WO2001084750A1 - Optical dispersion compensating device and optical dispersion compensating method using the device - Google Patents

Optical dispersion compensating device and optical dispersion compensating method using the device Download PDF

Info

Publication number
WO2001084750A1
WO2001084750A1 PCT/JP2001/003769 JP0103769W WO0184750A1 WO 2001084750 A1 WO2001084750 A1 WO 2001084750A1 JP 0103769 W JP0103769 W JP 0103769W WO 0184750 A1 WO0184750 A1 WO 0184750A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
dispersion compensation
dispersion
layer
multilayer film
Prior art date
Application number
PCT/JP2001/003769
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuro Kikuchi
Yuichi Takushima
Mark Kenneth Jablonski
Yuichi Tanaka
Haruki Kataoka
Kenji Furuki
Noboru Higashi
Kazunari Sato
Shiro Yamashita
Original Assignee
Oyokoden Lab Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyokoden Lab Co., Ltd. filed Critical Oyokoden Lab Co., Ltd.
Priority to AU2001252667A priority Critical patent/AU2001252667A1/en
Publication of WO2001084750A1 publication Critical patent/WO2001084750A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Definitions

  • dispersion means chromatic dispersion
  • optical dispersion compensation is also simply referred to as dispersion compensation
  • optical dispersion compensating element is simply referred to as dispersion compensating element. This is also simply referred to as a dispersion compensation method.
  • the present invention relates to an element capable of compensating for a second- or higher-order (hereinafter described) dispersion occurring in optical communication using an optical fiber as a transmission line (hereinafter, an element capable of changing the second-order dispersion, or a second-order dispersion).
  • an element capable of compensating for the third-order dispersion described later includes an element capable of changing the third-order dispersion or a third-order dispersion compensating element.
  • the present invention relates to a dispersion compensating element and a dispersion compensating method using the element.
  • the present invention particularly relates to a dispersion compensating element capable of compensating for a tertiary or higher order dispersion, or a dispersion compensating element capable of performing a secondary and tertiary or higher order dispersion compensation, and an element thereof. And a dispersion compensation method using the same.
  • the dispersion compensating element used in the dispersion compensating method of the present invention may be only the tertiary dispersion compensating element described above, or may include a unit for changing the incident position of incident light in the incident plane described later.
  • dispersion compensating element of the present invention includes all of these forms, and can take various forms depending on purposes such as use and sale.
  • the second-order dispersion compensation means "compensating for the slope of the dispersion of the wavelength-time characteristic curve described later with reference to FIG. 7A". 7A to compensate for the bending of the wavelength-time characteristic curve described later.
  • Fig. 8 is a diagram illustrating the dispersion versus wavelength characteristics of a single-mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensation fiber, and a dispersion shift fiber (hereinafter, also referred to as DSF).
  • SMF single-mode optical fiber
  • DSF dispersion shift fiber
  • reference numeral 601 is a graph showing the dispersion-wavelength characteristic of the SMF
  • 602 is a graph showing the dispersion-wavelength characteristic of the dispersion compensating fiber
  • 603 is a graph showing the dispersion-wavelength characteristic of 0 SF
  • the vertical axis represents the dispersion. This is a graph with the horizontal axis representing wavelength.
  • the dispersion increases as the wavelength of the light input to the fiber increases from 1.3 m to 1.8 ⁇ m in the SMF, and the wavelength of the input light increases in the dispersion compensation fiber.
  • the variance decreases as the length increases from 1. 3 111 to 1. 7 ⁇ .
  • the dispersion decreases as the wavelength of the input light increases from 1.2 ⁇ to around 1.55 ⁇ , and the wavelength of the input light changes from around 1.55 / ⁇ 111 to 1.8 / xm.
  • the variance increases.
  • DSF in conventional optical communication at a communication bit rate of about 2.5 Gbps (2.5 gigabits per second)
  • dispersion does not cause a problem when the wavelength of the input light is around 1.55 ⁇ .
  • FIGS. 7A to 7C are diagrams mainly explaining a second-order dispersion compensation method.
  • FIG. 7A shows a wavelength-time characteristic and a light intensity-time characteristic
  • FIG. 7B shows a second-order characteristic using an SMF and a dispersion compensating fiber
  • FIG. 7C is a diagram for explaining an example of transmission on a transmission line configured with only SMFs.
  • reference numerals 501 and 511 denote characteristics of signal light before input to the transmission path.
  • 530 is a transmission line composed of SMF 531
  • 502 and 512 are transmissions of signal light having the characteristics of the graphs shown by reference numerals 501 and 511.
  • a graph showing the characteristics of the signal light when the signal light is transmitted through the transmission line 530 and output from the transmission line 530 is shown.
  • a transmission line 520 is composed of the dispersion compensating fiber 52 1 and the SMF 522.
  • 5 13 are graphs showing the signal light characteristics when the signal light having the characteristics of the graphs denoted by reference numerals 501 and 51 1 is transmitted through the transmission line 520 and output from the transmission line 520. It is.
  • Reference numerals 504 and 514 indicate that the signal light having the characteristics of the graphs denoted by reference numerals 501 and 511 is transmitted through the transmission line 520 and output from the transmission line 520, and is described later by the present invention.
  • 6 is a graph showing the characteristics of signal light when the desired third-order dispersion compensation is performed, and almost coincides with the graphs indicated by reference numerals 501 and 511.
  • Graphs 501, 502, 503, and 504 are graphs in which the vertical axis represents wavelength and the horizontal axis represents time (or time), respectively.
  • Graphs 511, 512, 513, 514 Is a graph with the light intensity on the vertical axis and time (or time) on the horizontal axis.
  • Reference numerals 524 and 534 denote transmitters, and 525 and 533 denote receivers.
  • the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1. to 1.8, so the group velocity delay due to dispersion is reduced in high-speed communication and long-distance transmission. Occurs.
  • the signal light is greatly delayed on the long wavelength side as compared with the short wavelength side during transmission, as shown in graphs 502 and 512.
  • the changed signal light may not be able to be received as an accurate signal because it overlaps with the preceding and following signal lights.
  • dispersion is compensated (hereinafter, also referred to as correction) using a dispersion compensating fiber.
  • the conventional dispersion compensating fiber solves the problem of SMF that the dispersion increases as the wavelength increases from 1.3 ⁇ to 1.8 ⁇ , and as described above, the wavelength is 1.3 ⁇ ⁇ . It is designed so that the variance decreases with increasing length from 1.8 ⁇ m to 1.8 ⁇ m .
  • the dispersion compensating fiber can be used, for example, by connecting a dispersion compensating fiber 521 to an SMF 522 as shown by a transmission line 520 in FIG. In the transmission line 520, the signal light is delayed more in the long wavelength side than in the short wavelength side in the SMF 522, and the dispersion compensation
  • the short wavelength side is delayed more than the long wavelength side, As shown in the graphs 503 and 513, the amount of change can be suppressed smaller than the changes shown in the graphs 502 and 512.
  • the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before input to the transmission line, that is, as shown in FIG.
  • Dispersion compensation cannot be performed up to the shape of 0 1, and the limit is to compensate up to the shape of graph 503.
  • graph 503 in the conventional second-order chromatic dispersion compensation method using a dispersion compensation fiber, the light of the central wavelength of the signal light is compared with the light of the short wavelength side and the light of the long wavelength side. Without delay, only the light of the component on the shorter wavelength side and the longer wavelength side than the light of the central wavelength component of the signal light is delayed. Then, as shown in the graph 513, a ripple may be generated in a part of the graph.
  • the optical fiber is simply referred to as fiber.
  • the third-order dispersion compensation which is the subject of the present invention, cannot be performed.
  • third-order dispersion is increasingly recognized as a major problem, and compensation for it is becoming an important issue.
  • Many attempts have been made to solve the third-order dispersion compensation problem, but a third-order dispersion compensator or compensation method that can sufficiently solve the conventional problems has not yet been put into practical use.
  • An example using a fiber formed with a diffraction grating as a method of compensating for third-order dispersion has been reported, but it has fatal disadvantages such as the inability to perform necessary compensation, large loss, and large dimensions.
  • the price is high and practical application is not expected.
  • the present inventors have proposed a dispersion compensating element using a multilayer film such as a dielectric, which has been proposed separately from the present invention, and succeeded in third-order dispersion compensation.
  • a dispersion compensating element using a multilayer film such as a dielectric which has been proposed separately from the present invention.
  • third-order dispersion compensation is ideally performed when the communication bit rate is increased to 4 OGb ps or 80 Gb ps, for example.
  • the present inventors have proposed a third-order dispersion compensator capable of adjusting the wavelength band of the group velocity delay and the delay time of the group velocity delay separately from the present invention.
  • a third-order or higher-order dispersion compensating element that performs dispersion compensation suitable for each channel wavelength is a wavelength-tunable dispersion compensation (that is, a dispersion compensation target wavelength can be selected).
  • a compensation element has been proposed.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a wide dispersion which has not been practically used in the past and a sufficient dispersion compensation over a wavelength range, particularly a third-order dispersion.
  • An optical dispersion compensator with excellent group velocity delay time-wavelength characteristics that can perform compensation is provided at a low cost in a state of high reliability and suitable for mass production.
  • a dispersion compensation method and a dispersion compensation element that enable third- or higher-order dispersion compensation using a multilayer element having a band and delay time adjustment function, or a combination of second- and third-order dispersion compensation. It is an object of the present invention to provide a dispersion compensation method and a dispersion compensation element that can be performed.
  • the object of the present invention is as follows: o band (1260-1360 nm), E-band (1360-1460 nm), S-band (1460-1530 nm), C-band (1 530—1565 nm), L—band (1 565— At least one extreme value in at least one of the wavelength bands of each band called the U-band (16625 nm)
  • An object of the present invention is to configure a dispersion compensating element using a multilayer film having a group velocity delay time-wavelength characteristic curve and to realize accurate dispersion compensation in each communication wavelength range.
  • the optical dispersion compensating element is designed to have a group velocity delay time-wavelength characteristic capable of compensating for the above-mentioned dispersion occurring in communication over a wavelength band of several tens of nm that has not been practically used in the past. It is an object of the present invention to provide a light dispersion compensation method using a low-cost, highly reliable and small communication system capable of compensating the dispersion of the entire signal light using the light dispersion compensation element. Disclosure of the invention
  • the present invention relates to a dispersion compensating element, and also relates to a dispersion compensating method for compensating dispersion by constructing a dispersion compensating element substantially equivalent to the dispersion compensating element of the present invention.
  • the content of the dispersion compensating element of the present invention will be described as the dispersion compensating element used in the dispersion compensation method of the present invention, and will also serve as the description of the dispersion compensating method.
  • the most significant feature of the dispersion compensating element used in the dispersion compensation method of the present invention is that at least two elements capable of performing dispersion compensation or at least two parts of the element capable of performing dispersion compensation (hereinafter, referred to as The element capable of performing dispersion compensation and the element capable of performing dispersion compensation are collectively referred to as an element capable of performing dispersion compensation), and are connected in series along the optical path of signal light. That is, it has a dispersion compensation element using a multilayer film (hereinafter, also simply referred to as a multilayer film element).
  • a multilayer film element hereinafter, also simply referred to as a multilayer film element
  • the element capable of performing the dispersion compensation uses a group velocity delay time-wavelength characteristic of a multilayer film.
  • An optical dispersion compensating element capable of performing dispersion compensation by performing the method wherein the group velocity delay time-wavelength characteristic curve of the multilayer film has at least one pole in a wavelength band to be subjected to dispersion compensation or in a wavelength region in the vicinity thereof.
  • the group velocity delay time of the optical dispersion compensating element used in the optical dispersion compensating method of the present invention is used in the optical dispersion compensating method of the present invention.
  • the shape of the wavelength characteristic curve differs from the group velocity delay time-wavelength characteristic curve of the element capable of performing dispersion compensation, which constitutes the optical dispersion compensation element used in the optical dispersion compensation method of the present invention, in general. ing.
  • the optical dispersion compensating element of the present invention having the multilayer film can basically be applied to any wavelength range.
  • the present invention provides a great effect by using an optical dispersion compensating element using a multilayer film having a group velocity delay time-wavelength characteristic curve having at least one extreme value in a wavelength range of 1260 to 1700 nm which is currently being watched. Can be raised.
  • a dispersion compensating element using a multilayer film having a group velocity delay time-wavelength characteristic curve having an extreme value can be configured, and accurate dispersion compensation can be performed in each communication wavelength range.
  • an optical dispersion compensating element of the present invention is an optical dispersion compensating element that can be used for optical communication using an optical fiber in a communication transmission path and can compensate for dispersion as chromatic dispersion.
  • a structure in which a plurality of elements or at least a plurality of parts of the element capable of performing dispersion compensation as an element capable of performing dispersion compensation are connected in series along the optical path of the signal light. It is characterized by
  • optical dispersion compensating element of the present invention is characterized in that there are a plurality of connection methods or connection paths of the plurality of elements capable of performing dispersion compensation.
  • optical dispersion compensating element of the present invention is characterized in that a connection method or a connection path of the plurality of elements capable of performing dispersion compensation can be selected from outside the optical dispersion compensating element.
  • Examples of the optical dispersion compensating element of the present invention include a device capable of performing the plurality of dispersion compensation. It is characterized in that the method of connecting the element includes a method by reflection on the incident surface of the multilayer film element arranged oppositely.
  • optical dispersion compensating element of the present invention is that the means for selecting the connection method or the connection path of the plurality of elements capable of performing dispersion compensation from outside the optical dispersion compensating element is an electric means.
  • an optical dispersion compensation method for performing communication by compensating for dispersion in optical communication using an optical fiber in a communication transmission line, comprising: A plurality of devices capable of performing dispersion compensation as a multilayer device using a multilayer film having at least three reflective layers having different ratios and at least two light transmitting layers formed between the reflective layers are provided. Alternatively, at least a plurality of portions of the element capable of performing dispersion compensation as an element capable of performing dispersion compensation are connected in series along the optical path of the signal light to the optical dispersion compensating element. This is characterized in that dispersion compensation is performed by injecting light.
  • An example of the optical dispersion compensation method of the present invention is to pass signal light transmitted through an optical fiber through the optical dispersion compensation element before wavelength separation for each receiving channel to compensate for at least tertiary dispersion. It is characterized by:
  • An example of the optical dispersion compensating method of the present invention is as follows.
  • An optical dispersion compensating element configured by connecting a plurality of elements capable of performing the dispersion compensation in series is 1260 to 1360 nm, 1336 0 to 1460 nm, 1460 to 1550 nm, 1530 to: 1565 nm, 1565 to 1625 nm, 1625 to 1670 It is characterized by having a group velocity delay time-wavelength characteristic curve having at least one extreme value in at least one wavelength range of a wavelength range of 5 nm.
  • An example of the optical dispersion compensation method according to the present invention is characterized in that a plurality of types of connection methods of elements capable of performing dispersion compensation in the optical path of signal light can be selected.
  • An example of the optical dispersion compensation method of the present invention is that the multilayer film used in at least one element capable of performing dispersion compensation constituting the optical dispersion compensation element has a center wavelength of incident light;
  • the thickness of each layer of the multilayer film when considered as an optical path length for the light of the above is a multilayer film having a thickness of a value almost an integral multiple of ⁇ / 4, and the multilayer film has a thickness of ⁇ .
  • the layer H is composed of a plurality of layers in which the layer L is combined, and the layer H is any one of S i, G e, T i 0 2 , T a 2 ⁇ 5 , and N b 2 O s It is characterized by being formed of a layer consisting of
  • An example of the optical dispersion compensation method of the present invention is such that at least one of the multilayer devices has a thickness of at least one stacked film constituting a multilayer film of the multilayer device, and the film thickness of the multilayer film is parallel to a light incident surface of the multilayer film.
  • This is characterized by a multilayer film element using a multilayer film that changes in the in-plane direction in a simple cross section, that is, in the in-plane direction of incidence.
  • An example of the optical dispersion compensation method of the present invention is characterized in that the layer L is formed using a material having a lower refractive index than the material used for the layer H.
  • the layer L is characterized by being formed by a layer consisting of S I_ ⁇ 2.
  • An example of the optical dispersion compensation method according to the present invention is characterized in that at least one multilayer film has at least two film thickness change directions in the in-plane direction of the multilayer film. I have.
  • An example of the optical dispersion compensation method of the present invention includes an adjusting unit that engages with an element capable of performing the dispersion compensation and adjusts a film thickness of at least one laminated film of the multilayer film.
  • a special feature is that means for changing the light incident position on the incident surface of the film is provided.
  • At least one kind of a multilayer film (described later) can be used as the multilayer film. That is, a multilayer film having at least five types of laminated films having different optical properties (that is, at least five layers having different optical properties such as light reflectance and film thickness).
  • a multilayer film having at least five types of laminated films having different optical properties that is, at least five layers having different optical properties such as light reflectance and film thickness.
  • the one of the three types of reflective layers and the one of the two light transmitting layers are alternately arranged, and the multilayer film is a first layer in order from one side in a thickness direction of the film.
  • the first layer as a reflection layer
  • the second layer as a first light transmission layer
  • the third layer as a second reflection layer
  • the fourth layer as a second light transmission layer
  • the third reflection layer
  • the center wavelength of the incident light is defined as ⁇ , and in the first to fifth layers, it is considered as the center wavelength of the incident light; the optical path length for L light (hereinafter, also simply referred to as the optical path length).
  • Force S an integral multiple of / 4 ⁇ 1%
  • the film thickness of the multilayer film is 1/4 times I (hereinafter, ⁇ 1% of 1/4 times ⁇ ).
  • a layer having a higher refractive index (hereinafter referred to as a layer having a thickness of 1/4 times L) (hereinafter also referred to as a layer)) and a layer having a lower refractive index having a thickness of 1/4 times (hereinafter referred to as a layer).
  • L also known as L).
  • the multilayer film ⁇ is a layer in which the five-layer laminated film, that is, the first to fifth layers are combined one by one in the order of layer H and layer L in order from one side in the thickness direction of the multilayer film.
  • HL layer also referred to as HL layer 3 sets (a layer combining the layer HI layer and the layer L 1 layer is referred to as an HL layer 1 set; the same applies hereinafter).
  • the second layer and the layer L which are formed by laminating 10 sets of the layer H and the layer obtained by combining the layer H (that is, the layer formed by laminating two layers H, hereinafter also referred to as the HH layer), 3rd layer composed of 7 sets of layers and HL layers, 4th layer composed of 38 sets of HH layers, 1 layer and 13 layers of HL
  • a multi-layered film composed of a set and a fifth layer formed by laminating
  • the multilayer film B is replaced by a film having the same direction as that of the multilayer film A.
  • the layer of LL is also referred to) 3 sets of HH layers, 3 sets of LL layers, 2 sets of LL layers, and 1 set of HH layers as a multilayer film formed by laminating in this order.
  • the fourth layer is the same as in the case of the multilayer film A.
  • Direction in order from one side in the thickness direction of the film, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers 3 sets, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers Set, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers A multilayer film,
  • a layer in which the multilayer film D is formed by laminating the five-layered film that is, the first to fifth layers in this order from one side in the thickness direction of the multilayer film, and combining layers one by one in the order of layer H.
  • the first layer consists of five sets of LH layers
  • the second layer consists of seven sets of LL layers, one layer H and one layer of LH.
  • 3rd layer composed of 7 sets and 4 layers composed of 5 7 layers of LL, 1 layer H and 13 layers of LH laminated
  • Each layer is formed by the fifth layer
  • the multilayer film F is replaced by a “film” in the same direction as in the case of the multilayer film E. From one side in the thickness direction '', 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers A set, one set of LL layers and one set of HH layers are laminated in this order to form a multilayer film formed of a laminated film,
  • the fourth layer has the same direction as that of the multilayer film E.
  • the first layer consists of four sets of LH layers
  • the second layer consists of nine sets of LL layers, one layer H and six layers of LH.
  • the third set consisting of stacking sets Layer, a fourth layer composed of 35 sets of LL layers, and a fifth layer composed of one layer H and 13 layers of LH layers. Multi-layer film.
  • FIG. 1 is a diagram illustrating optical dispersion compensation according to the present invention.
  • FIG. 2 is a cross-sectional view of the multilayer film of the present invention.
  • FIG. 3 is a perspective view of the multilayer film of the present invention.
  • FIG. 4 is a group velocity delay time-wavelength characteristic curve of the multilayer film of the present invention.
  • FIG. 5A is a graph showing a group velocity delay time-wavelength characteristic of one element capable of performing dispersion compensation, which is a basic element of the dispersion compensation element of the present invention.
  • FIG. 5B is a diagram illustrating a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention.
  • FIG. 5C is a diagram for explaining a method of improving the group velocity, the delay time and the wavelength characteristic by using a plurality of elements capable of performing the dispersion compensation according to the present invention, and the element capable of performing the dispersion compensation.
  • 6 is a graph showing the group velocity delay time versus wavelength characteristic of the optical dispersion compensating element of the present invention in which three are connected in series.
  • FIG. 5D is a diagram illustrating a method of improving the group velocity delay time one wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention.
  • 6 is a graph showing the group velocity delay time versus wavelength characteristic of the optical dispersion compensating element of the present invention in which three are connected in series. .
  • FIG. 6A is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and illustrates an example in which two elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element.
  • FIG. 6A is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and illustrates an example in which two elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element.
  • FIG. 6B is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and illustrates an example in which three elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element.
  • FIG. 6B is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and illustrates an example in which three elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element.
  • FIG. 6C is a diagram for explaining an example of the optical dispersion compensating element of the present invention.
  • the multilayer film whose film thickness changes in the incident plane direction, two signal light incident positions are shown.
  • FIG. 4 is a diagram illustrating an example in which an optical dispersion compensating element is configured by being connected in series along a navigation route.
  • FIG. 6D is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and is a diagram illustrating an example in which the optical dispersion compensating element of the present invention is mounted in one case.
  • FIG. 7A is a diagram for explaining a method of compensating for second and third order chromatic dispersion, and is a diagram for explaining a wavelength-time characteristic and a light intensity-time characteristic.
  • FIG. 7B is a diagram for explaining a method for compensating the second and third order chromatic dispersion, and is a diagram for explaining a transmission path.
  • FIG. 7C is a diagram illustrating a method of compensating for the second and third order chromatic dispersion, and is a diagram illustrating a transmission path.
  • FIG. 8 is a graph showing dispersion-wavelength characteristics of a conventional optical fiber.
  • FIG. 9A is a plan view showing another embodiment of the present invention.
  • FIG. 9B is a front view of the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 1 is a diagram illustrating a method of compensating dispersion generated in communication using an optical fiber as a transmission line with an optical dispersion compensator.
  • Reference numeral 111 denotes signal light remaining after compensating for secondary dispersion.
  • the group velocity delay time vs. wavelength characteristic curve showing the third order dispersion of the dispersion compensating element, 1102 is the group velocity delay time vs. wavelength characteristic curve of the dispersion compensating element, and 1103 is the signal having the dispersion characteristic of curve 1101.
  • the delay time and the horizontal axis are wavelength.
  • FIG. 2 to 4 are diagrams for explaining the optical dispersion compensating element according to the present invention.
  • FIG. 2 is a cross-sectional view of a multilayer film described later
  • FIG. 3 is a perspective view of a multilayer film having a changed film thickness
  • FIG. 5 is a graph showing a group velocity delay time versus wavelength characteristic curve of a multilayer film.
  • FIG. 2 is a diagram schematically illustrating a cross section of a multilayer film used as an example of the tertiary dispersion compensation element of the present invention.
  • reference numeral 100 denotes a multilayer film as an example of the optical dispersion compensating element of the present invention
  • 101 denotes an arrow indicating the direction of incident light
  • 102 denotes an arrow indicating the direction of output light
  • 103 104 is a reflective layer having a reflectivity of less than 100% (hereinafter also referred to as a reflective film)
  • 105 is a reflective layer having a reflectivity of 98 to: L 00%
  • 108 and 109 are light
  • the transmission layer, 1 1 1 and 1 1 2 are cavities.
  • reference numeral 107 denotes a substrate, for example, which is made of 117 glass.
  • the reflectances R (103), R (104), and R (105) of each of the reflective layers 103, 104, and 105 in FIG. 2 are R (103) ⁇ R (1 04) ⁇ R (1 05). It is preferable in terms of mass production that the reflectance of each layer is set to be different from each other at least between the reflective layers adjacent to each other with the light transmitting layer interposed therebetween. That is, incident light is incident
  • the reflective layer is formed so that the reflectance of each reflective layer with respect to the central wavelength L of the incident light gradually increases from the side toward the thickness direction of the multilayer film.
  • the reflectance of each reflective layer with respect to the wavelength; I light is defined as 60% ⁇ R (103) ⁇ 77%, 96% ⁇ R (104) ⁇ 99.8%, 98% ⁇ R (105).
  • the group velocity delay time-wavelength characteristic curve as shown in FIGS. Obtainable. It is more preferable that R (10 3) ⁇ R (104) ⁇ R (105), and it is more preferable that R (105) be close to or equal to 100%. Performance can be further enhanced.
  • each reflective layer it is preferable to select the conditions for forming each reflective layer so that the intervals when considered as the optical path length between adjacent reflective layers are different from each other, The design accuracy of the reflectance of each reflective layer can be relaxed, and the film thickness is the wavelength; a combination of unit films of 1/4 of I (films with an integral multiple of ⁇ / 4) A multilayer film used for a dispersion compensator can be formed, and a third-order dispersion compensator having high reliability and excellent mass production I "can be provided at low cost.
  • the thickness of the unit film of the multilayer film is described to be a quarter of the wavelength, this is within the range of an error allowed in the formation of the film in mass production, as described above. 4 means that the present invention is at ⁇ / 4 ⁇ 1%; it means a film thickness of I / 4, and even in this range, the present invention has a particularly great effect. Emit. Therefore, in the present invention, the film thickness in this range is referred to as 1/4 thickness.
  • the thickness of the above unit film to /4 ⁇ 0.5% (in this case, I-no 4 has no error; meaning ⁇ 4), there is little variation without impairing mass productivity.
  • an optical dispersion compensating element as described later with reference to FIGS. 5A to 5D and FIGS. 6A to 6D can be provided at low cost.
  • the multi-layer film according to the present invention is described as being formed by laminating unit films having a thickness of ⁇ / 4. This is a method of forming one unit film and then forming the next unit film. Force that can form a multi-shear film by repeating this process. In general, a film with a thickness of an integral multiple of fly / 4 is continuously formed. Such a multilayer film is naturally included in the multilayer film of the present invention. Then, some examples of the multilayer film of the present invention could be formed by using a film forming step of continuously forming the reflection layer and the transmission layer.
  • FIG. 3 is a diagram illustrating an example in which the thickness of the multilayer film 100 is changed in an in-plane direction of a later-described incident surface 220 of the multilayer film 100 of FIG.
  • reference numeral 200 denotes a multilayer film as an example of the optical dispersion compensating element of the present invention
  • 201 denotes a first reflective layer
  • 202 denotes a second reflective layer
  • 203 denotes a third reflective layer.
  • a reflective layer 205 is a substrate, 206 is a first light transmitting layer, 207 is a second light transmitting layer, 211 is a first cavity, 211 is a second cavity, 220 is the light incident surface, 230 is the arrow indicating the direction of the incident light, 240 is the arrow indicating the direction of the emitted light, 250 is the arrow indicating the direction of the first film thickness change, 26 0 is an arrow indicating a second film thickness change direction, and 270 and 271 are arrows indicating a direction in which an incident position of incident light is moved.
  • a third reflection layer 203 for example, on a substrate 205 made of, for example, BK-7 glass (trade name of Schott, Germany), a third reflection layer 203, a second light transmission layer 207, The second reflection layer 202, the first light transmission layer 206, and the first reflection layer 201 are sequentially formed.
  • the multilayer film is formed so that the thickness of the layer 207 changes in the direction indicated by the arrow 260 (the thickness gradually increases from the front of the figure to the other side).
  • the thicknesses of the first to third reflective layers are the first, second, and third when the wavelength when the resonance wavelengths of the first and second cavities match the center wavelength of the incident light; L.
  • the film thickness is formed such that the reflectance of each reflective layer of No. 3 satisfies the same conditions as the conditions of R (103), R (104) and R (105).
  • FIG. 4 shows a multilayer film (hereinafter also referred to as a light dispersion compensation element) 200 as an example of the light dispersion compensation element of the present invention.
  • a light dispersion compensation element a multilayer film (hereinafter also referred to as a light dispersion compensation element) 200 as an example of the light dispersion compensation element of the present invention.
  • Light is incident, the emitted light is obtained in the direction of arrow 240, and the group velocity when the incident position of the incident light is moved in the direction of arrow 270 or 271 in Fig. 3 as described later When delayed
  • This is for explaining the manner in which the inter-wavelength characteristic curve changes.
  • Fig. 4 shows the group velocity delay time vs. wavelength characteristic curve when the incident light having the center wavelength; L is incident on the incident position 280 to 282, the vertical axis represents the group velocity delay time, and the horizontal axis represents the wavelength. It is.
  • the wavelength giving the extreme value in the group velocity delay time-wavelength characteristic curve 2801 of the substantially symmetrical shape in FIG. 4 changes, and from that position in the direction indicated by the arrow 271 When the incident position is moved, the wavelength; L.
  • the shape of the group velocity delay time-wavelength characteristic curve can be changed as shown by the curves 2811 and 2812 in FIG.
  • Each curve in FIG. 4 is obtained when the film thickness of each film is monotonically increased in the directions of arrows 250 and 260 in FIG.
  • Band center wavelength at curve 2801-1282 Is set at an appropriate wavelength in the graph of FIG. 4 for the purpose of dispersion compensation, but may be, for example, approximately the center of the wavelength range of the curve shown in FIG. It may be determined appropriately according to the purpose. In addition, it is not necessary to check the correspondence between the wavelengths of the characteristic points of the curve, such as the extreme wavelengths of the curves 2801-128, in advance. is there.
  • the center wavelength of the incident light to be dispersion-compensated the band center wavelength ⁇ corresponding to I.
  • the incident position of the incident light is moved in the direction of arrow 270 so as to match, and the content of the guarantee to be compensated for dispersion, that is, the dispersion situation of the incident light is adapted and used for dispersion compensation
  • the shape of the group velocity delay time-wavelength characteristic curve is selected from, for example, the curves in Fig. 4, and the incident position is set in the direction indicated by the arrow 271 in Fig. 3 accordingly.
  • tertiary dispersion compensation is performed using the optical dispersion compensating element of the present invention, for example, using the curve 2801.
  • the second-order minute dispersion compensation can be performed by using a portion of the curve 2811 or 2812 that is relatively close to a linear component.
  • the wavelength bandwidth of dispersion compensation that can be compensated by itself as an “element capable of performing a dispersion compensating element” is around 1.5 nm for the signal light whose wavelength is around 1.55 im, and the group velocity delay time is 3 In many cases, this is in the order of ps (picoseconds), and if the wavelength bandwidth of dispersion compensation is widened to support multiple channels of optical communication, the group velocity delay time is short enough to allow sufficient dispersion compensation. It is difficult to obtain, and it is desirable that further improvements be made in order to use it widely and practically in actual communications. Therefore, the present invention will be described in more detail with reference to FIGS. 5A to 5D and FIGS. 6A to 6D.
  • FIGS. 5A to 5D are diagrams illustrating a method of improving the group velocity delay time-wavelength characteristic by using a plurality of elements capable of performing dispersion compensation as described above, for example, and FIG. 5A is used in the present invention.
  • Figure 5B shows the shape of the group velocity delay time vs. wavelength characteristic curve, and the peak of the group velocity delay time vs. wavelength characteristic curve.
  • Figure 5C shows the group velocity delay-time-wavelength characteristic curve of the optical dispersion compensating element of the present invention in which three elements capable of performing dispersion compensation with almost the same characteristic and different extreme wavelengths are connected in series.
  • Figure 5D shows the group velocity The group velocity delay time vs. wavelength characteristic of the optical dispersion compensating element used in the optical dispersion compensation method of the present invention in which three elements capable of performing dispersion compensation differing in the shape of the delay time versus wavelength characteristic curve and the extreme wavelength are connected in series.
  • the vertical axis represents the group velocity delay time
  • the horizontal axis represents the wavelength.
  • reference numerals 301 to 309 denote the group velocity delay time-wavelength characteristic curves of one element capable of performing dispersion compensation used in the present invention
  • 310 denotes the present invention.
  • 311 is almost the same shape of the group velocity delay time-wavelength characteristic curve used in the present invention.
  • the extremum of the group velocity delay time of the group velocity delay time vs. wavelength characteristic curve 310 is 1.6 times that of a single element capable of performing dispersion compensation
  • the wavelength band to be compensated is about 1.8 times
  • the extremum of group velocity delay time vs. wavelength characteristic curve 3 1 1 is about 2.3 times that of a single group velocity delay time.
  • the bandwidth is about 2.5 times that of a single device that can perform dispersion compensation.
  • the extreme value of the group velocity delay time in the curve of the group velocity delay time-wavelength characteristic 312 is about three times the wavelength band for dispersion compensation, which is about three times that of a single element that can perform dispersion compensation.
  • the area is about 2.3 times that of a single element capable of performing dispersion compensation.
  • the extreme value of the group velocity delay time of the group velocity delay time-wavelength characteristic curve of the element capable of performing dispersion compensation using a multilayer film as described in FIGS. It varies depending on the configuration conditions of each reflection layer and each light transmission layer of the multilayer film. For example, the wavelength band for dispersion compensation is relatively wide as shown by the curve 307 in FIG. Group velocity delay-wavelength characteristic curve where the value is not too large, or the group velocity delay time-wavelength characteristic curve where the wavelength band for dispersion compensation is narrow but the extreme value of the group velocity delay time is large as shown by curve 308 In addition, it is possible to realize an element capable of performing dispersion compensation having various characteristics.
  • Multilayer films used in an element capable of performing such dispersion compensation include, for example, the multilayer films A to H described in the section of “Disclosure of the Invention”.
  • the extreme value of the group velocity delay time was 3 ps (picoseconds) for signal light with a wavelength of about 1.55 ⁇ m.
  • a group velocity delay time-wavelength characteristic curve with a dispersion compensation wavelength band of 1.3 to 2.0 nm was realized.
  • a plurality of devices capable of performing this dispersion compensation are connected in series, and the wavelength band for dispersion compensation having a group velocity delay-one wavelength characteristic capable of compensating for dispersion due to optical fiber transmission is 15 nm. Can be realized.
  • This + optical dispersion compensating element is used as a third-order dispersion compensating element for a 30-channel communication system in which the wavelength is around 1.55 ⁇ and the bandwidth of each channel is 0.5 nm and the bandwidth is 0.5 nm.
  • the group velocity delay time vs. wavelength characteristic curve in FIG. 4 and the group velocity delay time vs. wavelength characteristic curve in FIG. By properly selecting the wavelength characteristics, not only the third-order dispersion but also the second-order dispersion could be compensated.
  • the example of the optical dispersion compensating element in which at least two elements capable of performing dispersion compensation of the present invention are connected in series has a group velocity delay time-wavelength characteristic necessary for compensating third-order or higher dispersion.
  • the signal light in an element capable of performing dispersion compensation by changing the thickness of the light transmitting layer and the reflecting layer of the multilayer film in the direction of the incident plane.
  • the group velocity delay time-wavelength characteristic of the element capable of performing dispersion compensation can be raised.
  • the means for changing the incident position of the incident light is realized by moving at least one of the optical dispersion compensating element 200 or the incident position itself of the incident light with respect to the position of the incident light.
  • the light dispersion compensating element or means for moving the incident light various choices can be made depending on the circumstances, such as the circumstances in which the light dispersion compensating element is used, the cost, and the characteristics.
  • the incidence position can be easily and accurately selected by using a prism and a two-core collimator that can be combined with these methods, or by selecting the incidence position by an optical means such as using an optical waveguide. be able to.
  • each layer of the multilayer film of the element capable of performing dispersion compensation used for optical dispersion compensation device of the present invention the thickness created by the wave of S I_ ⁇ 2 of ion-assisted deposition of 4 minutes film (hereinafter, Ion'ashisu Layer L), and a layer H formed of a TiO 2 ion-assisted film having a quarter wavelength thickness.
  • S i ⁇ 2 ions (the layers) assist film called layer 1 set of LH in one layer and T i O 2 of the ion assist film (layer H) 1-layer combination layer of, for example, a layer of "LH 5 "Laminating a set” means "layer L, layer H, layer L, layer H, layer L, layer H, layer L, layer H, layer H, layer H, layer H, layer one by one. It means that.
  • the layer of the LL is called the thickness was formed overlapping two layers L which is composed of the ion-assisted film S I_ ⁇ 2 quarter wavelengths layer substantially set of LL. Therefore, for example, “three layers of LL are stacked” means “formed by stacking six layers L”.
  • the present invention is not limited thereto, as the same dielectric material as T i 0 2
  • T io 2 , T a 2 ⁇ 5, N b 2 ⁇ 5 or the like can be used, further, in addition to the dielectric material, it is also possible to form a layer H with S i and G e.
  • S i 0 2 was shown as the composition of the layer L
  • S i ⁇ 2 is a force S that has the advantage of being able to form the layer L at low cost and high reliability.
  • the present invention is not limited to this. Not If the layer L is formed of a material whose refractive index is lower than the refractive index of the layer H, a light dispersion compensating element exhibiting the above effects of the present invention can be realized.
  • the layer L and the layer H constituting the multilayer film are formed by ion-assisted vapor deposition, but the present invention is not limited to this, and ordinary vapor deposition, sputtering, ion plating, and the like are performed.
  • the present invention exerts a great effect even when a multilayer film formed by the above method is used.
  • the light dispersion compensating element of the present invention can be used by appropriately holding a wafer-like element such as a multilayer film 200 as a light dispersion compensating element shown in FIG.
  • a wafer-like element such as a multilayer film 200
  • the chip is cut into small pieces.
  • the form has various possibilities, for example, it can be used as a compensating element. In any case, the main effects described in the present invention can be obtained.
  • FIGS. 6A to 6D are diagrams for explaining an example of the optical dispersion compensating element of the present invention
  • FIG. 6A is a diagram illustrating a configuration of an optical dispersion compensating element by connecting two elements capable of performing the dispersion compensation in series.
  • FIG. 6B shows an example in which three elements capable of performing the dispersion compensation are connected in series to form a light dispersion compensation element
  • FIG. 6C shows a case where the film thickness changes in the direction of the incident plane.
  • Figure 6D shows an example in which two points of incidence of signal light are connected in series along the signal light path on a multilayer film to form an optical dispersion compensator.
  • FIG. 9 is a diagram showing an example in which a dispersion compensating element is mounted in one case.
  • reference numerals 410, 420, 430, and 440 denote optical dispersion compensating elements of the present invention
  • 411, 412, 421 to 423, 442, and 443 denote elements capable of performing dispersion compensation
  • 416 denotes a dispersion compensation element.
  • Multilayer films used in devices that can be used are optical fibers, 413, 4131, 414, 4141, 424, 425, 434, Reference numerals 435, 444, and 445 denote arrows indicating the traveling direction of the signal light, reference numeral 417 denotes a lens, reference numeral 418 denotes a two-core collimator comprising a lens 417 and optical fibers 4151 and 4152, reference numeral 441 denotes a case, and reference numeral 431 denotes an incident surface.
  • Performing wafer-shaped dispersion compensation which is configured so that dispersion compensation can be performed by forming a multilayer film whose thickness changes inward on the substrate 432 and 433 are “elements that can perform dispersion compensation”, respectively.
  • the signal light that has entered in the direction of arrow 4 13 enters the element 4 11 that can perform dispersion compensation, and the element 4 1 that can receive dispersion compensation and perform dispersion compensation. Emitted from 1 and transmitted through fiber 4 15 to be able to perform dispersion compensation Entering element 4 12, and then subjected to dispersion compensation again to be able to perform dispersion compensation 4 2
  • the optical fiber 4 15 is transmitted in the direction of the arrow 4 14.
  • Reference numeral 4112 is a cross-sectional view for explaining the internal structure of a portion of the element 411 capable of performing dispersion compensation, which is surrounded by the curve 4111.
  • the optical fibers 4 15 1 and 4 15 2 and the lens 4 17 constitute a two-core collimator 4 18, and the signal light that has traveled along the optical fiber 4 15 1 in the direction of the arrow 4 1 3 1 is a lens 4 17 Pass through and enter the multilayer film 4 16.
  • the multilayer film 4 16 has the group velocity delay time-wavelength characteristic shown in FIG. 5A, and the signal light that has entered the multilayer film 4 16 through the optical fiber 4 15 1 and the lens 4 17.
  • Is subjected to tertiary dispersion compensation passes through the reproduction lens 4 17, enters the optical fiber 4 15 2, travels in the direction of the arrow 4 1 4 1, and is capable of performing dispersion compensation 4 1 It is incident on 2.
  • the signal light that has been further subjected to dispersion compensation by the element 4 12 capable of performing dispersion compensation exits from the element 4 12 capable of performing dispersion compensation, and passes through the optical fiber 4 15 with an arrow 4 1 4 The light is emitted in the direction indicated by.
  • the optical dispersion compensating element 410 of the present invention shown in FIG. 6A has the group velocity delay time-wavelength characteristic shown in FIG. 5B, and the signal light incident on the optical dispersion compensating element 410 Is subjected to dispersion compensation according to the group velocity delay time-wavelength characteristic shown in FIG. 5B, and is emitted from the optical dispersion compensating element 410.
  • the signal light that has entered the optical dispersion compensating element 420 from the direction of the arrow 424 is also capable of performing dispersion compensation.
  • dispersion compensation is performed according to the group velocity delay time vs. wavelength characteristic curve as shown in FIG.
  • the optical fiber 4 26 travels in the direction indicated by the arrow 4 25.
  • Fig. 6C shows the part of the element 431 that can perform dispersion compensation formed on the same wafer instead of the elements 411 and 4122 that can perform dispersion compensation in Fig. 6A.
  • the optical dispersion compensator 430 is an example in which 4 3 2 and 4 3 3 are connected in series along the signal light path using an optical fiber 4 36. This is the same as described in the above. However, it is clear from the above description that the method of dispersion compensation is different depending on the group velocity delay time-wavelength characteristic of the element capable of performing dispersion compensation.
  • FIG. 9A and 9B show a modification of FIG. 6C.
  • a semiconductor substrate 700 is used as a substrate of the element 431 capable of performing dispersion compensation, and the portions 432 and 433 of the element 431 capable of performing dispersion compensation.
  • the movable parts 720 and 703 arranged in a matrix in the vertical and horizontal directions are formed on the surface on which the movable parts are arranged.
  • An even number of elements hereinafter, also referred to as a matrix element plate in which elements capable of performing dispersion compensation, which are elements using a multilayer film as described above (also referred to as a multilayer element) are formed.
  • an electrode is arranged on the movable portion on the matrix-like element plate.
  • the inclination on the surface of the matrix-like element plate changes according to the state of the voltage applied to the electrode. Therefore, the perpendicular direction of the incident surface of the element on which the dispersion compensation can be performed is changed.
  • the even number of matrix element plates 7 1 1 and 7 1 2 are appropriately placed two by two with the incident surfaces of the elements capable of performing dispersion compensation formed thereon facing each other. They are arranged so as to be alternately incident on the opposing matritas-like element plates 71 1, 71 2. Then, the inclination of the incident surface of the element capable of performing each dispersion compensation on the opposing matrix-shaped element plate is controlled as necessary, and dispersion compensation is performed as an optical path through which the signal light passes.
  • the characteristics and number of elements that can perform dispersion compensation are selected, and the group velocity delay time vs. wavelength characteristic curve as illustrated in Figs. Can be realized.
  • the optical connection between the elements capable of performing each dispersion compensation is performed by disposing the input / output terminals as the entire dispersion compensating element or by opposing each of the two elements.
  • the optical path between the incident surfaces of the elements capable of performing the dispersion compensation on the matrix-like element plates arranged opposite to each other can be configured to be performed by reflection between the respective incident surfaces.
  • 100 ⁇ 10 that is, 100 elements capable of performing dispersion compensation are formed on each of the matrix element plates, and two such matrix element plates are opposed to each other as described above.
  • three sets of elements can be formed, and dozens to hundreds of elements can be compensated, including optical path formation by reflection between elements that can perform dispersion compensation and optical path formation by a fiber collimator. Are connected in series in the optical path of the signal light to form an optical path, thereby forming a dispersion compensating element.
  • a plurality of optical paths can be formed in the same dispersion compensating element by appropriately selecting a combination of elements capable of performing the dispersion compensation according to the circumstances of the incident light using electric means or the like. .
  • the inventors of the present invention have shown that a matrix-like element plate on which elements capable of performing such dispersion compensation can be stably mass-produced by applying a semiconductor manufacturing technique and a multilayer film forming technique. Confirmed by experiment.
  • the insertion loss of the dispersion compensating element as a whole can be extremely reduced, and multi-channel dispersion compensation can be performed by the same dispersion compensating element.
  • a small-sized dispersion compensator having excellent dispersion compensation characteristics can be provided at low cost.
  • FIG.6D shows an optical dispersion compensating element 4440 in which elements 442 and 443 capable of performing the same dispersion compensation as in FIG.6A are incorporated in the same case 441.
  • the element 4 43 that can perform dispersion compensation uses a multilayer film in which the film thickness changes in the direction of the plane of incidence of the multilayer film described with reference to FIG. It has means for adjusting the incident position.
  • the incident position adjusting means can adjust the incident position by using a control circuit provided in a force case 441 (not shown).
  • optical dispersion compensating element Using the optical dispersion compensating element according to the present invention having such a configuration, dispersion is compensated in a communication system transmitting 60 km at a communication bit rate of 40 Gbps, and as a result, extremely excellent dispersion compensation can be performed.
  • Signal light is transmitted through the optical dispersion compensator.
  • the loss due to passing was as low as 1 dB or less. It can be said that this loss is much better than the loss due to a single second-order dispersion compensator using a conventional fiber grating, which is as large as 3 to 6 dB.
  • the light dispersion compensating element of the present invention and the light dispersion compensating method using the element have been described centering on the light dispersion compensating element of the present invention.
  • the most notable features of the light dispersion compensating method of the present invention are as follows.
  • the dispersion compensator is configured to have a group velocity delay time-wavelength characteristic curve that has at least one extreme value in any one wavelength range of 1675 nm, and is optimal for communication conditions It is also possible to compensate for the extreme values at multiple wavelengths in the wavelength range of 1260 to 1700 nm, for example, by using a function that can be selected with a switching switch as a whole as a dispersion compensation element.
  • the present invention makes use of such a large degree of freedom to make it possible to perform second- and third-order dispersion compensation required in actual communication, and makes use of many conventional optical communication systems. It enables high-speed and long-distance communication.
  • the present invention has been described in detail. According to the present invention, good dispersion compensation of each channel is performed by preparing various group velocity delay time-wavelength characteristic curves described with reference to FIGS. 5B to 5D. In addition to this, good dispersion compensation of multiple channels can be performed.
  • the dispersion compensation by the optical dispersion compensating element of the present invention has a particularly large effect in the third-order or higher dispersion compensation, and in addition to the second-order dispersion compensation by appropriately adjusting the group velocity delay time-wavelength characteristic. Can also be performed.
  • the present invention is indispensable for practical use of high-speed and long-distance optical communication such as transmitting 10,000 km at 4 OGb ps, has a wide use range, and greatly contributes to the development of the optical communication field. Things.
  • the light dispersion compensating element using the special multilayer film according to the present invention is compact and mass-produced. Since it is suitable and can be provided at a low price, it greatly contributes to the development of optical communication.
  • optical dispersion compensating element of the present invention makes it possible to use many of the existing optical communication systems, and has a great social and economic effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

An optical dispersion compensating device which eliminates a serious communication trouble caused by wavelength dispersion encountered in a signal transmitting over an optical fiber in an optical communication having a communication bit rate of at least 10 Gbps, especially at least 40 Gbps, which is large in bandwidth and in polar zone for a group velocity delay time, which is produced by serially connecting a plurality of multi-layer-film elements capable of dispersion compensating by using group velocity delay time-wavelength characteristics, and which is used, after various selections for connecting, to subject to cubic dispersion compensating an optical signal having a wide wavelength band containing a wavelength band of 1260-1700 nm.

Description

明 細 書 光分散補償素子とその素子を用いた光分散捕償方法 - 技術分野  Light dispersion compensating element and light dispersion compensation method using the element
本発明の以下の説明において、 分散とは波長分散の意味であり、 光分散補償の ことを単に分散補償とも称し、 光分散捕償素子のことを単に分散補償素子とも称 し、 分散補償方法のことを単に分散補償方法とも称す。  In the following description of the present invention, dispersion means chromatic dispersion, optical dispersion compensation is also simply referred to as dispersion compensation, and optical dispersion compensating element is simply referred to as dispersion compensating element. This is also simply referred to as a dispersion compensation method.
本発明は、 伝送路に光ファイバを用いる光通信において生ずる 2次以上 (後 述) の分散を補償可能な素子 (以下、 2次の分散を変えることができる素子、 あ るいは、 2次分散補償素子ともいう。 また、 後述の 3次の分散を補償可能な素子 についても、 これと同様に、 3次の分散を変えることができる素子、 あるいは、 3次分散補償素子ともいう。 ) を有する分散補償素子ならびにその素子を用いた 分散補償方法に関する。  The present invention relates to an element capable of compensating for a second- or higher-order (hereinafter described) dispersion occurring in optical communication using an optical fiber as a transmission line (hereinafter, an element capable of changing the second-order dispersion, or a second-order dispersion). Similarly, an element capable of compensating for the third-order dispersion described later includes an element capable of changing the third-order dispersion or a third-order dispersion compensating element. The present invention relates to a dispersion compensating element and a dispersion compensating method using the element.
より具体的には、 本発明は、 特に、 3次以上の分散を補償することが出来る分 散補償素子、 あるいは、 2次と 3次以上の分散補償を行うことが出来る分散補償 素子とその素子を用いた分散補償方法に関する。 そして、 本発明の分散補償方法 で用いる分散補償素子は、 前記の 3次分散補償素子だけの場合もあり、 また、 後 述の入射面内における入射光の入射位置を変化させる手段を含む場合もあり、 ま た、 3次以上の分散補償のみならず、 2次の分散補償も可能なように構成されて いる場合もあり、 ケースに実装されている場合もあり、 ケースに実装されていな いいわゆるチップ状やウェハー状の場合もある。 本発明の分散捕償素子は、 これ らのすべての形態を含んでおり、 使用や販売などの目的に応じて、 種々の形態を とることができるものである。  More specifically, the present invention particularly relates to a dispersion compensating element capable of compensating for a tertiary or higher order dispersion, or a dispersion compensating element capable of performing a secondary and tertiary or higher order dispersion compensation, and an element thereof. And a dispersion compensation method using the same. The dispersion compensating element used in the dispersion compensating method of the present invention may be only the tertiary dispersion compensating element described above, or may include a unit for changing the incident position of incident light in the incident plane described later. Yes, and in some cases, not only third-order or higher dispersion compensation, but also second-order dispersion compensation can be configured, sometimes implemented in the case, and not implemented in the case There may be a so-called chip shape or wafer shape. The dispersion compensating element of the present invention includes all of these forms, and can take various forms depending on purposes such as use and sale.
本発明では、 2次の分散ネ甫償とは 「図 7 Aを用いて後述する波長—時間特性曲 線の分散の傾きを補償すること」 を意味し、 3次の分散補償とは 「図 7 Aを用い て後述する波長一時間特性曲線の曲がりを補償すること」 を意味する。 背景技術 通信伝送路に光ファイバを用いる光通信におレ、ては、 利用技術の進展およぴ利 用範囲の拡大とともに、 通信伝送路の長距離化や通信ビットレートの高速化が求 められている。 このような環境下では、 光ファイバを伝送するときに生じる分散 が大きな問題となり、 分散の補償が種々試みられている。 現在、 2次の分散が大 きな問題となり、 その補償が種々提案され、 そのうちのいくつかの提案が限定的 ではあるがある程度効果をあげている。 In the present invention, the second-order dispersion compensation means "compensating for the slope of the dispersion of the wavelength-time characteristic curve described later with reference to FIG. 7A". 7A to compensate for the bending of the wavelength-time characteristic curve described later. " Background art In optical communications that use optical fibers for communication transmission lines, there is a need for longer-distance communication transmission lines and higher communication bit rates with the development of technology and the expansion of the range of use. I have. In such an environment, dispersion generated when transmitting an optical fiber becomes a serious problem, and various attempts have been made to compensate for dispersion. At present, second-order variance is a major problem, and various compensations have been proposed, and some of them have been effective to some extent, albeit limited.
しかし、 光通信に対する要求が高度になるにつれて、 送信中の 2次の分散の補 償だけでは不充分になり、 3次の分散の補償が課題になりつつある。  However, as the demand for optical communication becomes more sophisticated, compensation for second-order dispersion alone during transmission is not sufficient, and compensation for third-order dispersion is becoming an issue.
以下、 図 7 A〜Cおよび図 8を使用して、 従来の 2次の分散補償方法を説明す る。  Hereinafter, a conventional second-order dispersion compensation method will be described with reference to FIGS. 7A to 7C and FIG.
図 8は、 シングルモード光ファイバ (以下、 SMFとも称す) と分散補償ファ ィバ、 および分散シフ トファイバ (以下、 DSFともいう) の分散一波長特性を 説明する図である。 図 8において、 符号 601は SMFの分散一波長特性を示す グラフ、 602は分散補償ファイバの分散一波長特性を示すグラフ、 603は0 SFの分散一波長特性を示すグラフで、 縦軸を分散、 横軸を波長にとったグラフ である。  Fig. 8 is a diagram illustrating the dispersion versus wavelength characteristics of a single-mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensation fiber, and a dispersion shift fiber (hereinafter, also referred to as DSF). In FIG. 8, reference numeral 601 is a graph showing the dispersion-wavelength characteristic of the SMF, 602 is a graph showing the dispersion-wavelength characteristic of the dispersion compensating fiber, 603 is a graph showing the dispersion-wavelength characteristic of 0 SF, and the vertical axis represents the dispersion. This is a graph with the horizontal axis representing wavelength.
図 8で明らかなように, SMFでは、 ファイバに入力する光の波長が 1. 3 mから 1. 8 μへと長くなるにつれて分散は増大し, 分散捕償ファイバでは, 入 力光の波長が 1. 3 111から 1. 7 πιへと長くなるにつれて分散は減少する。 また、 DSFでは、 入力光の波長が 1. 2 μπιから 1. 55 μπι付近へと長くな るにつれて分散は小さくなり、 入力光の波長が 1. 55 /^ 111付近から1. 8 /xm へと長くなるにつれて分散が増大する。 そして、 DSFでは、 従来の 2. 5Gb p s (毎秒 2. 5ギガビット) 程度の通信ビットレートの光通信においては、 入 力光の波長が 1. 55 μιη付近では、 分散による支障は生じない。  As can be seen in Fig. 8, the dispersion increases as the wavelength of the light input to the fiber increases from 1.3 m to 1.8 μm in the SMF, and the wavelength of the input light increases in the dispersion compensation fiber. The variance decreases as the length increases from 1. 3 111 to 1. 7 πι. In the DSF, the dispersion decreases as the wavelength of the input light increases from 1.2 μπι to around 1.55 μπι, and the wavelength of the input light changes from around 1.55 / ^ 111 to 1.8 / xm. As the length increases, the variance increases. In DSF, in conventional optical communication at a communication bit rate of about 2.5 Gbps (2.5 gigabits per second), dispersion does not cause a problem when the wavelength of the input light is around 1.55 μιη.
図 7A〜Cは、 主として 2次の分散の補償方法を説明する図であり、 図 7 Aは 波長一時間特性と光強度一時間特性を、 図 7Bは SMFと分散補償ファイバを用 いて 2次の分散補償を行つた伝送路での伝送例を、 図 7 Cは S MFだけで構成し た伝送路での伝送例を説明する図である。  7A to 7C are diagrams mainly explaining a second-order dispersion compensation method.FIG. 7A shows a wavelength-time characteristic and a light intensity-time characteristic, and FIG. 7B shows a second-order characteristic using an SMF and a dispersion compensating fiber. FIG. 7C is a diagram for explaining an example of transmission on a transmission line configured with only SMFs.
図 7A〜Cにおいて、 符号 501と 51 1は伝送路に入力する前の信号光の特 性を示すグラフを、 5 30は SMF 5 3 1で構成された伝送路を、 5 0 2と 5 1 2は、 符号 5 0 1と 5 1 1で示したグラフの特性を有する信号光が伝送路 5 3 0 を伝送されて伝送路 530から出力されたときの信号光の特性を示すグラフを、 5 20は分散補償ファイバ 5 2 1と SMF 5 22から構成された伝送路を、 5 0 3と 5 1 3は、 符号 50 1と 5 1 1で示したグラフの特性を有する信号光が伝送 路 5 20を伝送されて伝送路 5 20から出力されたときの信号光の特性を示すグ ラフである。 符号 504および 5 1 4は、 符号 5 0 1と 5 1 1で示したグラフの 特性を有する信号光が伝送路 5 20を伝送されて伝送路 5 20から出力されて後、 本発明によって、 後述の望ましい 3次分散補償を施したときの信号光の特性を示 すグラフであり、 符号 5 0 1および 5 1 1で示したグラフとほとんど一致してい る。 また、 グラフ 50 1、 5 02、 503、 504はそれぞれ縦軸を波長、 横軸 を時間 (または時刻) にとつたグラフであり、 グラフ 5 1 1、 5 1 2、 5 1 3、 5 1 4はそれぞれ縦軸を光強度、 横軸を時間 (または時刻) にとつたグラフであ る。 なお、 符号 5 24と 5 34は送信器、 5 25と 5 3 5は受信器である。 7A to 7C, reference numerals 501 and 511 denote characteristics of signal light before input to the transmission path. 530 is a transmission line composed of SMF 531, and 502 and 512 are transmissions of signal light having the characteristics of the graphs shown by reference numerals 501 and 511. A graph showing the characteristics of the signal light when the signal light is transmitted through the transmission line 530 and output from the transmission line 530 is shown.A transmission line 520 is composed of the dispersion compensating fiber 52 1 and the SMF 522. And 5 13 are graphs showing the signal light characteristics when the signal light having the characteristics of the graphs denoted by reference numerals 501 and 51 1 is transmitted through the transmission line 520 and output from the transmission line 520. It is. Reference numerals 504 and 514 indicate that the signal light having the characteristics of the graphs denoted by reference numerals 501 and 511 is transmitted through the transmission line 520 and output from the transmission line 520, and is described later by the present invention. 6 is a graph showing the characteristics of signal light when the desired third-order dispersion compensation is performed, and almost coincides with the graphs indicated by reference numerals 501 and 511. Graphs 501, 502, 503, and 504 are graphs in which the vertical axis represents wavelength and the horizontal axis represents time (or time), respectively. Graphs 511, 512, 513, 514 Is a graph with the light intensity on the vertical axis and time (or time) on the horizontal axis. Reference numerals 524 and 534 denote transmitters, and 525 and 533 denote receivers.
従来の SMFは、 前述のように、 信号光の波長が 1. から 1. 8 へと 長くなるにつれて分散が増加するため、 高速通信や長距離伝送の際には、 分散に よる群速度遅延を生じる。 SMFで構成された伝送路 5 30では、 信号光は伝送 中に長波長側が短波長側に比べ大きく遅延して、 グラフ 5 0 2と 5 1 2に示すよ うになる。 このように変化した信号光は、.たとえば高速通信 ·長距離伝送におい ては、 前後の信号光と重なって正確な信号として受信できない場合がある。  As described above, the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1. to 1.8, so the group velocity delay due to dispersion is reduced in high-speed communication and long-distance transmission. Occurs. In the transmission path 530 constituted by the SMF, the signal light is greatly delayed on the long wavelength side as compared with the short wavelength side during transmission, as shown in graphs 502 and 512. For example, in high-speed communication and long-distance transmission, the changed signal light may not be able to be received as an accurate signal because it overlaps with the preceding and following signal lights.
このような問題を解決するため、 従来は、 たとえば、 図 7 Bに示すように分散 補償ファイバを用いて分散を補償 (以下、 補正ともいう) している。 従来の分散 補償ファイバは、 波長が 1. 3 μπιから 1. 8 μへと長くなるにつれて分散が増 加するという SMFの問題点を解決するため、 前述のように、 波長が 1. 3 μ χα から 1. 8 μへと長くなるにつれて分散が減少するように作られている。 分散補 償ファイバは、 たとえば、 図 7 Βの伝送路 5 20で示すように、 SMF 5 2 2に 分散補償ファイバ 5 2 1を接続して用いることができる。 上記伝送路 5 20では、 信号光は、 SMF 5 2 2では長波長側が短波長側に比べて大きく遅延し、 分散補 In order to solve such a problem, conventionally, for example, as shown in FIG. 7B, dispersion is compensated (hereinafter, also referred to as correction) using a dispersion compensating fiber. The conventional dispersion compensating fiber solves the problem of SMF that the dispersion increases as the wavelength increases from 1.3 μπι to 1.8 μ, and as described above, the wavelength is 1.3 μ χα. It is designed so that the variance decreases with increasing length from 1.8 μm to 1.8 μm . The dispersion compensating fiber can be used, for example, by connecting a dispersion compensating fiber 521 to an SMF 522 as shown by a transmission line 520 in FIG. In the transmission line 520, the signal light is delayed more in the long wavelength side than in the short wavelength side in the SMF 522, and the dispersion compensation
2 1では短波長側が長波長側に比べて大きく遅延することにより、 グラフ 5 0 3と 5 1 3に示すように、 グラフ 5 0 2と 5 1 2に示す変化よりも変 化量を小さく抑えることが出来る。 In 2 1, the short wavelength side is delayed more than the long wavelength side, As shown in the graphs 503 and 513, the amount of change can be suppressed smaller than the changes shown in the graphs 502 and 512.
しかし、 分散補償ファイバを使用した上記従来の 2次の波長分散の補償方法で は、 伝送路を伝送した信号光の波長分散を、 伝送路に入力する前の信号光の状態、 すなわち、 グラフ 5 0 1の形までには分散補償することはできず、 グラフ 5 0 3 の形まで補償するのが限界である。 グラフ 5 0 3に示すように、 分散補償フアイ バを使用した従来の 2次の波長分散の補償方法では、 信号光の中心波長の光が短 波長側の光および長波長側の光に比べて遅延せず、 信号光の中心波長成分の光よ り短波長側および長波長側の成分の光のみが遅延する。 そして、 グラフ 5 1 3に 示すようにグラフの一部にリップルが生じることがある。  However, in the above-mentioned conventional method of compensating for the second-order chromatic dispersion using the dispersion compensating fiber, the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before input to the transmission line, that is, as shown in FIG. Dispersion compensation cannot be performed up to the shape of 0 1, and the limit is to compensate up to the shape of graph 503. As shown in graph 503, in the conventional second-order chromatic dispersion compensation method using a dispersion compensation fiber, the light of the central wavelength of the signal light is compared with the light of the short wavelength side and the light of the long wavelength side. Without delay, only the light of the component on the shorter wavelength side and the longer wavelength side than the light of the central wavelength component of the signal light is delayed. Then, as shown in the graph 513, a ripple may be generated in a part of the graph.
これらの現象は、 光通信の伝送距離の長距離化と通信速度の高速化のニーズが 高まるに従い、 正確な信号受信ができなくなるなどの大きな問題となりつつある。 たとえば、 通信ビットレートが 4 0 G b p s (毎秒 4 0ギガビット) で 1万 kmを 送信する高速通信や 8 0 G b p sで千 kmオーダーの距離を送信する高速通信にお いては、 これらの現象がかなり心配されており、 極めて重大な課題として心配さ れている。 そして、 このような高速通信においては、 従来の光ファイバ通信シス テムを使用することは困難と考えられており、 たとえば、 光ファイバ自体の材質 も変える必要が叫ばれるなど、 システム構築の経済的な観点からも重大問題とな つている。  These phenomena are becoming serious problems such as the inability to receive accurate signals as the need for longer transmission distances and higher communication speeds increases in optical communications. For example, in a high-speed communication that transmits 10,000 km at a communication bit rate of 40 Gbps (40 gigabits per second) and a high-speed communication that transmits a distance of the order of 1,000 km at 80 Gbps, these phenomena occur. It is of great concern and of great concern. In such high-speed communication, it is considered difficult to use a conventional optical fiber communication system. For example, it is necessary to change the material of the optical fiber itself. It is a serious problem from a viewpoint.
このような分散補償を行うには、 2次の分散補償だけでは困難であり、 3次以 上の分散補償が必要になる。  It is difficult to perform such dispersion compensation only with second-order dispersion compensation, and third- or higher-order dispersion compensation is required.
従来、 波長が 1 . 5 5 m付近の光に対して 2次の分散が少なくなるような光 ファイバ (以下、 光ファイバのことを、 単に、 ファイバともいう) として D S F があるが、 このファイバでは、 図 7 A, 図 8の特性からも明らかなように本発明 の課題とする 3次の分散補償はできない。  Conventionally, there is a DSF as an optical fiber that reduces the second-order dispersion for light near 1.55 m in wavelength (hereinafter, the optical fiber is simply referred to as fiber). As is clear from the characteristics of FIGS. 7A and 8, the third-order dispersion compensation, which is the subject of the present invention, cannot be performed.
光通信の高速通信化、 長距離通信化を実現するにあたり、 3次の分散は大きな 問題として次第に認識され、 その補償が重要な課題となりつつある。 3次の分散 の捕償問題を解決すべく、 多くの試みが行なわれているが、 従来の課題を十分に 解決することができる 3次分散補償素子や補償方法はまだ実用化されていない。 3次の分散を補償する方法として回折格子を形成したファイバを用いた例が報告 されているが、 必要な補償ができなく、 損失が大きく、 形状寸法が大きいなど致 命的な欠点を有しており、 さらに、 価格も高く、 実用化は期待されていない。 前記の 3次分散の補償に用いる光分散補償素子の一例として本発明者らが、 本 発明とは別に提案した誘電体などの多層膜を用いた分散補償素子は、 3次の分散 補償に成功し、 従来の光通信技術を大きく前進させることが出来た。 し力 し、 光 通信の高速ィ匕と長距離通信化からの要望として、 たとえば通信ビットレートを 4 OGb p s、 80Gb p sなどのように高速化した場合の 3次の分散補償を理想 的に行ったり、 複数チャンネルの光通信における 3次の分散の補償を十分に行う には、 さらに広い波長域において、 2次と 3次の分散を十分に補償できる分散補 償素子や分散補償方法の実現が望まれている。 その 1つの提案として、 本発明者 らによって、 本発明とは別に、 群速度遅延の波長帯域および群速度遅延の遅延時 間を調整可能な 3次分散補償素子の提案が行われている。 特に、 各チャンネルの 波長毎に適した分散補償をする 3次以上の分散補償素子を安価に実用化する 1つ の方法として、 波長可変な (すなわち、 分散補償対象波長を選択可能な) 分散補 償素子が提案された。 しかしながら、 これらの分散補償素子単体だけで広い波長 域で十分な分散補償を行ない得るような群速度遅延時間一波長特性を有する分散 補償素子を得ることはかなり難しい。 In realizing high-speed and long-distance optical communications, third-order dispersion is increasingly recognized as a major problem, and compensation for it is becoming an important issue. Many attempts have been made to solve the third-order dispersion compensation problem, but a third-order dispersion compensator or compensation method that can sufficiently solve the conventional problems has not yet been put into practical use. An example using a fiber formed with a diffraction grating as a method of compensating for third-order dispersion has been reported, but it has fatal disadvantages such as the inability to perform necessary compensation, large loss, and large dimensions. In addition, the price is high and practical application is not expected. As an example of the optical dispersion compensating element used for the third-order dispersion compensation, the present inventors have proposed a dispersion compensating element using a multilayer film such as a dielectric, which has been proposed separately from the present invention, and succeeded in third-order dispersion compensation. However, we were able to make significant progress in conventional optical communication technology. As a demand for high-speed optical communication and long-distance communication, third-order dispersion compensation is ideally performed when the communication bit rate is increased to 4 OGb ps or 80 Gb ps, for example. In order to sufficiently compensate for the third-order dispersion in multi-channel optical communication, it is necessary to realize dispersion compensation elements and dispersion compensation methods that can sufficiently compensate for the second- and third-order dispersion in a wider wavelength range. Is desired. As one of the proposals, the present inventors have proposed a third-order dispersion compensator capable of adjusting the wavelength band of the group velocity delay and the delay time of the group velocity delay separately from the present invention. In particular, one method of inexpensively implementing a third-order or higher-order dispersion compensating element that performs dispersion compensation suitable for each channel wavelength is a wavelength-tunable dispersion compensation (that is, a dispersion compensation target wavelength can be selected). A compensation element has been proposed. However, it is very difficult to obtain a dispersion compensating element having a group velocity delay time-wavelength characteristic such that sufficient dispersion compensation can be performed in a wide wavelength range using only these dispersion compensating elements alone.
本発明はこのような点に鑑みてなされたものであり、 本発明の目的は、 従来実 用化することが出来なかった広レ、波長域にわたつて十分な分散補償、 特に 3次の 分散補償を行うことが出来るような優れた群速度遅延時間一波長特性を有する光 分散補償素子を、 信頼性が高く、 量産に適した状態で、 安価に提供するとともに、 さらに、 群速度遅延の波長帯域および遅延時間の調整機能を有する多層膜素子を 用いた、 3次以上の分散補償を可能にする分散補償方法および分散補償素子、 あ るいは、 2次と 3次以上の分散補償を合わせて行うことが出来る分散捕償方法お よび分散補償素子を提供することにある。  The present invention has been made in view of such a point, and an object of the present invention is to provide a wide dispersion which has not been practically used in the past and a sufficient dispersion compensation over a wavelength range, particularly a third-order dispersion. An optical dispersion compensator with excellent group velocity delay time-wavelength characteristics that can perform compensation is provided at a low cost in a state of high reliability and suitable for mass production. A dispersion compensation method and a dispersion compensation element that enable third- or higher-order dispersion compensation using a multilayer element having a band and delay time adjustment function, or a combination of second- and third-order dispersion compensation. It is an object of the present invention to provide a dispersion compensation method and a dispersion compensation element that can be performed.
さらに具体的に本発明の目的を説明すると、 o一パンド (1260— 1360 nm) 、 E—バンド (1 360— 1460n m) 、 S一バンド (1460— 1 5 30 nm) 、 C—バンド (1 530— 1565 n m) 、 L—パンド (1 565— 1 6 2 5 n m) 、 U—バンド (1 6 2 5— 1 6 7 5 n m) と呼称されている各バ ンドの、 少なくともいずれか 1つのバンドの波長帯域において、 少なくとも 1つ の極値を有する群速度遅延時間一波長特性曲線を有する多層膜を用いた分散補償 素子を構成して、 各通信波長域における正確な分散補償を実現することにある。 すなわち、 従来実用化できなかった波長帯域が数十 n mにわたつて、 通信上生 じる前記の如き分散を補償することができる群速度遅延時間一波長特性を有ずる ように光分散補償素子を構成し、 その光分散補償素子を用いて、 信号光全体の分 散を補償することができる安価で信頼性が高く小型の通信システムを用いる光分 散補償方法を提供することにある。 発明の開示 More specifically, the object of the present invention is as follows: o band (1260-1360 nm), E-band (1360-1460 nm), S-band (1460-1530 nm), C-band (1 530—1565 nm), L—band (1 565— At least one extreme value in at least one of the wavelength bands of each band called the U-band (16625 nm) An object of the present invention is to configure a dispersion compensating element using a multilayer film having a group velocity delay time-wavelength characteristic curve and to realize accurate dispersion compensation in each communication wavelength range. That is, the optical dispersion compensating element is designed to have a group velocity delay time-wavelength characteristic capable of compensating for the above-mentioned dispersion occurring in communication over a wavelength band of several tens of nm that has not been practically used in the past. It is an object of the present invention to provide a light dispersion compensation method using a low-cost, highly reliable and small communication system capable of compensating the dispersion of the entire signal light using the light dispersion compensation element. Disclosure of the invention
本発明は分散補償素子に関するものであるとともに、 実質的に前記本発明の分 散補償素子と等価な分散補償素子を構成して分散を補償する分散補償方法に関す るものであり、 したがって、 以下の説明では、 本発明の分散補償素子の内容を、 本発明の分散捕償方法に用いる分散補償素子として説明し、 あわせて分散補償方 法の説明も兼ねることにする。  The present invention relates to a dispersion compensating element, and also relates to a dispersion compensating method for compensating dispersion by constructing a dispersion compensating element substantially equivalent to the dispersion compensating element of the present invention. In the description, the content of the dispersion compensating element of the present invention will be described as the dispersion compensating element used in the dispersion compensation method of the present invention, and will also serve as the description of the dispersion compensating method.
本発明の分散補償方法に用いる分散補償素子の最大の特徴は、 分散補償を行う ことが出来る素子を少なくとも 2つ、 あるいは、 分散補償を行うことが出来る素 子の部分を少なくとも 2箇所 (以下、 前記分散補償を行うことが出来る素子と分 散補償を行うことが出来る素子の部分を総称して分散補償を行うことが出来る素 子ともいう) 、 信号光の光路に沿って直列に接続して構成されていることにあり、 多層膜を用いた分散補償素子 (以下、 単に、 多層膜素子ともいう。 ) を有してい ることである。  The most significant feature of the dispersion compensating element used in the dispersion compensation method of the present invention is that at least two elements capable of performing dispersion compensation or at least two parts of the element capable of performing dispersion compensation (hereinafter, referred to as The element capable of performing dispersion compensation and the element capable of performing dispersion compensation are collectively referred to as an element capable of performing dispersion compensation), and are connected in series along the optical path of signal light. That is, it has a dispersion compensation element using a multilayer film (hereinafter, also simply referred to as a multilayer film element).
そして、 本発明の目的の達成を図るため、 本発明の光分散補償方法に用いる光 分散補償素子は、 前記分散補償を行うことが出来る素子が、 多層膜の群速度遅延 時間一波長特性を利用して分散補償を行うことが出来る光分散補償素子であり、 そして、 前記多層膜の群速度遅延時間一波長特性曲線が分散補償対象波長帯域あ るいはその近傍の波長域において、 少なくとも 1つの極値を有することを特徴と しており、 本発明の光分散補償方法に用いる光分散補償素子の群速度遅延時間一 波長特性曲線と本発明の光分散補償方法に用いる光分散補償素子を構成する各分 散捕償を行うことが出来る素子の群速度遅延時間一波長特性曲線とは、 通常、 そ の形が異なっている。 In order to achieve the object of the present invention, in the optical dispersion compensating element used in the optical dispersion compensating method of the present invention, the element capable of performing the dispersion compensation uses a group velocity delay time-wavelength characteristic of a multilayer film. An optical dispersion compensating element capable of performing dispersion compensation by performing the method, wherein the group velocity delay time-wavelength characteristic curve of the multilayer film has at least one pole in a wavelength band to be subjected to dispersion compensation or in a wavelength region in the vicinity thereof. And the group velocity delay time of the optical dispersion compensating element used in the optical dispersion compensating method of the present invention. The shape of the wavelength characteristic curve differs from the group velocity delay time-wavelength characteristic curve of the element capable of performing dispersion compensation, which constitutes the optical dispersion compensation element used in the optical dispersion compensation method of the present invention, in general. ing.
前記多層膜を有する本発明の光分散補償素子は、 基本的にはどの波長域にも適 用できるものである。 本発明は、 現在注視されている 1 260〜 1700 nmの 波長域において少なくとも 1つの極値を有する群速度遅延時間一波長特性曲線を 有する多層膜を用いた光分散補償素子を用いて、 大きな効果を上げることができ るものである。  The optical dispersion compensating element of the present invention having the multilayer film can basically be applied to any wavelength range. The present invention provides a great effect by using an optical dispersion compensating element using a multilayer film having a group velocity delay time-wavelength characteristic curve having at least one extreme value in a wavelength range of 1260 to 1700 nm which is currently being watched. Can be raised.
さらに具体的には、 本発明によれば、 O—バンド (1 260_ 1360 nm) 、 E—バンド (1 360— 1460 n m) 、 S—バンド (1460— 1 5 30 η m) 、 C—バンド (1 530_ 1 565 nm) 、 L一バンド (1 565— 162 5 nm) 、 U—バンド (1625— 1675 η m) と呼称されている各バンドの 少なくともいずれか 1つのバンドの波長帯域において少なくとも 1つの極値を有 する群速度遅延時間一波長特性曲線を有する多層膜を用いた分散補償素子を構成 することができ、 各通信波長域において正確な分散補償を行うことができる。 本発明の目的を達成するため、 本発明の光分散補償素子は、 通信伝送路に光フ アイバを用いる光通信に使用して波長分散としての分散を補償することができる 光分散補償素子であって、 光の反射率が互いに異なる少なくとも 3つの反射層と '前記反射層の間に形成された少なくとも 2つの光透過層を有する多層膜を用いた 多層膜素子としての分散補償を行うことが出来る素子を複数個を、 あるいは、 分 散補償を行うことが出来る素子としての分散補償を行うことが出来る素子の部分 を少なくとも複数箇所を、 信号光の光路に沿って直列に接続して構成したことを 特徴としている。  More specifically, according to the present invention, the O-band (1260-1360 nm), the E-band (1360-1460 nm), the S-band (1460-1530 ηm), the C-band ( 1 530_1565 nm), L-band (1565-1625 nm), U-band (1625-1675 ηm) A dispersion compensating element using a multilayer film having a group velocity delay time-wavelength characteristic curve having an extreme value can be configured, and accurate dispersion compensation can be performed in each communication wavelength range. In order to achieve the object of the present invention, an optical dispersion compensating element of the present invention is an optical dispersion compensating element that can be used for optical communication using an optical fiber in a communication transmission path and can compensate for dispersion as chromatic dispersion. Thus, it is possible to perform dispersion compensation as a multilayer element using a multilayer film having at least three reflective layers having different light reflectivities and at least two light transmitting layers formed between the reflective layers. A structure in which a plurality of elements or at least a plurality of parts of the element capable of performing dispersion compensation as an element capable of performing dispersion compensation are connected in series along the optical path of the signal light. It is characterized by
本発明の光分散補償素子の例は、 前記複数個の分散補償を行うことが出来る素 子の接続方法または接続経路が複数通りあることを特徴としている。  An example of the optical dispersion compensating element of the present invention is characterized in that there are a plurality of connection methods or connection paths of the plurality of elements capable of performing dispersion compensation.
本発明の光分散補償素子の例は、 前記複数個の分散補償を行うことが出来る素 子の接続方法または接続経路を光分散補償素子の外部から選択することができる ことを特徴としている。 '  An example of the optical dispersion compensating element of the present invention is characterized in that a connection method or a connection path of the plurality of elements capable of performing dispersion compensation can be selected from outside the optical dispersion compensating element. '
本発明の光分散補償素子の例は、 前記複数個の分散補償を行うことが出来る素 子の接続方法に、 対向して配置された前記多層膜素子の入射面における反射によ る方法が含まれていることを特徴としている。 Examples of the optical dispersion compensating element of the present invention include a device capable of performing the plurality of dispersion compensation. It is characterized in that the method of connecting the element includes a method by reflection on the incident surface of the multilayer film element arranged oppositely.
本発明の光分散補償素子の例は、 前記複数個の分散補償を行うことが出来る素 子の接続方法または接続経路を光分散補償素子の外部から選択する手段が、 電気 的手段であることを特徴としている。  An example of the optical dispersion compensating element of the present invention is that the means for selecting the connection method or the connection path of the plurality of elements capable of performing dispersion compensation from outside the optical dispersion compensating element is an electric means. Features.
本発明の目的を達成するため、 本発明の光分散補償方法は、 通信伝送路に光フ アイバを用いる光通信での分散を補償して通信を行う光分散補償方法であって、 光の反射率が互いに異なる少なくとも 3つの反射層と前記反射層の間に形成され た少なくとも 2つの光透過層を有する多層膜を用いた多層膜素子としての分散補 償を行うことが出来る素子を複数個を、 あるいは、 分散補償を行うことが出来る 素子としての分散補償を行うことが出来る素子の部分を少なくとも複数箇所を、 信号光の光路に沿って直列に接続して構成した光分散補償素子に信号光を入射さ せて分散補償を行うことを特徴としている。  In order to achieve the object of the present invention, an optical dispersion compensation method according to the present invention is an optical dispersion compensation method for performing communication by compensating for dispersion in optical communication using an optical fiber in a communication transmission line, comprising: A plurality of devices capable of performing dispersion compensation as a multilayer device using a multilayer film having at least three reflective layers having different ratios and at least two light transmitting layers formed between the reflective layers are provided. Alternatively, at least a plurality of portions of the element capable of performing dispersion compensation as an element capable of performing dispersion compensation are connected in series along the optical path of the signal light to the optical dispersion compensating element. This is characterized in that dispersion compensation is performed by injecting light.
本発明の光分散補償方法の例は、 光ファイバを伝送された信号光を、 各受信チ ャネル毎に波長分離される前に前記光分散補償素子を通過させ、 少なくとも 3次 の分散を補償させることを特徴としている。  An example of the optical dispersion compensation method of the present invention is to pass signal light transmitted through an optical fiber through the optical dispersion compensation element before wavelength separation for each receiving channel to compensate for at least tertiary dispersion. It is characterized by:
本発明の光分散補償方法の例は、 前記分散補償を行うことができる素子を複数 個直列に接続して構成した光分散補償素子が、 1 2 6 0〜 1 3 6 0 n m、 1 3 6 0〜1 4 6 0 n m、 1 4 6 0〜1 5 3 0 n m、 1 5 3 0〜: 1 5 6 5 n m、 1 5 6 5〜1 6 2 5 n m、 1 6 2 5〜1 6 7 5 n mの波長範囲の少なくとも 1つの波長 範囲において少なくとも 1つの極値を有する群速度遅延時間一波長特性曲線を有 するように構成されていることを特徴としている。  An example of the optical dispersion compensating method of the present invention is as follows. An optical dispersion compensating element configured by connecting a plurality of elements capable of performing the dispersion compensation in series is 1260 to 1360 nm, 1336 0 to 1460 nm, 1460 to 1550 nm, 1530 to: 1565 nm, 1565 to 1625 nm, 1625 to 1670 It is characterized by having a group velocity delay time-wavelength characteristic curve having at least one extreme value in at least one wavelength range of a wavelength range of 5 nm.
本発明の光分散補償方法の例は、 信号光の光路における分散補償を行うことが 出来る素子の接続の仕方を複数通り選択することができることを特徴としている。 本発明の光分散補償方法の例は、 前記光分散補償素子を構成している少なくと も 1つの分散補償を行うことができる素子に用いられている多層膜が、 入射光の 中心波長; Iの光に対する光路長として考えたときの前記多層膜各層の膜厚が、 λ / 4のほぼ整数倍の値の膜厚である多層膜であり、 かつ、 前記多層膜が、 膜厚が λの 1 / 4倍で屈折率が高い方の層である層 Ηと膜厚がえの 1 / 4倍で屈折率が低 レ、方の層である層 Lを組み合わせた層の複数組で構成されており、 前記層 Hが S i、 G e、 T i 02、 T a 25、 N b 2Osのいずれかから成る層で形成されている ことを特徴としている。 An example of the optical dispersion compensation method according to the present invention is characterized in that a plurality of types of connection methods of elements capable of performing dispersion compensation in the optical path of signal light can be selected. An example of the optical dispersion compensation method of the present invention is that the multilayer film used in at least one element capable of performing dispersion compensation constituting the optical dispersion compensation element has a center wavelength of incident light; The thickness of each layer of the multilayer film when considered as an optical path length for the light of the above is a multilayer film having a thickness of a value almost an integral multiple of λ / 4, and the multilayer film has a thickness of λ. 1/4 times the layer with the higher refractive index Η and the film thickness 1/4 times the lower the refractive index Re, the layer H is composed of a plurality of layers in which the layer L is combined, and the layer H is any one of S i, G e, T i 0 2 , T a 25 , and N b 2 O s It is characterized by being formed of a layer consisting of
本発明の光分散補償方法の例は、 前記多層膜素子の少なくとも 1つが、 多層膜 素子の多層膜を構成する少なくとも 1つの積層膜の膜厚が、 前記多層膜の光の入 射面に平行な断面における面内方向、 すなわち、 入射面内方向において変化して いる多層膜を用いた多層膜素子であることを特徴している。  An example of the optical dispersion compensation method of the present invention is such that at least one of the multilayer devices has a thickness of at least one stacked film constituting a multilayer film of the multilayer device, and the film thickness of the multilayer film is parallel to a light incident surface of the multilayer film. This is characterized by a multilayer film element using a multilayer film that changes in the in-plane direction in a simple cross section, that is, in the in-plane direction of incidence.
本発明の光分散補償方法の例は、 前記層 Lが、 層 Hに使用されている材質より も屈折率の低い材質を用いて形成されていることを特徴としている。  An example of the optical dispersion compensation method of the present invention is characterized in that the layer L is formed using a material having a lower refractive index than the material used for the layer H.
本発明の光分散補償方法の例は、 前記層 Lが S i〇2から成る層で形成されて いることを特徴としている。 Examples of optical dispersion compensation method of the present invention, the layer L is characterized by being formed by a layer consisting of S I_〇 2.
本発明の光分散補償方法の例は、 前記多層膜の入射面内方向において膜厚が変 化している膜厚変化の方向が少なくとも 1つの多層膜において少なくとも 2つあ ることを特 ¾5 [としている。  An example of the optical dispersion compensation method according to the present invention is characterized in that at least one multilayer film has at least two film thickness change directions in the in-plane direction of the multilayer film. I have.
本発明の光分散補償方法の例は、 前記分散補償を行うことが出来る素子に係合 して、 前記多層膜の少なくとも 1つの積層膜の膜厚を調整する調整手段、 あるい は、 前記多層膜の入射面における光の入射位置を変える手段が設けられているこ とを特 ί敷としている。  An example of the optical dispersion compensation method of the present invention includes an adjusting unit that engages with an element capable of performing the dispersion compensation and adjusts a film thickness of at least one laminated film of the multilayer film. A special feature is that means for changing the light incident position on the incident surface of the film is provided.
本発明の光分散補償方法に用いる光分散補償素子の例においては、 前記多層膜 として、 後述の多層膜 Α〜Ηの少なくとも 1種類の多層膜を用いることが出来る。 すなわち、 光学的性質が異なる積層膜を少なく とも 5種類 (すなわち、 光の反射率や膜厚などの光学的な性質の異なる積層膜を少なく とも 5 層) 有する多層膜を有し、 前記多層膜が光の反射率が互いに異なる少な く とも 2種類の反射層を含む少なく とも 3種類の反射層を有するととも に、 前記 3種類の反射層の他に少なく とも 2つの光透過層を有し、 前記 3種類の反射層の各 1層と前記 2つの光透過層の各 1層とが交互に配置 されており、 前記多層膜が、 膜の厚み方向の一方の側から順に、 第 1の 反射層である第 1層、 第 1の光透過層である第 2層、 第 2の反射層であ る第 3層、 第 2の光透過層である第 4層、 第 3の反射層である第 5層か ら構成されており、 入射光の中心波長を λとして、 前記第 1〜第 5層に おいて、 入射光の中心波長; Lの光に対する光路長 (以下、 単に、 光路長 ともいう) として考えたときの膜厚 (以下、 単に、 膜厚あるいは膜の厚 みともいう) 力 S、 /4の整数倍 ± 1 %の範囲の値 (以下、 え /4の整数 倍、 あるいは、 λ /4のほぼ整数倍ともいう) の膜厚であり、 かつ、 前 記多層膜が、 膜厚が; Iの 1 /4倍 (以下、 λの 1 /4倍の ± 1 %の膜厚の 意味で; Lの 1 /4倍の膜厚という) で屈折率が高い方の層 (以下、 層 Η ともいう) と膜厚が; の 1 /4倍で屈折率が低い方の層 (以下、 層 Lと もいう') を組み合わせた層の複数組で構成されており、 In the example of the light dispersion compensating element used in the light dispersion compensation method of the present invention, at least one kind of a multilayer film (described later) can be used as the multilayer film. That is, a multilayer film having at least five types of laminated films having different optical properties (that is, at least five layers having different optical properties such as light reflectance and film thickness). Have at least three types of reflective layers including at least two types of reflective layers having different light reflectances from each other, and have at least two light transmitting layers in addition to the three types of reflective layers. The one of the three types of reflective layers and the one of the two light transmitting layers are alternately arranged, and the multilayer film is a first layer in order from one side in a thickness direction of the film. The first layer as a reflection layer, the second layer as a first light transmission layer, the third layer as a second reflection layer, the fourth layer as a second light transmission layer, and the third reflection layer Some fifth layer The center wavelength of the incident light is defined as λ, and in the first to fifth layers, it is considered as the center wavelength of the incident light; the optical path length for L light (hereinafter, also simply referred to as the optical path length). (Hereinafter, simply referred to as film thickness or film thickness) Force S, an integral multiple of / 4 ± 1% (hereafter, integral multiple of / 4, or λ / 4 The film thickness of the multilayer film is 1/4 times I (hereinafter, ± 1% of 1/4 times λ). A layer having a higher refractive index (hereinafter referred to as a layer having a thickness of 1/4 times L) (hereinafter also referred to as a layer)) and a layer having a lower refractive index having a thickness of 1/4 times (hereinafter referred to as a layer). L), also known as L).
多層膜 Αを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層 膜の厚み方向の一方の側から順に、 層 H、 層 Lの順に各 1層ずつ組み合 わせた層 (以下、 H Lの層ともいう) を 3セッ ト (層 H I層と層 L 1層 とを組み合わせた層を H Lの層 1セッ トと称する。 以下同様) 積層して 構成される第 1層、 層 Hと層 Hを組み合わせた層 (すなわち、 層 Hを 2 層重ねて形成した層。 以下、 HHの層ともいう) を 1 0セッ ト積層して 構成される第 2層、 層 Lを 1層と H Lの層を 7セッ トとを積層して構成 される第 3層、 HHの層を 3 8セッ ト積層して構成される第 4層、 層 を 1層と H Lの層を 1 3セッ トとを積層して構成される第 5層でそれぞ れ形成されている多層膜とし、  The multilayer film Α is a layer in which the five-layer laminated film, that is, the first to fifth layers are combined one by one in the order of layer H and layer L in order from one side in the thickness direction of the multilayer film. (Hereinafter, also referred to as HL layer) 3 sets (a layer combining the layer HI layer and the layer L 1 layer is referred to as an HL layer 1 set; the same applies hereinafter). The second layer and the layer L, which are formed by laminating 10 sets of the layer H and the layer obtained by combining the layer H (that is, the layer formed by laminating two layers H, hereinafter also referred to as the HH layer), 3rd layer composed of 7 sets of layers and HL layers, 4th layer composed of 38 sets of HH layers, 1 layer and 13 layers of HL A multi-layered film composed of a set and a fifth layer formed by laminating
多層膜 Bを、 前記多層膜 Aの HHの層を 1 0セッ ト積層して形成されて いる第 2層の代わりに、 前記第 2層が、 多層膜 Aの場合と同じ方向の 「膜の厚み方向の一方の側から順に」 、 HHの層を 3セッ ト、 層 Lと層 Lを組み合わせた層 (すなわち、 層 Lを 2層重ねて形成した層。 以下、 L Lの層ともレヽう) を 3セッ ト、 HHの層を 3セッ ト、 L Lの層を 2セ ッ ト、 HHの層を 1セッ トをこの順に積層して構成される積層膜で形成 されている多層膜とし、  Instead of the second layer formed by laminating 10 sets of the HH layers of the multilayer film A, the multilayer film B is replaced by a film having the same direction as that of the multilayer film A. In order from one side in the thickness direction ”, three sets of HH layers and a combination of layers L and L (that is, a layer formed by stacking two layers of L. Hereinafter, the layer of LL is also referred to) 3 sets of HH layers, 3 sets of LL layers, 2 sets of LL layers, and 1 set of HH layers as a multilayer film formed by laminating in this order.
多層膜 Cを、 前記多層膜 Aまたは Bの HHの層を 3 8セッ ト積層して形 成されている第 4層の代わりに、 前記第 4層が、 多層膜 Aの場合と同じ 方向の 「膜の厚み方向の一方の側から順に」 、 HHの層を 3セッ ト、 L Lの層を 3セッ ト、 HHの層を 3セッ ト、 L Lの層を 3セッ ト、 HHの 層を 3セッ ト、 L Lの層を 3セッ ト、 HHの層を 3セッ ト、 L Lの層を 3セッ ト、 HHの層を 3セッ ト、 L Lの層を 3セッ ト、 HHの層を 3セ ッ ト、 L Lの層を 3セッ ト、 HHの層を 3セッ ト、 L Lの層を 3セッ ト、 HHの層を 2セッ トをこの順に積層して構成される積層膜で形成されて いる多層膜とし、 Instead of the fourth layer formed by stacking 38 sets of the HH layers of the multilayer film A or B in the multilayer film C, the fourth layer is the same as in the case of the multilayer film A. Direction (in order from one side in the thickness direction of the film), 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers 3 sets, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers Set, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers A multilayer film,
多層膜 Dを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層 膜の厚み方向の一方の側から順に、 層し、 層 Hの順に各 1層ずつ組み合 わせた層 (以下、 LHの層ともいう) を 5セッ ト積層して構成される第 1層、 L Lの層を 7セッ ト積層して構成される第 2層、 層 Hを 1層と L Hの層を 7セッ トとを積層して構成される第 3層、 L Lの層を 5 7セッ ト積層して構成される第 4層、 層 Hを 1層と LHの層を 1 3セッ トとを 積層して構成される第.5層でそれぞれ形成されている  A layer in which the multilayer film D is formed by laminating the five-layered film, that is, the first to fifth layers in this order from one side in the thickness direction of the multilayer film, and combining layers one by one in the order of layer H. The first layer consists of five sets of LH layers, the second layer consists of seven sets of LL layers, one layer H and one layer of LH. 3rd layer composed of 7 sets and 4 layers composed of 5 7 layers of LL, 1 layer H and 13 layers of LH laminated Each layer is formed by the fifth layer
多層膜とし、 With a multilayer film,
多層膜 Eを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多層 膜の厚み方向の一方の側から順に、 HLの層を 2セッ ト積層して構成さ れる第 1層、 HHの層を 1 4セッ ト積層して構成される第 2層、 層 Lを 1層と HLの層を 6セッ トとを積層して構成される第 3層、 HHの層を 2 4セッ ト積層して構成される第 4層、 層 Lを 1層と HLの層を 1 3セ ッ トとを積層して構成される第 5層でそれぞれ形成されている多層膜と し、  A first layer in which the multilayer film E is formed by laminating two sets of HL layers in order of the five-layer laminated film, that is, the first to fifth layers, from one side in the thickness direction of the multilayer film. , A second layer composed of 14 sets of HH layers, a third layer composed of one set of layer L and 6 sets of HL layers, and 24 layers of HH. A fourth layer composed of set laminations, a layer L is a multilayer film composed of one layer and an HL layer composed of a fifth layer composed of 13 layers laminated, and
多層膜 Fを、 前記多層膜 Eの HHの層を 1 4セッ ト積層して形成されて いる第 2層の代わりに、 前記第 2層が、 多層膜 Eの場合と同じ方向の 「膜の厚み方向の一方の側から順に」 、 HHの層を 3セッ ト、 L Lの層 を 3セッ ト、 HHの層を 3セッ ト、 L Lの層を 3セッ ト、 HHの層を 2 セッ ト、 L Lの層を 1セッ ト、 H Hの層を 1セッ トをこの順に積層して 構成される積層膜で形成されている多層膜とし、 Instead of the second layer formed by stacking 14 sets of HH layers of the multilayer film E, the multilayer film F is replaced by a “film” in the same direction as in the case of the multilayer film E. From one side in the thickness direction '', 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers A set, one set of LL layers and one set of HH layers are laminated in this order to form a multilayer film formed of a laminated film,
多層膜 Gを、 前記多層膜 Eまたは Fの H Hの層を 2 4セッ ト積層して形 成されている第 4層の代わりに、 前記第 4層が、 多層膜 Eの場合と同じ 方向の膜の厚み方向の一方の側から順に、 H Hの層を 3セッ ト、 ししの 層を 3セッ ト、 H Hの層を 3セッ ト、 L Lの層を 3セッ ト、 H Hの層を 3セッ ト、 L Lの層を 3セッ ト、 H Hの層を 3セッ ト、 L Lの層を 3セ ッ ト、 H Hの層を 2セッ ト、 L Lの層を 1セッ ト、 H Hの層を 1セッ ト をこの順に積層して構成される積層膜で形成されている多層膜とし、 多層膜 Hを、 前記 5層の積層膜すなわち前記第 1〜第 5層が、 前記多 層膜の厚み方向の一方の側から順に、 L Hの層を 4セッ ト積層して構成 される第 1層、 L Lの層を 9セッ ト積層して構成される第 2層、 層 Hを 1層と L Hの層を 6セッ トとを積層して構成される第 3層、 L Lの層を 3 5セッ ト積層して構成される第 4層、 層 Hを 1層と L Hの層を 1 3セ ッ トとを積層して構成される第 5層でそれぞれ形成されている多層膜と する。 図面の簡単な説明  Instead of the fourth layer formed by laminating 24 sets of HH layers of the multilayer film E or F, the fourth layer has the same direction as that of the multilayer film E. 3 sets of HH layers, 3 sets of shino layers, 3 sets of HH layers, 3 sets of LL layers, 3 sets of HH layers in order from one side in the thickness direction of the film 3 sets of LL layers, 3 sets of HH layers, 3 sets of LL layers, 2 sets of HH layers, 1 set of LL layers, 1 set of HH layers A multilayer film formed by laminating in this order, a multilayer film H, wherein the five-layer laminated film, that is, the first to fifth layers are one in the thickness direction of the multilayer film. The first layer consists of four sets of LH layers, the second layer consists of nine sets of LL layers, one layer H and six layers of LH. The third set consisting of stacking sets Layer, a fourth layer composed of 35 sets of LL layers, and a fifth layer composed of one layer H and 13 layers of LH layers. Multi-layer film. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明による光分散補償を説明する図である。  FIG. 1 is a diagram illustrating optical dispersion compensation according to the present invention.
図 2は、 本発明の多層膜の断面図である。  FIG. 2 is a cross-sectional view of the multilayer film of the present invention.
図 3は、 本発明の多層膜の斜視図である。  FIG. 3 is a perspective view of the multilayer film of the present invention.
図 4は、 本発明の多層膜の群速度遅延時間一波長特性曲線である。  FIG. 4 is a group velocity delay time-wavelength characteristic curve of the multilayer film of the present invention.
図 5 Aは、 本発明の分散補償素子の基本となる分散補償を行うことが出来る素 子 1個の群速度遅延時間一波長特性を表すグラフである。  FIG. 5A is a graph showing a group velocity delay time-wavelength characteristic of one element capable of performing dispersion compensation, which is a basic element of the dispersion compensation element of the present invention.
図 5 Bは、 本発明の、 分散補償を行うことが出来る素子を複数個用いて群速度 遅延時間一波長特性を改善する方法を説明する図で、 分散補償を行うことが出来 る素子を 2個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特 性を表すグラフである。 FIG. 5B is a diagram illustrating a method of improving the group velocity delay time-wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention. The group velocity delay time of the optical dispersion compensating element of the present invention connected in series It is a graph showing sex.
図 5 Cは、 本発明の、 分散捕償を行うことが出来る素子を複数個用いて群速度 遅延時間一波長特性を改善する方法を説明する図で、 分散捕償を行うことが出来 る素子を 3個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特 性を表すグラフである。  FIG. 5C is a diagram for explaining a method of improving the group velocity, the delay time and the wavelength characteristic by using a plurality of elements capable of performing the dispersion compensation according to the present invention, and the element capable of performing the dispersion compensation. 6 is a graph showing the group velocity delay time versus wavelength characteristic of the optical dispersion compensating element of the present invention in which three are connected in series.
図 5 Dは、 本発明の、 分散補償を行うことが出来る素子を複数個用いて群速度 遅延時間一波長特¾^を改善する方法を説明する図で、 分散補償を行うことが出来 る素子を 3個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特 性を表すグラフである。 .  FIG. 5D is a diagram illustrating a method of improving the group velocity delay time one wavelength characteristic using a plurality of elements capable of performing dispersion compensation according to the present invention. 6 is a graph showing the group velocity delay time versus wavelength characteristic of the optical dispersion compensating element of the present invention in which three are connected in series. .
図 6 Aは、 本発明の光分散補償素子の例を説明する図であり、 2個の分散補償 を行うことが出来る素子を直列に接続して光分散補償素子を構成した例を説明す る図である。  FIG. 6A is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and illustrates an example in which two elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element. FIG.
図 6 Bは、 本発明の光分散補償素子の例を説明する図であり、 3個の分散補償 を行うことが出来る素子を直列に接続して光分散補償素子を構成した例を説明す る図である。  FIG. 6B is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and illustrates an example in which three elements capable of performing dispersion compensation are connected in series to form an optical dispersion compensating element. FIG.
図 6 Cは、 本発明の光分散補償素子の例を説明する図であり、 入射面内方向で 膜厚が変化している多層膜上で、 信号光の入射位置 2箇所を、 信号光の航路に沿 つて直列に接続して光分散補償素子を構成した例を説明する図である。  FIG. 6C is a diagram for explaining an example of the optical dispersion compensating element of the present invention. In the multilayer film whose film thickness changes in the incident plane direction, two signal light incident positions are shown. FIG. 4 is a diagram illustrating an example in which an optical dispersion compensating element is configured by being connected in series along a navigation route.
図 6 Dは、 本発明の光分散補償素子の例を説明する図であり、 本発明の光分散 補償素子を 1つのケースに実装した例を説明する図である。  FIG. 6D is a diagram illustrating an example of the optical dispersion compensating element of the present invention, and is a diagram illustrating an example in which the optical dispersion compensating element of the present invention is mounted in one case.
図 7 Aは、 2次と 3次の波長分散の補償方法を説明する図であり、 波長一時間 特性と光強度一時間特性を説明する図である。  FIG. 7A is a diagram for explaining a method of compensating for second and third order chromatic dispersion, and is a diagram for explaining a wavelength-time characteristic and a light intensity-time characteristic.
図 7 Bは、 2次と 3次の波長分散の補償方法を説明する図であり、 伝送路を説 明する図である。  FIG. 7B is a diagram for explaining a method for compensating the second and third order chromatic dispersion, and is a diagram for explaining a transmission path.
図 7 Cは、 2次と 3次の波長分散の補償方法を説明する図であり、 伝送路を説 明する図である。  FIG. 7C is a diagram illustrating a method of compensating for the second and third order chromatic dispersion, and is a diagram illustrating a transmission path.
図 8は、 従来の光ファイバの分散一波長特性を示すグラフである。  FIG. 8 is a graph showing dispersion-wavelength characteristics of a conventional optical fiber.
図 9 Aは、 本発明の他の実施例を示す平面図である。  FIG. 9A is a plan view showing another embodiment of the present invention.
図 9 Bは、 同実施例の正面図である。 発明を実施するための最良の形態 FIG. 9B is a front view of the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態について説明する。 なお、 説明に用 いる各図は本発明を理解できる程度に各構成成分の寸法、 形状、 配置関係などを 概略的に示してある。 そして本発明の説明の都合上、 部分的に拡大率を変えて図 示する場合もあり、 本発明の説明に用いる図は、 必ずしも実施例などの実物や記 述と相似形でない場合もある。 また、 各図において、 同様な構成成分については 同一の番号を付けて示し、 重複する説明を省略することもある。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each drawing used for the description schematically shows dimensions, shapes, arrangement relations, and the like of each component so that the present invention can be understood. For convenience of description of the present invention, the magnification may be partially changed in the drawings, and the drawings used in the description of the present invention may not necessarily be similar to the actual products and descriptions in the embodiments and the like. Also, in each of the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
図 1は光ファイバを伝送路に用いた通信において生じた分散を光分散補償素子 で補償する方法を説明する図で、 符号 1 1 0 1は 2次の分散を補償して残った信 号光の 3次分散を示す群速度遅延時間一波長特性曲線、 1 1 02は分散補償素子 の群速度遅延時間一波長特性曲線で、 1 1 03は、 曲線 1 1 0 1の分散特性を有 する信号光の分散を、 曲線 1 1 0 2の分散特性を有する分散捕償素子で補償した あとの補償対象波長帯域 λ 〜 λ 2の間の群速度遅延時間一波長特性曲線で、 縦軸 は群速度遅延時間、 横軸は波長である。 Fig. 1 is a diagram illustrating a method of compensating dispersion generated in communication using an optical fiber as a transmission line with an optical dispersion compensator. Reference numeral 111 denotes signal light remaining after compensating for secondary dispersion. The group velocity delay time vs. wavelength characteristic curve showing the third order dispersion of the dispersion compensating element, 1102 is the group velocity delay time vs. wavelength characteristic curve of the dispersion compensating element, and 1103 is the signal having the dispersion characteristic of curve 1101. A group velocity delay time-wavelength characteristic curve between the wavelength bands λ to λ 2 to be compensated after the light dispersion is compensated by the dispersion compensation element having the dispersion characteristic of the curve 1102, and the vertical axis is the group velocity The delay time and the horizontal axis are wavelength.
図 2〜図 4は、 本発明による光分散補償素子を説明する図で、 図 2は後述の多 層膜の断面図、 図 3は膜厚を変化させた多層膜の斜視図、 図 4は多層膜の群速度 遅延時間一波長特性曲線である。  2 to 4 are diagrams for explaining the optical dispersion compensating element according to the present invention. FIG. 2 is a cross-sectional view of a multilayer film described later, FIG. 3 is a perspective view of a multilayer film having a changed film thickness, and FIG. 5 is a graph showing a group velocity delay time versus wavelength characteristic curve of a multilayer film.
図 2は本発明の 3次分散捕償素子の例として用いる多層膜の断面をモデル的に 説明する図である。 図 2において、 符号 1 00は本発明の光分散補償素子の例と しての多層膜、 1 0 1は入射光の方向を示す矢印、 102は出射光の方向を示す 矢印、 1 0 3、 1 0 4は反射率が 1 0 0 %未満の反射層 (以下、 反射膜ともい う) 、 1 0 5は反射率が 9 8〜: L 00 %の反射層、 1 08、 1 0 9は光透過層、 1 1 1、 1 1 2はキヤビティである。 また、 符号 1 0 7は基板で、 たとえば、 Β Κ一 7ガラスを使用している。  FIG. 2 is a diagram schematically illustrating a cross section of a multilayer film used as an example of the tertiary dispersion compensation element of the present invention. 2, reference numeral 100 denotes a multilayer film as an example of the optical dispersion compensating element of the present invention, 101 denotes an arrow indicating the direction of incident light, 102 denotes an arrow indicating the direction of output light, 103, 104 is a reflective layer having a reflectivity of less than 100% (hereinafter also referred to as a reflective film), 105 is a reflective layer having a reflectivity of 98 to: L 00%, and 108 and 109 are light The transmission layer, 1 1 1 and 1 1 2 are cavities. Further, reference numeral 107 denotes a substrate, for example, which is made of 117 glass.
図 2の各反射層 1 0 3、 1 04、 1 0 5の反射率 R (1 0 3) 、 R (1 04) 、 R (1 0 5) は、 R (1 0 3) ≤R (1 04) ≤R (1 05) の関係にある。 そ して、 各層の反射率を少なくとも光透過層を挟んで隣り合う反射層間において互 いに異なるように設定することが量産上好ましい。 すなわち、 入射光が入射する 側から多層膜の厚み方向に向かって、 入射光の中心波長 Lに対する各反射層の反 射率が次第に大きくなるように形成する。 そして、 各反射層の前記波長; Iの光に 対する反射率を、 60%≤R (103) ≤77%、 96%≤R (104) ≤ 99. 8%、 98%≤R (105) の範囲にとって、 前記 R (103) 、 R (104) 、 R (105) の関係を満たすように構成することにより、 後述の図 5, 図 6に示 すような群速度遅延時間一波長特性曲線を得ることができる。 そして、 R (10 3) く R (104) く R (105) にすることがより好ましく、 R (105) を 100%に近づけるか 100%にすることがより好ましく、 本発明の光分散補償 素子の性能を一層高めることができる。 The reflectances R (103), R (104), and R (105) of each of the reflective layers 103, 104, and 105 in FIG. 2 are R (103) ≤R (1 04) ≤R (1 05). It is preferable in terms of mass production that the reflectance of each layer is set to be different from each other at least between the reflective layers adjacent to each other with the light transmitting layer interposed therebetween. That is, incident light is incident The reflective layer is formed so that the reflectance of each reflective layer with respect to the central wavelength L of the incident light gradually increases from the side toward the thickness direction of the multilayer film. Then, the reflectance of each reflective layer with respect to the wavelength; I light is defined as 60% ≤R (103) ≤77%, 96% ≤R (104) ≤99.8%, 98% ≤R (105). By setting the range to satisfy the relationship of R (103), R (104), and R (105), the group velocity delay time-wavelength characteristic curve as shown in FIGS. Obtainable. It is more preferable that R (10 3) <R (104) <R (105), and it is more preferable that R (105) be close to or equal to 100%. Performance can be further enhanced.
そして、 本発明の光分散補償素子をより製造し易くするために、 隣り合う各反 射層間の光路長として考えたときの間隔がそれぞれ異なるように各反射層の形成 条件を選ぶことが好ましく、 各反射層の反射率の設計精度をゆるめることができ、 膜厚が波長; Iの 4分の 1の単位膜の組み合わせ (λ/ 4の整数倍の膜厚の膜) で本発明の 3次分散捕償素子に用いられる多層膜を形成することができ、 信頼性 が高く、 量産 I"生が優れた 3次分散補償素子を安価に提供することができる。  Then, in order to make the optical dispersion compensating element of the present invention easier to manufacture, it is preferable to select the conditions for forming each reflective layer so that the intervals when considered as the optical path length between adjacent reflective layers are different from each other, The design accuracy of the reflectance of each reflective layer can be relaxed, and the film thickness is the wavelength; a combination of unit films of 1/4 of I (films with an integral multiple of λ / 4) A multilayer film used for a dispersion compensator can be formed, and a third-order dispersion compensator having high reliability and excellent mass production I "can be provided at low cost.
なお、 前記多層膜の単位膜の膜厚が波長えの 4分の 1であると記載したが、 こ れは、 前記の如く、 量産における膜の形成で許容される誤差の範囲内において え /4とレヽぅ意味であり、 具体的には、 λ /4 ± 1 %において本発明でい う ; I /4の膜厚を意味しており、 この範囲においても本発明は特に大き な効果を発する。 そこで、 本発明ではこの範囲の膜厚を; 1/4の厚みと いうことにした。 特に、 上記単位膜の厚みを; /4 ± 0. 5 % (この場 合の; Iノ 4は誤差無しの; Ζ4の意味) にすることにより、 量産性を損 なわずに、 バラツキが少なく、 信頼性の高い多層膜を形成することがで き、 図 5 A〜D、 図 6 A〜Dで後述するような光分散補償素子を安価に 提供することができる。  Although the thickness of the unit film of the multilayer film is described to be a quarter of the wavelength, this is within the range of an error allowed in the formation of the film in mass production, as described above. 4 means that the present invention is at λ / 4 ± 1%; it means a film thickness of I / 4, and even in this range, the present invention has a particularly great effect. Emit. Therefore, in the present invention, the film thickness in this range is referred to as 1/4 thickness. In particular, by setting the thickness of the above unit film to /4±0.5% (in this case, I-no 4 has no error; meaning Ζ4), there is little variation without impairing mass productivity. Thus, a highly reliable multilayer film can be formed, and an optical dispersion compensating element as described later with reference to FIGS. 5A to 5D and FIGS. 6A to 6D can be provided at low cost.
また、 本発明における多層膜が膜厚が λ / 4の単位膜を積層して形成 すると説明しているが、 これは、 1つの単位膜を形成してから次の単位 膜を形成するという方法を繰り返して多脣膜を形成することもできる力 これに限らず、 一般的にはえ /4の整数倍の膜厚の膜を、 連続的に形成 することが多く、 このような多層膜も当然のことながら本発明の多層膜 に含まれるものである。 そして、 前記反射層と前記透過層を連続的に形 成する膜形成工程を用いて本発明の多層膜のいくつかの例を形成するこ とができた。 Also, the multi-layer film according to the present invention is described as being formed by laminating unit films having a thickness of λ / 4. This is a method of forming one unit film and then forming the next unit film. Force that can form a multi-shear film by repeating this process. In general, a film with a thickness of an integral multiple of fly / 4 is continuously formed. Such a multilayer film is naturally included in the multilayer film of the present invention. Then, some examples of the multilayer film of the present invention could be formed by using a film forming step of continuously forming the reflection layer and the transmission layer.
図 3は、 図 1の多層膜 1 0 0の後述する入射面 2 2 0の面内方向において、 前 記多層膜 1 0 0の膜厚を変化させた例を説明する図である。  FIG. 3 is a diagram illustrating an example in which the thickness of the multilayer film 100 is changed in an in-plane direction of a later-described incident surface 220 of the multilayer film 100 of FIG.
図 3において、 符号 2 0 0は本発明の光分散補償素子の一例としての多層膜、 2 0 1は第 1の反射層、 2 0 2は第 2の反射層、 2 0 3は第 3の反射層、 2 0 5 は基板、 2 0 6は第 1の光透過層、 2 0 7は第 2の光透過層、 2 1 1は第 1のキ ャビティ、 2 1 2は第 2のキヤビティ、 2 2 0は光入射面、 2 3 0は入射光の方 向を示す矢印、 2 4 0は出射光の方向を示す矢印、 2 5 0は第 1の膜厚変化方向 を示す矢印、 2 6 0は第 2の膜厚変化方向を示す矢印、 2 7 0 , 2 7 1は入射光 の入射位置を移動させる方向を示す矢印である。  In FIG. 3, reference numeral 200 denotes a multilayer film as an example of the optical dispersion compensating element of the present invention, 201 denotes a first reflective layer, 202 denotes a second reflective layer, and 203 denotes a third reflective layer. A reflective layer, 205 is a substrate, 206 is a first light transmitting layer, 207 is a second light transmitting layer, 211 is a first cavity, 211 is a second cavity, 220 is the light incident surface, 230 is the arrow indicating the direction of the incident light, 240 is the arrow indicating the direction of the emitted light, 250 is the arrow indicating the direction of the first film thickness change, 26 0 is an arrow indicating a second film thickness change direction, and 270 and 271 are arrows indicating a direction in which an incident position of incident light is moved.
図 3において、 たとえば、 B K—7ガラス (ドイツ国ショット社の商品名) な どから成る基板 2 0 5の上に、 第 3の反射層 2 0 3 , 第 2の光透過層 2 0 7、 第 2の反射層 2 0 2、 第 1の光透過層 2 0 6、 第 1の反射層 2 0 1力 順次形成さ れている。  In FIG. 3, for example, on a substrate 205 made of, for example, BK-7 glass (trade name of Schott, Germany), a third reflection layer 203, a second light transmission layer 207, The second reflection layer 202, the first light transmission layer 206, and the first reflection layer 201 are sequentially formed.
第 1の光透過層 2 0 6の厚みが図 3の矢印 2 5 0で示す方向に変化する (図の 右から左の方向に次第に厚くなつている) ように、 そして、 第 2の光透過層 2 0 7の厚みが矢印 2 6 0で示す方向に変化する (図の手前から向こう側に次第に厚 くなつている) ように、 前記多層膜を形成する。 第 1から第 3の反射層の厚みは、 第 1および第 2のキヤビティの共振波長が一致したときの波長が入射光の中心波 長; Lに一致したときに、 第 1、 第 2、 第 3の各反射層の反射率が、 前記 R ( 1 0 3 ) 、 R ( 1 0 4 ) 、 R ( 1 0 5 ) の条件と同様の条件を満たすような膜厚に形 成する。  As the thickness of the first light transmission layer 206 changes in the direction indicated by the arrow 250 in FIG. 3 (the thickness gradually increases from right to left in the figure), and the second light transmission The multilayer film is formed so that the thickness of the layer 207 changes in the direction indicated by the arrow 260 (the thickness gradually increases from the front of the figure to the other side). The thicknesses of the first to third reflective layers are the first, second, and third when the wavelength when the resonance wavelengths of the first and second cavities match the center wavelength of the incident light; L. The film thickness is formed such that the reflectance of each reflective layer of No. 3 satisfies the same conditions as the conditions of R (103), R (104) and R (105).
図 4は、 本発明の光分散捕償素子の例としての多層膜 (以下、 光分散補償素子 ともいう) 2 0 0の入射面 2 2 0において、 図 3の矢印 2 3 0の方向から入射光 を入射し、 矢印 2 4 0の方向に出射光を得るようにし、 入射光の入射位置を後述 のように図 3の矢印 2 7 0あるいは 2 7 1の方向に移動した時の、 群速度遅延時 間一波長特性曲線の変化する様子を説明するものである。 FIG. 4 shows a multilayer film (hereinafter also referred to as a light dispersion compensation element) 200 as an example of the light dispersion compensation element of the present invention. Light is incident, the emitted light is obtained in the direction of arrow 240, and the group velocity when the incident position of the incident light is moved in the direction of arrow 270 or 271 in Fig. 3 as described later When delayed This is for explaining the manner in which the inter-wavelength characteristic curve changes.
図 4は、 入射位置 2 8 0〜2 8 2に中心波長; Lの入射光を入射させたときの群 速度遅延時間一波長特性曲線を示し、 縦軸は群速度遅延時間、 横軸は波長である。 反射層 2 0 1〜2 0 3およぴ光透過層 2 0 6と 2 0 7の各矢印 2 5 0と 2 6 0 で示す方向に膜厚を変化させる条件を適切に選ぶことによって、 前記入射光の入 射面 2 2 0における入射位置を矢印 2 7 0で示す方向に移動させたとき、 群速度 遅延時間一波長特性曲線の形状をほぼ同様の形に維持しつつ、 群速度遅延時間一 波長特性曲線の帯域中心波長え。 (たとえば、 図 4のほぼ左右対称の形状の群速 度遅延時間一波長特性曲線 2 8 0 1における極値を与える波長) が変化し、 そし て、 その位置から矢印 2 7 1で示す方向に前記入射位置を移動させたとき、 前記 波長; L。はほとんど変わらずに、 群速度遅延時間一波長特性曲線の形状を、 図 4 の曲線 2 8 1 1、 2 8 1 2のように変化させることができる。 図 4の各曲線は、 図 3の矢印 2 5 0と 2 6 0の方向へそれぞれ各当該膜の膜厚を単調に増大するよ うに形成した時のものである。  Fig. 4 shows the group velocity delay time vs. wavelength characteristic curve when the incident light having the center wavelength; L is incident on the incident position 280 to 282, the vertical axis represents the group velocity delay time, and the horizontal axis represents the wavelength. It is. By appropriately selecting the conditions for changing the film thickness in the directions indicated by the arrows 250 and 260 of the reflective layer 201 to 203 and the light transmitting layer 206 and 207, When the incident position of the incident light on the incident surface 220 is moved in the direction indicated by the arrow 270, the group velocity delay time is maintained while maintaining the shape of the group velocity delay time-wavelength characteristic curve substantially the same. (1) The center wavelength of the wavelength characteristic curve. (For example, the wavelength giving the extreme value in the group velocity delay time-wavelength characteristic curve 2801 of the substantially symmetrical shape in FIG. 4) changes, and from that position in the direction indicated by the arrow 271 When the incident position is moved, the wavelength; L. The shape of the group velocity delay time-wavelength characteristic curve can be changed as shown by the curves 2811 and 2812 in FIG. Each curve in FIG. 4 is obtained when the film thickness of each film is monotonically increased in the directions of arrows 250 and 260 in FIG.
曲線 2 8 0 1〜2 8 1 2における帯域中心波長; L。は、 分散補償の目的によつ て、 たとえば図 4のグラフの適切な波長のところに設定するが、 たとえば、 図 4 に図示の曲線の波長の範囲のほぼ中央値にとってもよく、 分散補償の目的に応じ て適宜定めても良い。 また、 曲線 2 8 0 1〜2 8 1 2の間のそれぞれの極値波長 など曲線の各特徴点の波長の対応関係をあらかじめ調べておくことなどはここに 記載しなくても当然のことである。  Band center wavelength at curve 2801-1282. Is set at an appropriate wavelength in the graph of FIG. 4 for the purpose of dispersion compensation, but may be, for example, approximately the center of the wavelength range of the curve shown in FIG. It may be determined appropriately according to the purpose. In addition, it is not necessary to check the correspondence between the wavelengths of the characteristic points of the curve, such as the extreme wavelengths of the curves 2801-128, in advance. is there.
このようにして、 たとえば、 まず、 分散補償すべき入射光の中心波長; Iに該当 する帯域中心波長 λ。を一致させるように、 入射光の入射位置を矢印 2 7 0の方 向に移動して決め、 分散捕償すべき保障の内容、 すなわち、 入射光の分散状況に 適合して、 分散補償に用いる群速度遅延時間一波長特性曲線の形状を、 たとえば 図 4の各曲線などから選択し、 それに応じて、 図 3の矢印 2 7 1で示す方向に前 記入射位置を.たとえば符号 2 8 0〜 2 8 2で示す各点などのように選択すること により、 信号光に求められる分散補償を効果的に行うことができる。  Thus, for example, first, the center wavelength of the incident light to be dispersion-compensated; the band center wavelength λ corresponding to I. The incident position of the incident light is moved in the direction of arrow 270 so as to match, and the content of the guarantee to be compensated for dispersion, that is, the dispersion situation of the incident light is adapted and used for dispersion compensation The shape of the group velocity delay time-wavelength characteristic curve is selected from, for example, the curves in Fig. 4, and the incident position is set in the direction indicated by the arrow 271 in Fig. 3 accordingly. By selecting each point as indicated by 282, the dispersion compensation required for the signal light can be effectively performed.
図 4の群速度遅延時間一波長特性曲線の形状からも明らかなように、 本発明の 光分散補償素子を用いて、 たとえば、 曲線 2 8 0 1を用いて 3次分散補償を行う ことができ、 曲線 2 8 1 1または 2 8 1 2の比較的直線成分に近い部分を用いて、 2次の微少な分散補償を行うことができる。 As is clear from the shape of the group velocity delay time-wavelength characteristic curve in FIG. 4, tertiary dispersion compensation is performed using the optical dispersion compensating element of the present invention, for example, using the curve 2801. The second-order minute dispersion compensation can be performed by using a portion of the curve 2811 or 2812 that is relatively close to a linear component.
以上、 図 2〜図 4を用いて説明したのは本発明に用いる 「分散補償素子を行う ことが出来る素子」 であるが、 この 「分散補償素子を行うことが出来る素子」 を 用いれば、 3次の分散をある程度補償することが出来ることは、 図 4の各曲線の 説明から明白である。  As described above with reference to FIGS. 2 to 4, the “element capable of performing a dispersion compensating element” used in the present invention is described. It is clear from the explanation of each curve in FIG. 4 that the following dispersion can be compensated to some extent.
しかし、 「分散補償素子を行うことが出来る素子」 単独で補償できる分散補償 の波長帯域幅は、 波長が 1 . 5 5 i m近傍の信号光について、 1 . 5 n m前後、 群速度遅延時間は 3 p s (ピコ秒) 位の場合が多く、 また、 複数チャンネルの光 通信に対応するために分散補償の波長帯域幅を広くすると、 分散補償を十分に行 うことが出来る程度の群速度遅延時間を得ることが難しく、 現実の通信に広く使 い勝手よく用いるには、 さらなる改善がなされることが望ましい。 そこで、 本発 明を図 5 A〜D、 図 6 A〜Dを用いてさらに詳しく説明する。  However, the wavelength bandwidth of dispersion compensation that can be compensated by itself as an “element capable of performing a dispersion compensating element” is around 1.5 nm for the signal light whose wavelength is around 1.55 im, and the group velocity delay time is 3 In many cases, this is in the order of ps (picoseconds), and if the wavelength bandwidth of dispersion compensation is widened to support multiple channels of optical communication, the group velocity delay time is short enough to allow sufficient dispersion compensation. It is difficult to obtain, and it is desirable that further improvements be made in order to use it widely and practically in actual communications. Therefore, the present invention will be described in more detail with reference to FIGS. 5A to 5D and FIGS. 6A to 6D.
図 5 A〜Dは、 たとえば前記のごとき分散補償を行うことが出来る素子を複数 個用いて群速度遅延時間一波長特性を改善する方法を説明する図であり、 図 5 A は本発明に用いる分散補償を行うことが出来る素子が 1個の群速度遅延時間一波 長特性、 図 5 Bは群速度遅延時間—波長特性曲線の形がほぼ同じで、 群速度遅延 時間一波長特性曲線のピーク値 (以下、 極値ともいう) を与える波長 (以下、 極 値波長ともいう) が異なる分散補償を行うことが出来る素子を 2個直列に接続し た本発明の光分散補償素子の群速度遅延時間一波長特性を、 図 5 Cは群速度遅延 時間一波長特性曲線がほぼ同じで極値波長が異なる分散補償を行うことが出来る 素子を 3個直列に接続した本発明の光分散補償素子の群速度遅延時間一波長特性 を、 図 5 Dは群速度遅延時間一波長特性曲線の形も極値波長も異なる分散補償を 行うことが出来る素子を 3個直列に接続した本発明の光分散補償方法に用いる光 分散補償素子の群速度遅延時間一波長特性を表すグラフであり、 いずれも縦軸が 群速度遅延時間、 横軸が波長である。  FIGS. 5A to 5D are diagrams illustrating a method of improving the group velocity delay time-wavelength characteristic by using a plurality of elements capable of performing dispersion compensation as described above, for example, and FIG. 5A is used in the present invention. Group velocity delay time vs. wavelength characteristic curve with one element that can perform dispersion compensation. Figure 5B shows the shape of the group velocity delay time vs. wavelength characteristic curve, and the peak of the group velocity delay time vs. wavelength characteristic curve. Group velocity delay of the optical dispersion compensating element of the present invention in which two elements capable of performing dispersion compensation having different wavelengths (hereinafter, also referred to as extreme values) giving values (hereinafter, also referred to as extreme values) are connected in series. Figure 5C shows the group velocity delay-time-wavelength characteristic curve of the optical dispersion compensating element of the present invention in which three elements capable of performing dispersion compensation with almost the same characteristic and different extreme wavelengths are connected in series. Figure 5D shows the group velocity The group velocity delay time vs. wavelength characteristic of the optical dispersion compensating element used in the optical dispersion compensation method of the present invention in which three elements capable of performing dispersion compensation differing in the shape of the delay time versus wavelength characteristic curve and the extreme wavelength are connected in series. In each case, the vertical axis represents the group velocity delay time, and the horizontal axis represents the wavelength.
図 5 A〜Dにおいて、 符号 3 0 1〜3 0 9は本発明に用いる分散捕償を行うこ とが出来る素子 1個の各群速度遅延時間一波長特性曲線、 3 1 0は前記本発明に 用いる群速度遅延時間一波長特性曲線の形がほぼ同じで極値波長が異なる分散補 償を行うことが出来る素子を 2個を直列に接続した場合の群速度遅延時間一波長 特性曲線、 3 1 1は前記本発明に用いる群速度遅延時間一波長特性曲線の形がほ ぼ同じで極値波長が異なる分散補償を行うことが出来る素子を 3個直列に接続し た場合の群速度遅延時間—波長特性曲線、 3 1 2は群速度遅延時間一波長特性曲 線の形も極値波長も異なる分散補償を行うことが出来る素子を 3個直列に接続し た場合の群速度遅延時間—波長特性曲線である。 図 5 Aで符号 aは分散補償対象 波長帯域、 bは群速度遅延時間の極値である。 . 5A to 5D, reference numerals 301 to 309 denote the group velocity delay time-wavelength characteristic curves of one element capable of performing dispersion compensation used in the present invention, and 310 denotes the present invention. Of the group velocity delay time-wavelength characteristic curve used for Group delay time-wavelength characteristic curve when two elements that can compensate for each other are connected in series, and 311 is almost the same shape of the group velocity delay time-wavelength characteristic curve used in the present invention. Group velocity delay time-wavelength characteristic curve when three elements capable of performing dispersion compensation with different extreme wavelengths are connected in series, and 3 1 2 is also an extreme value for the group velocity delay time-wavelength characteristic curve. It is a group velocity delay time-wavelength characteristic curve when three elements capable of performing dispersion compensation with different wavelengths are connected in series. In Fig. 5A, the symbol a is the wavelength band for dispersion compensation, and b is the extreme value of the group velocity delay time. .
図 5 Bと図 5 Cにおいて、 群速度遅延時間一波長特性曲線 3 1 0の群速度遅延 時間の極値は、 分散補償を行うことが出来る素子 1個の場合の 1 . 6倍、 分散補 償対象波長帯域は約 1 . 8倍になっており、 群速度遅延時間一波長特性曲線 3 1 1の群速度遅延時間の極値は 1個の場合の約 2 . 3倍、 分散補償対象波長帯域は 分散捕償を行うことが出来る素子 1個の場合の約 2 . 5倍になっている。 図 5 D においては、 群速度遅延時間一波長特性曲線 3 1 2の曲線の群速度遅延時間の極 値が分散補償を行うことが出来る素子 1個の場合の約 3倍、 分散補償対象波長帯 域は分散補償を行うことが出来る素子 1個の場合の約 2 . 3倍になっている。 図 2〜図 4において説明したような多層膜を用いた分散補償を行うことが出来 る素子の群速度遅延時間一波長特性曲線の群速度遅延時間の極値と分散補償対象 波長帯域は、 前記多層膜の各反射層と各光透過層の構成条件によって変化し、 た とえば、 図 5 Dの曲線 3 0 7のような分散補償対象波長帯域が比較的広いが群速 度遅延時間の極値があまり大きくない群速度遅延時間一波長特性曲線や、 曲線 3 0 8のように分散補償対象波長帯域が狭いが群速度遅延時間の極値は大きい群速 度遅延時間一波長特性曲線のように、 種々の特性を有する分散捕償を行うことが 出来る素子を実現することが出来る。 - ( このような分散補償を行うことが出来る素子に用いる多層膜としては、 たとえ ば、 前記 「発明の開示」 の項に記載した多層膜 A〜多層膜 Hがあげられる。 この 多層膜 A〜Hを用いて、 分散補償を行うことが出来る素子を作成したところ、 波 長が約 1 . 5 5 μ mの信号光に対して、 群速度遅延時間の極値が 3 p s (ピコ 秒) で分散補償対象波長帯域が 1 . 3〜2 . 0 n mの群速度遅延時間一波長特性 曲線を実現することが出来た。 そして、 この分散補償を行うことが出来る素子を複数個直列に接続して、 光フ ァィバ伝送による分散を補償することができる群速度遅延一波長特性を有する分 散補償対象波長帯域が 1 5 n mの光分散補償素子を実現することが出来た。 この + 光分散補償素子を波長が 1 . 5 5 μ ηι近傍で、 各チャンネルの帯域波長幅 0 . 5 n m、 3 0チャンネルの通信システムの 3次分散補償を行う素子として用い、 1In FIG. 5B and FIG. 5C, the extremum of the group velocity delay time of the group velocity delay time vs. wavelength characteristic curve 310 is 1.6 times that of a single element capable of performing dispersion compensation, The wavelength band to be compensated is about 1.8 times, and the extremum of group velocity delay time vs. wavelength characteristic curve 3 1 1 is about 2.3 times that of a single group velocity delay time. The bandwidth is about 2.5 times that of a single device that can perform dispersion compensation. In Fig. 5D, the extreme value of the group velocity delay time in the curve of the group velocity delay time-wavelength characteristic 312 is about three times the wavelength band for dispersion compensation, which is about three times that of a single element that can perform dispersion compensation. The area is about 2.3 times that of a single element capable of performing dispersion compensation. The extreme value of the group velocity delay time of the group velocity delay time-wavelength characteristic curve of the element capable of performing dispersion compensation using a multilayer film as described in FIGS. It varies depending on the configuration conditions of each reflection layer and each light transmission layer of the multilayer film. For example, the wavelength band for dispersion compensation is relatively wide as shown by the curve 307 in FIG. Group velocity delay-wavelength characteristic curve where the value is not too large, or the group velocity delay time-wavelength characteristic curve where the wavelength band for dispersion compensation is narrow but the extreme value of the group velocity delay time is large as shown by curve 308 In addition, it is possible to realize an element capable of performing dispersion compensation having various characteristics. - ( Multilayer films used in an element capable of performing such dispersion compensation include, for example, the multilayer films A to H described in the section of “Disclosure of the Invention”. When an element capable of performing dispersion compensation was created using H, the extreme value of the group velocity delay time was 3 ps (picoseconds) for signal light with a wavelength of about 1.55 μm. A group velocity delay time-wavelength characteristic curve with a dispersion compensation wavelength band of 1.3 to 2.0 nm was realized. A plurality of devices capable of performing this dispersion compensation are connected in series, and the wavelength band for dispersion compensation having a group velocity delay-one wavelength characteristic capable of compensating for dispersion due to optical fiber transmission is 15 nm. Can be realized. This + optical dispersion compensating element is used as a third-order dispersion compensating element for a 30-channel communication system in which the wavelength is around 1.55 μηι and the bandwidth of each channel is 0.5 nm and the bandwidth is 0.5 nm.
0 0 G b p s相当で 6 0 k m送信の光通信を行ったところ、 3次分散が全く害に ならずに通信を行うことが出来た。 When optical communication of 60 km transmission was performed at the equivalent of 0 Gbps, the communication could be performed without any harm to the third-order dispersion.
また、 図 4における群速度遅延時間一波長特性曲線や、 図 5 Dにおける群速度 遅延時間一波長特性曲線など、 直列に接続して用いる分散補償を行うことが出来 る素子の群速度遅延時間一波長特性を適宜工夫して選択することにより、 3次の 分散のみならず 2次の分散をも補償することが出来た。  In addition, the group velocity delay time vs. wavelength characteristic curve in FIG. 4 and the group velocity delay time vs. wavelength characteristic curve in FIG. By properly selecting the wavelength characteristics, not only the third-order dispersion but also the second-order dispersion could be compensated.
本発明の分散捕償を行うことが出来る素子を少なくとも 2個直列に接続した光 分散補償素子の例においては、 3次以上の分散を補償するのに必要な群速度遅延 時間一波長特性を有する光分散補償素子を実現するために分散補償対象波長域に おいて極値を有する群速度遅延時間—波長特性の分散補償を行うことが出来る素 子を少なくとも 1つ用いることが望ましい。  The example of the optical dispersion compensating element in which at least two elements capable of performing dispersion compensation of the present invention are connected in series has a group velocity delay time-wavelength characteristic necessary for compensating third-order or higher dispersion. In order to realize an optical dispersion compensating element, it is desirable to use at least one element capable of performing dispersion compensation of group velocity delay time-wavelength characteristics having an extreme value in a wavelength region to be compensated for dispersion.
また、 通信伝送路の分散補償をより効果的に行うには、 光分散補償素子として の群速度遅延時間一波長特性曲線をよりよいものにすることが望ましい。 そのた めの 1つの方法として、 分散補償を行うことが出来る素子の群速度遅延時間一波 長特性を調整できる手段を有する方法がある。  In order to more effectively perform dispersion compensation of a communication transmission line, it is desirable to improve the group velocity delay time-wavelength characteristic curve as an optical dispersion compensating element. As one method for this, there is a method having means for adjusting the group velocity delay time-wavelength characteristic of an element capable of performing dispersion compensation.
その方法として、 図 2と図 3を用いて説明したような、 多層膜の光透過層と反 射層の膜厚を入射面内方向において変化させ、 分散補償を行うことが出来る素子 における信号光の相対的な入射位置を変えて、 分散補償を行うことが出来る素子 の群速度遅延時間一波長特性を変えることがあげられる。 この入射光の入射位 置を変更する手段としては、 入射光の位置に対して、 光分散補償素子 2 0 0あるいは入射光の入射位置そのものの少なく とも一方を移動させる ことによって実現した。 前記光分散補償素子または入射光を移動させる 手段と しては、 光分散補償素子の使用される事情、 コス トあるいは特性 などの条件など、 事情によって種々選択することができる。 たとえば、 コス ト上あるいは装置の事情から、 ネジなどの手動的手段により行う方 法を用いることができ、 また、 正確に調整するため、 あるいは手動で調 整することができない時にも調整することができるようにするためには、 たとえば電磁的なステツプモータや連続駆動モータを用いることが効果 的であり、 また、 P Z T (チタン酸ジルコン酸鉛) などを用いた圧電モ 一ターを使用することも効果的である。 また、 これらの方法と組み合わ せることもできるプリズムゃニ芯コリメータなどを用いたり、 光導波路 を利用するなどの光学的手段によって入射位置を選択することにより、 容易に、 正確に入射位置を選択することができる。 As a method, as described with reference to FIGS. 2 and 3, the signal light in an element capable of performing dispersion compensation by changing the thickness of the light transmitting layer and the reflecting layer of the multilayer film in the direction of the incident plane. By changing the relative incident position of the element, the group velocity delay time-wavelength characteristic of the element capable of performing dispersion compensation can be raised. The means for changing the incident position of the incident light is realized by moving at least one of the optical dispersion compensating element 200 or the incident position itself of the incident light with respect to the position of the incident light. As the light dispersion compensating element or means for moving the incident light, various choices can be made depending on the circumstances, such as the circumstances in which the light dispersion compensating element is used, the cost, and the characteristics. For example, Depending on the cost or the circumstances of the equipment, it is possible to use a method that uses manual means such as screws, and to make adjustments for accurate adjustment or even when manual adjustment is not possible. For example, it is effective to use an electromagnetic step motor or continuous drive motor, and it is also effective to use a piezoelectric motor using PZT (lead zirconate titanate). It is. In addition, the incidence position can be easily and accurately selected by using a prism and a two-core collimator that can be combined with these methods, or by selecting the incidence position by an optical means such as using an optical waveguide. be able to.
前記本発明の光分散補償素子に用いる分散補償を行うことが出来る素 子の多層膜の各層は、 厚みが 4分の 1波長の S i〇2のイオンアシスト蒸着で 作成した膜 (以下、 イオンアシス ト膜ともいう) で形成された層 Lと、 厚みが 4 分の 1波長の T i O 2のイオンアシスト膜で形成された層 Hとから構成されてい る。 前記 S i 〇2のイオンアシスト膜 (層し) 1層と T i O 2のイオンアシスト膜 (層 H) 1層の組みあわせ層で L Hの層 1セットと称し、 たとえば、 「L Hの層 5セット積層して」 とは、 「層 L ·層 H ·層 L♦層 H ·層 L '層 H ·層 L ·層 H '層 '層 Hの順に各層をそれぞれ 1層ずつ重ねて形成して」 ということを意味 する。 Wherein each layer of the multilayer film of the element capable of performing dispersion compensation used for optical dispersion compensation device of the present invention, the thickness created by the wave of S I_〇 2 of ion-assisted deposition of 4 minutes film (hereinafter, Ion'ashisu Layer L), and a layer H formed of a TiO 2 ion-assisted film having a quarter wavelength thickness. Wherein S i 〇 2 ions (the layers) assist film called layer 1 set of LH in one layer and T i O 2 of the ion assist film (layer H) 1-layer combination layer of, for example, a layer of "LH 5 "Laminating a set" means "layer L, layer H, layer L, layer H, layer L, layer H, layer L, layer H, layer H, layer H, layer H, layer one by one. It means that.
同様に、前記 L Lの層は、 厚みが 4分の 1波長の S i〇 2のイオンアシスト膜で 構成されている層 Lを 2層重ねて形成した層を L Lの層 1セットと称す。 したが つて、 たとえば、 「L Lの層を 3セット積層して」 とは、 「層 Lを 6層重ねて形 成して」 を意味する。 Similarly, the layer of the LL is called the thickness was formed overlapping two layers L which is composed of the ion-assisted film S I_〇 2 quarter wavelengths layer substantially set of LL. Therefore, for example, “three layers of LL are stacked” means “formed by stacking six layers L”.
なお、 層 Hを形成する膜の組成として、 誘電体の例を示したが、 本発明はこれ に限定されるものではなく、 T i 0 2と同じ誘電体材料としては T i o 2の他に、 T a 25、 N b 25などを用いることができ、 さらに、 誘電体材料の他に、 S i や G eを用いて層 Hを形成することもできる。 S iや G eを用いて層 Hを形成し た場合、 光学的性質より層 Hを薄く形成することができるという利点を有する。 また、 層 Lの組成として S i 0 2の例を示したが、 S i〇2は安価にしかも信頼性 高く層 Lを形成できる利点がある力 S、 本発明はこれに限定されるものではなく、 層 Hの屈折率よりも屈折率が低くなる材質によって層 Lを形成すれば、 本発明の 上記効果を発揮する光分散補償素子を実現することができる。 As the composition of the film forming the layer H, although an example of a dielectric, the present invention is not limited thereto, as the same dielectric material as T i 0 2 Other T io 2 , T a 25, N b 25 or the like can be used, further, in addition to the dielectric material, it is also possible to form a layer H with S i and G e. When the layer H is formed using Si or Ge, there is an advantage that the layer H can be formed thinner than the optical properties. In addition, although the example of S i 0 2 was shown as the composition of the layer L, S i 〇 2 is a force S that has the advantage of being able to form the layer L at low cost and high reliability. The present invention is not limited to this. Not If the layer L is formed of a material whose refractive index is lower than the refractive index of the layer H, a light dispersion compensating element exhibiting the above effects of the present invention can be realized.
また、 本実施例では、 前記多層膜を構成する層 Lと層 Hをイオンアシスト蒸着 で形成したが、 本発明はこれに限定されるものではなく、 通常の蒸着、 スパッタ リング、 イオンプレーティングその他の方法で形成した多層膜を用いても本発明 は大きな効果を発揮するものである。  Further, in the present embodiment, the layer L and the layer H constituting the multilayer film are formed by ion-assisted vapor deposition, but the present invention is not limited to this, and ordinary vapor deposition, sputtering, ion plating, and the like are performed. The present invention exerts a great effect even when a multilayer film formed by the above method is used.
本発明の光分散補償素子は、 図 3に示す光分散補償素子としての多層膜 200 のように、 ウェハー状のものを適当に保持して用いることもでき、 また、 入射面 220内での必要な部分を含むように、 厚み方向に、 すなわち、 入射面 220か ら基板 205方向に、 たとえば垂直に、 小さく切断したチップ状にして、 たとえ ばファイバコリメータとともに筒状のケースに実装して光分散補償素子として用 いることもできるなど、 その形態は多様な可能性を有するものであり、 そのいず れの場合においても、 本発明で説明する主たる効果をもたらすものである。  The light dispersion compensating element of the present invention can be used by appropriately holding a wafer-like element such as a multilayer film 200 as a light dispersion compensating element shown in FIG. In the thickness direction, that is, in the direction of thickness, that is, in the direction from the incident surface 220 to the substrate 205, for example, perpendicularly, the chip is cut into small pieces. The form has various possibilities, for example, it can be used as a compensating element. In any case, the main effects described in the present invention can be obtained.
図 6 A〜Dは本発明の光分散補償素子の例を説明する図で、 図 6 Aは、 前記分 散補償を行うことが出来る素子 2個を直列に接続して光分散補償素子を構成した 例を、 図 6 Bは前記分散補償を行うことが出来る素子 3個を直列に接続して光分 散補償素子を構成した例を、 図 6 Cは入射面内方向で膜厚が変化している多層膜 上で、 信号光の入射位置 2箇所を、 信号光の航路に沿って直列に接続して光分散 補償素子を構成した例を、 図 6 Dは図 6 Aと同じ構成の光分散補償素子を 1つの ケースに実装した例を示す図である。  6A to 6D are diagrams for explaining an example of the optical dispersion compensating element of the present invention, and FIG. 6A is a diagram illustrating a configuration of an optical dispersion compensating element by connecting two elements capable of performing the dispersion compensation in series. FIG. 6B shows an example in which three elements capable of performing the dispersion compensation are connected in series to form a light dispersion compensation element, and FIG. 6C shows a case where the film thickness changes in the direction of the incident plane. Figure 6D shows an example in which two points of incidence of signal light are connected in series along the signal light path on a multilayer film to form an optical dispersion compensator. FIG. 9 is a diagram showing an example in which a dispersion compensating element is mounted in one case.
図 6A〜Dにおいて、 符号 410、 420、 430、 440は本発明の光分散 補償素子、 41 1、 412、 421〜 423、 442、 443は分散補償を行う ことが出来る素子、 416は分散補償を行うことが出来る素子に用いている多層 膜、 41 5、 41 5 1、 41 52、 426、 436、 '446、 は光ファイバ、 4 1 3、 413 1、 414、 4141、 424、 425、 434、 435、 444、 445は信号光の進行方向を示す矢印、 41 7はレンズ、 418はレンズ 41 7 と光ファイバ 41 51および 4152とで構成している 2芯コリメータ、 441 はケース、 431は入射面内方向で膜厚が変化している多層膜を基板上に形成し て分散補償を行うことができるように構成したウェハー状の分散補償を行うこと が出来る素子で、 4 3 2、 4 3 3はそれぞれ 「分散捕償を行うことが出来る素子 の部分」 である。 6A to 6D, reference numerals 410, 420, 430, and 440 denote optical dispersion compensating elements of the present invention, 411, 412, 421 to 423, 442, and 443 denote elements capable of performing dispersion compensation, and 416 denotes a dispersion compensation element. Multilayer films used in devices that can be used, 415, 4151, 4152, 426, 436, '446, are optical fibers, 413, 4131, 414, 4141, 424, 425, 434, Reference numerals 435, 444, and 445 denote arrows indicating the traveling direction of the signal light, reference numeral 417 denotes a lens, reference numeral 418 denotes a two-core collimator comprising a lens 417 and optical fibers 4151 and 4152, reference numeral 441 denotes a case, and reference numeral 431 denotes an incident surface. Performing wafer-shaped dispersion compensation, which is configured so that dispersion compensation can be performed by forming a multilayer film whose thickness changes inward on the substrate 432 and 433 are “elements that can perform dispersion compensation”, respectively.
図 6 Aにおいて、 .矢印 4 1 3の方向に入射した信号光は、 分散補償を行うこと が出来る素子 4 1 1に入射し、 分散補償を受けて分散補償を行うことが出来る素 子 4 1 1から出射し、 ファイバ 4 1 5を伝送されて分散補償を行うことが出来る 素子 4 1 2に入射し、 再び分散補償を受けて分散補償を行うことが出来る素子 4 1 2力、ら出射し、 矢印 4 1 4の方向に光ファイバ 4 1 5を伝送される。  In FIG. 6A, the signal light that has entered in the direction of arrow 4 13 enters the element 4 11 that can perform dispersion compensation, and the element 4 1 that can receive dispersion compensation and perform dispersion compensation. Emitted from 1 and transmitted through fiber 4 15 to be able to perform dispersion compensation Entering element 4 12, and then subjected to dispersion compensation again to be able to perform dispersion compensation 4 2 The optical fiber 4 15 is transmitted in the direction of the arrow 4 14.
符号 4 1 1 2は、 分散補償を行うことが出来る素子 4 1 1の曲線 4 1 1 1で囲 んだ部分の内部構造を説明する断面図である。 光ファイバ 4 1 5 1および 4 1 5 2とレンズ 4 1 7は 2芯コリメータ 4 1 8を構成し、 光ファイバ 4 1 5 1を矢印 4 1 3 1方向に進行した信号光はレンズ 4 1 7を通り多層膜 4 1 6に入射する。 多層膜 4 1 6は図 5 Aに示した群速度遅延時間一波長特性を有しており、 光フ アイバ 4 1 5 1とレンズ 4 1 7を通って多層膜 4 1 6に入射した信号光は、 3次 の分散補償を施され、 再ぴレンズ 4 1 7を通り、 光ファイバ 4 1 5 2に入射して 矢印 4 1 4 1の方向に進み、 分散補償を行うことが出来る素子 4 1 2に入射する。 分散補償を行うことが出来る素子 4 1 2でさらに分散補償を施された信号光は分 散補償を行うことが出来る素子 4 1 2から出射して、 光ファイバ 4 1 5中を矢印 4 1 4で示した方向へ出射する。  Reference numeral 4112 is a cross-sectional view for explaining the internal structure of a portion of the element 411 capable of performing dispersion compensation, which is surrounded by the curve 4111. The optical fibers 4 15 1 and 4 15 2 and the lens 4 17 constitute a two-core collimator 4 18, and the signal light that has traveled along the optical fiber 4 15 1 in the direction of the arrow 4 1 3 1 is a lens 4 17 Pass through and enter the multilayer film 4 16. The multilayer film 4 16 has the group velocity delay time-wavelength characteristic shown in FIG. 5A, and the signal light that has entered the multilayer film 4 16 through the optical fiber 4 15 1 and the lens 4 17. Is subjected to tertiary dispersion compensation, passes through the reproduction lens 4 17, enters the optical fiber 4 15 2, travels in the direction of the arrow 4 1 4 1, and is capable of performing dispersion compensation 4 1 It is incident on 2. The signal light that has been further subjected to dispersion compensation by the element 4 12 capable of performing dispersion compensation exits from the element 4 12 capable of performing dispersion compensation, and passes through the optical fiber 4 15 with an arrow 4 1 4 The light is emitted in the direction indicated by.
このような図 6 Aに示した本発明の光分散補償素子 4 1 0は、 図 5 Bに示した 群速度遅延時間一波長特性を有し、 光分散補償素子 4 1 0に入射した信号光は、 図 5 Bに示した群速度遅延時間一波長特性に応じた分散補償を施されて光分散補 償素子 4 1 0力 ら出射される。  The optical dispersion compensating element 410 of the present invention shown in FIG. 6A has the group velocity delay time-wavelength characteristic shown in FIG. 5B, and the signal light incident on the optical dispersion compensating element 410 Is subjected to dispersion compensation according to the group velocity delay time-wavelength characteristic shown in FIG. 5B, and is emitted from the optical dispersion compensating element 410.
図 6 Bの光分散補償素子 4 2 0においても同様に、 矢印 4 2 4の方向から光分 散補償素子 4 2 0に入射した信号光は、 分散補償を行うことが出来る素子 4 2 1 〜4 2 3に順次入射して出射する過程において、 たとえば、 図 5 Cのような群速 度遅延時間一波長特性曲線に応じた分散補償を施されて光分散補償素子 4 2 0か ら出射し、 光ファイバ 4 2 6を矢印 4 2 5で示した方向へと進行する。  Similarly, in the optical dispersion compensating element 420 shown in FIG. 6B, the signal light that has entered the optical dispersion compensating element 420 from the direction of the arrow 424 is also capable of performing dispersion compensation. In the process of sequentially entering and exiting 4 23, for example, dispersion compensation is performed according to the group velocity delay time vs. wavelength characteristic curve as shown in FIG. The optical fiber 4 26 travels in the direction indicated by the arrow 4 25.
図 6 Cは図 6 Aの分散補償を行うことが出来る素子 4 1 1と 4 1 2.の代わりに、 同一のウェハー上に形成された 「分散補償を行うことが出来る素子 4 3 1の部分 4 3 2と 4 3 3」 を光ファイバ 4 3 6を用いて信号光の経路に沿って直列に接続 した例としての光分散補償素子 4 3 0で、 分散補償の施され方は図 6 Aに説明し たのと同様である。 ただし、 分散補償の施され方は、 分散補償を行うことが出来 る素子の群速度遅延時間一波長特性によって異なるものであることは上記説明よ り明らかである。 Fig. 6C shows the part of the element 431 that can perform dispersion compensation formed on the same wafer instead of the elements 411 and 4122 that can perform dispersion compensation in Fig. 6A. The optical dispersion compensator 430 is an example in which 4 3 2 and 4 3 3 are connected in series along the signal light path using an optical fiber 4 36. This is the same as described in the above. However, it is clear from the above description that the method of dispersion compensation is different depending on the group velocity delay time-wavelength characteristic of the element capable of performing dispersion compensation.
図 9 Aおよび図 9 Bは、 図 6 Cの変形例を示している。 この例では、 分散補償 を行うことが出来る素子 4 3 1の基板としてたとえば半導体基板 7 0 0などを用 レ、、 分散補償を行うことが出来る素子 4 3 1の部分 4 3 2と 4 3 3の配置されて いる面上に、 縦おょぴ横方向にマトリクス状に配列されている可動部分 7 0 2 , 7 0 3を形成し、 その可動部分を基板としてその上に図 2〜4を用いて説明した ような多層膜を用いた素子 (多層膜素子ともいう) である分散補償を行うことが できる素子を形成したもの (以下、 マトリクス状素子板ともいう) を偶数枚作製 する。  9A and 9B show a modification of FIG. 6C. In this example, for example, a semiconductor substrate 700 is used as a substrate of the element 431 capable of performing dispersion compensation, and the portions 432 and 433 of the element 431 capable of performing dispersion compensation. The movable parts 720 and 703 arranged in a matrix in the vertical and horizontal directions are formed on the surface on which the movable parts are arranged. An even number of elements (hereinafter, also referred to as a matrix element plate) in which elements capable of performing dispersion compensation, which are elements using a multilayer film as described above (also referred to as a multilayer element) are formed.
このマトリクス状素子板上の前記可動部分には、 たとえば、 電極が配置されて おり、 各可動都分は前記電極に印可する電圧の状態に応じて、 マトリタス状素子 板面における傾きが変化するようになっており、 したがってその上に構成されて いる分散補償を行うことが出来る素子の入射面の垂線方向が変化するようになつ ている。  For example, an electrode is arranged on the movable portion on the matrix-like element plate. In each movable part, the inclination on the surface of the matrix-like element plate changes according to the state of the voltage applied to the electrode. Therefore, the perpendicular direction of the incident surface of the element on which the dispersion compensation can be performed is changed.
この偶数枚のマトリクス状素子板 7 1 1, 7 1 2を適宜 2枚ずつ、 その上に構 成されている分散補償を行うことが出来る素子の入射面を対向させ、 入射光 7 2 0が前記対向しているマトリタス状素子板 7 1 1 , 7 1 2に交互に入射するよう に配置する。 そして、 前記対向しているマトリクス状素子板上の各分散補償を行 うことが出来る素子の入射面の傾きを必要に応じて制御し、 信号光が通る光路と しての分散捕償を行うことが出来る素子を選択することにより、 直列に接続する 分散補償を行うことが出来る素子の特性と数を選択し、 図 5 B〜Dに例示したよ うな群速度遅延時間一波長特性曲線を適切に実現することができる。 ここで、 各 分散補償を行うことが出来る素子間の光学的接続すなわち光路の形成は、 全体と しての分散補償素子としての入出力端子の部分や前記 2枚ずつ対向配置して構成 した各組間の接続には図 6 A〜Cの説明の如きファイバコリメータを使用するこ とができるが、 対向配置されたマトリクス状素子板上の各分散捕償を行うことが 出来る素子の入射面間の光路は各入射面間の反射で行うように構成することが出 来る。 The even number of matrix element plates 7 1 1 and 7 1 2 are appropriately placed two by two with the incident surfaces of the elements capable of performing dispersion compensation formed thereon facing each other. They are arranged so as to be alternately incident on the opposing matritas-like element plates 71 1, 71 2. Then, the inclination of the incident surface of the element capable of performing each dispersion compensation on the opposing matrix-shaped element plate is controlled as necessary, and dispersion compensation is performed as an optical path through which the signal light passes. By selecting elements that can be connected in series by selecting elements that can perform dispersion compensation, the characteristics and number of elements that can perform dispersion compensation are selected, and the group velocity delay time vs. wavelength characteristic curve as illustrated in Figs. Can be realized. Here, the optical connection between the elements capable of performing each dispersion compensation, that is, the formation of an optical path, is performed by disposing the input / output terminals as the entire dispersion compensating element or by opposing each of the two elements. Use fiber collimators as shown in Figs. However, the optical path between the incident surfaces of the elements capable of performing the dispersion compensation on the matrix-like element plates arranged opposite to each other can be configured to be performed by reflection between the respective incident surfaces.
たとえば、 前記各マトリクス状素子板に 1 0 X 1 0個すなわち 1 0 0個の分散 補償を行うことが出来る素子を形成し、 この各マトリクス状素子板を 2枚前記の ように対向させたものを例えば 3組形成し、 各分散補償を行うことが出来る素子 の間の反射による光路形成とファイバコリメータによる光路^成とを含めて、 数 十〜数百個の分散補償を行うことが出来る素子を信号光の光路において直列に接 続して光路を形成し、 分散補償素子を構成することができる。 そして、 入射光の 事情に応じて、 前記分散補償を行うことが出来る素子の組み合わせを電気的手段 などを用いて適宜選択して、 同一分散補偾素子に複数の光路を形成することがで さる。  For example, 100 × 10, that is, 100 elements capable of performing dispersion compensation are formed on each of the matrix element plates, and two such matrix element plates are opposed to each other as described above. For example, three sets of elements can be formed, and dozens to hundreds of elements can be compensated, including optical path formation by reflection between elements that can perform dispersion compensation and optical path formation by a fiber collimator. Are connected in series in the optical path of the signal light to form an optical path, thereby forming a dispersion compensating element. Then, a plurality of optical paths can be formed in the same dispersion compensating element by appropriately selecting a combination of elements capable of performing the dispersion compensation according to the circumstances of the incident light using electric means or the like. .
このような分散補償を行うことが出来る素子を形成したマトリクス状素子板は、 半導体製造技術の応用と多層膜形成技術の応用によって、 安定して量産すること ができることが本発明の発明者らの実験によって確かめられた。  The inventors of the present invention have shown that a matrix-like element plate on which elements capable of performing such dispersion compensation can be stably mass-produced by applying a semiconductor manufacturing technique and a multilayer film forming technique. Confirmed by experiment.
このようにすることによって、 分散補償素子全体としての挿入損失をきわめて 小さくすることができるとともに、 多チャンネルの分散補償を同一の分散補償素 子で行うことが出来、 分散補償の切り替え速度の速い、 分散補償特性のきわめて 優れた、 小型の分散補償素子を、 安価に提供することができる。  By doing so, the insertion loss of the dispersion compensating element as a whole can be extremely reduced, and multi-channel dispersion compensation can be performed by the same dispersion compensating element. A small-sized dispersion compensator having excellent dispersion compensation characteristics can be provided at low cost.
図 6 Dは図 6 Aと同様の分散補償を行うことが出来る素子 4 4 2と 4 4 3を同 一のケース 4 4 1に組み込んで光分散補償素子 4 4 0を構成したものであり、 図 示していないが、 分散捕償を行うことが出来る素子 4 4 3は、 図 3を用いて説明 した多層膜の入射面内方向において膜厚が変化している多層膜を使用しており、 入射位置を調整する手段を有している。 その入射位置調整手段は図示していない 力 ケース 4 4 1に設けられた制御回路を利用して入射位置を調整することが出 来るようになっている。  FIG.6D shows an optical dispersion compensating element 4440 in which elements 442 and 443 capable of performing the same dispersion compensation as in FIG.6A are incorporated in the same case 441. Although not shown, the element 4 43 that can perform dispersion compensation uses a multilayer film in which the film thickness changes in the direction of the plane of incidence of the multilayer film described with reference to FIG. It has means for adjusting the incident position. The incident position adjusting means can adjust the incident position by using a control circuit provided in a force case 441 (not shown).
このような構成の本発明による光分散補償素子を用いて、 4 0 G b p sの通信 ビットレートで 6 0 k mの伝送を行う通信システムにおいて分散を補償した結果、 きわめて良好な分散補償を行うことが出来た上に、 信号光が光分散補償素子を透 過することによるによる損失は 1 dB以下と低い値であった。 この損失は、 従来 のファイバグレーティングを用いた 2次の分散補償素子 1個による損失が 3〜6 dBと大きいのに比較して、 きわめて優れたものであるということが出来る。 以上、 本発明の光分散捕償素子を中心に本発明の光分散補償素子とその素子を 用いた光分散補償方法を説明したが、 本発明の光分散補償方法のもっとも注目す べき特徴は、 分散補償をすることができる素子を複数直列に接続して、 広い波長 帯域、 たとえば、 1 260〜: L 360 nm、 1360〜 1460 η m、 1460 〜1530 nm、 1 530〜1565 nm、 1565〜 1625 n m、 1625 〜: 1675 nmのいずれか 1つの波長範囲において少なくとも 1つの極値を有す る群速度遅延時間一波長特性曲線を有するように分散補償素子を構成して、 通信 事情に合わせた最適の補償を行えるようにすることも可能で、 また、 分散補償素 子全体として、 たとえば切替スィッチで選択できる機能を併用するなどして、 1 260〜 1700 nmの波長域における複数の波長において極値を有する群速度 遅延時間一波長特性曲線を有するように分散補償素子を構成することも可能とな る。 本発明はこのような大きな自由度を活かして、 実際の通信で要求される 2次 や 3次の分散補償をすることを可能にしたところにあり、 従来の光通信システム の多くを活用して高速 ·長距離通信を可能にするものである。 産業上の利用可能性 Using the optical dispersion compensating element according to the present invention having such a configuration, dispersion is compensated in a communication system transmitting 60 km at a communication bit rate of 40 Gbps, and as a result, extremely excellent dispersion compensation can be performed. Signal light is transmitted through the optical dispersion compensator. The loss due to passing was as low as 1 dB or less. It can be said that this loss is much better than the loss due to a single second-order dispersion compensator using a conventional fiber grating, which is as large as 3 to 6 dB. As described above, the light dispersion compensating element of the present invention and the light dispersion compensating method using the element have been described centering on the light dispersion compensating element of the present invention.The most notable features of the light dispersion compensating method of the present invention are as follows. Multiple devices capable of dispersion compensation are connected in series to provide a wide wavelength band, for example, 1260 ~: L 360 nm, 1360 ~ 1460 ηm, 1460 ~ 1530 nm, 1530 ~ 1565 nm, 1565 ~ 1625 nm, 1625-: The dispersion compensator is configured to have a group velocity delay time-wavelength characteristic curve that has at least one extreme value in any one wavelength range of 1675 nm, and is optimal for communication conditions It is also possible to compensate for the extreme values at multiple wavelengths in the wavelength range of 1260 to 1700 nm, for example, by using a function that can be selected with a switching switch as a whole as a dispersion compensation element. Group speed with delay time Configuring the dispersion compensation element so as to have a length characteristic curve possible and that Do. The present invention makes use of such a large degree of freedom to make it possible to perform second- and third-order dispersion compensation required in actual communication, and makes use of many conventional optical communication systems. It enables high-speed and long-distance communication. Industrial applicability
以上、 本発明を詳細に説明したが、 本発明によれば、 図 5B〜Dを用いて説明 した群速度遅延時間一波長特性曲線を種々用意することによって、 各チャンネル の良好な分散補償を行うことが出来る上に、 複数チャンネルの良好な分散補償を も行うことが出来る。 そして、 本発明の光分散補償素子による分散補償は、 3次 以上の分散補償において特に大きな効果をもたらすことに加えて、 群速度遅延時 間一波長特性の適切な調整によって、 2次の分散補償をも行い得るものである。 本発明は、 たとえば 4 OGb p sで 10, 000 k mを送信するような高速で 長距離の光通信の実用化には不可欠のものであり、 利用範囲も広く、 光通信分野 の発展に大きく貢献するものである。  As described above, the present invention has been described in detail. According to the present invention, good dispersion compensation of each channel is performed by preparing various group velocity delay time-wavelength characteristic curves described with reference to FIGS. 5B to 5D. In addition to this, good dispersion compensation of multiple channels can be performed. The dispersion compensation by the optical dispersion compensating element of the present invention has a particularly large effect in the third-order or higher dispersion compensation, and in addition to the second-order dispersion compensation by appropriately adjusting the group velocity delay time-wavelength characteristic. Can also be performed. INDUSTRIAL APPLICABILITY The present invention is indispensable for practical use of high-speed and long-distance optical communication such as transmitting 10,000 km at 4 OGb ps, has a wide use range, and greatly contributes to the development of the optical communication field. Things.
そして、 本発明による特殊な多層膜を用いた光分散補償素子は、 小型で量産に 適しており、 価格も安価に提供することが出来るので、 光通信の発展に寄与する ところは極めて大きい。 The light dispersion compensating element using the special multilayer film according to the present invention is compact and mass-produced. Since it is suitable and can be provided at a low price, it greatly contributes to the development of optical communication.
そして、 本発明の光分散補償素子を用いることにより、 既存の光通信システム の多くを利用することを可能にする点で、 社会的経済的効果が多大なものである  The use of the optical dispersion compensating element of the present invention makes it possible to use many of the existing optical communication systems, and has a great social and economic effect.

Claims

請求の範囲 The scope of the claims
1 . 通信伝送路に光ファイバを用いる光通信に使用して波長分散としての分散 を捕償することができる光分散補償素子であって、 光の反射率が互いに異なる少 なくとも 3つの反射層と前記反射層の間に形成された少なくとも 2つの光透過層 を有する多層膜を用いた多層膜素子としての分散補償を行うことが出来る素子を 複数個を、 あるいは、 分散補償を行うことが出来る素子としての分散補償を行う ことが出来る素子の部分を少なくとも複数箇所を、 信号光の光路に沿って直列に 接続して構成したことを特徴とする光分散補償素子。 1. An optical dispersion compensating element that can be used for optical communication using an optical fiber as a communication transmission line and that can compensate for dispersion as chromatic dispersion, and has at least three reflective layers with different light reflectivities. And a plurality of devices capable of performing dispersion compensation as a multilayer film device using a multilayer film having at least two light transmission layers formed between the light emitting layer and the reflection layer, or performing dispersion compensation. An optical dispersion compensating element comprising at least a plurality of element parts capable of performing dispersion compensation as an element connected in series along an optical path of signal light.
2 . 請求項 1に記載の光分散補償素子において、 前記複数個の分散補償を行う ことが出来る素子の接続方法または接続経路が複数通りあることを特徴とする光 分散補償素子。 2. The optical dispersion compensating element according to claim 1, wherein there are a plurality of connection methods or connection paths of the plurality of elements capable of performing dispersion compensation.
3 . 請求項 1に記載の光分散補償素子において、 前記複数個の分散補償を行う ことが出来る素子の接続方法または接続経路を光分散補償素子の外部から選択す' ることができることを特徴とする光分散補償素子。 3. The optical dispersion compensating element according to claim 1, wherein a connection method or a connection path of the plurality of elements capable of performing dispersion compensation can be selected from outside the optical dispersion compensating element. Light dispersion compensating element.
4 . 請求項 2に記載の光分散補償素子において、 前記複数個の分散補償を行う ことが出来る素子の接続方法に、 対向して配置された前記多層膜素子の入射面に おける反射による方法が含まれていることを特徴とする光分散補償素子。 4. The optical dispersion compensating element according to claim 2, wherein the method of connecting the plurality of elements capable of performing dispersion compensation includes a method by reflection on an incident surface of the multilayer film element disposed to face. An optical dispersion compensating element characterized by being included.
5 . 請求項 3に記載の光分散補償素子において、 前記複数個の分散補償を行う ことが出来る素子の接続方法または接続経路を光分散補償素子の外部から選択す る手段が、 電気的手段であることを特徴とする光分散補償素子。 5. The optical dispersion compensating element according to claim 3, wherein the means for selecting a connection method or a connection path of the plurality of elements capable of performing dispersion compensation from outside the optical dispersion compensating element is an electrical means. An optical dispersion compensating element, comprising:
6 . 通信伝送路に光ファイバを用いる光通信で波長分散としての分散を補償し て通信を行う光分散補償方法において、 光の反射率が互いに異なる少なくとも 3 つの反射層と前記反射層の間に形成された少なくとも 2つの光透過層を有する多 層膜を用いた多層膜素子としての分散補償を行うことが出来る素子を複数個を、 あるいは、 分散補償を行うことが出来る素子としての分散ネ甫償を行うことが出来 る素子の部分を少なくとも複数箇所を、 信号光の光路に沿って直冽に接続して構 成した光分散補償素子に信号光を入射させて分散補償を行うことを特徴とする光 分散補償方法。 6. In an optical dispersion compensation method for performing communication by compensating for dispersion as chromatic dispersion in optical communication using an optical fiber as a communication transmission line, the method comprises: Multi-layer with at least two light transmitting layers formed At least a plurality of devices capable of performing dispersion compensation as a multilayer film device using a layer film, or at least a portion of a device capable of performing dispersion compensation as a device capable of performing dispersion compensation. An optical dispersion compensation method characterized in that signal light is made incident on an optical dispersion compensating element configured by connecting a plurality of locations directly along an optical path of signal light to perform dispersion compensation.
7. 請求項 6に記載の光分散補償方法において、 光ファイバを伝送された信号 光を、 各受信チャネル毎に波長分離される前に前記光分散補償素子を通過させ、 少なくとも 3次の分散を捕償させることを特徴とする光分散補償方法。 7. The optical dispersion compensation method according to claim 6, wherein the signal light transmitted through the optical fiber is passed through the optical dispersion compensating element before being wavelength-separated for each receiving channel, and at least a third-order dispersion is reduced. An optical dispersion compensation method characterized in that the compensation is performed.
8. 請求項 6に記載の光分散補償方法において、 前記分散補償を行うことがで きる素子を複数個直列に接続して構成した光分散補償素子が、 1 260〜1 36 O nm、 1360〜1460 nm、 1460〜1530 nm、 1 530〜: 1 56 5 nm、 1565〜 1625 η m、 1625〜 1675 n mの波長範囲の少なく とも 1つの波長範囲において少なくとも 1つの極値を有する群速度遅延時間一波 長特性曲線を有するように構成されていることを特徴とする光分散補償方法。 8. The optical dispersion compensating method according to claim 6, wherein the optical dispersion compensating element configured by connecting a plurality of elements capable of performing the dispersion compensation in series is 1260 to 136 O nm, 1360 to 1360 nm. 1460 nm, 1460 to 1530 nm, 1530 to: 1565 nm, 1565 to 1625 ηm, group velocity delay time with at least one extreme value in at least one wavelength range of 1625 to 1675 nm An optical dispersion compensation method characterized by having a wavelength characteristic curve.
9. 請求項 6に記載の光分散補償方法において、 信号光の光路における分散補 償を行うことが出来る素子の接続の仕方を複数通り選択することができることを 特徴とする光分散捕償方法。 9. The optical dispersion compensation method according to claim 6, wherein a plurality of ways of connecting elements capable of performing dispersion compensation in the optical path of the signal light can be selected.
10. 請求項 6に記載の光分散補償方法において、 前記光分散補償素子を構成 している少なくとも 1つの分散補償を行うことができる素子に用いられている多 層膜が、 入射光の中心波長; の光に対する光路長として考えたときの前記多層膜 各層の膜厚が、 λ/4のほぼ整数倍の値の膜厚である多層膜であり、 かつ、 前記 多層膜が、 膜厚がえの 1 /4倍で屈折率が高い方の層である層 Ηと膜厚が λの 1 / 4倍で屈折率が低レ、方の層である層 Lを組み合わせた層の複数組で構成されてお り、 前記層 Ηが S i、 Ge、 T i 02、 T a205、 N b 205のいずれかから成る 層で形成されていることを特徴とする光分散補償方法。 10. The optical dispersion compensation method according to claim 6, wherein the multilayer film used in at least one element capable of performing dispersion compensation constituting the optical dispersion compensation element has a center wavelength of incident light. The multilayer film when considered as an optical path length with respect to the light having a thickness of approximately an integral multiple of λ / 4; and the multilayer film has a thickness Composed of a layer た, which is 1/4 times the layer with the higher refractive index, and the layer with a thickness of 1/4 times λ, the layer with the lower refractive index, 1 times the thickness of λ. Wherein the layer で is formed of any one of Si, Ge, Ti02, Ta205, and Nb205.
1 1 . 請求項 6に記載の光分散補償方法において、 前記多層膜素子の少なくと も 1つが、 多層膜素子の多層膜を構成する少なくとも 1つの積層膜の膜厚が、 前 記多層膜の光の入射面に平行な断面における面内方向、 すなわち、 入射面内方向 において変化している多層膜を用いた多層膜素子であることを特徴とする光分散 補償方法。 11. The optical dispersion compensation method according to claim 6, wherein at least one of the multilayer devices has a thickness of at least one multilayer film constituting a multilayer film of the multilayer device. An optical dispersion compensation method characterized by being a multilayer element using a multilayer film that changes in an in-plane direction in a cross section parallel to a light incident surface, that is, in an in-plane direction.
1 2 . 請求項 1 0に記載の光分散補償方法において、 前記層 Lが、 層 Hに使用 されている材質よりも屈折率の低い材質を用いて形成されていることを特徴とす る光分散補償方法。 12. The optical dispersion compensation method according to claim 10, wherein the layer L is formed using a material having a lower refractive index than the material used for the layer H. Dispersion compensation method.
1 3 . 請求項 1 2に記載の光分散補償方法において、 前記層 Lが S i 02から 成る層で形成されていることを特徴とする光分散補償方法。 13. The optical dispersion compensation method according to claim 12, wherein the layer L is formed of a layer made of Si02.
1 4 . 請求項 1 1に記載の光分散補償方法において、 前記多層膜の入射面内方 向において膜厚が変化している膜厚変化の方向が少なくとも 1つの多層膜におい て少なくとも 2つあることを特徴とする光分散補償方法。 14. The method of compensating for optical dispersion according to claim 11, wherein at least one multilayer film has at least two film thickness changing directions in which the film thickness changes in the inward plane of the multilayer film. An optical dispersion compensation method, comprising:
1 5 . 請求項 1 1に記載の光分散補償方法において、 前記分散補償を行うこと が出来る素子に係合して、 前記多層膜の少なくとも. 1つの積層膜の膜厚を調整す る調整手段、 あるいは、 前記多層膜の入射面における光の入射位置を変える手段 が設けられていることを特徴とする光分散補償方法。 15. The optical dispersion compensating method according to claim 11, wherein the adjusting means adjusts a film thickness of at least one of the multilayer films by engaging with an element capable of performing the dispersion compensation. Alternatively, there is provided means for changing a light incident position on the incident surface of the multilayer film.
PCT/JP2001/003769 2000-05-01 2001-05-01 Optical dispersion compensating device and optical dispersion compensating method using the device WO2001084750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001252667A AU2001252667A1 (en) 2000-05-01 2001-05-01 Optical dispersion compensating device and optical dispersion compensating method using the device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000132707 2000-05-01
JP2000132706 2000-05-01
JP2000-132706 2000-05-01
JP2000-132707 2000-05-01
JP2000132705 2000-05-01
JP2000-132705 2000-05-01

Publications (1)

Publication Number Publication Date
WO2001084750A1 true WO2001084750A1 (en) 2001-11-08

Family

ID=27343297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003769 WO2001084750A1 (en) 2000-05-01 2001-05-01 Optical dispersion compensating device and optical dispersion compensating method using the device

Country Status (2)

Country Link
AU (1) AU2001252667A1 (en)
WO (1) WO2001084750A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327012A (en) * 1994-05-25 1995-12-12 At & T Corp Optical communication system
JPH1041891A (en) * 1996-04-02 1998-02-13 Corning Inc Switchable optical fiber device for fiber transmission system and component for the same
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH11183748A (en) * 1997-12-18 1999-07-09 Nippon Telegr & Teleph Corp <Ntt> High-order dispersion compensator
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Light dispersion compensating element, and semiconductor laser device and optical communication system using the element
JP2000028934A (en) * 1998-07-10 2000-01-28 Nippon Telegr & Teleph Corp <Ntt> Dispersion variable optical equalizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH07327012A (en) * 1994-05-25 1995-12-12 At & T Corp Optical communication system
JPH1041891A (en) * 1996-04-02 1998-02-13 Corning Inc Switchable optical fiber device for fiber transmission system and component for the same
JPH11183748A (en) * 1997-12-18 1999-07-09 Nippon Telegr & Teleph Corp <Ntt> High-order dispersion compensator
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Light dispersion compensating element, and semiconductor laser device and optical communication system using the element
JP2000028934A (en) * 1998-07-10 2000-01-28 Nippon Telegr & Teleph Corp <Ntt> Dispersion variable optical equalizer

Also Published As

Publication number Publication date
AU2001252667A1 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
WO2002023234A1 (en) Optical dispersion compensating device, composite optical dispersion compensating device comprising the device, and optical dispersion compensating method using the device
US6943951B2 (en) Optical component and dispersion compensation method
JP2001320328A (en) Optical communication method
US9229219B2 (en) Optical filter, optical filter module, spectrometric instrument, and optical instrument
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
US8456741B2 (en) Optical module having three or more optically transparent layers
JP2000105313A (en) Dispersion compensator
JP4613814B2 (en) Variable dispersion compensator
WO2002031542A1 (en) Light dispersion compensating element and composite type light dispersion compensating element using that element and light dispersion compensating method using that element
WO2001084750A1 (en) Optical dispersion compensating device and optical dispersion compensating method using the device
JP2002122732A (en) Optical dispersion compensating device
JP5218243B2 (en) Optical module
WO2001084749A1 (en) Optical dispersion compensating device and optical dispersion compensating method using the device
JP2002214430A (en) Optical dispersion compensating element
WO2001086339A1 (en) Light dispersion compensation element and light dispersion compensation method using the element
US20030035608A1 (en) Multi-channel compensation of chromatic dispersion slope using etalons with wavelength dependent variable reflectivity
WO2001094991A1 (en) Composite light dispersion for compensating device and method for compensating light dispersion using the device
JP2001305339A (en) Optical dispersion compensation element
JP2002071945A (en) Element and method for compensating dispersion of light
JP2001251246A (en) Optical dispersion compensating element
JP2001305338A (en) Optical dispersion compensation element
JP2001352293A (en) Light dispersion compensating element and light dispersion compensating method using it
JP2006221075A (en) Variable dispersion compensator
JP2002208894A (en) Optical communicating method and optical communications equipment using the same
US7062122B2 (en) Tunable optical add/drop device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC

122 Ep: pct application non-entry in european phase