WO2001086926A1 - Node device and no-short-break switching device - Google Patents

Node device and no-short-break switching device Download PDF

Info

Publication number
WO2001086926A1
WO2001086926A1 PCT/JP2000/002956 JP0002956W WO0186926A1 WO 2001086926 A1 WO2001086926 A1 WO 2001086926A1 JP 0002956 W JP0002956 W JP 0002956W WO 0186926 A1 WO0186926 A1 WO 0186926A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
line
lines
node device
signals
Prior art date
Application number
PCT/JP2000/002956
Other languages
French (fr)
Japanese (ja)
Inventor
Tooru Matsumoto
Yoshihiro Shimizu
Hiroshi Yoshida
Tsuyoshi Orito
Takeo Katou
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2000/002956 priority Critical patent/WO2001086926A1/en
Publication of WO2001086926A1 publication Critical patent/WO2001086926A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing

Definitions

  • the present invention relates to a node device connected to one end of a redundantly configured transmission line and realizing switching of a system configuration by instantaneous interruption according to an operation state of the transmission line and an instantaneous interruption switching device.
  • the transmitting end is connected to a working transmission path (hereinafter, referred to as “working transmission path”) and a protection transmission path (hereinafter, referred to as “protection transmission path”).
  • working transmission path hereinafter, referred to as “working transmission path”
  • protection transmission path hereinafter, referred to as “protection transmission path”.
  • the same STM signal is sent in parallel under synchronization.
  • the receiving end that opposes the STM signal over the transmission path before the STM signal received via the protection transmission path when a failure, significant degradation of transmission quality, or other predetermined event occurs on the current transmission path. Apply as signal received from.
  • the cost was high because the same number of protection lines as the number of working lines had to be physically laid.
  • An object of the present invention is to provide a node device and a non-interruptionless network capable of flexibly adapting to a desired service form and traffic distribution for each transmission section in addition to a reduction in the total number of physical transmission paths. It is to provide a switching device.
  • the object of the present invention is to reduce the work involved in maintenance and operation, in addition to avoiding instantaneous interruptions while minimizing reliability degradation compared to the conventional example where all lines are duplicated. Another point is that running costs can be reduced.
  • an object of the present invention is that even if the number of protection lines is small, the replacement of a desired line by these protection lines is realized with high accuracy.
  • an object of the present invention is to provide a non-pay-field, which is to be transmitted via a plurality of lines and a single or a plurality of n backup lines, regardless of the format and content thereof, The point is that various transmission methods can be applied.
  • an object of the present invention is that a protection line is effectively applied in order to replace a line in which a true failure has occurred or in which the transmission quality has significantly deteriorated. It is another object of the present invention to maintain transmission quality overall high.
  • a further object of the present invention is to reduce the overall cost including the running cost and improve the reliability in addition to the simplification of the hardware configuration.
  • an object of the present invention is to absorb a difference in transmission characteristics between a corresponding line and a protection line at a desired speed and accuracy when a line in which a failure occurs or transmission quality is deteriorated is replaced with a protection line.
  • overall costs including running costs can be reduced along with the efficient use of spare lines.
  • an object of the present invention is that the present invention can be applied to a communication control method in which a line to be replaced with a protection line is to be selected at a transmitting end.
  • an object of the present invention is to maintain high service quality and achieve effective use of resources as compared with a case where invalid cooperation with a transmitting end can be performed.
  • the object of the present invention is to make it possible to flexibly adapt to various needs related to maintenance and operation as compared with a case where no standard is set for selecting a line to be replaced with a protection line. It is in.
  • the object of the present invention is to improve the reliability and reduce the overall cost including running costs, in addition to simplifying the configuration, compared to a case where all of the multiple lines are duplicated.
  • Another object of the present invention is to achieve effective use of resources and improvement of service quality.
  • the objectives described above are for signals received individually via a plurality of N lines, and for signals received via a single or a plurality of n (i.e., N) spare lines, and all or some of these signals.
  • the signal to be received via multiple N lines is corrected as the difference between the two and the sum signal corresponding to the sum of the signals.
  • the signal corresponding to the line in which the fault (including the deterioration of transmission quality) has occurred is replaced with a substitute signal for the signal received through that line.
  • a node device that is characterized in that it is applied in a separate manner.
  • the total number of lines to be laid in the transmission section to which the present invention is applied is the number of lines out of a plurality of N lines that may cause the above-described failure or transmission quality deterioration in parallel. As long as the number is less than or equal to the number n of the protection lines, even if the number n is less than N, the number is less than 2N.
  • the above-described object is to provide a method in which a specific signal to be individually received via any of the plurality of N lines is a sum of a plurality of different desired sum signals among the sum signals received via the protection line.
  • One of the multiple sum signals that are included in common as components and that are recovered as the difference from the signal received via the line where no failure has occurred is applied.
  • a signal to be received through a line in which a failure has occurred or transmission quality has been degraded is a transmission of a sum signal including these signals as components.
  • the above-mentioned object is achieved by providing any sum signal as a signal corresponding to only the payload via the corresponding protection line, and the failure of each line is transmitted via the corresponding line.
  • This is achieved by a node device characterized by the fact that the payload is identified as valid or invalid.
  • the purpose described above is to make the individual signals recovered as differences Select a signal that is legitimate or has few bit errors under the specified frame configuration among the signals received via the line where these signals are to be received, and responds to that signal.
  • node apparatus is characterized in that to apply a signal received over the working line (in this node device, bit error minor that may occur in a plurality of lines, the protection line Both are obtained as a normal signal without being applied.
  • a node device characterized in that, as a signal to be received through a single line, a difference between a signal received through one of the other lines and one of the protection lines is applied. Is achieved by
  • the line with lower transmission quality is preferentially replaced by one of the protection lines.
  • a node device characterized in that signal identification and phase difference correction are performed in a baseband region.
  • individual components are: Compared with the case where the same processing is performed in the intermediate frequency band or the radio frequency band, it can be configured with a slower element.
  • the above-mentioned object is to provide, when the transmission quality of any one of a plurality of N lines falls below a threshold, in an ascending order of the transmission quality below the threshold, the number of protection lines is equal to or less than the number of protection lines.
  • a node device characterized in that a number of working lines are notified to the transmitting end, and in connection with the transmitting end, these corresponding working lines are replaced with a protection line.
  • a line whose transmission quality is lower than a predetermined lower limit value is given priority to one of the protection lines in ascending order of the transmission quality in cooperation with the transmission source. Is replaced by
  • the above-mentioned object is achieved by selecting any one of a plurality of N working lines.
  • the transmission quality of the line falls below the threshold, all or part of these transmission qualities are notified to the transmitting end, and in conjunction with the transmitting end, all or part of these lines are replaced with a backup line.
  • This is achieved by a node device characterized by a point.
  • a line to be replaced with either a single line or a plurality of n protection lines is determined not by the receiving end according to the present invention but by these lines. Delegated to the opposite sender via
  • the transmission quality notified to the transmitting end is determined by combining a normal line and a protection line with a sum signal component transmitted from the transmitting end via these protection lines. This is achieved by a node device characterized in that it is limited to the transmission quality of the working line, which can be replaced by a protection line below.
  • connection with the transmitting end is based on the distribution and operation of traffic on the line and the protection line, even if a failure occurs or the transmission quality is deteriorated among multiple N lines. Attempted only on lines that can be replaced under circumstances or other conditions.
  • the above-mentioned object is achieved by a node device characterized in that the transmission end is notified preferentially of the transmission quality of a line of high importance among the working lines that can be substituted.
  • Such a node device is flexible with respect to the attributes of a plurality of N lines and the combination of components of the sum signal that is set in advance based on the attributes and individually transmitted via the protection line. Therefore, appropriate adaptation is possible.
  • each of the components of the sum signal is a signal to be received via a line that ensures desired transmission quality and / or reliability among a plurality of N lines.
  • multiple N lines and smaller than the multiple N Redundant N lines are formed with the receiving end via one or more n protection lines.
  • each sum signal is received via a protection line that ensures desired transmission quality and / or reliability among n protection lines. This is achieved by a node device.
  • the combination of the number n of the protection lines and the lines to be replaced by these protection lines is set as a mode in which desired service quality and reliability are achieved.
  • the above-mentioned purpose is that the signals x and y transmitted in parallel through the first line and the second line and the signals x and y transmitted through the third line, A signal z provided as a function of these signals x and y is received, and other signals X and y whose phases are equal to these signals x and y are received from the signal z.
  • This is achieved by an instantaneous disconnection switching device that reproduces and appropriately selects one of these individually paired signals X and y. Is
  • a single line used for transmitting the signal z is formed as a redundant line between the transmitting end of the signals X and y.
  • two pairs of signals X and y which are received in parallel via different lines and whose phase differences are compensated, are constantly obtained, so that the above-mentioned selection is made. Switching can be performed without any interruption irrespective of the time at which the operation is performed.
  • FIG. 1 is a principle block diagram of first to sixth node devices according to the present invention.
  • FIG. 2 is a principle block diagram of seventh to tenth node devices according to the present invention.
  • FIG. 3 is a schematic view of the eleventh and twelfth node devices according to the present invention.
  • FIG. 4 is a diagram showing Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a third embodiment of the present invention.
  • FIG. 7 is a diagram showing Embodiment 4 of the present invention.
  • FIG. 8 is a diagram showing a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a principle block diagram of first to sixth node devices according to the present invention.
  • the node device shown in Fig. 1 has multiple N lines 10-:! 1 to -N and one or more protection lines 1 1-:! to 1 1-n connected to one end of receiving means 12 and signal recovery linked to the receiving means 12 Means 13, line monitoring means 14, and line selecting means 15.
  • the principle of the first node device is as follows.
  • the receiving means 1 2 has a plurality of N lines 1 0-:! ⁇ 10-N and multiple N signals individually given through -N and single or multiple n ( ⁇ N) protection lines 11-1-:! ⁇ 11 -n individually given via -n And a plurality n of sum signals corresponding to the sum of all or some of these signals while correcting their phase differences.
  • the signal restoring means 13 calculates the difference between the sum of the single or plural n signals received by the receiving means 12 and the combination of the plural N signals as the plural N lines 10-:! Recover all or some of the N individual signals to be received via ⁇ 10-N.
  • the line monitoring means 14 individually determines the correctness (for example, a line having a high error rate) of the plurality N of the lines 10-1 to 10-N.
  • the line selecting means 15 is a circuit for which the result of the discrimination performed by the line monitoring means 14 of the plurality of N signals, all or a part of which has been restored by the signal restoring means 13, is false (eg, For example, a signal corresponding to a line with a high error rate, etc.) is applied instead of a signal received via that line.
  • a signal to be received through a line in which a failure has occurred or transmission quality has deteriorated among a plurality of N lines 10 0 -1 to 10 -N As long as it is included as a component in any of the above-mentioned sum signals of n together with only the signal individually received through all or a part of the normal line, it is accurately restored as an alternative signal.
  • the total number of lines to be laid in the transmission section to which the present invention is applied is the number of lines 10-1 to 10-N out of a plurality of N, and the above-mentioned failures and degradation of transmission quality occur simultaneously in parallel.
  • the conventional example every line is duplicated compared with, in addition to avoiding reduction in reliability is suppressed and while interruption to a minimum, maintenance and operations involved in the operation of labor saving and La N'ningukosu reductions and the second according to c present invention is achieved
  • the principle of the node device is as follows.
  • the signals individually given through all or some of the N-number of circuits 10-1 to 10-N are components of the sum signal of different p ( ⁇ n) among the sum signals of n. Included in common.
  • the signal restoring means 13 outputs a signal for which the result of the discrimination made by the line monitoring means 14 is true among the single or plural sum signals received by the receiving means 12 (for example, the line quality Is obtained via only a good line), and by taking the difference from the single or plural P ( ⁇ N) signals received by the receiving means 12, the plural N lines 10 0 -1 to 1 Recover all or some of the multiple N individual signals to be received individually via all or some of 0-N.
  • the principle of the third node device according to the present invention is as follows.
  • the sum signal of a plurality n is a single or a plurality of n protection lines 1 1-:! It is given as a signal corresponding to only the payload via ⁇ 11-n.
  • the line monitoring means 14 is provided through a plurality of N lines 10-1 to 10-N, and includes the above-mentioned payload among the individual signal components received by the receiving means 12. These lines 10 0-:! It is determined whether 10-N is correct.
  • the fields other than the payload to be transmitted via these multiple lines 10 -1 to 10 -N and the single or multiple n protection lines 11 -1 to 11 -n can be applied without any restrictions on the format and content.
  • the principle of the fourth node device according to the present invention is as follows.
  • the plural N signals and the single or plural n sum signals are given as a sequence of frames based on a prescribed frame configuration.
  • the line monitoring means 14 converts the bit error associated with the plurality of N signals provided through the plurality of lines 10-1 to 10-N and received by the receiving means 12 into the frame defined above. Correct based on configuration.
  • the protection line 11-:! to 11 -n has a true failure or It is effectively applied to replace a line whose transmission quality has deteriorated.
  • the principle of the fifth node device according to the present invention is as follows.
  • the line monitoring means 14 obtains the transmission quality of each of the plurality of N lines 10 -1 to 10 -N.
  • the line selection means 15 is for each of the plurality of N lines 10 -1 to 10 N which are obtained by the line monitoring means 14 and correspond to the ascending order of transmission quality below the specified lower limit. Then, the signal restored by the signal restoration means 13 is applied instead of the signal received via the line.
  • the transmission quality of the transmission section to which the present invention is applied is kept high overall.
  • the principle of the sixth node device according to the present invention is as follows. All or a part of the receiving means 12, the signal restoring means 13, the line monitoring means 14, and the line selecting means 15 perform all or a part of individual functions as processing of the baseband area.
  • the receiving means 12, the signal restoring means 13, the line monitoring means 14, and the line selecting means 15 are constituted by slower elements than when the same processing is performed in the intermediate frequency band or the radio frequency band. obtain.
  • FIG. 2 is a principle block diagram of seventh to tenth node devices according to the present invention.
  • the node device shown in FIG. 2 has multiple N lines 20-:! to 20 -N and single or multiple n spare lines 2 1-:! To 21-n, a transmission means 22 connected to the receiving means 22, a transmission quality monitoring means 23, a substitution requesting means 24, 24 A and a line selecting means 25. , 25 A.
  • the principle of the seventh node device is as follows.
  • the receiving means 22 includes a plurality of N signals individually given via a plurality of N lines 20-1-20-N, and a single or a plurality of n (N) spare lines 21-1-1 to A single or multiple n signals individually given via 2 1 -n are received while correcting these phase differences.
  • the transmission quality monitoring means 23 monitors the transmission quality of the plurality of N lines 20 -1 to 20 -N, and these lines 20-:! Out of ⁇ 20-N, specify the line whose transmission quality is lower than the predetermined lower limit.
  • the alternative requesting means 24 includes, among the lines identified by the transmission quality monitoring means 23, one or more n spare lines 2 1 -1 to 2 1 -n in the ascending order of the transmission quality. A notification is sent to the opposite transmitting end via the line to the effect that these lines should be individually replaced with one of the spare lines.
  • line 20-:! Out of ⁇ 20-N a line whose transmission quality is lower than the above-mentioned lower limit is preferentially replaced by one of the protection lines in ascending order of transmission quality in cooperation with the transmission source.
  • the efficiency of the protection line can be reduced more efficiently than in the conventional example in which individual lines are duplicated. Utilization and overall cost reduction including running costs will be achieved.
  • the principle of the eighth node device is as follows.
  • the receiving means 22 includes a plurality of N signals individually given via a plurality of N lines 20-1 to 20-N and a single or a plurality of n (N) spare lines 21-1 to 1--1. It receives single or multiple ⁇ signals individually given via 2 1 -n while correcting these phase differences.
  • the transmission quality monitoring means 23 monitors the transmission quality of a plurality of 2 lines 20-:! to 20 - ⁇ , and among these lines 20 -1 to 20 - ⁇ , the transmission quality is a predetermined lower limit. Identify lines below the value You.
  • the alternative requesting means 24 A is one or more n of the protection lines 2 1 -1 to 2 1 -n of the lines identified by the transmission quality monitoring means 23 in the ascending order of the transmission quality.
  • a notification indicating these lines and transmission quality is sent to the opposite transmitting end via the number of lines.
  • the line selecting means 25A in cooperation with the transmitting end in response to the notification sent by the substitute requesting means 24A, specifies a spare line which substitutes each line indicated by the notification, and Instead of the signals received via the individual lines, the signals provided via the corresponding protection line and received by the receiving means 22 are applied.
  • the principle of the ninth node device is as follows.
  • the receiving means 22 is provided individually via the single or multiple n spare lines 1 1-:! to 1 1 -n, and receives a plurality of n signals corresponding to the sum of all or some of the N signals. Receive the sum signal.
  • the alternative request means 24 A is a normal line between a plurality of N lines 20-:! ⁇ 20 -N and a single or a plurality of n spare lines 21-:! ⁇ 21-n. Only the lines that can be replaced by the protection line under the combination of the protection line and the sum signal component transmitted from the transmitting end via these protection lines indicate the line and the transmission quality. Send a notification.
  • the link with the transmitting end is made up of multiple N lines 20-:! -20 -N Even if a failure has occurred or the transmission quality has deteriorated, the line and the protection line 2 1-:! Traffic distribution of ⁇ 2 1-n, operation status Only attempted on lines that can be replaced under other conditions.
  • the principle of the tenth node device according to the present invention is as follows.
  • the substitution requesting means 24A sends a notification preferentially to the lines that can be substituted and that correspond to the descending priority order given individually as an attribute.
  • the attributes of a plurality of N lines 20- :! to 20-N are set in advance based on the attributes, and are individually transmitted via the protection lines 21- :! to 21-n. Flexible and precise adaptation to the combination of components of the sum signal to be performed is possible.
  • FIG. 3 is a principle block diagram of the eleventh and twelfth node devices according to the present invention.
  • the node device shown in FIG. 3 is composed of transmitting means 31 connected to one end of a plurality N of circuits 30 -1 330 -N, and one or a plurality of n spare lines 3 2 -1 to 3 2 -n And sum signal transmitting means 33 connected to one end of the signal.
  • the principle of the eleventh node device according to the present invention is as follows.
  • the transmission means 31 includes a plurality of N circuits 30- :! Transmit multiple N signals to ⁇ 30-N respectively.
  • the sum signal transmitting means 33 is connected to all or some of the plurality of N circuits 3 0-:! to 30 -N, in which the desired transmission quality and / or reliability is secured.
  • the signal to be transmitted by the transmission means 31 is added while correcting the difference between the individual phases. Further, the sum signal transmitting means 33 transmits the sum signal obtained as a result to one or more of n ( ⁇ N) protection lines 3 2-:! to 3 2 -n. Send.
  • the principle of the twelfth node device according to the present invention is as follows.
  • the sum signal transmitting means 3 3 has a plurality of N circuits 3 0-:! ⁇ 30 -N and single or multiple n ( ⁇ N) protection lines 3 2-:! Of the combinations with ⁇ 32-n, individual combinations in which a failure occurs in parallel or the probability that the transmission quality deteriorates is less than or equal to the desired upper limit, and is assigned to the spare line belonging to that combination A sum signal including a signal component to be transmitted via each line belonging to this combination is transmitted.
  • the protection line 3 2-:! The combination of the number n of ⁇ 32-n and the lines which should be replaced by these protection lines 32-1 ⁇ 32-n is set as a mode to achieve the desired service quality and reliability. Is done.
  • the principle of the instantaneous interruption switching device according to the present invention is as follows.
  • the first reproducing means 35 performs a predetermined operation defined by a function g (x, z) on the first signal X and the third signal z received by the receiving means 34.
  • the second signal y is reproduced by the application.
  • the second reproducing means 36 is defined by the function]! (Y, z) of the second signal y and the third signal z received by the receiving means 34.
  • the first signal X is reproduced by performing a predetermined operation.
  • the phase compensating means 37 is reproduced by the first signal X received by the receiving means 34 and the second reproducing means 36, or is to be reproduced. Compensates for the phase difference with one signal X, and Between the second signal y received by the communication means 34 and the second signal y to be reproduced or reproduced by the first reproduction means 35 In addition to compensating for the phase difference, the phase-compensated signal is output separately.
  • the first selecting means 38 is reproduced by the first signal X received by the receiving means 34 after the phase difference compensation and by the second reproducing means 36 after the phase difference compensation.
  • first selecting means 38 and the second selecting means 39 have two signals received in parallel via different lines and the phase difference of which is compensated.
  • a first signal X and two second signals y are each given constantly.
  • the redundant line described above is shared for the redundant transmission of the first signal X and the second signal y, and the redundant line and the first signal X If the failure occurs in either the transmission line for the transmission of the signal and the second signal y, or the failure is recovered, the first selection means is used. 38 and the second selection means 39 can change the system configuration asynchronously and without instantaneous interruption of the first signal X and the second signal y. it can .
  • FIG. 4 is a diagram showing Embodiment 1 of the present invention.
  • the node device 40T has two working transmission lines (hereinafter referred to as “working transmission lines”) 41a-1 and 41a-2, and a single spare transmission line (hereinafter referred to as a “working transmission line”). , Called “spare transmission line.” 4) Connected to one end of 1s.
  • the node device 40T has two sets of pluralities to be multiplexed based on the STM method and to be transmitted to the above-mentioned working transmission lines 41a-l and 41a-2, respectively. A sequence of N transmission information is given.
  • a node device 40 R is connected to the other end of the working transmission lines 41 a-1 and 41 a-2 and the protection transmission line 41 s, and these working devices are connected to the output of the node device 4 OR.
  • Two transmission information sequences received via one of the transmission lines 4 la -l and 41 a -2 and the spare transmission line 41 s and corresponding to the two sets of transmission information sequences described above are obtained.
  • the node device 40T includes the following elements.
  • Transmission information redundancy unit (EXO) 4 3 having two inputs directly connected to the outputs of these multiplexing units 4 2 -1 and 4 2 -2
  • Each of the multiplexing sections 4 2 -1 and 4 2 -2 and the transmission information redundancy section 4 3 are arranged at the subsequent stage, and the working transmission paths 4 1 a -l and 4 1 a -2 and the protection transmission path 4 1 Line corresponding part directly connected to one end of s (INS) 4 4 a -1, 4 4 a -2 s 4 4 s
  • a synchronous signal generation unit 45 having an output directly connected to these line corresponding units (INS) 44a-1, 44a-2, and 44s insert inputs
  • the node device 4OR is composed of the following elements. -Line corresponding parts (BUFF) 45 a -l, 45 a -2, directly connected to the other end of the working transmission line 41a -l, 41a -2 and the protection transmission line 41s 4 5 s
  • the arithmetic unit 4 7 -1 having two inputs directly connected to outputs corresponding to the line corresponding units 45 a-l and 45 s, respectively.
  • a line selection unit 4 8 -1 having two inputs directly connected to an output corresponding to the line corresponding unit 45 al and an output of the arithmetic unit 47-2 among the three outputs of the phase adjustment unit 46.
  • a line selection unit 4 8 having two inputs directly connected to the output corresponding to the line corresponding unit 45 a-2 and the output of the operation unit 47-1 -3
  • Demultiplexers 4 9-1 and 4 9 -2 connected in cascade to these line selectors 4 8-1 and 4 8 -2, respectively, and arranged at the last stage
  • the multiplexing units 42-1 and 42-2 multiplex the two sets of transmission information sequences described above, and add a header suitable for a predetermined frame configuration. This creates a "multiplexed signal" in which each piece of transmitted information is placed in a time slot that should be applied exclusively to that transmission. For simplicity, it is assumed below that these “multiplexed signals” have the same phase in bits and are synchronized with each other.
  • the transmission information redundant unit 43 generates a single bit sequence by taking the exclusive OR of these two bit sequences given as “multiplexed signals”. In the following, such a single bit string is shown. In the following, the pulse train is simply referred to as “redundant signal” for simplicity.
  • the synchronization signal generator 45 is adapted to the transmission schemes of the working transmission paths 41a-1, 41a-2 and the spare transmission path 41s, and has the above-mentioned "multiplexed signal” and “redundant signal”. Generates a synchronization signal (header, etc.) synchronized with.
  • the line-corresponding parts 44a-1 and 44a-244s each generate an "STM signal” by adding a synchronization signal corresponding to the "multiplexed signal” and “redundant signal” described above. Then, these "STM signals" are transmitted in parallel to the working transmission lines 41al and 41a-2 and the protection transmission line 41s.
  • the line-corresponding parts 45 al, 45 a -2 and 45 s are respectively used for the working transmission lines 41 a-1 and 41 a -2 and the protection transmission line 4.
  • the “STM signal” given via Is is fetched, and these “STM signals” are given to the phase adjustment unit 46 in parallel.
  • the phase adjuster 46 uses these “STM signals” due to differences in the transmission paths and transmission characteristics of the working transmission paths 41 a-1 and 41 a-2 and the protection transmission path 41 s described above. Is corrected. Therefore, the ⁇ STM signal '' provided via the working transmission lines 41al and 4la-2 and the protection transmission line 4Is is the same as the NRZ signal which is updated simultaneously in bit units. Then, it is given to the operation units 47-1, 47-2 and the line selection units 48-.1, 48-2.
  • the operation unit 47-2 performs the exclusive OR operation of the "STM signal” received through the working transmission path 41a-2 and the protection transmission path 41s, respectively, to thereby perform the above-described operation.
  • the “multiplexed signal” generated by the multiplexing unit 4 2-1 in the node device 40 T as the transmitting end is included in the payload. Signal.
  • the operation unit 47-1 determines that the “STM signal” received via the working transmission path 1 a-1, not the working transmission path 41 a-2, is to be processed. Except for this, as described above, by performing the same operation as the operation performed by the operation unit 47-2, the “multiplexing” generated by the multiplexing unit 42-2 in the node device 40T as the transmitting end is performed. A "second redundant multiplex signal" is generated that includes the "signal" in the payload.
  • the line selection unit 48-1 provides the transmission quality of the "STM signal” directly provided by the phase adjustment unit 46 and received via the working transmission line 41a-1 based on a predetermined standard. Monitoring, and when the transmission quality is good enough to satisfy this criterion, the “STM signal” is given to the demultiplexing unit 49.
  • the line selector 48-1 generates the "first redundant multiplexed signal" generated by the arithmetic unit 47-2. Is given to the demultiplexing section 49-1 instead of the “STM signal” described above.
  • the transmission quality is monitored for the "STM signal” given by the working transmission line 41a-2, and for the "first redundant multiplexed signal”. , Except that the above-mentioned “second redundant multiplexed signal” is applied instead of the above, the processing is the same as that performed by the line selection unit 48-1 as described above. Is omitted.
  • the transmission quality of the other working transmission path and the protection transmission path 41 s for both the working transmission paths 41 a-1 and 41 a-2 is as described above.
  • the STM signal extracted from the "STM signal” received via the protection transmission line 41 s and received when the applicable working line is normal, as long as the STM signal is good enough to satisfy the specified criteria.
  • the "first redundant multiplex signal” (or “second redundant multiplex signal”) of the same phase that can replace "" is restored.
  • the system configuration can be updated without interruption without any transmission information being lost.
  • the node devices 40 T and 4 OR Between them, there is formed a redundant transmission line in which a single spare transmission line 41s common to the two working transmission lines 41a-1 and 41a-2 is laid.
  • FIG. 5 is a diagram showing a second embodiment of the present invention.
  • selectors 6 1-1 and 6 1-2 are provided in place of the line selectors 48-1 and 48-2, A bit having three inputs connected to the first to third outputs of the adjustment unit 46 and two outputs individually connected to the selected inputs of these selectors 6 1-1 and 6 1 -2 An error detection unit 62 is added.
  • the bit error detection unit 62 is a component of the “STM signal” which is given through the phase adjustment unit 46 and received via the working transmission path 41 a-1 (41 a-2). Among them, the bit error rate is uniquely determined based on a predetermined frame configuration. The bit error rate of only the erase is monitored, and it is determined whether or not the bit error rate is lower than a specified upper limit.
  • the bit error detection unit 62 informs the selector 6 1-1 (6 1 -2) of “the current transmission path 4 1 a ⁇ 1 (4 1a -2) and the ⁇ STM signal '' given via the phase adjustment unit 46 should be given to the demultiplexing unit 49-1 (49-2) ''. Give a selection signal.
  • the bit error detection unit 62 informs the selector 6 1-1 (6 1 -2) of “the operation unit 4 7 -2 (4 7-1 ) Is to be given to the demultiplexing unit 49-1 (49-2). . That is, the transmission quality of the working transmission lines 41a-1 and 41a-2, or the determination of whether any failure has occurred in these working transmission lines 41a-1 and 41a-2, It is performed based on the transmission quality related only to the pay mouth that is adapted to the frame configuration, not the frame configuration of the “STM signal” described above.
  • the accuracy of monitoring the transmission quality of the working transmission lines 41a-1 and 41a-2 is improved, and the system can be flexibly adapted to various system configurations. Becomes possible.
  • FIG. 6 is a diagram showing a third embodiment of the present invention.
  • the difference between the embodiment shown in FIG. 4 and the present embodiment lies in that a node device 70R is provided instead of the node device 40R.
  • the error correction units 72-1 and 72-2 perform CRC and other operations on the signals included in the following combinations, respectively, and detect and logically detect the bit in which the bit error has occurred. Perform the correction in parallel with the value.
  • the line selection section 7 1 -1 (7 1 -2) receives the ⁇ STM signal '' received through the working transmission path 4 1a -1 (4 1a -2) and given by the phase adjustment section 46. As long as the transmission quality of the signal does not fall below the predetermined lower limit, the "STM signal” and the “first redundant multiplexed signal” ("second redundant signal") given by the arithmetic unit 47-2 (47-1) Multiplexed signal ”) and one of the signals with few bit errors is determined based on the predetermined frame configuration. The one signal is supplied to the demultiplexing unit 49-1 (49-2). .
  • the system configuration Frequent updating is avoided, and the spare transmission path 1 s is properly used in place of the working transmission path whose transmission quality has deteriorated to an unacceptably low level.
  • This embodiment is realized by providing the line selection units 71-1 and 71-2 in place of the line selection units 48-1 and 48-2 in the above-described first embodiment. I have.
  • the present embodiment is not limited to such a configuration.
  • the line selectors 71-1 and 71-2 also serve as the selectors 61-1 and 61-2 shown in FIG.
  • the provision of the bit error detection unit 62 shown in FIG. 6 may be realized together with the second embodiment described above.
  • FIG. 7 is a diagram showing Embodiment 4 of the present invention.
  • a node device 8OR is provided instead of the node device 6OR.
  • a bit error detection unit 81 is provided instead of the bit error detection unit 62.
  • the feature of the present embodiment lies in the following processing procedure performed by the bit error detection unit 81.
  • the bit error detector 81 receives the signal via the working transmission lines 41 al and 41a-2 in the same manner as the bit error detector 62 shown in FIG. In each of the fields of the frame provided as the “STM signal” through the interface, bit errors are monitored only for the payload.
  • bit error detection section 81 determines whether or not these bit error rates are below respective prescribed upper limits, and both or one of the results of these determinations is false. In this case, a process is performed based on the same procedure as the process performed by the bit error detection unit 62 in the embodiment shown in FIG.
  • the bit error detection unit 81 selects one of the “STM signals” described above, which has a larger bit error rate of the payload.
  • STM signal (hereinafter referred to as“ degraded STM signal ”).
  • bit error detection unit 81 selects one of the selectors 61-1 and 61-2, one of the working transmission lines (code “41 a”) corresponding to the transmission line of the “degraded STM signal”. Select the “first redundant multiplex signal” or “second redundant multiplex signal” given by the operation unit (shown by “47”) in one selector corresponding to). Give a selection signal that means what to do.
  • the signal is received via the backup transmission line 41s.
  • the “STM signal” is used efficiently, and degradation of transmission quality is suppressed to a small extent.
  • the present invention is applied to the embodiment shown in FIG. 5, but in the present invention, the transmission qualities of both the working transmission paths 41 a1 and 41 a-2 are desired in parallel.
  • the configuration is not limited to such a configuration as long as it is monitored in form and accuracy, and application to any of the above-described embodiments is also possible.
  • FIG. 8 is a diagram showing a fifth embodiment of the present invention.
  • a node device 9 ORt is provided instead of the node device 8 OR, and the configuration is the same as that of the node device 9 ORt.
  • a node device 9 OT r is provided in place of the node device 40 ⁇ , and a full-duplex working transmission line (41 a-lUs 41) is provided between the node devices 9 OR t and 9 OT r. a-1D), (41a-2U, 41a-2D) and full-duplex protection transmission lines (41s-U, 41s-D).
  • the node device 9 ORt and the node device 8 OR shown in FIG. The difference of the configuration is that a bit error rate detection section 91 R is provided instead of the bit error rate detection section 81, and the configuration shown in FIG. 7 is the same as that of FIG. 7 except for the following points (a) to (c).
  • a transmission unit 92 R connected to one end of the working transmission lines 41 a-1U, 41 a-2U and the protection transmission line 41 s-U is provided. It is in the point.
  • node device 9 Among the components of the node device 9ORt, those having the same functions and configurations as those provided in the node device 8OR described above (excluding the transmitting unit 90R and a transmitting unit 90T described later). ) Is indicated by adding the letter “R” to the end of the code shown in FIG. 8, and the description is omitted here.
  • the components of the transmitting section 92R are provided in the above-described node device 90Tr, and the components of the transmitting section 92T having the same configuration as the transmitting section 92R are the same as those of the transmitting section 92R. In order to distinguish them, "R" is added as the first suffix to the code shown in FIG.
  • Multiplexing sections 94-Rl and 94-R2 are provided instead of the multiplexing sections 42-1 and 42-2, and the multiplexing sections 94-Rl and 94-R2 are provided.
  • the corresponding output of the bit error rate detector 91 R is connected to a specific input.
  • bit error rate detectors 91 R and 91 T provided in the node devices 90 Rt and 90 Tr respectively, the multiplexing units 94 -Rl and 94- R2, 94-Tl, 94- ⁇ 2, and selectors 93R, 93T are in the following processing procedure.
  • the bit error rate detection section 91 R (91 T) uses the current transmission path 41 a-ID, 41 a--2D (41 a- As long as the transmission quality of either 1U or 4 1a -2U) exceeds the predetermined lower limit, the output of the transmission information redundancy unit 43-R (43-T) is output to the line corresponding unit 44s-. R (44 s -T) should be given to the selector 93-R (93-T), and without any connection to the transmitter 92R (92T). The same processing as in the embodiment 41 is performed.
  • bit error rate detector 91R performs a series of processing described below. Do.
  • One of the selectors 61 R-1 and 61 R-2 corresponding to the specific transmission path is sent to the selector corresponding to the “multiplexed signal (phase adjustment) received via the protection transmission path 41 s-D. This is given by the unit 46R without passing through any of the arithmetic units 47-1, 7R-2.)
  • the multiplexing units 94-Rl and 94-R2 multiplex such a message into the transmission information described above based on a predetermined frame configuration, and The resulting "multiplexed signal" is given to a-Rl, 44a-R2 and the transmission information redundancy unit 43-R.
  • the above-mentioned message is transmitted to the node device 9OTr via all or a part of the working transmission paths 41a-1U and 41a-2U and the protection transmission path 41s-U. You.
  • the bit error rate detector 91T identifies such a message and gives the selector 93-T an identifier included in the message.
  • the selector 9 3 T instead of the "redundant signal” provided by the transmission information redundancy unit 4 3 -T, active transmission line 4 1 a -1 of D N 4 1 a -2D, represented by this identifier
  • the “multiplexed signal” given by the multiplexing unit (indicated by either “94- ⁇ 1” or “94-T2”) corresponding to one of the working transmission lines is sent to the line corresponding unit 44 s- ⁇ .
  • the transmission quality is maintained higher than in the other embodiments in which the working transmission line having the lowest transmission quality is not necessarily replaced by the spare transmission line 41s-D. .
  • the transmission quality is low specific transmission path bi Uz preparative error detection unit 9 1 R identified by R and node device 9 0
  • such a specific transmission path may be identified by the node device 90Tr, for example, by applying the following configuration.
  • the bit error rate detection unit 91R passes the individual transmission qualities of the working transmission lines 41a-1D and 41a-2D to the node device 9OTr as the messages described above. Know.
  • the bit error rate detection unit 9IT uses the current transmission path (code “41a-lD”) corresponding to one of the transmission qualities acquired as the above-mentioned message, which is lower. , “41a-2D”) is identified as a specific transmission path.
  • a spare transmission line 41 s-D is provided to be used as an alternative to any of these working transmission lines 41a-1D and 41a-2D.
  • the number of such active transmission lines in the node device 90Tr may be "3" or more.
  • the node device 90 Tr can identify these transmission qualities as in the present embodiment, For example, of these working transmission lines, one or more working transmission lines having high transmission quality and working transmission lines having a transmission quality exceeding the lower limit described above but having a low transmission quality are low.
  • An "STM signal” is generated as an exclusive OR of a plurality of "multiplexed signals” to be transmitted and transmitted, and this "STM signal” is transmitted to the spare transmission path 41s-D.
  • the combination of these "multiplexed signals” is notified to the node device 9ORt as appropriate, so that the overall transmission quality may be maintained at a high level. .
  • the present invention is not limited to such transmission sections.
  • the number P of working transmission paths is equal to or more than “3” and
  • the present invention can be similarly applied to a receiving end of a transmission section in which less than P spare transmissions are laid, or a node device provided at the receiving end and the transmitting end.
  • the number of such spare transmission paths may be the following number or any other number as long as the number is less than P described above.
  • the system configuration to be applied to the redundantly configured transmission path is not a feature of the present invention, and the following technology and other various known technologies can be applied. Therefore, the description of the operation performed by each unit in cooperation with each other is omitted here.
  • the protection transmission line 4Is (41s-D) is used for the failure and transmission quality of the working transmission lines 41a-1 and 41s-2 (4la-IDs41s-2D). Depending on the degradation and the recovery from these failures or the degradation of transmission quality, it is appropriately applied as a substitute for any of the active transmission paths based on a predetermined algorithm.
  • the spare transmission path 41 s is exclusive of individual transmission information to be transmitted via the working transmission paths 41 a-l and 41 a-2. It is used to transmit “redundant signals” obtained as logical OR.
  • the transmission information to be superimposed as the exclusive OR on the “redundant signal” to be transmitted via these spare transmission lines is Among the working transmission lines that can realize a redundant configuration by applying the transmission line, if the probability that a failure occurs in parallel with the corresponding backup transmission line or the transmission quality deteriorates is less than the desired upper limit value It may be limited to the transmission information to be transmitted via the working transmission path which can be regarded.
  • the transmission path for each transmission section depends on the number and combination of transmission information to be transmitted as a “redundant signal” component via each of the backup transmission paths. It is possible to adapt to the redundant configuration and to secure desired reliability and service quality.
  • the above-described “redundant signal” is generated by taking the exclusive OR of the transmission information in the baseband area.
  • the present invention is not limited to such a configuration. For example, if the following conditions are satisfied under the characteristics and performance of each unit, individual transmission information is synthesized in a radio frequency band or a desired intermediate frequency band. Thus, a “redundant signal” may be generated.
  • the spare transmission line 41 s (41 s- The transmission information included in the “redundant signal” transmitted via D) is applied, or the working transmission line (hereinafter referred to as “replacement signal”) to be replaced by the spare transmission line 41 s (41 s -D) , which is simply referred to as “substituted transmission path.”) Is determined according to whether a failure has occurred or the degree of deterioration of transmission quality.
  • the present invention is not limited to such a configuration, and the number of the working transmission lines and the backup transmission lines and the transmission information to be superimposed on the “redundant signal” transmitted through these backup transmission lines are not limited. Irrespective of the combination of Is also good.
  • the reduction in reliability is minimized and the maintenance and operation are performed while avoiding instantaneous interruption. Labor saving of related work and reduction of running cost are achieved.
  • the replacement of a desired line by any one of these protection lines can be realized with high accuracy.
  • the format and contents of the fields other than the payload to be transmitted via the plurality of lines and the single or the plurality of n protection lines are described. Various restrictions can be applied without any restrictions.
  • the protection line truly fails, as compared with the case where no bit error is corrected. Alternatively, it is effectively applied to replace a line whose transmission quality has deteriorated.
  • the transmission quality is generally kept high.
  • the total cost including the running cost can be reduced along with the simplification of the hardware configuration.
  • the seventh node device when a fault occurs or a line whose transmission quality is degraded is replaced with some kind of protection line, the transmission characteristics between the relevant line and the protection line are changed. As long as the differences can be accommodated at the desired speed and accuracy, compared to the conventional case where each line is duplicated, efficient use of the spare line and reduction of overall costs including running costs Is achieved.
  • the eighth node device can be flexibly applied to a communication control method in which a line to be replaced with a protection line is to be selected at the transmitting end.
  • the service quality is maintained higher and the resources are effectively used as compared with a case where invalid linkage with the transmitting end can be performed.
  • the tenth node device has a more flexible adaptation to various maintenance and operation needs than when no standard is set for selecting a line to be replaced with a protection line. It becomes possible.
  • the eleventh node device compared to a case where all of a plurality of lines are duplicated, the overall configuration including simplification of the configuration, improvement of reliability, and running cost is improved. Cost reduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

A node device connected to an end of a redundant line and adapted to carry out predetermined communication control and a no-short-break switching device are disclosed. The number of auxiliary lines is small, and the system structure can be changed without short break according to the individual statuses of the lines currently used. The node device corrects the phase differences among the separately received signals through N lines and the sum signal of all or a part of the signals through a single or n (∫N) auxiliary lines, recovers all or a part of the signals to be received through the N lines as their differences, and use the corresponding recovered signal as a substitute for the signal received through a faulty line.

Description

明細書 ノー ド装置および無瞬断切り換え装置 技術分野  Description Node device and instantaneous interruption switching device
本発明は、 冗長に構成された伝送路の一端に接続され、 その伝送 路の稼働状況に応じて無瞬断による系構成の切り換えを実現するノ ー ド装置と無瞬断切り換え装置とに関する。 背景技術  The present invention relates to a node device connected to one end of a redundantly configured transmission line and realizing switching of a system configuration by instantaneous interruption according to an operation state of the transmission line and an instantaneous interruption switching device. Background art
近年、 複数の通信事業体の競争と市場の自由化との下で多様な通 信サービスが提供され、 これらの通信サービスを利用する端末の台 数が急速に増加しつつある。 また、 この端末の付加価値は高度の情 報通信技術の積極的に適用されるこ とによって高められ、 かつ信頼 性および伝送品質が高く維持される と共に、 安価に多様なサービス に対して柔軟に適応できる通信網が強く要求されている。  In recent years, a variety of communication services have been provided under the competition between multiple telecommunications carriers and market liberalization, and the number of terminals using these communication services has been rapidly increasing. In addition, the added value of this terminal is enhanced by the active application of advanced information and communication technology, while maintaining high reliability and transmission quality, and at the same time flexibly providing various services at low cost. There is a strong demand for adaptive communication networks.
従来、 このような通信網の内、 S T M方式の幹線系の伝送区間は、 常用冗長方式による二重化が図られていた。  Conventionally, in such a communication network, the transmission section of the trunk system of the STM system has been duplicated by a normal redundant system.
すなわち、 個々の二重化された伝送区間では、 送信端は、 現用の 伝送路 (以下、 「現用伝送路」 という。 ) と、 予備の伝送路 (以下、 「予備伝送路」 という。 ) とに網同期の下で並行して同じ S T M信 号を送出する。 この伝送路を介して対向する受信端は、 現用伝送路 に障害、 伝送品質の著しい劣化その他の所定の事象が発生したとき に、 予備伝送路を介して受信される S T M信号を先行する伝送区間 から受信された信号と して適用する。  In other words, in each duplicated transmission section, the transmitting end is connected to a working transmission path (hereinafter, referred to as “working transmission path”) and a protection transmission path (hereinafter, referred to as “protection transmission path”). The same STM signal is sent in parallel under synchronization. The receiving end that opposes the STM signal over the transmission path before the STM signal received via the protection transmission path when a failure, significant degradation of transmission quality, or other predetermined event occurs on the current transmission path. Apply as signal received from.
したがって、 無瞬断による系構成の切り換えに併せて、 高い信頼 性の確保が実現されていた。  Therefore, high reliability was realized in conjunction with switching of the system configuration due to uninterrupted operation.
このような従来例では、 現用回線の数と同じ数の予備回線が物理 的に敷設されなければならないために、 コス ト高であった。 さ らに、 何らかの障害が生じた現用回線が対応する予備回線で確 実に代替される環境が維持されるためには、 例えば、 保守や運用の 過程において、 予備回線が正常であるこ とが適宜確認されなければ ならない。 In such a conventional example, the cost was high because the same number of protection lines as the number of working lines had to be physically laid. In order to maintain an environment in which a working line in which a failure has occurred can be reliably replaced with a corresponding protection line, it is necessary to confirm that the protection line is normal, for example, during maintenance and operation. It must be.
しかし、 これらの予備回線の総数は現用回線の数に応じて増加す るために、 保守や運用にかかわる作業に多く の工数を要し、 かつラ ンニングコス ト も増加する場合が多かった。  However, since the total number of these protection lines increases in accordance with the number of working lines, maintenance and operation-related work requires a lot of man-hours and often increases running costs.
また、 このようなラ ンニングコス トの増加は上述した多様なサー ビスの提供を妨げる要因でもあるために、 通信システムのニーズに 適応した冗長な伝送路の実現が強く要望されていた。 発明の開示  In addition, since such an increase in the running cost is a factor that hinders the provision of the various services described above, there has been a strong demand for the realization of a redundant transmission path adapted to the needs of the communication system. Disclosure of the invention
本発明の目的は、 物理的な伝送路の総数の削減に併せて、 所望の サービスの形態や伝送区間毎の トラヒ ックの分布に対する柔軟な適 応を可能とするノー ド装置および無瞬断切り換え装置を提供するこ とにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a node device and a non-interruptionless network capable of flexibly adapting to a desired service form and traffic distribution for each transmission section in addition to a reduction in the total number of physical transmission paths. It is to provide a switching device.
また、 本発明の目的は、 全ての回線が二重化された従来例に比べ て、 信頼性の低下が最小限度に抑えられつつ瞬断の回避に併せて、 保守と運用どにかかわる作業の省力化、 ラ ンニングコス トの削減が 図られる点にある。  Also, the object of the present invention is to reduce the work involved in maintenance and operation, in addition to avoiding instantaneous interruptions while minimizing reliability degradation compared to the conventional example where all lines are duplicated. Another point is that running costs can be reduced.
さ らに、 本発明の目的は、 予備回線の数が少な く ても、 これらの 予備回線による所望回線の代替が確度高く実現される点にある。  Further, an object of the present invention is that even if the number of protection lines is small, the replacement of a desired line by these protection lines is realized with high accuracy.
また、 本発明の目的は、 複数の回線と単一または複数 nの予備回 線とを介して伝送されるべきペイ 口一 ド以外のフィ一ル ドについて 形式および内容の異同が何ら問われず、 多様な伝送方式の適用が可 能となる点にある。  Further, an object of the present invention is to provide a non-pay-field, which is to be transmitted via a plurality of lines and a single or a plurality of n backup lines, regardless of the format and content thereof, The point is that various transmission methods can be applied.
さ らに、 本発明の目的は、 真に障害が発生し、 あるいは著しい伝 送品質の劣化が生じた回線を代替するために、 予備回線が有効に適 用される点にある。 また、 本発明の目的は、 伝送品質が総合的に高く維持される点に ある。 Furthermore, an object of the present invention is that a protection line is effectively applied in order to replace a line in which a true failure has occurred or in which the transmission quality has significantly deteriorated. It is another object of the present invention to maintain transmission quality overall high.
さらに、 本発明の目的は、 ハー ドウェアの構成の簡略化に併せて、 ラ ンニングコス トを含む総合的なコス トの削減と信頼性の向上とが 図られる点にある。  A further object of the present invention is to reduce the overall cost including the running cost and improve the reliability in addition to the simplification of the hardware configuration.
また、 本発明の目的は、 障害が発生し、 あるいは伝送品質が劣化 した回線が予備回線で代替される際に、 該当する回線と予備回線と の伝送特性の相違が所望の速度および精度で吸収される限り、 個々 の回線が二重化された従来例に比べて、 予備回線の効率的な利用に 併せて、 ラ ンニングコス トを含む総合的なコス トの削減が図られる 点にある。  Further, an object of the present invention is to absorb a difference in transmission characteristics between a corresponding line and a protection line at a desired speed and accuracy when a line in which a failure occurs or transmission quality is deteriorated is replaced with a protection line. As far as possible, compared to the conventional example in which individual lines are duplicated, overall costs including running costs can be reduced along with the efficient use of spare lines.
さ らに、 本発明の目的は、 予備回線で代替されるべき回線の選定 が送信端でおこなわれるべき通信制御の方式に対しても、 適用が可 能となる点にある。  Further, an object of the present invention is that the present invention can be applied to a communication control method in which a line to be replaced with a protection line is to be selected at a transmitting end.
また、 本発明の目的は、 送信端との無効な連係が行われ得る場合 に比べて、 サービス品質が高く維持され、 かつ資源の有効利用が図 られる点にある。  Further, an object of the present invention is to maintain high service quality and achieve effective use of resources as compared with a case where invalid cooperation with a transmitting end can be performed.
さ らに、 本発明の目的は、 予備回線で代替されるべき回線の選定 について何ら基準が設定されていない場合に比べて、 保守や運用に かかわる多様なニーズに対する柔軟な適応が可能となる点にある。  In addition, the object of the present invention is to make it possible to flexibly adapt to various needs related to maintenance and operation as compared with a case where no standard is set for selecting a line to be replaced with a protection line. It is in.
また、 本発明の目的は、 複数の回線の全てが二重化された場合に 比べて、 構成の簡略化に併せて、 信頼性の向上およびランニングコ ス トを含む総合的なコス トの削減とが図られる点にある。  Also, the object of the present invention is to improve the reliability and reduce the overall cost including running costs, in addition to simplifying the configuration, compared to a case where all of the multiple lines are duplicated. Is that
さ らに、 本発明の目的は、 資源の有効利用とサ一ビス品質の向上 とが図られる点にある。  Another object of the present invention is to achieve effective use of resources and improvement of service quality.
上述した目的は、複数 Nの回線を介して個別に受信された信号と、 単一または複数 n (く N )個の予備回線を介して受搶され、 かっこれ らの信号の全てあるいは一部の和に相当する和信号との位相差を補 正し、 両者の差分と して複数 Nの回線を介して受信されるべき信号 の全てあるいは一部を復元する と共に、 これらの復元された信号の 内、 障害 (伝送品質の劣化を含む) が生した回線に対応する信号を その回線を介して受信された信号の代替信号と して適用する点に特 徴があるノー ド装置によって達成される。 The objectives described above are for signals received individually via a plurality of N lines, and for signals received via a single or a plurality of n (i.e., N) spare lines, and all or some of these signals. The signal to be received via multiple N lines is corrected as the difference between the two and the sum signal corresponding to the sum of the signals. Of all or some of these signals, and among these restored signals, the signal corresponding to the line in which the fault (including the deterioration of transmission quality) has occurred is replaced with a substitute signal for the signal received through that line. Achieved by a node device that is characterized in that it is applied in a separate manner.
このよう なノー ド装置では、 本発明が適用された伝送区間に敷設 されるべき回線の総数は、 複数 Nの回線の内、 並行して上述した障 害や伝送品質の劣化が生じ得る回線の数が予備回線の数 n以下であ る限り、 その数 nが N未満であっても、 2 N未満となる。  In such a node device, the total number of lines to be laid in the transmission section to which the present invention is applied is the number of lines out of a plurality of N lines that may cause the above-described failure or transmission quality deterioration in parallel. As long as the number is less than or equal to the number n of the protection lines, even if the number n is less than N, the number is less than 2N.
また、 上述した目的は、 複数 Nの回線の何れかを介して個別に受 信されるべき特定の信号は、 予備回線を介して受信される和信号の 内、 所望の異なる複数の和信号の成分と して共通に含まれ、 かっこ れらの複数の和信号の内、 障害が発生していない回線を介して受信 された信号との差分と して復元された何れかが適用される点に特徴 があるノー ド装置によって達成される。  In addition, the above-described object is to provide a method in which a specific signal to be individually received via any of the plurality of N lines is a sum of a plurality of different desired sum signals among the sum signals received via the protection line. One of the multiple sum signals that are included in common as components and that are recovered as the difference from the signal received via the line where no failure has occurred is applied. This is achieved by a node device characterized by:
このよう なノー ド装置では、 複数 Nの回線の内、 障害が発生し、 あるいは伝送品質が劣化した回線を介して受信されるべき信号は、 これらの信号を成分と して含む和信号の伝送に供される予備回線の 数 P と、 これらの和信号に成分として含まれる他の個々の信号の伝 送に供される回線に並行して障害が発生しない確率とが高いほど、 予備回線の数 nが小さ くても、 何れかの予備回線を介して確度高く 復元される。  In such a node device, out of a plurality of N lines, a signal to be received through a line in which a failure has occurred or transmission quality has been degraded is a transmission of a sum signal including these signals as components. The higher the number P of the protection lines provided for transmission and the probability that a failure will not occur in parallel with the lines used for transmitting other individual signals contained as components in these sum signals, the higher the number of protection lines Even if the number n is small, it can be restored with high accuracy via any protection line.
さ らに、 上述した目的は、 何れの和信号も対応する予備回線を介 してペイ ロー ドのみに相当する信号と して与えられ、 個々の回線の 障害は対応する回線を介して伝送されるペイ ロー ドの正否と して識 別される点に特徴があるノー ド装置によって達成される。  In addition, the above-mentioned object is achieved by providing any sum signal as a signal corresponding to only the payload via the corresponding protection line, and the failure of each line is transmitted via the corresponding line. This is achieved by a node device characterized by the fact that the payload is identified as valid or invalid.
このようなノー ド装置では、 複数の回線に個別に障害が発生し、 あるいは伝送品質の劣化が生じたか否かの判別は、 上述したペイ 口 — ドのみの正否として判別される。  In such a node device, determination as to whether a failure has occurred individually in a plurality of lines or deterioration in transmission quality has occurred is determined as the above-described correctness of only the pay port.
また、 上述した目的は、 差分と して復元された個々の信号と、 こ れらの信号が受信されるべき回線を介して受信された信号との内、 規定のフ レーム構成の下で正規であ り、 あるいはビッ ト誤りが少な い信号を選択し、 その信号を対応する現用回線を介して受信された 信号として適用する点に特徴があるノー ド装置によって達成される ( このようなノ ー ド装置では、 複数の回線で生じ得る軽微のビッ ト 誤り は、 予備回線の何れもが適用されるこ とな く正規の信号と して 得られる。 Also, the purpose described above is to make the individual signals recovered as differences Select a signal that is legitimate or has few bit errors under the specified frame configuration among the signals received via the line where these signals are to be received, and responds to that signal. to be accomplished by node apparatus is characterized in that to apply a signal received over the working line (in this node device, bit error minor that may occur in a plurality of lines, the protection line Both are obtained as a normal signal without being applied.
さ らに、 上述した目的は、 複数 Nの現用回線の内、 複数の特定の 回線の伝送品質が規定の下限値を下回っている ときに、 これらの特 定の回線の内、 伝送品質が最低である単一の回線を介して受信され るべき信号と して、 他の回線の何れかと予備回線の何れかとを介し て受信された信号の差分を適用する点に特徴があるノ ー ド装置によ つて達成される。  Further, the purpose described above is to minimize the transmission quality of these specific lines when the transmission quality of a plurality of specific lines among the plurality of N working lines is lower than a specified lower limit. A node device characterized in that, as a signal to be received through a single line, a difference between a signal received through one of the other lines and one of the protection lines is applied. Is achieved by
このようなノー ド装置では、 複数の回線の内、 伝送品質が低い回 線ほど優先的に予備回線の何れかで代替される。  In such a node device, of the plurality of lines, the line with lower transmission quality is preferentially replaced by one of the protection lines.
また、 上述した目的は、 ベースバン ド領域で信号の識別と位相差 の補正とが行われる点に特徴があるノー ド装置によって達成される , このようなノー ド装置は、 個々の構成要素は、 中間周波帯あるい は無線周波帯で同様の処理が行われる場合に比べて、 低速の素子で 構成され得る。  Further, the above-mentioned object is achieved by a node device characterized in that signal identification and phase difference correction are performed in a baseband region.In such a node device, individual components are: Compared with the case where the same processing is performed in the intermediate frequency band or the radio frequency band, it can be configured with a slower element.
さ らに、 上述した目的は、 複数 Nの回線の内、 何れかの複数の回 線の伝送品質が閾値を下回ったときに、 その閾値を下回る伝送品質 の昇順に、 予備回線の数以下の数の現用回線を送信端宛に通知し、 その送信端と連係して予備回線でこれらの該当する現用回線を代替 する点に特徴があるノー ド装置によって達成される。  In addition, the above-mentioned object is to provide, when the transmission quality of any one of a plurality of N lines falls below a threshold, in an ascending order of the transmission quality below the threshold, the number of protection lines is equal to or less than the number of protection lines. This is achieved by a node device characterized in that a number of working lines are notified to the transmitting end, and in connection with the transmitting end, these corresponding working lines are replaced with a protection line.
このようなノー ド装置では、 複数の回線の内、 伝送品質が所定の 下限値を下回る回線は、 送信元との連係の下で、 その伝送品質が低 い順に優先的に予備回線の何れかで代替される。  In such a node device, out of a plurality of lines, a line whose transmission quality is lower than a predetermined lower limit value is given priority to one of the protection lines in ascending order of the transmission quality in cooperation with the transmission source. Is replaced by
また、 上述した目的は、 複数 Nの現用回線の内、 何れかの複数の 回線の伝送品質が閾値を下回ったときに、 これらの伝送品質の全て あるいは一部を送信端宛に通知し、 その送信端と連係して予備回線 でこれらの回線の全てまたは一部を代替する点に特徴があるノー ド 装置によって達成される。 In addition, the above-mentioned object is achieved by selecting any one of a plurality of N working lines. When the transmission quality of the line falls below the threshold, all or part of these transmission qualities are notified to the transmitting end, and in conjunction with the transmitting end, all or part of these lines are replaced with a backup line. This is achieved by a node device characterized by a point.
このようなノー ド装置では、 複数 Nの回線の内、 単一または複数 nの予備回線の何れかで代替されるべき回線の選定は、 本発明にか かわる受信端ではな く これらの回線を介して対向する送信端に委ね りれる o  In such a node device, out of a plurality of N lines, a line to be replaced with either a single line or a plurality of n protection lines is determined not by the receiving end according to the present invention but by these lines. Delegated to the opposite sender via
さ らに、 上述した目的は、 送信端に通知される伝送品質は、 正常 である回線および予備回線と、 これらの予備回線を介して送信端か ら伝送される和信号の成分との組み合わせの下で予備回線による代 替が可能である現用回線の伝送品質に限定される点に特徴があるノ — ド装置によって達成される。  Further, for the above-described purpose, the transmission quality notified to the transmitting end is determined by combining a normal line and a protection line with a sum signal component transmitted from the transmitting end via these protection lines. This is achieved by a node device characterized in that it is limited to the transmission quality of the working line, which can be replaced by a protection line below.
このようなノー ド装置では、 送信端との連係は、 複数 Nの回線の 内、 障害が発生し、 あるいは伝送品質が劣化した回線であっても、 その回線および予備回線の トラヒックの分布、 稼働状況その他の状 態の下で代替が可能な回線のみに関して試行される。  In such a node device, the connection with the transmitting end is based on the distribution and operation of traffic on the line and the protection line, even if a failure occurs or the transmission quality is deteriorated among multiple N lines. Attempted only on lines that can be replaced under circumstances or other conditions.
また、 上述した目的は、 送信端には、 代替が可能である現用回線 の内、 重要度が高い回線の伝送品質が優先的に通知される点に特徴 があるノー ド装置によって達成される。  Further, the above-mentioned object is achieved by a node device characterized in that the transmission end is notified preferentially of the transmission quality of a line of high importance among the working lines that can be substituted.
このようなノー ド装置では、 複数 Nの回線の属性と、 その属性に 基づいて予め設定され、 かつ予備回線を介して個別に伝送されるべ き和信号の成分の組み合わせとに対して柔軟であって的確な適応が 可能となる。  Such a node device is flexible with respect to the attributes of a plurality of N lines and the combination of components of the sum signal that is set in advance based on the attributes and individually transmitted via the protection line. Therefore, appropriate adaptation is possible.
さ らに、 上述した目的は、 個々の和信号の成分は複数 Nの回線の 内、 所望の伝送品質と信頼性との双方あるいは何れか一方が確保さ れる回線を介して受信されるべき信号であるこ とを特徴とするノー ド装置によって達成される。  In addition, the above-described object is to provide a method in which each of the components of the sum signal is a signal to be received via a line that ensures desired transmission quality and / or reliability among a plurality of N lines. This is achieved by a node device characterized in that:
このようなノー ド装置では、 複数 Nの回線と、 その複数 Nよ り小 さい単一または複数 nの予備回線とを介して受信端との間に、 冗長 な複数 Nの回線が形成される。 In such a node device, multiple N lines and smaller than the multiple N Redundant N lines are formed with the receiving end via one or more n protection lines.
また、 上述した目的は、 個々の和信号は、 n個の予備回線の内、 所望の伝送品質と信頼性との双方あるいは何れか一方が確保される 予備回線を介して受信される点に特徴があるノー ド装置によって達 成される。  Further, the above-described object is characterized in that each sum signal is received via a protection line that ensures desired transmission quality and / or reliability among n protection lines. This is achieved by a node device.
このようなノー ド装置では、 予備回線の数 nと、 これらの予備回 線で代替されるべき回線との組み合わせは、 所望のサービス品質や 信頼性が達成される態様と して設定される。  In such a node device, the combination of the number n of the protection lines and the lines to be replaced by these protection lines is set as a mode in which desired service quality and reliability are achieved.
さ ら に、 上述 し た 目 的は、 第一の回線 と第二の回線 と を介 して並行 して伝送さ れた信号 x 、 y と、 第三の回線を介 して 伝送さ れ、 こ れ ら の信号 x 、 y の 関数 と して 与え ら れる 信号 z と を受信 し、 そ の信号 z か ら こ れ ら の信号 x 、 y に位相が 等 し い他の信号 X 、 y を再生す る と共に、 こ れ ら の個別 に対 を な す信号 X と信号 y と の そ れそ れ につ い て 適宜一方の選 択が行われる 無瞬断切 り 換え装置 に よ っ て達成さ れる 。  Further, the above-mentioned purpose is that the signals x and y transmitted in parallel through the first line and the second line and the signals x and y transmitted through the third line, A signal z provided as a function of these signals x and y is received, and other signals X and y whose phases are equal to these signals x and y are received from the signal z. This is achieved by an instantaneous disconnection switching device that reproduces and appropriately selects one of these individually paired signals X and y. Is
こ の よ う な無瞬断切 り 換え装置で は、 信号 X 、 y の送信端 と の間に は、 冗長な回線 と して、 信号 z の伝送に供さ れ る 単 一の回線が形成さ れる に も かかわ ら ず、 異な る 回線を介 して 並行 して 受信さ れ、 かつ位相差が補償さ れた 2 対の信号 X 、 y が定常的 に得 ら れる ので、 上述 し た選択が行われる 時点の 如何 にかかわ ら ず無瞬断に よ る切 り 換え が可能 と な る 。 図面の簡単な説明  In such a hitless switching device, a single line used for transmitting the signal z is formed as a redundant line between the transmitting end of the signals X and y. Despite this, two pairs of signals X and y, which are received in parallel via different lines and whose phase differences are compensated, are constantly obtained, so that the above-mentioned selection is made. Switching can be performed without any interruption irrespective of the time at which the operation is performed. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明にかかわる第一ないし第六のノー ド装置の原理ブ ロ ヅク図である。  FIG. 1 is a principle block diagram of first to sixth node devices according to the present invention.
図 2は、 本発明にかかわる第七ないし第十のノー ド装置の原理ブ ロ ック図である。  FIG. 2 is a principle block diagram of seventh to tenth node devices according to the present invention.
図 3は、 本発明にかかわる第十一および第十二のノー ド装置の原 理プロ ヅク図である。 FIG. 3 is a schematic view of the eleventh and twelfth node devices according to the present invention. FIG.
図 4は、 本発明の実施形態 1 を示す図である。  FIG. 4 is a diagram showing Embodiment 1 of the present invention.
図 5 は、 本発明の実施形態 2 を示す図である。  FIG. 5 is a diagram showing a second embodiment of the present invention.
図 6 は、 本発明の実施形態 3 を示す図である。  FIG. 6 is a diagram showing a third embodiment of the present invention.
図 7は、 本発明の実施形態 4を示す図である。  FIG. 7 is a diagram showing Embodiment 4 of the present invention.
図 8 は、 本発明の実施形態 5 を示す図である。 発明を実施するための最良の形態  FIG. 8 is a diagram showing a fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 図 1 ないし図 3 を参照して本発明にかかわるノー ド装置の 原理を説明する。  First, the principle of the node device according to the present invention will be described with reference to FIGS.
図 1 は、 本発明にかかわる第一ないし第六のノー ド装置の原理ブ ロ ック図である。  FIG. 1 is a principle block diagram of first to sixth node devices according to the present invention.
図 1 に示すノー ド装置は、 複数 Nの回線 1 0 -:!〜 1 0 -N と単一ま たは複数 nの予備回線 1 1 -:!〜 1 1 -n との一端に接続された受信手 段 1 2 と、 その受信手段 1 2 に連係する信号復元手段 1 3、 回線監 視手段 1 4および回線選択手段 1 5 とから構成される。  The node device shown in Fig. 1 has multiple N lines 10-:! 1 to -N and one or more protection lines 1 1-:! to 1 1-n connected to one end of receiving means 12 and signal recovery linked to the receiving means 12 Means 13, line monitoring means 14, and line selecting means 15.
本発明にかかわる第一のノー ド装置の原理は、下記の通りである。 受信手段 1 2は、 複数 Nの回線 1 0 -:!〜 1 0 -Nを介して個別に与 えられる複数 Nの信号と、 単一または複数 n ( < N )の予備回線 1 1 - :!〜 1 1 -n を介して個別に与えられ、 これらの信号の全てあるいは 一部の和に相当する複数 nの和信号とをこれらの位相差を補正しつ つ受信する。 信号復元手段 1 3は、 受信手段 1 2 によって受信され た単一または複数 nの和信号と複数 Nの信号の組み合わせとの差分 と して、 複数 Nの回線 1 0 -:!〜 1 0 -Nを介して受信されるべき複数 Nの個々の信号の全てあるいは一部を復元する。 回線監視手段 1 4 は、 複数 Nの回線 1 0 - 1〜 1 0 -Nの正否 (例えば、 誤り率が高い回 線等) の判別を個別に行う。 回線選択手段 1 5 は、 信号復元手段 1 3 によって上述した全てあるいは一部が復元された複数 N信号の内 回線監視手段 1 4 によって行われた判別の結果が偽である回線 (例 えば、 誤り率が高い回線等) に対応する信号をその回線を介して受 信された信号に代えて適用する。 The principle of the first node device according to the present invention is as follows. The receiving means 1 2 has a plurality of N lines 1 0-:! ~ 10-N and multiple N signals individually given through -N and single or multiple n (<N) protection lines 11-1-:! ~ 11 -n individually given via -n And a plurality n of sum signals corresponding to the sum of all or some of these signals while correcting their phase differences. The signal restoring means 13 calculates the difference between the sum of the single or plural n signals received by the receiving means 12 and the combination of the plural N signals as the plural N lines 10-:! Recover all or some of the N individual signals to be received via ~ 10-N. The line monitoring means 14 individually determines the correctness (for example, a line having a high error rate) of the plurality N of the lines 10-1 to 10-N. The line selecting means 15 is a circuit for which the result of the discrimination performed by the line monitoring means 14 of the plurality of N signals, all or a part of which has been restored by the signal restoring means 13, is false (eg, For example, a signal corresponding to a line with a high error rate, etc.) is applied instead of a signal received via that line.
このようなノ一 ド装置では、 複数 Nの回線 1 0 — -1~ 1 0 -Nの内、 障害が発生し、 あるいは伝送品質が劣化した回線を介して受信され るべき信号は、 他の正常な回線の全てあるいは一部を介して個別に 受信された信号のみと共に、 上述した複数 nの和信号の何れかに成 分として含まれる限り、 確度高く代替の信号と して復元される。  In such a node device, a signal to be received through a line in which a failure has occurred or transmission quality has deteriorated among a plurality of N lines 10 0 -1 to 10 -N As long as it is included as a component in any of the above-mentioned sum signals of n together with only the signal individually received through all or a part of the normal line, it is accurately restored as an alternative signal.
すなわち、 本発明が適用された伝送区間に敷設されるべき回線の 総数は、 複数 Nの回線 1 0 -1〜 1 0 -Nの内、 並行して上述した障害 や伝送品質の劣化が同時に生じ得る回線の数が予備回線 1 1 -:!〜 1 1 -nの数 n以下である限り、 2 N未満で足る (すなわち、 n < N ) c したがって、 全ての回線が二重化された従来例に比べて、 信頼性 の低下が最小限度に抑えられつつ瞬断の回避に併せて、 保守と運用 とにかかわる作業の省力化とラ ンニングコス トの削減とが図られる c 本発明にかかわる第二のノー ド装置の原理は、下記の通りである。 複数 Nの回線 1 0 -1〜 1 0 -N の全てあるいは一部を介して個別 に与え られる信号は、 複数 nの和信号の内、 異なる複数 p (<n)の 和信号の成分と して共通に含まれる。 信号復元手段 1 3は、 受信手 段 1 2 によって受信された単一または複数 nの和信号の内、 回線監 視手段 1 4 によって行われた判別の結果が真である回線 (例えば、 回線品質が良好な回線) のみを介して与えられ、 かつ受信手段 1 2 によって受信された単一または複数 P (≤N)の信号と差分をとる こ とによって、 複数 Nの回線 1 0 -1〜 1 0 -Nの全てあるいは一部を介 して個別に受信されるべき複数 Nの個々の信号の全てあるいは一部 を復元する。 In other words, the total number of lines to be laid in the transmission section to which the present invention is applied is the number of lines 10-1 to 10-N out of a plurality of N, and the above-mentioned failures and degradation of transmission quality occur simultaneously in parallel. the number of obtained line protection line 1 1 - :! ~ 1 1 -n long as less than or equal to the number n of sufficient below 2 n (i.e., n <n) c Thus, the conventional example every line is duplicated compared with, in addition to avoiding reduction in reliability is suppressed and while interruption to a minimum, maintenance and operations involved in the operation of labor saving and La N'ningukosu reductions and the second according to c present invention is achieved The principle of the node device is as follows. The signals individually given through all or some of the N-number of circuits 10-1 to 10-N are components of the sum signal of different p (<n) among the sum signals of n. Included in common. The signal restoring means 13 outputs a signal for which the result of the discrimination made by the line monitoring means 14 is true among the single or plural sum signals received by the receiving means 12 (for example, the line quality Is obtained via only a good line), and by taking the difference from the single or plural P (≤N) signals received by the receiving means 12, the plural N lines 10 0 -1 to 1 Recover all or some of the multiple N individual signals to be received individually via all or some of 0-N.
すなわち、 複数 Nの回線 1 0 -:!〜 1 0 -Nの内、 障害が発生し、 あ るいは伝送品質が劣化した回線を介して受信されるべき信号は、 下 記の数 Pが大き く、 かつ確率が高いほど、 予備回線 1 1 -1〜 1 1 -n の数が小さ く ても、何れかの予備回線を介して確度高く復元される。 • 上述した信号を成分と して含む和信号の伝送に供される予備回 線の数 P That is, multiple N lines 10 0-:! The signal to be received through a line in which a fault has occurred or transmission quality has deteriorated, out of ~ 10-N, the larger the number P shown below and the higher the probability, the more the protection line 1 Even if the number of 1 -1 to 11 -n is small, it can be restored with high accuracy through any protection line. • Number of spare lines used for transmission of sum signal containing the above-mentioned signals as components P
- これらの和信号に成分と して含まれる他の信号の伝送に供され るべき回線に、 並行して障害が発生しない確率  -Probability that no failure will occur in parallel on the line that is to be used for transmission of other signals included as a component in these sum signals
本発明にかかわる第三のノー ド装置の原理は、下記の通りである。 複数 nの和信号は、 単一または複数 nの予備回線 1 1 -:!〜 1 1 -n を介してペイ ロー ドのみに相当する信号と して与えられる。 回線監 視手段 1 4は、 複数 Nの回線 1 0 -1〜 1 0 -Nを介して与えられ、 か つ受信手段 1 2 によって受信された個々の信号の成分の内、 上述し たペイ ロー ドに相当する信号の正否と して、 これらの回線 1 0 -:!〜 1 0 -Nの正否を判別する。  The principle of the third node device according to the present invention is as follows. The sum signal of a plurality n is a single or a plurality of n protection lines 1 1-:! It is given as a signal corresponding to only the payload via ~ 11-n. The line monitoring means 14 is provided through a plurality of N lines 10-1 to 10-N, and includes the above-mentioned payload among the individual signal components received by the receiving means 12. These lines 10 0-:! It is determined whether 10-N is correct.
すなわち、 複数 Nの回線 1 0 -:!〜 1 0 -Nに個別に障害が発生し、 あるいは伝送品質の劣化が生じたか否かの判別は、 上述したペイ 口 一ドのみの正否と して判別される。  That is, multiple N lines 10 0-:! The determination as to whether a failure has occurred in each of .about.10-N or deterioration in transmission quality has occurred is determined based on whether or not only the above-described pay-only method is correct.
したがって、 これらの複数の回線 1 0 -1〜 1 0 -N と単一または複 数 nの予備回線 1 1 -1〜 1 1 -n とを介して伝送されるべきペイ ロー ド以外のフィール ドについて、 形式および内容にかかわる制約が何 ら課されることな く、 多様な伝送方式の適用が可能となる。  Therefore, the fields other than the payload to be transmitted via these multiple lines 10 -1 to 10 -N and the single or multiple n protection lines 11 -1 to 11 -n With regard to, various transmission methods can be applied without any restrictions on the format and content.
本発明にかかわる第四のノー ド装置の原理は、下記の通りである。 複数 Nの信号と単一または複数 nの和信号とは、 規定のフ レーム 構成に基づ く フ レームの列と して与え られる。回線監視手段 1 4は、 複数の回線 1 0 -1〜 1 0 -Nを介して与えられ、 かつ受信手段 1 2 に よって受信された複数 Nの信号に伴う ビッ ト誤り を上述した規定の フレーム構成に基づいて訂正する。  The principle of the fourth node device according to the present invention is as follows. The plural N signals and the single or plural n sum signals are given as a sequence of frames based on a prescribed frame configuration. The line monitoring means 14 converts the bit error associated with the plurality of N signals provided through the plurality of lines 10-1 to 10-N and received by the receiving means 12 into the frame defined above. Correct based on configuration.
すなわち、 複数の回線 1 0 -:!〜 1 0 -Nで生じた軽微のビッ ト誤り を伴う信号は、 予備回線 1 1 -:!〜 1 1 -nの何れもが適用される こと な く正規の信号と して得られる。  In other words, a signal with minor bit errors that occurred on a plurality of lines 10- :! to 10-N is converted to a protection line 11- :! Any of ~ 11-n is obtained as a normal signal without being applied.
したがって、 上述したビッ ト誤りの訂正が何ら行われない場合に 比べて、 予備回線 1 1 -:!〜 1 1 -nは、 真に障害が発生し、 あるいは 伝送品質が劣化した回線を代替するために有効に適用される。 Therefore, as compared with the case where the above-described bit error correction is not performed at all, the protection line 11-:! to 11 -n has a true failure or It is effectively applied to replace a line whose transmission quality has deteriorated.
本発明にかかわる第五のノー ド装置の原理は、下記の通りである。 回線監視手段 1 4は、 複数 Nの回線 1 0 -1〜 1 0 -Nの個々の伝送 品質を求める。 回線選択手段 1 5は、 複数Nの回線 1 0 -1〜 1 0 N の内、 回線監視手段 1 4によって求められ、 かつ規定の下限値を下 回る伝送品質の昇順に対応する個々の回線について、 その回線を介 して受信された信号に代えて信号復元手段 1 3 によって復元された 信号を適用する。  The principle of the fifth node device according to the present invention is as follows. The line monitoring means 14 obtains the transmission quality of each of the plurality of N lines 10 -1 to 10 -N. The line selection means 15 is for each of the plurality of N lines 10 -1 to 10 N which are obtained by the line monitoring means 14 and correspond to the ascending order of transmission quality below the specified lower limit. Then, the signal restored by the signal restoration means 13 is applied instead of the signal received via the line.
すなわち、 複数 nの回線 1 0 -:!〜 1 0 -Nは、 伝送品質が低い回線 ほど優先的に予備回線 1 1 -:!〜 1 1 -nの何れかで代替される。  That is, multiple n lines 1 0-:! -10 -N: The lower the transmission quality, the more preferentially the protection line 1 1-:! 1 to -n.
したがって、 本発明が適用された伝送区間の伝送品質は、 総合的 に高く維持される。  Therefore, the transmission quality of the transmission section to which the present invention is applied is kept high overall.
本発明にかかわる第六のノー ド装置の原理は、下記の通りである。 受信手段 1 2、 信号復元手段 1 3、 回線監視手段 1 4および回線 選択手段 1 5 の全てまたは一部は、 個々の機能の全てまたは一部を ベースバン ド領域の処理と して果たす。  The principle of the sixth node device according to the present invention is as follows. All or a part of the receiving means 12, the signal restoring means 13, the line monitoring means 14, and the line selecting means 15 perform all or a part of individual functions as processing of the baseband area.
すなわち、 受信手段 1 2、 信号復元手段 1 3、 回線監視手段 1 4 および回線選択手段 1 5 は、 中間周波帯あるいは無線周波帯で同様 の処理を行う場合に比べて、 低速の素子で構成され得る。  That is, the receiving means 12, the signal restoring means 13, the line monitoring means 14, and the line selecting means 15 are constituted by slower elements than when the same processing is performed in the intermediate frequency band or the radio frequency band. obtain.
したがって、 ハー ドウェアの構成の簡略化に併せて、 ランニング コス トを含む総合的なコス トの削減が図られる。  Therefore, along with the simplification of the hardware configuration, comprehensive cost reduction including running costs can be achieved.
図 2 は、 本発明にかかわる第七ないし第十のノー ド装置の原理ブ ロ ヅク図である。  FIG. 2 is a principle block diagram of seventh to tenth node devices according to the present invention.
図 2 に示すノー ド装置は、 複数 Nの回線 2 0 -:!〜 2 0 -N と単一ま たは複数 nの予備回線 2 1 -:!〜 2 1 -n との一端に接続された受信手 段 2 2 と、 その受信手段 2 2 に連係する伝送品質監視手段 2 3、 代 替要求手段 2 4、 2 4 Aおよび回線選択手段 2 5、 2 5 Aとから構 成される。  The node device shown in FIG. 2 has multiple N lines 20-:! to 20 -N and single or multiple n spare lines 2 1-:! To 21-n, a transmission means 22 connected to the receiving means 22, a transmission quality monitoring means 23, a substitution requesting means 24, 24 A and a line selecting means 25. , 25 A.
本発明にかかわる第七のノー ド装置の原理は、下記の通りである。 受信手段 2 2 は、 複数 Nの回線 2 0 -1 - 2 0 -Nを介して個別に与 えられる複数 Nの信号と、 単一または複数 n (く N )の予備回線 2 1 - 1〜 2 1 - n を介して個別に与えられる単一または複数 nの信号とを これらの位相差を補正しつつ受信する。 伝送品質監視手段 2 3 は、 複数 Nの回線 2 0 -1〜 2 0 -Nの伝送品質を監視し、 これらの回線 2 0 -:!〜 2 0 -Nの内、 伝送品質が所定の下限値を下回る回線を特定す る。 代替要求手段 2 4は、 伝送品質監視手段 2 3 によって特定され た回線の内、 伝送品質の昇順に単一または複数 nの予備回線 2 1 -1 〜 2 1 - nの数 n以下の数の回線を介して対向する送信端宛に、 これ らの回線が個別に何れかの予備回線で代替されるべき旨の通知を送 出する。 回線選択手段 2 5 は、 代替要求手段 2 4 によって送出され た通知に応じて送信端と連係するこ とによって、 その通知で示され る個々の回線を代替する予備回線を特定し、 これらの個々の回線を 介して受信された信号に代えて、 対応する予備回線を介して与えら れる と共に、 受信手段 2 2 によって受信された信号を適用する。 The principle of the seventh node device according to the present invention is as follows. The receiving means 22 includes a plurality of N signals individually given via a plurality of N lines 20-1-20-N, and a single or a plurality of n (N) spare lines 21-1-1 to A single or multiple n signals individually given via 2 1 -n are received while correcting these phase differences. The transmission quality monitoring means 23 monitors the transmission quality of the plurality of N lines 20 -1 to 20 -N, and these lines 20-:! Out of ~ 20-N, specify the line whose transmission quality is lower than the predetermined lower limit. The alternative requesting means 24 includes, among the lines identified by the transmission quality monitoring means 23, one or more n spare lines 2 1 -1 to 2 1 -n in the ascending order of the transmission quality. A notification is sent to the opposite transmitting end via the line to the effect that these lines should be individually replaced with one of the spare lines. The line selecting means 25, in cooperation with the transmitting end in response to the notification sent by the substitute requesting means 24, specifies a spare line which substitutes each line indicated by the notification, and In place of the signal received via the corresponding line, the signal provided via the corresponding protection line and the signal received by the receiving means 22 are applied.
すなわち、 回線 2 0 -:!〜 2 0 -Nの内、 伝送品質が上述した下限値 を下回る回線は、 送信元との連係の下で、 その伝送品質が低い順に 優先的に予備回線の何れかで代替される。  That is, line 20-:! Out of ~ 20-N, a line whose transmission quality is lower than the above-mentioned lower limit is preferentially replaced by one of the protection lines in ascending order of transmission quality in cooperation with the transmission source.
したがって、 上述した代替に際して、 該当する回線と予備回線と の伝送特性の相違が所望の速度および精度で吸収される限り、 個々 の回線が二重化された従来例に比べて、予備回線の効率的な利用と、 ラ ンニングコス トを含む総合的なコス トの削減とが図られる。  Therefore, as long as the difference in transmission characteristics between the relevant line and the protection line can be absorbed at the desired speed and accuracy in the above-mentioned alternative, the efficiency of the protection line can be reduced more efficiently than in the conventional example in which individual lines are duplicated. Utilization and overall cost reduction including running costs will be achieved.
本発明にかかわる第八のノー ド装置の原理は、下記の通りである。 受信手段 2 2 は、 複数 Nの回線 2 0 -1〜 2 0 -Nを介して個別に与 えられる複数 Nの信号と、 単一または複数 n (く N )の予備回線 2 1 - 1〜 2 1 - n を介して個別に与え られる単一または複数 ηの信号とを これらの位相差を補正しつつ受信する。 伝送品質監視手段 2 3 は、 複数 Νの回線 2 0 -:!〜 2 0 -Νの伝送品質を監視し、 これらの回線 2 0 -1〜 2 0 -Νの内、 伝送品質が所定の下限値を下回る回線を特定す る。 代替要求手段 2 4 Aは、 伝送品質監視手段 2 3 によって特定さ れた回線の内、 伝送品質の昇順に単一または複数 nの予備回線 2 1 -1〜 2 1 - nの数 n以下の数の回線を介して対向する送信端宛に、 こ れらの回線と伝送品質とを示す通知を送出する。 回線選択手段 2 5 Aは、 代替要求手段 2 4 Aによって送出された通知に応じて送信端 と連係するこ とによって、 その通知で示される個々の回線を代替す る予備回線を特定し、 これらの個々の回線を介して受信された信号 に代えて、 対応する予備回線を介して与えられる と共に、 受信手段 2 2 によって受信された信号を適用する。 The principle of the eighth node device according to the present invention is as follows. The receiving means 22 includes a plurality of N signals individually given via a plurality of N lines 20-1 to 20-N and a single or a plurality of n (N) spare lines 21-1 to 1--1. It receives single or multiple η signals individually given via 2 1 -n while correcting these phase differences. The transmission quality monitoring means 23 monitors the transmission quality of a plurality of 2 lines 20-:! to 20 -Ν, and among these lines 20 -1 to 20 -Ν, the transmission quality is a predetermined lower limit. Identify lines below the value You. The alternative requesting means 24 A is one or more n of the protection lines 2 1 -1 to 2 1 -n of the lines identified by the transmission quality monitoring means 23 in the ascending order of the transmission quality. A notification indicating these lines and transmission quality is sent to the opposite transmitting end via the number of lines. The line selecting means 25A, in cooperation with the transmitting end in response to the notification sent by the substitute requesting means 24A, specifies a spare line which substitutes each line indicated by the notification, and Instead of the signals received via the individual lines, the signals provided via the corresponding protection line and received by the receiving means 22 are applied.
すなわち、 複数 Nの回線 2 0 -:!〜 2 0 -Nの内、 単一または複数 n の予備回線 2 1 -:!〜 2 1 - nの何れかで代替されるべき回線の選定は 本発明にかかわる受信端ではなく これらの回線を介して対向する送 信端に委ねられる。  That is, the selection of a line to be replaced with any of the single or plural n spare lines 2 1-:! to 21 -n among the plural N lines 20 0: !! It is entrusted not to the receiving end according to the invention but to the opposing transmitting end via these lines.
したがって、 このような選定が送信端でおこなわれるべき通信制 御の方式に対しても、 柔軟な適用が可能となる。  Therefore, it is possible to flexibly apply such a communication control method to be selected at the transmitting end.
本発明にかかわる第九のノー ド装置の原理は、下記の通りである。 受信手段 2 2 は、 単一または複数 nの予備回線 1 1 -:!〜 1 1 -n を 介して個別に与えられ、 かつ複数 Nの信号の全てあるいは一部の和 に相当する複数 nの和信号を受信する。 代替要求手段 2 4 Aは、 複 数 Nの回線 2 0 -:!〜 2 0 -N と単一または複数 nの予備回線 2 1 -:!〜 2 1 - n との内、 正常である回線および予備回線と、 これらの予備回 線を介して送信端から伝送される和信号の成分との組み合わせの下 で予備回線による代替が可能である回線に限って、 その回線と伝送 品質とを示す通知を送出する。  The principle of the ninth node device according to the present invention is as follows. The receiving means 22 is provided individually via the single or multiple n spare lines 1 1-:! to 1 1 -n, and receives a plurality of n signals corresponding to the sum of all or some of the N signals. Receive the sum signal. The alternative request means 24 A is a normal line between a plurality of N lines 20-:! ~ 20 -N and a single or a plurality of n spare lines 21-:! ~ 21-n. Only the lines that can be replaced by the protection line under the combination of the protection line and the sum signal component transmitted from the transmitting end via these protection lines indicate the line and the transmission quality. Send a notification.
すなわち、 送信端との連係は、 複数 Nの回線 2 0 -:!〜 2 0 -Nの内 障害が発生し、 あるいは伝送品質が劣化した回線であっても、 その 回線および予備回線 2 1 -:!〜 2 1 - nの トラヒ ックの分布、 稼働状況 その他の状態の下で代替が可能な回線のみに関して試行される。  That is, the link with the transmitting end is made up of multiple N lines 20-:! -20 -N Even if a failure has occurred or the transmission quality has deteriorated, the line and the protection line 2 1-:! Traffic distribution of ~ 2 1-n, operation status Only attempted on lines that can be replaced under other conditions.
したがって、 送信端との無効な連係が行われ得る場合に比べて、 サービス品質が高く維持され、 かつ資源の有効利用が図られる。 本発明にかかわる第十のノー ド装置の原理は、下記の通りである。 代替要求手段 2 4 Aは、 代替が可能である回線の内、 個別に属性 として与えられる優先度の降順に対応する回線に、 優先して通知を 送出する。 Therefore, compared to the case where invalid cooperation with the transmitting end can be performed, Service quality is maintained high and resources are used effectively. The principle of the tenth node device according to the present invention is as follows. The substitution requesting means 24A sends a notification preferentially to the lines that can be substituted and that correspond to the descending priority order given individually as an attribute.
すなわち、 複数 Nの回線 2 0 -:!〜 2 0 -Nの属性と、 その属性に基 づいて予め設定され、 かつ予備回線 2 1 -:!〜 2 1 -nを介して個別に 伝送されるべき和信号の成分の組み合わせとに対する柔軟であって 的確な適応が可能となる。  That is, the attributes of a plurality of N lines 20- :! to 20-N are set in advance based on the attributes, and are individually transmitted via the protection lines 21- :! to 21-n. Flexible and precise adaptation to the combination of components of the sum signal to be performed is possible.
図 3は、 本発明にかかわる第十一および第十二のノー ド装置の原 理ブロ ック図である。  FIG. 3 is a principle block diagram of the eleventh and twelfth node devices according to the present invention.
図 3 に示すノー ド装置は、 複数 Nの回線 3 0 -1 3 0 -Nの一端に 接続された送信手段 3 1 と、 単一または複数 nの予備回線 3 2 -1〜 3 2 -nの一端に接続された和信号送信手段 3 3 とから構成される。 本発明にかかわる第十一のノー ド装置の原理は、 下記の通りであ る。  The node device shown in FIG. 3 is composed of transmitting means 31 connected to one end of a plurality N of circuits 30 -1 330 -N, and one or a plurality of n spare lines 3 2 -1 to 3 2 -n And sum signal transmitting means 33 connected to one end of the signal. The principle of the eleventh node device according to the present invention is as follows.
送信手段 3 1は、 複数 Nの回線 3 0-:!〜 3 0 -Nにそれぞれ複数 N の信号を送信する。 和信号送信手段 3 3は、 複数 Nの回線 3 0 -:!〜 3 0 -Nの内、所望の伝送品質と信頼性との双方あるいは何れか一方 が確保される回線の全てあるいは一部に、 送信手段 3 1によって送 信されるべき信号を個々の位相の差を補正しつつ加算する。さ らに、 和信号送信手段 3 3は、 その結果と して得られた和信号を単一また は複数 n(<N)の予備回線 3 2 -:!〜 3 2 -nの何れかに送信する。  The transmission means 31 includes a plurality of N circuits 30- :! Transmit multiple N signals to ~ 30-N respectively. The sum signal transmitting means 33 is connected to all or some of the plurality of N circuits 3 0-:! to 30 -N, in which the desired transmission quality and / or reliability is secured. The signal to be transmitted by the transmission means 31 is added while correcting the difference between the individual phases. Further, the sum signal transmitting means 33 transmits the sum signal obtained as a result to one or more of n (<N) protection lines 3 2-:! to 3 2 -n. Send.
すなわち、 複数 Nの回線 3 0 -1~ 3 0 -Νと、 その複数 Nよ り小さ い単一または複数 nの予備回線 3 2 -:!〜 3 2 -n とを介して受信端と の間に、 冗長な複数 Nの回線が形成される。  That is, the communication between the receiving end via the plurality of N lines 30-1 to 30-Ν and the single or plural n spare lines 3 2-:! to 32-n smaller than the plurality N is performed. In between, redundant N circuits are formed.
したがって、 これらの回線 3 0 -1〜 3 0 -Nの全てが二重化された 場合に比べて、 構成の簡略化と、 信頼性の向上およびラ ンニングコ ス トを含む総合的なコス トの削減とが可能となる。 本発明にかかわる第十二のノー ド装置の原理は、 下記の通りであ る Therefore, compared to the case where all of these circuits 30 -1 to 30 -N are duplicated, the configuration is simplified, the reliability is improved, and the total cost including running cost is reduced. Becomes possible. The principle of the twelfth node device according to the present invention is as follows.
和信号送信手段 3 3は、 複数 Nの回線 3 0 -:!〜 3 0 -Nと、 単一ま たは複数 n(<N)の予備回線 3 2 -:!〜 3 2 -n との組み合わせの内、 並行して障害が発生し、 も し く は伝送品質が劣化する確率が所望の 上限値以下となる個々の組み合わせで、 その組み合わせに属する予 備回線に、 この組み合わせに属する個々の回線を介して伝送される べき信号の成分を含む和信号を送信する。  The sum signal transmitting means 3 3 has a plurality of N circuits 3 0-:! ~ 30 -N and single or multiple n (<N) protection lines 3 2-:! Of the combinations with ~ 32-n, individual combinations in which a failure occurs in parallel or the probability that the transmission quality deteriorates is less than or equal to the desired upper limit, and is assigned to the spare line belonging to that combination A sum signal including a signal component to be transmitted via each line belonging to this combination is transmitted.
すなわち、 予備回線 3 2 -:!〜 3 2 -nの数 nと、 これらの予備回線 3 2 -1〜 3 2 -nで代替されるべき回線との組み合わせは、 所望のサ 一ビス品質や信頼性が達成される態様として設定される。  That is, the protection line 3 2-:! The combination of the number n of ~ 32-n and the lines which should be replaced by these protection lines 32-1 ~ 32-n is set as a mode to achieve the desired service quality and reliability. Is done.
したがって、 これらの組み合わせの設定に適用されるべき基準が 何ら定められていない場合に比べて、 資源の有効利用とサービス品 質の向上とが図られる。  Therefore, effective utilization of resources and improvement of service quality can be achieved compared to the case where no standard to be applied to the setting of these combinations is defined.
本発明 にかかわ る 無瞬断切 り 換え装置の原理は、 下記の通 り であ る 。  The principle of the instantaneous interruption switching device according to the present invention is as follows.
受信手段 3 4 は、 個別の回線を介 して伝送さ れた第一の信 号 と 、 第二の信号 y と、 こ れ ら の信号 x、 y に演算が施さ れ る こ と に よ っ て 生成さ れた第三の信号 z (= f(x,y ))と を 受信す る 。 第一の再生手段 3 5 は、 受信手段 3 4 に よ っ て受 信さ れた第一の信号 X と第三の信号 z と に 関数 g (x, z ) で 定義さ れる所定の演算を施す こ と に よ っ て、 第二の信号 y を 再生す る 。 さ ら に、 第二の再生手段 3 6 は、 受信手段 3 4 に よ っ て 受信さ れた 第二の信号 y と 第三の信号 z と に 関数 ]! (y, z ) で定義さ れる 所定の演算を施す こ と に よ っ て、 第一 の信号 X を再生す る 。  The receiving means 34 is provided by performing operations on the first signal, the second signal y, and these signals x, y transmitted via the individual lines. And the third signal z (= f (x, y)) generated by the above is received. The first reproducing means 35 performs a predetermined operation defined by a function g (x, z) on the first signal X and the third signal z received by the receiving means 34. The second signal y is reproduced by the application. Further, the second reproducing means 36 is defined by the function]! (Y, z) of the second signal y and the third signal z received by the receiving means 34. The first signal X is reproduced by performing a predetermined operation.
位相補償手段 3 7 は、 受信手段 3 4 に よ っ て 受信さ れた第 一の信号 X と第二の再生手段 3 6 に よ っ て再生さ れ、 あ る い は再生さ れる べ き第一の信号 X と の位相差を補償 し、 かつ受 信手段 3 4 に よ っ て 受信さ れた第二の信号 y と 第一の再生 手段 3 5 に よ っ て再生さ れ、 あ る いは再生さ れ る べ き第二の 信号 y と の位相差を補償す る と 共に、 位相差補償後の信号を それそれ出力す る 。 The phase compensating means 37 is reproduced by the first signal X received by the receiving means 34 and the second reproducing means 36, or is to be reproduced. Compensates for the phase difference with one signal X, and Between the second signal y received by the communication means 34 and the second signal y to be reproduced or reproduced by the first reproduction means 35 In addition to compensating for the phase difference, the phase-compensated signal is output separately.
第一の選択手段 3 8 は位相差補償後の 受信手段 3 4 に よ つ て 受信さ れた第一の信号 X と、 位相差補償後の第二の再生 手段 3 6 に よ っ て 再生 さ れた第一の信号 X と の何れか一方 を選択 し、 かつ第二の選択手段 3 9 は並行 して位相差補償後 の受信手段 3 4 に よ っ て 受信さ れた第二の信号 y と、 位相差 補償後の第一の再生手段 3 5 に よ っ て再生 さ れた第二の信 号 y と の何れか一方を選択する 。  The first selecting means 38 is reproduced by the first signal X received by the receiving means 34 after the phase difference compensation and by the second reproducing means 36 after the phase difference compensation. One of the first signal X and the second signal y received by the receiving means 34 after the phase difference compensation in parallel. And the second signal y reproduced by the first reproducing means 35 after the phase difference compensation.
すなわ ち、 第一の信号 X お よび第二の信号 y の送信端 と の 間 に は、 冗長な 回線 と して、 第三の信号 z の伝送に供さ れる 単一の回線が形成さ れる に も かかわ ら ず、 第一の選択手段 3 8 と第二の選択手段 3 9 と には、 異な る 回線を介 して 並行 し て 受信さ れ、 かつ位相差が補償さ れた 2 つの第一の信号 X と 2 つの第二の信号 y と がそ れそれ定常的に与え ら れる 。  In other words, a single line is provided between the first signal X and the transmitting end of the second signal y to serve as a redundant line for transmitting the third signal z. Nevertheless, the first selecting means 38 and the second selecting means 39 have two signals received in parallel via different lines and the phase difference of which is compensated. A first signal X and two second signals y are each given constantly.
し た がっ て、 第一の信号 X と第二の信号 y と の冗長な伝送 に上述 し た冗長な回線が共用 さ れ、 かつそ の冗長な回線 と こ れ ら の第一の信号 X と 第二の信号 y と の伝送 に供 さ れ る 回 線 と の何れに障害が発生 し、 あ る いはその障害の復旧 が図 ら れた場合で あ っ て も 、 第一の選択手段 3 8 お よび第二の選択 手段 3 9 は、 こ れ ら の第一の信号 X と第二の信号 y と は非同 期に、 かつ無瞬断で系構成の変更を行 う こ と がで き る 。  Therefore, the redundant line described above is shared for the redundant transmission of the first signal X and the second signal y, and the redundant line and the first signal X If the failure occurs in either the transmission line for the transmission of the signal and the second signal y, or the failure is recovered, the first selection means is used. 38 and the second selection means 39 can change the system configuration asynchronously and without instantaneous interruption of the first signal X and the second signal y. it can .
なお、 上述 し た 関数 f ( x , y )、 g ( X , z ) Ν h ( y, z )と し て は、 x、 y、 z が何れも 2 値で与え ら れる 場合には、 「 x と y と の排他的論理和」 、 「 x と z と の排他的論理和」 お よ び 「 y と z と の排他的論理和」 と す る例があ げ ら れる が、 下式 を満た すそ の他の関数 : f 0、 S ()、 h ( )の適用 が可能で あ る 。 g (x ,f(x , y )) = y In addition, as for the functions f (x, y) and g (X, z) Ν h (y, z) described above, when x, y, and z are all given as binary values, There are examples of "exclusive OR of x and y", "exclusive OR of x and z", and "exclusive OR of y and z". Other functions that satisfy: f 0, S (), h () can be applied. g (x, f (x, y)) = y
h ( y ,f(x , y )) = x  h (y, f (x, y)) = x
以下、図面に基づいて本発明の実施形態について詳細に説明する。 図 4は、 本発明の実施形態 1 を示す図である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 is a diagram showing Embodiment 1 of the present invention.
図において、 ノ ー ド装置 4 0 Tは、 2つの現用の伝送路 (以下、 「現用伝送路」 という。 ) 4 1 a -1、 4 1 a -2 と単一の予備の伝送 路 (以下、 「予備伝送路」 という。 ) 4 1 s との一端に接続される。 さ らに、 ノー ド装置 4 0 Tには、 S T M方式に基づいて多重化され、 かつ上述した現用伝送路 4 1 a -l、 4 1 a -2にそれそれ送出される べき 2組の複数 Nの伝送情報の列が与えられる。 現用伝送路 4 1 a -1、 4 1 a -2 と予備伝送路 4 1 s との他端にはノー ド装置 4 0 Rが 接続され、 そのノー ド装置 4 O Rの出力にはこれらの現用伝送路 4 l a -l、 4 1 a -2 と予備伝送路 4 1 s との何れかを介して受信され、 かつ上述した 2組の伝送情報の列に対応する 2つの伝送情報の列が 得られる。  In the figure, the node device 40T has two working transmission lines (hereinafter referred to as “working transmission lines”) 41a-1 and 41a-2, and a single spare transmission line (hereinafter referred to as a “working transmission line”). , Called “spare transmission line.” 4) Connected to one end of 1s. In addition, the node device 40T has two sets of pluralities to be multiplexed based on the STM method and to be transmitted to the above-mentioned working transmission lines 41a-l and 41a-2, respectively. A sequence of N transmission information is given. A node device 40 R is connected to the other end of the working transmission lines 41 a-1 and 41 a-2 and the protection transmission line 41 s, and these working devices are connected to the output of the node device 4 OR. Two transmission information sequences received via one of the transmission lines 4 la -l and 41 a -2 and the spare transmission line 41 s and corresponding to the two sets of transmission information sequences described above are obtained. Can be
ノー ド装置 4 0 Tは、 以下に示す要素から構成される。  The node device 40T includes the following elements.
• 上述した 2組の伝送情報の列がそれそれ与えられる多重化部 4 2 -1、 4 2 -2  • Multiplexers 4 2 -1 and 4 2 -2 to which the two sets of transmission information sequences described above are given
• これらの多重化部 4 2 -1、 4 2 -2の出力に直結された 2つの入 力を有する伝送情報冗長化部 ( E X O ) 4 3  • Transmission information redundancy unit (EXO) 4 3 having two inputs directly connected to the outputs of these multiplexing units 4 2 -1 and 4 2 -2
• 多重化部 4 2 -1、 4 2 -2および伝送情報冗長化部 4 3の後段に それそれ配置され、 かつ現用伝送路 4 1 a -l、 4 1 a -2および予備 伝送路 4 1 sの一端にそれそれ直結された回線対応部 ( I N S ) 4 4 a -1、 4 4 a -2s 4 4 s  • Each of the multiplexing sections 4 2 -1 and 4 2 -2 and the transmission information redundancy section 4 3 are arranged at the subsequent stage, and the working transmission paths 4 1 a -l and 4 1 a -2 and the protection transmission path 4 1 Line corresponding part directly connected to one end of s (INS) 4 4 a -1, 4 4 a -2 s 4 4 s
· これらの回線対応部 ( I N S ) 4 4 a -1、 4 4 a -2、 4 4 sの イ ンサー ト入力に直結された出力を有する同期信号生成部 4 5  · A synchronous signal generation unit 45 having an output directly connected to these line corresponding units (INS) 44a-1, 44a-2, and 44s insert inputs
また、 ノー ド装置 4 O Rは、 以下に示す要素から構成される。 - 現用伝送路 4 1 a -l、 4 1 a -2および予備伝送路 4 1 sの他端 にそれそれ直結された回線対応部 ( B U F F ) 4 5 a -l、 4 5 a -2、 4 5 s Further, the node device 4OR is composed of the following elements. -Line corresponding parts (BUFF) 45 a -l, 45 a -2, directly connected to the other end of the working transmission line 41a -l, 41a -2 and the protection transmission line 41s 4 5 s
• 回線対応部 4 5 a-l、 4 5 a -2s 4 5 sの出力にそれそれ直結 された 3つの入力を有する位相調整部 (D L Y) 4 6  • Line adjuster 4 5 a-l, 4 5 a -2 s Phase adjuster (D LY) 4 6 with three inputs directly connected to the output of 45 s
• 位相調整部 4 6が有する 3つの出力の内、回線対応部 4 5 a-l、 4 5 sにそれそれ対応する出力に直結された 2つの入力を有する演 算部 4 7 -1  • Of the three outputs of the phase adjustment unit 46, the arithmetic unit 4 7 -1 having two inputs directly connected to outputs corresponding to the line corresponding units 45 a-l and 45 s, respectively.
• 位相調整部 4 6が有する 3つの出力の内、 回線対応部 4 5 s、 4 5 a-2にそれそれ対応する出力に直結された 2つの入力を有する 演算部 4 7 -2  • Among the three outputs of the phase adjustment unit 46, the line unit 45s and 45a-2 have two inputs directly connected to the corresponding outputs. Arithmetic unit 4 7 -2
· 位相調整部 4 6が有する 3つの出力の内、 回線対応部 4 5 a-l に対応する出力と演算部 4 7 -2の出力とに直結された 2つの入力を 有する回線選択部 4 8 -1  A line selection unit 4 8 -1 having two inputs directly connected to an output corresponding to the line corresponding unit 45 al and an output of the arithmetic unit 47-2 among the three outputs of the phase adjustment unit 46.
• 位相調整部 4 6が有する 3つの出力の内、 回線対応部 4 5 a-2 に対応する出力と演算部 4 7 -1の出力とに直結された 2つの入力を 有する回線選択部 4 8 -3  • Of the three outputs of the phase adjustment unit 46, a line selection unit 4 8 having two inputs directly connected to the output corresponding to the line corresponding unit 45 a-2 and the output of the operation unit 47-1 -3
• これらの回線選択部 4 8 -1、 4 8 -2にそれそれ縦続接続され、 かつ最終段に配置された逆多重化部 4 9 -1、 4 9 -2  • Demultiplexers 4 9-1 and 4 9 -2 connected in cascade to these line selectors 4 8-1 and 4 8 -2, respectively, and arranged at the last stage
[実施形態 1 ]  [Embodiment 1]
以下、 図 4を参照して、 実施形態 1の動作を説明する。  Hereinafter, the operation of the first embodiment will be described with reference to FIG.
ノー ド装置 4 0 Tでは、 多重化部 4 2 -1、 4 2 -2は、 それそれ上 述した 2組の伝送情報の列を多重化し、 かつ所定のフ レーム構成に 適合したヘッダを付加するこ とによって、 個々の伝送情報がその伝 送に専ら適用されるべきタイ ムスロ ッ トに配置されてなる 「多重信 号」 を生成する。 なお、 これらの 「多重信号」 については、 以下で は、 簡単のため、 ビッ ト単位に位相が揃い、 かつ互いに同期してい ると仮定する。  In the node device 40T, the multiplexing units 42-1 and 42-2 multiplex the two sets of transmission information sequences described above, and add a header suitable for a predetermined frame configuration. This creates a "multiplexed signal" in which each piece of transmitted information is placed in a time slot that should be applied exclusively to that transmission. For simplicity, it is assumed below that these “multiplexed signals” have the same phase in bits and are synchronized with each other.
伝送情報冗長化部 4 3は、 これらの 「多重信号」 と して与え られ る 2つのビヅ ト列の排他的論理和をとることによって、 単一のビヅ ト列を生成する。 なお、 以下では、 このような単一のビッ ト列を示 すパルス列については、 以下では、 簡単のため、 単に 「冗長信号」 と称するこ ととする。 The transmission information redundant unit 43 generates a single bit sequence by taking the exclusive OR of these two bit sequences given as “multiplexed signals”. In the following, such a single bit string is shown. In the following, the pulse train is simply referred to as “redundant signal” for simplicity.
同期信号生成部 4 5は、 現用伝送路 4 1 a -1、 4 1 a -2および予 備伝送路 4 1 sの伝送方式に適応し、 かつ上述した 「多重信号」 お よび 「冗長信号」 に同期した同期信号 (ヘッダ等) を生成する。 回線対応部 4 4 a -1、 4 4 a -2 4 4 sは、 上述した 「多重信号」 および 「冗長信号」 に対応する同期信号を付加するこ とによってそ れそれ 「 S T M信号」 を生成し、 現用伝送路 4 1 a-l、 4 1 a -2お よび予備伝送路 4 1 sにこれらの 「 S T M信号」 を並行して送出す る。  The synchronization signal generator 45 is adapted to the transmission schemes of the working transmission paths 41a-1, 41a-2 and the spare transmission path 41s, and has the above-mentioned "multiplexed signal" and "redundant signal". Generates a synchronization signal (header, etc.) synchronized with. The line-corresponding parts 44a-1 and 44a-244s each generate an "STM signal" by adding a synchronization signal corresponding to the "multiplexed signal" and "redundant signal" described above. Then, these "STM signals" are transmitted in parallel to the working transmission lines 41al and 41a-2 and the protection transmission line 41s.
一方、 ノー ド装置 4 0 Rでは、 回線対応部 4 5 a-l、 4 5 a -2お よび 4 5 sは、 それそれ現用伝送路 4 1 a -1、 4 1 a -2および予備 伝送路 4 I sを介して与えられた 「 S T M信号」 を取り込み、 これ らの 「 S T M信号」 を位相調整部 4 6 に並行して与える。  On the other hand, in the node device 40 R, the line-corresponding parts 45 al, 45 a -2 and 45 s are respectively used for the working transmission lines 41 a-1 and 41 a -2 and the protection transmission line 4. The “STM signal” given via Is is fetched, and these “STM signals” are given to the phase adjustment unit 46 in parallel.
位相調整部 4 6は、 上述した現用伝送路 4 1 a -1、 4 1 a -2およ び予備伝送路 4 1 sの伝送経路や伝送特性の相違に起因してこれら の 「 S T M信号」 に生じた位相の偏差を補正する。 したがって、 現 用伝送路 4 1 a-l、 4 l a-2および予備伝送路 4 I sを介してそれ それ与えられた 「 S T M信号」 は、 何れも ビッ ト単位に同時に更新 される NR Z信号と して演算部 4 7 -1、 4 7 -2や回線選択部 4 8 -.1、 4 8 -2に与えられる。  The phase adjuster 46 uses these “STM signals” due to differences in the transmission paths and transmission characteristics of the working transmission paths 41 a-1 and 41 a-2 and the protection transmission path 41 s described above. Is corrected. Therefore, the `` STM signal '' provided via the working transmission lines 41al and 4la-2 and the protection transmission line 4Is is the same as the NRZ signal which is updated simultaneously in bit units. Then, it is given to the operation units 47-1, 47-2 and the line selection units 48-.1, 48-2.
演算部 4 7 -2は、 現用伝送路 4 1 a -2と予備伝送路 4 1 s とを介 してそれそれ受信された 「 S T M信号」 の排他的論理和をとるこ と によって、 上述した 「冗長信号」 に含まれる成分の内、 送信端であ るノー ド装置 4 0 Tにおいて多重化部 4 2 -1 によって生成された 「多重信号」 をペイ ロー ドに含む 「第一の冗長多重信号」 を生成す る。  The operation unit 47-2 performs the exclusive OR operation of the "STM signal" received through the working transmission path 41a-2 and the protection transmission path 41s, respectively, to thereby perform the above-described operation. Among the components included in the “redundant signal”, the “multiplexed signal” generated by the multiplexing unit 4 2-1 in the node device 40 T as the transmitting end is included in the payload. Signal.
また、 演算部 4 7 -1は、 現用伝送路 4 1 a -2ではなく現用伝送路 1 a -1を介して受信された 「 S T M信号」 が演算対象となる点を 除いて、 上述したよう に演算部 4 7 -2が行う演算と同様の演算を行 う ことによって、 送信端であるノー ド装置 4 0 Tにおいて多重化部 4 2 -2によって生成された 「多重信号」 をペイ ロー ドに含む 「第二 の冗長多重信号」 を生成する。 The operation unit 47-1 determines that the “STM signal” received via the working transmission path 1 a-1, not the working transmission path 41 a-2, is to be processed. Except for this, as described above, by performing the same operation as the operation performed by the operation unit 47-2, the “multiplexing” generated by the multiplexing unit 42-2 in the node device 40T as the transmitting end is performed. A "second redundant multiplex signal" is generated that includes the "signal" in the payload.
回線選択部 4 8 -1は、 位相調整部 4 6 によって直接与え られ、 か つ現用伝送路 4 1 a -1 を介して受信された 「 S T M信号」 の伝送品 質を所定の基準に基づいて監視し、 その伝送品質がこの基準を満た す程度に良好である場合には、 逆多重化部 4 9 にこの「 S T M信号」 を与える。  The line selection unit 48-1 provides the transmission quality of the "STM signal" directly provided by the phase adjustment unit 46 and received via the working transmission line 41a-1 based on a predetermined standard. Monitoring, and when the transmission quality is good enough to satisfy this criterion, the “STM signal” is given to the demultiplexing unit 49.
しかし、 このような伝送品質がその基準を下回る程度に劣化して いる期間には、 回線選択部 4 8 -1 は、 演算部 4 7 -2によって生成さ れた 「第一の冗長多重信号」 を上述した 「 S T M信号」 に代えて逆 多重化部 4 9 -1 に与える。  However, during such a period in which the transmission quality is degraded to a level below the standard, the line selector 48-1 generates the "first redundant multiplexed signal" generated by the arithmetic unit 47-2. Is given to the demultiplexing section 49-1 instead of the “STM signal” described above.
なお、 回線選択部 4 8 -2 によって行われる処理については、 伝送 品質の監視の対象が現用伝送路 4 1 a -2によって与えられた 「 S T M信号」 であ り、 「第一の冗長多重信号」 に代えて既述の 「第二の 冗長多重信号」 が適用される点を除いて、 回線選択部 4 8 -1が既述 の通り に行う処理と同じであるので、 ここでは、 その説明を省略す る。  Regarding the processing performed by the line selection unit 48-2, the transmission quality is monitored for the "STM signal" given by the working transmission line 41a-2, and for the "first redundant multiplexed signal". , Except that the above-mentioned “second redundant multiplexed signal” is applied instead of the above, the processing is the same as that performed by the line selection unit 48-1 as described above. Is omitted.
すなわち、 受信端であるノー ド 4 0 Rでは、 現用伝送路 4 1 a -1、 4 1 a -2の何れについても、 他方の現用伝送路と予備伝送路 4 1 s との伝送品質が上述した基準を満たす程度に良好である限り、 その 予備伝送路 4 1 s を介して受信された 「 S T M信号」から抽出され、 かつ該当する現用回線が正常である場合に受信されるべき 「 S T M 信号」 を代替し得る同位相の 「第一の冗長多重信号」 (あるいは 「第 二の冗長多重信号」 ) が復元される。 さ らに、 この現用線に何らか の障害が発生したときには、 伝送情報が何ら欠落することなく無瞬 断による系構成の更新が実現される。  That is, at the receiving end node 40 R, the transmission quality of the other working transmission path and the protection transmission path 41 s for both the working transmission paths 41 a-1 and 41 a-2 is as described above. The STM signal extracted from the "STM signal" received via the protection transmission line 41 s and received when the applicable working line is normal, as long as the STM signal is good enough to satisfy the specified criteria. The "first redundant multiplex signal" (or "second redundant multiplex signal") of the same phase that can replace "" is restored. In addition, if any failure occurs on the working line, the system configuration can be updated without interruption without any transmission information being lost.
したがって、 本実施形態によれば、 ノー ド装置 4 0 T、 4 O Rの 間には、 2つの現用伝送路 4 1 a -1、 4 1 a -2に共通の単一の予備 伝送路 4 1 s が敷設されてなる冗長な伝送路が形成される。 Therefore, according to the present embodiment, the node devices 40 T and 4 OR Between them, there is formed a redundant transmission line in which a single spare transmission line 41s common to the two working transmission lines 41a-1 and 41a-2 is laid.
図 5 は、 本発明の実施形態 2 を示す図である。  FIG. 5 is a diagram showing a second embodiment of the present invention.
図において、 図 4 に示すものと機能および構成が同じものについ ては、 同じ符号を付与して示し、 ここでは、 その説明を省略する。  In the figure, components having the same functions and configurations as those shown in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted here.
本実施形態と図 4 に示す実施形態との構成の相違点は、 ノー ド装 置 4 O Rに代えて備えられたノー ド装置 6 O Rの構成にある。  The difference between this embodiment and the embodiment shown in FIG. 4 lies in the configuration of a node device 6OR provided in place of the node device 4OR.
ノー ド装置 6 O Rとノ一 ド装置 4 O Rとの構成の相違点は、 回線 選択部 4 8 -1、 4 8 -2 に代えてセレクタ 6 1 -1、 6 1 -2が備えられ、 位相調整部 4 6の第一ないし第三の出力に接続された 3つの入力と、 これらのセレクタ 6 1 -1、 6 1 -2の選択入力に個別に接続された 2 つ出力とを有する ビッ ト誤り検出部 6 2が付加された点にある。  The difference between the configurations of the node device 6 OR and the node device 4 OR is that selectors 6 1-1 and 6 1-2 are provided in place of the line selectors 48-1 and 48-2, A bit having three inputs connected to the first to third outputs of the adjustment unit 46 and two outputs individually connected to the selected inputs of these selectors 6 1-1 and 6 1 -2 An error detection unit 62 is added.
[実施形態 2 ]  [Embodiment 2]
以下、 図 5 を参照して、 実施形態 2 の動作を説明する。  Hereinafter, the operation of the second embodiment will be described with reference to FIG.
ビッ ト誤り検出部 6 2は、 位相調整部 4 6 を介して与えられ、 か つ現用伝送路 4 1 a -1 ( 4 1 a -2) を介して受信された 「 S T M信 号」 の成分の内、 所定のフ レーム構成に基づいて一義的に定まるぺ イ ロ一 ドのみのビッ ト誤り率を監視し、 そのビッ ト誤り率が規定の 上限値を下回るか否かを判別する。  The bit error detection unit 62 is a component of the “STM signal” which is given through the phase adjustment unit 46 and received via the working transmission path 41 a-1 (41 a-2). Among them, the bit error rate is uniquely determined based on a predetermined frame configuration. The bit error rate of only the erase is monitored, and it is determined whether or not the bit error rate is lower than a specified upper limit.
さ らに、 ビッ ト誤り検出部 6 2は、 その判別の結果が偽である場 合には、 セレクタ 6 1 -1 ( 6 1 -2) に、 『現用伝送路 4 1 a -1 ( 4 1 a -2) を介して受信され、 かつ位相調整部 4 6 を介して与えられ た 「 S T M信号」 を逆多重化部 4 9 -1 ( 4 9 -2) に与えるべきこと』 を意味する選択信号を与える。  In addition, if the result of the determination is false, the bit error detection unit 62 informs the selector 6 1-1 (6 1 -2) of “the current transmission path 4 1 a −1 (4 1a -2) and the `` STM signal '' given via the phase adjustment unit 46 should be given to the demultiplexing unit 49-1 (49-2) ''. Give a selection signal.
しかし、 上述した判別の結果が真である場合には、 ビッ ト誤り検 出部 6 2は、 セレクタ 6 1 -1 ( 6 1 -2) に、 『演算部 4 7 -2 ( 4 7 - 1 ) によって与え られた 「第一の冗長多重信号」 (第二の冗長多重信 号) を逆多重化部 4 9 -1 ( 4 9 -2) に与えるべきこ と』 を意味する 選択信号を与える。 すなわち、 現用伝送路 4 1 a -l、 4 1 a -2の伝送品質、 あるいは これらの現用伝送路 4 1 a -1、 4 1 a -2に何らかの障害が発生した か否かの判別は、 上述した 「 S T M信号」 のフ レーム構成ではなく、 そのフレーム構成に適応したペイ 口一 ドのみにかかわる伝送品質に 基づいて行われる。 However, if the result of the above-described determination is true, the bit error detection unit 62 informs the selector 6 1-1 (6 1 -2) of “the operation unit 4 7 -2 (4 7-1 ) Is to be given to the demultiplexing unit 49-1 (49-2). . That is, the transmission quality of the working transmission lines 41a-1 and 41a-2, or the determination of whether any failure has occurred in these working transmission lines 41a-1 and 41a-2, It is performed based on the transmission quality related only to the pay mouth that is adapted to the frame configuration, not the frame configuration of the “STM signal” described above.
このよう に本実施形態によれば、 ペイ ロー ドの内容の正否の基準 として C R C演算その他の高度な基準の適用が可能とな り、 そのぺ ィ ロー ド以外のフ ィ ール ド (ヘッダを含む。 ) を介して所望の情報 を伝送する ことが可能となる。  As described above, according to the present embodiment, it is possible to apply a CRC operation or other advanced criteria as a criterion for determining whether the content of the payload is correct or not. It is possible to transmit desired information via.
したがって、 既述の第一の実施形態に比べて、 現用伝送路 4 1 a -1、 4 1 a -2の伝送品質の監視の確度が高められ、 かつ多様なシス テムの構成に対する柔軟な適応が可能となる。  Therefore, compared to the above-described first embodiment, the accuracy of monitoring the transmission quality of the working transmission lines 41a-1 and 41a-2 is improved, and the system can be flexibly adapted to various system configurations. Becomes possible.
図 6 は、 本発明の実施形態 3 を示す図である。  FIG. 6 is a diagram showing a third embodiment of the present invention.
図において、 図 4 に示す実施形態と本実施形態との構成の相違点 は、 ノー ド装置 4 0 Rに代えてノー ド装置 7 0 Rが備えられた点に ある。  In the drawing, the difference between the embodiment shown in FIG. 4 and the present embodiment lies in that a node device 70R is provided instead of the node device 40R.
ノー ド装置 7 O Rとノー ド装置 4 O Rとの構成の相違点は、 回線 選択部 4 8 -1、 4 8 -2 に代えて回線選択部 7 1 -1、 7 1 -2が備えら れ、 これらの回線選択部 7 1 -1、 7 1 -2の前段と して誤り訂正部 7 2 -1、 7 2 -2が付加された点にある。  The difference between the configurations of the node device 7 OR and the node device 4 OR is that the line selection units 7 1-1 and 7 1 -2 are provided instead of the line selection units 48-1 and 48-2. The point is that error correction sections 72-1 and 72-2 are added as a preceding stage of these line selection sections 71-1 and 71-2.
[実施形態 3 ]  [Embodiment 3]
以下、 図 6 を参照して、 実施形態 3の動作を説明する。  Hereinafter, the operation of the third embodiment will be described with reference to FIG.
ノー ド装置 7 O Rでは、 誤り訂正部 7 2 -1、 7 2 -2は、 それぞれ 下記の組み合わせと して含まれる信号に C R Cその他の演算を施し ビッ ト誤り が生じたビッ トの検出と論理値の訂正とを並行して行う • 現用回線 4 1 a -1 を介して受信され、 かつ位相調整部 4 6 を介 して与えられた 「 S T M信号」 と、 既述の 「第一の冗長多重信号」 との組み合わせ  In the node device 7 OR, the error correction units 72-1 and 72-2 perform CRC and other operations on the signals included in the following combinations, respectively, and detect and logically detect the bit in which the bit error has occurred. Perform the correction in parallel with the value. • The “STM signal” received via the working line 4 1 a -1 and given via the phase adjustment unit 46 and the “first redundancy” Multiplex signal "
• 現用回線 4 1 a -2を介して受信され、 かつ位相調整部 4 6 を介 して与えられた 「 S T M信号」 と、 既述の 「第二の冗長多重信号」 との組み合わせ • Received via the working line 4 1 a -2 and via the phase adjuster 46 Combination of "STM signal" given as above and "Second redundant multiplex signal" described above
回線選択部 7 1 -1 ( 7 1 -2) は、 現用伝送路 4 1 a -1 ( 4 1 a -2) を介して受信され、 かつ位相調整部 4 6 によって与えられた 「 S T M信号」 の伝送品質が所定の下限値を下回らない限り、 その 「 S T M信号」 と、 演算部 4 7 -2 ( 4 7 -1) によって与え られた 「第一の 冗長多重信号」 ( 「第二の冗長多重信号」 ) との内、 ビッ ト誤りが 少ない一方の信号を所定のフ レーム構成に基づいて判別すると共に. その一方の信号を逆多重化部 4 9 -1 ( 4 9 -2) に与える。  The line selection section 7 1 -1 (7 1 -2) receives the `` STM signal '' received through the working transmission path 4 1a -1 (4 1a -2) and given by the phase adjustment section 46. As long as the transmission quality of the signal does not fall below the predetermined lower limit, the "STM signal" and the "first redundant multiplexed signal" ("second redundant signal") given by the arithmetic unit 47-2 (47-1) Multiplexed signal ”) and one of the signals with few bit errors is determined based on the predetermined frame configuration. The one signal is supplied to the demultiplexing unit 49-1 (49-2). .
すなわち、 現用伝送路 4 1 a -I 4 1 a -2の何れについても、 伝 送品質の劣化が軽微である場合には、 これらの現用伝送路 4 1 a -Is  That is, for any of the working transmission lines 41a-I41a-2, if the deterioration of the transmission quality is slight, these working transmission lines 41a-Is
1 a-2の内、 伝送品質が劣化した現用伝送路の予備伝送路 4 1 s による代替が保留される。  Of 1a-2, the replacement of the working transmission line with deteriorated transmission quality by the spare transmission line 41s is suspended.
したがって、 本実施形態によれば、 逆多重化部 4 9 -1、 4 9 -2の 後段で行われる伝送路復号化その他の処理の下で所望の伝送品質が 確保される限り、 系構成の頻繁な更新が回避され、 かつ予備伝送路 1 sは真に許容されない程度に伝送品質が劣化した現用伝送路に 代えて適正に利用される。  Therefore, according to the present embodiment, as long as desired transmission quality is ensured under transmission path decoding and other processing performed after the demultiplexing sections 49-1, 49-2, the system configuration Frequent updating is avoided, and the spare transmission path 1 s is properly used in place of the working transmission path whose transmission quality has deteriorated to an unacceptably low level.
なお、 本実施形態は、 既述の実施形態 1において、 回線選択部 4 8 -1、 4 8 -2に代えて回線選択部 7 1 -1、 7 1 -2が備えられる こと によって実現されている。  This embodiment is realized by providing the line selection units 71-1 and 71-2 in place of the line selection units 48-1 and 48-2 in the above-described first embodiment. I have.
しかし、 本実施形態は、 このような構成に限定されず、 例えば、 回線選択部 7 1 -1、 7 1 -2が図 5に示すセレクタ 6 1 -1、 6 1 -2を 兼ね、 かつ図 6に点線で示すよう に、 同図に示すビッ ト誤り検出部 6 2が備えられることによって、 既述の実施形態 2において併せて 実現されても よい。  However, the present embodiment is not limited to such a configuration. For example, the line selectors 71-1 and 71-2 also serve as the selectors 61-1 and 61-2 shown in FIG. As indicated by the dotted line in FIG. 6, the provision of the bit error detection unit 62 shown in FIG. 6 may be realized together with the second embodiment described above.
図 7は、 本発明の実施形態 4を示す図である。  FIG. 7 is a diagram showing Embodiment 4 of the present invention.
本実施形態と図 5に示す実施形態との構成の相違点は、 ノー ド装 置 6 O Rに代えてノー ド装置 8 O Rが備えられた点にある。 ノー ド装置 8 O Rとノー ド装置 6 O Rとの構成の相違点は、 ビヅ ト誤り検出部 6 2に代えてビッ ト誤り検出部 8 1が備えられた点に ある。 The difference between this embodiment and the embodiment shown in FIG. 5 is that a node device 8OR is provided instead of the node device 6OR. The difference between the configurations of the node device 8 OR and the node device 6 OR is that a bit error detection unit 81 is provided instead of the bit error detection unit 62.
[実施形態 4 ]  [Embodiment 4]
以下、 図 7を参照して、 本発明にかかわる実施形態 4の動作を説 明する。  Hereinafter, the operation of the fourth embodiment according to the present invention will be described with reference to FIG.
本実施形態の特徴は、 ビッ ト誤り検出部 8 1が行う下記の処理の 手順にある。  The feature of the present embodiment lies in the following processing procedure performed by the bit error detection unit 81.
ビッ ト誤り検出部 8 1は、 図 5に示すビッ ト誤り検出部 6 2 と同 様にして、 現用伝送路 4 1 a-l、 4 1 a -2を介して受信され、 かつ 位相調整部 4 6を介してそれそれ 「 S T M信号」 と して与えられる フ レームのフ ィ ール ドの内、 ペイ ロー ドのみについて ビヅ ト誤り を 監視する。  The bit error detector 81 receives the signal via the working transmission lines 41 al and 41a-2 in the same manner as the bit error detector 62 shown in FIG. In each of the fields of the frame provided as the “STM signal” through the interface, bit errors are monitored only for the payload.
さ らに、 ビッ ト誤り検出部 8 1は、 これらのビッ ト誤り率がそれ それ規定の上限値を下回るか否かを判別し、 これらの判別の結果の 双方または何れか一方が偽である場合には、 図 5に示す実施形態に おいてビッ ト誤り検出部 6 2 によって行われる処理と同じ手順に基 づく処理を行う。  Further, the bit error detection section 81 determines whether or not these bit error rates are below respective prescribed upper limits, and both or one of the results of these determinations is false. In this case, a process is performed based on the same procedure as the process performed by the bit error detection unit 62 in the embodiment shown in FIG.
しかし、 上述した判別の結果の双方が真である場合には、 ビッ ト 誤り検出部 8 1は、 既述の 「 S T M信号」 の内、 ペイ ロー ドの ビヅ ト誤り率が大きい一方の 「 S T M信号」 (以下、 「劣化 S T M信号」 という。 ) を特定する。  However, if both of the above-mentioned determination results are true, the bit error detection unit 81 selects one of the “STM signals” described above, which has a larger bit error rate of the payload. STM signal ”(hereinafter referred to as“ degraded STM signal ”).
さ らに、 ビッ ト誤り検出部 8 1は、 セレクタ 6 1 -1、 6 1 -2の内、 この 「劣化 S T M信号」 の伝送路に該当する一方の現用伝送路 (符 号 「 4 1 a」 で示される。 ) に対応する一方のセレクタに、 演算部 (符号 「 4 7」 で示される。 ) によって与えられる 「第一の冗長多 重信号」 あるいは 「第二の冗長多重信号」 を選択すべきこ とを意味 する選択信号を与える。  In addition, the bit error detection unit 81 selects one of the selectors 61-1 and 61-2, one of the working transmission lines (code “41 a”) corresponding to the transmission line of the “degraded STM signal”. Select the “first redundant multiplex signal” or “second redundant multiplex signal” given by the operation unit (shown by “47”) in one selector corresponding to). Give a selection signal that means what to do.
すなわち、 現用伝送路 4 1 a-l、 4 1 a-2の双方の伝送品質が上 述した下限値を下回る場合には、 これらの現用伝送路 4 1 a -1、 4 1 a -2の内、伝送品質が低い一方を介して受信された「 S T M信号」 に代えて、 他方の現用伝送路と予備伝送路 4 I s とを介してそれそ れ受信された 「 S T M信号」 の差分として生成された 「第一の冗長 多重信号」 、 あるいは 「第二の冗長多重信号」 が適用される。 That is, the transmission quality of both the working transmission lines 41al and 41a-2 is improved. If the value is below the lower limit described above, one of these working transmission lines 41a-1 and 41a-2 will be replaced with the "STM signal" The `` first redundant multiplex signal '' or `` second redundant multiplex signal '' generated as the difference between the `` STM signal '' received via the working transmission line and the protection transmission line 4Is is applied Is done.
したがって、 本実施形態によれば、 現用伝送路 4 1 a-l、 4 1 a -2の双方の伝送品質が並行して劣化している期間にも、 予備伝送路 4 1 s を介して受信された 「 S T M信号」 が効率的に利用され、 か つ伝送品質の劣化が小さ く抑えられる。  Therefore, according to the present embodiment, even during the period when the transmission quality of both the working transmission lines 41al and 41a-2 is degraded in parallel, the signal is received via the backup transmission line 41s. The “STM signal” is used efficiently, and degradation of transmission quality is suppressed to a small extent.
なお、 本実施形態では、 図 5 に示す実施形態に本発明が適用され ているが、 本発明は、 現用伝送路 4 1 a-l、 4 1 a-2の双方の伝送 品質が並行して所望の形態および精度で監視されるならば、 このよ うな構成に限定されず、 既述の何れの実施形態に対する適用も同様 に可能である。  Note that, in the present embodiment, the present invention is applied to the embodiment shown in FIG. 5, but in the present invention, the transmission qualities of both the working transmission paths 41 a1 and 41 a-2 are desired in parallel. The configuration is not limited to such a configuration as long as it is monitored in form and accuracy, and application to any of the above-described embodiments is also possible.
図 8は、 本発明の実施形態 5 を示す図である。  FIG. 8 is a diagram showing a fifth embodiment of the present invention.
図において、 図 7 に示すものと機能および構成が同じものについ ては、 同じ符号を付与して示し、 以下では、 その説明を省略する。  In the drawing, components having the same functions and configurations as those shown in FIG. 7 are denoted by the same reference numerals, and description thereof will be omitted below.
本実施形態と図 7 に示す実施形態との構成の相違点は、 ノー ド装 置 8 O Rに代えてノー ド装置 9 O R t が備えられ、 そのノー ド装置 9 O R t と構成が同じであるノー ド装置 9 O T rがノー ド装置 4 0 Τ に代えて備えられ、 これらのノー ド装置 9 O R t、 9 O T rの間 に、 全二重の現用伝送路(4 1 a -lUs 4 1 a -1D)、 (4 1 a -2U、 4 1 a -2D)と全二重の予備伝送路(4 1 s -U、 4 1 s -D)とが敷設され た点にある。  The difference between the present embodiment and the embodiment shown in FIG. 7 is that a node device 9 ORt is provided instead of the node device 8 OR, and the configuration is the same as that of the node device 9 ORt. A node device 9 OT r is provided in place of the node device 40 Τ, and a full-duplex working transmission line (41 a-lUs 41) is provided between the node devices 9 OR t and 9 OT r. a-1D), (41a-2U, 41a-2D) and full-duplex protection transmission lines (41s-U, 41s-D).
なお、 上述した現用伝送路(4 1 a -lUs 4 1 a -ID)ヽ (4 1 a -2U、 1 a -2D)と予備伝送路(4 1 s -U、 4 1 s -D)の内、 符号に添え文 字 「 D」 が付加されたものは、 それそれ図 7 に示す現用伝送路 4 1 a -l、 4 1 a -2 と予備伝送路 4 1 s とに相当する。  Note that the above-mentioned working transmission line (4 1 a -lUs 4 1 a -ID) ヽ (4 1 a -2U, 1 a -2D) and the protection transmission line (4 1 s -U, 4 1 s -D) Of these, those with the letter “D” added to the code correspond to the working transmission lines 41 a-l and 41 a-2 and the protection transmission line 41 s shown in FIG. 7, respectively.
さ らに、 ノー ド装置 9 O R t と図 8 に示すノー ド装置 8 O R との 構成の相違点は、 ビッ ト誤り率検出部 8 1に代えてビッ ト誤り率検 出部 9 1 Rが備えられ、 かつ下記の点(a)〜(c) を除いて図 7 に示す ノー ド装置 4 0 T と構成が同じである と共に、 現用伝送路 4 1 a- 1U、 4 1 a -2U と予備伝送路 4 1 s -Uの一端に接続された送信部 9 2 Rが備えられた点にある。 In addition, the node device 9 ORt and the node device 8 OR shown in FIG. The difference of the configuration is that a bit error rate detection section 91 R is provided instead of the bit error rate detection section 81, and the configuration shown in FIG. 7 is the same as that of FIG. 7 except for the following points (a) to (c). In addition to having the same configuration as that of the transmission device 40 T, a transmission unit 92 R connected to one end of the working transmission lines 41 a-1U, 41 a-2U and the protection transmission line 41 s-U is provided. It is in the point.
なお、 ノー ド装置 9 O R tの構成要素の内、 機能および構成が上 述したノー ド装置 8 O Rに備えられるものと同じもの (送信部 9 0 Rおよび後述する送信部 9 0 Tを除く 。 ) については、 図 8に示す 符号の末尾に文字 「R」 を付加して示すこ とと し、 ここでは、 その 説明を省略する。  Among the components of the node device 9ORt, those having the same functions and configurations as those provided in the node device 8OR described above (excluding the transmitting unit 90R and a transmitting unit 90T described later). ) Is indicated by adding the letter “R” to the end of the code shown in FIG. 8, and the description is omitted here.
さ らに、 送信部 9 2 Rの構成要素については、 上述したノー ド装 置 9 0 T rに備えられ、 その送信部 9 2 Rと構成が同じである送信 部 9 2 Tの構成要素との峻別を図るために、 図 8に示す符号に第一 の添え文字と して 「R」 を付加して示すこととする。  Further, the components of the transmitting section 92R are provided in the above-described node device 90Tr, and the components of the transmitting section 92T having the same configuration as the transmitting section 92R are the same as those of the transmitting section 92R. In order to distinguish them, "R" is added as the first suffix to the code shown in FIG.
(a) 多重化部 4 2 -1、 4 2 -2 に代えて多重化部 9 4 -Rl、 9 4 -R2 が 備えられ、 かつこれらの多重化部 9 4 -Rl、 9 4 -R2の特定の入力に ビッ ト誤り率検出部 9 1 Rの対応する出力が接続される。 (a) Multiplexing sections 94-Rl and 94-R2 are provided instead of the multiplexing sections 42-1 and 42-2, and the multiplexing sections 94-Rl and 94-R2 are provided. The corresponding output of the bit error rate detector 91 R is connected to a specific input.
(b) 伝送情報冗長化部 4 3 -Rの出力に併せて、 多重化部 9 4 -Rl、 9 4 -R2 の出力にそれそれ接続された 3つの入力と、 ビッ ト誤り率検 出部 9 1 Rの対応する出力に接続された制御入力とを有するセ レク 夕 9 3 -Rが回線対応部 4 4 s -Rの前段と して配置される。  (b) In addition to the output of the transmission information redundancy unit 43-R, the three inputs respectively connected to the outputs of the multiplexing units 94-Rl and 94-R2, and the bit error rate detection unit A selector 93-R having a control input connected to a corresponding output of the 91R is arranged as a stage preceding the line corresponding section 44s-R.
(c) 位相調整部 4 6 Rが有する 3つの出力の内、 予備伝送路 4 1 s -D に対応する出力がセレクタ 6 1 R -1、 6 1 R -2の第三の入力に接 統される。  (c) Among the three outputs of the phase adjuster 46R, the output corresponding to the backup transmission line 41s-D is connected to the third input of the selectors 61R-1 and 61R-2. Is done.
さ らに、 ノー ド装置 9 O T rの構成要素については、 以下では、 ノー ド装置 9 O R tの構成要素との峻別を図るために、 そのノー ド 装置 9 O R tの構成要素の符号の末尾に既述の通り に付加され、 あ るいは第一の添え文字として付加された文字 「R」 に代えて、 文字 「T」 を付加するこ ととし、 こ こでは、 その説明を省略する。 [実施形態 5 ] In addition, the components of the node device 9 OT r are described below in order to distinguish them from the components of the node device 9 OR t. The character "T" is added instead of the character "R" added as described above or as the first subscript, and the description is omitted here. [Embodiment 5]
以下、 図 8 を参照して、 実施形態 5 の動作を説明する。  Hereinafter, the operation of the fifth embodiment will be described with reference to FIG.
本実施形態の特徴は、 ノー ド装置 9 0 R t、 9 0 T rにそれそれ 備えられたビッ ト誤り率検出部 9 1 R、 9 1 T、 多重化部 9 4 -Rl、 9 4 -R2、 9 4 -Tl、 9 4 -Τ2 およびセレクタ 9 3 R、 9 3 Tが連係 して行う下記の処理の手順にある。  The feature of this embodiment is that the bit error rate detectors 91 R and 91 T provided in the node devices 90 Rt and 90 Tr respectively, the multiplexing units 94 -Rl and 94- R2, 94-Tl, 94-Τ2, and selectors 93R, 93T are in the following processing procedure.
ノー ド装置 9 0 R t (9 0 T r )では、 ビッ ト誤り率検出部 9 1 R (9 1 T )は、 現用伝送路 4 1 a -ID, 4 1 a -2D(4 1 a -1U、 4 1 a -2U)の何れか一方の伝送品質が所定の下限値を上回る限り、 「伝送 情報冗長化部 4 3 -R(4 3 -T)の出力を回線対応部 4 4 s -R(4 4 s - T)に与えるべき旨」 の指示をセレクタ 9 3 -R(9 3 -T)に与える続け、 かつ送信部 9 2 R (9 2 T)と何ら連係するこ とな く、 実施形態 4 1 と同様の処理を行う。  In the node device 90 Rt (90 Tr), the bit error rate detection section 91 R (91 T) uses the current transmission path 41 a-ID, 41 a--2D (41 a- As long as the transmission quality of either 1U or 4 1a -2U) exceeds the predetermined lower limit, the output of the transmission information redundancy unit 43-R (43-T) is output to the line corresponding unit 44s-. R (44 s -T) should be given to the selector 93-R (93-T), and without any connection to the transmitter 92R (92T). The same processing as in the embodiment 41 is performed.
なお、 このような処理の過程で各部が連係して行う動作について は、 既述の通りであるので、 こ こではその説明を省略する。  The operations performed by the respective units in cooperation with each other in the course of such processing are as described above, and therefore, the description thereof is omitted here.
しかし、 現用伝送路 4 1 a -IDs 4 1 a -2Dの双方の伝送品質が上 述した下限値を下回る場合には、 ビッ ト誤り率検出部 9 1 Rは、 下 記の一連の処理を行う。  However, if the transmission quality of both the working transmission paths 41a-IDs 41a-2D is below the lower limit described above, the bit error rate detector 91R performs a series of processing described below. Do.
(1) 現用伝送路 4 1 a -ID, 4 1 a-2Dの内、伝送品質が低い一方(以 下、 単に 「特定伝送路」 という。 ) を特定する。  (1) Of the working transmission lines 41a-ID and 41a-2D, specify one of the low transmission quality (hereinafter, simply referred to as "specific transmission line").
(2) 多重化部 9 4 -Rl、 9 4 -R2の双方に、 この特定伝送路の識別子 を含むメ ッセージ (ここでは、 簡単のため、 規定のビッ ト列からな る語である と仮定する。 ) を与える。 ( 2 ) A message including the identifier of this specific transmission line (in this case, for simplicity, it is assumed that it is a word consisting of a specified bit sequence) in both multiplexing units 94-Rl and 94-R2. To give).
(3) セレクタ 6 1 R -1、 6 1 R-2 の内、 その特定伝送路に対応する 一方のセレクタに、 「予備伝送路 4 1 s -Dを介して受信された多重 信号 (位相調整部 4 6 Rによって演算部 4 7 -1, 7 R-2の何れ を介するこ となく与えられる。 ) を選択すべき旨」 の指示を与える。 多重化部 9 4 -Rl、 9 4 -R2は、 既述の伝送情報に所定のフ レーム 構成に基づいてこのようなメ ヅセージを多重化し、 回線対応部 4 4 a -Rl、 4 4 a -R2および伝送情報冗長化部 4 3 -Rに、 その結果とし て得られた 「多重信号」 を与える。 (3) One of the selectors 61 R-1 and 61 R-2 corresponding to the specific transmission path is sent to the selector corresponding to the “multiplexed signal (phase adjustment) received via the protection transmission path 41 s-D. This is given by the unit 46R without passing through any of the arithmetic units 47-1, 7R-2.) The multiplexing units 94-Rl and 94-R2 multiplex such a message into the transmission information described above based on a predetermined frame configuration, and The resulting "multiplexed signal" is given to a-Rl, 44a-R2 and the transmission information redundancy unit 43-R.
したがって、 上述したメ ッセージは、 現用伝送路 4 1 a -1U、 4 1 a -2Uおよび予備伝送路 4 1 s -Uの全てあるいは一部を介してノ — ド装置 9 O T r宛に送信される。  Therefore, the above-mentioned message is transmitted to the node device 9OTr via all or a part of the working transmission paths 41a-1U and 41a-2U and the protection transmission path 41s-U. You.
ノー ド装置 9 0 T rでは、 ビッ ト誤り率検出部 9 1 Tは、 このよ うなメ ヅセージを識別する と、 セレクタ 9 3 -Tにそのメ ヅセージに 含まれる識別子を与える。  In the node device 90Tr, the bit error rate detector 91T identifies such a message and gives the selector 93-T an identifier included in the message.
セレクタ 9 3 Tは、 伝送情報冗長化部 4 3 -Tによって与えられる 「冗長信号」 に代えて、 現用伝送路 4 1 a -1 DN 4 1 a -2Dの内、 こ の識別子で示される一方の現用伝送路に対応する多重化部(符号「 9 4 -Τ1」 、 「 9 4 -T2」 の何れかで示される。 ) が与える 「多重信号」 を回線対応部 4 4 s -Τに与える。 The selector 9 3 T, instead of the "redundant signal" provided by the transmission information redundancy unit 4 3 -T, active transmission line 4 1 a -1 of D N 4 1 a -2D, represented by this identifier The “multiplexed signal” given by the multiplexing unit (indicated by either “94-Τ1” or “94-T2”) corresponding to one of the working transmission lines is sent to the line corresponding unit 44 s-Τ. give.
すなわち、 現用伝送路 4 1 a -ID, 4 1 a -2Dの双方の伝送品質が 既述の下限値を下回る場合には、 これらの現用伝送路 4 1 a -1 D、 4 1 a -2Dの内、 伝送品質が低い一方は、 予備伝送路 4 1 s -Dで代 替される。  In other words, if the transmission quality of both the working transmission lines 41a-ID and 41a-2D is below the lower limit described above, these working transmission lines 41a-1D and 41a-2D Among them, the one with low transmission quality is replaced by the spare transmission path 41 s-D.
したがって、 本実施形態によれば、 伝送品質が最も低い現用伝送 路が必ずしも予備伝送路 4 1 s -D で代替される とは限らない他の 実施形態に比べて、 伝送品質が高く維持される。  Therefore, according to the present embodiment, the transmission quality is maintained higher than in the other embodiments in which the working transmission line having the lowest transmission quality is not necessarily replaced by the spare transmission line 41s-D. .
なお、 本実施形態では、 並行して伝送品質が下限値を下回った現 用回線 4 1 a -1DN 4 1 a -2Dの内、 その伝送品質が低い特定伝送路 がビヅ ト誤り検出部 9 1 Rによって識別され、 かつノー ド装置 9 0In the present embodiment, parallel among transmission quality of the current for the line 4 1 a -1D N 4 1 a -2D the lower limit value, the transmission quality is low specific transmission path bi Uz preparative error detection unit 9 1 R identified by R and node device 9 0
T rに備えられたビッ ト誤り率検出部 9 1 Tに通知されている。 This is notified to the bit error rate detector 91 T provided for Tr.
しかし、 このような特定伝送路については、 例えば、 下記の構成 が適用される こ とによって、 ノー ド装置 9 0 T rによって識別され てもよい。  However, such a specific transmission path may be identified by the node device 90Tr, for example, by applying the following configuration.
• ビッ ト誤り率検出部 9 1 Rが既述のメ ッセージと して現用伝送路 4 1 a -1D、 4 1 a -2Dの個々の伝送品質をノー ド装置 9 O T rに通 知する。 • The bit error rate detection unit 91R passes the individual transmission qualities of the working transmission lines 41a-1D and 41a-2D to the node device 9OTr as the messages described above. Know.
• ノー ド装置 9 0 T rでは、 ビッ ト誤り率検出部 9 I Tが上述し たメ ッセージとして取得された伝送品質の内、 低い一方に対応 する現用伝送路(符号 「 4 1 a -lD」 、 「 4 1 a -2D」 の何れかで 示される。 )を特定伝送路と して識別する。  • In the node device 90Tr, the bit error rate detection unit 9IT uses the current transmission path (code “41a-lD”) corresponding to one of the transmission qualities acquired as the above-mentioned message, which is lower. , “41a-2D”) is identified as a specific transmission path.
ま た、 本実施形態で は、 ノ ー ド 装置 9 0 T r か ら ノ ー ド装 置 9 0 R t に至 る 区間 に は、 2 つ の現用伝送路 4 1 a -IDs 4 1 a -2Dに併せて、 こ れ ら の現用伝送路 4 1 a -1D、 4 1 a -2Dの何れの代替に も 供さ れ る 予備伝送路 4 1 s -Dが敷設さ れて い る 。  Further, in the present embodiment, in the section from the node device 90 Tr to the node device 90 Rt, two working transmission lines 41 a -IDs 41 a- Along with 2D, a spare transmission line 41 s-D is provided to be used as an alternative to any of these working transmission lines 41a-1D and 41a-2D.
し か し、 ノ ー ド装置 9 0 T r は、 こ の よ う な現用伝送路の 数は、 「 3 」 以上で あ っ て も よ い 。  However, the number of such active transmission lines in the node device 90Tr may be "3" or more.
さ ら に、 現用伝送路の数が 「 3 」 以上で あ り 、 かつ本実施 形態の よ う に ノ ー ド 装置 9 0 T r が こ れ ら の伝送品質 を 識 別で き る場合に は、 例え ば、 こ れ ら の現用伝送路の内、 伝送 品質が高い単一 ま た は複数の現用伝送路 と、 伝送品質が既述 の下限値 を 上回 る が低い現用伝送路 と に そ れそれ送 出 さ れ る べ き複数の 「多重信号」 の排他的論理和 と して 「 S T M信 号」 が生成さ れ、 こ の 「 S T M信号」 が予備伝送路 4 1 s - Dに送出さ れる と共に、 こ れ ら の 「多重信号」 の組み合わせ が ノ ー ド装置 9 O R t に適宜通知 さ れ る こ と に よ っ て、 総合 的な伝送品質が高 く 維持さ れて も よ い。  Furthermore, if the number of active transmission paths is equal to or more than “3” and the node device 90 Tr can identify these transmission qualities as in the present embodiment, For example, of these working transmission lines, one or more working transmission lines having high transmission quality and working transmission lines having a transmission quality exceeding the lower limit described above but having a low transmission quality are low. An "STM signal" is generated as an exclusive OR of a plurality of "multiplexed signals" to be transmitted and transmitted, and this "STM signal" is transmitted to the spare transmission path 41s-D. At the same time, the combination of these "multiplexed signals" is notified to the node device 9ORt as appropriate, so that the overall transmission quality may be maintained at a high level. .
また、 上述した各実施形態では、 2つの現用伝送路 4 1 a-l、 Further, in each of the above-described embodiments, the two working transmission lines 41 a-l,
1 a -2 ( 4 1 a -1D、 4 1 a -2D) に対して単一の予備伝送路 4 1 s ( 4 1 s -D) が敷設された伝送区間の受信端、 あるいはその受信単 と送信端との双方に配置されたノー ド装置に本発明が適用されてい o 1a -2 (41a-1D, 41a -2D) to the receiving end of the transmission section where a single spare transmission line 41s (41s -D) is O The present invention is applied to node devices arranged at both the
しかし、 本発明は、 このような伝送区間に限定されず、 例えば、 現用伝送路の数 Pが 「 3」 以上であ り、 かつこれらの現用伝送路に 併せて、 P未満の数の予備伝送が敷設された伝送区間の受信端、 あ るいはこの受信端と送信端とに備えられたノー ド装置にも同様に適 用が可能である。 However, the present invention is not limited to such transmission sections. For example, when the number P of working transmission paths is equal to or more than “3” and In addition, the present invention can be similarly applied to a receiving end of a transmission section in which less than P spare transmissions are laid, or a node device provided at the receiving end and the transmitting end.
さらに、 このような予備伝送路の数については、 上述した P未満 の数である限り、 下記の数その他の如何なる数であってもよい。  Further, the number of such spare transmission paths may be the following number or any other number as long as the number is less than P described above.
• 障害が並行して発生し得る現用伝送路の数  • Number of working transmission lines for which failures can occur in parallel
• 並行して障害からの復旧が滞ることが許容されない現用伝送 路の数  • The number of working transmission lines for which recovery from a failure cannot be tolerated in parallel
また、 上述した各実施形態では、 予備伝送路 4 1 s ( 4 1 s -D ) に障害が発生した場合に各部が連係して行うべき動作が何ら記載さ れていない。  Further, in each of the above-described embodiments, there is no description of an operation to be performed in cooperation with each unit when a failure occurs in the backup transmission line 41 s (41 s -D).
しかし、 このような場合に冗長に構成された伝送路に適用される べき系構成については、 本発明の特徴ではなく、 かつ下記の技術そ の他の多様な公知の技術の適用が可能であるので、 ここでは、 各部 が連係して行う動作に関する説明を省略する。  However, in such a case, the system configuration to be applied to the redundantly configured transmission path is not a feature of the present invention, and the following technology and other various known technologies can be applied. Therefore, the description of the operation performed by each unit in cooperation with each other is omitted here.
- 予備伝送路 4 1 s ( 4 1 s -D ) は、 専ら現用伝送路 4 1 a -1、 4 1 s -2( 4 1 a - lD、 4 1 s -2D)の内、 障害が発生し、 あるいは伝 送品質が低下した一方を介して伝送されるべき伝送情報の伝送に供 される。  -The failure of the spare transmission line 41s (41s-D) occurs exclusively in the working transmission lines 41a-1 and 41s-2 (41a-ld, 41s-2d) Or for transmission of transmission information to be transmitted via one of which transmission quality has deteriorated.
■ 予備伝送路 4 I s ( 4 1 s -D ) は、 現用伝送路 4 1 a -1、 4 1 s -2( 4 l a - I Ds 4 1 s -2D)に生じた障害や伝送品質の劣化と、 こ れらの障害あるいは伝送品質の劣化からの復旧に応じて、 所定のァ ルゴリズムに基づいて何れかの現用伝送路を代替する伝送と して適 宜適用される。  ■ The protection transmission line 4Is (41s-D) is used for the failure and transmission quality of the working transmission lines 41a-1 and 41s-2 (4la-IDs41s-2D). Depending on the degradation and the recovery from these failures or the degradation of transmission quality, it is appropriately applied as a substitute for any of the active transmission paths based on a predetermined algorithm.
さ らに、 上述した実施形態 1 ないし実施形態 4では、 予備伝送路 4 1 sは、 現用伝送路 4 1 a - l、 4 1 a -2を介して伝送されるべき 個々の伝送情報の排他的論理和と して得られた 「冗長信号」 の伝送 に供されている。  Further, in Embodiments 1 to 4 described above, the spare transmission path 41 s is exclusive of individual transmission information to be transmitted via the working transmission paths 41 a-l and 41 a-2. It is used to transmit “redundant signals” obtained as logical OR.
しかし、 現用伝送路の数 Pが 「 3」 以上であ り、 かつ予備伝送路 の数が P未満である場合には、 これらの予備伝送路を介して伝送さ れるべき 「冗長信号」 に既述の排他的論理和と して重畳されるべき 伝送情報は、 何れかの予備伝送路が適用されるこ とによって冗長な 構成が実現され得る現用伝送路の内、 該当する予備伝送路と並行し て障害が発生し、 あるいは伝送品質が劣化する確率が所望の上限値 未満と見なされ得る現用伝送路を介して伝送されるべき伝送情報に 限定されてもよい。 However, when the number P of the working transmission lines is 3 or more and the If the number is less than P, the transmission information to be superimposed as the exclusive OR on the “redundant signal” to be transmitted via these spare transmission lines is Among the working transmission lines that can realize a redundant configuration by applying the transmission line, if the probability that a failure occurs in parallel with the corresponding backup transmission line or the transmission quality deteriorates is less than the desired upper limit value It may be limited to the transmission information to be transmitted via the working transmission path which can be regarded.
また、 このよ うな構成が適用された場合には、 個々の予備伝送路 を介して 「冗長信号」 の成分として伝送されるべき伝送情報の数お よび組み合わせに応じて、 伝送区間毎の伝送路の冗長な構成に対す る適応と、 所望の信頼性やサービス品質の確保とが可能となる。  In addition, when such a configuration is applied, the transmission path for each transmission section depends on the number and combination of transmission information to be transmitted as a “redundant signal” component via each of the backup transmission paths. It is possible to adapt to the redundant configuration and to secure desired reliability and service quality.
さらに、 上述した各実施形態では、 ベースバン ド領域で伝送情報 の排他的論理和がと られるこ とによって既述の 「冗長信号」 が生成 されている。  Further, in each of the above-described embodiments, the above-described “redundant signal” is generated by taking the exclusive OR of the transmission information in the baseband area.
しかし、 本発明は、 このような構成に限定されず、 例えば、 各部 の特性および性能の下で下記の条件が成立するならば、 無線周波帯 あるいは所望の中間周波帯で個々の伝送情報が合成されるこ とによ つて、 「冗長信号」 が生成されてもよい。  However, the present invention is not limited to such a configuration. For example, if the following conditions are satisfied under the characteristics and performance of each unit, individual transmission information is synthesized in a radio frequency band or a desired intermediate frequency band. Thus, a “redundant signal” may be generated.
• 「冗長信号」 と して重畳され得る信号の電力の総和の最小値か ら最大値に亘つて、 予備伝送路 4 1 s ( 4 1 s -D ) の伝送特性のダ イ ナミ ック レンジと直線性とが確保される。  • The dynamic range of the transmission characteristics of the spare transmission line 41 s (41 s -D) from the minimum to the maximum of the total power of the signals that can be superimposed as "redundant signals" And linearity are ensured.
- 受信端で行われる所定の処理の下で、 「冗長信号」 に含まれる 所望の伝送情報の成分の抽出が可能である。  -It is possible to extract desired transmission information components included in the "redundant signal" under predetermined processing performed at the receiving end.
また、上述した各実施形態では、現用伝送路 4 1 a -l、 4 1 s -2( 4 1 a -I Ds 4 1 S -2D)の内、 予備伝送路 4 1 s ( 4 1 s -D) を介して 伝送された 「冗長信号」 に含まれる伝送情報が適用され、 も し く は その予備伝送路 4 1 s ( 4 1 s -D ) によって代替されるべき現用伝 送路 (以下、 単に 「被代替伝送路」 という。 ) は、 障害の発生の有 無または伝送品質の劣化の程度に応じて決定されている。 しかし、 本発明は、 このような構成に限定されず、 現用伝送路と 予備伝送路との数と、 これらの予備伝送路を介して伝送される 「冗 長信号」 に重畳されるべき伝送情報の組み合わせとの如何にかかわ らず、 例えば、 現用伝送路の内、 下記の何れかの項目として定義さ れる属性に応じて重み付けられた優先度に基づいて「被代替伝送路」 が選定されても よい。 Also, in each of the above-described embodiments, of the working transmission lines 41 a -l and 41 s -2 (41 a -I Ds 41 S -2D), the spare transmission line 41 s (41 s- The transmission information included in the “redundant signal” transmitted via D) is applied, or the working transmission line (hereinafter referred to as “replacement signal”) to be replaced by the spare transmission line 41 s (41 s -D) , Which is simply referred to as “substituted transmission path.”) Is determined according to whether a failure has occurred or the degree of deterioration of transmission quality. However, the present invention is not limited to such a configuration, and the number of the working transmission lines and the backup transmission lines and the transmission information to be superimposed on the “redundant signal” transmitted through these backup transmission lines are not limited. Irrespective of the combination of Is also good.
• 保守や運用の要求に応じて個々の現用伝送路に設定された重要 度  • The importance assigned to each working transmission line according to maintenance and operation requirements
- 各現用伝送路に形成された個々の論理チャネルに付与された重 要度の総和の降順  -Descending order of the sum of the weights assigned to the individual logical channels formed on each working transmission line
• 各現用伝送路に形成された個々の論理チャネルが割り付けられ た呼、 またはその呼が生起した発信者と着信者との双方あるいは何 れか一方の加入者クラス (サービスオーダ) と して与えられる重要  • Calls to which individual logical channels formed on each working transmission line are allocated, or given as a subscriber class (service order) for the caller and / or the callee who originated the call. Important
産業上の利用の可能性 Industrial applicability
本発明にかかわる第一のノー ド装置では、 全ての回線が二重化さ れた従来例に比べて、 信頼性の低下が最小限度に抑えられつつ瞬断 の回避に併せて、 保守と運用とにかかわる作業の省力化とランニン グコス トの削減とが図られる。  In the first node device according to the present invention, compared to the conventional example in which all the lines are duplicated, the reduction in reliability is minimized and the maintenance and operation are performed while avoiding instantaneous interruption. Labor saving of related work and reduction of running cost are achieved.
また、 本発明にかかわる第二のノー ド装置では、 予備回線の数が 少なくても、 これらの予備回線の何れかによる所望の回線の代替が 確度高く実現される。  Further, in the second node device according to the present invention, even if the number of protection lines is small, the replacement of a desired line by any one of these protection lines can be realized with high accuracy.
さらに、 本発明にかかわる第三のノー ド装置では、 複数の回線と 単一または複数 nの予備回線とを介して伝送されるべきペイ ロー ド 以外のフィ ール ドについて、 形式および内容にかかわる制約が何ら 課されるこ とな く、 多様な伝送方式の適用が可能となる。  Further, in the third node device according to the present invention, the format and contents of the fields other than the payload to be transmitted via the plurality of lines and the single or the plurality of n protection lines are described. Various restrictions can be applied without any restrictions.
また、 本発明にかかわる第四のノー ド装置では、 ビッ ト誤り の訂 正が何ら行われない場合に比べて、 予備回線は、 真に障害が発生し、 あるいは伝送品質が劣化した回線を代替するために有効に適用され る。 In addition, in the fourth node device according to the present invention, the protection line truly fails, as compared with the case where no bit error is corrected. Alternatively, it is effectively applied to replace a line whose transmission quality has deteriorated.
さ らに、 本発明にかかわる第五のノー ド装置では、 伝送品質が総 合的に高く維持される。  Furthermore, in the fifth node device according to the present invention, the transmission quality is generally kept high.
また、 本発明にかかわる第六のノー ド装置では、 ハー ドウェアの 構成の簡略化に併せて、 ランニングコス トを含む総合的なコス トの 削減が図られる。  Further, in the sixth node device according to the present invention, the total cost including the running cost can be reduced along with the simplification of the hardware configuration.
さ らに、 本発明にかかわる第七のノ一 ド装置では、 障害が発生し、 あるいは伝送品質が劣化した回線が何らかの予備回線で代替される 際に、 該当する回線と予備回線との伝送特性の相違が所望の速度お よび精度で吸収される限り、 個々の回線が二重化された従来例に比 ベて、 予備回線の効率的な利用と、 ランニングコス トを含む総合的 なコス トの削減とが図られる。  Furthermore, in the seventh node device according to the present invention, when a fault occurs or a line whose transmission quality is degraded is replaced with some kind of protection line, the transmission characteristics between the relevant line and the protection line are changed. As long as the differences can be accommodated at the desired speed and accuracy, compared to the conventional case where each line is duplicated, efficient use of the spare line and reduction of overall costs including running costs Is achieved.
また、 本発明にかかわる第八のノー ド装置では、 予備回線で代替 されるべき回線の選定が送信端でおこなわれるべき通信制御の方式 に対しても、 柔軟な適用が可能となる。  In addition, the eighth node device according to the present invention can be flexibly applied to a communication control method in which a line to be replaced with a protection line is to be selected at the transmitting end.
さらに、 本発明にかかわる第九のノー ド装置では、 送信端との無 効な連係が行われ得る場合に比べて、サービス品質が高く維持され、 かつ資源の有効利用が図られる。  Further, in the ninth node device according to the present invention, the service quality is maintained higher and the resources are effectively used as compared with a case where invalid linkage with the transmitting end can be performed.
また、 本発明にかかわる第十のノー ド装置では、 予備回線で代替 されるべき回線の選定について何ら基準が設定されていない場合に 比べて、 保守や運用にかかわる多様なニーズに対する柔軟な適応が 可能となる。  In addition, the tenth node device according to the present invention has a more flexible adaptation to various maintenance and operation needs than when no standard is set for selecting a line to be replaced with a protection line. It becomes possible.
さ らに、 本発明にかかわる第十一のノー ド装置では、 複数の回線 の全てが二重化された場合に比べて、 構成の簡略化と、 信頼性の向 上およびラ ンニングコス トを含む総合的なコス トの削減とが図られ Furthermore, in the eleventh node device according to the present invention, compared to a case where all of a plurality of lines are duplicated, the overall configuration including simplification of the configuration, improvement of reliability, and running cost is improved. Cost reduction
0 ο 0 ο
また、 本発明にかかわる第十二のノー ド装置では、 資源の有効利 用とサービス品質の向上とが図られる。 したがって、 本発明が適用された伝送系では、 運用や保守の形態 に対する柔軟な適応に併せて、 多様なサービスの提供を可能とする 付加価値の向上が安価に実現される。 In the twelfth node device according to the present invention, effective use of resources and improvement of service quality are achieved. Therefore, in the transmission system to which the present invention is applied, in addition to the flexible adaptation to the mode of operation and maintenance, an increase in added value that enables provision of various services is realized at low cost.

Claims

請求の範囲 The scope of the claims
( 1 ) 複数 Nの回線を介して個別に与えられる複数 Nの信号と、 単 一または複数 n ( < N )の予備回線を介して個別に与えられ、 これら の信号の全てあるいは一部の和に相当する複数 nの和信号とをこれ らの位相差を補正しつつ受信する受信手段と、 (1) The sum of all or some of these signals, which are individually provided via a plurality of N (<N) spare lines, and a plurality of N signals individually provided through a plurality of N lines. Receiving means for receiving a plurality of sum signals corresponding to the above while correcting these phase differences;
前記受信手段によって受信された単一または複数 nの和信号と複 数 Nの信号の組み合わせとの差分と して、 前記複数 Nの回線を介し て受信されるべき複数 Nの個々の信号の全てあるいは一部を復元す る信号復元手段と、  All of the plurality of N individual signals to be received via the plurality of N lines as a difference between the single or multiple n sum signals received by the receiving means and the combination of the multiple N signals Or signal restoration means for restoring a part
前記複数 Nの回線 Nの正否の判別を個別に行う回線監視手段と、 前記信号復元手段によって前記全てあるいは一部が復元された複 数 N信号の内、 前記回線監視手段によって行われた判別の結果が偽 である回線に対応する信号をその回線を介して受信された信号に代 えて適用する回線選択手段と  A line monitoring means for individually determining the correctness of the plurality of N lines N; and a determination made by the line monitoring means among the plurality of N signals, all or a part of which are restored by the signal restoring means. Line selection means for applying a signal corresponding to a line with a false result instead of a signal received via that line;
を備えたこ とを特徴とするノー ド装置。  A node device comprising:
( 2 ) 請求の範囲 1 に記載のノー ド装置において、  (2) In the node device described in claim 1,
複数 Nの回線の全てあるいは一部を介して個別に与えられる信号 は、  Signals given individually over all or some of the multiple N lines are:
複数 nの和信号の内、 異なる複数 p ( < n )の和信号の成分と して 共通に含まれ、 .  Of the plural n sum signals, they are commonly included as components of different plural p (<n) sum signals.
信号復元手段は、  The signal restoration means is
受信手段によって受信された単一または複数 nの和信号の内、 回 線監視手段によって行われた判別の結果が真である回線のみを介し て与えられ、 かつ受信手段によって受信された単一または複数 P N )の信号と差分をとることによって、前記複数 Nの回線の全てある いは一部を介して個別に受信されるべき複数 Nの個々の信号の全て あるいは一部を復元する  Of the single or multiple sum signals received by the receiving means, only the line for which the result of the determination made by the line monitoring means is true is given, and the single or plural n received by the receiving means. By recovering all or some of the plurality of N individual signals to be individually received via all or some of the plurality of N lines by taking a difference with the plurality of PN signals.
こ とを特徴とするノー ド装置。 A node device characterized by this.
( 3 ) 請求の範囲 1 に記載のノー ド装置において、 (3) In the node device described in claim 1,
複数 nの和信号は、  The sum signal of multiple n is
単一または複数 nの予備回線を介してペイ ロー ドのみに相当する 信号として与えられ、  It is given as a signal corresponding to only the payload via one or more n protection lines,
回線監視手段は、  The line monitoring means
複数 Nの回線を介して与え られ、 かつ受信手段によって受信され た個々の信号の成分の内、 前記ペイ ロー ドに相当する信号の正否と して、 これらの回線の正否を判別する  Among the components of the individual signals provided via the plurality of N lines and received by the receiving means, the legitimacy of these lines is determined as the legitimacy of the signal corresponding to the payload.
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 4 ) 請求の範囲 2 に記載のノー ド装置において、  (4) In the node device described in claim 2,
複数 nの和信号は、  The sum signal of multiple n is
単一または複数 nの予備回線を介してペイ ロー ドのみに相当する 信号として与えられ、  It is given as a signal corresponding to only the payload via one or more n protection lines,
回線監視手段は、  The line monitoring means
複数 Nの回線を介して与えられ、 かつ受信手段によって受信され た個々の信号の成分の内、 前記ペイ ロー ドに相当する信号の正否と して、 これらの回線の正否を判別する  Among the components of the individual signals provided via the plurality of N lines and received by the receiving means, the legitimacy of these lines is determined as the legitimacy of the signal corresponding to the payload.
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 5 ) 請求の範囲 2 に記載のノー ド装置において、  (5) In the node device described in claim 2,
複数 Nの信号と単一または複数 nの和信号とは、  The multiple N signal and the single or multiple n sum signal are
規定のフ レーム構成に基づ く フ レームの列と して与えられ、 回線監視手段は、  Given as a sequence of frames based on the prescribed frame configuration, the line monitoring means
複数の回線を介して与えられ、 かつ受信手段によって受信された 複数 Nの信号に伴う ビッ ト誤り を前記規定のフ レーム構成に基づい て訂正する  A bit error accompanying a plurality of N signals provided through a plurality of lines and received by a receiving unit is corrected based on the prescribed frame configuration.
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 6 ) 請求の範囲 3 に記載のノー ド装置において、  (6) In the node device described in claim 3,
複数 Nの信号と単一または複数 nの和信号とは、  The multiple N signal and the single or multiple n sum signal are
規定のフレーム構成に基づ く フ レームの列と して与えられ、 回線監視手段は、 - 複数の回線を介して与えられ、 かつ受信手段によって受信された 複数 Nの信号に伴う ビッ ト誤り を前記規定のフ レーム構成に基づい て訂正する Given as a sequence of frames based on a prescribed frame structure, The line monitoring means:-corrects a bit error associated with the plurality of N signals provided through the plurality of lines and received by the receiving means, based on the prescribed frame configuration.
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 7 ) 請求の範囲 4 に記載のノー ド装置において、  (7) In the node device described in claim 4,
複数 Nの信号と単一または複数 nの和信号とは、  The multiple N signal and the single or multiple n sum signal are
規定のフ レーム構成に基づく フ レームの列として与えられ、 回線監視手段は、  Given as a sequence of frames based on the prescribed frame configuration, the line monitoring means
複数の回線を介して与えられ、 かつ受信手段によって受信された 複数 Nの信号に伴う ビッ ト誤り を前記規定のフ レーム構成に基づい て訂正する  A bit error accompanying a plurality of N signals provided through a plurality of lines and received by a receiving unit is corrected based on the prescribed frame configuration.
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 8 ) 請求の範囲 1 に記載のノ ー ド装置において、  (8) In the node device described in claim 1,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する  Among the plurality of N lines, for each line corresponding to the ascending order of the transmission quality that is obtained by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Apply restored signal
こ とを特徴とするノ ー ド装置。  A node device characterized by this.
( 9 ) 請求の範囲 2 に記載のノー ド装置において、  (9) In the node device described in claim 2,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する Among the plurality of N lines, for each line corresponding to the ascending order of the transmission quality that is obtained by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Return Apply the derived signal
ことを特徴とするノー ド装置。  A node device characterized in that:
( 1 0 ) 請求の範囲 3 に記載のノー ド装置において、  (10) In the node device according to claim 3,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について. その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する  Of the plurality of N lines, for each line corresponding to the ascending order of transmission quality that is determined by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Apply the signal restored by
こ とを特徴とする ノー ド装置。  A node device characterized by this.
( 1 1 ) 請求の範囲 4に記載のノー ド装置において、  (11) In the node device according to claim 4,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について. その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する  Of the plurality of N lines, for each line corresponding to the ascending order of transmission quality that is determined by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Apply the signal restored by
ことを特徴とするノー ド装置。  A node device characterized in that:
( 1 2 ) 請求の範囲 5 に記載のノー ド装置において、  (12) In the node device according to claim 5,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する  Among the plurality of N lines, for each line corresponding to the ascending order of the transmission quality that is obtained by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Apply restored signal
ことを特徴とする ノー ド装置。 ( 1 3 ) 請求の範囲 6 に記載のノー ド装置において、 A node device characterized by the above-mentioned. (13) In the node device described in claim 6,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する  Among the plurality of N lines, for each line corresponding to the ascending order of the transmission quality that is obtained by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Apply restored signal
ことを特徴とするノー ド装置。  A node device characterized in that:
( 1 4 ) 請求の範囲 7 に記載のノー ド装置において、  (14) In the node device according to claim 7,
回線監視手段は、  The line monitoring means
複数 Nの回線の個々の伝送品質を求め、  Find the transmission quality of each of multiple N lines,
回線選択手段は、  Line selection means,
前記複数 Nの回線の内、 回線監視手段によって求められ、 かつ規 定の下限値を下回る伝送品質の昇順に対応する個々の回線について その回線を介して受信された信号に代えて信号復元手段によって復 元された信号を適用する  Among the plurality of N lines, for each line corresponding to the ascending order of the transmission quality that is obtained by the line monitoring unit and falls below the specified lower limit, the signal restoring unit replaces the signal received via the line. Apply restored signal
ことを特徴とするノー ド装置。  A node device characterized in that:
( 1 5 ) 請求の範囲 1 に記載のノー ド装置において、  (15) In the node device according to claim 1,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
ことを特徴とするノー ド装置。  A node device characterized in that:
( 1 6 ) 請求の範囲 2 に記載のノー ド装置において、  (16) In the node device described in claim 2,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ペースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす こ とを特徴とするノー ド装置。 Performs all or some of the individual functions in the processing of the paceband area A node device characterized by this.
( 1 7 ) 請求の範囲 3 に記載のノー ド装置に  (17) The node device described in claim 3
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベ一スパン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the base area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 1 8 ) 請求の範囲 4 に記載のノー ド装置において、  (18) In the node device described in claim 4,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 1 9 ) 請求の範囲 5 に記載のノー ド装置において、  (19) In the node device according to claim 5,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 2 0 ) 請求の範囲 6 に記載のノー ド装置において、  (20) The node device according to claim 6, wherein
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 2 1 ) 請求の範囲 7 に記載のノー ド装置において、  (21) In the node device described in claim 7,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理として個々の機能の全てまたは一部を果 たす Performs all or some of the individual functions as processing in the baseband area. Add
こ とを特徴とするノ ー ド装置。  A node device characterized by this.
( 2 2 ) 請求の範囲 8 に記載のノ ー ド装置において、  (22) In the node device described in claim 8,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベ一スパン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the base area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 2 3 ) 請求の範囲 9 に記載のノー ド装置において、  (23) In the node device according to claim 9,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 2 4 ) 請求の範囲 1 0 に記載のノー ド装置において、  (24) The node device according to claim 10, wherein:
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 2 5 ) 請求の範囲 1 1 に記載のノー ド装置において、  (25) In the node device according to claim 11,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベ一スパン ド領域の処理として個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the base area
こ とを特徴とするノ ー ド装置。  A node device characterized by this.
( 2 6 ) 請求の範囲 1 2 に記載のノー ド装置において、  (26) In the node device according to claim 12,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、 ベ一スパン ド領域の処理と して個々の機能の全てまたは一部を果 たす All or some of the receiving means, signal restoring means, line monitoring means and line selecting means Performs all or some of the individual functions as processing of the base area
ことを特徴とするノー ド装置。  A node device characterized in that:
( 2 7 ) 請求の範囲 1 3 に記載のノー ド装置において、  (27) In the node device according to claim 13,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ペースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions in the processing of the paceband area
ことを特徴とするノー ド装置。  A node device characterized in that:
( 2 8 ) 請求の範囲 1 4 に記載のノー ド装置において、  (28) In the node device according to claim 14,
受信手段、 信号復元手段、 回線監視手段および回線選択手段の全 てあるいは一部は、  All or some of the receiving means, signal restoring means, line monitoring means and line selecting means
ベースバン ド領域の処理と して個々の機能の全てまたは一部を果 たす  Performs all or some of the individual functions as processing of the baseband area
ことを特徴とするノー ド装置。  A node device characterized in that:
( 2 9 ) 複数 Nの回線を介して個別に与えられる複数 Nの信号と、 単一または複数 n ( < N )の予備回線を介して個別に与えられる単一 または複数 nの信号とをこれらの位相差を補正しつつ受信する受信 手段と、  (29) These are a plurality of N signals provided individually via a plurality of N lines and a single or plurality n signals individually provided via a single or a plurality of n (<N) backup lines. Receiving means for receiving while correcting the phase difference of
前記複数 Nの回線の伝送品質を監視し、 これらの回線の内、 伝送 品質が所定の下限値を下回る回線を特定する伝送品質監視手段 2 3 と、  Transmission quality monitoring means 23 for monitoring the transmission quality of the plurality of N lines and identifying a line whose transmission quality falls below a predetermined lower limit value among these lines;
前記伝送品質監視手段によって特定された回線の内、 伝送品質の 昇順に前記単一または複数 nの予備回線の数 n以下の数の回線を介 して対向する送信端宛に、 これらの回線が個別に何れかの予備回線 で代替されるべき旨の通知を送出する代替要求手段と、  Among the lines specified by the transmission quality monitoring means, these lines are directed to the opposite transmitting end via the number n or less of the single or plural n spare lines in ascending order of transmission quality. An alternative requesting means for individually sending a notification that it should be replaced by any one of the protection lines;
前記代替要求手段によって送出された通知に応じて前記送信端と 連係するこ とによって、 その通知で示される個々の回線を代替する 予備回線を特定し、 これらの個々の回線を介して受信された信号に 代えて、 対応する予備回線を介して与えられる と共に、 前記受信手 段によって受信された信号を適用する回線選択手段と By coordinating with the transmitting end in response to the notification sent by the substitution request means, a spare line that substitutes for the individual line indicated by the notification is specified and received through these individual lines. At the signal Alternatively, line selection means provided through a corresponding protection line and applying a signal received by the receiving means.
を備えたこ とを特徴とするノー ド装置。  A node device comprising:
( 3 0 ) 複数 Nの回線を介して個別に与えられる複数 Nの信号と、 単一または複数 n ( < N )の予備回線を介して個別に与えられる単一 または複数 nの信号とをこれらの位相差を補正しつつ受信する受信 手段と、  (30) A plurality of N signals individually provided through a plurality of N lines and a single or multiple n signals individually provided through a single or a plurality of n (<N) protection lines Receiving means for receiving while correcting the phase difference of
前記複数 Nの回線の伝送品質を監視し、 これらの回線 Nの内、 伝 送品質が所定の下限値を下回る回線を特定する伝送品質監視手段と. 前記伝送品質監視手段によって特定された回線の内、 伝送品質の 昇順に前記単一または複数 nの予備回線の数 n以下の数の回線を介 して対向する送信端宛に、 これらの回線と伝送品質とを示す通知を 送出する代替要求手段と、  Transmission quality monitoring means for monitoring the transmission quality of the plurality of N lines, and identifying a line whose transmission quality is below a predetermined lower limit value among these lines N. Of which, in ascending order of transmission quality, an alternative request for sending a notification indicating these lines and transmission quality to the opposite transmitting end via the number n or less of the single or plural n spare lines. Means,
前記代替要求手段によって送出された通知に応じて前記送信端と 連係するこ とによって、 その通知で示される個々の回線を代替する 予備回線を特定し、 これらの個々の回線を介して受信された信号に 代えて、 対応する予備回線を介して与えられる と共に、 前記受信手 段によって受信された信号を適用する回線選択手段と  By coordinating with the transmitting end in response to the notification sent by the substitution request means, a spare line that substitutes for the individual line indicated by the notification is specified and received through these individual lines. Line selection means for applying a signal received by the receiving means while being provided through a corresponding protection line instead of a signal;
を備えたこ とを特徴とするノー ド装置。  A node device comprising:
( 3 1 ) 請求の範囲 3 0 に記載のノー ド装置において、  (31) In the node device described in the claim 30,
受信手段は、  The receiving means is
単一または複数 nの予備回線を介して個別に与えられ、 かつ複数 Nの信号の全てあるいは一部の和に相当する複数 nの和信号を受信 し、  Receiving a plurality n of sum signals which are individually provided via a single or a plurality n of protection lines and which correspond to the sum of all or a part of the plurality N of signals;
代替要求手段は、  Alternative request means are:
複数 Nの回線と単一または複数 riの予備回線との内、 正常である 回線および予備回線と、 これらの予備回線を介して送信端から伝送 される和信号の成分との組み合わせの下で予備回線による代替が可 能である回線に限って、 その回線と伝送品質とを示す通知を送出す る Among the multiple N lines and the single or multiple ri protection lines, the normal line and the protection line are combined with the components of the sum signal transmitted from the transmitting end via these protection lines, and the protection is performed. Sends a notification indicating the line and transmission quality only for the line that can be replaced by the line. To
ことを特徴とするノー ド装置。  A node device characterized in that:
( 3 2 ) 請求の範囲 3 1 に記載のノー ド装置において、  (32) In the node device according to claim 31,
代替要求手段は、  Alternative request means are:
代替が可能である回線の内、 個別に属性として与えられる優先度 の降順に対応する回線に、 優先して通知を送出する  Of the lines that can be replaced, priority is sent to the line that corresponds to the descending order of priority given individually as an attribute.
こ とを特徴とするノー ド装置。  A node device characterized by this.
( 3 3 ) 複数 Nの回線にそれそれ複数 Nの信号を送信する送信手段 と、  (33) transmitting means for transmitting a plurality of N signals to a plurality of N lines, respectively;
前記複数 Nの回線の内、 所望の伝送品質と信頼性との双方あるい は何れか一方が確保される回線の全てあるいは一部に、 前記送信手 段によって送信されるべき信号を個々の位相の差を補正しつつ加算 し、 その結果と して得られた和信号を単一または複数 n(<N)の予 備回線の何れかに送信する和信号送信手段と  A signal to be transmitted by the transmitting means is transmitted to all or a part of the plurality of N lines for which desired transmission quality and / or reliability is secured. Sum signal transmitting means for adding the signals while correcting the difference between them, and transmitting the sum signal obtained as a result to one or a plurality of n (<N) spare lines.
を備えたこ とを特徴とする ノー ド装置。  A node device comprising:
( 3 4 ) 請求の範囲 3 3に記載のノー ド装置において、  (34) In the node device described in Claim 33,
和信号送信手段は、  The sum signal transmitting means,
複数 Nの回線と、 単一または複数 n(<N)の予備回線との組み合 わせの内、 並行して障害が発生し、 も し く は伝送品質が劣化する確 率が所望の上限値以下となる個々の組み合わせで、 その組み合わせ に属する予備回線に、 この組み合わせに属する個々の回線を介して 伝送されるべき信号の成分を含む和信号を送信する  The desired upper limit is the probability that failures will occur in parallel and / or transmission quality will deteriorate in the combination of multiple N circuits and single or multiple n (<N) protection circuits In each of the following combinations, a sum signal including a signal component to be transmitted through each of the individual lines belonging to the combination is transmitted to the protection line belonging to the combination.
ことを特徴とするノー ド装置。  A node device characterized in that:
( 3 5 ) 個別の回線を介 して伝送さ れた第一の信号 X と、 第 二の信号 y と、 こ れ ら の信号 x、 y に演算が施さ れる こ と に よ っ て生成さ れた第三の信号 z と を 受信する 受信手段 と、 前記受信手段 に よ っ て 受信さ れた第一の信号 X と 第三の 信号 z と に所定の演算を施 し、 第二の信号 y を再生す る 第一 の再生手段 と、 前記受信手段 に よ っ て 受信 さ れ た第二の信号 y と 第三の 信号 z と に所定の演算を施 し、 第一の信号 X を再生す る第二 の再生手段 と、 (35) Generated by performing operations on the first signal X, the second signal y, and these signals x, y transmitted via individual lines. Receiving means for receiving the third signal z and the first signal X and the third signal z received by the receiving means, and performing a predetermined operation on the second signal a first reproducing means for reproducing y; A second reproducing means for performing a predetermined operation on the second signal y and the third signal z received by the receiving means to reproduce the first signal X;
前記受信手段 に よ っ て 受信さ れ た第一の信号 X と 前記第 二の再生手段に よ っ て再生さ れ、 あ る いは再生さ れる べ き第 一の信号 X と の位相差 と、 前記受信手段に よ っ て 受信さ れた 第二の信号 y と前記第一の再生手段に よ っ て 再生さ れ、 あ る い は再生さ れる べ き第二の信号 y と の位相差 と を補償 し、 位 相差補償後の信号 を それそれ出力 す る位相補償手段 と、  The phase difference between the first signal X received by the receiving means and the first signal X to be reproduced or to be reproduced by the second reproducing means; The phase difference between the second signal y received by the receiving means and the second signal y to be reproduced or to be reproduced by the first reproducing means. Phase compensation means for compensating for and, and outputting the phase-compensated signal accordingly.
位相差補償後の前記受信手段 に よ っ て 受信 さ れた 第一の 信号 X と、 位相差補償後の前記第二の再生手段に よ っ て再生 さ れた第一の信号 X と の何れか一方 を選択す る 第一の選択 手段 と、  Either the first signal X received by the receiving means after the phase difference compensation or the first signal X reproduced by the second reproducing means after the phase difference compensation A first means of selecting one or the other,
位相差補償後の前記受信手段 に よ っ て 受信 さ れた 第二の 信号 y と、 位相差補償後の前記第一の再生手段に よ っ て再生 さ れた第二の信号 y と の何れか一方 を選択す る 第二の選択 手段 と  Either the second signal y received by the receiving means after the phase difference compensation or the second signal y reproduced by the first reproducing means after the phase difference compensation A second means of choosing one or the other
を備え た こ と を特徴 と す る 無瞬断切 り 換え装置。  A non-instantaneous disconnection switching device characterized by having:
PCT/JP2000/002956 2000-05-09 2000-05-09 Node device and no-short-break switching device WO2001086926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002956 WO2001086926A1 (en) 2000-05-09 2000-05-09 Node device and no-short-break switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002956 WO2001086926A1 (en) 2000-05-09 2000-05-09 Node device and no-short-break switching device

Publications (1)

Publication Number Publication Date
WO2001086926A1 true WO2001086926A1 (en) 2001-11-15

Family

ID=11736011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002956 WO2001086926A1 (en) 2000-05-09 2000-05-09 Node device and no-short-break switching device

Country Status (1)

Country Link
WO (1) WO2001086926A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132839A (en) * 1980-03-24 1981-10-17 Nippon Telegr & Teleph Corp <Ntt> Digital radio circuit switching system
JPS5797749A (en) * 1980-12-10 1982-06-17 Fujitsu Ltd Synchronous switching system without momentary break
EP0420648A2 (en) * 1989-09-29 1991-04-03 AT&T Corp. Diversity coding for transparent self-healing communications networks
JPH04248717A (en) * 1991-02-04 1992-09-04 Toshiba Corp Multiplex changeover cirucit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132839A (en) * 1980-03-24 1981-10-17 Nippon Telegr & Teleph Corp <Ntt> Digital radio circuit switching system
JPS5797749A (en) * 1980-12-10 1982-06-17 Fujitsu Ltd Synchronous switching system without momentary break
EP0420648A2 (en) * 1989-09-29 1991-04-03 AT&T Corp. Diversity coding for transparent self-healing communications networks
JPH04248717A (en) * 1991-02-04 1992-09-04 Toshiba Corp Multiplex changeover cirucit

Similar Documents

Publication Publication Date Title
US8707137B2 (en) Adapting bit error rate to a target quality of service
JP4924387B2 (en) Method for protecting connection between multi-service platform and local area network, multi-service platform and system
EP2461496B1 (en) A method for protecting the ring network of optical transport network
US20100177630A1 (en) System, method, and device for automatic protection switching
US20070133397A1 (en) Smart mechanism for multi-client bidirectional optical channel protection scheme
Avci et al. Recovery from link failures in networks with arbitrary topology via diversity coding
US20010019536A1 (en) Line restoring method and packet transmission equipment
EP1159828A1 (en) Method and system for reducing data errors in digital communications
CN101453264A (en) Self-healing protection method and apparatus for optical network
US9906295B2 (en) Method, device and system for detecting optical signal
US6831927B1 (en) Fault protection for hitless and errorless switching of telecommunications signals
WO2001086926A1 (en) Node device and no-short-break switching device
AU745963B2 (en) A method and apparatus for switching signals using an embedded group signal status
JP2000312189A (en) Optical communications equipment
US20110103222A1 (en) Signal transmission method and transmission device
US20100189127A1 (en) Conversion apparatus
JP6003386B2 (en) Wireless communication apparatus, wireless frame generation method, and communication system
US6687318B1 (en) Method and communication system for synchronizing two devices with a predeterminable data transmission method
JP2996364B2 (en) Transmission method
JP2001197038A (en) Duplex system for transmission spreading processing circuit of cdma communication device
JP2023172106A (en) Optical transmission device and optical transmission method
US8045586B2 (en) Method and apparatus for transmitting overhead information
CN101145990A (en) A method for sub-network connection protection via serial monitoring function
US8427937B1 (en) Bridging for SONET/SDH automatic protection switching
WO2007006175A1 (en) Method for implementing channel shared ring protection supported easy failure prevention

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP