WO2001086249A2 - Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers - Google Patents
Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers Download PDFInfo
- Publication number
- WO2001086249A2 WO2001086249A2 PCT/US2001/015465 US0115465W WO0186249A2 WO 2001086249 A2 WO2001086249 A2 WO 2001086249A2 US 0115465 W US0115465 W US 0115465W WO 0186249 A2 WO0186249 A2 WO 0186249A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bulk
- microscale cavity
- bulk viscosity
- viscosity enhancer
- microchannel
- Prior art date
Links
- 239000003623 enhancer Substances 0.000 title claims abstract description 100
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000002347 injection Methods 0.000 claims abstract description 57
- 239000007924 injection Substances 0.000 claims abstract description 57
- 239000003792 electrolyte Substances 0.000 claims abstract description 51
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 51
- 239000006185 dispersion Substances 0.000 claims abstract description 31
- 230000000694 effects Effects 0.000 claims abstract description 18
- 230000001939 inductive effect Effects 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims description 82
- 230000001105 regulatory effect Effects 0.000 claims description 41
- 229920000642 polymer Polymers 0.000 claims description 40
- -1 poly(ethylene glycol) Polymers 0.000 claims description 31
- 239000004094 surface-active agent Substances 0.000 claims description 18
- 150000004676 glycans Chemical class 0.000 claims description 12
- 229920001282 polysaccharide Polymers 0.000 claims description 12
- 239000005017 polysaccharide Substances 0.000 claims description 12
- 229920001577 copolymer Polymers 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 9
- 229920001400 block copolymer Polymers 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 229920000249 biocompatible polymer Polymers 0.000 claims description 6
- 230000003139 buffering effect Effects 0.000 claims description 6
- 239000000645 desinfectant Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 65
- 239000003153 chemical reaction reagent Substances 0.000 description 53
- 239000000758 substrate Substances 0.000 description 29
- 239000000523 sample Substances 0.000 description 24
- 238000003556 assay Methods 0.000 description 23
- 238000004458 analytical method Methods 0.000 description 22
- 230000005684 electric field Effects 0.000 description 19
- 239000000872 buffer Substances 0.000 description 17
- 239000000243 solution Substances 0.000 description 15
- 238000001514 detection method Methods 0.000 description 13
- 230000032258 transport Effects 0.000 description 13
- 230000001276 controlling effect Effects 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 229920002307 Dextran Polymers 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 230000002706 hydrostatic effect Effects 0.000 description 6
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000012145 high-salt buffer Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- 229920000869 Homopolysaccharide Polymers 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000005370 electroosmosis Methods 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000945 Amylopectin Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- HSHXDCVZWHOWCS-UHFFFAOYSA-N N'-hexadecylthiophene-2-carbohydrazide Chemical compound CCCCCCCCCCCCCCCCNNC(=O)c1cccs1 HSHXDCVZWHOWCS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 108091005647 acylated proteins Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 238000012188 high-throughput screening assay Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000012704 polymeric precursor Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502746—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44747—Composition of gel or of carrier mixture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44791—Microapparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
- B01J2219/00826—Quartz
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
- B01J2219/00828—Silicon wafers or plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00831—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00833—Plastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00853—Employing electrode arrangements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/0086—Dimensions of the flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00891—Feeding or evacuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
- B01J2219/00952—Sensing operations
- B01J2219/00954—Measured properties
- B01J2219/00961—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
- B01J2219/00952—Sensing operations
- B01J2219/00954—Measured properties
- B01J2219/00966—Measured properties pH
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
- B01J2219/00952—Sensing operations
- B01J2219/00968—Type of sensors
- B01J2219/0097—Optical sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/0095—Control aspects
- B01J2219/00986—Microprocessor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2065—Responsive to condition external of system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25625—Dilution
Definitions
- Microfluidic devices generally provide reliable, accurate and high- throughput methods of performing diverse instrumental analyses, including various screening protocols and separation-based assays. Additionally, many microfluidic devices have been inexpensively incorporated as components of automated systems. Despite these attributes, certain limitations or inefficiencies exist, which, if overcome, would further enhance the utility of these devices and systems. To illustrate, the phenomenon of spontaneous injection, while useful in certain microfluidic applications, can also be a limiting factor in others. It is typically caused by the surface tension present in a drop of fluid suspended from a capillary microchannel in certain devices. The surface tension tends to produce an inward pressure that forces (i.e., spontaneously injects) fluid into the capillary microchannel. Pressure variations due to spontaneous injection can generate flow rate fluctuations in a microfluidic device which can give rise to periodic fluctuations in the baseline signal of an associated detector. In turn, these baseline signal fluctuations can obscure detectable signals produced by assay components.
- microfluidic applications utilize microchannels simultaneously having both high hydrodynamic resistance and low electrical resistance, e.g., to deliver electrical fields to a reaction microchannel. Since hydrodynamic and electrical resistances have different design parameters related to channel depth, one technique for achieving these conditions has been to manufacture side microchannels shallower and wider than the reaction microchannel. However, microfluidic devices which include multiple microchannel depths can be more costly and difficult to fabricate than comparable single depth devices.
- the present invention provides additional methods and devices for controlling the effects of spontaneous injection and for regulating electric fields within microfluidic devices and systems.
- the present invention provides methods and devices for inducing high bulk hydrodynamic resistance in microfluidic devices, e.g., to minimize the spontaneous injection signatures of the devices.
- the invention also relates to methods and devices for inducing low electrical resistance, in addition to high hydrodynamic resistance, in microfluidic devices, ter alia, for regulating electrical resistance within the devices.
- the methods of inducing high bulk hydrodynamic resistance include providing a microscale cavity (e.g., a capillary microchannel) in the microfluidic device that includes a bulk viscosity enhancer disposed in the cavity.
- the microscale cavity optionally also includes a capillary microchannel that extends from the microfluidic device.
- the bulk viscosity enhancer effects an increase in bulk hydrodynamic resistance within the microscale cavity of the microfluidic device.
- the bulk viscosity enhancer is, e.g., a polymer molecule that has a molecular weight of at least about one kilodalton.
- bulk viscosity enhancers typically have molecular weights in the range of from about one kilodalton to about 1,000 kilodaltons, generally in the range of from about 5 kilodaltons to about 100 kilodaltons, e.g., about 50 kilodaltons.
- Suitable bulk viscosity enhancers include biocompatible polymers.
- bulk viscosity enhancers optionally include one or more of: a single polymer, a mixture of polymers, a copolymer, a block copolymer, a polymer micellar system, an interpenetrating polymer network, a polymer gel, a polysaccharide (e.g., FICOLLTM, dextran, etc.), poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PNA), poly(dimethylacryamide) (PDMA), derivatives thereof, or the like.
- Bulk viscosity enhancers are typically disposed in aqueous solutions.
- Bulk hydrodynamic resistance in the microscale cavity in the device is regulated, e.g., by varying or selecting a concentration of the bulk viscosity enhancer disposed in the cavity, by varying or selecting a temperature within the microscale cavity, or both.
- the regulated bulk hydrodynamic resistance regulates spontaneous injection into the microscale cavity, e.g., during operation of the microfluidic device. Spontaneous injection is also optionally regulated by varying or selecting a concentration of a surfactant disposed in the microscale cavity.
- the regulated bulk hydrodynamic resistance regulates dispersion (e.g., slug dispersion) during fluid flow in the microscale cavity.
- the methods of inducing high bulk hydrodynamic resistance optionally further include inducing low electrical resistance in the microfluidic device.
- the methods include, e.g., providing an electrolyte (e.g., a salt, a buffering ionic species, etc.) disposed in the microscale cavity (e.g., a microchannel).
- the diffusive mobility of the electrolyte is substantially unaffected by the increase in bulk hydrodynamic resistance within the microscale cavity, e.g., due to the small size of the electrolyte relative to the hydrodynamic radius of the bulk viscosity enhancer.
- low electrical resistance is induced in the microfluidic device.
- both the bulk viscosity enhancer and the electrolyte are optionally flowed in the microfluidic device using a fluid direction component that includes, e.g., a fluid pressure force modulator, an electrokinetic force modulator, a capillary force modulator, a fluid wicking element, or the like.
- a fluid direction component that includes, e.g., a fluid pressure force modulator, an electrokinetic force modulator, a capillary force modulator, a fluid wicking element, or the like.
- Bulk hydrodynamic resistance and electrical resistance in the microscale cavity in the microfluidic device are optionally individually or concomitantly regulated by varying or selecting a concentration of the at least one bulk viscosity enhancer and/or a concentration of the at least one electrolyte disposed in the cavity.
- the bulk hydrodynamic resistance, the electrical resistance, or both, in the microscale cavity are regulated, e.g., during operation of the microfluidic device.
- the methods optionally include providing a microchannel disposed in the microfluidic device that intersects and fluidly communicates with the microscale cavity. Regulating the electrical resistance in the at least one microscale cavity regulates electrical resistance in the at least one microchannel.
- the bulk viscosity enhancer and/or the electrolyte are optionally chosen to modify the electroosmotic velocity in the at least one microscale cavity.
- the present invention also includes a device or system that includes a body structure that includes a microscale cavity (e.g., a capillary microchannel) extending from the body structure.
- the microscale cavity also includes a bulk viscosity enhancer disposed in the cavity.
- the bulk viscosity enhancer includes, e.g., a polymer molecule that includes a molecular weight of at least about one kilodalton.
- bulk viscosity enhancers typically have molecular weights in the range of from about one kilodalton to about 1,000 kilodaltons, generally in the range of from about 5 kilodaltons to about 100 kilodaltons, e.g., about 50 kilodaltons.
- preferred bulk viscosity enhancers include biocompatible polymers.
- Suitable bulk viscosity enhancers generally include one or more of: a single polymer, a mixture of polymers, a copolymer, a block copolymer, a polymer micellar system, an interpenetrating polymer network, a polymer gel, a polysaccharide, PEG, PNA, PDMA, derivatives thereof, or the like. Furthermore, bulk viscosity enhancers are typically disposed in aqueous solutions.
- the device or system optionally further includes an integrated system that includes a computer or a computer readable medium that includes an instruction set for varying or selecting a concentration of the bulk viscosity enhancer disposed in the microscale cavity, for varying or selecting a temperature within the microscale cavity, or both.
- the microscale cavity optionally includes a capillary microchannel that extends from the microfluidic device.
- the varied or selected bulk viscosity enhancer concentration regulates bulk hydrodynamic resistance within the microscale cavity which, in turn, regulates spontaneous injection into the microscale cavity, e.g., during operation of the device.
- the device or system also includes regulating spontaneous injection by varying or selecting a concentration of a surfactant disposed in the microscale cavity.
- the regulated bulk hydrodynamic resistance within the microscale cavity regulates dispersion (e.g., slug dispersion) during fluid flow in the microscale cavity.
- the invention also includes a device or system that includes a body structure having a microscale cavity (e.g., a microchannel) fabricated in the structure in which the microscale cavity optionally includes a mixture of a bulk viscosity enhancer and an electrolyte (e.g., a salt, a buffering ionic species, or the like) disposed in the cavity.
- a device or system also optionally includes an integrated system that includes a computer or a computer readable medium that includes an instruction set. The instruction set varies or selects concentrations of the bulk viscosity enhancer and the electrolyte disposed in the microscale cavity to regulate bulk hydrodynamic resistance and electrical resistance within the microscale cavity.
- the device also optionally includes a microchannel fabricated in the body structure.
- the microchannel intersects and fluidly communicates with the microscale cavity (which, in turn optionally comprises a microchannel) in which case, regulating the electrical resistance within the microscale cavity regulates electrical resistance in the microchannel.
- the bulk hydrodynamic resistance, the electrical resistance, or both are optionally regulated within the microscale cavity during operation of the device.
- the present invention also typically includes flowing the bulk viscosity enhancer and/or the electrolyte in the device or system using a fluid direction component that includes a fluid pressure force modulator, an electrokinetic force modulator, a capillary force modulator, a fluid wicking element, or the like.
- Figure 1 schematically shows a microfluidic device that includes a capillary microchannel extending from the device for loading materials from the wells of a microtiter plate or similar storage device.
- Figure 2 is a graph that schematically illustrates the dependence of the effective dispersivity on diffusivity.
- Figure 3 schematically shows a microfluidic device design that incorporates two microchannel depths.
- Figure 4 schematically depicts a microfluidic device design that incorporates a single microchannel depth.
- Figures 5 A-5C schematically show a microfluidic device that includes a capillary element from various viewpoints.
- Figure 6 schematically illustrates an integrated system that includes the microfluidic device of Figures 5A-5C.
- the present invention is generally directed to improved methods, and devices related thereto, for inducing high bulk hydrodynamic resistance and/or for inducing low electrical resistance in microfluidic devices and systems.
- High bulk hydrodynamic resistance is used, e.g., to control signal fluctuations caused by spontaneous injections into a device.
- Induced high hydrodynamic resistance used in conjunction with induced low electrical resistance provides significant advantages in the regulation of electrical fields and relative flow rate ratios of reagents and buffers within microfluidic devices.
- the methods include using bulk viscosity enhancers to modulate hydrodynamic resistance.
- An additional advantage of the present invention includes the capability of reconfiguring, or otherwise controlling, various microfluidic characteristics (e.g., spontaneous injection signatures, electrical fields, relative flow rates, or the like), not only during experimental design time, but also during operation of a microfluidic device.
- various microfluidic characteristics e.g., spontaneous injection signatures, electrical fields, relative flow rates, or the like
- the phrase "during operation,” as used herein, refers to the run time of a particular experiment or other application.
- bulk hydrodynamic resistance refers to the viscosity of a solution, which dictates convective motions. Further, bulk hydrodynamic resistance substantially affects only the diffusive mobility of larger components of a solution, such as molecules or other materials having molecular weights of at least about one kilodalton (e.g., proteins, polynucleotides, polymers, cells, and the like). The diffusive behavior of smaller components such as single atom ions, or other low molecular weight ions, is substantially unaffected by bulk hydrodynamic resistance. That is, aside from modified convective behaviors, smaller components generally diffuse relatively unimpeded through these solutions.
- a solution optionally contains large polymer molecules (e.g., FICOLLTM, dextran, agar, and the like) at concentrations that cause the solution to have high bulk hydrodynamic resistance (i.e., to be highly viscous).
- large polymer molecules e.g., FICOLLTM, dextran, agar, and the like
- concentrations that cause the solution to have high bulk hydrodynamic resistance (i.e., to be highly viscous).
- the same solution optionally also includes an electrolyte, such as KBr dissolved therein, in which K + and Br " ions migrate relatively freely through the solution by Brownian motions.
- microscale systems are optionally adapted for use in the present invention, e.g., by incorporating bulk viscosity enhancers and/or electrolytes, as discussed below.
- These systems are described in various PCT applications and issued U.S. Patents by the inventors and their coworkers, including U.S. Patent Nos. 5,699,157 (J. Wallace Parce) issued 12/16/97, 5,779,868 (J. Wallace Parce et al.) issued 07/14/98, 5,800,690 (Calvin Y.H. Chow et al.) issued 09/01/98, 5,842,787 (Anne R. Kopf-Sill et al.) issued 12/01/98, 5,852,495 (J. Wallace Parce) issued 12/22/98, 5,869,004 (J.
- Dubrow et al. issued 5/30/00, 6,071,478 (Calvin Y. H. Chow) issued 6/6/00, 6,074,725 (Colin B. Kennedy) issued 6/13/00, 6,080,295 (J. Wallace Parce et al.) issued 6/27/00, 6,086,740 (Colin B. Kennedy) issued 7/11/00, 6,086,825 (Steven A. Sundberg et al.) issued 7/11/00, 6,090,251 (Steven A. Sundberg et al.) issued 7/18/00, 6,100,541 (Robert Nagle et al.) issued 8/8/00, 6,107,044 (Theo T.
- Nikiforov issued 8/22/00, 6,123,798 (Khushroo briefly et al.) issued 9/26/00, 6,129,826 (Theo T. Nikiforov et al.) issued 10/10/00, 6,132,685 (Joseph E. Kersco et al.) issued 10/17/00, 6,148,508 (Jeffrey A. Wolk) issued 11/21/00, 6, 149,787 (Andrea W. Chow et al.) issued 11/21/00, 6,149,870 (J. Wallace Parce et al.) issued 11/21/00, 6,150,119 (Anne R.
- the methods of the invention are generally performed within fluidic channels along which bulk viscosity enhancers, electrolytes, surfactants, and other reagents are disposed and/or flowed.
- the channels are simply present in a capillary channel or tube, e.g., a glass, fused silica, quartz or plastic capillary.
- the capillary channel is fluidly coupled to a source of, e.g., the bulk viscosity enhancer, surfactant, electrolyte or other reagent, which is then flowed along the capillary channel.
- the channel is integrated into the body structure of a microfluidic device.
- microfluidic generally refers to one or more fluid passages, chambers or conduits which have at least one internal cross-sectional dimension, e.g., depth, width, length, diameter, etc., that is less than 500 ⁇ m, and typically between about 0.1 ⁇ m and about 500 ⁇ m.
- the microscale channels or cavities preferably have at least one cross-sectional dimension between about 0.1 ⁇ m and 200 ⁇ m, more preferably between about 0.1 ⁇ m and 100 ⁇ m, and often between about 0.1 ⁇ m and 50 ⁇ m.
- the microfluidic devices or systems prepared in accordance with the present invention typically include at least one microscale channel (i.e., microchannel), usually at least two intersecting microscale channels, and often, three or more intersecting channels disposed within a single body structure.
- Channel intersections may exist in a number of formats, including cross intersections, "Y" or "T” intersections, or any number of other structures whereby two channels are in fluid communication.
- the body structure of the microfluidic devices described herein typically comprises an aggregation of two or more separate layers which when appropriately mated or joined together, form the microfluidic device of the invention, e.g., containing the channels and/or chambers described herein.
- the microfluidic devices described herein will comprise a top portion, a bottom portion, and an interior portion, wherein the interior portion substantially defines the channels and chambers of the device.
- the bottom portion of the device comprises a solid substrate that is substantially planar in structure, and which has at least one substantially flat upper surface.
- substrate materials are optionally employed as the bottom portion.
- substrate materials will be selected based upon their compatibility with known microfabrication techniques, e.g., photolithography, wet chemical etching, laser ablation, air abrasion techniques, LIGA, reactive ion etching, injection molding, embossing, and other techniques.
- the substrate materials are also generally selected for their compatibility with the full range of conditions to which the microfluidic devices may be exposed, including extremes of pH, temperature, electrolyte concentration, and application of electric fields.
- the substrate material may include materials normally associated with the semiconductor industry in which such microfabrication techniques are regularly employed, including, e.g., silica-based substrates, such as glass, quartz, silicon or polysilicon, as well as other substrate materials, such as gallium arsenide and the like.
- silica-based substrates such as glass, quartz, silicon or polysilicon
- other substrate materials such as gallium arsenide and the like.
- an insulating coating or layer e.g., silicon oxide
- the substrate materials will comprise polymeric materials, e.g., plastics, such as polymethylmethacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, polyvinylidine fluoride, ABS (acrylonitrile-butadiene- styrene copolymer), and the like.
- plastics such as polymethylmethacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, polyvinylidine fluoride, ABS (acrylonitrile-butadiene- styrene copolymer), and the
- Such polymeric substrates are readily manufactured using available microfabrication techniques, as described above, or from microfabricated masters, using well-known molding techniques, such as injection molding, embossing or stamping, or by polymerizing the polymeric precursor material within the mold (see U.S. Patent No. 5,512,131).
- Such polymeric substrate materials are preferred for their ease of manufacture, low cost and disposability, as well as their general inertness to most extreme reaction conditions.
- these polymeric materials may include treated surfaces, e.g., derivatized or coated surfaces, to enhance their utility in the microfluidic system, e.g., to provide enhanced fluid direction, e.g., as described in U.S. Pat. No. 5,885,470 (J. Wallace Parce et al.) issued 3/23/99, and which is incorporated herein by reference in its entirety for all purposes.
- the channels and/or cavities of the microfluidic devices are typically fabricated into the upper surface of the bottom substrate or portion of the device, as microscale grooves or indentations, using the above described microfabrication techniques.
- the top portion or substrate also comprises a first planar surface, and a second surface opposite the first planar surface.
- the top portion also includes a plurality of apertures, holes or ports disposed therethrough, e.g., from the first planar surface to the second surface opposite the first planar surface.
- the first planar surface of the top substrate is then mated, e.g., placed into contact with, and bonded to the planar surface of the bottom substrate, covering and sealing the grooves and/or indentations in the surface of the bottom substrate, to form the channels and/or chambers (i.e., the interior portion) of the device at the interface of these two components.
- Bonding of substrates is typically carried out by any of a number of different methods, e.g., thermal bonding, solvent bonding, ultrasonic welding, and the like.
- the holes in the top portion of the device are oriented such that they are in communication with at least one of the channels and/or cavities formed in the interior portion of the device from the grooves or indentations in the bottom substrate.
- these holes function as reservoirs for facilitating fluid or material introduction (e.g., bulk viscosity enhancers, electrolytes, reagents, etc.) into the channels or chambers of the interior portion of the device, as well as providing ports at which electrodes can optionally be placed into contact with fluids within the device, allowing application of electric fields along the channels of the device to control and direct fluid transport within the device.
- fluid or material introduction e.g., bulk viscosity enhancers, electrolytes, reagents, etc.
- extensions are provided over these reservoirs to allow for increased fluid volumes, permitting longer running assays, and better controlling fluid flow parameters, e.g., hydrostatic pressures. Examples of methods and apparatuses for providing such extensions are described in U.S. Application No. 09/028,965, filed February 24, 1998, and incorporated herein by reference.
- the methods and devices of the present invention for regulating spontaneous injection signatures and for controlling electrical resistance generally include the use of bulk viscosity enhancers to vary bulk viscosity levels, e.g., in capillary channels of microfluidic devices.
- the viscosity or hydrodynamic resistance of a fluid is a measure of the internal friction within the fluid, that is, the resistance of fluid constituents (e.g., polymers, molecules, ions, proteins, polynucleotides, cells, or the like) to movement relative to one another.
- fluid constituents e.g., polymers, molecules, ions, proteins, polynucleotides, cells, or the like
- bulk viscosity controls convection within a solution, but substantially affects only the diffusion of components having relatively large hydrodynamic radii, such as large polymers.
- a “bulk viscosity enhancer” or “rheological modifer,” as used herein, includes molecules capable of increasing the bulk viscosity of a solution.
- Suitable bulk viscosity enhancers generally include, e.g., any molecule with a hydrodynamic radius that provides high bulk hydrodynamic resistance to a solution, but which permits relatively free diffusion for smaller solution components, such as ions.
- bulk viscosity enhancers generally affect the convective motions of different sized molecules to the same extent, but impede the diffusive motions of larger molecules to a greater extent than those of relatively smaller species.
- Preferred bulk viscosity enhancers are biocompatible and have molecular weights of at least about one kilodalton.
- bulk viscosity enhancers typically have molecular weights in the range of from about one kilodalton to about 1,000 kilodaltons, generally in the range of from about 5 kilodaltons to about 100 kilodaltons, e.g., about 50 kilodaltons.
- Other suitable bulk viscosity enhancers are aqueous-based solutions of single polymers, polymer mixtures, copolymers, block copolymers, polymer micellar systems, interpenetration polymer networks, polymer gels, or the like.
- Bulk viscosity enhancers include carbohydrates (e.g., polysaccharides) or derivatives thereof.
- Polysaccharides, or glycans are polymers of aldehydes or ketones that include two or more hydroxyl groups. These aldehydes and ketones form various monomeric units, such as monosaccharides, disaccharides, and the like.
- polysaccharides include homopolysaccharides or heteropolysaccharides, which can both form straight-chains or branched-chains.
- Homopolysaccharides are polysaccharides composed of only one type of monomeric unit, whereas heteropolysaccharides include at least two different types of monomeric units.
- Preferred polysaccharides, or derivatives thereof include, e.g., polymers or copolymers of glucose (e.g., glycogen, dextran, amylose, amylopectin, cellulose, etc.), fructose, maltose, maltotriose, dextrin, sucrose, maltose, lactose, galactose (e.g., pectins, agars, etc.), and the like.
- Suitable cellulose derivatives include, e.g., hydroxyethyl cellulose, hydroxypropyl methylcellulose, and the like.
- Copolymers of sucrose and epichlorohydrin e.g., FICOLLTM are also preferred.
- bulk viscosity enhancers suitable for the present invention include, e.g., poly(ethylene glycol), poly(vinyl alcohol), poly(acrylic acids), acrylate copolymers, polyvinyl pyrrolidone (PNP), poly(dimethylacryamides) (PDMA), polyoxyethyleneoxypropyleneglycol block copolymer (e.g., PluronicTM), and the like.
- the holes in the top portion of the device are oriented such that they are in communication with at least one of the channels and/or cavities formed in the interior portion of the device from the grooves or indentations in the bottom substrate.
- the holes optionally function as reservoirs or wells for facilitating fluid or material introduction (e.g., bulk viscosity enhancers, electrolytes, reagents, etc.) into the channels or cavities of the interior portion of the device.
- these devices are coupled to a sample introduction port, e.g., a pipettor or capillary channel, which serially introduces multiple samples, e.g., from the wells of a microtiter plate.
- sources of bulk viscosity enhancers, surfactants, electrolytes, and other reagents are optionally fluidly coupled to the microchannels in any of a variety of ways.
- those systems comprising sources of materials set forth in Knapp et al. "Closed Loop Biochemical Analyzers" (WO 98/45481 ;
- capillary microchannel i.e., a channel in which components can be moved from a source to a microscale element such as a second channel or reservoir
- the source is optionally internal or external to a microfluidic device comprising the pipettor or capillary channel.
- Example sources include microwell plates, membranes or other solid substrates comprising lyophilized components, wells or reservoirs in the body of the microscale device itself and others.
- the source of bulk viscosity enhancers, surfactants, electrolytes, and other reagents is optionally a microwell plate external to the body structure, having, e.g., at least one well for each of the bulk viscosity enhancers, surfactants, and other reagents.
- bulk viscosity enhancers and surfactants are mixture components in a single well.
- capillary channel 102 is typically fluidly coupled with a port, such as a well on microtiter plate 106, external to body structure 100.
- a loading channel is coupled to an electropipettor channel with a port external to the body structure, a pressure-based pipettor channel with a port external to the body structure, a pipettor channel with a port internal to the body structure, an internal channel within the body structure fluidly coupled to a well on the surface of the body structure, an internal channel within the body structure fluidly coupled to a well within the body structure, or the like.
- the present invention provides methods of controlling the spontaneous injection signature of, e.g., a microfluidic device that accesses and transports externally stored materials using an external sampling pipettor/interface, such as the device described with respect to Figure 1.
- control is typically achieved by varying the buffer properties for introduced reagents or other materials. For example, increasing the viscosity and decreasing the surface tension of a buffer tends to decrease the effects of spontaneous injection.
- the phenomenon of spontaneous injection can be advantageously utilized in particular cases, in others it can have deleterious effects upon an assay. Therefore, methods that afford greater control over the occurrence of spontaneous injection are desirable.
- spontaneous injection refers to the action of fluid or other material to move into a given passage or conduit under no externally applied forces, e.g., applied pressure differentials, applied electric fields, etc.
- spontaneous injection typically refers to the action of fluid drop 104 at the tip of capillary channel 102, which is filled with fluid, in moving into the channel as a result of capillary action within the channel, surface tension on the fluid outside the channel, or the like. (FIG. 1).
- a fluid or other material that is "spontaneously injected” into a channel, cavity or other conduit moves into that channel, cavity or other conduit without the assistance of an externally applied motive force.
- the pressure ( ⁇ P) exerted by spontaneous injection is proportional to the surface tension ( ⁇ ) and radius of the drop (R) hanging at the capillary tip according to the expression, as follows:
- the characteristics of spontaneous injection can, in certain cases, be exploited, e.g., to provide improved sample accession methods and systems.
- spontaneous injection permits a number of useful advantages when sampling large numbers of different materials in microfluidic systems.
- the rate at which materials are spontaneously injected into a capillary channel is largely dependent upon the geometry of the capillary channel and the nature of the material being sampled, e.g., the type of fluid.
- spontaneous injection of sample materials is highly reproducible.
- spontaneous injection is generally a relatively slow process, one can sample extremely small volumes of materials, depending upon the amount of time over which the material is allowed to inject. Typically, such sampled volumes range from fractions of picoliters to nanoliters.
- nonaqueous materials e.g., pharmaceutical library compounds disposed in nonaqueous solvents such as dimethylsulfoxide (DMSO), dimethylformamide (DMF), acetone, alcohols and other water soluble organic solvents, nonionic fluids or other materials, can sometimes be less suitable to electrokinetic material transport due to their nonconductive nature or extremely low conductivity.
- DMSO dimethylsulfoxide
- DMF dimethylformamide
- acetone acetone
- alcohols and other water soluble organic solvents nonionic fluids or other materials
- spontaneously injected samples will not have an inherent electrophoretic biasing that is typically associated with electrokinetically sampled materials, where more highly charged components of sample material are enriched for or against, by virtue of the driving electric fields. Additional details regarding spontaneous injection and certain advantages related thereto are provided in, e.g., USSN 09/416,288 filed October 12, 1999, entitled “External Material Accession Systems and Methods" by Chow, A.W., et al., which is incorporated herein by reference for all purposes.
- substrate and enzyme are brought in from side channels of a microfluidic device.
- the substrate and enzyme react in the main channel, typically generating a fluorescent product that is detected.
- a microtiter plate is moved underneath the capillary channel which draws samples from the wells of the microtiter plate into the device.
- the samples optionally comprise potential inhibitors or other modulators of a fluorogenic enzymatic reaction.
- an ideal fluorescent signal observed in a screening experiment is flat due to a constant amount of product being generated in the enzymatic reaction.
- An inhibitor causes a decrease in the amount of fluorescent product generated and thus produces a decrease in the observed signal.
- Spontaneous injection also leads to decreases in the observed signal.
- Spontaneous injection also typically increases the dilution, e.g., of a substrate and an enzyme being introduced from the side channels of the system.
- the dilution results in a decrease in the observed product signal, which mimics a weakly inhibiting sample being brought onto the chip.
- spontaneous injection makes it more difficult to differentiate between weak inhibitors and systematic dips observed in the spectrum. Similar problems exist in other mixing experiments, such as drug screening, nucleic acid sequencing, Western type analyses, and the like.
- the phenomenon of spontaneous injection can also be a problem in, e.g., capillary electrophoresis applications as it presents a constant volume error in sampling (independent of sampled volume) that typically varies depending upon the geometry of the capillary channel and channel tip.
- the present invention includes methods to control the effects of spontaneous injection by varying buffer conditions. Specifically, the viscosity of a buffer is optionally increased by adding a bulk viscosity enhancer which effects an increase in the hydrodynamic resistance of the capillary channel and reduces the effects of spontaneous injection.
- the methods of inducing high bulk hydrodynamic resistance optionally include providing a microscale cavity in the microfluidic device that includes a bulk viscosity enhancer disposed in the cavity.
- the microscale cavity also optionally includes a capillary microchannel that extends from the microfluidic device.
- the bulk viscosity enhancer typically includes, e.g., a polymer molecule that has a molecular weight of at least about one kilodalton.
- suitable bulk viscosity enhancers include biocompatible polymers, such as a polysaccharide (e.g., FICOLLTM, dextran, and the like), PEG, PNA, derivatives thereof, or the like.
- Bulk hydrodynamic resistance in the microscale cavity in the device is optionally regulated by varying or selecting a concentration of the bulk viscosity enhancer disposed in the cavity.
- the regulated concentration of the bulk viscosity enhancer in turn, regulates spontaneous injection into the microscale cavity, e.g., during operation of the microfluidic device.
- a surfactant includes amphiphilic materials that spread out along, e.g., a buffer surface, changing the properties of the surface, such as by decreasing the surface tension (i.e., the work required to expand the surface of the liquid by unit area).
- Suitable surfactants typically include anionic surfactants (e.g., carboxylates, acylated protein hydrosylates, sulfonates, sulfates and sulfated products, phosphate esters, or the like), non-ionic surfactants (e.g., ethoxylates, carboxylic acid esters, carboxylic amides, polyalkylene oxide block copolymers, or the like), cationic surfactants (e.g., amines, 2-alkyl-l-(2-hydroxyethyl)-2-imidazolines, quaternary ammonium salts, or the like), amphoteric surfactants (e.g., imidazolinium derivatives, etc.), or the like.
- anionic surfactants e.g., carboxylates, acylated protein hydrosylates, sulfonates, sulfates and sulfated products, phosphate esters, or the like
- Throughput is the rate at which work is performed in a given system.
- microfluidic devices Improvements to the capabilities of analytical instrumentation, such a microfluidic devices, are often made by enhancing device throughput.
- One way to elevate the throughput of various microfluidic applications is to increase the number of discrete samples or "slugs" of material accommodated per unit length of a given microchannel or other microscale device cavity.
- a limiting factor such as slug dispersion restricts minimum slug-to-slug spacing in addition to time averaged sample concentrations.
- microfluidic devices in which slug dispersion is inhibited in a controllable manner would further improve the throughput and performance of various microfluidic analytical and preparative processes, such as in-line PCRs or the like.
- dispersion refers to diffusion and to the convection-induced, longitudinal dispersion of material within a fluid medium due to velocity variations across streamlines, e.g., in pressure driven flow systems, electrokinetically driven flow systems around curves and corners, and electrokinetically driven flow systems having non-uniform buffer ionic concentrations, e.g., plugs of high and low salt solutions within the same channel system.
- dispersion is generally defined as that due to the coupling between flow and molecular diffusion, i.e., Taylor dispersion.
- the methods and devices of the present invention utilize bulk viscosity enhancers or rheological modifers and/or temperature to regulate dispersion (e.g., slug dispersion) caused by molecular diffusion or Taylor-Aris dispersion.
- Bulk viscosity enhancers such as FICOLLTM, dextran, agar, or the like are described in greater detail above.
- the invention includes regulating bulk hydrodynamic resistance in a given microscale cavity of a device during run time, e.g., by varying or selecting a concentration of a bulk viscosity enhancer disposed in the cavity and/or by varying or selecting temperatures within the cavity.
- the regulated bulk hydrodynamic resistance also regulates slug dispersion during fluid flow in the cavity.
- decreased dispersion permits reduced slug-to-slug spacing which, in turn, increases throughput.
- Dispersion control is optionally also effected by varying microscale cavity dimensions and/or fluid residence time in the cavity.
- the effective dispersivity, K is composed of two components. One component arises from molecular diffusion and the other arises from Taylor-Aris dispersion.
- the effective dispersivity is
- the factor ⁇ only depends on the geometry of the channel, and is used for algebraic convenience.
- An objective of the present invention is to reduce the total dispersion, which is
- the molecular diffusivity is dependent on the rheological properties of the surrounding fluid.
- the Stokes-Einstein relationship states that the diffusivity has the following relationship
- Figure 2 is a graph that schematically illustrates the dependence of the effective dispersivity on diffusivity.
- the slug-to-slug spacing is optionally reduced by increasing the viscosity of the transporting fluid, e.g., by increasing the concentration of a bulk viscosity enhancer disposed in the microscale cavity and/or decreasing the temperature of the fluid within the cavity.
- the viscosity is optionally reduced. If the carrier fluid is water, this may be difficult since it is typically challenging to add material to an aqueous phase to reduce the viscosity. However, increased temperature is optionally used to reduce the viscosity. In this case, there is an optimal ratio of ⁇ IT
- the present invention also relates to the use of high viscosity, high salt buffers loaded into reagent wells of a microfluidic device to induce high hydrodynamic resistance and low electrical resistance.
- a buffer that includes a bulk viscosity enhancer and an electrolyte is optionally used to achieve these conditions.
- One significant advantage of this approach is that it generally eliminates using microfluidic devices fabricated with two or more microchannel depths to provide these resistance parameters.
- Another advantage is that it provides for the control of relative flow rate ratios during device operation (e.g., during the run time of an experiment).
- an “electrolyte” includes a substance whose aqueous solutions conduct electricity by the movement of ions.
- electrolytes can include "salts" which include compounds that contain cations other than H and anions other than hydroxide ion, OH " , or oxide ion, O 2" (e.g., NaCl, KBr, MgSO , AgNO 3 , (NH 4 ) 2 SO , or the like).
- Some electrolytes are weak acids or bases of salts that also serve as pH buffering species.
- microfluidic devices such as pipettor microfluidic device 300 which includes two microchannel depths and is operated by pressure driven flow supplied by vacuum source 310 are optionally used.
- FIG. 3 side microchannels 304 connecting separation microchannel 306 to reagent wells 302 should be hydrodynamically resistant, but electrically conductive such that flow from reagent wells 302 is small, while a high electrical field is optionally delivered to separation microchannel 306.
- Assay components such as enzymes, substrates, and the like are optionally introduced into the device from sample wells 312.
- One way to satisfy both requirements is to make side microchannels 304 shallower and wider than, e.g., separation microchannel 306 and reaction microchannel 308, since hydrodynamic and electrical resistances have different dependencies on microchannel depth. That is, the shallower a given microchannel is the relatively more hydrodynamically resistant and the less electrically resistant it will be.
- This invention describes devices and methods that provide an alternative to the use of multiple channel depth microfluidic devices and still provide desired hydrodynamic and electrical resistance properties. As mentioned, these methods utilize buffer properties instead of microchannel geometry to meet the specifications.
- a tailored buffer such as a high salt buffer with a bulk viscosity enhancer optionally provides the desired resistance parameters in a single buffer using a single channel depth microfluidic device.
- single microchannel depth pipettor microfluidic device 400 is optionally used in conjunction with the methods of the present invention for inducing high bulk hydrodynamic resistance and low electrical resistance to perform the same assays performed in multiple microchannel depth pipettor microfluidic device 300 depicted in Figure 3.
- assay components such as enzymes, substrates, or the like are optionally introduced into reaction microchannel 408 and separation microchannel 406 from sample wells 412.
- Buffers including bulk viscosity enhancers and electrolytes are optionally introduced from reagent wells 402 into side microchannels 404. In so doing, an electric field produced by the electrolyte is optionally delivered to separation microchannel 406.
- Bulk viscosity enhancers, electrolytes, and other assay components are optionally flowed in the device using, e.g., a fluid pressure force modulator, an electrokinetic force modulator, a capillary force modulator, a fluid wicking element, or the like. Fluid direction components are discussed further, infra. Components are preferably flowed under pressure. For example, pressure is optionally supplied by vacuum source 410.
- the bulk hydrodynamic resistance and electrical resistance in the microscale cavities of a microfluidic device are optionally individually or concomitantly regulated by varying or selecting a concentration of at least one bulk viscosity enhancer and/or a concentration of at least one electrolyte disposed in the cavity.
- the bulk hydrodynamic resistance, the electrical resistance, or both, in the microscale cavity is/are regulated, e.g., during operation of the microfluidic device.
- the methods optionally include providing a microchannel disposed in the microfluidic device that intersects and fluidly communicates with the microscale cavity. The regulation of electrical resistance in the microscale cavity typically effects regulation of electrical fields in the intersecting microchannel.
- the bulk viscosity enhancer and/or electrolyte is/are chosen to modify the electrokinetic velocity in the microscale cavity.
- polymers such as poly(dimethylacryamide) are known to suppress electroosmotic flow by coating the microchannel walls (i.e., they serve as dynamic coatings).
- Dynamic coatings are used in various microfluidic applications, including, e.g., DNA sizing.
- the methods and devices for achieving high hydrodynamic resistance and low electrical resistance not only lower manufacturing costs, as single channel depth microfluidic devices are optionally used, they also provide another means to control electrical resistance and relative flow rates of reagents within a device, especially during the run time of an experiment.
- an electrolyte is optionally selected to provide more buffering capacities to keep the buffer pH constant during extended screening runs even with electrochemical reactions occurring at the electrodes.
- the flowing of bulk viscosity enhancers, surfactants, electrolytes, or other reagents along the microchannels of the devices described herein is optionally carried out by a number of mechanisms, including pressure-based flow, electrokinetic flow, or mechanisms that utilize a hybrid of the two.
- a pressure differential is used to flow the materials along, e.g., a capillary channel, a side channel, an analysis channel, or the like.
- Application of a pressure differential along the channel is carried out by a number of means.
- the reagents are deposited in a reservoir or well at one end of an analysis channel and at a sufficient volume or depth, that the reagent sample creates a hydrostatic pressure differential along the length of the analysis channel, e.g., by virtue of its having greater depth than a reservoir at an opposite terminus of the channel.
- the hydrostatic pressure then causes the reagents to flow along the length of the channel.
- the reservoir volume is quite large in comparison to the volume or flow through rate of the channel, e.g., 10 ⁇ l reservoirs, vs. 1000 ⁇ m 2 channel cross-section.
- the flow rate of the reagents will remain substantially constant, as the volume of the reservoir, and thus, the hydrostatic pressure changes very slowly. Applied pressure is then readily varied to yield different reagent flow rates through the channel.
- varying the flow rate of the reagents is optionally used to vary the incubation time of the reagents. In particular, by slowing the flow rate along the channel, one can effectively lengthen the amount of time between introduction of reagents and detection of a particular effect. Alternatively, analysis channel lengths, detection points, or reagent introduction points are varied in fabrication of the devices, to vary incubation times.
- reagents may be flowed by applying a pressure differential across the length of the analysis channel.
- a pressure source positive or negative
- a pressure source positive or negative
- the pressure source is optionally pneumatic, e.g., a pressurized gas, or a positive displacement mechanism, i.e., a plunger fitted into a reagent reservoir, for forcing the reagents through the analysis channel.
- a vacuum source is applied to a reservoir at the opposite end of the channel to draw the reagents through the channel.
- Pressure or vacuum sources may be supplied external to the device or system, e.g., external vacuum or pressure pumps sealably fitted to the inlet or outlet of the analysis channel, or they may be internal to the device, e.g., microfabricated pumps integrated into the device and operably linked to the analysis channel. Examples of microfabricated pumps have been widely described in the art. See, e.g., published International Application No. WO 97/02357.
- Electrokinetic transport systems typically utilize electric fields applied along the length of channels that have a surface potential or charge associated therewith.
- the charged groups on the inner surface of the channel ionize, creating locally concentrated levels of ions near the fluid surface interface.
- this charged sheath migrates toward the cathode or anode (depending upon whether the sheath comprises positive or negative ions) and pulls the encompassed fluid along with it, resulting in bulk fluid flow.
- This flow of fluid is generally termed electroosmotic flow.
- the reagents are also pulled along.
- Hydrostatic, wicking and capillary forces are also optionally used to provide for fluid flow. See, e.g., "Method and Apparatus for Continuous Liquid Flow in Microscale Channels Using Pressure Injection, Wicking and Electrokinetic Injection," by Alajoki et al., USSN 09/245,627, filed February 5, 1999.
- an adsorbent material or branched capillary structure is placed in fluidic contact with a region where pressure is applied, thereby causing fluid to move towards the adsorbent material or branched capillary structure.
- flow of reagents is driven by centrifugal forces.
- the analysis channel is optionally disposed in a substrate that has the conformation of a rotor, with the analysis channel extending radially outward from the center of the rotor.
- the reagents are deposited in a reservoir that is located at the interior portion of the rotor and is fluidly connected to the channel.
- the centripetal force on the reagents forces the reagents through the analysis channel, outward toward the edge of the rotor.
- Multiple analysis channels are optionally provided in the rotor to perform multiple different analyses.
- Detection of a detectable signal produced by the reagents is then carried out by placing a detector under the spinning rotor and detecting the signal as the analysis channel passes over the detector.
- rotor systems have been previously described for performing a number of different assay types. See, e.g., Published International Application No. WO 95/02189.
- Test compound reservoirs are optionally provided in the rotor, in fluid communication with the analysis channel, such that the rotation of the rotor also forces the test compounds into the analysis channel.
- single body structures may be provided with multiple parallel analysis channels coupled to multiple sample accessing capillaries that are positioned to sample multiple samples at a time from sample libraries, e.g., multiwell plates.
- sample libraries e.g., multiwell plates.
- these capillaries are generally spaced at regular distances that correspond with the spacing of wells in multiwell plates, e.g., 9 mm centers for 96 well plates, 4.5 mm for 384 well plates, and 2.25 mm for 1536 well plates.
- the devices and systems specifically illustrated herein are generally described in terms of the performance of a few or one particular operation, it will be readily appreciated from this disclosure that the flexibility of these systems permits easy integration of additional operations into these devices.
- the devices and systems described will optionally include structures, reagents and systems for performing virtually any number of operations both upstream and downstream from the operations specifically described herein.
- upstream operations include sample handling and preparation operations, e.g., particle separation, extraction, purification, amplification, cellular activation, labeling reactions, dilution, aliquotting, and the like.
- downstream operations may include similar operations, including, e.g., separation of sample components, labeling of components, assays and detection operations, electrokinetic or pressure-based injection of components into contact with particle sets, or materials released from particle sets, or the like.
- Assay and detection operations include, without limitation, cell fluorescence assays, cell activity assays, probe interrogation assays, e.g., nucleic acid hybridization assays utilizing individual probes, free or tethered within the channels or chambers of the device and/or probe arrays having large numbers of different, discretely positioned probes, receptor/ligand assays, immunoassays, and the like. Any of these elements are optionally fixed to array members, or fixed, e.g., to channel walls, or the like.
- the devices or systems of the invention optionally include an integrated system that incorporates a computer or a computer readable medium that generally includes an instruction set for varying or selecting a concentration of, e.g., a bulk viscosity enhancer and/or surfactant disposed in, e.g., a capillary microchannel that extends from the microfluidic device.
- the varied or selected bulk viscosity enhancer and/or surfactant concentration in this manner regulates bulk hydrodynamic resistance within the microscale cavity which, in turn, regulates spontaneous injection into the microscale cavity.
- Spontaneous injection is optionally regulated during operation of the device.
- the computer or computer readable medium also includes an instruction set for varying or selecting a temperature within the microscale cavity, e.g., to regulate slug dispersion according to the methods described herein.
- the invention also optionally includes a device or system that includes a body structure having one or more microchannel fabricated in the structure that optionally includes a mixture of a bulk viscosity enhancer and an electrolyte.
- this device or system typically includes an integrated system that also includes a computer or a computer readable medium that includes an instruction set.
- the instruction set optionally varies or selects concentrations of the bulk viscosity enhancer and/or the electrolyte disposed in a microchannel to regulate bulk hydrodynamic resistance and electrical resistance within the device.
- the regulated bulk hydrodynamic resistance within the microscale cavity regulates dispersion (e.g., slug dispersion) during fluid flow in the microscale cavity.
- the materials are optionally monitored and/or detected so that an activity can be determined.
- the systems described herein generally include microfluidic devices, as described above, in conjunction with additional instrumentation for controlling spontaneous injection, electric fields, fluid transport, flow rate and direction within the devices, detection instrumentation for detecting or sensing results of the operations performed by the system, processors, e.g., computers, for instructing the controlling instrumentation in accordance with preprogrammed instructions, receiving data from the detection instrumentation, and for analyzing, storing and interpreting the data, and providing the data and interpretations in a readily accessible reporting format.
- controlling instrumentation is optionally utilized in conjunction with the microfluidic devices described above, for controlling the transport, concentration, and direction of fluids (e.g., to regulate the effects of spontaneous injection and/or electrical resistance) and/or materials within the devices of the present invention, e.g., by pressure-based or electrokinetic control.
- fluid transport, concentration, and direction are controlled in whole or in part, using pressure based flow systems that incorporate external or internal pressure sources to drive fluid flow.
- Internal sources include microfabricated pumps, e.g., diaphragm pumps, thermal pumps, and the like that have been described in the art. See, e.g., U.S. Patent Nos. 5,271,724, 5,277,556, and 5,375,979 and Published PCT Application Nos. WO 94/05414 and WO 97/02357.
- the systems described herein can also utilize electrokinetic material direction and transport systems.
- external pressure sources are used, and applied to ports at channel termini. These applied pressures, or vacuums, generate pressure differentials across the lengths of channels to drive fluid flow through them.
- differential flow rates on volumes are optionally accomplished by applying different pressures or vacuums at multiple ports, or preferably, by applying a single vacuum at a common waste port and configuring the various channels with appropriate resistance to yield desired flow rates. See, e.g., Figure 4.
- Example systems are also described in USSN 09/238,467 filed 1/28/99.
- the controller systems are appropriately configured to receive or interface with a microfluidic device or system element as described herein.
- the controller and/or detector optionally includes a stage upon which the device of the invention is mounted to facilitate appropriate interfacing between the controller and/or detector and the device.
- the stage includes an appropriate mounting/alignment structural element, such as a nesting well, alignment pins and/or holes, asymmetric edge structures (to facilitate proper device alignment), and the like. Many such configurations are described in the references cited herein.
- the controlling instrumentation discussed above is also used to provide for electrokinetic injection or withdrawal of material downstream of the region of interest to control an upstream flow rate.
- the same instrumentation and techniques described above are also utilized to inject a fluid into a downstream port to function as a flow control element.
- the devices herein optionally include signal detectors, e.g., which detect concentration, fluorescence, phosphorescence, radioactivity, pH, charge, absorbance, refractive index, luminescence, temperature, magnetism, mass, or the like.
- the detector(s) optionally monitors one or a plurality of signals from upstream and/or downstream of an assay mixing point in which, e.g., a ligand and an enzyme are mixed.
- the detector optionally monitors a plurality of optical signals which correspond in position to "real time" assay results.
- Example detectors or sensors include photomultiplier tubes, CCD arrays, optical sensors, temperature sensors, pressure sensors, pH sensors, conductivity sensors, mass sensors, scanning detectors, or the like. Cells or other components which emit a detectable signal are optionally flowed past the detector, or, alternatively, the detector can move relative to the array to determine the position of an assay component (or, the detector can simultaneously monitor a number of spatial positions corresponding to channel regions, e.g., as in a CCD array). Each of these types of sensors is optionally readily incorporated into the microfluidic systems described herein.
- detectors are placed either within or adjacent to the microfluidic device or one or more channels, chambers or conduits of the device, such that the detector is within sensory communication with the device, channel, or chamber.
- the detector optionally includes or is operably linked to a computer, e.g., which has software for converting detector signal information into assay result information (e.g., kinetic data of modulator activity), or the like.
- a microfluidic system optionally employs multiple different detection systems for monitoring the output of the system.
- Detection systems of the present invention are used to detect and monitor the materials in a particular channel region (or other reaction detection region).
- the detector optionally exists as a separate unit, but is preferably integrated with the controller system, into a single instrument. Integration of these functions into a single unit facilitates connection of these instruments with the computer (described below), by permitting the use of few or a single communication port(s) for transmitting information between the controller, the detector and the computer.
- either or both of the controller system and/or the detection system is/are optionally coupled to an appropriately programmed processor or computer which functions to instruct the operation of these instruments in accordance with preprogrammed or user input instructions, receive data and information from these instruments, and interpret, manipulate and report this information to the user.
- the computer is typically appropriately coupled to one or both of these instruments (e.g., including an analog to digital or digital to analog converter as needed).
- the computer typically includes appropriate software for receiving user instructions, either in the form of user input into a set parameter fields, e.g., in a GUI, or in the form of preprogrammed instructions, e.g., preprogrammed for a variety of different specific operations.
- the software then converts these instructions to appropriate language for instructing the operation of the fluid direction and transport controller to carry out the desired operation, such as varying or selecting bulk viscosity enhancer and/or electrolyte concentrations.
- the computer then receives the data from the one or more sensors/detectors included within the system, and interprets the data, either provides it in a user understood format, or uses that data to initiate further controller instructions, in accordance with the programming, e.g., such as in monitoring and control of flow rates, temperatures, applied voltages, and the like.
- the computer typically includes software for the monitoring of materials, such as bulk viscosity enhancers, surfactants, and/or electrolyte concentrations in the channels. Additionally, the software is optionally used to control pressure or electrokinetic modulated injection or withdrawal of material. The injection or withdrawal is used to modulate the effects of spontaneous injection, electrical resistance, flow rate, and the like as described above.
- materials such as bulk viscosity enhancers, surfactants, and/or electrolyte concentrations in the channels.
- the software is optionally used to control pressure or electrokinetic modulated injection or withdrawal of material. The injection or withdrawal is used to modulate the effects of spontaneous injection, electrical resistance, flow rate, and the like as described above.
- body structure 502 of microfluidic device 500 has main microchannel 504 disposed therein.
- Bulk viscosity enhancers, electrolytes, and/or other materials are optionally flowed from pipettor or capillary element 520 towards reservoir 514, e.g., by applying a vacuum at reservoir 514 (or another point in the system) and/or by applying appropriate voltage gradients, e.g., to regulate spontaneous injection signatures and/or electric fields, as described herein.
- a vacuum is applied at reservoirs 508, 512 or through pipettor or capillary element 520.
- Additional materials including bulk viscosity enhancers and/or electrolytes are optionally flowed from wells 508 or 512 and into main microchannel 504, e.g., to regulate slug dispersion and/or electric fields, etc. according to the methods of the invention.
- Flow from these wells is optionally performed by modulating fluid pressure, or by electrokinetic approaches as described (or both).
- the flow rate is optionally reduced by flowing a portion of the fluid from main microchannel 504 into flow reduction microchannel 506 or 510.
- the arrangement of channels depicted in Figure 5 is only one possible arrangement out of many which are appropriate and available for use in the present invention. Additional alternatives can be devised, e.g., by combining the microfluidic elements described herein with other microfluidic device components described in the patents and applications referenced herein.
- Samples or other materials are optionally flowed from the enumerated wells or from a source external to the body structure.
- the integrated system optionally includes pipettor or capillary element 520, e.g., protruding from body 502, for accessing a source of materials external to the microfluidic system.
- the external source is a microtiter dish, a substrate, a membrane, or other convenient storage medium.
- pipettor or capillary element 520 can access microwell plate 608, which includes sample materials, buffers, substrate solutions, enzyme solutions, or the like, in the wells of the plate.
- Detector 606 is in sensory communication with main microchannel 504, detecting signals resulting, e.g., from labeled materials flowing through the detection region. Detector 606 is optionally coupled to any of the channels or regions of the device where detection is desired. Detector 606 is operably linked to computer 604, which digitizes, stores, and manipulates signal information detected by detector 606, e.g., using any instruction set, e.g., for determining concentration, molecular weight or identity, or the like.
- Fluid direction system 602 controls pressure, voltage, or both, e.g., at the wells of the system or through the channels or other cavities of the system, or at vacuum couplings fluidly coupled to main microchannel 504 or other channels described above.
- computer 604 controls fluid direction system 602.
- computer 604 uses signal information to select further parameters for the microfluidic system. For example, upon detecting the presence of a component of interest (e.g., following separation) in a sample from microwell plate 608, the computer optionally directs addition of a potential modulator of the component of interest into the system.
- controller 610 dispenses aliquots of selected material into, e.g., main microchannel 504.
- controller 610 is also typically operably connected to computer 604, which directs controller 610 function.
- a microfluidic device handling system is also included in the integrated systems of the present invention. Microfluidic device handling systems generally control, e.g., the X-Y-Z translation of microfluidic device 500 relative to microwell plate 608, of microwell plate 608 relative to microfluidic device 500, or of other system components, under the direction of computer 604, e.g., according to appropriate program instructions, to which device handling systems are typically operably connected.
- kits can include any of microfluidic devices described along with assay components, bulk viscosity enhancers, electrolytes, reagents, sample materials, proteins, antibodies, enzymes, substrates, control materials, spacers, buffers, immiscible fluids, or the like.
- kits also typically include appropriate instructions for using the devices and reagents, and in cases where reagents are not predisposed in the devices themselves, with appropriate instructions for introducing the reagents into the channels and/or chambers of the device.
- kits optionally include special ancillary devices for introducing materials into the microfluidic systems, e.g., appropriately configured syringes/pumps, or the like (in one embodiment, the device itself comprises a pipettor element, such as an electropipettor for introducing material into channels and chambers within the device).
- the device itself comprises a pipettor element, such as an electropipettor for introducing material into channels and chambers within the device.
- such kits typically include a microfluidic device with necessary reagents predisposed in the channels/chambers of the device. Generally, such reagents are provided in a stabilized form, so as to prevent degradation or other loss during prolonged storage, e.g., from leakage.
- Kits also optionally include packaging materials or containers for holding microfluidic device, system or reagent elements.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01935446A EP1281002A4 (en) | 2000-05-11 | 2001-05-10 | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
AU6154101A AU6154101A (en) | 2000-05-11 | 2001-05-10 | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
CA 2406718 CA2406718A1 (en) | 2000-05-11 | 2001-05-10 | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
AU2001261541A AU2001261541B2 (en) | 2000-05-11 | 2001-05-10 | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20349800P | 2000-05-11 | 2000-05-11 | |
US60/203,498 | 2000-05-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001086249A2 true WO2001086249A2 (en) | 2001-11-15 |
WO2001086249A3 WO2001086249A3 (en) | 2002-03-07 |
Family
ID=22754250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/015465 WO2001086249A2 (en) | 2000-05-11 | 2001-05-10 | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers |
Country Status (5)
Country | Link |
---|---|
US (1) | US6669831B2 (en) |
EP (1) | EP1281002A4 (en) |
AU (2) | AU6154101A (en) |
CA (1) | CA2406718A1 (en) |
WO (1) | WO2001086249A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6532997B1 (en) * | 2001-12-28 | 2003-03-18 | 3M Innovative Properties Company | Sample processing device with integral electrophoresis channels |
WO2006067715A2 (en) * | 2004-12-23 | 2006-06-29 | Koninklijke Philips Electronics N. V. | Method for controlling the flow of liquids containing biological material by inducing electro- or magneto-rheological effect |
US7238269B2 (en) | 2003-07-01 | 2007-07-03 | 3M Innovative Properties Company | Sample processing device with unvented channel |
WO2013024030A1 (en) * | 2011-08-12 | 2013-02-21 | Molecular Vision Limited | Flow control in a microfluidic device |
JP2014527169A (en) * | 2011-08-12 | 2014-10-09 | モレキュラー・ビジョン・リミテッド | Device for assay execution |
US9101933B2 (en) | 2008-10-10 | 2015-08-11 | University Of Hull | Microfluidic apparatus and method for DNA extraction, amplification and analysis |
Families Citing this family (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048734A (en) | 1995-09-15 | 2000-04-11 | The Regents Of The University Of Michigan | Thermal microvalves in a fluid flow method |
US7655443B1 (en) * | 1999-05-07 | 2010-02-02 | Siemens Healthcare Diagnostics, Inc. | Nucleic acid sequencing with simultaneous quantitation |
JP2001281233A (en) * | 2000-03-28 | 2001-10-10 | Inst Of Physical & Chemical Res | Microchip for water distribution and water distribution method using it |
US20020112959A1 (en) * | 2000-10-04 | 2002-08-22 | Qifeng Xue | Unbiased sample injection for microfluidic applications |
US6692700B2 (en) | 2001-02-14 | 2004-02-17 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US7323140B2 (en) | 2001-03-28 | 2008-01-29 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US7829025B2 (en) | 2001-03-28 | 2010-11-09 | Venture Lending & Leasing Iv, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US7010391B2 (en) | 2001-03-28 | 2006-03-07 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8895311B1 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US6852287B2 (en) | 2001-09-12 | 2005-02-08 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US20040053315A1 (en) * | 2002-08-12 | 2004-03-18 | Caliper Technologies Corp. | Methods and systems for monitoring molecular interactions |
AU2006235974B2 (en) * | 2002-08-12 | 2007-11-15 | Caliper Life Sciences, Inc. | Methods and systems for monitoring molecular interactions |
GB0307999D0 (en) * | 2003-04-07 | 2003-05-14 | Glaxo Group Ltd | A system |
WO2005011867A2 (en) | 2003-07-31 | 2005-02-10 | Handylab, Inc. | Processing particle-containing samples |
WO2005033672A1 (en) * | 2003-10-01 | 2005-04-14 | Caliper Life Sciences, Inc. | Method for measuring diffusivities of compounds using microfluidic devices |
PT1776181E (en) | 2004-01-26 | 2014-01-02 | Harvard College | Fluid delivery system and method |
US8030057B2 (en) | 2004-01-26 | 2011-10-04 | President And Fellows Of Harvard College | Fluid delivery system and method |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
EP2345739B8 (en) | 2004-05-03 | 2016-12-07 | Handylab, Inc. | A microfluidic device for processing polynucleotide-containing samples |
EP1754536B1 (en) * | 2005-08-16 | 2008-12-24 | Agilent Technologies, Inc. | Fluid injection system |
US10042980B2 (en) * | 2005-11-17 | 2018-08-07 | Gearbox Llc | Providing assistance related to health |
US20070119928A1 (en) * | 2005-11-17 | 2007-05-31 | Jung Edward K | Generating a nutraceutical request from an inventory |
US20080114577A1 (en) * | 2005-11-30 | 2008-05-15 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational methods and systems associated with nutraceutical related assays |
US8340944B2 (en) * | 2005-11-30 | 2012-12-25 | The Invention Science Fund I, Llc | Computational and/or control systems and methods related to nutraceutical agent selection and dosing |
US8297028B2 (en) * | 2006-06-14 | 2012-10-30 | The Invention Science Fund I, Llc | Individualized pharmaceutical selection and packaging |
US20080052114A1 (en) * | 2005-11-30 | 2008-02-28 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational systems and methods related to nutraceuticals |
US20070124176A1 (en) * | 2005-11-30 | 2007-05-31 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational and/or control systems and methods related to nutraceutical agent selection and dosing |
US20070289258A1 (en) * | 2006-06-14 | 2007-12-20 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Individualized pharmaceutical selection and packaging |
US20080004909A1 (en) * | 2005-11-30 | 2008-01-03 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational systems related to nutraceuticals |
US7827042B2 (en) | 2005-11-30 | 2010-11-02 | The Invention Science Fund I, Inc | Methods and systems related to transmission of nutraceutical associated information |
US8000981B2 (en) | 2005-11-30 | 2011-08-16 | The Invention Science Fund I, Llc | Methods and systems related to receiving nutraceutical associated information |
US20070124175A1 (en) * | 2005-11-30 | 2007-05-31 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware. | Computational and/or control systems and methods related to nutraceutical agent selection and dosing |
US10296720B2 (en) * | 2005-11-30 | 2019-05-21 | Gearbox Llc | Computational systems and methods related to nutraceuticals |
US20080082272A1 (en) * | 2005-11-30 | 2008-04-03 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational systems and methods related to nutraceuticals |
US20110145009A1 (en) * | 2005-11-30 | 2011-06-16 | Jung Edward K Y | Methods and systems related to transmission of nutraceutical associatd information |
US20080103746A1 (en) * | 2005-11-30 | 2008-05-01 | Searete Llc, A Limited Liability Corporation | Systems and methods for pathogen detection and response |
US20070124219A1 (en) * | 2005-11-30 | 2007-05-31 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational and/or control systems related to individualized nutraceutical selection and packaging |
US7974856B2 (en) * | 2005-11-30 | 2011-07-05 | The Invention Science Fund I, Llc | Computational systems and methods related to nutraceuticals |
US7927787B2 (en) * | 2006-06-28 | 2011-04-19 | The Invention Science Fund I, Llc | Methods and systems for analysis of nutraceutical associated components |
US7998708B2 (en) | 2006-03-24 | 2011-08-16 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
EP2001990B1 (en) | 2006-03-24 | 2016-06-29 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
WO2008060604A2 (en) | 2006-11-14 | 2008-05-22 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
EP2091647A2 (en) | 2006-11-14 | 2009-08-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
EP2144057B1 (en) * | 2007-04-27 | 2019-04-10 | ARKRAY, Inc. | Method for analyzing a sample containing glycosylated hemoglobin and glucose |
CN103495439B (en) | 2007-05-04 | 2015-09-16 | 欧普科诊断有限责任公司 | Fluid connector and microfluid system |
US8324372B2 (en) | 2007-07-13 | 2012-12-04 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US20090136385A1 (en) | 2007-07-13 | 2009-05-28 | Handylab, Inc. | Reagent Tube |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8105783B2 (en) | 2007-07-13 | 2012-01-31 | Handylab, Inc. | Microfluidic cartridge |
US9618139B2 (en) | 2007-07-13 | 2017-04-11 | Handylab, Inc. | Integrated heater and magnetic separator |
USD621060S1 (en) | 2008-07-14 | 2010-08-03 | Handylab, Inc. | Microfluidic cartridge |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8016260B2 (en) * | 2007-07-19 | 2011-09-13 | Formulatrix, Inc. | Metering assembly and method of dispensing fluid |
WO2009052095A1 (en) * | 2007-10-17 | 2009-04-23 | Advanced Liquid Logic, Inc. | Reagent storage and reconstitution for a droplet actuator |
US8222049B2 (en) * | 2008-04-25 | 2012-07-17 | Opko Diagnostics, Llc | Flow control in microfluidic systems |
USD618820S1 (en) | 2008-07-11 | 2010-06-29 | Handylab, Inc. | Reagent holder |
USD787087S1 (en) | 2008-07-14 | 2017-05-16 | Handylab, Inc. | Housing |
US8591829B2 (en) | 2008-12-18 | 2013-11-26 | Opko Diagnostics, Llc | Reagent storage in microfluidic systems and related articles and methods |
US8100293B2 (en) * | 2009-01-23 | 2012-01-24 | Formulatrix, Inc. | Microfluidic dispensing assembly |
ES2812260T3 (en) | 2009-02-02 | 2021-03-16 | Opko Diagnostics Llc | Structures to control the interaction of light with microfluidic devices |
US8763623B2 (en) * | 2009-11-06 | 2014-07-01 | Massachusetts Institute Of Technology | Methods for handling solids in microfluidic systems |
US8567425B2 (en) | 2009-11-24 | 2013-10-29 | Opko Diagnostics, Llc | Fluid mixing and delivery in microfluidic systems |
MX2012012066A (en) | 2010-04-16 | 2012-12-17 | Opko Diagnostics Llc | Feedback control in microfluidic systems. |
USD645971S1 (en) | 2010-05-11 | 2011-09-27 | Claros Diagnostics, Inc. | Sample cassette |
ES2617599T3 (en) | 2011-04-15 | 2017-06-19 | Becton, Dickinson And Company | Real-time scanning microfluidic thermocycler and methods for synchronized thermocycling and optical scanning detection |
US9310304B2 (en) | 2011-05-12 | 2016-04-12 | Netbio, Inc. | Methods and compositions for rapid multiplex amplification of STR loci |
EP2729798A4 (en) * | 2011-07-04 | 2015-03-04 | Nat Res Council Canada | Centrifugal microfluidic platform |
CN103733059B (en) | 2011-07-06 | 2016-04-06 | 先进流体逻辑公司 | Reagent on droplet actuator stores |
RU2622432C2 (en) | 2011-09-30 | 2017-06-15 | Бектон, Дикинсон Энд Компани | Unified strip for reagents |
USD692162S1 (en) | 2011-09-30 | 2013-10-22 | Becton, Dickinson And Company | Single piece reagent holder |
EP2773892B1 (en) | 2011-11-04 | 2020-10-07 | Handylab, Inc. | Polynucleotide sample preparation device |
WO2013116769A1 (en) | 2012-02-03 | 2013-08-08 | Becton, Dickson And Company | External files for distribution of molecular diagnostic tests and determination of compatibility between tests |
BR112014021776B1 (en) | 2012-03-05 | 2022-08-09 | Opko Diagnostics, Llc | ASSAY SYSTEM AND METHOD FOR DETERMINING A PROBABILITY OF AN EVENT ASSOCIATED WITH PROSTATE CANCER |
WO2014031532A1 (en) * | 2012-08-19 | 2014-02-27 | University Of Rochester | Microfluidic device for filtering fluids and dialysis |
CA2900708C (en) | 2013-03-13 | 2021-06-15 | Opko Diagnostics, Llc | Mixing of fluids in fluidic systems |
US11325123B2 (en) | 2013-08-02 | 2022-05-10 | The Board Of Trustees Of The Leland Stanford Junior University | Flow regulation in fluidic systems using a phase-change material at system ports |
JP5730978B2 (en) * | 2013-11-08 | 2015-06-10 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic apparatus and method |
MX2017007576A (en) | 2014-12-12 | 2018-03-09 | Opko Diagnostics Llc | Fluidic systems comprising an incubation channel, including fluidic systems formed by molding. |
USD804682S1 (en) | 2015-08-10 | 2017-12-05 | Opko Diagnostics, Llc | Multi-layered sample cassette |
EP3387447A4 (en) | 2015-12-11 | 2019-08-28 | Opko Diagnostics, LLC | Fluidic systems involving incubation samples and/or reagents |
RU2678596C2 (en) * | 2015-12-14 | 2019-01-30 | Федеральное государственное бюджетное учреждение "Эндокринологический научный центр" Министерства здравоохранения Российской Федерации | Device for determining dialysis properties of hemcompatible membranes |
EP3408389B1 (en) | 2016-01-29 | 2021-03-10 | Purigen Biosystems, Inc. | Isotachophoresis for purification of nucleic acids |
US11339434B2 (en) * | 2016-07-29 | 2022-05-24 | The Regents Of The University Of California | Methods for determining gene functions |
US10928289B2 (en) * | 2017-05-04 | 2021-02-23 | University Of Connecticut | Assembly for measuring the viscosity of fluids using microchannels |
US11041150B2 (en) | 2017-08-02 | 2021-06-22 | Purigen Biosystems, Inc. | Systems, devices, and methods for isotachophoresis |
KR20230127521A (en) * | 2022-02-25 | 2023-09-01 | 한국과학기술연구원 | Method of Fabricating Block-Copolymer-based 3D Polymorphic Artificial Bilayer Membrane Structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5699157A (en) | 1996-07-16 | 1997-12-16 | Caliper Technologies Corp. | Fourier detection of species migrating in a microchannel |
US5779868A (en) | 1996-06-28 | 1998-07-14 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5800690A (en) | 1996-07-03 | 1998-09-01 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
US5882465A (en) | 1997-06-18 | 1999-03-16 | Caliper Technologies Corp. | Method of manufacturing microfluidic devices |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4390403A (en) | 1981-07-24 | 1983-06-28 | Batchelder J Samuel | Method and apparatus for dielectrophoretic manipulation of chemical species |
US4756884A (en) * | 1985-08-05 | 1988-07-12 | Biotrack, Inc. | Capillary flow device |
US4908112A (en) | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
US5750015A (en) | 1990-02-28 | 1998-05-12 | Soane Biosciences | Method and device for moving molecules by the application of a plurality of electrical fields |
US5126022A (en) | 1990-02-28 | 1992-06-30 | Soane Tecnologies, Inc. | Method and device for moving molecules by the application of a plurality of electrical fields |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5587128A (en) | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5486335A (en) * | 1992-05-01 | 1996-01-23 | Trustees Of The University Of Pennsylvania | Analysis based on flow restriction |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5304487A (en) | 1992-05-01 | 1994-04-19 | Trustees Of The University Of Pennsylvania | Fluid handling in mesoscale analytical devices |
US6001229A (en) | 1994-08-01 | 1999-12-14 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis |
US5571410A (en) | 1994-10-19 | 1996-11-05 | Hewlett Packard Company | Fully integrated miniaturized planar liquid sample handling and analysis device |
US5603351A (en) | 1995-06-07 | 1997-02-18 | David Sarnoff Research Center, Inc. | Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device |
US5585069A (en) | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US6399023B1 (en) | 1996-04-16 | 2002-06-04 | Caliper Technologies Corp. | Analytical system and method |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
CA2258489C (en) | 1996-06-28 | 2004-01-27 | Caliper Technologies Corporation | High-throughput screening assay systems in microscale fluidic devices |
CN1329729C (en) | 1996-06-28 | 2007-08-01 | 卡钳生命科学股份有限公司 | Electropipettor and compensation means for electrophoretic bias |
US6447727B1 (en) | 1996-11-19 | 2002-09-10 | Caliper Technologies Corp. | Microfluidic systems |
US6391622B1 (en) * | 1997-04-04 | 2002-05-21 | Caliper Technologies Corp. | Closed-loop biochemical analyzers |
CA2284612A1 (en) | 1997-04-04 | 1998-10-15 | Michael Knapp | Closed-loop biochemical analyzers |
US5964995A (en) | 1997-04-04 | 1999-10-12 | Caliper Technologies Corp. | Methods and systems for enhanced fluid transport |
US5976336A (en) | 1997-04-25 | 1999-11-02 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
EP0988529B1 (en) | 1997-04-25 | 2013-06-12 | Caliper Life Sciences, Inc. | Microfluidic devices incorporating improved channel geometries |
US6090251A (en) | 1997-06-06 | 2000-07-18 | Caliper Technologies, Inc. | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
US6524790B1 (en) | 1997-06-09 | 2003-02-25 | Caliper Technologies Corp. | Apparatus and methods for correcting for variable velocity in microfluidic systems |
US5959291A (en) | 1997-06-27 | 1999-09-28 | Caliper Technologies Corporation | Method and apparatus for measuring low power signals |
US6001231A (en) | 1997-07-15 | 1999-12-14 | Caliper Technologies Corp. | Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems |
US5989402A (en) | 1997-08-29 | 1999-11-23 | Caliper Technologies Corp. | Controller/detector interfaces for microfluidic systems |
US5965410A (en) | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
EP1009995A4 (en) | 1997-09-02 | 2007-05-02 | Caliper Life Sciences Inc | Microfluidic system with electrofluidic and electrothermal controls |
US6012902A (en) | 1997-09-25 | 2000-01-11 | Caliper Technologies Corp. | Micropump |
US5958694A (en) | 1997-10-16 | 1999-09-28 | Caliper Technologies Corp. | Apparatus and methods for sequencing nucleic acids in microfluidic systems |
US6074725A (en) | 1997-12-10 | 2000-06-13 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
US5948227A (en) | 1997-12-17 | 1999-09-07 | Caliper Technologies Corp. | Methods and systems for performing electrophoretic molecular separations |
US6123798A (en) | 1998-05-06 | 2000-09-26 | Caliper Technologies Corp. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
AU5479599A (en) | 1998-08-11 | 2000-03-06 | Caliper Technologies Corporation | Methods and systems for sequencing dna by distinguishing the decay times of fluorescent probes |
US6495104B1 (en) | 1999-08-19 | 2002-12-17 | Caliper Technologies Corp. | Indicator components for microfluidic systems |
-
2001
- 2001-05-10 CA CA 2406718 patent/CA2406718A1/en not_active Abandoned
- 2001-05-10 AU AU6154101A patent/AU6154101A/en active Pending
- 2001-05-10 EP EP01935446A patent/EP1281002A4/en not_active Withdrawn
- 2001-05-10 WO PCT/US2001/015465 patent/WO2001086249A2/en active IP Right Grant
- 2001-05-10 AU AU2001261541A patent/AU2001261541B2/en not_active Ceased
- 2001-05-10 US US09/854,141 patent/US6669831B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5779868A (en) | 1996-06-28 | 1998-07-14 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5880071A (en) | 1996-06-28 | 1999-03-09 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5800690A (en) | 1996-07-03 | 1998-09-01 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5699157A (en) | 1996-07-16 | 1997-12-16 | Caliper Technologies Corp. | Fourier detection of species migrating in a microchannel |
US5852495A (en) | 1996-07-16 | 1998-12-22 | Caliper Technologies Corporation | Fourier detection of species migrating in a microchannel |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5882465A (en) | 1997-06-18 | 1999-03-16 | Caliper Technologies Corp. | Method of manufacturing microfluidic devices |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
Non-Patent Citations (1)
Title |
---|
See also references of EP1281002A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6532997B1 (en) * | 2001-12-28 | 2003-03-18 | 3M Innovative Properties Company | Sample processing device with integral electrophoresis channels |
US6662830B2 (en) | 2001-12-28 | 2003-12-16 | 3M Innovative Properties Company | Sample processing device with integral electrophoresis channels |
US7238269B2 (en) | 2003-07-01 | 2007-07-03 | 3M Innovative Properties Company | Sample processing device with unvented channel |
WO2006067715A2 (en) * | 2004-12-23 | 2006-06-29 | Koninklijke Philips Electronics N. V. | Method for controlling the flow of liquids containing biological material by inducing electro- or magneto-rheological effect |
WO2006067715A3 (en) * | 2004-12-23 | 2006-09-14 | Koninkl Philips Electronics Nv | Method for controlling the flow of liquids containing biological material by inducing electro- or magneto-rheological effect |
US9101933B2 (en) | 2008-10-10 | 2015-08-11 | University Of Hull | Microfluidic apparatus and method for DNA extraction, amplification and analysis |
WO2013024030A1 (en) * | 2011-08-12 | 2013-02-21 | Molecular Vision Limited | Flow control in a microfluidic device |
JP2014522989A (en) * | 2011-08-12 | 2014-09-08 | モレキュラー・ビジョン・リミテッド | Flow control in microfluidic devices |
JP2014527169A (en) * | 2011-08-12 | 2014-10-09 | モレキュラー・ビジョン・リミテッド | Device for assay execution |
US9726588B2 (en) | 2011-08-12 | 2017-08-08 | Molecular Vision Limited | Flow control in a microfluidic device |
Also Published As
Publication number | Publication date |
---|---|
WO2001086249A3 (en) | 2002-03-07 |
US6669831B2 (en) | 2003-12-30 |
EP1281002A2 (en) | 2003-02-05 |
US20020046948A1 (en) | 2002-04-25 |
AU6154101A (en) | 2001-11-20 |
EP1281002A4 (en) | 2006-08-09 |
CA2406718A1 (en) | 2001-11-15 |
AU2001261541B2 (en) | 2004-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6669831B2 (en) | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers | |
AU2001261541A1 (en) | Microfluidic devices and methods to regulate hydrodynamic and electrical resistance utilizing bulk viscosity enhancers | |
US7264702B1 (en) | Total analyte quantitation | |
US7816148B2 (en) | Open-field serial to parallel converter | |
AU747464B2 (en) | Microfluidic devices, systems and methods for performing integrated reactions and separations | |
US6447661B1 (en) | External material accession systems and methods | |
US6274089B1 (en) | Microfluidic devices, systems and methods for performing integrated reactions and separations | |
US6805841B2 (en) | Liquid pumping system | |
AU746335B2 (en) | Micropump | |
US6858185B1 (en) | Dilutions in high throughput systems with a single vacuum source | |
US20020009392A1 (en) | Methods of reducing fluid carryover in microfluidic devices | |
US20020144895A1 (en) | Methods and systems for enhanced fluid delivery of electrical currents to fluidic systems | |
US20020076806A1 (en) | Sample injector system and method | |
CA2380897A1 (en) | Dilutions in high throughput systems with a single vacuum source | |
US20020110926A1 (en) | Emulator device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU CA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU CA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001261541 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2406718 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001935446 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001935446 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001261541 Country of ref document: AU |