WO2001087154A1 - Tissue discrimination and applications in medical procedures - Google Patents
Tissue discrimination and applications in medical procedures Download PDFInfo
- Publication number
- WO2001087154A1 WO2001087154A1 PCT/US2001/016027 US0116027W WO0187154A1 WO 2001087154 A1 WO2001087154 A1 WO 2001087154A1 US 0116027 W US0116027 W US 0116027W WO 0187154 A1 WO0187154 A1 WO 0187154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- tissue
- article
- manufacture
- probe
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4869—Determining body composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0537—Measuring body composition by impedance, e.g. tissue hydration or fat content
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0538—Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4887—Locating particular structures in or on the body
- A61B5/4893—Nerves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
Definitions
- the present invention is related to tissue surveillance systems.
- Systems and method also exist for controlling the level of ablation of tissue. These systems monitor the impedance of tissue being ablated to determine if the ablation energy is optimal. The systems generally measure impedance to within approximately 20 ohms. These systems do not determine when sufficient therapy has been applied to the tissue and employ impedance measurement with low tolerance levels. Accordingly, a need exists for a system that may control any form of therapy by monitoring characteristics of an electrical signal applied to the tissue.
- the present invention provides a system in which an electrical signal is applied to a tissue via electrodes disposed on a tissue probe.
- the electrical signal applied to the tissue preferably comprises a frequency variable current or voltage that is preferably applied to the tissue using a sliding frequency scale.
- the response to the applied signal is measured as the signal passes through tissue disposed at, around, or adjacent to, the probe.
- tissue types display different electrical transmission properties, including different capacitance and impedance properties. Accordingly, by measuring the electrical characteristics of the response signal, it is possible to determine the type of tissue through which the signal is passing. Preferably, this is accomplished by comparison to known exemplary signal characteristics for various tissue types. Further, when the probe is known to be a first tissue, the system and method may determine when the probe is advanced into a different tissue based on the changed electrical characteristics of the signal applied the probe.
- the electrical signal characteristics that are monitored may include the phase shift between the voltage and current passing through a selected tissue, and the impedance of the selected tissue.
- the present inventors have experimentally determined that these properties vary from one tissue type to another.
- the electrical signal applied to the tissue may be a sliding frequency signal so a frequency spectrum of phase shift and impedance of a tissue is determined, however, any electrical, magnetic, or optical signal whose phase relationship and impedance to passage through the tissue may be measured can be used.
- a probe is advanced to a position in, at, or adjacent to, a selected tissue and an electrical signal is applied to the tissue by an electrode on the probe.
- the present invention provides a method and system for determining whether the conductive tip of a pedicle probe or pedicle screw is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue, whether the conductive tip of a cannula is located adjacent to one of nerve tissue and annulus tissue, and whether the conductive tip of a cathode is located adjacent to one of nerve tissue and prostate gland tissue.
- the present system can also be used to determine tissue health (for various tissue types) by comparing the signal responses of tissue (in response to stimulation by the probe) to responses for healthy tissue.
- the present inventors have determined that different cell / tissue types exhibit different capacitive effects. In addition, these capacitive effects vary considerably between living and dead cells. Accordingly in another aspect of the invention, the present system discriminates between living and dead tissues. This feature of the invention is particularly useful when the present system is used in conjunction with a tissue ablation system. For instance, the tissue ablation system may be prevented from providing unnecessary energy to ablate tissue and thereby protect surrounding tissue.
- the present system can be adapted to sense the presence of a particular type(s) of tissue as the probe is advanced through the patient's body.
- a feature of the present invention is particularly advantageous when sensing for the presence of nerve tissue.
- the probe can be advanced through the patient's body, with the response to the electrical stimulation emitted by the probe being continuously monitored such that as nerve tissue is approached; the response signal will begin to exhibit characteristics indicative of nerve tissue.
- Such nerve sensing features of the present invention can be used, for example, to sense for the presence of spinal nerves when advancing surgical equipment (which may include cutting, drilling, screw insertion, implant, and tissue ablation systems) towards the patient's intervertebral space.
- surgical equipment which may include cutting, drilling, screw insertion, implant, and tissue ablation systems
- a probe having an electrode positioned thereon is replaced with a probe, which is itself electrified.
- a probe which is itself electrified.
- an electrified needle or an electrified trocar or cannula can be used as the probe.
- the probe is mono-polar. Specifically, only a first electrode is disposed on the probe. A second electrode is then positioned some distance away from the first electrode at another location on the body. Alternately, the probe may be bipolar with both the first and second electrodes positioned on the probe itself. Additionally, the probe may include a plurality of bi-polar electrodes placed along the probe (such as around the tip and the length of the probe) to determine tissue types around the probe.
- the measurement of the phase angle relationship between the voltage and current of the signal and impedance of the signal may be used to determine: (1) the type of tissue in which the probe is located, (2) the health of the tissue, (3) the relative location of the tip of the probe (ie: in cases where the electrode is disposed in the tip of the probe); and (4) any combination of (1), (2) and (3).
- measured characteristics can be used to correlate: (1) tissue identity, (2) tissue health, and (3) tissue location.
- the present invention can be adapted to: (5) locate specific tissue with a body; (6) control application of therapy to tissue; (7) detect the state of health of tissue; (8) navigate to tissue; and (9) any combination of the above.
- the invention is a tissue system including a computer system having an analog to digital (A/D) converter and digital to analog (D/A) converter interface (PCI board), that may be used to generate the confrol signal which is applied to the elecfrode or conductive tip of the probe.
- the computer generates the signal via the D/A converter.
- the A/D converter converts the signal received from the conductive tip into digital samples by sampling the signal at a predetermined rate where the digital samples may have a fixed or variable number of bits and have linear, logarithmic or other scaling.
- the computer system determines characteristics of the received signal from the digital samples, in particular the phase angle and impedance at the conductive tip or other location of the probe where the electrode(s) may be located.
- the present invention may dete ⁇ nine tissue identity and tissue location.
- the elecfrode disposed on the probe comprises a bipolar elecfrode conductive tip probe.
- the application of therapy to the tissue in which the probe is located may be precisely controlled.
- tissue therapy application may be precisely controlled.
- the application of heat or cooling therapy may be used to ablate or cool tissue.
- the same electrode(s) used for tissue discrimination ie: determining tissue type for tissue disposed adjacent to the elecfrode on the probe
- the level of heating or cooling of the tissue may be modulated as a function of the measured characteristics of the tissue.
- the phase angle and impedance of the tissue change as the tissue is heated or cooled to certain level.
- the application of therapy may be regulated by the present computer system.
- the computer system may communicate with a device applying therapy and automatically control the level of therapy .
- the present system can determine the type and location of various tissues within a patient, the present system may be used to determine the relative health of the tissue.
- the measured characteristics of the signal will vary for diseased or unliealthy tissue, as compared to normal healthy tissue.
- the present system may be used to determine the type of tissue, the location of the tissue, the health of tissue, and also to control therapy for tissue based on the same.
- the probe may optionally be coupled with an automated navigation system that navigates within the patient based on the measured characteristics of the received signal.
- Such a navigation system may use the tissue identity and location data to navigate to a particular location within an organ. Then the computer system may determine the health of the tissue at the location within the organ and control the application of therapy as appropriate.
- the characteristic electrical properties of the various tissue types are determined for different tissues at different RF frequencies.
- the signal may be emitted from the probe (into the surrounding tissue) at frequencies in the range of 400 kHz to 100 MHz. Determining the electrical properties of various tissues at various signal frequencies may be advantageous in that different cell (ie: tissue) types may exhibit different harmonics. As such, tissues may be further characterized by measuring phase shift or impedance at various frequencies, or along a sliding frequency.
- FIG. 1 is a block diagram of a tissue discrimination system in accordance with the present invention.
- FIG. 2 illustrates a method of controlling the application of therapy to tissue according to the present invention.
- FIG. 3 illustrates a method 50 of determining tissue health according to the present invention.
- FIG. 1 is a diagram of tissue identification system 10 in accordance with the present invention.
- the system 10 includes a user readable output device 12, a user input device 16, a processor 20, and a probe 22.
- the processor 20 includes a central processing unit (“CPU") 14 and Digital to Analog converter (“D/A”) and Analog to Digital Converter (“A/D”) 18.
- the CPU 14 may be any microprocessor having sufficient processing power to confrol the operation of the D/A & A/D 18 and output device 12.
- the D/A & A/D 18 is any such device having a sufficient operating cycle to generate signals with the frequencies described herein and sufficient sampling rate to generate the digital samples described herein.
- the probe 22 is any medical device that may be used to hold one or more electrode thereon where the electrodes transmit and receive electrical signals.
- Exemplary probes include cannulae, needles, catheters, RF ablation devices, lasers, or other medical instruments.
- the probe 22 may have a single electrode (mono-polar), two electrodes (bipolar), or a plurality of electrodes (multi-polar) configuration.
- a probe with a conductive tip is discussed as one exemplary embodiment. It is understood that the electrodes could be placed anywhere along the circumference or width and length of the probe.
- a probe having multiple electrodes ideally includes groups of bipolar electrodes so the system or method of the invention may map the response of the elecfrode pairs.
- the CPU 14 controls the operation of the D/A & A/D 18 and output device 12 based upon user selection received via the user input device 16.
- the user input device 16 may be any input device including a keyboard, mouse, or touch-sensitive screen.
- the output device may be any output device controllable by the CPU 14 such as computer monitor, printer, or other computer controlled display device.
- the system 10 generates an electrical signal that is transmitted to tissue near or about the probe 22. When the probe has an omni-directional conductive tip, the electrical signal may be propagated to a wide area of tissue about the conductive tip.
- the conductive tip may include an electrodes pair (bipolar) so that the electrical signal is directed primarily to tissue directly in the path of the probe's conductive tip (electrode pair).
- the system 10 provides an electrical signal at the electrode(s) on the probe via the D/A 18.
- the CPU generates a digital representation a signal to be transmitted by the probe 22.
- the D/A converts the digital signal to an analog signal that is transmitted through tissue by the probe 22.
- the probe 22 also receives signals conducted by tissue surrounding the conductive tip of the probe 22.
- the A/D 18 converts the analog signal received by the elecfrode(s) of probe 22 into a digital signal that may be processed by the CPU 14.
- the system applies a fixed frequency signal to the probe electrode(s).
- the system 10 applies a signal to the probe's 22 electrode(s) having a frequency from 400 KHz to 100 MHz.
- the system 10 may apply a signal having a range or sliding frequency.
- the system 10 applies the RF signal to the elecfrode(s) via the CPU 14 and D/A 18.
- the repeatable pattern of the applied signal may be any pattern where the phase of signal may be determined, i.e., any signal whose phase relationship (voltage to current) may be measured.
- the applied signal is a sinusoidal signal
- the signal is a square wave signal where the phase of the signal is measured at a leading or a trailing edge of each square wave. Any signal whose phase relationship (voltage to current) may be measured can be used.
- the A/D 18 converts signals received at the electrode(s) of the probe 22 to a digital signal for processing by the CPU 14.
- the CPU 14 determines characteristics of the tissue surrounding the probe's 22 electrodes by comparing the signal applied to the electrode(s) and the signal received from the same. In one embodiment the phase angle between voltage and current of the applied signal (effective capacitance) and impedance of the tissue surrounding the conductive element (electrode(s)) of the probe 22 is determined.
- the measurement of the phase angle relationsliip and impedance may be used to determine the identify or type of tissue in which the probe electrode(s) is located, the relative health of the tissue, the relative location of the electrodes to other surrounding tissue, and to control the application of therapy to the tissue surrounding the probe's 22 elecfrode(s).
- the measured characteristics and the specific frequencies of the applied signal corresponding to the measured characteristics may be used to determine the identify or type of tissue in which the probe electrode(s) is located, the relative health of the tissue, the relative location of the tip to other surrounding tissue, and to confrol the application of therapy to the tissue surrounding the probe's 22 electrode(s).
- the probe 22 may be placed in the kidney of a patient. Then, system 10 may apply a signal to the probe's 22 electrode(s) having a varying or fixed frequency. Then, the system 10 determines the phase angle and impedance of the signal applied to the probe 22 for each frequency of the signal. In one embodiment, the system 10 may use the combination of characteristics and frequency of the applied signal may be used to determine 1) that the elecfrode(s) of the probe is located within kidney tissue (identification of tissue) and 2) where within the kidney tissue is the probe located, i.e., near the outer cordial or inner medulla of the kidney (or more precisely) (specific identification of tissue).
- the system 10 may also determine whether the kidney tissue about the electrode(s) of the probe 22 is healthy, i.e., ischemic, has tumors. By first knowing that the electrode(s) are in kidney tissue (a first tissue type), the system can look for changes in the signal characteristics to determine that unhealthy tissue (a second tissue type) is present within the kidney. When the system 10 determines that the tissue about the probe's 22 electrode(s) is not healthy, the system 10 may apply therapy to the tissue. The therapy may include the application of heat energy (ablation) or removal of heat energy (cryogenic cooling) of the tissue. The system 10 may continue to monitor characteristics of the tissue about the elecfrode(s) to determine when sufficient therapy has been applied.
- ablation heat energy
- cryogenic cooling heat energy
- the system 10 may stop the application of therapy. In one embodiment, sufficient therapy has been applied when the tissue dies. The system 10 may then monitor the phase angle and impedance of the applied signal to determine when cell or tissue necrosis has occurred. The system 10 may also consider the frequency of the applied signal relative to the phase angle and impedance.
- the A/D converter 18 converts the signal received from the elecfrode(s) into digital samples by sampling the signal at a predetermined rate where the digital samples may have a fixed or variable number of bits and have linear, logarithmic or other forms of scaling.
- the system 10 determines characteristics of the received signal from the digital samples, in particular the phase angle and impedance at the elecfrode(s).
- the system 10 may also include a knowledge base coupled to the CPU 14.
- the knowledge base may be stored characteristics about a large variety of know tissues.
- the base may also be correlated or indexed on the frequency of the applied signal.
- the knowledge base may be a database stored in fixed electronic medium (not shown) coupled to the CPU 14.
- the CPU 14 compares the determined characteristics to characteristics stored in the database to determine tissue identity, location, health, and control the application of therapy. It is noted that the invention may also know the current position of the electrode(s), i.e., which tissue the electrode(s) are currently disposed therein.
- the knowledge base may further include information that correlates the known current position of electrode(s) (within a first tissue) with measured characteristics so the system may determine a second tissue type. Accordingly, the system or method of the invention may determine the tissue type of a second tissue based on knowledge of the position of the electrode(s) in a previous first tissue and measured characteristics of the signal applied to the elecfrode(s).
- the present invention may be used to a device that automatically navigates through tissue.
- the present invention may be coupled to an automated catheter system.
- the system 10 would provide tissue identity and location to the navigation system so the navigation system may navigate to a desired location. Once at the desired location, the system 10 may determine the health of the tissue. Then, the system 10 may control the application of therapy to the tissue based on the determined health of the tissue.
- a navigation system in conjunction with system 10 may direct the probe to a specific location within kidney tissue. Based on the known characteristics of the tissue, the health of the tissue may be determined and the application of therapy may be applied when needed.
- a method 30 of applying therapy is shown in FIG. 2.
- the method first determines the initial characteristics of the tissue. Then therapy is applied to the tissue (step 34).
- Therapy for the kidney tissue may include the application of heat or cooling therapy to ablate or cool the tissue.
- the level of heating or cooling of the tissue may be modulated as a function of the measured characteristics of the tissue, hi particular, the phase angle and impedance of the tissue will change as the tissue is heated or cooled to certain level.
- the method applies a signal to elecfrode(s) in the tissue receiving therapy (step 36).
- the method determines the current tissue characteristics based on the applied signal (step 38).
- the method stops the application of therapy to the tissue (step 42).
- the application of therapy may be regulated by the system 10.
- the system 10 communicates with a device applying therapy and automatically controls the level of therapy.
- FIG. 3 illustrates a method 50 of determining tissue health according to the present invention.
- the method places the elecfrode(s) in known tissue (step 52).
- the tissue may be known by first determining the location of the elecfrode(s) using techniques described above.
- the method applies a signal to the elecfrode(s) in the tissue of interest (step 54).
- the signal may be a signal of varying f equency, e.g., a sliding frequency signal in one embodiment.
- the method or system determines the tissue characteristics based on the applied signal (step 56).
- the determined characteristics are compared to normal or expected characteristics for healthy or normal known tissue (step 58).
- the method or system indicates that the tissue at the elecfrode(s) is unhealthy (62).
- the method may also indicate what type of disease the tissue may have based on known characteristics of diseased tissue, i.e., tissue appears to be cancerous or ischemic. Otherwise, the system may report that the tissue near the electrode(s) appears to be healthy.
- the probe 22 may be a pedicle screw or pedicle probe.
- the tissue discrimination system of the present invention may be used to monitor the position of the pedicle probe or pedicle screw. In particular the system monitors the impedance and capacitance or phase shift at the tip of the pedicle probe or screw to determine whether the tip is in cortical bone, cancellous bone, or cortical bone near a boundary with soft tissue.
- the outer surface of the pedicle screw may be non-conductive except to the head and tip of the pedicle screw.
- the outer surface of the pedicle probe is non- conductive except for the distal and proximal ends of the probe.
- a conductive lead is then applied to the head of the pedicle screw or proximal end of the pedicle probe to conduct a signal to the tip of the screw or probe, the signal having a varying or fixed frequency.
- the system 10 determines the phase angle and impedance of the signal applied to the tip for each frequency of the signal.
- the system 10 uses the combination of characteristics and frequency of the applied signal may be used to determine whether the tip is located in cortical bone, cancellous bone, or cortical bone near the boundary with soft tissue.
- the surgeon may continue the insertion of the pedicle probe or screw.
- the probe 22 may be a cannula to be inserted adjacent to an annulus of a patient's spinal disc prior to performing an annulotomy. During the insertion of the cannula towards the annulus, it is critical that the cannula not rest again a nerve along side the annulus wall.
- the tissue discrimination system 10 of the present invention may be used to monitor the position of the cannula as it is advanced to the annulus wall. In particular, the system monitors the impedance and capacitance or phase shift at the tip of the cannula to determine whether the distal tip is adjacent to nerve tissue or annulus tissue.
- the outer surface of the cannula is non-conductive except for the distal and proximal ends of the cannula.
- a conductive lead is then applied to the proximal end of the cannula to conduct a signal to the tip of cannula, the signal having a varying or fixed frequency.
- the system 10 determines the phase angle and impedance of the signal applied to the tip for each frequency of the signal.
- the system 10 uses the combination of characteristics and frequency of the applied signal may be used to determine whether the tip is located adjacent to nerve tissue or annulus tissue. Depending on the determination, the surgeon may continue the insertion of the cannula.
- the probe 22 may be an ablation cathode to be inserted into a patient's prostate gland prior to performing prostate gland ablation.
- the cathode is critical that the cathode is not near or adjacent to nerve tissue along side or within the prostate gland. Surgeons use image intensifier equipment and other equipment to prevent such a situation.
- the tissue discrimination system 10 of the present invention may be used to monitor the position of the cathode as it is advanced into the prostate gland. In particular, the system monitors the impedance and capacitance or phase shift at the tip of the cathode to determine whether the distal tip is adjacent to nerve tissue or prostate gland tissue.
- the signal is applied to the ablation cathode tip, the signal having a varying or fixed frequency. Then, the system 10 determines the phase angle and impedance of the signal applied to the tip for each frequency of the signal. The system 10 uses the combination of characteristics and frequency of the applied signal may be used to determine whether the tip is located adjacent to nerve tissue or prostate gland tissue. Depending on the determination, the surgeon may continue the insertion of the cathode.
- the present invention may be implemented using any combination of computer programming software, firmware or hardware.
- the computer programming code (whether software or firmware) according to the invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention.
- the article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Neurology (AREA)
- Surgical Instruments (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01937512A EP1289415A4 (en) | 2000-05-18 | 2001-05-18 | Tissue discrimination and applications in medical procedures |
AU2001263239A AU2001263239A1 (en) | 2000-05-18 | 2001-05-18 | Tissue discrimination and applications in medical procedures |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20563400P | 2000-05-18 | 2000-05-18 | |
US60/205,634 | 2000-05-18 | ||
US24346500P | 2000-10-25 | 2000-10-25 | |
US60/243,465 | 2000-10-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001087154A1 true WO2001087154A1 (en) | 2001-11-22 |
Family
ID=26900618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/016027 WO2001087154A1 (en) | 2000-05-18 | 2001-05-18 | Tissue discrimination and applications in medical procedures |
Country Status (4)
Country | Link |
---|---|
US (5) | US6760616B2 (en) |
EP (1) | EP1289415A4 (en) |
AU (1) | AU2001263239A1 (en) |
WO (1) | WO2001087154A1 (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003005887A2 (en) | 2001-07-11 | 2003-01-23 | Nuvasive, Inc. | System and methods for determining nerve proximity, direction, and pathology during surgery |
WO2007075091A3 (en) * | 2005-12-29 | 2007-08-30 | Rikshospitalet Radiumhospitale | Method and apparatus for determining local tissue impedance for positioning of a needle |
US7865236B2 (en) | 2004-10-20 | 2011-01-04 | Nervonix, Inc. | Active electrode, bio-impedance based, tissue discrimination system and methods of use |
US8204575B2 (en) | 2006-08-11 | 2012-06-19 | Medtronic, Inc. | Locating guide |
EP2438877A3 (en) * | 2005-03-28 | 2012-07-11 | Vessix Vascular, Inc. | Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US8870866B2 (en) | 2007-01-05 | 2014-10-28 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US8876746B2 (en) | 2006-01-06 | 2014-11-04 | Arthrocare Corporation | Electrosurgical system and method for treating chronic wound tissue |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8979838B2 (en) | 2010-05-24 | 2015-03-17 | Arthrocare Corporation | Symmetric switching electrode method and related system |
US9011428B2 (en) | 2011-03-02 | 2015-04-21 | Arthrocare Corporation | Electrosurgical device with internal digestor electrode |
US9095358B2 (en) | 2009-12-09 | 2015-08-04 | Arthrocare Corporation | Electrosurgery irrigation primer systems and methods |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US9131597B2 (en) | 2011-02-02 | 2015-09-08 | Arthrocare Corporation | Electrosurgical system and method for treating hard body tissue |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9138282B2 (en) | 2009-06-17 | 2015-09-22 | Arthrocare Corporation | Method and system of an electrosurgical controller with wave-shaping |
US9168082B2 (en) | 2011-02-09 | 2015-10-27 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9254166B2 (en) | 2013-01-17 | 2016-02-09 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9271784B2 (en) | 2011-02-09 | 2016-03-01 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9358063B2 (en) | 2008-02-14 | 2016-06-07 | Arthrocare Corporation | Ablation performance indicator for electrosurgical devices |
US9439581B2 (en) | 2006-08-11 | 2016-09-13 | Medtronic, Inc. | Guided medical element implantation |
US9452008B2 (en) | 2008-12-12 | 2016-09-27 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US9526556B2 (en) | 2014-02-28 | 2016-12-27 | Arthrocare Corporation | Systems and methods systems related to electrosurgical wands with screen electrodes |
US9693818B2 (en) | 2013-03-07 | 2017-07-04 | Arthrocare Corporation | Methods and systems related to electrosurgical wands |
US9713489B2 (en) | 2013-03-07 | 2017-07-25 | Arthrocare Corporation | Electrosurgical methods and systems |
US9788882B2 (en) | 2011-09-08 | 2017-10-17 | Arthrocare Corporation | Plasma bipolar forceps |
US9801678B2 (en) | 2013-03-13 | 2017-10-31 | Arthrocare Corporation | Method and system of controlling conductive fluid flow during an electrosurgical procedure |
US9962150B2 (en) | 2013-12-20 | 2018-05-08 | Arthrocare Corporation | Knotless all suture tissue repair |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
US10448992B2 (en) | 2010-10-22 | 2019-10-22 | Arthrocare Corporation | Electrosurgical system with device specific operational parameters |
US11026627B2 (en) | 2013-03-15 | 2021-06-08 | Cadwell Laboratories, Inc. | Surgical instruments for determining a location of a nerve during a procedure |
US11177610B2 (en) | 2017-01-23 | 2021-11-16 | Cadwell Laboratories, ino. | Neuromonitoring connection system |
US11253182B2 (en) | 2018-05-04 | 2022-02-22 | Cadwell Laboratories, Inc. | Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation |
US11443649B2 (en) | 2018-06-29 | 2022-09-13 | Cadwell Laboratories, Inc. | Neurophysiological monitoring training simulator |
US11992339B2 (en) | 2018-05-04 | 2024-05-28 | Cadwell Laboratories, Inc. | Systems and methods for dynamic neurophysiological stimulation |
Families Citing this family (428)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE306213T1 (en) * | 1998-12-23 | 2005-10-15 | Nuvasive Inc | DEVICES FOR CANNULATION AND NERVE MONITORING |
EP1253854A4 (en) | 1999-03-07 | 2010-01-06 | Discure Ltd | Method and apparatus for computerized surgery |
AUPQ113799A0 (en) | 1999-06-22 | 1999-07-15 | University Of Queensland, The | A method and device for measuring lymphoedema |
US6466817B1 (en) * | 1999-11-24 | 2002-10-15 | Nuvasive, Inc. | Nerve proximity and status detection system and method |
JP4854900B2 (en) | 1999-11-24 | 2012-01-18 | ヌバシブ, インコーポレイテッド | EMG measurement method |
WO2001087154A1 (en) * | 2000-05-18 | 2001-11-22 | Nuvasive, Inc. | Tissue discrimination and applications in medical procedures |
US20030009111A1 (en) * | 2001-06-13 | 2003-01-09 | Cory Philip C. | Non-invasive method and apparatus for tissue detection |
US7778711B2 (en) * | 2001-08-31 | 2010-08-17 | Bio Control Medical (B.C.M.) Ltd. | Reduction of heart rate variability by parasympathetic stimulation |
EP1435828A4 (en) | 2001-09-25 | 2009-11-11 | Nuvasive Inc | System and methods for performing surgical procedures and assessments |
US7664544B2 (en) | 2002-10-30 | 2010-02-16 | Nuvasive, Inc. | System and methods for performing percutaneous pedicle integrity assessments |
US7169107B2 (en) * | 2002-01-25 | 2007-01-30 | Karen Jersey-Willuhn | Conductivity reconstruction based on inverse finite element measurements in a tissue monitoring system |
US8147421B2 (en) | 2003-01-15 | 2012-04-03 | Nuvasive, Inc. | System and methods for determining nerve direction to a surgical instrument |
US7582058B1 (en) | 2002-06-26 | 2009-09-01 | Nuvasive, Inc. | Surgical access system and related methods |
US8137284B2 (en) * | 2002-10-08 | 2012-03-20 | Nuvasive, Inc. | Surgical access system and related methods |
JP2006507057A (en) * | 2002-11-22 | 2006-03-02 | インぺディメッド プロプライエタリー リミテッド | Multi-frequency bioimpedance measurement method |
US7313434B2 (en) * | 2002-11-25 | 2007-12-25 | Regents Of The University Of Minnesota | Impedance monitoring for detecting pulmonary edema and thoracic congestion |
US7691057B2 (en) | 2003-01-16 | 2010-04-06 | Nuvasive, Inc. | Surgical access system and related methods |
US7819801B2 (en) | 2003-02-27 | 2010-10-26 | Nuvasive, Inc. | Surgical access system and related methods |
US20040225228A1 (en) | 2003-05-08 | 2004-11-11 | Ferree Bret A. | Neurophysiological apparatus and procedures |
US20040243207A1 (en) * | 2003-05-30 | 2004-12-02 | Olson Donald R. | Medical implant systems |
AU2004263152B2 (en) * | 2003-08-05 | 2009-08-27 | Nuvasive, Inc. | Systems and methods for performing dynamic pedicle integrity assessments |
EP1680177B1 (en) | 2003-09-25 | 2017-04-12 | NuVasive, Inc. | Surgical access system |
US7905840B2 (en) | 2003-10-17 | 2011-03-15 | Nuvasive, Inc. | Surgical access system and related methods |
US8313430B1 (en) | 2006-01-11 | 2012-11-20 | Nuvasive, Inc. | Surgical access system and related methods |
JP4783742B2 (en) * | 2004-02-20 | 2011-09-28 | パチェコ,ヘクター,オー. | Method for improving pedicle screw placement in spinal surgery |
JP4024774B2 (en) * | 2004-04-05 | 2007-12-19 | 株式会社タニタ | Body fat measuring device |
US20050251116A1 (en) * | 2004-05-05 | 2005-11-10 | Minnow Medical, Llc | Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter |
WO2005122888A1 (en) | 2004-06-18 | 2005-12-29 | The University Of Queensland | Oedema detection |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
WO2006042241A2 (en) * | 2004-10-08 | 2006-04-20 | Nuvasive, Inc. | Surgical access system and related methods |
US8430881B2 (en) | 2004-10-15 | 2013-04-30 | Baxano, Inc. | Mechanical tissue modification devices and methods |
US8257356B2 (en) | 2004-10-15 | 2012-09-04 | Baxano, Inc. | Guidewire exchange systems to treat spinal stenosis |
US7887538B2 (en) | 2005-10-15 | 2011-02-15 | Baxano, Inc. | Methods and apparatus for tissue modification |
US20080312660A1 (en) * | 2007-06-15 | 2008-12-18 | Baxano, Inc. | Devices and methods for measuring the space around a nerve root |
US20100331883A1 (en) | 2004-10-15 | 2010-12-30 | Schmitz Gregory P | Access and tissue modification systems and methods |
EP1799129B1 (en) | 2004-10-15 | 2020-11-25 | Baxano, Inc. | Devices for tissue removal |
US7738969B2 (en) | 2004-10-15 | 2010-06-15 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
US8062300B2 (en) | 2006-05-04 | 2011-11-22 | Baxano, Inc. | Tissue removal with at least partially flexible devices |
US9247952B2 (en) | 2004-10-15 | 2016-02-02 | Amendia, Inc. | Devices and methods for tissue access |
US7553307B2 (en) | 2004-10-15 | 2009-06-30 | Baxano, Inc. | Devices and methods for tissue modification |
US8221397B2 (en) | 2004-10-15 | 2012-07-17 | Baxano, Inc. | Devices and methods for tissue modification |
US9101386B2 (en) | 2004-10-15 | 2015-08-11 | Amendia, Inc. | Devices and methods for treating tissue |
US7938830B2 (en) | 2004-10-15 | 2011-05-10 | Baxano, Inc. | Powered tissue modification devices and methods |
US8613745B2 (en) | 2004-10-15 | 2013-12-24 | Baxano Surgical, Inc. | Methods, systems and devices for carpal tunnel release |
US20110190772A1 (en) | 2004-10-15 | 2011-08-04 | Vahid Saadat | Powered tissue modification devices and methods |
US8048080B2 (en) | 2004-10-15 | 2011-11-01 | Baxano, Inc. | Flexible tissue rasp |
US7578819B2 (en) | 2005-05-16 | 2009-08-25 | Baxano, Inc. | Spinal access and neural localization |
US7857813B2 (en) | 2006-08-29 | 2010-12-28 | Baxano, Inc. | Tissue access guidewire system and method |
US20060085048A1 (en) * | 2004-10-20 | 2006-04-20 | Nervonix, Inc. | Algorithms for an active electrode, bioimpedance-based tissue discrimination system |
WO2006056074A1 (en) | 2004-11-26 | 2006-06-01 | Z-Tech (Canada) Inc. | Weighted gradient method and system for diagnosing disease |
US7785253B1 (en) | 2005-01-31 | 2010-08-31 | Nuvasive, Inc. | Surgical access system and related methods |
US7643884B2 (en) | 2005-01-31 | 2010-01-05 | Warsaw Orthopedic, Inc. | Electrically insulated surgical needle assembly |
US8568331B2 (en) * | 2005-02-02 | 2013-10-29 | Nuvasive, Inc. | System and methods for monitoring during anterior surgery |
EP2409641B1 (en) | 2005-02-02 | 2017-07-05 | NuVasive, Inc. | System for performing neurophysiologic assessments during spine surgery |
US8092455B2 (en) | 2005-02-07 | 2012-01-10 | Warsaw Orthopedic, Inc. | Device and method for operating a tool relative to bone tissue and detecting neural elements |
US20060178594A1 (en) * | 2005-02-07 | 2006-08-10 | Neubardt Seth L | Apparatus and method for locating defects in bone tissue |
US7447543B2 (en) * | 2005-02-15 | 2008-11-04 | Regents Of The University Of Minnesota | Pathology assessment with impedance measurements using convergent bioelectric lead fields |
US20060200023A1 (en) * | 2005-03-04 | 2006-09-07 | Sdgi Holdings, Inc. | Instruments and methods for nerve monitoring in spinal surgical procedures |
US20060241566A1 (en) * | 2005-04-11 | 2006-10-26 | Orthox, Llc | Nucleus Extraction from Spine Intervertebral Disc |
US7819824B2 (en) * | 2005-05-06 | 2010-10-26 | Artann Laboratories Inc. | Method and a dual-array transducer probe for real time mechanical imaging of prostate |
US7922674B2 (en) * | 2005-05-06 | 2011-04-12 | Artann Laboratories Inc | Method and device for real time mechanical imaging of prostate |
US20060276720A1 (en) * | 2005-06-03 | 2006-12-07 | Mcginnis William C | Method of using dermatomal somatosensory evoked potentials in real-time for surgical and clinical management |
CA2609111C (en) | 2005-07-01 | 2016-10-18 | Scott Chetham | A method and apparatus for performing impedance measurements in accordance with determining an electrode arrangement using a displayed representation |
JP5607300B2 (en) * | 2005-07-01 | 2014-10-15 | インぺディメッド リミテッド | Apparatus and method for performing impedance measurements on an object |
US8740783B2 (en) * | 2005-07-20 | 2014-06-03 | Nuvasive, Inc. | System and methods for performing neurophysiologic assessments with pressure monitoring |
EP1912578B1 (en) | 2005-07-28 | 2018-02-07 | NuVasive, Inc. | Total disc replacement system |
JP5161772B2 (en) * | 2005-08-02 | 2013-03-13 | インぺディメッド リミテッド | Impedance parameter value |
US8591431B2 (en) * | 2005-09-22 | 2013-11-26 | Nuvasive, Inc. | System and methods for performing pedicle integrity assessments of the thoracic spine |
WO2007038290A2 (en) * | 2005-09-22 | 2007-04-05 | Nuvasive, Inc. | Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring |
US8568317B1 (en) | 2005-09-27 | 2013-10-29 | Nuvasive, Inc. | System and methods for nerve monitoring |
US9724012B2 (en) | 2005-10-11 | 2017-08-08 | Impedimed Limited | Hydration status monitoring |
US20080051812A1 (en) * | 2006-08-01 | 2008-02-28 | Baxano, Inc. | Multi-Wire Tissue Cutter |
US8062298B2 (en) | 2005-10-15 | 2011-11-22 | Baxano, Inc. | Flexible tissue removal devices and methods |
US8366712B2 (en) | 2005-10-15 | 2013-02-05 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US8092456B2 (en) | 2005-10-15 | 2012-01-10 | Baxano, Inc. | Multiple pathways for spinal nerve root decompression from a single access point |
US9492226B2 (en) * | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US10362959B2 (en) | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
WO2007070361A2 (en) | 2005-12-06 | 2007-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US8406866B2 (en) | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US8728077B2 (en) | 2005-12-06 | 2014-05-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Handle set for ablation catheter with indicators of catheter and tissue parameters |
US20090177111A1 (en) * | 2006-12-06 | 2009-07-09 | Miller Stephan P | System and method for displaying contact between a catheter and tissue |
US7749249B2 (en) | 2006-02-21 | 2010-07-06 | Kardium Inc. | Method and device for closing holes in tissue |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20070265633A1 (en) * | 2006-05-11 | 2007-11-15 | Moon Jon K | Implement and method to extract nucleus from spine intervertebral disc |
US20070270688A1 (en) * | 2006-05-19 | 2007-11-22 | Daniel Gelbart | Automatic atherectomy system |
US8761870B2 (en) | 2006-05-30 | 2014-06-24 | Impedimed Limited | Impedance measurements |
US9119633B2 (en) | 2006-06-28 | 2015-09-01 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US10028783B2 (en) | 2006-06-28 | 2018-07-24 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US8920411B2 (en) | 2006-06-28 | 2014-12-30 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US11389232B2 (en) | 2006-06-28 | 2022-07-19 | Kardium Inc. | Apparatus and method for intra-cardiac mapping and ablation |
US8449605B2 (en) | 2006-06-28 | 2013-05-28 | Kardium Inc. | Method for anchoring a mitral valve |
US7837610B2 (en) | 2006-08-02 | 2010-11-23 | Kardium Inc. | System for improving diastolic dysfunction |
JP5372768B2 (en) | 2006-11-30 | 2013-12-18 | インぺディメッド リミテッド | measuring device |
US20100168561A1 (en) * | 2006-12-18 | 2010-07-01 | Trillium Precision Surgical, Inc. | Intraoperative Tissue Mapping and Dissection Systems, Devices, Methods, and Kits |
US20080172106A1 (en) * | 2007-01-11 | 2008-07-17 | Mcginnis William J | Osteogenic stimulus device, kit and method of using thereof |
CA2675438A1 (en) * | 2007-01-15 | 2008-07-24 | Impedimed Limited | Monitoring system |
US7987001B2 (en) | 2007-01-25 | 2011-07-26 | Warsaw Orthopedic, Inc. | Surgical navigational and neuromonitoring instrument |
US20080183188A1 (en) * | 2007-01-25 | 2008-07-31 | Warsaw Orthopedic, Inc. | Integrated Surgical Navigational and Neuromonitoring System |
US8374673B2 (en) | 2007-01-25 | 2013-02-12 | Warsaw Orthopedic, Inc. | Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control |
EP2137589B1 (en) * | 2007-03-30 | 2015-02-25 | Impedimed Limited | Active guarding for reduction of resistive and capacitive signal loading with adjustable control of compensation level |
AU2008236665B2 (en) * | 2007-04-03 | 2013-08-22 | Nuvasive, Inc. | Neurophysiologic monitoring system |
AU2008241356B2 (en) | 2007-04-20 | 2013-10-03 | Impedimed Limited | Monitoring system and probe |
US8075601B2 (en) | 2007-04-30 | 2011-12-13 | Warsaw Orthopedic, Inc. | Deformity correction using neural integrity monitoring |
WO2009011824A1 (en) * | 2007-07-13 | 2009-01-22 | The Brigham And Women's Hospital, Inc. | System and method for hernia mesh fixation |
WO2009032363A1 (en) | 2007-09-06 | 2009-03-12 | Baxano, Inc. | Method, system and apparatus for neural localization |
US20090076597A1 (en) * | 2007-09-19 | 2009-03-19 | Jonathan Micheal Dahlgren | System for mechanical adjustment of medical implants |
SE532142C2 (en) * | 2007-09-28 | 2009-11-03 | Clinical Laserthermia Systems | Device for determining a thermal property of a tissue |
US8343065B2 (en) * | 2007-10-18 | 2013-01-01 | Innovative Surgical Solutions, Llc | Neural event detection |
US20090105788A1 (en) * | 2007-10-18 | 2009-04-23 | Innovative Surgical Solutions, Llc | Minimally invasive nerve monitoring device and method |
US9084550B1 (en) | 2007-10-18 | 2015-07-21 | Innovative Surgical Solutions, Llc | Minimally invasive nerve monitoring device and method |
US8343079B2 (en) | 2007-10-18 | 2013-01-01 | Innovative Surgical Solutions, Llc | Neural monitoring sensor |
US8942797B2 (en) * | 2007-10-18 | 2015-01-27 | Innovative Surgical Solutions, Llc | Neural monitoring system |
AU2008324750B2 (en) * | 2007-11-05 | 2014-01-16 | Impedimed Limited | Impedance determination |
US8906011B2 (en) | 2007-11-16 | 2014-12-09 | Kardium Inc. | Medical device for use in bodily lumens, for example an atrium |
US8192436B2 (en) | 2007-12-07 | 2012-06-05 | Baxano, Inc. | Tissue modification devices |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US20110264000A1 (en) * | 2007-12-28 | 2011-10-27 | Saurav Paul | System and method for determining tissue type and mapping tissue morphology |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US8489172B2 (en) | 2008-01-25 | 2013-07-16 | Kardium Inc. | Liposuction system |
AU2008207672B2 (en) * | 2008-02-15 | 2013-10-31 | Impedimed Limited | Impedance Analysis |
US8118206B2 (en) * | 2008-03-15 | 2012-02-21 | Surgisense Corporation | Sensing adjunct for surgical staplers |
CA3022982C (en) * | 2008-03-31 | 2022-07-26 | Applied Medical Resources Corporation | Electrosurgical system |
US8272383B2 (en) | 2008-05-06 | 2012-09-25 | Nxthera, Inc. | Systems and methods for male sterilization |
US20090287304A1 (en) | 2008-05-13 | 2009-11-19 | Kardium Inc. | Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve |
US20090299439A1 (en) * | 2008-06-02 | 2009-12-03 | Warsaw Orthopedic, Inc. | Method, system and tool for surgical procedures |
US8398641B2 (en) | 2008-07-01 | 2013-03-19 | Baxano, Inc. | Tissue modification devices and methods |
US9314253B2 (en) | 2008-07-01 | 2016-04-19 | Amendia, Inc. | Tissue modification devices and methods |
US8409206B2 (en) | 2008-07-01 | 2013-04-02 | Baxano, Inc. | Tissue modification devices and methods |
AU2009271047B2 (en) | 2008-07-14 | 2014-04-17 | Baxano Surgical, Inc. | Tissue modification devices |
US20100071626A1 (en) * | 2008-07-18 | 2010-03-25 | Michael Hoey | System and method of detecting disease in mammal |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
WO2010042461A1 (en) | 2008-10-06 | 2010-04-15 | Sharma Virender K | Method and apparatus for tissue ablation |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
BRPI0921122A2 (en) | 2008-11-06 | 2016-02-16 | Nxthera Inc | prostate therapy system. |
LT2352453T (en) | 2008-11-06 | 2018-05-10 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
CA2742566A1 (en) | 2008-11-06 | 2010-05-14 | Nxthera, Inc. | Systems and methods for treatment of bph |
US9615766B2 (en) | 2008-11-28 | 2017-04-11 | Impedimed Limited | Impedance measurement process |
US8992558B2 (en) | 2008-12-18 | 2015-03-31 | Osteomed, Llc | Lateral access system for the lumbar spine |
CA2750917A1 (en) | 2008-12-26 | 2010-07-01 | Scott Spann | Minimally-invasive retroperitoneal lateral approach for spinal surgery |
US8388611B2 (en) * | 2009-01-14 | 2013-03-05 | Nxthera, Inc. | Systems and methods for treatment of prostatic tissue |
US20100179416A1 (en) * | 2009-01-14 | 2010-07-15 | Michael Hoey | Medical Systems and Methods |
US20100179557A1 (en) * | 2009-01-15 | 2010-07-15 | Husted Daniel S | Adjustable Powered Rongeur |
WO2010105261A2 (en) | 2009-03-13 | 2010-09-16 | Baxano, Inc. | Flexible neural localization devices and methods |
US9351845B1 (en) | 2009-04-16 | 2016-05-31 | Nuvasive, Inc. | Method and apparatus for performing spine surgery |
US8287597B1 (en) | 2009-04-16 | 2012-10-16 | Nuvasive, Inc. | Method and apparatus for performing spine surgery |
US9833277B2 (en) | 2009-04-27 | 2017-12-05 | Nxthera, Inc. | Systems and methods for prostate treatment |
US8394102B2 (en) | 2009-06-25 | 2013-03-12 | Baxano, Inc. | Surgical tools for treatment of spinal stenosis |
US10624578B2 (en) | 2009-09-10 | 2020-04-21 | Newton Howard | Fundamental code unit of the brain: towards a new model for cognitive geometry |
US10617348B2 (en) | 2009-09-10 | 2020-04-14 | Newton Howard | Fundamental code unit of the brain: photoreceptor protein-mediated photonic signaling within neural tissue and its uses in brain co-processor |
US20110060377A1 (en) * | 2009-09-10 | 2011-03-10 | Make A Mind Co., Inc. | Medical co-processor for signaling pattern decoding and manipulation of cellular structures |
WO2011041571A2 (en) | 2009-10-01 | 2011-04-07 | Kardium Inc. | Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve |
CA2777797A1 (en) | 2009-10-26 | 2011-05-05 | Impedimed Limited | Fluid level indicator determination |
US9585593B2 (en) | 2009-11-18 | 2017-03-07 | Chung Shing Fan | Signal distribution for patient-electrode measurements |
PL218085B1 (en) | 2010-02-19 | 2014-10-31 | Nano Tech Spółka Z Ograniczoną Odpowiedzialnością | Method and apparatus for non-invasive examination of bone structure and chemical composition eliminating the effects of surrounding tissues |
US8753333B2 (en) * | 2010-03-10 | 2014-06-17 | Covidien Lp | System for determining proximity relative to a nerve |
US8623004B2 (en) * | 2010-03-10 | 2014-01-07 | Covidien Lp | Method for determining proximity relative to a critical structure |
US8864761B2 (en) * | 2010-03-10 | 2014-10-21 | Covidien Lp | System and method for determining proximity relative to a critical structure |
US20110230785A1 (en) * | 2010-03-16 | 2011-09-22 | ProNerve, LLC | Somatosensory Evoked Potential (SSEP) Automated Alert System |
CN102821710B (en) | 2010-03-25 | 2016-06-22 | 恩克斯特拉公司 | System and method for prostate treatment |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
US10631912B2 (en) | 2010-04-30 | 2020-04-28 | Medtronic Xomed, Inc. | Interface module for use with nerve monitoring and electrosurgery |
US9050066B2 (en) | 2010-06-07 | 2015-06-09 | Kardium Inc. | Closing openings in anatomical tissue |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
CN103167825B (en) | 2010-08-23 | 2016-06-22 | 纽文思公司 | Surgical approach system and correlation technique |
US9392953B1 (en) | 2010-09-17 | 2016-07-19 | Nuvasive, Inc. | Neurophysiologic monitoring |
WO2012040206A1 (en) | 2010-09-20 | 2012-03-29 | Synthes Usa, Llc | Spinal access retractor |
US8940002B2 (en) | 2010-09-30 | 2015-01-27 | Kardium Inc. | Tissue anchor system |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US8774911B2 (en) * | 2011-01-04 | 2014-07-08 | Lee M. Buono | Pedicle locator instrument |
WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US9486273B2 (en) | 2011-01-21 | 2016-11-08 | Kardium Inc. | High-density electrode-based medical device system |
CA2764494A1 (en) | 2011-01-21 | 2012-07-21 | Kardium Inc. | Enhanced medical device for use in bodily cavities, for example an atrium |
US9452016B2 (en) | 2011-01-21 | 2016-09-27 | Kardium Inc. | Catheter system |
US11259867B2 (en) | 2011-01-21 | 2022-03-01 | Kardium Inc. | High-density electrode-based medical device system |
US9072511B2 (en) | 2011-03-25 | 2015-07-07 | Kardium Inc. | Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve |
US8790406B1 (en) | 2011-04-01 | 2014-07-29 | William D. Smith | Systems and methods for performing spine surgery |
ITRM20110206A1 (en) | 2011-04-21 | 2012-10-22 | Ab Medica Spa | ACQUISITION AND MONITORING SYSTEM OF BIOELECTRIC SIGNALS FROM THE BRAIN AND INTRACRANIC STIMULATION. |
WO2013013156A2 (en) | 2011-07-20 | 2013-01-24 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
JP6106669B2 (en) | 2011-07-22 | 2017-04-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | A neuromodulation system having a neuromodulation element that can be placed in a helical guide |
AU2012299061B2 (en) | 2011-08-19 | 2017-02-23 | Nuvasive, Inc. | Surgical retractor system and methods of use |
PL2755614T3 (en) | 2011-09-13 | 2018-04-30 | Nxthera, Inc. | Systems for prostate treatment |
EP2763624B1 (en) | 2011-10-04 | 2020-11-25 | Vessix Vascular, Inc. | Apparatus for treatment of in-stent restenosis |
WO2013055826A1 (en) | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
WO2013058962A1 (en) | 2011-10-18 | 2013-04-25 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US9079000B2 (en) | 2011-10-18 | 2015-07-14 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US9198765B1 (en) | 2011-10-31 | 2015-12-01 | Nuvasive, Inc. | Expandable spinal fusion implants and related methods |
WO2013067018A2 (en) | 2011-11-01 | 2013-05-10 | Synthes Usa, Llc | Intraoperative neurophysiological monitoring system |
CN108095821B (en) | 2011-11-08 | 2021-05-25 | 波士顿科学西美德公司 | Orifice renal nerve ablation |
US8983593B2 (en) | 2011-11-10 | 2015-03-17 | Innovative Surgical Solutions, Llc | Method of assessing neural function |
US9301711B2 (en) | 2011-11-10 | 2016-04-05 | Innovative Surgical Solutions, Llc | System and method for assessing neural health |
EP2779929A1 (en) | 2011-11-15 | 2014-09-24 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
CA2859989C (en) | 2011-12-23 | 2020-03-24 | Vessix Vascular, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
CN104135958B (en) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | By the apparatus and method that have the new ablation catheter modulation nerve of polymer ablation |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
USD777926S1 (en) | 2012-01-20 | 2017-01-31 | Kardium Inc. | Intra-cardiac procedure device |
USD777925S1 (en) | 2012-01-20 | 2017-01-31 | Kardium Inc. | Intra-cardiac procedure device |
US9066701B1 (en) | 2012-02-06 | 2015-06-30 | Nuvasive, Inc. | Systems and methods for performing neurophysiologic monitoring during spine surgery |
US9655505B1 (en) | 2012-02-06 | 2017-05-23 | Nuvasive, Inc. | Systems and methods for performing neurophysiologic monitoring during spine surgery |
US8855822B2 (en) | 2012-03-23 | 2014-10-07 | Innovative Surgical Solutions, Llc | Robotic surgical system with mechanomyography feedback |
US10335222B2 (en) | 2012-04-03 | 2019-07-02 | Nxthera, Inc. | Induction coil vapor generator |
US9439598B2 (en) | 2012-04-12 | 2016-09-13 | NeuroMedic, Inc. | Mapping and ablation of nerves within arteries and tissues |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9198592B2 (en) | 2012-05-21 | 2015-12-01 | Kardium Inc. | Systems and methods for activating transducers |
US9693832B2 (en) | 2012-05-21 | 2017-07-04 | Kardium Inc. | Systems and methods for selecting, activating, or selecting and activating transducers |
US10827977B2 (en) | 2012-05-21 | 2020-11-10 | Kardium Inc. | Systems and methods for activating transducers |
US9039630B2 (en) | 2012-08-22 | 2015-05-26 | Innovative Surgical Solutions, Llc | Method of detecting a sacral nerve |
WO2014032016A1 (en) | 2012-08-24 | 2014-02-27 | Boston Scientific Scimed, Inc. | Intravascular catheter with a balloon comprising separate microporous regions |
CN104780859B (en) | 2012-09-17 | 2017-07-25 | 波士顿科学西美德公司 | Self-positioning electrode system and method for renal regulation |
US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
US10398464B2 (en) | 2012-09-21 | 2019-09-03 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
US8892259B2 (en) | 2012-09-26 | 2014-11-18 | Innovative Surgical Solutions, LLC. | Robotic surgical system with mechanomyography feedback |
JP6074051B2 (en) | 2012-10-10 | 2017-02-01 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Intravascular neuromodulation system and medical device |
US11877860B2 (en) | 2012-11-06 | 2024-01-23 | Nuvasive, Inc. | Systems and methods for performing neurophysiologic monitoring during spine surgery |
US11259737B2 (en) | 2012-11-06 | 2022-03-01 | Nuvasive, Inc. | Systems and methods for performing neurophysiologic monitoring during spine surgery |
US9757067B1 (en) | 2012-11-09 | 2017-09-12 | Nuvasive, Inc. | Systems and methods for performing neurophysiologic monitoring during spine surgery |
EP3964151A3 (en) | 2013-01-17 | 2022-03-30 | Virender K. Sharma | Apparatus for tissue ablation |
US9757072B1 (en) | 2013-02-11 | 2017-09-12 | Nuvasive, Inc. | Waveform marker placement algorithm for use in neurophysiologic monitoring |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
JP2016513563A (en) | 2013-03-14 | 2016-05-16 | エヌエックスセラ インコーポレイテッド | System and method for treating prostate cancer |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US9297845B2 (en) | 2013-03-15 | 2016-03-29 | Boston Scientific Scimed, Inc. | Medical devices and methods for treatment of hypertension that utilize impedance compensation |
EP2967734B1 (en) | 2013-03-15 | 2019-05-15 | Boston Scientific Scimed, Inc. | Methods and apparatuses for remodeling tissue of or adjacent to a body passage |
US10022182B2 (en) | 2013-06-21 | 2018-07-17 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
CN105473091B (en) | 2013-06-21 | 2020-01-21 | 波士顿科学国际有限公司 | Renal denervation balloon catheter with co-movable electrode supports |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
WO2015006573A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
WO2015006480A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US9925001B2 (en) | 2013-07-19 | 2018-03-27 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
EP3024405A1 (en) | 2013-07-22 | 2016-06-01 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
JP2016527959A (en) | 2013-07-22 | 2016-09-15 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Renal nerve ablation medical device |
US10478097B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions | Neural event detection |
US10478096B2 (en) | 2013-08-13 | 2019-11-19 | Innovative Surgical Solutions. | Neural event detection |
WO2015027096A1 (en) | 2013-08-22 | 2015-02-26 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
US9895194B2 (en) | 2013-09-04 | 2018-02-20 | Boston Scientific Scimed, Inc. | Radio frequency (RF) balloon catheter having flushing and cooling capability |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US9622684B2 (en) | 2013-09-20 | 2017-04-18 | Innovative Surgical Solutions, Llc | Neural locating system |
US10376208B2 (en) | 2013-09-20 | 2019-08-13 | Innovative Surgical Solutions, Llc | Nerve mapping system |
US10376209B2 (en) | 2013-09-20 | 2019-08-13 | Innovative Surgical Solutions, Llc | Neural locating method |
US10449002B2 (en) | 2013-09-20 | 2019-10-22 | Innovative Surgical Solutions, Llc | Method of mapping a nerve |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
EP3057488B1 (en) | 2013-10-14 | 2018-05-16 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
AU2014334574B2 (en) | 2013-10-15 | 2017-07-06 | Boston Scientific Scimed, Inc. | Medical device balloon |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
CN105636538B (en) | 2013-10-18 | 2019-01-15 | 波士顿科学国际有限公司 | Foley's tube with flexible wire and its correlation technique for using and manufacturing |
JP2016534842A (en) | 2013-10-25 | 2016-11-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Embedded thermocouples in denervation flex circuits |
US9968395B2 (en) | 2013-12-10 | 2018-05-15 | Nxthera, Inc. | Systems and methods for treating the prostate |
JP6422975B2 (en) | 2013-12-10 | 2018-11-14 | エヌエックスセラ インコーポレイテッド | Steam ablation system and method |
JP6382989B2 (en) | 2014-01-06 | 2018-08-29 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device with tear resistant flexible circuit assembly |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
US10743960B2 (en) | 2014-09-04 | 2020-08-18 | AtaCor Medical, Inc. | Cardiac arrhythmia treatment devices and delivery |
US10328268B2 (en) | 2014-09-04 | 2019-06-25 | AtaCor Medical, Inc. | Cardiac pacing |
US10420480B1 (en) | 2014-09-16 | 2019-09-24 | Nuvasive, Inc. | Systems and methods for performing neurophysiologic monitoring |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US10368936B2 (en) | 2014-11-17 | 2019-08-06 | Kardium Inc. | Systems and methods for selecting, activating, or selecting and activating transducers |
US10722184B2 (en) | 2014-11-17 | 2020-07-28 | Kardium Inc. | Systems and methods for selecting, activating, or selecting and activating transducers |
US11097109B2 (en) | 2014-11-24 | 2021-08-24 | AtaCor Medical, Inc. | Cardiac pacing sensing and control |
CN112168329A (en) | 2015-01-29 | 2021-01-05 | 波士顿科学医学有限公司 | Steam ablation system and method |
US10376308B2 (en) | 2015-02-05 | 2019-08-13 | Axon Therapies, Inc. | Devices and methods for treatment of heart failure by splanchnic nerve ablation |
EP4275633A3 (en) | 2015-05-13 | 2023-11-22 | Nxthera, Inc. | Systems and methods for treating the bladder with condensable vapor |
KR101726054B1 (en) * | 2015-07-08 | 2017-04-12 | 성균관대학교산학협력단 | Apparatus and method for discriminating biological tissue, surgical apparatus using the apparatus |
US10207110B1 (en) | 2015-10-13 | 2019-02-19 | Axon Therapies, Inc. | Devices and methods for treatment of heart failure via electrical modulation of a splanchnic nerve |
US10390886B2 (en) * | 2015-10-26 | 2019-08-27 | Siemens Healthcare Gmbh | Image-based pedicle screw positioning |
CN105534524A (en) * | 2016-02-05 | 2016-05-04 | 思澜科技(成都)有限公司 | Device and method for quickly recognizing parathyroid gland in thyroid surgery |
US10799186B2 (en) | 2016-02-12 | 2020-10-13 | Newton Howard | Detection of disease conditions and comorbidities |
US10786298B2 (en) | 2016-03-01 | 2020-09-29 | Covidien Lp | Surgical instruments and systems incorporating machine learning based tissue identification and methods thereof |
WO2017155999A1 (en) | 2016-03-07 | 2017-09-14 | Hansa Medical Products, Inc. | Apparatus and method for forming an opening in patient's tissue |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
US10791990B2 (en) | 2016-06-13 | 2020-10-06 | Regents Of The University Of Minnesota | Tissue detection system with a polymer needle |
EP3490442A4 (en) | 2016-07-29 | 2020-03-25 | Axon Therapies, Inc. | Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation |
EP3503814B1 (en) | 2016-08-23 | 2024-07-10 | Stryker European Operations Holdings LLC | Instrumentation for the implantation of spinal implants |
US10321833B2 (en) | 2016-10-05 | 2019-06-18 | Innovative Surgical Solutions. | Neural locating method |
EP3531946A4 (en) | 2016-10-27 | 2020-10-21 | Leucadia 6, LLC | Intraoperative fluoroscopic registration of vertebral bodies |
AU2017382873B2 (en) | 2016-12-21 | 2023-06-01 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
WO2018129466A1 (en) * | 2017-01-06 | 2018-07-12 | Nxthera, Inc. | Transperineal vapor ablation systems and methods |
US10716553B2 (en) | 2017-04-19 | 2020-07-21 | Pantheon Spinal, Llc | Spine surgery retractor system and related methods |
WO2019036048A2 (en) | 2017-08-17 | 2019-02-21 | Stryker European Holdings I, Llc | Lateral access bridges, shims and lighting including rod lighting |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US20200253504A1 (en) * | 2017-11-01 | 2020-08-13 | Daniel Shen | Systems and methods for tissue characterization |
WO2019118976A1 (en) | 2017-12-17 | 2019-06-20 | Axon Therapies, Inc. | Methods and devices for endovascular ablation of a splanchnic nerve |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
CA3089217A1 (en) | 2018-01-26 | 2019-08-01 | Dorin Panescu | Methods and devices for endovascular ablation of a splanchnic nerve |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11191532B2 (en) | 2018-03-30 | 2021-12-07 | Stryker European Operations Holdings Llc | Lateral access retractor and core insertion |
CA3102080A1 (en) | 2018-06-01 | 2019-12-05 | Santa Anna Tech Llc | Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems |
US10869616B2 (en) | 2018-06-01 | 2020-12-22 | DePuy Synthes Products, Inc. | Neural event detection |
US10870002B2 (en) | 2018-10-12 | 2020-12-22 | DePuy Synthes Products, Inc. | Neuromuscular sensing device with multi-sensor array |
US11413029B2 (en) | 2018-10-24 | 2022-08-16 | Stryker European Operations Holdings Llc | Anterior to psoas instrumentation |
US11771464B2 (en) | 2018-11-13 | 2023-10-03 | Stryker European Operations Limited | Probes for surgical access system |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
EP3941347A1 (en) * | 2019-03-22 | 2022-01-26 | Boston Scientific Scimed Inc. | Tracking catheters based on a model of an impedance tracking field |
WO2020243534A1 (en) | 2019-05-29 | 2020-12-03 | AtaCor Medical, Inc. | Implantable electrical leads and associated delivery systems |
CA3134204A1 (en) | 2019-06-20 | 2020-12-24 | Anisha BAPNA | Methods and devices for endovascular ablation of a splanchnic nerve |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
US11399777B2 (en) | 2019-09-27 | 2022-08-02 | DePuy Synthes Products, Inc. | Intraoperative neural monitoring system and method |
US12053231B2 (en) | 2019-10-02 | 2024-08-06 | Covidien Lp | Systems and methods for controlling delivery of electrosurgical energy |
US11564674B2 (en) | 2019-11-27 | 2023-01-31 | K2M, Inc. | Lateral access system and method of use |
EP4064968A4 (en) * | 2019-11-27 | 2023-01-11 | Blossoms Innovations, Llc | Devices, systems and methods for tissue analysis, location determination and tissue ablation |
AU2021208701A1 (en) | 2020-01-17 | 2022-07-07 | Axon Therapies, Inc. | Methods and devices for endovascular ablation of a splanchnic nerve |
US11911170B2 (en) * | 2021-09-13 | 2024-02-27 | Christopher J. Rourk | Deep brain sensing and stimulation probe |
EP4245237A1 (en) | 2022-03-17 | 2023-09-20 | Erbe Elektromedizin GmbH | Electrosurgical system and method for testing the electrical connection between a neutral electrode and a patient |
EP4265211A1 (en) | 2022-04-21 | 2023-10-25 | Erbe Elektromedizin GmbH | Electrical surgery system and method for determining an electrode type of a neutral electrode |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5785658A (en) * | 1992-09-14 | 1998-07-28 | Sexant Medical Corporation | In vivo tissue analysis methods and apparatus |
US5807272A (en) | 1995-10-31 | 1998-09-15 | Worcester Polytechnic Institute | Impedance spectroscopy system for ischemia monitoring and detection |
US5872314A (en) * | 1997-07-25 | 1999-02-16 | Clinton; Robert P. | Method and apparatus for measuring characteristics of meat |
US5928159A (en) | 1995-03-03 | 1999-07-27 | Neothermia Corporation | Apparatus and method for characterization and treatment of tumors |
US5947964A (en) | 1995-03-03 | 1999-09-07 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
Family Cites Families (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2736002A (en) * | 1956-02-21 | oriel | ||
US208227A (en) | 1878-09-24 | Improvement in vaginal speculums | ||
US1548184A (en) * | 1923-04-11 | 1925-08-04 | Will J Cameron | Holder and control for pulp testers |
US2704064A (en) * | 1952-09-10 | 1955-03-15 | Meditron Company | Neurosurgical stimulator |
US2808826A (en) | 1956-01-19 | 1957-10-08 | Teca Corp | Electro-diagnostic apparatus and a circuit therefor |
US3364929A (en) * | 1964-12-21 | 1968-01-23 | Burroughs Wellcome Co | Method for administering muscle relaxant drug |
US3682162A (en) * | 1968-12-13 | 1972-08-08 | Wellcome Found | Combined electrode and hypodermic syringe needle |
US3664329A (en) * | 1970-03-09 | 1972-05-23 | Concept | Nerve locator/stimulator |
US3785368A (en) * | 1971-08-23 | 1974-01-15 | Carthy T Mc | Abnormal nerve pressure locus detector and method |
US3830226A (en) * | 1973-06-15 | 1974-08-20 | Concept | Variable output nerve locator |
US3851641A (en) * | 1973-11-29 | 1974-12-03 | J Toole | Method and apparatus for determining internal impedance of animal body part |
SE7511909L (en) * | 1974-10-29 | 1976-04-30 | Pivert Patrick Le | PROCEDURE FOR ESTIMATING THE STATE OF FREEZING IN A BIOLOGICAL BODY AND IMPEDANCES FOR PERFORMING THE PROCEDURE |
US3957036A (en) * | 1975-02-03 | 1976-05-18 | Baylor College Of Medicine | Method and apparatus for recording activity in intact nerves |
GB1534162A (en) * | 1976-07-21 | 1978-11-29 | Lloyd J | Cyosurgical probe |
US4099519A (en) * | 1977-01-14 | 1978-07-11 | Warren Fred E | Diagnostic device |
US4164214A (en) * | 1977-07-25 | 1979-08-14 | The Regents Of The University Of California | Method and apparatus for measuring the sensitivity of teeth |
US4224949A (en) * | 1977-11-17 | 1980-09-30 | Cornell Research Foundation, Inc. | Method and electrical resistance probe for detection of estrus in bovine |
US4235242A (en) | 1979-04-02 | 1980-11-25 | Med General, Inc. | Electronic circuit permitting simultaneous use of stimulating and monitoring equipment |
US4285347A (en) * | 1979-07-25 | 1981-08-25 | Cordis Corporation | Stabilized directional neural electrode lead |
US4291705A (en) * | 1979-09-10 | 1981-09-29 | The Regents Of The University Of California | Neuromuscular block monitor |
USRE34390E (en) | 1980-12-31 | 1993-09-28 | Nicolet Instrument Corporation | Apparatus and method for topographic display of multichannel EEG data |
US4461300A (en) * | 1982-01-18 | 1984-07-24 | Sutter Biomedical, Inc. | Bone and tissue healing device including a special electrode assembly and method |
US4592369A (en) * | 1982-07-12 | 1986-06-03 | National Research Development Corp. | Method and apparatus for use in temporal analysis of waveforms |
US4545374A (en) | 1982-09-03 | 1985-10-08 | Jacobson Robert E | Method and instruments for performing a percutaneous lumbar diskectomy |
US4519403A (en) * | 1983-04-29 | 1985-05-28 | Medtronic, Inc. | Balloon lead and inflator |
US4561445A (en) | 1983-05-25 | 1985-12-31 | Joseph J. Berke | Elongated needle electrode and method of making same |
FI73878C (en) * | 1983-06-10 | 1987-12-10 | Instrumentarium Oy | FOERFARANDE FOER VIDAREUTVECKLING AV NERVMUSKELANSLUTNINGS MAETNING. |
US4515168A (en) * | 1983-07-22 | 1985-05-07 | Chester Martin H | Clamp-on nerve stimulator and locator |
US4573448A (en) * | 1983-10-05 | 1986-03-04 | Pilling Co. | Method for decompressing herniated intervertebral discs |
US4562832A (en) * | 1984-01-21 | 1986-01-07 | Wilder Joseph R | Medical instrument and light pipe illumination assembly |
US4633889A (en) * | 1984-12-12 | 1987-01-06 | Andrew Talalla | Stimulation of cauda-equina spinal nerves |
US4658835A (en) * | 1985-07-25 | 1987-04-21 | Cordis Corporation | Neural stimulating lead with fixation canopy formation |
WO1987001023A1 (en) * | 1985-08-16 | 1987-02-26 | David Brown | Electromyographic repetitive strain injury monitor |
US4729385A (en) * | 1985-10-23 | 1988-03-08 | American Mediscan, Inc. | Probe and method of use for detecting abnormal tissues |
US4892105A (en) * | 1986-03-28 | 1990-01-09 | The Cleveland Clinic Foundation | Electrical stimulus probe |
US4759377A (en) * | 1986-11-26 | 1988-07-26 | Regents Of The University Of Minnesota | Apparatus and method for mechanical stimulation of nerves |
US4744371A (en) * | 1987-04-27 | 1988-05-17 | Cordis Leads, Inc. | Multi-conductor lead assembly for temporary use |
US4926865A (en) * | 1987-10-01 | 1990-05-22 | Oman Paul S | Microcomputer-based nerve and muscle stimulator |
DE8803153U1 (en) * | 1988-03-09 | 1988-06-23 | B. Braun Melsungen Ag, 3508 Melsungen | Catheter device for plexus anesthesia |
US5772661A (en) * | 1988-06-13 | 1998-06-30 | Michelson; Gary Karlin | Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine |
US5484437A (en) * | 1988-06-13 | 1996-01-16 | Michelson; Gary K. | Apparatus and method of inserting spinal implants |
US5015247A (en) * | 1988-06-13 | 1991-05-14 | Michelson Gary K | Threaded spinal implant |
US6120502A (en) * | 1988-06-13 | 2000-09-19 | Michelson; Gary Karlin | Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis |
US5127403A (en) * | 1988-07-05 | 1992-07-07 | Cardiac Control Systems, Inc. | Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal |
US4964411A (en) | 1989-07-13 | 1990-10-23 | Empi, Inc. | Evoked EMG signal processing |
US4962766A (en) * | 1989-07-19 | 1990-10-16 | Herzon Garrett D | Nerve locator and stimulator |
US5454365A (en) * | 1990-11-05 | 1995-10-03 | Bonutti; Peter M. | Mechanically expandable arthroscopic retractors |
US5081990A (en) * | 1990-05-11 | 1992-01-21 | New York University | Catheter for spinal epidural injection of drugs and measurement of evoked potentials |
US5095905A (en) * | 1990-06-07 | 1992-03-17 | Medtronic, Inc. | Implantable neural electrode |
US5059602A (en) | 1990-08-27 | 1991-10-22 | Hoechst-Roussel Pharmaceuticals Inc. | 4-substituted dihydropyrido(4,3-d)pyrimidines as analgesics and topical antiinflammatory agents for the treatment of skin disorders |
US5092344A (en) * | 1990-11-19 | 1992-03-03 | Lee Tzium Shou | Remote indicator for stimulator |
SE467561B (en) * | 1990-12-04 | 1992-08-10 | Dorsograf Ab | DEVICE FOR SEATING TRANSPORT TIME OF NERV SIGNALS |
US5571149A (en) | 1991-05-21 | 1996-11-05 | E.P., Inc. | Non-intrusive analgesic neuroaugmentive and iontophoretic delivery apparatus and management system |
US5480440A (en) * | 1991-08-15 | 1996-01-02 | Smith & Nephew Richards, Inc. | Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient |
US5161533A (en) | 1991-09-19 | 1992-11-10 | Xomed-Treace Inc. | Break-apart needle electrode system for monitoring facial EMG |
US5255691A (en) | 1991-11-13 | 1993-10-26 | Medtronic, Inc. | Percutaneous epidural lead introducing system and method |
US5284153A (en) * | 1992-04-14 | 1994-02-08 | Brigham And Women's Hospital | Method for locating a nerve and for protecting nerves from injury during surgery |
US5474558A (en) * | 1992-04-30 | 1995-12-12 | Neubardt; Seth L. | Procedure and system for spinal pedicle screw insertion |
US5196015A (en) | 1992-04-30 | 1993-03-23 | Neubardt Seth L | Procedure for spinal pedicle screw insertion |
US5312417A (en) * | 1992-07-29 | 1994-05-17 | Wilk Peter J | Laparoscopic cannula assembly and associated method |
US5299563A (en) * | 1992-07-31 | 1994-04-05 | Seton Joseph Z | Method of using a surgical retractor |
EP0719113A1 (en) * | 1992-11-13 | 1996-07-03 | American Cardiac Ablation Co., Inc. | Fluid cooled electrosurgical probe |
US5375067A (en) | 1992-12-11 | 1994-12-20 | Nicolet Instrument Corporation | Method and apparatus for adjustment of acquisition parameters in a data acquisition system such as a digital oscilloscope |
US5450845A (en) | 1993-01-11 | 1995-09-19 | Axelgaard; Jens | Medical electrode system |
US5814073A (en) | 1996-12-13 | 1998-09-29 | Bonutti; Peter M. | Method and apparatus for positioning a suture anchor |
US5327902A (en) * | 1993-05-14 | 1994-07-12 | Lemmen Roger D | Apparatus for use in nerve conduction studies |
US5333618A (en) * | 1993-06-30 | 1994-08-02 | Gregory Lekhtman | Portable self-contained instrument for the measurement of nerve resistance of a patient |
US5549656A (en) * | 1993-08-16 | 1996-08-27 | Med Serve Group, Inc. | Combination neuromuscular stimulator and electromyograph system |
US5566678B1 (en) | 1993-09-10 | 1999-11-30 | Cadwell Ind Inc | Digital eeg noise synthesizer |
US5560372A (en) | 1994-02-02 | 1996-10-01 | Cory; Philip C. | Non-invasive, peripheral nerve mapping device and method of use |
CA2144211C (en) * | 1994-03-16 | 2005-05-24 | David T. Green | Surgical instruments useful for endoscopic spinal procedures |
CA2551185C (en) | 1994-03-28 | 2007-10-30 | Sdgi Holdings, Inc. | Apparatus and method for anterior spinal stabilization |
US5593429A (en) * | 1994-06-28 | 1997-01-14 | Cadwell Industries, Inc. | Needle electrode with depth of penetration limiter |
US5482038A (en) * | 1994-06-28 | 1996-01-09 | Cadwell Industries, Inc. | Needle electrode assembly |
US5540235A (en) * | 1994-06-30 | 1996-07-30 | Wilson; John R. | Adaptor for neurophysiological monitoring with a personal computer |
US5579781A (en) | 1994-10-13 | 1996-12-03 | Cooke; Thomas H. | Wireless transmitter for needle electrodes as used in electromyography |
US5630813A (en) * | 1994-12-08 | 1997-05-20 | Kieturakis; Maciej J. | Electro-cauterizing dissector and method for facilitating breast implant procedure |
DE4445593A1 (en) * | 1994-12-20 | 1996-06-27 | Klaus Dieter Prof Dr Kramer | Local complex permittivity determn. method for therapy control in diagnostic medicine |
US5860973A (en) * | 1995-02-27 | 1999-01-19 | Michelson; Gary Karlin | Translateral spinal implant |
US5671752A (en) | 1995-03-31 | 1997-09-30 | Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) | Diaphragm electromyography analysis method and system |
WO1996032156A1 (en) | 1995-04-10 | 1996-10-17 | St. Luke's-Roosevelt Hospital | Peripheral nerve stimulation device for unassisted nerve blockade |
US5711307A (en) * | 1995-04-13 | 1998-01-27 | Liberty Mutual Insurance Company | Method and apparatus for detecting myoelectric activity from the surface of the skin |
US5775331A (en) * | 1995-06-07 | 1998-07-07 | Uromed Corporation | Apparatus and method for locating a nerve |
DE29510204U1 (en) * | 1995-06-23 | 1995-08-31 | Aesculap Ag, 78532 Tuttlingen | Surgical retractor |
US5797854A (en) * | 1995-08-01 | 1998-08-25 | Hedgecock; James L. | Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance |
US5806522A (en) | 1995-08-15 | 1998-09-15 | Katims; Jefferson Jacob | Digital automated current perception threshold (CPT) determination device and method |
NL1001282C2 (en) * | 1995-09-26 | 1997-03-28 | A J Van Liebergen Holding B V | Stroke volume determination device for a human heart. |
US5707359A (en) * | 1995-11-14 | 1998-01-13 | Bufalini; Bruno | Expanding trocar assembly |
US6425901B1 (en) * | 1995-12-07 | 2002-07-30 | Loma Linda University Medical Center | Vascular wound closure system |
US5779642A (en) * | 1996-01-16 | 1998-07-14 | Nightengale; Christopher | Interrogation device and method |
US5792044A (en) | 1996-03-22 | 1998-08-11 | Danek Medical, Inc. | Devices and methods for percutaneous surgery |
US5853373A (en) | 1996-08-05 | 1998-12-29 | Becton, Dickinson And Company | Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures |
US5759159A (en) * | 1996-09-25 | 1998-06-02 | Ormco Corporation | Method and apparatus for apical detection with complex impedance measurement |
US5862314A (en) | 1996-11-01 | 1999-01-19 | Micron Electronics, Inc. | System and method for remapping defective memory locations |
US6135965A (en) * | 1996-12-02 | 2000-10-24 | Board Of Regents, The University Of Texas System | Spectroscopic detection of cervical pre-cancer using radial basis function networks |
US6119068A (en) | 1996-12-27 | 2000-09-12 | Kannonji; Michihiro | Rear-end collision alarming device and method linked to speed control device of a vehicle |
US6026323A (en) * | 1997-03-20 | 2000-02-15 | Polartechnics Limited | Tissue diagnostic system |
US5928158A (en) * | 1997-03-25 | 1999-07-27 | Aristides; Arellano | Medical instrument with nerve sensor |
US6050992A (en) * | 1997-05-19 | 2000-04-18 | Radiotherapeutics Corporation | Apparatus and method for treating tissue with multiple electrodes |
US5991654A (en) * | 1997-06-06 | 1999-11-23 | Kci New Technologies, Inc. | Apparatus and method for detecting deep vein thrombosis |
US5851191A (en) | 1997-07-01 | 1998-12-22 | Neurometrix, Inc. | Apparatus and methods for assessment of neuromuscular function |
US6146335A (en) | 1997-07-01 | 2000-11-14 | Neurometrix, Inc. | Apparatus for methods for the assessment of neuromuscular function of the lower extremity |
US6132386A (en) | 1997-07-01 | 2000-10-17 | Neurometrix, Inc. | Methods for the assessment of neuromuscular function by F-wave latency |
US6132387A (en) | 1997-07-01 | 2000-10-17 | Neurometrix, Inc. | Neuromuscular electrode |
US6181961B1 (en) * | 1997-12-16 | 2001-01-30 | Richard L. Prass | Method and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system |
US6306100B1 (en) | 1997-12-16 | 2001-10-23 | Richard L. Prass | Intraoperative neurophysiological monitoring system |
US6206826B1 (en) * | 1997-12-18 | 2001-03-27 | Sdgi Holdings, Inc. | Devices and methods for percutaneous surgery |
US5928139A (en) * | 1998-04-24 | 1999-07-27 | Koros; Tibor B. | Retractor with adjustable length blades and light pipe guides |
US6161047A (en) | 1998-04-30 | 2000-12-12 | Medtronic Inc. | Apparatus and method for expanding a stimulation lead body in situ |
US6337994B1 (en) * | 1998-04-30 | 2002-01-08 | Johns Hopkins University | Surgical needle probe for electrical impedance measurements |
US6004262A (en) | 1998-05-04 | 1999-12-21 | Ad-Tech Medical Instrument Corp. | Visually-positioned electrical monitoring apparatus |
US6139493A (en) | 1998-07-08 | 2000-10-31 | Koros; Tibor B. | Retractor with adjustable length blades and light pipe guides |
US6027456A (en) * | 1998-07-10 | 2000-02-22 | Advanced Neuromodulation Systems, Inc. | Apparatus and method for positioning spinal cord stimulation leads |
JP2000028717A (en) | 1998-07-13 | 2000-01-28 | Mitsubishi Electric Corp | Device for detecting obstacle |
US6104960A (en) | 1998-07-13 | 2000-08-15 | Medtronic, Inc. | System and method for providing medical electrical stimulation to a portion of the nervous system |
US6280396B1 (en) * | 1998-08-03 | 2001-08-28 | American Weights And Measures | Apparatus and method for measuring body composition |
US6366813B1 (en) | 1998-08-05 | 2002-04-02 | Dilorenzo Daniel J. | Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease |
US6292701B1 (en) * | 1998-08-12 | 2001-09-18 | Medtronic Xomed, Inc. | Bipolar electrical stimulus probe with planar electrodes |
US6104957A (en) * | 1998-08-21 | 2000-08-15 | Alo; Kenneth M. | Epidural nerve root stimulation with lead placement method |
US6038477A (en) * | 1998-12-23 | 2000-03-14 | Axon Engineering, Inc. | Multiple channel nerve stimulator with channel isolation |
WO2000019894A1 (en) * | 1998-10-08 | 2000-04-13 | Polartechnics Limited | Apparatus for recognizing tissue types |
US6266558B1 (en) * | 1998-12-01 | 2001-07-24 | Neurometrix, Inc. | Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity |
US6564078B1 (en) * | 1998-12-23 | 2003-05-13 | Nuvasive, Inc. | Nerve surveillance cannula systems |
ATE306213T1 (en) * | 1998-12-23 | 2005-10-15 | Nuvasive Inc | DEVICES FOR CANNULATION AND NERVE MONITORING |
US6074343A (en) * | 1999-04-16 | 2000-06-13 | Nathanson; Michael | Surgical tissue retractor |
US5982158A (en) * | 1999-04-19 | 1999-11-09 | Delco Electronics Corporaiton | Smart IC power control |
US6224549B1 (en) * | 1999-04-20 | 2001-05-01 | Nicolet Biomedical, Inc. | Medical signal monitoring and display |
US6259945B1 (en) | 1999-04-30 | 2001-07-10 | Uromed Corporation | Method and device for locating a nerve |
US6901928B2 (en) | 1999-05-04 | 2005-06-07 | Paul G. Loubser | Superglottic and peri-laryngeal apparatus for supraglottic airway insertion |
ES2270814T3 (en) * | 1999-05-07 | 2007-04-16 | AESCULAP AG & CO. KG | ROTATING SURGICAL TOOL. |
DE29908259U1 (en) | 1999-05-07 | 1999-07-15 | Aesculap AG & Co. KG, 78532 Tuttlingen | Rotating surgical tool |
FR2795624B1 (en) | 1999-07-01 | 2001-09-28 | Vanacker Gerard | METHOD FOR DRILLING THE VERTEBRAL PEDICLE, PARTICULARLY FOR THE PLACEMENT OF A PEDICULAR SCREW, AN INSTRUMENT FOR THE IMPLEMENTATION OF SUCH A PROCESS |
US6334068B1 (en) | 1999-09-14 | 2001-12-25 | Medtronic Xomed, Inc. | Intraoperative neuroelectrophysiological monitor |
US6466817B1 (en) * | 1999-11-24 | 2002-10-15 | Nuvasive, Inc. | Nerve proximity and status detection system and method |
US6312392B1 (en) * | 2000-04-06 | 2001-11-06 | Garrett D. Herzon | Bipolar handheld nerve locator and evaluator |
WO2001087154A1 (en) * | 2000-05-18 | 2001-11-22 | Nuvasive, Inc. | Tissue discrimination and applications in medical procedures |
AU6976801A (en) * | 2000-06-08 | 2001-12-17 | Nuvasive Inc | Relative nerve movement and status detection system and method |
WO2002013714A1 (en) * | 2000-08-17 | 2002-02-21 | Image Guided Neurologies, Inc. | Trajectory guide with instrument immobilizer |
US7089059B1 (en) | 2000-11-03 | 2006-08-08 | Pless Benjamin D | Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology |
US6929606B2 (en) * | 2001-01-29 | 2005-08-16 | Depuy Spine, Inc. | Retractor and method for spinal pedicle screw placement |
US6839594B2 (en) | 2001-04-26 | 2005-01-04 | Biocontrol Medical Ltd | Actuation and control of limbs through motor nerve stimulation |
US6855105B2 (en) * | 2001-07-11 | 2005-02-15 | Jackson, Iii Avery M. | Endoscopic pedicle probe |
JP4295086B2 (en) * | 2001-07-11 | 2009-07-15 | ヌバシブ, インコーポレイテッド | System and method for determining nerve proximity, nerve orientation, and pathology during surgery |
EP1435828A4 (en) * | 2001-09-25 | 2009-11-11 | Nuvasive Inc | System and methods for performing surgical procedures and assessments |
EP1443859A4 (en) * | 2001-10-24 | 2006-03-22 | Cutting Edge Surgical Inc | Intraosteal ultrasound during surgical implantation |
US6916330B2 (en) * | 2001-10-30 | 2005-07-12 | Depuy Spine, Inc. | Non cannulated dilators |
US7664544B2 (en) * | 2002-10-30 | 2010-02-16 | Nuvasive, Inc. | System and methods for performing percutaneous pedicle integrity assessments |
AU2004263152B2 (en) * | 2003-08-05 | 2009-08-27 | Nuvasive, Inc. | Systems and methods for performing dynamic pedicle integrity assessments |
EP1680177B1 (en) * | 2003-09-25 | 2017-04-12 | NuVasive, Inc. | Surgical access system |
-
2001
- 2001-05-18 WO PCT/US2001/016027 patent/WO2001087154A1/en active Application Filing
- 2001-05-18 US US09/860,648 patent/US6760616B2/en not_active Expired - Lifetime
- 2001-05-18 EP EP01937512A patent/EP1289415A4/en not_active Withdrawn
- 2001-05-18 AU AU2001263239A patent/AU2001263239A1/en not_active Abandoned
-
2004
- 2004-03-29 US US10/812,038 patent/US7050848B2/en not_active Expired - Lifetime
-
2006
- 2006-05-23 US US11/439,780 patent/US20060224078A1/en not_active Abandoned
-
2009
- 2009-10-29 US US12/609,004 patent/US8090436B2/en not_active Expired - Fee Related
-
2011
- 2011-08-30 US US13/221,192 patent/US20110313312A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5785658A (en) * | 1992-09-14 | 1998-07-28 | Sexant Medical Corporation | In vivo tissue analysis methods and apparatus |
US5928159A (en) | 1995-03-03 | 1999-07-27 | Neothermia Corporation | Apparatus and method for characterization and treatment of tumors |
US5947964A (en) | 1995-03-03 | 1999-09-07 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
US5807272A (en) | 1995-10-31 | 1998-09-15 | Worcester Polytechnic Institute | Impedance spectroscopy system for ischemia monitoring and detection |
US5872314A (en) * | 1997-07-25 | 1999-02-16 | Clinton; Robert P. | Method and apparatus for measuring characteristics of meat |
Non-Patent Citations (1)
Title |
---|
See also references of EP1289415A4 |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003005887A2 (en) | 2001-07-11 | 2003-01-23 | Nuvasive, Inc. | System and methods for determining nerve proximity, direction, and pathology during surgery |
EP1417000A2 (en) * | 2001-07-11 | 2004-05-12 | Nuvasive, Inc. | System and methods for determining nerve proximity, direction, and pathology during surgery |
EP1417000A4 (en) * | 2001-07-11 | 2009-06-03 | Nuvasive Inc | System and methods for determining nerve proximity, direction, and pathology during surgery |
US10188457B2 (en) | 2003-09-12 | 2019-01-29 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9125666B2 (en) | 2003-09-12 | 2015-09-08 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US9510901B2 (en) | 2003-09-12 | 2016-12-06 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
US9125667B2 (en) | 2004-09-10 | 2015-09-08 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US8939970B2 (en) | 2004-09-10 | 2015-01-27 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US8920414B2 (en) | 2004-09-10 | 2014-12-30 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US7865236B2 (en) | 2004-10-20 | 2011-01-04 | Nervonix, Inc. | Active electrode, bio-impedance based, tissue discrimination system and methods of use |
EP3045110A1 (en) * | 2005-03-28 | 2016-07-20 | Vessix Vascular, Inc. | Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
EP2438877A3 (en) * | 2005-03-28 | 2012-07-11 | Vessix Vascular, Inc. | Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues |
US9486355B2 (en) | 2005-05-03 | 2016-11-08 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
WO2007075091A3 (en) * | 2005-12-29 | 2007-08-30 | Rikshospitalet Radiumhospitale | Method and apparatus for determining local tissue impedance for positioning of a needle |
US8876746B2 (en) | 2006-01-06 | 2014-11-04 | Arthrocare Corporation | Electrosurgical system and method for treating chronic wound tissue |
US9168087B2 (en) | 2006-01-06 | 2015-10-27 | Arthrocare Corporation | Electrosurgical system and method for sterilizing chronic wound tissue |
US9439581B2 (en) | 2006-08-11 | 2016-09-13 | Medtronic, Inc. | Guided medical element implantation |
US8204575B2 (en) | 2006-08-11 | 2012-06-19 | Medtronic, Inc. | Locating guide |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US10413356B2 (en) | 2006-10-18 | 2019-09-17 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US10213252B2 (en) | 2006-10-18 | 2019-02-26 | Vessix, Inc. | Inducing desirable temperature effects on body tissue |
US9254164B2 (en) | 2007-01-05 | 2016-02-09 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US8870866B2 (en) | 2007-01-05 | 2014-10-28 | Arthrocare Corporation | Electrosurgical system with suction control apparatus, system and method |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US9358063B2 (en) | 2008-02-14 | 2016-06-07 | Arthrocare Corporation | Ablation performance indicator for electrosurgical devices |
US9327100B2 (en) | 2008-11-14 | 2016-05-03 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8401667B2 (en) | 2008-11-17 | 2013-03-19 | Vessix Vascular, Inc. | Selective accumulation of energy with or without knowledge of tissue topography |
US9452008B2 (en) | 2008-12-12 | 2016-09-27 | Arthrocare Corporation | Systems and methods for limiting joint temperature |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US9138282B2 (en) | 2009-06-17 | 2015-09-22 | Arthrocare Corporation | Method and system of an electrosurgical controller with wave-shaping |
US9095358B2 (en) | 2009-12-09 | 2015-08-04 | Arthrocare Corporation | Electrosurgery irrigation primer systems and methods |
US9277955B2 (en) | 2010-04-09 | 2016-03-08 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US8979838B2 (en) | 2010-05-24 | 2015-03-17 | Arthrocare Corporation | Symmetric switching electrode method and related system |
US10448992B2 (en) | 2010-10-22 | 2019-10-22 | Arthrocare Corporation | Electrosurgical system with device specific operational parameters |
US9131597B2 (en) | 2011-02-02 | 2015-09-08 | Arthrocare Corporation | Electrosurgical system and method for treating hard body tissue |
US9168082B2 (en) | 2011-02-09 | 2015-10-27 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9271784B2 (en) | 2011-02-09 | 2016-03-01 | Arthrocare Corporation | Fine dissection electrosurgical device |
US9011428B2 (en) | 2011-03-02 | 2015-04-21 | Arthrocare Corporation | Electrosurgical device with internal digestor electrode |
US9788882B2 (en) | 2011-09-08 | 2017-10-17 | Arthrocare Corporation | Plasma bipolar forceps |
US9254166B2 (en) | 2013-01-17 | 2016-02-09 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9649144B2 (en) | 2013-01-17 | 2017-05-16 | Arthrocare Corporation | Systems and methods for turbinate reduction |
US9713489B2 (en) | 2013-03-07 | 2017-07-25 | Arthrocare Corporation | Electrosurgical methods and systems |
US9693818B2 (en) | 2013-03-07 | 2017-07-04 | Arthrocare Corporation | Methods and systems related to electrosurgical wands |
US9801678B2 (en) | 2013-03-13 | 2017-10-31 | Arthrocare Corporation | Method and system of controlling conductive fluid flow during an electrosurgical procedure |
US11026627B2 (en) | 2013-03-15 | 2021-06-08 | Cadwell Laboratories, Inc. | Surgical instruments for determining a location of a nerve during a procedure |
US9962150B2 (en) | 2013-12-20 | 2018-05-08 | Arthrocare Corporation | Knotless all suture tissue repair |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
US9526556B2 (en) | 2014-02-28 | 2016-12-27 | Arthrocare Corporation | Systems and methods systems related to electrosurgical wands with screen electrodes |
US11177610B2 (en) | 2017-01-23 | 2021-11-16 | Cadwell Laboratories, ino. | Neuromonitoring connection system |
US11949188B2 (en) | 2017-01-23 | 2024-04-02 | Cadwell Laboratories, Inc. | Methods for concurrently forming multiple electrical connections in a neuro-monitoring system |
US11253182B2 (en) | 2018-05-04 | 2022-02-22 | Cadwell Laboratories, Inc. | Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation |
US11992339B2 (en) | 2018-05-04 | 2024-05-28 | Cadwell Laboratories, Inc. | Systems and methods for dynamic neurophysiological stimulation |
US11998338B2 (en) | 2018-05-04 | 2024-06-04 | Cadwell Laboratories, Inc. | Systems and methods for dynamically switching output port cathode and anode designations |
US11443649B2 (en) | 2018-06-29 | 2022-09-13 | Cadwell Laboratories, Inc. | Neurophysiological monitoring training simulator |
US11978360B2 (en) | 2018-06-29 | 2024-05-07 | Cadwell Laboratories, Inc. | Systems and methods for neurophysiological simulation |
Also Published As
Publication number | Publication date |
---|---|
US7050848B2 (en) | 2006-05-23 |
US20020072686A1 (en) | 2002-06-13 |
US20060224078A1 (en) | 2006-10-05 |
US6760616B2 (en) | 2004-07-06 |
US20100049081A1 (en) | 2010-02-25 |
US8090436B2 (en) | 2012-01-03 |
US20040181165A1 (en) | 2004-09-16 |
EP1289415A1 (en) | 2003-03-12 |
AU2001263239A1 (en) | 2001-11-26 |
US20110313312A1 (en) | 2011-12-22 |
EP1289415A4 (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6760616B2 (en) | Tissue discrimination and applications in medical procedures | |
US6962587B2 (en) | Method for detecting and treating tumors using localized impedance measurement | |
EP3629965B1 (en) | System for thermal ablation distortion detection | |
US5718701A (en) | Ablation electrode | |
US5928159A (en) | Apparatus and method for characterization and treatment of tumors | |
US4306568A (en) | Method and apparatus for congelation cryometry in cryosurgery | |
JP6246525B2 (en) | Machine learning in the determination of catheter electrode contact | |
EP1962945B1 (en) | Assessment of electrode coupling for tissue ablation | |
US7344533B2 (en) | Impedance controlled tissue ablation apparatus and method | |
US6162216A (en) | Method for biopsy and ablation of tumor cells | |
CN106923829B (en) | Sheath visualization method using impedance localization and magnetic information | |
KR20050074925A (en) | Prediction and assessment ablation of cardiac tissue | |
AU2001279026A1 (en) | Apparatus for detecting and treating tumors using localized impedance measurement | |
WO2004073503A2 (en) | Apparatus and method for assessing transmuarlity of a tissue ablation | |
US7662099B2 (en) | Method and instrumentation to sense thermal lesion formation by ultrasound imaging | |
CN104487011A (en) | Thermal ablation probe for a medical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001937512 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001937512 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |