same or different and is selected from the group consisting of methyl and a poly(ethyleneoxide/propyleneoxide) copolymer group having the general formula:
  • R 1 being a poly(ethyleneoxide/propyleneoxide) copolymer group, and wherein n is 3 or 4, preferably 3; total c (for all polyalkyleneoxy side groups) has a value of from 1 to about 100, preferably from about 6 to about 100; total d is from 0 to about
  • total c+d has a value of from about 5 to about 150, preferably from about 9 to about 100 and each R-- is the same or different and is selected from the group consisting of hydrogen, an alkyl having 1 to 4 carbon atoms, and an acetyl group, preferably hydrogen and methyl group.
  • R-- is the same or different and is selected from the group consisting of hydrogen, an alkyl having 1 to 4 carbon atoms, and an acetyl group, preferably hydrogen and methyl group. Examples of these surfactants may be found in US 5705562 Hill and US 5707613 Hill, both of which are incorporated herein by reference.
  • Silwet® surfactants which are available CK Witco, OSi Division, Danbury, Connecticut.
  • Representative Silwet surfactants are as follows.
  • the molecular weight of the polyalkyleneoxy group (R ) is less than or equal to about 10,000.
  • the molecular weight of the polyalkyleneoxy group is less than or equal to about 8,000, and most preferably ranges from about 300 to about 5,000.
  • the values of c and d can be those numbers which provide molecular weights within these ranges.
  • the number of ethyleneoxy units (-C2H4O) in the polyether chain (R!) must be sufficient to render the polyalkyleneoxide polysiloxane water dispersible or water soluble. If propyleneoxy groups are present in the polyalkylenoxy chain, they can be distributed randomly in the chain or exist as blocks.
  • Preferred Silwet surfactants are L- 7600, L-7602, L-7604, L-7605, L-7657, and mixtures thereof. Besides surface activity, polyalkyleneoxide polysiloxane surfactants can also provide other benefits, such as antistatic benefits, and softness to fabrics.
  • polyalkyleneoxide polysiloxanes of the present invention can be prepared according to the procedure set forth in U.S. Pat. No. 3,299,112, incorporated herein by reference.
  • Another suitable silicone surfactant is SF-1488, which is available from GE silicone fluids.
  • surfactants suitable for use in combination with the lipophilic fluid as adjuncts are well known in the art, being described in more detail in Kirk Othmer's Encyclopedia of Chemical Technology, 3rd Ed., Vol. 22, pp. 360-379, "Surfactants and Detersive Systems", incorporated by reference herein. Further suitable nonionic detergent surfactants are generally disclosed in U.S. Patent 3,929,678, Laughlin et al., issued December 30, 1975, at column 13, line 14 through column 16, line 6, incorporated herein by reference.
  • the adjunct may also be an antistatic agent.
  • Any suitable well-known antistatic agents used in laundering and dry cleaning art are suitable for use in the methods and compositions of the present invention.
  • Especially suitable as antistatic agents are the subset of fabric softeners which are known to provide antistatic benefits.
  • antistatic agent is not to be limited to just this subset of fabric softeners and includes all antistatic agents.
  • Some lipophilic fluids that provide safe and effective treatment of fabrics require at least some water to operate effectively. Further, although water is being utilized in the treatment process, the harm to the fabrics that is to be avoided by conventional dry cleaning methods/solvents is still substantially or fully avoided. Not intending to be bound by theory, the water may also function as a carrier and/or activator for the adjunct ingredients that are not very effective in the lipophilic fluid alone. This water may be added at any point and/or in any sequence in the treatment process or may be mixed with the lipophilic fluid and/or adjunct materials prior to application to the fabrics. Regardless of how they come in contact with the fabrics however, the lipophilic fluid and water are recovered in the form of a stable or semi-stable emulsion.
  • the lipophilic fluid Since the lipophilic fluid will be reused, it must be separated from the water and/or purified to remove body oils, dirt, and other contaminants. As such, a safe, rapid and efficient process for breaking the stable or semi-stable emulsion is needed.
  • One embodiment of this invention requires exposing an emulsion containing a lipophilic fluid, water (wherein one is the continuous phase and the other is the discontinuous phase), and an emulsifier to an electric field to affect coalescence of the discontinuous phase into droplets of a large enough size such that the droplets gravitate from the emulsion based on the density difference of the two phases.
  • the two phases lipophilic fluid and water
  • the emulsion may comprise 0.1 % to 99.9%> lipophilic fluid, 0.1% to 99.9% water, and 0.01% to 10% emulsifier.
  • a second embodiment is a method for treating fabrics comprising a fabric treatment step wherein fabrics are exposed to lipophilic fluid and water, a collection step wherein at least a portion of the lipophilic fluid and water is collected in the form of an emulsion having a continuous phase and a discontinuous phase, and a processing step wherein the collected emulsion is passed through an electric field to coalesce the collected discontinuous phase into droplets of a large enough size such that the droplets gravitate from the emulsion based on the density difference of the two phases.
  • the second embodiment may include a mixing step wherein the lipophilic fluid and water are mixed to form a stable or semi-stable emulsion prior to the fabric treatment step instead of during the collection step.
  • the processing step may also include a filtration step wherein the emulsion is passed through a filter for removing particulate matter from the emulsion prior to further processing. These filters are well known in the art.
  • the processing step may also include a heating step wherein the emulsion is heated prior to the electric coalescence step in order to aid the separation process. Another way to aid the separation process may be adding demulsifying agents to the emulsion during the processing step.
  • the lipophilic fluid and water may also be desirable to subject the lipophilic fluid used in the method to a solvent purification process. It is particularly desirable to employ a solvent purification process that permits re-use of the recovered and cleaned lipophilic fluid, either in a rinse step, or for a subsequent load of fabric articles.
  • the purification method may be done by several methods or a combination of these methods, all well known in the art. For example, a distillation process may be employed to purify the collected lipophilic fluid. A membrane filter may also be used to purify the collected lipophilic fluid. Another method may be to employ an adsorption process to purify the lipophilic fluid. Absorption processes may also be utilized to purify the collected lipophilic fluid.
  • An extraction process may also be utilized to purify the collected lipophilic fluid.
  • Ion exchange and air stripping are also processes that may be employed, individually or in combination with other processes, to purify the collected lipophilic fluid.
  • the collection step of the present invention may be carried out in several ways.
  • Spinning the fabric load including the lipophilic fluid and water is well known in conventional laundry applications. Wringing or twisting or squeezing the treated fabrics is also a well-known mechanical way to extract fluids from fabrics and fabric articles. Evaporation may also be employed to collect the lipophilic fluid and water and/or to dry the fabric load. Heating the fabric load, lipophilic fluid and water or other well-known means for evaporation may do this. Spinning may be coupled with heating to assist evaporation and evaporation uniformity. If this method is employed, it will require subsequent condensation of the lipophilic fluid and water followed by the separation and purification steps.
  • the methods of the present invention may be combined with other fabric treatments.
  • the fabric articles prior to the application of the lipophilic fluid the fabric articles may be subjected to the particulate removal method described in co- pending application Serial No. 60/191,965, to Noyes et al., filed March 24, 2000, the relevant parts of which are incorporated herein by reference.
  • the methods of the present invention may be used in a service, such as a dry cleaning service, diaper service, uniform cleaning service, or commercial business, such as a Laundromat, dry cleaner, linen service which is part of a hotel, restaurant, convention center, airport, cruise ship, port facility, casino, or may be used in the home.
  • a service such as a dry cleaning service, diaper service, uniform cleaning service, or commercial business, such as a Laundromat, dry cleaner, linen service which is part of a hotel, restaurant, convention center, airport, cruise ship, port facility, casino, or may be used in the home.
  • the methods of the present invention may be performed in an apparatus that is a modified existing apparatus and is retrofitted in such a manner as to conduct the process of the present invention in addition to related processes.
  • the methods of the present invention may also be performed in an apparatus, which is not a modified existing apparatus but is one specifically built in such a manner so as to conduct the process of the present invention or may be added to another apparatus as part of a lipophilic fluid processing system.
  • the methods of the present invention may be performed in an apparatus, which is not a modified existing apparatus but is one specifically built in such a manner so as to conduct the process of the present invention and related processes including the treatment processes discussed hereinbefore.
  • An apparatus used in the processes of the present invention will typically contain some type of control system. These include electrical systems, such as, the so-called smart control systems, as well as more traditional electro-mechanical systems.
  • the control systems would enable the user to select the size of the fabric load to be cleaned, the type of soiling, the extent of the soiling, the time for the cleaning cycle. Alternatively, the user could use pre-set cleaning and/or refreshing cycles, or the apparatus could control the length of the cycle, based on any number of ascertainable parameters. This would be especially true for electrical control systems. For example, when the collection rate of lipophilic fluid reaches a steady rate the apparatus could turn its self off after a fixed period of time, or initiate another process for the lipophilic fluid.
  • control device In the case of electrical control systems, one option is to make the control device a so-called "smart device". This could mean including, but not limited to, self diagnostic system, load type and cycle selection, linking the machine to the Internet and allowing for the consumer to start the apparatus remotely, be informed when the apparatus has cleaned a fabric article, or for the supplier to remotely diagnose problems if the apparatus should break down. Furthermore, if the apparatus of the present invention is only a part of a cleaning system, the so called “smart system” could be communicating with the other cleaning devices which would be used to complete the remainder of the cleaning process, such as a washing machine, and a dryer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

La présente invention concerne un procédé pour assurer par voie électrique la coalescence d'émulsions, en particulier, de celles contenant un fluide lipophile. La présente invention traite aussi d'un procédé pour traiter des tissus, selon lequel une émulsion est créée pendant le procédé de traitement et nécessite une coalescence électrique avant de pouvoir réutiliser le fluide lipophile.
PCT/US2001/018193 2000-06-05 2001-06-05 Procede de separation d'un fluide liphophile contenant des emulsions presentant avec une coalescence electrique WO2001094501A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01941948A EP1292375A2 (fr) 2000-06-05 2001-06-05 Procede de separation d'un fluide liphophile contenant des emulsions presentant avec une coalescence electrique
AU7525901A AU7525901A (en) 2000-06-05 2001-06-05 A process for separating lipophilic fluid containing emulsions with electric coalescence

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
US20925000P 2000-06-05 2000-06-05
US20944300P 2000-06-05 2000-06-05
US20944400P 2000-06-05 2000-06-05
US20946800P 2000-06-05 2000-06-05
US60/209,250 2000-06-05
US60/209,443 2000-06-05
US60/209,444 2000-06-05
US60/209,468 2000-06-05
US24117400P 2000-10-17 2000-10-17
US60/241,174 2000-10-17
US09/849,842 US6828292B2 (en) 2000-06-05 2001-05-04 Domestic fabric article refreshment in integrated cleaning and treatment processes
US09/849,839 US6840963B2 (en) 2000-06-05 2001-05-04 Home laundry method
US09/849,839 2001-05-04
US09/849,893 2001-05-04
US09/849,556 US6706076B2 (en) 2000-06-05 2001-05-04 Process for separating lipophilic fluid containing emulsions with electric coalescence
US09/849,842 2001-05-04
US09/849,843 US6939837B2 (en) 2000-06-05 2001-05-04 Non-immersive method for treating or cleaning fabrics using a siloxane lipophilic fluid
US09/849,893 US6691536B2 (en) 2000-06-05 2001-05-04 Washing apparatus
US09/849,556 2001-05-04
US09/849,843 2001-05-04

Publications (2)

Publication Number Publication Date
WO2001094501A2 true WO2001094501A2 (fr) 2001-12-13
WO2001094501A3 WO2001094501A3 (fr) 2002-07-04

Family

ID=27581150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/018193 WO2001094501A2 (fr) 2000-06-05 2001-06-05 Procede de separation d'un fluide liphophile contenant des emulsions presentant avec une coalescence electrique

Country Status (3)

Country Link
EP (1) EP1292375A2 (fr)
AU (1) AU7525901A (fr)
WO (1) WO2001094501A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328228A (zh) * 2016-06-07 2019-02-12 3M创新有限公司 硅氧烷组合物和使用硅氧烷组合物的清洁方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108599A (en) * 1976-01-09 1978-08-22 Stauffer Chemical Company High water content emulsion cleaning
DE3739711A1 (de) * 1987-11-24 1989-06-08 Kreussler Chem Fab Verwendung von polydialkylcyclosiloxanen als loesemittel fuer die chemischreinigung
EP0841362A2 (fr) * 1996-11-12 1998-05-13 Dow Corning Corporation Coalescence électrique d'émulsions de silicone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108599A (en) * 1976-01-09 1978-08-22 Stauffer Chemical Company High water content emulsion cleaning
DE3739711A1 (de) * 1987-11-24 1989-06-08 Kreussler Chem Fab Verwendung von polydialkylcyclosiloxanen als loesemittel fuer die chemischreinigung
EP0841362A2 (fr) * 1996-11-12 1998-05-13 Dow Corning Corporation Coalescence électrique d'émulsions de silicone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109328228A (zh) * 2016-06-07 2019-02-12 3M创新有限公司 硅氧烷组合物和使用硅氧烷组合物的清洁方法

Also Published As

Publication number Publication date
EP1292375A2 (fr) 2003-03-19
WO2001094501A3 (fr) 2002-07-04
AU7525901A (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US6706076B2 (en) Process for separating lipophilic fluid containing emulsions with electric coalescence
US6930079B2 (en) Process for treating a lipophilic fluid
EP1290268B1 (fr) Proprietes visuelles ameliorees pour procede de lavage
US6673764B2 (en) Visual properties for a wash process using a lipophilic fluid based composition containing a colorant
AU2002333532B2 (en) Selective laundry process using water
US7018423B2 (en) Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning
WO2003054281A1 (fr) Traitement d'articles textiles au moyen d'agents actifs d'entretien de textiles specifiques
EP1417373B1 (fr) Procedes et systemes permettant de secher des tissus contenant un fluide lipophile
AU2002333532A1 (en) Selective laundry process using water
WO2001094679A2 (fr) Procede permettant de traiter un liquide lipophile
EP1425457A1 (fr) Polymeres de silicone pour systemes fluides lipophiles
US20060200916A1 (en) Methods and systems for drying lipophilic fluid-containing fabrics
US20030121107A1 (en) Solvent treatment of fabric articles
CA2410195C (fr) Procede d'utilisation de vapeur aqueuse et de fluide lipophile pendant le nettoyage de tissus
EP1427803B1 (fr) Systeme de nettoyage a sec pouvant etre rejete dans l'egout
WO2001094501A2 (fr) Procede de separation d'un fluide liphophile contenant des emulsions presentant avec une coalescence electrique
AU2001268189A1 (en) Method for the use of aqueous vapor and lipophilic fluid during fabric cleaning
AU2002327456A1 (en) Methods and systems for drying lipophilic fluid-containing fabrics
WO2003054278A2 (fr) Traitement d'articles textiles au moyen d'agents chelatants hydrophobes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001941948

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001941948

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP