WO2001090791A1 - Optical module - Google Patents

Optical module Download PDF

Info

Publication number
WO2001090791A1
WO2001090791A1 PCT/JP2001/000854 JP0100854W WO0190791A1 WO 2001090791 A1 WO2001090791 A1 WO 2001090791A1 JP 0100854 W JP0100854 W JP 0100854W WO 0190791 A1 WO0190791 A1 WO 0190791A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
axis
cores
optical module
core
Prior art date
Application number
PCT/JP2001/000854
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumi Kawamoto
Naoki Matsushima
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2001090791A1 publication Critical patent/WO2001090791A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Definitions

  • the present invention relates to an optical transmission module mainly used in an optical transmission system or an optical switching system, and relates to a light emitting element or a light receiving element and an optical fiber, a light emitting element or a light receiving element and an optical circuit, an optical circuit and an optical circuit in the optical transmission module.
  • the present invention relates to optical coupling technology for optical fibers, optical switches, and beam splitters. Background art
  • Optical transmission of information transmission lines is progressing, and information transmission using optical fibers is planned not only for office buildings in various industries but also for collective houses and individual houses.
  • One of the important issues here is, of course, the cost reduction of the optical transmission system.
  • the laser with the light beam spot diameter expander In manufacturing the laser with the light beam spot diameter expander, a selective crystal growth technique is used to make the thickness of the emission end side of the core portion tapered.
  • the integration of the beam spot diameter enlargement section affects the optimal design of the laser itself, causing new problems such as not optimizing the laser or making the effect of fabrication errors on the laser characteristics more sensitive. ing.
  • the manufacturing yield is reduced compared to conventional lasers, and the price of the laser itself is increased. Therefore, the price of the optical transmission module has not been significantly reduced.
  • lasers with optical beam spot diameter enlargers are used.
  • the semiconductor laser, the optical circuit, and the optical circuit are used as long as the divergence angle of the far-field image of the semiconductor laser is not approximately equal to that of the optical fiber.
  • the problem is that the optical coupling between the circuit and the optical fiber cannot be optimized at the same time, and the optical circuit must be designed under conditions where each optimization is sacrificed. Or, conversely, there is a problem in that, in order to prioritize the optical coupling efficiency, the problem of miniaturizing an optical circuit is sacrificed.
  • An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide a completely new optical module including an optical waveguide capable of changing a light beam spot diameter. Disclosure of the invention
  • Optical transmission modules transmit information over optical fibers, and it is important to increase the efficiency of optical coupling to the fiber. Increasing the optical coupling efficiency is to efficiently excite the eigenmode of the optical fiber.
  • the eigenmodes of a semiconductor laser, an optical waveguide, and an optical fiber are different from each other, increasing the optical coupling between these optical components (semiconductor laser, optical waveguide, and optical fiber) requires the eigenmode of the optical component in the preceding stage. It is necessary to insert a mode converter that approximately converts the eigenmode into the eigenmode of the subsequent optical component. That is, it is necessary to convert the eigenmode between optical components so that each optical component can be excited in its own eigenmode. Also, in order for the light beam spot converter to function as a mode converter for improving the optical coupling characteristics, it is necessary to control the wavefront so as not to change the beam spot diameter abruptly, and to perform mode conversion smoothly.
  • the mode conversion can be performed smoothly by controlling the wavefront.
  • using a plurality of segmented cores adjusting the spacing between the cores to keep the effective refractive index almost constant, and changing the width of the segmented cores along the z-axis to create a smooth wavefront Control can be performed.
  • the core part near the optical axis (z-axis) along the z-axis is thick and far from the optical axis so that the width of the segmented core becomes a shape whose y-z cross section can be regarded as substantially circular.
  • the propagation speed (phase velocity) of light in a region with a high refractive index can be reduced, and the propagation speed of light can be increased as the distance from the optical axis increases.
  • the incident laser light has a wavefront curved so as to converge on the optical axis in the light traveling direction, so that the eigenmode of the preceding optical component is approximately converted to the eigenmode of the subsequent optical component.
  • the incident laser light is subjected to a wavefront curve so as to converge toward the optical axis.
  • the refractive index difference between the core and the clad is small, the refractive power is extremely small, and the laser light has a substantially circular shape.
  • the beam diameter of the incident laser light will increase. Therefore, it is important to optimize the shape and number of the cores, thereby making it possible to reduce the beam diameter to the waveguide eigenmode diameter of the optical circuit with a small loss.
  • Proper determination of the beam diameter expansion rate is important to increase both the optical coupling efficiency and the tolerance for axial deviation (tolerance) without sacrificing the other. For example, as will be described later, it is important to optimize the radius and the number of substantially circular cores as parameters.
  • the beam diameter is kept constant in the region of the rectangular core group by forming a connection between the core group having a substantially circular segment shape and the rectangular group having a y-z cross section. Since the beam deviated from the optical axis is returned to the optical axis, the alignment tolerance can be improved.
  • the eigenmode of the single mode optical waveguide is smoothly converted into a mode without a large loss.
  • a light emitting device such as an LD (semiconductor laser) enters the light beam spot variable optical waveguide
  • the eigenmode of the single mode optical waveguide is smoothly converted into a mode without a large loss.
  • FIG. 1 is a perspective view schematically showing a light beam spot converter according to the present invention.
  • FIG. 2 is a cross-sectional view and a plan view showing a first embodiment of the light beam spot converter according to the present invention.
  • FIG. 3 is a sectional view and a plan view showing second and third embodiments of the light beam spot converter according to the present invention.
  • FIG. 4 is a light intensity contour diagram showing the operation of the light beam spot converter according to the first embodiment of the present invention.
  • FIG. 5 is a diagram showing an optical coupling characteristic of the light beam spot converter according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view explaining a manufacturing process of the optical beam spot converter of the present invention.
  • FIG. 1 is a perspective view schematically showing a light beam spot converter according to the present invention.
  • FIG. 2 is a cross-sectional view and a plan view showing a first embodiment of the light beam spot converter according to the present invention.
  • FIG. 3 is a sectional view
  • FIG. 7 is a perspective view of an optical transmission module with an optical beam spot converter according to a fourth embodiment of the present invention.
  • FIG. 8 is a perspective view of a first parallel optical transmission module with a light beam spot converter according to a fifth embodiment of the present invention.
  • FIG. 9 is a perspective view of a second parallel optical transmission module with an optical beam spot converter according to a sixth embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a seventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing an optical waveguide having an optical beam spot converter.
  • the incident light beam is guided to the optical waveguide 14 via the optical beam spot converter 11.
  • the z-axis is the traveling direction of the light beam.
  • the light beam spot converter 11 further includes a light beam spot diameter expansion width control unit l aa, a light beam spot diameter holding unit 11 b, and a light beam spot diameter reduction unit 11 c.
  • the light beam spot diameter expansion width control unit 11a has a plurality of substantially cylindrical cores, and controls the expansion width of the light beam spot diameter propagating by the action of the convex lens so that the light beam becomes substantially parallel light. Control so that That is, control is performed so that the light beam to be expanded is converged without being expanded by using a substantially cylindrical core.
  • a plurality of circular cores having the same diameter are arranged. However, since the diameter of the propagating light beam is enlarged, a core having a diameter equal to or larger than the diameter of the preceding core may be arranged. From the viewpoint of shortening the length of the light beam spot converter, it is preferable to arrange the core so that the diameter gradually increases.
  • this first stage core has a diameter greater than the beam diameter at the point where the incident light beam approximates a Gaussian beam and the intensity is approximately 1 / e2 of the peak intensity. Is preferred.
  • the diameter is too large, the refractive power is weakened, and it is necessary to increase the number of cores, which increases the beam spot converter length. Therefore, for example, the divergence angle of the laser is about 6 ° to about 45 ° (with lens function: about 6 ° to about 1 °).
  • the distance from the laser is about 5 ⁇ 50m, it is preferable to place a core with a diameter of about 3 ⁇ 250m.
  • the light beam spot diameter holding unit 11b has a plurality of rectangular cores, and is configured to hold the beam diameter of the light beam from the light beam spot diameter expansion width control unit 11a. Is done.
  • the gap between the cores is configured to be almost constant. Due to the length of the light beam spot diameter holding portion 11b, even if the optical axis of the laser and the optical waveguide is shifted due to, for example, a positional shift, the propagating light beam is transmitted to the optical waveguide 14 by the light. It is controlled to converge on the axis (Z axis).
  • the light beam spot diameter reducing section 11c includes a plurality of substantially cylindrical cores, and the convex lens function acts on the light beam spot diameter holding section 1c.
  • the cores of the optical beam spot converter 11 and the optical waveguide 14 described above are made of the same material, and the core is covered with a clad 12.
  • the relative refractive index difference between the cores 11 and 14 and the cladding 12 is preferably about 0.2 to 2.0% from the single mode condition. Particularly, it is preferably about 0.3 to 0.6%.
  • the wavefront so that the beam spot diameter from the laser is not rapidly changed, and to smoothly convert the beam spot diameter to a suitable beam spot diameter adapted to the optical waveguide.
  • the provision of the beam spot diameter holding portion can improve the tolerance, thereby improving the productivity during assembly. From the viewpoint of improving the coupling efficiency, a configuration without the beam spot diameter holding portion may be employed.
  • the main loss of the light beam spot converter 11 in the present embodiment is the reflection loss at the interface between the cladding layer and the core layer, and the leakage from the core layer to the cladding layer such as diffraction loss when the periodicity is strong. Radiation loss. Since the reflection loss is almost negligible when the refractive index difference between the clad and the core is small, reducing the diffraction loss is one of the design points. The diffraction loss can be reduced by limiting the number of cores of the same shape or by gently changing the core shape to weaken the periodicity.
  • the optical waveguide shown in FIG. 3 has a configuration in which diffraction loss is considered, and this will be described later.
  • the circular core in the y-z if the refractive index difference between the cladding and the core is configured to be small, the circular core in the y-z
  • the refractive power of 1a and 11c becomes weak, and it becomes difficult to convert to the expected beam spot diameter. Therefore, in the optical waveguide shown in Fig. 1, etc.
  • the core is used to obtain a necessary convex lens function.
  • the light beam spot diameter enlargement width control unit 11a and the beam spot diameter reduction unit 11c are configured using a substantially circular core, but a lens having a desired convex lens action can be obtained.
  • the shape does not matter. Any surface may be used as long as it has a curve or a curve approximation on the surface where the light beam enters or exits. Therefore, it may be substantially elliptical.
  • FIG. 2 shows a light beam spot converter designed based on the results of a simulation based on the above basic concept.
  • FIG. 2 (a) is a sectional view
  • the example is long and cannot be illustrated continuously on the z-axis, so the middle is cut off and divided into two rows.
  • a segment-shaped core having a substantially circular shape obtained by approximating the above-mentioned cylindrical shape with a broken line is used.
  • the mask becomes a substantially circular shape approximated by a broken line as shown in FIG. The same applies to the case of forming an elliptical shape.
  • it is connected to a continuous-core optical waveguide while its cross-sectional shape is gently changed.
  • the shape of the core is changed so that the width of light incidence is reduced, but this is to guide the light beam to the optical waveguide while weakening the lens action on the propagating light beam. belongs to.
  • a circular segmented core is connected to an optical waveguide of a continuous core while gently changing the cross-sectional shape. That is, the incident light beam is composed of four cylindrical segments of approximately the same diameter, a core group (beam spot diameter expansion control unit), seven approximately rectangular segments, and gradually the Y direction of the core.
  • the core group (beam spot diameter holding part), consisting of five segments, which has a shorter width, a longer length in the Z direction, and a narrower gap between the cores, has four cylindrical members having almost the same diameter. It is configured to be guided to the optical waveguide through a segment and a core group (beam spot diameter reduction part) consisting of five segments in which the width of the core in the Y direction is gradually reduced and the length in the Z direction is increased. Have been.
  • the beam diameter is reduced to be substantially the same as the beam diameter of the optical waveguide.
  • the width of the core in the Y direction is gradually reduced, and the length in the Z direction is reduced.
  • the circular segment-like core group is directly connected to the optical waveguide of the continuous core at the beam spot reducing portion.
  • the incident light beam gradually becomes a core group consisting of four cylindrical segments of approximately the same diameter (beam spot diameter enlargement control unit), and seven rectangular segments of approximately the same diameter.
  • FIG. 4 shows the performance of the light beam spot conversion in the first embodiment, which is shown using the contour line 21 of the light intensity in the yz section.
  • the y-axis is enlarged about 5 times, and the length in the z-direction is 300 / im.
  • the divergence angle of the far-field image as laser light is
  • FIG. 4 (a) shows the case where the laser is located on the optical axis
  • FIG. 4 (b) shows the case where the laser is arranged +2 m away from the y-axis.
  • the laser light enters from the bottom of the figure and travels upward. From Fig. 4 (a), it can be seen that the beam diameter gradually expands with the progress of light and approaches the eigenmode of the optical waveguide after becoming almost constant. That is, it can be seen that mode conversion can be performed smoothly by controlling the wavefront. For this calculation, three-dimensional FD-BPM was used.
  • FIG. 5 shows the optical coupling characteristics in the first embodiment of the present invention as a relationship between the amount of deviation of the laser in the y direction and the coupling efficiency. Also, the case where laser light is incident on the direct optical waveguide of the conventional method is shown for comparison. As exemplified in this figure, the present invention has achieved an improvement in the allowable amount of axis deviation.
  • FIG. 5 merely shows an example of the features of the present invention, and improves the coupling efficiency while keeping the allowable amount of axis deviation at the same level as in the past, that is, the translation curve of the conventional example is moved upward in parallel.
  • Embodiments of the binding characteristics that cause the binding to occur can also be provided.
  • the optical coupling characteristics of the first embodiment shown in FIG. Tolerance has been improved.
  • an example has been shown in which the maximum coupling efficiency is almost constant and the allowable amount of axis deviation is increased.
  • FIG. 6 shows the manufacturing process of the first, second and third embodiments.
  • the optical waveguide is manufactured on a glass or Si (silicon) substrate by a method similar to a known optical waveguide manufacturing method using a quartz or organic material.
  • a quartz-based substrate using an Si substrate 55 the formation of a quartz-based film by CVD, EB evaporation, flame deposition, etc. is basically the same as in the production of a quartz-based optical waveguide. . This time, the method using the flame deposition method is shown.
  • the second cladding layer 53 and the core layer 51 are deposited on the Si substrate 55 as glass particles obtained by hydrolyzing the raw material in an oxyhydrogen flame (step (a)). ).
  • the core layer 51 has a high dopant concentration such as titanium oxide or germanium oxide.
  • the glass particle film is heated to a high temperature in an electric furnace to make it transparent (step (b)).
  • the deposition and transparency of the glass fine particles are usually performed separately for the cladding layer 53 and the core layer 51, but here, the case where they are performed collectively is shown.
  • the core layer 51 is patterned using photolithography. That is, after applying a resist and transferring a mask pattern, the core 51 is formed by etching with a predetermined depth R IE (reactive ion etching) (step (c)).
  • the first cladding layer 52 whose refractive index is adjusted according to the dopant amount is deposited as glass fine particles (step (d)), and further heated at a high temperature to make it transparent (step (e)).
  • a quartz-based material is used, a small amount of an auxiliary dopant is often added to adjust the glass softening temperature and the coefficient of thermal expansion.
  • the core layer is patterned using photolithography in this manner, it is possible to form the core having the shape as in the embodiment including the optical waveguide.
  • FIG. 7 is a conceptual diagram of an optical transmission module using an optical circuit according to a fourth embodiment of the present invention.
  • the optical circuit of this embodiment is an optical circuit having a function of branching and joining by an optical waveguide, and an optical beam spot converter 101 is provided at an end thereof.
  • the figure shows only the area where the light beam spot converter 101 is provided.
  • the light beam spot converter of the third to third embodiments is formed.
  • the optical circuit and the optical beam spot converter are fabricated on a Si (silicon) substrate 55 using a quartz or organic material.
  • the fabrication method using quartz is as described above.
  • a metallization (not shown) for soldering an optical element and an alignment mark (not shown) for alignment are formed on one incident end side of the Si substrate 55.
  • Alignment marks for alignment are also formed on the optical element 102 in advance. The alignment is performed by a so-called passive alignment method based on these marks, and the solder is melted by heating to obtain the optical element 101.
  • Solder is vapor-deposited on the side of either the substrate or the element by a thickness of several m and patterned to form a solder film pattern.
  • Optical fiber forms V-groove in glass or Si substrate and fills it
  • an optical fiber block 103 covered with a protective plate is prepared.
  • the optical fiber block 103 and the substrate on which the above-described optical element is mounted and on which the optical beam spot converter is formed are aligned by a passive or active alignment method, and adhesively connected using an adhesive 105.
  • the adhesive may be UV-curable or heat-curable, but it is needless to say that an adhesive having small deformation during curing and high reliability is desirable.
  • FIG. 8 is a conceptual diagram of a parallel optical transmission module using an array-type optical element according to a fifth embodiment of the present invention.
  • a light beam spot converter 201 is formed on the Si substrate 55, and then a metallization (not shown) for soldering an optical element to one of the incident ends and an alignment mark for alignment are formed. (Not shown) is formed.
  • Alignment marks for alignment are also formed on the optical element 202 in advance, the alignment is performed by a so-called passive alignment method based on these marks, and the solder is melted by heating to obtain the optical element 2.
  • 0 Connect 1 Solder is vapor-deposited on the side of either the substrate or the element by a thickness of several m and patterned to form a solder film pattern.
  • the optical fiber bundle 203 is formed with a V-groove formed in the Si substrate, embedded in the groove, and a block 204 of the optical fiber bundle 203 covered with a protective plate (not shown) is produced. Keep it.
  • the optical fiber bundle block 204 and the substrate on which the optical element is mounted and on which the optical beam spot converter is formed are aligned by a passive or active alignment method, and adhesively bonded using an adhesive 105 I do.
  • active alignment alignment is basically performed using the channels at both ends, but alignment may be performed using the center channel, and is not limited to a specific method.
  • FIG. 9 is a conceptual diagram showing a second parallel optical transmission module using an array type optical element according to a sixth embodiment of the present invention.
  • the difference from the fifth embodiment is that an optical beam spot converter is manufactured on a substrate 55 in which a V-groove is formed, and an optical element 201 is mounted. Since a substrate with a V-groove is used, light
  • Beam spot converters are easy to make using organic materials. If an organic material for an optical waveguide is used, a film can be formed by spin coating and baking. However, it is difficult to produce a flat film due to the presence of the V-groove. In this embodiment, a thick resist is applied, and this is removed to the surface of the substrate by etching. Was. An alignment mark is formed in the vicinity of the V-groove, a light beam spot converter is manufactured based on this alignment mark, and if a device mounting pattern is formed, mutual alignment accuracy is determined by the mask alignment accuracy. Patterning is possible, and extremely efficient optical coupling can be realized. The optical elements are aligned by passive alignment and connected by solder. Then insert the optical fiber into the V-groove, apply adhesive, cover with a protective plate and
  • the module further requires electrical connection and sealing of the element, etc., but a known method may be applied, or the module is not directly related to the present invention, and therefore description thereof is omitted.
  • FIG. 10 is a conceptual diagram showing a signal connection of an exchange or a computer using a parallel optical transmission module according to a seventh embodiment of the present invention. It is used for the purpose of high-speed signal transmission between processors of large computers, between processors and storage devices, reduction in the weight and thickness of high-density signal wiring, and improvement in noise resistance.
  • the devices 301 and 302 include signal connection boards 25 3 a, 25 3 b, 25 3 c, and 25 3 d, etc., and are mounted on each signal connection board.
  • the parallel optical transmission module 255a information is converted from an electrical signal to an optical signal and transmitted to the optical fiber array 255a via the multi-core optical connector 255a. Signals are transmitted between the devices via an optical fiber array bundle 256 that includes similar optical fiber arrays.
  • the parallel optical transmission module 25 1 b on the signal connection board 25 3 b of the other device connected to the optical fiber array 255 a converts the optical signal into an electric signal,
  • the beam spot diameter conversion described above is applied to the portion of the optical switch that connects to the optical fiber, the tip of the optical waveguide before branching of the beam splitter, and the tip of each optical waveguide after branching.
  • An optical waveguide with a function can also be formed. This can also improve the tolerance and the optical coupling efficiency.
  • the beam expansion rate can be varied by designing the core shape.
  • an optical circuit including an optical waveguide
  • an optical circuit including an optical waveguide
  • Optimal beam spot converters can be formed at both ends of the optical element and optical fiber individually, which has a great effect on improving the light use efficiency of the optical module and facilitating manufacturing.
  • the manufacturing is easy, it is effective in reducing the price of the optical module.
  • the optical beam spot converters of the embodiments described above can be manufactured on a substrate on which an optical circuit and an optical element are mounted, the configuration of the optical module is simple, mounting is easy, and the optical module is low. From this point, the effect on price is also great.
  • an optical beam spot converter capable of performing beam spot conversion with an extremely simple process can be realized, and the cost of the optical beam spot converter itself can be reduced compared to those requiring a method such as selective crystal growth. It is possible. Furthermore, since it is composed of a segmented core, it is also effective in downsizing the optical beam spot converter (reducing the element length). Industrial applicability

Abstract

An optical module provided with an optical guide having a totally novel lens function. An optical module comprising an optical guide that has a core part through which light is propagated along the z-axis of a coordinate system in which the z-axis is the optical axis along which the light is propagated, the x-axis is the vertical axis in the cross section perpendicular to the z-axis, and the y-axis is the horizontal axis in the cross section and a clad layer covering the core part. The core part is composed of cores, and the y-z cross section of at least one of the cores has a generally circular shape, a generally elliptic shape, or a shape similar to those.

Description

明 細 書 '  Specification '
光モジュール Optical module
技術分野 Technical field
本発明は、 主として光伝送システムあるいは光交換システムに使用さ れる光伝送モジュールに係り、 光伝送モジュールにおける発光素子また は受光素子と光ファイバ、 あるいは発光素子または受光素子と光回路、 光回路と光ファイバ、 光スィッチゃビ一ムスプリッ夕一などにおける光 結合技術に関する。 背景技術  The present invention relates to an optical transmission module mainly used in an optical transmission system or an optical switching system, and relates to a light emitting element or a light receiving element and an optical fiber, a light emitting element or a light receiving element and an optical circuit, an optical circuit and an optical circuit in the optical transmission module. The present invention relates to optical coupling technology for optical fibers, optical switches, and beam splitters. Background art
情報伝送路の光化が進展し、 各種産業の事業所ビルのみならず、 集合 家屋や個別家屋にまで光ファイバを用いた情報伝送が計画されている。 ここでの重要課題の 1つは、 言うまでもなく光伝送システムの低価格化 であり、 特に末端の一般加入者に接続される光伝送モジュールの低価格 化が急務になっている。  Optical transmission of information transmission lines is progressing, and information transmission using optical fibers is planned not only for office buildings in various industries but also for collective houses and individual houses. One of the important issues here is, of course, the cost reduction of the optical transmission system. In particular, there is an urgent need to reduce the price of the optical transmission module connected to the general end-user.
この加入者系光伝送モジュールの大幅低コスト化のため、 近年光ビー ムスポット径拡大器付き半導体レーザの実用化が進められてきた。 これ は部品としてのレンズを除去するために半導体レーザにレンズ機能を持 たせたものと解釈できる。  In recent years, semiconductor lasers with an optical beam spot diameter expander have been put into practical use in order to significantly reduce the cost of this optical transmission module. This can be interpreted as adding a lens function to the semiconductor laser in order to remove the lens as a component.
この光ビームスポット径拡大器付きレーザの作製には、 コア部の出射 端側膜厚をテーパ状にするため、 選択結晶成長技術が用いられている。 しかしながら、 ビームスポット径拡大部の集積化はレーザ自体の最適設 計に影響しレーザの最適化が徹底されない、 あるいはレーザ特性に対す る作製誤差の影響が敏感になる等の新たな問題も発生している。 このた め従来型レーザに対し製造歩留りが劣化し、 レーザ自体の価格を上昇さ せ、 よって光伝送モジュールの大幅価格低減には至っていない。 In manufacturing the laser with the light beam spot diameter expander, a selective crystal growth technique is used to make the thickness of the emission end side of the core portion tapered. However, the integration of the beam spot diameter enlargement section affects the optimal design of the laser itself, causing new problems such as not optimizing the laser or making the effect of fabrication errors on the laser characteristics more sensitive. ing. As a result, the manufacturing yield is reduced compared to conventional lasers, and the price of the laser itself is increased. Therefore, the price of the optical transmission module has not been significantly reduced.
また、 光ビームスポット径拡大器付きレーザを用いる場合においても 従来と同様のレーザと光導波路や光ファイバ等の位置合せ精度が要求さ れ、 組立の生産性や歩留りの大幅な向上が達成できず光伝送モジュール 価格低減における大きな課題となっている。  In addition, even when using a laser with an optical beam spot diameter expander, the same positioning accuracy as that of the conventional laser and the optical waveguide and optical fiber is required, and it is not possible to achieve a significant improvement in assembly productivity and yield. This is a major issue in reducing the price of optical transmission modules.
さらに、 アレー型半導体レーザでは光ビ一ムスポッ卜径拡大器付きレ Furthermore, for array-type semiconductor lasers, lasers with optical beam spot diameter enlargers are used.
—ザの実用化そのものが未だ達成されていない。 そのため、 アレー型半 導体レーザを用いた光並列伝送モジュールではマイクロレンズアレー等 のレンズの導入が必須となり、 レーザと光導波路や光ファイバ等の位置 合せ精度の他、 レンズについての位置合せ精度が要求され、 組立の生産 性や歩留りの大幅な向上が達成できず光伝送モジュールの低価格化を困 難にしている。 '. —The practical application of The has not yet been achieved. For this reason, it is necessary to introduce a lens such as a microlens array in an optical parallel transmission module using an array-type semiconductor laser, which requires not only the alignment accuracy of the laser with the optical waveguide and optical fiber, but also the alignment accuracy of the lens. As a result, it has not been possible to achieve significant improvements in assembly productivity and yield, making it difficult to reduce the cost of optical transmission modules. '.
その他、 半導体レーザと光ファイバとの間に光導波路で実現される光 回路があるモジュールでは、 半導体レーザの遠視野像発散角が光フアイ バのそれとほぼ同等でない限り、 半導体レーザと光回路、 光回路と光フ アイバの間の光結合を同時に最適化することはできず、 それぞれの最適 化は犠牲にする条件下で光回路を設計せざるを得ない、 という問題があ る。 あるいは、 逆に、 光結合効率を優先するために、 光回路を小形にす るというような課題を犠牲にする、 という問題がある。  In addition, in a module with an optical circuit realized by an optical waveguide between a semiconductor laser and an optical fiber, the semiconductor laser, the optical circuit, and the optical circuit are used as long as the divergence angle of the far-field image of the semiconductor laser is not approximately equal to that of the optical fiber. The problem is that the optical coupling between the circuit and the optical fiber cannot be optimized at the same time, and the optical circuit must be designed under conditions where each optimization is sacrificed. Or, conversely, there is a problem in that, in order to prioritize the optical coupling efficiency, the problem of miniaturizing an optical circuit is sacrificed.
本発明は、 上記した問題点を解決するものであり、 光ビームスポット 径を変換できる光導波路を備えた全く新規な光モジュールを提供するこ とを目的とするものである。 発明の開示  An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide a completely new optical module including an optical waveguide capable of changing a light beam spot diameter. Disclosure of the invention
光伝送モジュールは光ファイバで情報を伝送するものであり、 フアイ バへの光結合効率を上げることが重要である。 光結合効率を上げること は光ファイバの固有モ一ドを効率良く励振することである。 光ファイバ  Optical transmission modules transmit information over optical fibers, and it is important to increase the efficiency of optical coupling to the fiber. Increasing the optical coupling efficiency is to efficiently excite the eigenmode of the optical fiber. Optical fiber
2 の前段に光導波路からなる光回路が設けられる場合にも、 光導波路、 光 ファイバそれぞれの固有モードを効率良く励振することが基本になる。 これは光スィッチと光ファイバ、 光合分波器と光ファイバ、 ビームスプ リッ夕と光ファイバの間でも同じである。 Two In the case where an optical circuit composed of an optical waveguide is provided in the preceding stage, it is fundamental to efficiently excite the eigenmodes of the optical waveguide and the optical fiber. This is the same between an optical switch and an optical fiber, an optical multiplexer / demultiplexer and an optical fiber, and a beam splitter and an optical fiber.
従って、 例えば、 半導体レーザ、 光導波路、 光ファイバの固有モード がそれぞれ異なる場合、 これら光部品 (半導体レーザ、 光導波路、 光フ アイバ) 間の光結合を上げるには、 前段の光部品の固有モードを後段の 光部品の固有モードに近似的に変換するモード変換器を挿入することが 必要となる。 すなわち、 各光部品においてそれぞれの固有モードで励振 できるように、 光部品間で固有モードを変換させることが必要となる。 また、 光ビームスポット変換器を光結合特性を向上させるモード変換 器として機能させるには、 ビ一ムスポット径を急激に変換しないように 波面を制御して滑らかにモード変換を行う必要がある。  Therefore, for example, when the eigenmodes of a semiconductor laser, an optical waveguide, and an optical fiber are different from each other, increasing the optical coupling between these optical components (semiconductor laser, optical waveguide, and optical fiber) requires the eigenmode of the optical component in the preceding stage. It is necessary to insert a mode converter that approximately converts the eigenmode into the eigenmode of the subsequent optical component. That is, it is necessary to convert the eigenmode between optical components so that each optical component can be excited in its own eigenmode. Also, in order for the light beam spot converter to function as a mode converter for improving the optical coupling characteristics, it is necessary to control the wavefront so as not to change the beam spot diameter abruptly, and to perform mode conversion smoothly.
そこで、 本発明は、 上記目的を達成するために、 特許請求の範囲の通 りに構成した。  Then, in order to achieve the above object, the present invention was configured as in the appended claims.
これらは、 光導波路を形成するプロセス以外の特殊な技術を用いるこ となく作製でき、 波面を制御して滑らかにモード変換を行うことができ る。 例えば、 セグメント状の複数個のコアを用い、 コア間の間隔を調整 して実効屈折率をほば一定に保ちながら、 セグメント状のコアの幅を z 軸に沿って変化させることで滑らかに波面制御を行うことができる。 また、 例えば、 セグメント状のコアの幅を、 y— z断面が略円形と見 なせる形状になるよう、 z軸に沿って光軸(z軸)に近いコア部は厚く、 光軸から離れるに従ってコア部を薄くすることで、 屈折率の高い領域の 光の伝搬速度 (位相速度)を遅くし、 光軸から離れるに従って光の伝搬速 度を速くすることができる。 その結果、 入射したレーザ光は、 光の進行 方向において光軸に収束していくように波面が湾曲するので、 前段の光 部品の固有モードを後段の光部品の固有モードに近似的に変換すること  These can be manufactured without using any special technology other than the process of forming the optical waveguide, and the mode conversion can be performed smoothly by controlling the wavefront. For example, using a plurality of segmented cores, adjusting the spacing between the cores to keep the effective refractive index almost constant, and changing the width of the segmented cores along the z-axis to create a smooth wavefront Control can be performed. Also, for example, the core part near the optical axis (z-axis) along the z-axis is thick and far from the optical axis so that the width of the segmented core becomes a shape whose y-z cross section can be regarded as substantially circular. By reducing the thickness of the core according to, the propagation speed (phase velocity) of light in a region with a high refractive index can be reduced, and the propagation speed of light can be increased as the distance from the optical axis increases. As a result, the incident laser light has a wavefront curved so as to converge on the optical axis in the light traveling direction, so that the eigenmode of the preceding optical component is approximately converted to the eigenmode of the subsequent optical component. thing
3 が可能となる。 Three Becomes possible.
一方、 この入射されたレーザ光は、 光軸に向かって収束するように波 面が湾曲する作用を受けるが、 コアとクラッド間の屈折率差が小さいと その屈折力は極めて小さく、 略円形状コアの数が少ない場合は入射レー ザ光のビーム径は拡大することになる。 そのため、 コアの形状や数を適 正化することが重要となり、 これによつてビ一ム径をその後光回路の導 波路固有モード径まで小さな損失で縮小していくことが可能となる。 また、 ビーム径拡大率の適正な決定が光結合効率と軸ずれ許容度(ト レランス)の両者を、 あるいはそのいずれかを他方を犠牲にすることな く大きくするために重要である。 例えば、 後述するように、 略円形状コ ァの半径やその数をパラメータにしてそれらを適正化することが重要と On the other hand, the incident laser light is subjected to a wavefront curve so as to converge toward the optical axis. However, when the refractive index difference between the core and the clad is small, the refractive power is extremely small, and the laser light has a substantially circular shape. If the number of cores is small, the beam diameter of the incident laser light will increase. Therefore, it is important to optimize the shape and number of the cores, thereby making it possible to reduce the beam diameter to the waveguide eigenmode diameter of the optical circuit with a small loss. Proper determination of the beam diameter expansion rate is important to increase both the optical coupling efficiency and the tolerance for axial deviation (tolerance) without sacrificing the other. For example, as will be described later, it is important to optimize the radius and the number of substantially circular cores as parameters.
■ なる。 ■ Becomes.
さらに、 y— z断面が略円形状のセグメント状のコア群と矩形形状の コア群との連結で構成することで、 矩形コア群の領域においてビーム径 が一定に保持され、 その状態で光軸からずれたビームが光軸に引き戻さ れる作用を受けるため、 位置合せトレランスを向上させることができる。  Furthermore, the beam diameter is kept constant in the region of the rectangular core group by forming a connection between the core group having a substantially circular segment shape and the rectangular group having a y-z cross section. Since the beam deviated from the optical axis is returned to the optical axis, the alignment tolerance can be improved.
これによつて、 L D (半導体レーザ)等の発光素子からの光が光ビーム スポット可変光導波路に入射されるとき、 単一モード光導波路の固有モ —ドに大きな損失なく滑らかにモード変換することができる。 また、 高 効率な、 あるいは位置ずれ許容度(トレランス)が緩和された光結合を実 現できる。  Thus, when light from a light emitting device such as an LD (semiconductor laser) enters the light beam spot variable optical waveguide, the eigenmode of the single mode optical waveguide is smoothly converted into a mode without a large loss. Can be. In addition, it is possible to realize highly efficient optical coupling with a reduced tolerance for positional deviation (tolerance).
なお、 入射端での大きなビ一ム径を縮小するには、 凸レンズ相当の波 面変換を実現しなければならないので、 この凸レンズ相当の変換器は入 射端での大きなビーム径のレ一ザ光を受光するのに必要十分な大きさの 口径となっている。 図面の簡単な説明  In order to reduce the large beam diameter at the entrance end, it is necessary to realize a wavefront transformation equivalent to a convex lens, so a converter equivalent to this convex lens has a laser with a large beam diameter at the entrance end. The aperture is large enough to receive light. BRIEF DESCRIPTION OF THE FIGURES
4 第 1図は、 本発明の光ビームスポット変換器の概略を示す斜視図であ る。 第 2図は、 本発明の光ビームスポット変換器の第 1の実施例を示す 断面図と平面図である。 第 3図は、 本発明の光ビームスポット変換器の 第 2、 3の実施例を示す断面図と平面図である。 第 4図は、 本発明の第 1の実施例における光ビームスポット変換器の作用を示す光強度等高線 図である。 第 5図は、 本発明の第 1の実施例における光ビームスポット 変換器の光結合特性を示す図である。 第 6図は、 本発明の光ビ一ムスポ ット変換器の製造プロセスを説明する断面図である。 第 7図は、 本発明 の第 4の実施例を示す光ビームスポット変換器付き光伝送モジュールの 斜視図である。 第 8図は、 本発明の第 5の実施例を示す光ビームスポッ ト変換器付き第 1の並列光伝送モジュールの斜視図である。 第 9図は、 本発明の第 6の実施例を示す光ビームスポット変換器付き第 2の並列光 伝送モジュールの斜視図である。 第 1 0図は、 本発明の第 7の実施例を 説明する図である。 発明を実施するための最良の形態 Four FIG. 1 is a perspective view schematically showing a light beam spot converter according to the present invention. FIG. 2 is a cross-sectional view and a plan view showing a first embodiment of the light beam spot converter according to the present invention. FIG. 3 is a sectional view and a plan view showing second and third embodiments of the light beam spot converter according to the present invention. FIG. 4 is a light intensity contour diagram showing the operation of the light beam spot converter according to the first embodiment of the present invention. FIG. 5 is a diagram showing an optical coupling characteristic of the light beam spot converter according to the first embodiment of the present invention. FIG. 6 is a cross-sectional view explaining a manufacturing process of the optical beam spot converter of the present invention. FIG. 7 is a perspective view of an optical transmission module with an optical beam spot converter according to a fourth embodiment of the present invention. FIG. 8 is a perspective view of a first parallel optical transmission module with a light beam spot converter according to a fifth embodiment of the present invention. FIG. 9 is a perspective view of a second parallel optical transmission module with an optical beam spot converter according to a sixth embodiment of the present invention. FIG. 10 is a diagram for explaining a seventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例を図を用いて説明する。  An embodiment of the present invention will be described below with reference to the drawings.
第 1図は、 光ビームスポット変換器を備えた光導波路を示した図であ る。  FIG. 1 is a diagram showing an optical waveguide having an optical beam spot converter.
y— z断面において、 円形のセグメント状コア群と矩形のセグメント 状コア群との連結で構成した場合を示してある。  In the y-z section, a case is shown in which a circular segment-shaped core group and a rectangular segment-shaped core group are connected.
図において、 図示しない半導体レーザなどからの光ビームが入射する と、 その入射した光ビームは光ビームスポット変換器 1 1を介して光導 波路 1 4に導かれる。 ここで z軸が光ビームの進行方向となる。  In the figure, when a light beam from a semiconductor laser or the like (not shown) enters, the incident light beam is guided to the optical waveguide 14 via the optical beam spot converter 11. Here, the z-axis is the traveling direction of the light beam.
光ビームスポット変換器 1 1は、 さらに光ビームスポット径拡大幅制 御部 l l a、 光ビームスポット径保持部 1 1 b、 光ビームスポット径縮 小部 1 1 cから構成される。  The light beam spot converter 11 further includes a light beam spot diameter expansion width control unit l aa, a light beam spot diameter holding unit 11 b, and a light beam spot diameter reduction unit 11 c.
5 光ビームスポット径拡大幅制御部 1 1 aでは、 略円筒形状のコアを複 数個備えており、 その凸レンズ作用により伝播する光ビームスポット径 の拡大幅を制御し、 光ビームがほぼ平行光となるように制御する。 すな わち、 拡がろうとする光ビームを略円筒形状のコアを用いて拡がらずに 収束するように制御する。 図では同一直径の円形形状のコアを複数個配 置しているが、 伝播する光ビームのビーム径は拡大するので前段のコア の直径以上のものを配置してもよい。 光ビームスポット変換器長を短く する観点に立てば、 徐々に直径が大きくなるようにコアを配置すること が好ましい。 Five The light beam spot diameter expansion width control unit 11a has a plurality of substantially cylindrical cores, and controls the expansion width of the light beam spot diameter propagating by the action of the convex lens so that the light beam becomes substantially parallel light. Control so that That is, control is performed so that the light beam to be expanded is converged without being expanded by using a substantially cylindrical core. In the figure, a plurality of circular cores having the same diameter are arranged. However, since the diameter of the propagating light beam is enlarged, a core having a diameter equal to or larger than the diameter of the preceding core may be arranged. From the viewpoint of shortening the length of the light beam spot converter, it is preferable to arrange the core so that the diameter gradually increases.
また、 トレランス向上を考えると、 この一段目のコアは、 入射する光 ビームをガウスビームで近似した場合、 その強度がピーク強度のほぼ 1 /e2となる点のビーム径以上の直径のもので構成することが好ましい。 一方、 直径を大きくし過ぎると屈折力が弱まってコア数を増やす必要が あり、 ビームスポット変換器長が長くなつてしまう。 そこで、 例えば、 レーザの拡がり角が約 6 ° 〜約 4 5 ° (レンズ機能付き:約 6 ° 〜約 1 In order to improve the tolerance, this first stage core has a diameter greater than the beam diameter at the point where the incident light beam approximates a Gaussian beam and the intensity is approximately 1 / e2 of the peak intensity. Is preferred. On the other hand, if the diameter is too large, the refractive power is weakened, and it is necessary to increase the number of cores, which increases the beam spot converter length. Therefore, for example, the divergence angle of the laser is about 6 ° to about 45 ° (with lens function: about 6 ° to about 1 °).
5 ° 、 レンズ機能なし: 2 5 °〜4 5 ° ) 、 レーザからの距離が約 5〜 5 0 mの場合、 約 3〜2 5 0 mの直径のコアを配置することが好ま しい。 5 °, without lens function: 25 ° ~ 45 °) If the distance from the laser is about 5 ~ 50m, it is preferable to place a core with a diameter of about 3 ~ 250m.
次に、 光ビームスポット径保持部 1 1 bは矩形形状のコアを複数個備 えており、 光ビームスポット径拡大幅制御部 1 1 aからの光ビームのビ 一ム径を保持するように構成される。 コア間のギャップはほぼ一定とな るように構成している。 この光ビームスポット径保持部 1 1 bの長さに より、 例えば位置ずれによるレーザと光導波路との光軸のずれが生じた 場合であっても、 伝播する光ビームを光導波路 1 4の光軸 (Z軸) へ収 束するように制御される。  Next, the light beam spot diameter holding unit 11b has a plurality of rectangular cores, and is configured to hold the beam diameter of the light beam from the light beam spot diameter expansion width control unit 11a. Is done. The gap between the cores is configured to be almost constant. Due to the length of the light beam spot diameter holding portion 11b, even if the optical axis of the laser and the optical waveguide is shifted due to, for example, a positional shift, the propagating light beam is transmitted to the optical waveguide 14 by the light. It is controlled to converge on the axis (Z axis).
次に、 光ビームスポット径縮小部 1 1 cでは、 略円筒形状のコアを複 数個備えており、 その凸レンズ作用により光ビームスポット径保持部 1  Next, the light beam spot diameter reducing section 11c includes a plurality of substantially cylindrical cores, and the convex lens function acts on the light beam spot diameter holding section 1c.
6 1 bからの光ビームを縮小して光導波路 1 4の有するビームスポット径 に近づくように構成される。 図では同一直径の円形形状のコアを複数個 配置しているが、 ビーム径の縮小を許容しているので前段のコアの直径 以下のものを配置してもよい。 6 It is configured such that the light beam from 1 b is reduced to approach the beam spot diameter of the optical waveguide 14. In the figure, a plurality of circular cores having the same diameter are arranged. However, since the beam diameter can be reduced, those having a diameter equal to or less than the diameter of the core in the preceding stage may be arranged.
なお、 これまで説明した光ビームスポット変換器 1 1と光導波路 1 4 の備えるコアは同一材料で構成され、 そのコアの周りはクラッド 1 2で 覆われている。 コア 1 1、 1 4とクラッド 1 2の比屈折率差は、 シング ルモード条件からして 0. 2〜2. 0%程度が好ましい。 特に 0. 3〜0. 6 %程度 が好ましい。  The cores of the optical beam spot converter 11 and the optical waveguide 14 described above are made of the same material, and the core is covered with a clad 12. The relative refractive index difference between the cores 11 and 14 and the cladding 12 is preferably about 0.2 to 2.0% from the single mode condition. Particularly, it is preferably about 0.3 to 0.6%.
以上のように構成することで、 レーザからのビームズポット径を急激 に変換しないように波面を制御して滑らかに光導波路に合わせた好適な ビームスポット径に変換することができる。 また、 ビームスポット径保 持部を有することでトレランスを改善することができ、 組立時の生産性 を向上させることができる。 なお、 結合効率を改善する観点からすると、 ビ一ムスポット径保持部のない構成であっても良い。  With the above configuration, it is possible to control the wavefront so that the beam spot diameter from the laser is not rapidly changed, and to smoothly convert the beam spot diameter to a suitable beam spot diameter adapted to the optical waveguide. In addition, the provision of the beam spot diameter holding portion can improve the tolerance, thereby improving the productivity during assembly. From the viewpoint of improving the coupling efficiency, a configuration without the beam spot diameter holding portion may be employed.
ところで、 本実施例における光ビームスポット変換器 1 1の主な損失 はクラッド層とコア層との界面での反射損と、 周期性が強い場合の回折 損等のコア層からクラッド層に漏れていく放射損である。 反射損はクラ ッド一コア間の屈折率差が小さい場合にはほとんど無視できるから、 回 折損の低減が設計上の一つのポイントになる。 回折損の低減には同一形 状のコア数を制限するか、 コア形状を緩やかに変えて周期性を弱めれば 良い。 第 3図に示す光導波路は回折損を考慮した構成であるがこれにつ いては後述する。  By the way, the main loss of the light beam spot converter 11 in the present embodiment is the reflection loss at the interface between the cladding layer and the core layer, and the leakage from the core layer to the cladding layer such as diffraction loss when the periodicity is strong. Radiation loss. Since the reflection loss is almost negligible when the refractive index difference between the clad and the core is small, reducing the diffraction loss is one of the design points. The diffraction loss can be reduced by limiting the number of cores of the same shape or by gently changing the core shape to weaken the periodicity. The optical waveguide shown in FIG. 3 has a configuration in which diffraction loss is considered, and this will be described later.
—方、 クラッドとコアとの間の屈折率差を小さくなるように構成した 場合には、 光ビームの伝播方向となる y— z断面での円形形状のコア 1 On the other hand, if the refractive index difference between the cladding and the core is configured to be small, the circular core in the y-z
1 a、 1 1 cの屈折力が弱くなり期待するピ一ムスポット径に変換する ことが難しくなる。 そのため、 第 1図などに示す光導波路では複数個の The refractive power of 1a and 11c becomes weak, and it becomes difficult to convert to the expected beam spot diameter. Therefore, in the optical waveguide shown in Fig. 1, etc.
7 コアを用いて必要な凸レンズ作用を得るように構成している。 7 The core is used to obtain a necessary convex lens function.
なお、 第 1図では光ビ一ムスポット径拡大幅制御部 1 1 aとビームス ポット径縮小部 1 1 cとをほぼ円形状のコアを用いて構成したが、 所望 の凸レンズ作用が得られるものであれば形状は問わない。 光ビームが入 射もしくは出射する面に曲線もしくは曲線を近似したものがあれば良い。 従って、 ほぼ楕円形状のものであっても良い。  In FIG. 1, the light beam spot diameter enlargement width control unit 11a and the beam spot diameter reduction unit 11c are configured using a substantially circular core, but a lens having a desired convex lens action can be obtained. The shape does not matter. Any surface may be used as long as it has a curve or a curve approximation on the surface where the light beam enters or exits. Therefore, it may be substantially elliptical.
第 2図は、 上記の基本的な考え方の元にシミュレーションを行い、 こ の結果に基づいて設計された光ビームスポット変換器を示すものである。 第 2図(a )は断面図、 (b )は x = 0での y— z平面図である。 伹し(b ) は実施例が z軸に長く連続して図示できないので、 途中を切断し 2列に 分割して示した。  Fig. 2 shows a light beam spot converter designed based on the results of a simulation based on the above basic concept. FIG. 2 (a) is a sectional view, and FIG. 2 (b) is a y-z plan view at x = 0. In the case of (b), the example is long and cannot be illustrated continuously on the z-axis, so the middle is cut off and divided into two rows.
本実施例では、 前述の円柱形状を折線で近似した略円形状のセグメン ト状コアを用いた。 一般的な C A D技術を用いてセグメント状コアを形 成するためのマスクを設計すると、 第 2図に示すような、 円柱形状を折 線で近似した略円形状のものとなる。 楕円形上を形成する場合も同様で ある。 また、 その断面形状を緩やかに変えながら連続コアの光導波路に つないでいる。 なお、 本実施例においては、 コア 1 1の屈折率 N 0 = 1 . 4 6 4 1 6 , クラッド 1 2、 1 3の屈折率を共に N l = N 2 = 1 . 4 5 7 6としている。  In this embodiment, a segment-shaped core having a substantially circular shape obtained by approximating the above-mentioned cylindrical shape with a broken line is used. When a mask for forming a segmented core is designed using a general CAD technique, the mask becomes a substantially circular shape approximated by a broken line as shown in FIG. The same applies to the case of forming an elliptical shape. Also, it is connected to a continuous-core optical waveguide while its cross-sectional shape is gently changed. In this embodiment, the refractive index of the core 11 is N 0 = 1.46 4 16, and the refractive indices of the claddings 12 and 13 are both N l = N 2 = 1.45 76. .
これは、 第 1図に示したビームスポット径保持部を設けないものであ る。 すなわち、 光ビームが平行光となるように制御した後、 所望のビー ムスポット径となるように縮小して光導波路へと光ビームを伝播させる。 この場合、 第 1図に比べてトレランスは改善されないが、結合効率を向 上させることは可能である。  This does not include the beam spot diameter holding unit shown in FIG. That is, after the light beam is controlled to be parallel light, the light beam is reduced so as to have a desired beam spot diameter and propagated to the optical waveguide. In this case, the tolerance is not improved as compared with FIG. 1, but the coupling efficiency can be improved.
また、 ビームスポット径縮小部において、 光が入射する幅が小さくな るようにコアの形状を変化させているが、 これは伝播する光ビームに対 するレンズ作用を弱めながら、 光導波路へ導くためのものである。 これ  In the beam spot diameter reduction part, the shape of the core is changed so that the width of light incidence is reduced, but this is to guide the light beam to the optical waveguide while weakening the lens action on the propagating light beam. belongs to. this
8 については、 後の第 3図において詳細に説明する。 8 Will be described in detail later with reference to FIG.
第 3図は、 (a )が本発明における小形の光ビ一ムスポット変換器の第 2の実施例を示す x = 0での y— z平面図、 (b )が本発明における第 3 の実施例を示す X 0での y— z平面図である。 第 2及び第 3の実施例 は共に y— z断面が円形のセグメント状コァ群と矩形のコア群との連結 で構成しているが、 いずれもビームスポット径保持部と、 ビームスポッ ト径縮小部との構成が第 1図に示したものと異なる。  3 (a) is a y-z plan view at x = 0 showing a second embodiment of a small optical beam spot converter according to the present invention, and (b) is a third embodiment according to the present invention. It is a yz top view in X0 which shows an Example. Both the second and third embodiments are configured by connecting a group of segmented cores having a circular y-z cross section and a group of rectangular cores. Both of them have a beam spot diameter holding section and a beam spot diameter reducing section. Is different from that shown in FIG.
第 2の実施例である(a )では円形のセグメント状コアの断面形状を緩 やかに変えながら連続コアの光導波路につないでいる。 すなわち、 入射 した光ビームが、 ほぼ同一直径の円筒形状の 4個のセグメントから成る コア群 (ビームスポット径拡大制御部) 、 ほぼ同一の矩形形状の 7個の セグメントと、 徐々にコアの Y方向の幅を短くし、 Z方向の長さを長く し、 コア間のギャップを狭くした 5個のセグメントからなるコア群 (ビ —ムスポット径保持部) 、 ほぼ同一直径の円筒形状の 4個のセグメント と、 徐々にコアの Y方向の幅を短くし、 Z方向の長さを長くした 5個の セグメントからなるコア群 (ビームスポット径縮小部) を介して光導波 路に導かれるように構成されている。  In (a) of the second embodiment, a circular segmented core is connected to an optical waveguide of a continuous core while gently changing the cross-sectional shape. That is, the incident light beam is composed of four cylindrical segments of approximately the same diameter, a core group (beam spot diameter expansion control unit), seven approximately rectangular segments, and gradually the Y direction of the core. The core group (beam spot diameter holding part), consisting of five segments, which has a shorter width, a longer length in the Z direction, and a narrower gap between the cores, has four cylindrical members having almost the same diameter. It is configured to be guided to the optical waveguide through a segment and a core group (beam spot diameter reduction part) consisting of five segments in which the width of the core in the Y direction is gradually reduced and the length in the Z direction is increased. Have been.
ビ一ムスポット径保持部において、 矩形形状のコアを複数個配置して 周期構造とした場合、 ブラッグ回折による損失が生じる。 トレランス向 上を考慮すると、 コア数を増やしたいがそれによって損失が生じてしま う。 そこで、 図示するように、 徐々にコアの Y方向の幅を短くし、 Z方 向の長さを長くし、 コア間のギャップを狭くした 5個のセグメントを配 置することで、 すなわちコァ形状を緩やかに変えて周期性を弱めること で損失を抑制するように構成した。  When a plurality of rectangular cores are arranged in the beam spot diameter holding portion to form a periodic structure, loss due to Bragg diffraction occurs. Considering better tolerance, you want to increase the number of cores, but that will result in losses. Therefore, as shown in the figure, by gradually decreasing the width of the core in the Y direction, increasing the length in the Z direction, and arranging five segments with a narrow gap between the cores, The loss was suppressed by gradually changing the value and weakening the periodicity.
また、 ビームスポット径縮小部ではビーム径を縮小させて光導波路の ビーム径とほぼ同一にさせるが、 本実施例においては徐々にコアの Y方 向の幅を短くし、 Z方向の長さを長くした 5個のセグメントを配置する  In the beam spot diameter reducing section, the beam diameter is reduced to be substantially the same as the beam diameter of the optical waveguide. However, in this embodiment, the width of the core in the Y direction is gradually reduced, and the length in the Z direction is reduced. Place 5 extended segments
9 ことで、 凸レンズ作用を徐々に弱めながら光導波路のビームスポット径 へ変換するように構成した。 これは強い凸レンズ作用によつて短距離間 で細く絞つた光ビームは、 連続コアの光導波路が受容できる N A (開口 数)以上のビームとなり、 連続コアの光導波路内においてコア外に漏洩 しゃすぐなり伝播時の損失となるからである。 具体的には、 直径を徐々 に大きくした円形状を作成し、 その円形状に対して光軸を中心とした Y 方向の幅を徐々に短くなるように除去した形状を用いて構成している。 これによると単なる矩形形状にはならずに光ビームの入射面と出射面と が曲率を有するので、 凸レンズ作用を弱めながらビームスポット径を縮 小しモード変換を実現することが可能となる。 9 In this way, it was configured to convert the light into the beam spot diameter of the optical waveguide while gradually weakening the effect of the convex lens. This is because a light beam narrowed down to a short distance by the action of a strong convex lens becomes a beam larger than the NA (numerical aperture) that can be accepted by the optical waveguide of the continuous core, and leaks out of the core within the optical waveguide of the continuous core. This is a loss at the time of propagation. Specifically, a circular shape with a gradually increasing diameter is created, and the circular shape is removed from the optical axis and the width in the Y direction is gradually reduced. . According to this, since the entrance surface and the exit surface of the light beam have a curvature instead of a simple rectangular shape, it is possible to reduce the beam spot diameter while reducing the effect of the convex lens and to realize the mode conversion.
一方、 第 3の実施例の(b )ではビームスポット縮小部において円形の セグメント状コア群から連続コアの光導波路に直接つないでいる。 すな わち、 入射した光ビームが、 ほぼ同一直径の円筒形状の 4個のセグメン トから成るコア群 (ビームスポット径拡大制御部) 、 ほぼ同一の矩形形 状の 7個のセグメントと徐々にコアの Y方向の幅を短くし、 Z方向の長 さを長くし、 コア間のギャップを狭くした 5個のセグメントからなるコ ァ群 (ビームスポット径保持部) 、 ほぼ同一直径の円筒形状の 7個のセ グメントからなるコア群 (ビームスポット径縮小部) を介して光導波路 に導かれるように構成されている。  On the other hand, in (b) of the third embodiment, the circular segment-like core group is directly connected to the optical waveguide of the continuous core at the beam spot reducing portion. In other words, the incident light beam gradually becomes a core group consisting of four cylindrical segments of approximately the same diameter (beam spot diameter enlargement control unit), and seven rectangular segments of approximately the same diameter. A core group consisting of five segments (beam spot diameter holding part) with a shorter core width in the Y direction, a longer length in the Z direction, and a narrower gap between cores. It is configured to be guided to the optical waveguide via a core group (beam spot diameter reduction section) consisting of seven segments.
これによつても (a ) と同様の効果が得られるが、 光ビームスポット 径縮小部の構成が異なる分、 光結合効率がやや劣る。 トレランスについ ては(a )と同様の改善が得られる。  According to this, the same effect as (a) can be obtained, but the optical coupling efficiency is slightly inferior due to the difference in the configuration of the light beam spot diameter reducing portion. The same improvement in tolerance as in (a) can be obtained.
第 4図は、 第 1の実施例における光ビームスポット変換の性能を示す もので、 y— z断面における光強度の等高線 2 1を用いてこれを示した。 同図は y軸を約 5倍に拡大してあり、 z方向は 3 0 0 /i mの長さになつ ている。  FIG. 4 shows the performance of the light beam spot conversion in the first embodiment, which is shown using the contour line 21 of the light intensity in the yz section. In the figure, the y-axis is enlarged about 5 times, and the length in the z-direction is 300 / im.
この実施例では、 レーザ光として遠視野像発散角が半値半幅で 1 2度  In this embodiment, the divergence angle of the far-field image as laser light is
1 0 を仮定し、 これを導波路から 2 0 j^ m離して配置した場合を示している。 またここで第 4図(a )はレーザが光軸上にある場合、 同(b )は y軸に + 2 mずらして配置した場合である。 尚、 レーザ光は図の下側から入射 し、 上に向かって進行している。 第 4図 (a )より光の進行とともにビ —ム径が緩やかに拡大し、 ほぼ一定になつてから光導波路の固有モード に近づいているのが分かる。 すなわち、 波面を制御して滑らかにモード 変換を行えることが分かる。 なお、 この計算には 3次元の F D— B P M を用いた。 Ten Is assumed, and this is arranged at a distance of 20 j ^ m from the waveguide. FIG. 4 (a) shows the case where the laser is located on the optical axis, and FIG. 4 (b) shows the case where the laser is arranged +2 m away from the y-axis. The laser light enters from the bottom of the figure and travels upward. From Fig. 4 (a), it can be seen that the beam diameter gradually expands with the progress of light and approaches the eigenmode of the optical waveguide after becoming almost constant. That is, it can be seen that mode conversion can be performed smoothly by controlling the wavefront. For this calculation, three-dimensional FD-BPM was used.
第 5図は、 本発明の第 1の実施例における光結合特性を、 レーザの y 方向ずれ量と結合効率との関係として示したものである。 また、 従来法 の直接光導波路にレーザ光を入射させた場合を比較のため載せてある。 この図で例示したように、 本発明により軸ずれの許容量の改善が達成 できた。  FIG. 5 shows the optical coupling characteristics in the first embodiment of the present invention as a relationship between the amount of deviation of the laser in the y direction and the coupling efficiency. Also, the case where laser light is incident on the direct optical waveguide of the conventional method is shown for comparison. As exemplified in this figure, the present invention has achieved an improvement in the allowable amount of axis deviation.
すなわち、 Y方向に対して位置ずれがあつたとしても従来例に比べて結 合効率の低下は抑制されており、 例えば L D等の発光素子とビームスポ ット径変換器付きの光導波路との位置合わせ精度の許容範囲が広がるこ ととなる。 That is, even if there is a displacement in the Y direction, a decrease in the coupling efficiency is suppressed as compared with the conventional example. For example, the position between the light emitting element such as an LD and the optical waveguide with the beam spot diameter converter is reduced. The tolerance of alignment accuracy will be expanded.
これは特定の条件下で計算したものであるが、 例えばレーザ光の発散 角が大きい場合には更に改善効果が顕著になる。 また第 5図は本発明の 特徴の一例を例示したにすぎず、 軸ずれ許容量を従来と同程度に保った まま結合効率を向上させる、 即ち従来例の結合曲線を上方にほぼ平行移 動させるような結合特性の実施例も提供できる。 また図示してはいない が、 本発明の第 2、 第 3の実施例においても、 第 5図に示す第 1の実施 例の.光結合特性とほぼ同等の光結合特性を示し、 軸ずれの許容量が改善 されている。 なお、 第 1、 第 2及び第 3の実施例では最大結合効率をほ ぼ一定にして軸ずれの許容量を上げる例を示したが、 上記したように、 最大結合効率を上げる設計も可能となる。 第 6図に第 1、 第 2及び第 3の実施例の製造プロセスを示す。 This is calculated under specific conditions. For example, when the divergence angle of the laser beam is large, the improvement effect becomes more significant. FIG. 5 merely shows an example of the features of the present invention, and improves the coupling efficiency while keeping the allowable amount of axis deviation at the same level as in the past, that is, the translation curve of the conventional example is moved upward in parallel. Embodiments of the binding characteristics that cause the binding to occur can also be provided. Although not shown, in the second and third embodiments of the present invention, the optical coupling characteristics of the first embodiment shown in FIG. Tolerance has been improved. In the first, second, and third embodiments, an example has been shown in which the maximum coupling efficiency is almost constant and the allowable amount of axis deviation is increased. However, as described above, it is possible to design to increase the maximum coupling efficiency. Become. FIG. 6 shows the manufacturing process of the first, second and third embodiments.
本実施例に於いては、 ガラスもしくは S i (シリコン)基板の上に、 石 英系または有機材料を用いる公知の光導波路作製法と同様の方法で製造 する。 例えば、 S i基板 5 5を用いた石英系の場合を説明すれば、 石英 系の光導波路作製とまったく同様、 C V Dや E B蒸着あるいは火炎堆積 法等による石英系の膜の製膜が基本になる。 今回は、 火炎堆積法による 方法を示す。  In the present embodiment, the optical waveguide is manufactured on a glass or Si (silicon) substrate by a method similar to a known optical waveguide manufacturing method using a quartz or organic material. For example, in the case of a quartz-based substrate using an Si substrate 55, the formation of a quartz-based film by CVD, EB evaporation, flame deposition, etc. is basically the same as in the production of a quartz-based optical waveguide. . This time, the method using the flame deposition method is shown.
まず、 S i基板 5 5の上に第 2のクラッド層 5 3とコア層 5 1を、 原 料を酸水素炎中で加熱加水分解して得られるガラス微粒子として堆積す る(工程 (a ) )。  First, the second cladding layer 53 and the core layer 51 are deposited on the Si substrate 55 as glass particles obtained by hydrolyzing the raw material in an oxyhydrogen flame (step (a)). ).
但し、 コア層 5 1は酸化チタンや酸化ゲルマニウム等のドーパント濃度 を高くしてある。 However, the core layer 51 has a high dopant concentration such as titanium oxide or germanium oxide.
次に、 ガラス微粒子膜を電気炉中で高温に加熱してこれを透明化する (工程 (b ) )。 このガラス微粒子の堆積と透明化は、 通常クラッド層 5 3とコア層 5 1をそれぞれ個別に行うが、 ここでは一括して行う場合を 示した。  Next, the glass particle film is heated to a high temperature in an electric furnace to make it transparent (step (b)). The deposition and transparency of the glass fine particles are usually performed separately for the cladding layer 53 and the core layer 51, but here, the case where they are performed collectively is shown.
続いて、 コア層 5 1のパタ一ニングをフォトリソグラフィを用いて行 う。 即ち、 レジストを塗布しマスクパターンを転写後、 所定の深さ R I E (反応性イオンエッチング)によりエッチングしてコア 5 1を形成する (工程 (c ) )。  Subsequently, the core layer 51 is patterned using photolithography. That is, after applying a resist and transferring a mask pattern, the core 51 is formed by etching with a predetermined depth R IE (reactive ion etching) (step (c)).
その後、 ドーパント量により屈折率を調整した第 1のクラッド層 5 2 を、 ガラス微粒子として堆積させ(工程 (d ) )、 さらに高温で加熱して 透明化する(工程 (e ) )。 石英系の材料を用いる場合には、 ガラス軟化 温度や熱膨張係数の調整のために、 補助的なドーパントを微量添加する ことが多い。  After that, the first cladding layer 52 whose refractive index is adjusted according to the dopant amount is deposited as glass fine particles (step (d)), and further heated at a high temperature to make it transparent (step (e)). When a quartz-based material is used, a small amount of an auxiliary dopant is often added to adjust the glass softening temperature and the coefficient of thermal expansion.
このようにフォトリソグラフィを用いてコア層をパターンニングする ので、 光導波路を含め実施例のような形状のコアを形成することができ  Since the core layer is patterned using photolithography in this manner, it is possible to form the core having the shape as in the embodiment including the optical waveguide.
1 2 る。 また、 フォトリソグラフィを用いるので、 第 2図に示すような曲線 を直線で近似したパターンニングとなる。 実際には角部は丸みを帯びる。 また、 光導波路とともにビームスポット変換器を形成できるので、 これ らの間での光軸合わせなどの精度は容易に満足することができる。 1 2 You. In addition, since photolithography is used, patterning is performed by approximating a curve as shown in FIG. 2 with a straight line. In practice, the corners are rounded. In addition, since a beam spot converter can be formed together with the optical waveguide, the accuracy such as optical axis alignment between them can be easily satisfied.
以上のように、 従来の光導波路を形成するのと同様のフォトリソダラ フィの技術を用いるので、 その製造は容易であり、 さらにピームスポッ ト径変換器を製造するためだけの新たな製造工程が増えるなどのデメリ ットはない。 また、 ビームスポット径変換器とそれと接続する光導波路 とは、 同時に形成されるのでこれらの光軸を合わせるといった調整や組 み立て作業は不要である。  As described above, since the same photolithography technology as that used to form conventional optical waveguides is used, its manufacture is easy, and additional manufacturing processes solely for manufacturing a beam spot diameter converter increase. There is no disadvantage. Also, since the beam spot diameter converter and the optical waveguide connected to it are formed at the same time, there is no need for adjustment and assembly work such as aligning these optical axes.
第 7図は、 本発明の第 4の実施例である光回路を用いた光伝送モジュ ールの概念図である。 本実施例の光回路は光導波路による分岐ノ合流の 機能を持つ光回路であるが、 その端部に光ビームスポット変換器 1 0 1 が設けられている。 なお、 図においては光ビームスポット変換器 1 0 1 が設けられているエリアのみを示しており、 実際にはこれまで実施例 1 FIG. 7 is a conceptual diagram of an optical transmission module using an optical circuit according to a fourth embodiment of the present invention. The optical circuit of this embodiment is an optical circuit having a function of branching and joining by an optical waveguide, and an optical beam spot converter 101 is provided at an end thereof. The figure shows only the area where the light beam spot converter 101 is provided.
〜実施例 3などの光ビームスポット変換器が形成されている。 The light beam spot converter of the third to third embodiments is formed.
光回路及び光ビームスポット変換器は、 S i (シリコン)基板 5 5の上 に、 石英系または有機材料を用いて作製する。 石英系での作製法は上記 した通りである。  The optical circuit and the optical beam spot converter are fabricated on a Si (silicon) substrate 55 using a quartz or organic material. The fabrication method using quartz is as described above.
S i基板 5 5には一方の入射端側に光素子をはんだ接続するためのメタ ライズ(図示していない)と、 位置合せ用のァライメントマ一ク(図示し ていない)が形成してある。 光素子 1 0 2にも位置合せ用のァライメン トマークが予め形成してあり、 これらのマークを基準にしたいわゆるパ ッシプアライメント法により位置合せし、 加熱によりはんだを溶融させ て光素子 1 0 1を接続する。 はんだは、 基板または素子のどちら側かに 数/ m厚蒸着してパターニングし、 はんだ膜パターンとして形成してお く。 光ファイバは、 ガラスまたは S i基板に V溝を形成し、 これに埋め A metallization (not shown) for soldering an optical element and an alignment mark (not shown) for alignment are formed on one incident end side of the Si substrate 55. Alignment marks for alignment are also formed on the optical element 102 in advance. The alignment is performed by a so-called passive alignment method based on these marks, and the solder is melted by heating to obtain the optical element 101. Connect. Solder is vapor-deposited on the side of either the substrate or the element by a thickness of several m and patterned to form a solder film pattern. Optical fiber forms V-groove in glass or Si substrate and fills it
1 3 込んで保護板で蓋をした光ファイバブロック 1 0 3を作製しておく。 こ の光ファイバブロック 1 0 3と、 前記の光素子を搭載し光ピームスポッ ト変換器を形成した基板とを、 パッシブまたはアクティブァライメント 法により位置合せし、 接着剤 1 0 5を用いて接着接続する。 接着剤は U V硬化型でも熱硬化型でもよいが、 硬化時の変形が小さく、 信頼性の高 いものが望ましいことは言うまでもない。 13 Then, an optical fiber block 103 covered with a protective plate is prepared. The optical fiber block 103 and the substrate on which the above-described optical element is mounted and on which the optical beam spot converter is formed are aligned by a passive or active alignment method, and adhesively connected using an adhesive 105. I do. The adhesive may be UV-curable or heat-curable, but it is needless to say that an adhesive having small deformation during curing and high reliability is desirable.
第 8図は、 本発明の第 5の実施例であるアレー型光素子を用いた並列 光伝送モジュールの概念図である。 S i基板 5 5に光ビームスポット変 換器 2 0 1を作成し、 その後一方の入射端側に光素子をはんだ接続する ためのメタライズ(図示していない)と、 位置合せ用のァライメントマ一 ク(図示していない)を形成する。 光素子 2 0 2にも位置合せ用のァライ メントマークを予め形成しておき、 これらのマークを基準にしたいわゆ るパッシブァライメント法により位置合せし、 加熱によりはんだを溶融 させて光素子 2 0 1を接続する。 はんだは、 基板または素子のどちら側 かに数^ m厚蒸着してパタ一エングし、 はんだ膜パターンとして形成し ておく。 光ファイバ束 2 0 3は、 S i基板に V溝を形成し、 これに埋め 込んで保護板(図示していない)で蓋をした光ファイバ束 2 0 3のブロッ ク 2 0 4を作製しておく。 この光ファイバ束ブロック 2 0 4と、 前記の 光素子を搭載し光ビームスポット変換器を形成した基板とを、 パッシブ またはアクティブァライメント法により位置合せし、 接着剤 1 0 5を用 いて接着接続する。 アクティブァライメントでは、 基本的に両端のチヤ ンネルを使って位置合せするが、 更に中央のチャンネルを使って位置合 せしてもよく、 特定の方法に限定されるものではない。  FIG. 8 is a conceptual diagram of a parallel optical transmission module using an array-type optical element according to a fifth embodiment of the present invention. A light beam spot converter 201 is formed on the Si substrate 55, and then a metallization (not shown) for soldering an optical element to one of the incident ends and an alignment mark for alignment are formed. (Not shown) is formed. Alignment marks for alignment are also formed on the optical element 202 in advance, the alignment is performed by a so-called passive alignment method based on these marks, and the solder is melted by heating to obtain the optical element 2. 0 Connect 1 Solder is vapor-deposited on the side of either the substrate or the element by a thickness of several m and patterned to form a solder film pattern. The optical fiber bundle 203 is formed with a V-groove formed in the Si substrate, embedded in the groove, and a block 204 of the optical fiber bundle 203 covered with a protective plate (not shown) is produced. Keep it. The optical fiber bundle block 204 and the substrate on which the optical element is mounted and on which the optical beam spot converter is formed are aligned by a passive or active alignment method, and adhesively bonded using an adhesive 105 I do. In active alignment, alignment is basically performed using the channels at both ends, but alignment may be performed using the center channel, and is not limited to a specific method.
第 9図は、 本発明の第 6の実施例であるアレー型光素子を用いた、 第 2の並列光伝送モジュールを示す概念図である。 第 5の実施例と異なる のは、 V溝を形成した基板 5 5に光ピ一ムスポット変換器を作製し、 光 素子 2 0 1を搭載した点である。 V溝を形成した基板を用いるため、 光  FIG. 9 is a conceptual diagram showing a second parallel optical transmission module using an array type optical element according to a sixth embodiment of the present invention. The difference from the fifth embodiment is that an optical beam spot converter is manufactured on a substrate 55 in which a V-groove is formed, and an optical element 201 is mounted. Since a substrate with a V-groove is used, light
1 4 ビ一ムスポット変換器は有機材料を使用して作製するのが容易である。 光導波路用の有機材料を用いれば、 スピンコートとベークで製膜できる。 但し、 V溝があるため平坦な膜を作製するのは困難なため、 本実施例で はレジストを厚く塗布し、 これを基板表面までエッチングで除去して先 ず V溝部を埋め平坦化しておいた。 V溝近傍部にはァライメントマーク を形成しておき、 これを基準に光ビームスポット変換器を作製し、 素子 搭載用メ夕ライズを形成すれば、 マスク合せの精度で相互の位置精度が 決まるパターニングができ、 極めて効率の高い光結合が実現できる。 光 素子はパッシブァライメントで位置合せし、 はんだで接続する。 その後 光ファイバを V溝に挿入し、 接着剤を塗布し保護板で蓋をするとともに14 Beam spot converters are easy to make using organic materials. If an organic material for an optical waveguide is used, a film can be formed by spin coating and baking. However, it is difficult to produce a flat film due to the presence of the V-groove. In this embodiment, a thick resist is applied, and this is removed to the surface of the substrate by etching. Was. An alignment mark is formed in the vicinity of the V-groove, a light beam spot converter is manufactured based on this alignment mark, and if a device mounting pattern is formed, mutual alignment accuracy is determined by the mask alignment accuracy. Patterning is possible, and extremely efficient optical coupling can be realized. The optical elements are aligned by passive alignment and connected by solder. Then insert the optical fiber into the V-groove, apply adhesive, cover with a protective plate and
UV照射または加熱により硬化させ接着する。 モジュールとしてはさら に電気的接合をとり素子の封止等も必要であるが、 これは公知の方法を 適用すればよいので、 あるいは、 本発明に直接関わらないので、 説明を 省略する。 Cures and adheres by UV irradiation or heating. The module further requires electrical connection and sealing of the element, etc., but a known method may be applied, or the module is not directly related to the present invention, and therefore description thereof is omitted.
第 1 0図は、 本発明の第 7の実施例である並列光伝送モジュールを用 いた交換機または計算機の信号接続を示す概念図である。 大形計算機の プロセッサ間や、 プロセッサ ·記憶装置間等での高速信号伝送、 高密度 な信号配線の軽量化、 細径化、 耐ノイズ性向上等の目的で用いられる。 装置 3 0 1、 3 0 2には、 装置間の信号接続用基板 2 5 3 a、 2 5 3 b、 2 5 3 c、 2 5 3 d等が内臓され、 それぞれの信号接続用基板上には、 複数個の前述の並列光伝送モジュール 2 5 1 a等と L S I部品 2 5 2等 が搭載されている。 並列光伝送モジュール 2 5 1 aでは、 情報は電気信 号から光信号へ変換され、 多芯光コネクタ 2 5 4 aを介して光ファイバ アレイ 2 5 5 aに伝送される。 装置間は、 同様な光ファイバアレイをま とめた光ファイバアレイ束 2 5 6を介して信号が伝送される。 光フアイ バアレイ 2 5 5 aに接続される他方の装置の信号接続用基板 2 5 3 b上 の並列光伝送モジュール 2 5 1 bでは、 光信号から電気信号へ変換され、  FIG. 10 is a conceptual diagram showing a signal connection of an exchange or a computer using a parallel optical transmission module according to a seventh embodiment of the present invention. It is used for the purpose of high-speed signal transmission between processors of large computers, between processors and storage devices, reduction in the weight and thickness of high-density signal wiring, and improvement in noise resistance. The devices 301 and 302 include signal connection boards 25 3 a, 25 3 b, 25 3 c, and 25 3 d, etc., and are mounted on each signal connection board. Has a plurality of parallel optical transmission modules 251a and the like and LSI parts 252 and the like. In the parallel optical transmission module 255a, information is converted from an electrical signal to an optical signal and transmitted to the optical fiber array 255a via the multi-core optical connector 255a. Signals are transmitted between the devices via an optical fiber array bundle 256 that includes similar optical fiber arrays. The parallel optical transmission module 25 1 b on the signal connection board 25 3 b of the other device connected to the optical fiber array 255 a converts the optical signal into an electric signal,
1 5 装置間の光による信号伝送が可能になる。 1 5 Signal transmission by light between devices becomes possible.
また、 図示していないが、 光スィッチの光ファイバ一と接続する部分 や、 ビームスプリツターの分岐前の光導波路の先端部分、 分岐後の各光 導波路の先端部分に前述のビームスポット径変換機能付きの光導波路を 形成することもできる。 これによつてもトレランスや光結合効率の向上 を実現することができる。  Although not shown, the beam spot diameter conversion described above is applied to the portion of the optical switch that connects to the optical fiber, the tip of the optical waveguide before branching of the beam splitter, and the tip of each optical waveguide after branching. An optical waveguide with a function can also be formed. This can also improve the tolerance and the optical coupling efficiency.
これまでに説明した実施例によれば、 コア形状の設計でビーム拡大率 を可変できるため、 例えば光素子と光ファイバおよびその間に光導波路 から成る光回路とで構成される光モジュールでは、 光回路の両端に光素 子と光ファイバ個別に最適な光ビームスポット変換器を形成でき、 光モ ジュールの光利用効率向上と製造の容易化に大きな効果がある。 また、 製造が容易になることから、 光モジュールの低価格化に効果が大きい。 また、 これまでに説明した実施例の光ビームスポット変換器は、 光回 路ゃ光素子を搭載する基板上に作製できるため、 光モジュールの構成が 簡素で実装が容易になり、 光モジュールの低価格化にこの点からも効果 が大きい。  According to the embodiments described above, the beam expansion rate can be varied by designing the core shape. For example, in an optical module including an optical element, an optical fiber, and an optical circuit including an optical waveguide, an optical circuit Optimal beam spot converters can be formed at both ends of the optical element and optical fiber individually, which has a great effect on improving the light use efficiency of the optical module and facilitating manufacturing. In addition, since the manufacturing is easy, it is effective in reducing the price of the optical module. In addition, since the optical beam spot converters of the embodiments described above can be manufactured on a substrate on which an optical circuit and an optical element are mounted, the configuration of the optical module is simple, mounting is easy, and the optical module is low. From this point, the effect on price is also great.
さらに、 極めて単純なプロセスでビームスポット変換が可能な光ビー ムスポット変換器を実現でき、 選択結晶成長のような方法を必要とする ものに対し光ビ一ムスポット変換器自体の低コスト化が可能である。 さらに、 セグメント状のコアで構成されることから、 光ビームスポッ ト変換器の小形化 (素子長の短縮) にも効果がある。 産業上の利用可能性  Furthermore, an optical beam spot converter capable of performing beam spot conversion with an extremely simple process can be realized, and the cost of the optical beam spot converter itself can be reduced compared to those requiring a method such as selective crystal growth. It is possible. Furthermore, since it is composed of a segmented core, it is also effective in downsizing the optical beam spot converter (reducing the element length). Industrial applicability
本発明によれば、 光ビームスポット径を変換できる光導波路を備えた 全く新規光モジュールを実現することができる。  According to the present invention, it is possible to realize a completely new optical module including an optical waveguide capable of changing the light beam spot diameter.

Claims

請求の範囲 The scope of the claims
1. 光伝搬方向である光軸を z軸、 これに直交する断面で垂直方向の軸 を X軸、 水平方向の軸を y軸とし、 基板上に該 X軸および該 y軸の原点 をほぼ中心として該 z軸方向に光を伝搬するように形成されたコア部と、 該コア部を囲むクラッド層とを有する光導波路を備えた光モジュールで あって、 1. The optical axis, which is the direction of light propagation, is the z-axis, the vertical axis is the X-axis, and the horizontal axis is the y-axis in a cross section perpendicular to the z-axis. The origin of the X-axis and the y-axis is approximately An optical module including an optical waveguide having a core portion formed so as to propagate light in the z-axis direction as a center, and a cladding layer surrounding the core portion,
該光導波路の有するコア部が複数個のコアで形成され、 その少なくと も 1個のコアの y— z断面は略円、 略楕円またはそれらを近似した形状 であることを特徴とする光モジュール。  An optical module, wherein a core portion of the optical waveguide is formed by a plurality of cores, and at least one of the cores has a substantially circular or substantially elliptical cross section, or an approximate shape thereof. .
2. 前記 y— z断面が円、 楕円、 略円または略楕円と見なせる形状のコ ァを用いて光ビームのスポット径を拡大する拡大部と光ビームのスポッ ト径を縮小する縮小部とを形成することを特徴とする請求項 1記載の光 モジュール。  2. An enlarging part for enlarging the spot diameter of the light beam and a reducing part for reducing the spot diameter of the light beam using a core whose cross section y-z can be regarded as a circle, an ellipse, a substantially circle or a substantially ellipse. The optical module according to claim 1, wherein the optical module is formed.
3. 前記コアの y— z断面が円、 楕円、 略円または略楕円と見なせる形 状の複数個のコアの他、 y— z断面が矩形形状の複数個のコアを前記拡 大部と前記縮小部との間に形成したことを特徴とする請求項 2記載の光 モンユール。 3. In addition to a plurality of cores whose y-z cross section can be regarded as a circle, an ellipse, a substantially circle or a substantially ellipse, a plurality of cores having a y-z cross section of a rectangular shape are used as the expanded portion and the core. 3. The light module according to claim 2, wherein the light module is formed between the reduced portion.
4. 前記 y— z断面が矩形形状の複数個のコアにおいてコアの y軸方向 の長さを異ならせたことを特徴とする請求項 3記載の光モジュール。  4. The optical module according to claim 3, wherein the plurality of cores each having a rectangular shape in the yz section have different lengths in the y-axis direction of the cores.
5. 前記縮小部に配置された複数個のコアにおいてコアの y軸方向の長 さを異ならせたことを特徵とする請求項 2または 3記載の光モジュール。 5. The optical module according to claim 2, wherein a length of the plurality of cores arranged in the reduced portion in the y-axis direction is different.
6. 光伝搬方向である光軸を z軸、 これに直交する断面で垂 ϊί方向の軸 を X軸、 水平方向の軸を y軸とし、 基板上に該 X軸および該 y軸の原点 をほぼ中心として該 z軸方向に光を伝搬するように形成されたコア部と、 該コア部を囲むクラッド層とを有する光導波路を備えた光モジュールで あって、 6. The optical axis, which is the direction of light propagation, is the z axis, the vertical axis is the X axis, and the horizontal axis is the y axis in a cross section perpendicular to the z axis. The origin of the X axis and the y axis is defined on the substrate. An optical module comprising an optical waveguide having a core portion formed so as to propagate light substantially in the z-axis direction in the z-axis direction, and a cladding layer surrounding the core portion,
1 7 該光導波路の有するコア部が複数個のコアで形成され、 その少なくと も 1個のコアの有する光ビームが入射もしくは出射する面が曲率を有す る形状であることを特徴とする光モジュール。 1 7 An optical module, wherein a core portion of the optical waveguide is formed of a plurality of cores, and at least a surface of one of the cores on which a light beam enters or exits has a shape having a curvature. .
7. 前記コアを用いて光ビームのスポット径を拡大する拡大部と光ビー ムのスポット径を縮小する縮小部とを形成することを特徴とする請求項 7. An enlarged portion for enlarging the spot diameter of the light beam and a reduced portion for reducing the spot diameter of the light beam using the core.
6記載の光モジュール。 Optical module according to 6.
8. 前記 y— z断面が矩形形状の複数個のコアを前記拡大部と前記縮小 部との間に形成したことを特徴とする請求項 7記載の光モジュール。 8. The optical module according to claim 7, wherein a plurality of cores each having a rectangular shape in the yz section are formed between the enlarged portion and the reduced portion.
9. 前記 y— z断面が矩形形状の複数個のコアにおいてコアの y軸方向 の長さを異ならせたことを特徴とする請求項 8記載の光モジュール。9. The optical module according to claim 8, wherein the plurality of cores each having a rectangular shape in the yz section have different lengths in the y-axis direction of the cores.
10. 前記縮小部に配置された複数個のコアにおいてコアの y軸方向の長 さを異ならせたことを特徴とする請求項 8または 9記載の光モジュール。10. The optical module according to claim 8, wherein the plurality of cores arranged in the reduced portion have different lengths in the y-axis direction of the cores.
11. 光を伝搬するように形成されたコア部と、 該コア部を囲むクラッド 層とを有する光導波路を備えた光モジュールであって、 ' 該光導波路が、 入射された光ビームの有するビームスポット径を拡大 して伝播する第一の領域と該第一の領域からの光ビームのビームスポッ ト径を縮小させて伝播する第二の領域とを有することを特徴とする光モ ジュール。 11. An optical module comprising an optical waveguide having a core portion formed so as to propagate light and a cladding layer surrounding the core portion, wherein the optical waveguide is a beam having an incident light beam. An optical module comprising: a first region that propagates by increasing a spot diameter; and a second region that propagates by reducing a beam spot diameter of a light beam from the first region.
12. 前記第一の領域と前記第二の領域との間に第一の領域からの光ビ一 ムのビームスポット径を保持するように作用する第三の領域を備えるこ とを特徴とする請求項 1 1記載の光モジュール。  12. A third region is provided between the first region and the second region, the third region acting to maintain a beam spot diameter of the light beam from the first region. The optical module according to claim 11.
13. 前記第一の領域もしくは第二の領域に位置するるコァ部が複数個の コアで形成され、 その少なくとも 1個のコアの有する光ビームが入射も しくは出射する面が曲率を有する形状であることを特徴とする請求項 1 2記載の光モジュール。  13. A core portion located in the first region or the second region is formed of a plurality of cores, and a surface of at least one of the cores at which a light beam enters or exits has a curvature. 13. The optical module according to claim 12, wherein:
14. 前記第三の領域に位置するコア部が複数個のコアで形成され、 その コアが矩形形状であることを特徴とする請求項 1 2または 1 3記載の光  14. The light according to claim 12, wherein the core portion located in the third region is formed by a plurality of cores, and the core has a rectangular shape.
1 8 モジュール。 1 8 module.
15. 前記第三の領域に位置するコア部において前記光ビームが入射する コアの幅を徐々に小さくしたことを特徵とする請求項 1 4記載の光モジ ユール。  15. The optical module according to claim 14, wherein a width of a core on which the light beam is incident is gradually reduced in a core portion located in the third region.
16. 前記第二の領域に位置するコア部において前記光ビームが入射する コアの幅を徐々に小さくしたことを特徴とする請求項 1 3〜1 5のいず れかに記載の光モジュール。  16. The optical module according to any one of claims 13 to 15, wherein a width of a core on which the light beam is incident is gradually reduced in a core portion located in the second region.
17. 前記光モジュールが光スィッチ、 光合分波器もしくはビームスプリ ッタであることを特徴とする請求項 1〜 1 6のいずれかに記載の光モジ ュ一レ。  17. The optical module according to claim 1, wherein the optical module is an optical switch, an optical multiplexer / demultiplexer, or a beam splitter.
18. 請求項 1〜1 7のいずれかに記載の光モジュールを備えた光伝送シ ステム。  18. An optical transmission system comprising the optical module according to any one of claims 1 to 17.
PCT/JP2001/000854 2000-05-26 2001-02-07 Optical module WO2001090791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000161117A JP3752965B2 (en) 2000-05-26 2000-05-26 Optical module
JP2000-161117 2000-05-26

Publications (1)

Publication Number Publication Date
WO2001090791A1 true WO2001090791A1 (en) 2001-11-29

Family

ID=18665190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000854 WO2001090791A1 (en) 2000-05-26 2001-02-07 Optical module

Country Status (2)

Country Link
JP (1) JP3752965B2 (en)
WO (1) WO2001090791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102648A2 (en) * 2002-06-04 2003-12-11 Nkt Integration A/S Integrated splitter with reduced losses

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931180B2 (en) * 2004-01-13 2005-08-16 Lucent Technologies Inc. Method and apparatus for compactly coupling an optical fiber and a planar optical waveguide
JP2005292382A (en) * 2004-03-31 2005-10-20 Kazuyuki Hirao Optical element, method for manufacturing the same and optical device
US8285092B2 (en) 2007-03-20 2012-10-09 Nec Corporation Optical waveguide and spot size converter using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206904U (en) * 1985-06-14 1986-12-27
US4637681A (en) * 1981-06-01 1987-01-20 Nippon Sheet Glass Co., Ltd. Optical plane circuit with an optical coupler and a method for manufacturing the same
US5577141A (en) * 1995-03-10 1996-11-19 Lucent Technologies Inc. Two-dimensional segmentation mode tapering for integrated optic waveguides
US5629999A (en) * 1995-03-10 1997-05-13 Lucent Technologies Inc. Side-gap mode tapering for integrated optic waveguides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637681A (en) * 1981-06-01 1987-01-20 Nippon Sheet Glass Co., Ltd. Optical plane circuit with an optical coupler and a method for manufacturing the same
JPS61206904U (en) * 1985-06-14 1986-12-27
US5577141A (en) * 1995-03-10 1996-11-19 Lucent Technologies Inc. Two-dimensional segmentation mode tapering for integrated optic waveguides
US5629999A (en) * 1995-03-10 1997-05-13 Lucent Technologies Inc. Side-gap mode tapering for integrated optic waveguides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICHAEL M. SPUEHLER ET AL.: "A very short planar silica spot-size converter using a nonperiodic segmented waveguide", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 16, no. 9, September 1998 (1998-09-01), pages 1680 - 1685, XP002937885 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102648A2 (en) * 2002-06-04 2003-12-11 Nkt Integration A/S Integrated splitter with reduced losses
WO2003102648A3 (en) * 2002-06-04 2004-09-02 Nkt Integration As Integrated splitter with reduced losses
US7343071B2 (en) 2002-06-04 2008-03-11 Ignis Technologies As Optical component and a method of fabricating an optical component

Also Published As

Publication number Publication date
JP3752965B2 (en) 2006-03-08
JP2001337252A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP5259829B2 (en) Optical coupling device and optical multiplexing / demultiplexing device
JP2010128109A (en) Ssc chip, fiber array with ssc, plc module with ssc, and method for manufacturing ssc chip
US6937799B2 (en) Optical transmission module and optical communication system using the same
JP3941368B2 (en) Optical transmission module and optical communication system using the same
JP3084416B2 (en) Method for manufacturing optical coupling device
JP3663310B2 (en) Optical beam spot converter, optical transmission module and optical transmission system using the same
WO2001090791A1 (en) Optical module
JPH11326707A (en) Laser photocoupler and control method for laser photocoupling
JP4146788B2 (en) Optical waveguide connection module and method for fabricating the same
JPH10300956A (en) Optical branching waveguide and optical waveguide circuit
JPH09297235A (en) Optical waveguide and its production as well as optical waveguide module using the same
WO2022044101A1 (en) Optical waveguide component and method for manufacturing same
JP3969320B2 (en) Waveguide type optical components
US11714237B2 (en) Assembly comprising first and second photonic chips that are adjoined to each other
JPH0373905A (en) Optical functional element
KR102616266B1 (en) Optical fiber to waveguide coupler and optical integrated circuit including the same
WO2022102053A1 (en) Optical connection structure, optical module, and method for manufacturing optical connection structure
WO2021106163A1 (en) Optical fiber array
JP2010286549A (en) Light signal processing circuit, semiconductor device with the light signal processing circuit, and method of manufacturing the light signal processing circuit
JP2000329951A (en) Waveguide type multi-light source unit
JP2666874B2 (en) Optical coupler and manufacturing method thereof
WO2019171933A1 (en) Optical waveguide connection structure
JP6685548B2 (en) Spot size converter
Hsu et al. Coupling methods in prospective single-mode fiber integrated optics systems: A progress report
JP2010078724A (en) Y-branch optical waveguide and method of designing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase