WO2001080904A2 - Means for diagnosing and treating carcinomas - Google Patents

Means for diagnosing and treating carcinomas Download PDF

Info

Publication number
WO2001080904A2
WO2001080904A2 PCT/DE2001/001530 DE0101530W WO0180904A2 WO 2001080904 A2 WO2001080904 A2 WO 2001080904A2 DE 0101530 W DE0101530 W DE 0101530W WO 0180904 A2 WO0180904 A2 WO 0180904A2
Authority
WO
WIPO (PCT)
Prior art keywords
gamma
binding
composition according
glutamyl transferase
fischer
Prior art date
Application number
PCT/DE2001/001530
Other languages
German (de)
French (fr)
Other versions
WO2001080904A3 (en
Inventor
Stefan Dübel
Andreas Schmiedl
Original Assignee
Fischer, Peter
SCHERBERICH, Jürgen, E.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischer, Peter, SCHERBERICH, Jürgen, E. filed Critical Fischer, Peter
Priority to AU2001265749A priority Critical patent/AU2001265749A1/en
Publication of WO2001080904A2 publication Critical patent/WO2001080904A2/en
Publication of WO2001080904A3 publication Critical patent/WO2001080904A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/91045Acyltransferases (2.3)
    • G01N2333/91074Aminoacyltransferases (general) (2.3.2)
    • G01N2333/9108Aminoacyltransferases (general) (2.3.2) with definite EC number (2.3.2.-)

Definitions

  • gamma-glutamyltransferase gamma-glutamyltranspeptidase, GGT, EC 2.3.2.2.
  • the monoclonal antibody (138H11) against human, renal gamma-glutamyl transferase (GGT, EC 2.3.2.2)) was produced by Fischer & Scherberich [3,4].
  • the mAb 138H11 reacts specifically with GGT human tissue on a large number of frozen sections.
  • the mAb 138H11 thus enabled a differential diagnostic classification (according to Störkel and Thoenes) of epithelial kidney tumors in two groups: one over 98% positive (clear cell and chromophilic kidney Ca) and one 100% negative (oncocytomas, chromophobic and duct Bellini Ca) [2,3,5,6].
  • the mAb 138H11 also reacted with proximal tubular cells of the kidney.
  • the polarization of the GGT distribution was striking: almost exclusively the luminal (apical) part of the cells (brush border) contained immunoreactive GGT.
  • An extremely weak but specific marking in the basal cell pole was only visible in individual kidney sections.
  • the tumor cells of the clear cell renal carcinomas no longer showed polarization; the entire cell membrane and z. T. also the cytoplasm reacted with mAb 138H11 [5].
  • mAb 138H11 only reacted with the GGT in the biliary tubules. A positive reaction was also found in gliomas [7], hepatocellular carcinomas and in gastric carcinomas as well as in RCC liver metastases [2,3].
  • the monoclonal antibody 138H11 therefore recognizes the target antigen not because of increased antigen expression in the tumor, but because of the changed target antigen localization on tumor cells [8] (FIG. 1) [2,10].
  • Calicheamicin- ⁇ is a biological highly active and selective Enediyne molecule, which has been designed in such a way that, in contrast to natural calicheamicin, it is biochemically stable and is therefore very suitable for coupling reactions with mAbs.
  • Mouse IgGl antibodies such as 138H11 are particularly problematic because they do not indicate complement activation, an important component of tumor cell destruction.
  • the therapeutic efficiency of mouse antibodies can be significantly increased by chemically coupling toxins, cytostatics or radionuclides as in the known chemoimmunoconjugate with calicheamicin theta, the disadvantages described above remain. The stability and quality control of such chemical couplings is also very problematic.
  • An essential part of the invention is the use of a recombinantly produced ligand, in particular a recombinant antibody or antibody fragment.
  • a particularly preferred recombinant antibody is shown in FIG. 2.
  • the recombinant therapeutic agent against gamma-glutamyltransferase produced according to the invention therefore enables in particular:
  • the invention enables the construction of the constructs exemplified in the examples, such as chimeric antibodies, fusion proteins, bispecific antibodies, immunocytokines etc., from the DNA of the antigen binding site of the mAb 138H11.
  • Whose DNA or amino acid sequence also enables direct humanization of the GGT binding partner z. B. by CDR crafting or the like.
  • Recombinant fragments can also bring significant advantages such as faster blood clearing and better tumor penetration for radioimmuno diagnostics and therapy, since their size can be varied depending on the application, e.g. for rapid excretion by the kidney, which is not possible with complete IgG molecules.
  • the agent can be used to treat tumors (especially renal cell carcinoma) by using the recombinant antibody fragment as a fusion protein, e.g. B. with Interleukin 2 (IL2) is produced (Fig. 3).
  • IL2 Interleukin 2
  • Systemic administration of IL2 is one of the few treatments for renal cell carcinoma that have been shown to have an impact on the tumor.
  • the use of the fusion protein instead of native IL2 increases the local concentration of IL2 on the tumor and therefore leads locally to an increase in the immunostimulating effect compared to the systemic administration of IL2. This can significantly reduce systemic toxicity.
  • the two gene fragments for the variable regions (Vh and VI) of the antibody against GGT are obtained via a polymerase chain reaction with oligonucleotide primers which bind specifically to the antigen-binding (V-) regions of antibodies.
  • the amplified genes of the two V regions are provided with the interfaces for further cloning by this PCR and then joined together in the form of an scFv antibody fragment, ie their open reading frames are linked without a stop codon by a DNA fragment which is a peptide encoded by 15-18 amino acid residues.
  • the corresponding scFv gene fragment is then also linked to the gene for IL2 in the same reading frame.
  • a stop codon is encoded, followed directly by the recognition sequence for Xbal.
  • This gene cassette is cloned into the bacterial expression vector pOPElOl via the restriction sites Ncol and Xbal. After transfection of the construct produced in this way in E. coli, the promoter of the pOPElOl vector is switched on by administration of IPTG for three hours, during which the cells are to be shaken at 28 ° C.
  • the scFv-IL2 fusion protein accumulates in the periplasm of the E. co / z ' cells during this time.
  • the cells are harvested by centrifugation at 5000 xg for 10 minutes and transferred to a buffer which enables the outer membrane of the E. coli to dissolve (50 mM Tris (hydroxymethyl) aminomethane / ⁇ Cl pH 8.0 with 20% w / v) sucrose and 1 mM EDTA), and incubated for 20 min at 0 ° C with shaking.
  • the supernatant obtained after centrifugation at 30,000 xg for 30 min contains approx. 50-1000 ⁇ g / ml of the scFv-IL2 fusion proteins, which are further purified, characterized and prepared for therapeutic use via a sequence of affinity chromatography and ion exchange chromatography according to the prior art can.
  • Example 2 Example 2:
  • the agent can be used for the therapy of tumors (in particular kidney cell carcinomas) by coupling the recombinant antibody fragment with an enzyme which converts a systemically applied, less toxic precursor substance into a tumor-damaging substance ("ADEPT").
  • ADPT an enzyme which converts a systemically applied, less toxic precursor substance into a tumor-damaging substance
  • CPG2 gamma-glutamyl transferase and carboxypeptidase G2
  • CPG2 carboxypeptidase G2
  • the patient is given time to excrete excess molecular complexes before the precursor substance (the "prodrug", in the case of CPG2 these are benzoic acid mustard-derived prodrugs) is given.
  • the precursor substance the "prodrug", in the case of CPG2 these are benzoic acid mustard-derived prodrugs
  • the agent can be used to treat tumors (especially renal cell carcinomas) by presenting the recombinant antibody fragment on the surface of T lymphocytes. This can be done by genetic fusion to the zeta chain of the T cell receptor of the T lymphocyte (FIG. 5), or by loading modified T lymphocytes with recombinant antibody fragments via specially introduced surface molecules of the T lymphocytes.
  • the latter surface molecules can be anchor molecules expressed by the T-lymphocytes, in particular anti-peptide "tag” or anti-hapten antibodies, the recombinant antibody fragment against gamma-glutamyl transferase with the corresponding peptide "tag” or the corresponding one Hapten was modified (Fig. 6).
  • T lymphocytes by treatment with agents which anchor the recombinant antibody fragment against gamma-glutamyl transferase in the surface of the T lymphocytes.
  • agents which anchor the recombinant antibody fragment against gamma-glutamyl transferase in the surface of the T lymphocytes This is possible by producing fusion proteins from the recombinant antibody fragment against gamma-glutamyl transferase with a surface protein of the Newcastle Disease Virus (in particular hemagglutinin). These viruses fuse with the membrane of the target cell and integrate their hemagluttinin into the target cell membrane, and thus also the recombinant antibody fragment against gamma-glutamyl transferase.
  • This procedure has the advantage that no transformation of the T lymphocytes is necessary.
  • bispecific antibodies Another possibility of anchoring the recombinant antibody fragments against gamma-glutamyl transferase in the surface of T-lymphocytes is the production of bispecific antibodies (FIG. 7). With one binding arm they bind gamma glutamyl transferase, with the other an epitope on the T lymphocytes. The latter binding to the T lymphocytes can be mediated either by an antibody fragment or by a natural ligand of the epitope. This epitope in turn on the T- Lymphocytes can either be contained in a natural surface molecule of the T lymphocytes (in particular CD4, CD5, TCR, CD28), or it can have got onto the surface of the T lymphocytes by fusion of virus particles, in particular NDV viruses.
  • Several bispecific constructs can be used together to generate the primary and secondary activation signal for the T lymphocyte. The use of bispecific antibodies also has the advantage that no transformation of the T lymphocytes is necessary.
  • the recombinant antibody is integrated into the liposomes in a known, chemical way or incorporated into the genome of the viruses (e.g. retroviruses, adenoviruses) from a molecular biological point of view.
  • the coding sequences of the antibody are integrated into a suitable expression plasmid.
  • Acidification with anti-idiotypic antibodies or their antigenic components also as DNA or RNA (see Example 4), which are obtained against GGT binding partners in vitro, in vivo, from antibody libraries, transgenic animals etc. or when applied to humans. This leads to an activation of the tumor patient's immune system, which is directed against the tumor and can thereby control or destroy it.
  • GGT binding partners for therapy (e.g. purging for bone marrow or stem cell transplantation, for in vttro gene transfer) or diagnostics (detection of "minimal residual disease” (MRD), relapse etc.)
  • the binding partner of the GGT can be coupled, for example, to magnetic beads, with which a tumor can be used to enrich individual tumor cells from a large excess of irrelevant cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention relates to means for diagnosing and treating carcinomas, in particular, kidney cell carcinomas, based on recombinant substances which are binding partners of gamma-glutamyltransferase (=gamma-glutamyltranspeptidase, GGT, EC 2.3.2.2.). Said substances can be used in the medical field and in the pharmaceutical industry. The aim of the invention is to develop reliable methods for diagnosing and treating kidney cell carcinomas, based on methods which currently exist that use native antibodies such as mAK 138H11. The invention is characterized in that it uses a manufactured recombinant ligand against gamma-glutamyltransferase, in particular a recombinant antibody or antibody fragment. A preferred recombinant antibody is illustrated in figure 2.

Description

Mittel zur Diagnose und Therapie von KarzinomenMeans for diagnosis and therapy of carcinomas
Die Erfindung betrifft ein Mittel zur Diagnose und Therapie von Karzinomen, insbesondere von Nierenzellkarzinomen, auf der Basis von rekombinanten Substanzen, die Bindungspartner der Gamma-Glutamyltransferase (=Gamma-Glutamyltranspeptidase, GGT, EC 2.3.2.2.) sind. Anwendungsgebiete sind die Medizin und die pharmazeutische Industrie.The invention relates to an agent for the diagnosis and therapy of carcinomas, in particular renal cell carcinomas, based on recombinant substances which are binding partners of gamma-glutamyltransferase (= gamma-glutamyltranspeptidase, GGT, EC 2.3.2.2.). Areas of application are medicine and the pharmaceutical industry.
Das NierenzellkarzinomRenal cell carcinoma
Allein in den Vereinigten Staaten wurden für 1996 bis 1998 jährlich über 30.000 Neuerkrankungen und 12.000 Tote durch das Nierenzellkarzinom (RCC, renal cell carcinoma) verzeichnet. Das Tumorregister München (www.krebsinfo.de) registrierte 1995 für Deutschland 6612 Sterbefälle durch das RCC. Für das Jahr 2000 wird weltweit durch das RCC eine Mortalität von über 100.000 geschätzt, die Inzidenz ist dramatisch steigend [1].In the United States alone, over 30,000 new cases and 12,000 deaths from renal cell carcinoma (RCC) were recorded annually for 1996 to 1998. The Munich Tumor Registry (www.krebsinfo.de) registered 6612 deaths in 1995 by the RCC for Germany. Mortality of over 100,000 is estimated worldwide by the RCC for the year 2000, the incidence is increasing dramatically [1].
Männer erkranken häufiger als Frauen, und die Erkrankung manifestiert sich meistens im fünften bis sechsten Lebensjahrzehnt. Zwar beobachtet man bei Kindern nur selten ein RCC, es ist jedoch differentialdiagnostisch schwierig von anderen Nierentumoren wie dem Wilmstumor abzugrenzen. In jüngster Zeit wurden RCC bei Kindern als Spätfolge der Neuroblastom-Chemotherapie beobachtet. Die Prognose des progredienten Nierenkarzinoms ist bei Kindern und Erwachsenen mit einer medianen Überlebenszeit von unter 26 Monaten (Tumorregister München) gleichermaßen sehr ungünstig. Im Stadium III beträgt die Fünf- Jahres-Überlebensrate 15 bis 35%, im Stadium IN nur noch 0 - 10%. Bereits bei Diagnose des Primärtumors finden sich laut internationaler Literatur in ca. 30% der Patienten Fernmetastasen; bei weiteren 40% der Patienten entwickeln sich nach der Primärtumorresektion Spätmetastasen. Aufgrund der heute früheren Diagnosestellung (Ultraschall) ist dieser Prozentsatz zwar abnehmend, allerdings bei drastisch steigender Inzidenz.Men get sick more often than women, and the disease usually manifests itself in the fifth to sixth decade of life. RCC is rarely observed in children, but it is difficult to differentiate it from other kidney tumors such as Wilm's tumor from a differential diagnosis. RCC has recently been observed in children as a late consequence of neuroblastoma chemotherapy. The prognosis of progressive kidney cancer is equally unfavorable in children and adults with a median survival time of less than 26 months (Munich tumor registry). In stage III the five-year survival rate is 15 to 35%, in stage IN only 0 - 10%. According to international literature, distant metastases are found in about 30% of patients even when the primary tumor is diagnosed; in a further 40% of the patients, late metastases develop after primary tumor resection. Due to the earlier diagnosis (ultrasound), this percentage is decreasing, but with a drastically increasing incidence.
Für Patienten mit metastasierendem RCC gibt es bis heute keine effektive systemische Therapie. Chemotherapie (Zytostatika) oder Strahlenbehandlung sind praktisch wirkungslos, auch Therapieversuche mit Interleukin-2 und/oder Interferonen ergaben, faßt man die zahlreichen publizierten Studien zusammen, bisher insgesamt weit weniger als 25% objektive Tumorregressionen (CR+PR), verbunden mit Staren Nebenwirkungen [1,2].To date, there is no effective systemic therapy for patients with metastatic RCC. Chemotherapy (cytostatics) or radiation treatment are practically ineffective, and therapy attempts with interleukin-2 and / or interferons have also been found if the numerous published studies are summarized, so far overall less than 25% objective tumor regressions (CR + PR) combined with starch side effects [ 1,2].
Immuntherapie mit dem Maus-Antikörper 138H11Immunotherapy with the mouse antibody 138H11
Von Fischer & Scherberich wurde der monoklonale Antikörper (138H11) gegen humane, renale Gamma-Glutamyltransferase (GGT, EC 2.3.2.2)) hergestellt [3,4]. Der mAk 138H11 reagiert auf einer großen Zahl von Gefrierschnitten spezifisch mit GGT menschlicher Gewebe. Bemerkenswert war die starke Reaktion mit nahezu allen untersuchten klαrzelligen und chromophilen (= papillären) Nierenkarzinomen, die zusammen über 85% aller malignen Nierenzellkarzinome ausmachen. Immunhistochemisch ermöglichte der mAk 138H11 damit eine differentialdiagnostische Klassifizierung (nach Störkel und Thoenes) epithelialer Nierentumoren in zwei Gruppen: eine zu über 98% positive (klarzellige und chromophile Nieren-Ca) und eine zu 100% negative (Onkozytome, chromophobe und Duct-Bellini-Ca) [2,3,5,6].The monoclonal antibody (138H11) against human, renal gamma-glutamyl transferase (GGT, EC 2.3.2.2)) was produced by Fischer & Scherberich [3,4]. The mAb 138H11 reacts specifically with GGT human tissue on a large number of frozen sections. The strong reaction with almost all investigated clear cell cells was remarkable and chromophilic (= papillary) kidney carcinomas, which together make up over 85% of all malignant kidney cell carcinomas. Immunohistochemically, the mAb 138H11 thus enabled a differential diagnostic classification (according to Störkel and Thoenes) of epithelial kidney tumors in two groups: one over 98% positive (clear cell and chromophilic kidney Ca) and one 100% negative (oncocytomas, chromophobic and duct Bellini Ca) [2,3,5,6].
Auch mit proximalen Tubuluszellen der Niere reagierte der mAk 138H11. Auffallend war hierbei eine Polarisierung der GGT-Verteilung: fast ausschließlich der luminale (apikale) Teil der Zellen (Bürstensaum) enthielt immunreaktive GGT. Nur in einzelnen Nierenabschnitten war auch eine äußerst schwache, aber spezifische Markierung im basalen Zellpol zu erkennen. Im Gegensatz zu normalen Tubuluszellen zeigten die Tumorzellen der klarzelligen Nierenkarzinome keine Polarisierung mehr; die gesamte Zellmembran und z. T. auch das Zytoplasma reagierten mit mAk 138H11 [5]. In der Leber reagierte mAk 138H11 nur mit der GGT in den Gallenkanälchen. Eine positive Reaktion fand sich auch in Gliomen [7], hepatozellulären Karzinomen und in Magen-Karzinomen sowie in Lebermetastasen von RCC [2,3].The mAb 138H11 also reacted with proximal tubular cells of the kidney. The polarization of the GGT distribution was striking: almost exclusively the luminal (apical) part of the cells (brush border) contained immunoreactive GGT. An extremely weak but specific marking in the basal cell pole was only visible in individual kidney sections. In contrast to normal tubular cells, the tumor cells of the clear cell renal carcinomas no longer showed polarization; the entire cell membrane and z. T. also the cytoplasm reacted with mAb 138H11 [5]. In the liver, mAb 138H11 only reacted with the GGT in the biliary tubules. A positive reaction was also found in gliomas [7], hepatocellular carcinomas and in gastric carcinomas as well as in RCC liver metastases [2,3].
Immunszintigraphie mit 99mTc-markiertem mAk 138H11Immunoscintigraphy with 99m Tc-labeled mAb 138H11
Tumortragende, humane Nieren wurden nach der Nephrektomie extrakorporal perfundiert. Dabei fand sich eine signifikante Aufnahme des radioaktiv markierten Antikörpers in klarzellige Nierenkarzinome. Diese war im Tumorgewebe bis zu 20fach höher als in der Nierenrinde [8,9]. In einem GGT-negativen Onkozytom wurde hingegen kein Antikörper angereichert. Diese hohe Anreicherung im Tumor läßt sich dadurch erklären, daß in normalen Nierenzellen das Zielantigen fast ausschließlich in apikalen Membranen (Bürstensaum des proximalen Tubulus) exprimiert wird. In solchen polarisierten Zellen ist das Antigen daher über die Blutzirkulation bzw. für die Perfusionslösung nicht zugänglich, und es wurde während der Perfusion nur wenig mAk an normales Nierengewebe gebunden. Bei Nierenkarzinomzellen ist die Polarisierung der Zellen offensichtlich gestört, und das Antigen ist auf der äußeren Membran für den zirkulierenden Antikörper frei zugänglich. Der monoklonale Antikörper 138H11 erkennt das Zielantigen also nicht wegen erhöhter Antigenexpression im Tumor, sondern wegen der geänderten Target-Antigenlokalisation auf Tumorzellen [8] (Fig. 1)[2,10].Tumor-bearing human kidneys were perfused extracorporeally after the nephrectomy. There was a significant uptake of the radioactively labeled antibody in clear cell renal carcinoma. This was up to 20 times higher in the tumor tissue than in the renal cortex [8,9]. In contrast, no antibody was enriched in a GGT-negative oncocytoma. This high accumulation in the tumor can be explained by the fact that in normal kidney cells the target antigen is expressed almost exclusively in apical membranes (brush border of the proximal tubule). In such polarized cells, the antigen is therefore not accessible via the blood circulation or for the perfusion solution, and only a small amount of mAb was bound to normal kidney tissue during the perfusion. In renal carcinoma cells, the polarization of the cells is obviously disturbed and the antigen is freely accessible to the circulating antibody on the outer membrane. The monoclonal antibody 138H11 therefore recognizes the target antigen not because of increased antigen expression in the tumor, but because of the changed target antigen localization on tumor cells [8] (FIG. 1) [2,10].
138H11-Drugkonjugate138H11-Drugkonjugate
Zur Erhöhung der potentiellen Zytotoxizität des mAk 138H11 haben wir Drugkonjugate mit einem am Scripps Research Institute in La Jolla entwickelten, synthetischen Calicheamicin konstruiert. Calicheamicin (Mr 1500, aus der Klasse der Enediyne- Antibiotika) führt zu Doppelstrangbrüchen der DNA. Calicheamicin-Θ ist ein biologisch hochaktives und selektives Enediyne-Molekül, das so konzipiert wurde, daß es im Gegensatz zum natürlichen Calicheamicin biochemisch stabil ist und sich daher sehr gut für Kopplungsreaktionen mit mAk eignet. In ersten in vitro Untersuchungen an RCC-Zellinien konnten wir zeigen, daß Calicheamicin-Θ in Konzentrationen zytotoxisch wirkt, die bis zu fünf Zehnerpotenzen unter denen bekannter Zytostatika liegen. Durch die Kopplung an den mAk 138H11 wurde diese Effizienz in Abhängigkeit vom Linker nur gering gemindert oder sogar erhöht, das Konjugat war daher außergewöhnlich zytotoxisch [11]. In in vivo Experimenten mit Nacktmäusen wurde das Wachstum von RCC Xenografts mit diesen Drugkonjugaten erfolgreich und spezifisch (im Vergleich zu einem Kontrollantikörper) inhibiert [12]. Im Tiermodell wurde dadurch die prinzipielle Wirksamkeit einer Antikörpertherapie gegen Nierenzellkarzinome mit GGT als Targetantigen gezeigt.To increase the potential cytotoxicity of the mAb 138H11, we constructed drug conjugates with a synthetic calicheamicin developed at the Scripps Research Institute in La Jolla. Calicheamicin (M r 1500, from the class of Enediyne antibiotics) leads to double-strand breaks in the DNA. Calicheamicin-Θ is a biological highly active and selective Enediyne molecule, which has been designed in such a way that, in contrast to natural calicheamicin, it is biochemically stable and is therefore very suitable for coupling reactions with mAbs. In the first in vitro investigations on RCC cell lines we were able to show that calicheamicin-Θ has a cytotoxic effect in concentrations that are up to five orders of magnitude lower than known cytostatics. By coupling to the mAb 138H11, this efficiency was only slightly reduced or even increased depending on the linker; the conjugate was therefore extraordinarily cytotoxic [11]. In in vivo experiments with nude mice, the growth of RCC xenografts with these drug conjugates was successfully and specifically inhibited (compared to a control antibody) [12]. In the animal model, the principle effectiveness of antibody therapy against renal cell carcinoma with GGT as target antigen was shown.
Zweck der Erfindung:Purpose of the invention:
Die in den Tierversuchen erfolgreichen Substanzen sind allerdings nur schlecht für die Therapie von Menschen geeignet. Bisherige Therapieversuche von Tumoren mit monoklonalen Antikörpern aus der Maus, wie es auch der gegen GGT gerichtete 138H11 ist, führen besonders durch das Hervorrufen einer Antikörper-Immunantwort gegen das therapeutische Agens (HAMA-Response) zu starken Nebenwirkungen für Patienten. Die hierbei gebildeten HAMA-Antikörper verhindern eine Mehrfachanwendung des therapeutischen Antikörpers, da der Patient weitere Gaben durch seine dann gebildeten HAMA-Antikörper schnell neutralisiert. Zusätzlich sind schwere, allergische Reaktionen möglich. Auch der Vermittlung der therapeutischen Wirkung des nativen Mausantikörpers sind Grenzen gesetzt, da der murine Effektorteil, das Fc-Fragment, von den menschlichen Effektorzellen nur unzureichend gebunden wird. Besonders problematisch sind Maus-IgGl- Antikörper wie 138H11, da diese keine Komplementaktivierung indizieren, ein wichtiger Bestandteil der Tumorzell-Zerstörung. Zwar kann die therapeutische Effizienz von Mausantikörpern durch die chemische Kopplung von Toxinen, Zytostatika oder Radionukliden wie im bekannten Chemoimmunokonjugat mit Calicheamicin theta deutlich erhöht werden, jedoch bleiben die oben geschilderten Nachteile bestehen. Sehr problematisch ist auch die Stabilität und Qualitätskontrolle solcher chemischer Kopplungen.However, the substances successful in animal experiments are only poorly suited for the therapy of humans. Previous attempts at therapy of tumors with monoclonal antibodies from the mouse, such as the 138H11 directed against GGT, have led to severe side effects for patients, in particular by eliciting an antibody immune response against the therapeutic agent (HAMA response). The HAMA antibodies formed in this way prevent multiple use of the therapeutic antibody, since the patient quickly neutralizes further doses through the HAMA antibodies that are then formed. In addition, severe allergic reactions are possible. There are also limits to the therapeutic effect of the native mouse antibody, since the murine effector part, the Fc fragment, is only insufficiently bound by the human effector cells. Mouse IgGl antibodies such as 138H11 are particularly problematic because they do not indicate complement activation, an important component of tumor cell destruction. Although the therapeutic efficiency of mouse antibodies can be significantly increased by chemically coupling toxins, cytostatics or radionuclides as in the known chemoimmunoconjugate with calicheamicin theta, the disadvantages described above remain. The stability and quality control of such chemical couplings is also very problematic.
Die vorliegenden Ergebnisse waren deshalb nicht geeignet, um zuverlässige Verfahren zur Diagnose und Therapie von Nierenzellkarzinomen zu etablieren. Der Erfindung lag daher die Aufgabe zugrunde, solche Verfahren zu entwickeln. Die Erfindung wird gemäß den Ansprüchen realisiert, die Unteransprüche sind Vorzugsvarianten.The available results were therefore not suitable for establishing reliable methods for the diagnosis and therapy of renal cell carcinomas. The object of the invention was therefore to develop such methods. The invention is implemented according to the claims, the subclaims are preferred variants.
Wesentlicher Teil der Erfindung ist der Einsatz eines rekombinant hergestellten Liganden, insbesondere eines rekombinanten Antikörpers bzw. Antikörperfragments. Ein besonders bevorzugter rekombinanter Antikörper ist in Figur 2 dargestellt.An essential part of the invention is the use of a recombinantly produced ligand, in particular a recombinant antibody or antibody fragment. A particularly preferred recombinant antibody is shown in FIG. 2.
Das gemäß der Erfindung hergestellte rekombinante therapeutische Agens gegen Gamma-Glutamyltransferase ermöglicht deshalb im besonderen:The recombinant therapeutic agent against gamma-glutamyltransferase produced according to the invention therefore enables in particular:
1. Die Vermeidung einer HAMA-Response gegen das therapeutische Agens, und damit geringere Nebenwirkungen für den Patienten1. Avoiding a HAMA response against the therapeutic agent, and thus fewer side effects for the patient
2. Eine wiederholte Anwendung der Therapie wegen geringerer Immunantwort gegen dieses Agens2. Repeated use of the therapy due to a lower immune response against this agent
3. Die effiziente Herstellung des Agens in Form eines Fusionsproteins, damit eine definierte Stöchiometrie und definierte Kopplungspunkte3. The efficient production of the agent in the form of a fusion protein, thus a defined stoichiometry and defined coupling points
4. Möglichkeit zur verbilligten Massenproduktion durch rekombinante Expression in E. coli oder anderen Massenkulturen (Pichia Pastoris, Saccharomyces, CHO-Zellkultur), oder in transgenen Pflanzen oder Tieren.4. Possibility of reduced mass production by recombinant expression in E. coli or other mass cultures (Pichia Pastoris, Saccharomyces, CHO cell culture), or in transgenic plants or animals.
Weiterhin ermöglicht die Erfindung unmittelbar die Herstellung der in den Beispielen exemplarisch genannten Konstrukte wie chimäre Antikörper, Fusionsproteine, bispezifische Antikörper, Immunozytokine etc. aus der DNA der antigen-Bindestelle des mAb 138H11. Dessen DNA- bzw. Aminosäuresequenz ermöglicht aber auch eine direkte Humanisierung des GGT-Bindungspartners z. B. durch CDR-Crafting o. ä. Auch für Radioimmundiagnostik und Therapie können rekombinante Fragmente wesentliche Vorteile wie schnelleres Bloodclearing und bessere Tumorpenetration mit sich bringen, da ihre Größe je nach Anwendung variiert werden kann, z.B. für schnelle Ausscheidung durch die Niere, wie sie bei kompletten IgG-Molekülen nicht möglich ist.Furthermore, the invention enables the construction of the constructs exemplified in the examples, such as chimeric antibodies, fusion proteins, bispecific antibodies, immunocytokines etc., from the DNA of the antigen binding site of the mAb 138H11. Whose DNA or amino acid sequence also enables direct humanization of the GGT binding partner z. B. by CDR crafting or the like. Recombinant fragments can also bring significant advantages such as faster blood clearing and better tumor penetration for radioimmuno diagnostics and therapy, since their size can be varied depending on the application, e.g. for rapid excretion by the kidney, which is not possible with complete IgG molecules.
Die folgenden Ausführungsbeispiele erläutern die Erfindung, ohne sie auf diese Beispiele einzuschränken. Beispiele:The following exemplary embodiments explain the invention without restricting it to these examples. Examples:
Beispiel 1:Example 1:
Das Mittel kann zur Therapie von Tumoren (insbesondere von Nierenzellkarzinomen) verwendet werden, indem das rekombinante Antikö erfragment als Fusionsprotein z. B. mit Interleukin 2 (IL2) hergestellt wird (Fig. 3). Systemische Gabe von IL2 ist eine der wenigen Behandlungen des Nierenzell-Karzinoms, welche einen nachweisbaren Einfluß auf den Tumor erzeugten. Die Verwendung des Fusionsproteins statt nativem IL2 erhöht die lokale Konzentration von IL2 am Tumor und führt deshalb dort lokal zu einer Verstärkung des immunstimulierenden Effektes gegenüber der systemischen Gabe des IL2. Dadurch kann die systemische Toxizität signifikant verringert werden.The agent can be used to treat tumors (especially renal cell carcinoma) by using the recombinant antibody fragment as a fusion protein, e.g. B. with Interleukin 2 (IL2) is produced (Fig. 3). Systemic administration of IL2 is one of the few treatments for renal cell carcinoma that have been shown to have an impact on the tumor. The use of the fusion protein instead of native IL2 increases the local concentration of IL2 on the tumor and therefore leads locally to an increase in the immunostimulating effect compared to the systemic administration of IL2. This can significantly reduce systemic toxicity.
Herstellung: Die beiden Genfragmente für die Variablen Regionen (Vh und VI) des Antikörpers gegen GGT werden über eine Polymerase-Kettenreaktion mit Oligonukleotid- Primern gewonnen, welche spezifisch an die antigenbindenden (V-)Regionen von Antikörpern binden. Die amplifizierten Gene der beiden V-Regionen werden durch diese PCR mit den Schnittstellen für die weitere Klonierung versehen und dann in Form eines scFv- Antikörperfragmentes zusammengefügt, d. h. ihre offenen Leseraster werden ohne Stop- Codon durch ein DNA-Fragment verbunden, welches für ein Peptid von 15-18 Aminosäureresten kodiert. Das entsprechende scFv-Genfragment wird dann ebenfalls im gleichen Leseraster mit dem Gen für IL2 verknüpft. Am Ende des ebenfalls über PCR amplifizierten, humanen IL2-Gens wird ein Stop-Codon codiert, direkt gefolgt von der Erkennungssequenz für Xbal. Diese Genkassette wird über die Restriktionsschnittstellen Ncol und Xbal in den bakteriellen Expressionsvektor pOPElOl kloniert. Nach Transfektion des so hergestellten Konstruktes in E. coli wird der Promoter des pOPElOl-Vektors durch eine dreistündige Gabe von IPTG angeschaltet, dabei sind die Zellen bei 28°C zu schütteln. Das scFv-IL2-Fusionsprotein reichert sich während dieser Zeit im Periplasma der E. co/z'-Zellen an. Nach Ende der Produktionszeit werden deshalb die Zellen durch 10-minütige Zentrifugation bei 5000 xg geerntet und in einen Puffer überführt, der die Auflösung der äußeren Membran der E. coli ermöglicht (50 mM Tris(hydroxymethyl)Aminomethan/ΗCl pH 8.0 mit 20% (w/v) Sucrose und 1 mM EDTA), und für 20 min bei 0°C unter schütteln inkubiert. Der nach einer Zentrifugation von 30 min bei 30.000 xg erhaltene Überstand enthält ca. 50-1000 μg/ml der scFv-IL2 Fusionsproteine, die über eine Folge von Affinitätschromatographie und Ionentauscherchromatographie nach Stand der Technik weiter gereinigt, charakterisiert und für die therapeutische Anwendung vorbereitet werden können. Beispiel 2:Production: The two gene fragments for the variable regions (Vh and VI) of the antibody against GGT are obtained via a polymerase chain reaction with oligonucleotide primers which bind specifically to the antigen-binding (V-) regions of antibodies. The amplified genes of the two V regions are provided with the interfaces for further cloning by this PCR and then joined together in the form of an scFv antibody fragment, ie their open reading frames are linked without a stop codon by a DNA fragment which is a peptide encoded by 15-18 amino acid residues. The corresponding scFv gene fragment is then also linked to the gene for IL2 in the same reading frame. At the end of the human IL2 gene, also amplified by PCR, a stop codon is encoded, followed directly by the recognition sequence for Xbal. This gene cassette is cloned into the bacterial expression vector pOPElOl via the restriction sites Ncol and Xbal. After transfection of the construct produced in this way in E. coli, the promoter of the pOPElOl vector is switched on by administration of IPTG for three hours, during which the cells are to be shaken at 28 ° C. The scFv-IL2 fusion protein accumulates in the periplasm of the E. co / z ' cells during this time. After the end of the production time, the cells are harvested by centrifugation at 5000 xg for 10 minutes and transferred to a buffer which enables the outer membrane of the E. coli to dissolve (50 mM Tris (hydroxymethyl) aminomethane / ΗCl pH 8.0 with 20% w / v) sucrose and 1 mM EDTA), and incubated for 20 min at 0 ° C with shaking. The supernatant obtained after centrifugation at 30,000 xg for 30 min contains approx. 50-1000 μg / ml of the scFv-IL2 fusion proteins, which are further purified, characterized and prepared for therapeutic use via a sequence of affinity chromatography and ion exchange chromatography according to the prior art can. Example 2:
Das Mittel kann zur Therapie von Tumoren (insbesondere von Nierenzellkarzinomen) verwendet werden, indem das rekombinante Antikörperfragment mit einem Enzym gekoppelt wird, welches eine systemisch applizierte, wenig giftige Vorläufersubstanz in eine tumorschädigende Substanz überführt ("ADEPT"). So kann zunächst nach Gabe eines Molekülkomplexes aus dem rekombinanten Antikörper gegen Gamma-Glutamyl-Transferase und der Carboxypeptidase G2 (CPG2) eine Anreicherung der CPG2 im Tumor erreicht werden. Danach wird zunächst dem Patienten Zeit gegeben, überschüssige Molekülkomplexe auszuscheiden, bevor die Vorläufersubstanz (die "prodrug", im Falle der CPG2 sind dies benzoic acid mustard-derived prodrugs) gegeben wird. (s. Fig. 4). Auch Laktamasen, pH- Änderungen im Tumormilieu, intrazelluläre Reduktasen oder katalytische Antikörper können zur Erzeugung der tumorschädigenden Substanz aus der prodrug eingesetzt werden.The agent can be used for the therapy of tumors (in particular kidney cell carcinomas) by coupling the recombinant antibody fragment with an enzyme which converts a systemically applied, less toxic precursor substance into a tumor-damaging substance ("ADEPT"). Thus, after administration of a molecular complex consisting of the recombinant antibody against gamma-glutamyl transferase and carboxypeptidase G2 (CPG2), CPG2 can be accumulated in the tumor. After that, the patient is given time to excrete excess molecular complexes before the precursor substance (the "prodrug", in the case of CPG2 these are benzoic acid mustard-derived prodrugs) is given. (see Fig. 4). Lactamases, pH changes in the tumor environment, intracellular reductases or catalytic antibodies can also be used to generate the tumor-damaging substance from the prodrug.
Beispiel 3:Example 3:
Das Mittel kann zur Therapie von Tumoren (insbesondere von Nierenzellkarzinomen) verwendet werden, indem das rekombinante Antikörperfragment an der Oberfläche von T- Lymphozyten präsentiert wird. Dies kann durch genetische Fusion an die zeta-Kette des T- Zell-Rezeptors des T-Lymphozyten erfolgen (Fig. 5), oder durch Beladung modifizierter T- Lymphozyten mit rekombinanten Antikörperfragmenten über speziell eingeführte Oberflächenmoleküle der T-Lymphozyten. Letztere Oberflächenmoleküle können durch die T-Lymphozyten exprimierte Ankermoleküle, insbesondere anti-Peptid-"tag" oder anti- Hapten-Antikörper sein, wobei das rekombinante Antikörperfragment gegen Gamma- Glutamyl-Transferase dabei mit dem entsprechenden Peptid-"tag" bzw. dem entsprechenden Hapten modifiziert wurde (Fig. 6). Ebenfalls ist eine Beladung der T-Lymphozyten durch eine Behandlung mit Agentien möglich, welche das rekombinante Antiköφerfragment gegen Gamma-Glutamyltransferase in der Oberfläche der T-Lymphozyten verankern. Dies ist möglich, indem Fusionsproteine aus dem rekombinanten Antikörperfragment gegen Gamma- Glutamyltransferase mit einem Oberflächenprotein des Newcastle Disease Virus (insbesondere Hämagglutinin) hergestellt werden. Diese Viren verschmelzen mit der Membran der Zielzelle und integrieren ihr Hämagluttinin in die Zielzellmembran, und damit auch das rekombinante Antiköφerfragment gegen Gamma-Glutamyltransferase. Dieses Vorgehen hat den Vorteil, daß keine Transformation der T-Lymphozyten nötig ist. Eine weitere Möglichkeit, die rekombinanten Antiköφerfragmente gegen Gamma- Glutamyltransferase in der Oberfläche von T-Lymphozyten zu verankern, bietet die Herstellung von bispezifischen Antiköφern (Fig. 7). Mit einem Bindearm binden sie Gamma- Glutamyltransferase, mit dem anderen ein Epitop auf den T-Lymphoztyten. Letztere Bindung an den T-Lymphozyten kann entweder durch ein Antiköφerfragment vermittelt werden, oder durch einen natürlichen Liganden des Epitopes. Dieses Epitop seinerseits auf den T- Lymphozyten kann entweder in einem natürlichen Oberflächenmolekül der T-Lymphozyten enthalten sein (insbesondere CD4, CD5, TCR, CD28), oder es kann durch Fusion von Viruspartikeln mit den T-Lymphozyten auf deren Oberfläche gelangt sein, insbesondere von NDV- Viren. Mehrere bispezifische Konstrukte können zusammen eingesetzt werden, um das primäre und sekundäre Aktivierungsignal für den T-Lymphozyten zu generieren. Die Verwendung von bispezifischen Antiköφern bietet ebenfalls den Vorteil, daß keine Transformation der T-Lymphozyten nötig ist.The agent can be used to treat tumors (especially renal cell carcinomas) by presenting the recombinant antibody fragment on the surface of T lymphocytes. This can be done by genetic fusion to the zeta chain of the T cell receptor of the T lymphocyte (FIG. 5), or by loading modified T lymphocytes with recombinant antibody fragments via specially introduced surface molecules of the T lymphocytes. The latter surface molecules can be anchor molecules expressed by the T-lymphocytes, in particular anti-peptide "tag" or anti-hapten antibodies, the recombinant antibody fragment against gamma-glutamyl transferase with the corresponding peptide "tag" or the corresponding one Hapten was modified (Fig. 6). It is also possible to load the T lymphocytes by treatment with agents which anchor the recombinant antibody fragment against gamma-glutamyl transferase in the surface of the T lymphocytes. This is possible by producing fusion proteins from the recombinant antibody fragment against gamma-glutamyl transferase with a surface protein of the Newcastle Disease Virus (in particular hemagglutinin). These viruses fuse with the membrane of the target cell and integrate their hemagluttinin into the target cell membrane, and thus also the recombinant antibody fragment against gamma-glutamyl transferase. This procedure has the advantage that no transformation of the T lymphocytes is necessary. Another possibility of anchoring the recombinant antibody fragments against gamma-glutamyl transferase in the surface of T-lymphocytes is the production of bispecific antibodies (FIG. 7). With one binding arm they bind gamma glutamyl transferase, with the other an epitope on the T lymphocytes. The latter binding to the T lymphocytes can be mediated either by an antibody fragment or by a natural ligand of the epitope. This epitope in turn on the T- Lymphocytes can either be contained in a natural surface molecule of the T lymphocytes (in particular CD4, CD5, TCR, CD28), or it can have got onto the surface of the T lymphocytes by fusion of virus particles, in particular NDV viruses. Several bispecific constructs can be used together to generate the primary and secondary activation signal for the T lymphocyte. The use of bispecific antibodies also has the advantage that no transformation of the T lymphocytes is necessary.
Alle in diesem Beispiel aufgeführte Verfahren können auch für andere Effektorzellen angewendet werden, insbesondere für Natural Killer Zellen.All of the methods listed in this example can also be used for other effector cells, in particular for natural killer cells.
Beispiel 4:Example 4:
Gentherapie von GGT-positiven Karzinomen mit Vektoren wie Immuno-Liposomen oder Viren oder DNA, die durch das Targeting entweder einen negativen Effekt auf die Tumorzelle ausüben (Toxizität, Apoptose, Teilungsveminderung) oder eine das Immunsystem aktivierende Komponente (Z.B. B-7, IL-2) zur Expression bringen. Der rekombinante Antiköφer wird dabei auf bekanntem, chemischem Wege in die Liposomen integriert oder molekularbiologisch in das Genomen der Viren (z.B. Retroviren, Adenoviren) eingebaut. Für eine DNA- oder RNA-Vaccine werden die kodierenden Sequenzen des Antiköφers in ein geeignetes Expressionsplasmid integriert.Gene therapy of GGT-positive carcinomas with vectors such as immuno-liposomes or viruses or DNA, which targeting either have a negative effect on the tumor cell (toxicity, apoptosis, reduction in division) or a component that activates the immune system (eg B-7, IL- 2) express. The recombinant antibody is integrated into the liposomes in a known, chemical way or incorporated into the genome of the viruses (e.g. retroviruses, adenoviruses) from a molecular biological point of view. For a DNA or RNA vaccine, the coding sequences of the antibody are integrated into a suitable expression plasmid.
Beispiel 5:Example 5:
Nakzinierung mit antiidiotypischen Antiköφern oder deren antigenen Komponenten, auch als DNA bzw. RNA (s. Bsp. 4), die gegen Bindungspartner der GGT in vitro, in vivo, aus Antiköφerbibliotheken, transgenen Tieren etc. oder bei der Applikation am Menschen gewonnen werden. Dies führt zu einer Aktivierung des Immunsystems des Tumoφatienten, welche sich gegen den Tumor richtet und diesen dadurch kontrollieren oder zerstören kann.Acidification with anti-idiotypic antibodies or their antigenic components, also as DNA or RNA (see Example 4), which are obtained against GGT binding partners in vitro, in vivo, from antibody libraries, transgenic animals etc. or when applied to humans. This leads to an activation of the tumor patient's immune system, which is directed against the tumor and can thereby control or destroy it.
Beispiel 6:Example 6:
Isolierung von Tumorzellen aus Köφerflüssigkeiten (Knochenmark, Blut, Harn, Liquor) über Bindungspartner der GGT für die Therapie (z. B. Purging bei Knochenmark- bzw. Stammzelltransplantation, für in vttro-Gentransfer) oder Diagnostik (Nachweis von „minimal residual disease" (MRD), Relapse etc.). Dazu kann der Bindungspartner der GGT z. B. an magnetische Beads gekoppelt werden, womit mit Hilfe eines Magneten einzelne Tumorzellen aus einem großen Überschuß irrelevanter Zellen angereichert werden können. Isolation of tumor cells from body fluids (bone marrow, blood, urine, cerebrospinal fluid) via GGT binding partners for therapy (e.g. purging for bone marrow or stem cell transplantation, for in vttro gene transfer) or diagnostics (detection of "minimal residual disease" (MRD), relapse etc.) For this purpose, the binding partner of the GGT can be coupled, for example, to magnetic beads, with which a tumor can be used to enrich individual tumor cells from a large excess of irrelevant cells.

Claims

Patentansprüche: claims:
1. Mittel zur Diagnose und Therapie von Karzinomen, insbesondere von Nierenzellkarzinomen, auf der Basis von Substanzen, die Bindepartner der Gamma- Glutamyltransferase (GGT, EC 2.3.2.2) oder ihrer Isoformen oder enzymatisch inaktiver Varianten sind.1. Means for the diagnosis and therapy of carcinomas, in particular renal cell carcinomas, on the basis of substances which are binding partners of gamma-glutamyl transferase (GGT, EC 2.3.2.2) or their isoforms or enzymatically inactive variants.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, daß die Bindung durch einen natürlichen oder synthetischen Liganden der Gamma-Glutamyltransferase oder einer Modifikation eines solchen erfolgt.2. Composition according to claim 1, characterized in that the binding is carried out by a natural or synthetic ligand of gamma-glutamyl transferase or a modification thereof.
3. Mittel nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Bindung an Gamma- Glutamyltransferase durch Bindepartner gewährleistet wird, deren Binderegion auf der Gamma-Glutamyltransferase mit einem der Bindepartner überlappt, insbesondere mit dem Epitop des monoklonalen Antiköφers 138H11.3. Composition according to claim 1 and 2, characterized in that the binding to gamma-glutamyl transferase is ensured by binding partners whose binding region on the gamma-glutamyl transferase overlaps with one of the binding partners, in particular with the epitope of the monoclonal antibody 138H11.
4. Mittel nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß die Bindung an Gamma- Glutamyltransferase durch einen rekombinant hergestellten Liganden erfolgt, insbesondere durch einen rekombinanten Antiköφer oder durch ein rekombinantes Antiköφerfragment.4. Composition according to claim 1 to 3, characterized in that the binding to gamma-glutamyl transferase is carried out by a recombinantly produced ligand, in particular by a recombinant Antiköφer or by a recombinant Antiköφerfragment.
5. Mittel nach Anspruch 1 und 4, dadurch gekennzeichnet, daß der rekombinante Antiköφer oder das rekombinante Antiköφerfragment, welches die Bindung an Gamma-Glutamyltransferase bewirkt, aus einem Hybridom-Antiköφer (monoklonaler Antiköφer) abgeleitet ist, insbesondere aus dem monoklonalen Antiköφer 138H11, Sequenz der antigenbindenden Regionen s. Fig. 2).5. Composition according to claim 1 and 4, characterized in that the recombinant Antiköφer or the recombinant Antiköφerfragment, which causes the binding to gamma-glutamyltransferase, is derived from a hybridoma-Antiköφer (monoclonal Antiköφer), in particular from the monoclonal Antiköφer 138H11, sequence of the antigen-binding regions s. Fig. 2).
6. Mittel nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß das rekombinante Antiköφerfragment Aminosäuresequenzen der variablen Regionen aus Fig. 2 enthält.6. Composition according to claim 1 to 5, characterized in that the recombinant Antiköφerfragment contains amino acid sequences of the variable regions of FIG. 2.
7. Mittel nach Anspruch 6, dadurch gekennzeichnet, daß die Bindungsregion eines rekombinanten oder synthetischen Liganden der GGT, insbesondere eines Antiköφerfragments, das mindestens zu 80% homolog zu einer der hypervariablen Regionen (= CDR), insbesondere der CDR3 der schweren oder leichten Kette (s. Fig. 2), ist.7. Composition according to claim 6, characterized in that the binding region of a recombinant or synthetic ligand of the GGT, in particular an antibody fragment which is at least 80% homologous to one of the hypervariable regions (= CDR), in particular the CDR3 of the heavy or light chain ( see Fig. 2).
8. Mittel nach Anspruch 1-7, dadurch gekennzeichnet, daß die Bindepartner der Gamma- Glutamyltransferase durch Selektion aus einer Molekülbibliothek, insbesondere mit Hilfe von Phagendisplay oder Ribosomendisplay oder Modifikationen dieser Methoden gewonnen wurden.8. Composition according to claims 1-7, characterized in that the binding partners of the gamma glutamyl transferase by selection from a molecular library, in particular with Help from phage display or ribosome display or modifications of these methods were obtained.
9. Mittel nach Anspruch 1-8, dadurch gekennzeichnet, daß die Bindepartner der Gamma- Glutamyltransferase in transgenen Tieren, inbesondere Mäusen, oder in in vitro- Systemen, gewonnen werden, nachdem GGT, Epitope oder Mimotope der GGT oder Präparationen von Geweben oder Zellen, welche GGT, Epitope oder Mimotope der GGT enthalten, zur Immunisierung verwendet wurden.9. Composition according to claims 1-8, characterized in that the binding partners of the gamma-glutamyl transferase in transgenic animals, in particular mice, or in in vitro systems, are obtained after GGT, epitopes or mimotopes of GGT or preparations of tissues or cells containing GGT, epitopes or mimotopes of GGT were used for immunization.
10. Mittel nach Anspruch 1-9, dadurch gekennzeichnet, daß die Bindepartner der Gamma- Glutamyltransferase durch Humanisierung, chain shuffling, Affinitätsreifung, Mutationen zur Spezifitätsveränderung oder zur Verbesserung der Herstellung, durch Verkürzung, oder durch sonstige Modifikationen der Primärsequenz aus dem monoklonalen Antiköφer 138H11 abgeleitet wurden.10. Composition according to claims 1-9, characterized in that the binding partners of the gamma glutamyl transferase by humanization, chain shuffling, affinity maturation, mutations to change the specificity or to improve the production, by shortening, or by other modifications of the primary sequence from the monoclonal antibody 138H11 were derived.
11. Mittel nach Anspruch 1 auf der Basis von Substanzen, die Bindungspartner der Gamma- Glutamyltransferase gekoppelt an weitere Substanzen sind.11. A composition according to claim 1 based on substances which are binding partners of the gamma-glutamyl transferase coupled to other substances.
12. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß der Bindepartner an Substanzen gekoppelt ist, welche die Zellen in der Umgebung der Gamma- Glutamyltransferase schädigen oder abtöten können, insbesondere an Toxine oder RNasen, oder an Moleküle, welche die Bildung von Toxinen aus Vorstufen bewirken, oder an solche Vorstufen.12. Composition according to claim 11, characterized in that the binding partner is coupled to substances which can damage or kill the cells in the vicinity of the gamma-glutamyl transferase, in particular to toxins or RNases, or to molecules which form the formation of toxins from precursors effect, or at such preliminary stages.
13. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß der Bindepartner an Substanzen gekoppelt ist, welche radioaktive Strahlung aussenden, insbesondere an Substanzen, deren Radioaktivität therapeutischen oder diagnostischen Zwecken dient.13. A composition according to claim 11, characterized in that the binding partner is coupled to substances which emit radioactive radiation, in particular to substances whose radioactivity serves therapeutic or diagnostic purposes.
14. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß der Bindepartner an weitere Substanzen gekoppelt ist, welche eine Zerstörung von Zellen in der Umgebung der Gamma-Glutamyltransferase durch köφereigene Effektoren bewirken, im besonderen durch andere Zellen, besonders des Immunsystems, wie T-Lymphozyten, NK-Zellen, Granulozyten oder Makrophagen, oder durch Moleküle des Immunsystems, wie Complementproteinen.14. Composition according to claim 11, characterized in that the binding partner is coupled to other substances which cause destruction of cells in the vicinity of the gamma-glutamyl transferase by the body's own effectors, in particular by other cells, especially the immune system, such as T-lymphocytes , NK cells, granulocytes or macrophages, or by molecules of the immune system, such as complement proteins.
15. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß der Bindepartner der Gamma- Glutamyltransferase an der Oberfläche einer Effektorzelle verankert ist, insbesondere durch Kopplung an Komponenten des T-Zell-Rezeptors, oder durch ein auf der Oberfläche der Effektorzelle präsentiertes spezifisches Bindemolekül für das Molekül, das Bindepartner der Gamma-Glutamyltransferase enthält.15. Composition according to claim 11, characterized in that the binding partner of the gamma-glutamyl transferase is anchored on the surface of an effector cell, in particular by coupling to components of the T cell receptor, or by one on the Surface of the effector cell presented specific binding molecule for the molecule that contains binding partners of the gamma glutamyl transferase.
16. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß ein Agens, welche den Bindepartner der Gamma-Glutamyltransferase enthält, als Fusionsprotein rekombinant hergestellt wird, insbesondere mit Zytokinen wie Interleukinen oder Chemokinen.16. Composition according to claim 11, characterized in that an agent which contains the binding partner of the gamma-glutamyl transferase is produced recombinantly as a fusion protein, in particular with cytokines such as interleukins or chemokines.
17. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß ein Agens, welches den Bindepartner der Gamma-Glutamyltransferase enthält, hergestellt wird, indem Ankerdomänen angefügt werden, welche eine Kopplung an einen Effektor erlauben, insbesondere Avidin, Streptavidin oder Mutationen dieser Moleküle, oder Biotin, oder Streptavidin /Avidin-Bindepeptide, oder bakterielle Immunglobulin-Bindemoleküle wie Protein A, Protein G, Protein H, Protein L, oder Calmodulin, oder Calmodulin- Bindemoleküle, oder Fragmente von RNasen, oder nicht natürliche Sequenzen, welche an Fragmente von RNasen binden, oder Leucin-Zipper.17. Composition according to claim 11, characterized in that an agent which contains the binding partner of the gamma-glutamyl transferase is prepared by adding anchor domains which allow coupling to an effector, in particular avidin, streptavidin or mutations of these molecules, or biotin , or streptavidin / avidin binding peptides, or bacterial immunoglobulin binding molecules such as protein A, protein G, protein H, protein L, or calmodulin, or calmodulin binding molecules, or fragments of RNases, or unnatural sequences, which bind to fragments of RNases , or leucine zipper.
18. Mittel nach Anspruch 11, dadurch gekennzeichnet, daß ein Agens, welche den Bindepartner der Gamma-Glutamyltransferase enthält, an ein oder mehrere Polyethylenglykolmoleküle gekoppelt wird.18. Agent according to claim 11, characterized in that an agent which contains the binding partner of the gamma-glutamyl transferase is coupled to one or more polyethylene glycol molecules.
19. Verwendung des Mittels nach Anspruch 1-18, dadurch gekennzeichnet, daß es zur Diagnose oder Therapie von Tumoren eingesetzt wird, welche Gamma- Glutamyltransferase exprimieren, insbesondere von Nierenkarzinomen, Gliomen, Leberkarzinomen, Magenkarzinomen, Ovarialkarzinomen, Melanomen oder Mammakarzinomen.19. Use of the agent according to claims 1-18, characterized in that it is used for the diagnosis or therapy of tumors which express gamma-glutamyl transferase, in particular kidney carcinomas, gliomas, liver carcinomas, gastric carcinomas, ovarian carcinomas, melanomas or breast carcinomas.
20. Verwendung des Mittels nach Anspruch 1-18, dadurch gekennzeichnet, daß es zur Diagnose oder Therapie von Autoimmunerkrankungen eingesetzt wird, insbesonderen von Rheumatoidarthritis.20. Use of the agent according to claims 1-18, characterized in that it is used for the diagnosis or therapy of autoimmune diseases, in particular of rheumatoid arthritis.
21. Verwendung des Mittels nach Anspruch 1-18, dadurch gekennzeichnet, daß es zur Diagnose oder Therapie von Stof^echselerkrankungen eingesetzt wird, insbesonderen von Störungen der Leukotriensynthese, Bildung von Mercaptosäuren oder von Glutathion.21. Use of the agent according to claims 1-18, characterized in that it is used for the diagnosis or therapy of metabolic disorders, in particular disorders of leukotriene synthesis, formation of mercapto acids or glutathione.
22. Verwendung des Mittels nach Anspruch 1-18, dadurch gekennzeichnet, daß es zur (Differential)diagnose von Tumorerjkrankungen eingesetzt wird, im besonderen in der Immunszintigraphie, Immunhistochemie oder in Immunoassays wie ELISA oder zum Nachweis von MRD, Metastasen oder Relapse zur Differenzierung von Gamma- Glutamyltransferase-positiven Tumoren wie Nierentumoren, Gliomen oder Adenokarzinomen unbekannten Ursprungs (CUP-Syndrom). 22. Use of the agent according to claims 1-18, characterized in that it is used for the (differential) diagnosis of tumor diseases, in particular in immunoscintigraphy, immunohistochemistry or in immunoassays such as ELISA or for the detection of MRD, metastases or relapse to differentiate Gamma- Glutamyltransferase-positive tumors such as kidney tumors, gliomas or adenocarcinomas of unknown origin (CUP syndrome).
ReferenzliteraturRelated publications
1. Fischer P, Schmidt C, Kaufmann O, Dietel M, Baum RP, Wrasidlo W, Scherberich JE, Gaedicke G. Experimentelle Immunszintigraphie und Differentialdiagnostik mit dem monoklonalen Antiköφer 138H11. In: Schnorr D, Loening SA, (eds.) Nierenzellkarzinom - Renal Cell Carcinoma. Berlin, Wien: Blackwell Wiss.-Verl.; 1998:20-28.1. Fischer P, Schmidt C, Kaufmann O, Dietel M, Baum RP, Wrasidlo W, Scherberich JE, Gaedicke G. Experimental immunoscintigraphy and differential diagnosis with the monoclonal antibody 138H11. In: Schnorr D, Loening SA, (eds.) Renal cell carcinoma - Renal Cell Carcinoma. Berlin, Vienna: Blackwell Wiss.-Verl .; 1998: 20-28.
2. Fischer P, Baum RP, Tauber M, Boeckmann W, Störkel S, Weier S, Scherberich JE. Novel monoclonal antibody 138H11 against human gamma-glutamyltransferase: classification, histogenesis and immunoscintigraphy of renal tumors. In: Staehler G, Pomer S, (eds.) Basic and clinical research on renal cell carcinoma. Berlin, Heidelberg: Springer; 1992:148-155.2. Fischer P, Baum RP, Tauber M, Boeckmann W, Störkel S, Weier S, Scherberich JE. Novel monoclonal antibody 138H11 against human gamma-glutamyltransferase: classification, histogenesis and immunoscintigraphy of renal tumors. In: Staehler G, Pomer S, (eds.) Basic and clinical research on renal cell carcinoma. Berlin, Heidelberg: Springer; 1992: 148-155.
3. Fischer P, Scherberich JE, Schoeppe W. Comparative biochemical and immunological studies on gamma- glutamyltransferases from human kidney and renal cell carcinoma applying monoclonal antibodies. Clin.Chim.Acta. 1990; 191:185-200.3. Fischer P, Scherberich JE, Schoeppe W. Comparative biochemical and immunological studies on gamma-glutamyl transferases from human kidney and renal cell carcinoma applying monoclonal antibodies. Clin.Chim.Acta. 1990; 191: 185-200.
4. Fischer P, Scherberich JE. A monoclonal antibody to gamma-glutamyltransferases of human kidneys and renal tumors. Biol.Chem.Hoppe Seyler. 1989; 370:620 (Abstract)4. Fischer P, Scherberich JE. A monoclonal antibody to gamma-glutamyl transferases of human kidneys and renal tumors. Biol.Chem.Hoppe Seyler. 1989; 370: 620 (abstract)
5. Fischer P, Störkel S, Haase W, Scherberich JE. Differential diagnosis of histogenetically distinct human epithelial renal tumours with a monoclonal antibody against gamma- glutamyltransferase. Cancer Immunol.Immunother. 1991; 33:382- 388.5. Fischer P, Störkel S, Haase W, Scherberich JE. Differential diagnosis of histogenetically distinct human epithelial renal tumors with a monoclonal antibody against gamma-glutamyl transferase. Cancer Immunol.Immunother. 1991; 33: 382-388.
6. Fischer P, Scherberich JE, Schoeppe W. Monoclonal antibodies to gamma- glutamyltransferase and associated glycoproteins of human kidneys and renal cell carcinomas. In: Streilein JW, et al., (eds.) Advances in gene technology: the molecular biology of immune diseases and the immune response. ICSU Short reports 10: Proc. Miami Bio/Technology Winter Symp.; 1990:506. Fischer P, Scherberich JE, Schoeppe W. Monoclonal antibodies to gamma-glutamyl transferase and associated glycoproteins of human kidneys and renal cell carcinomas. In: Streilein JW, et al., (Eds.) Advances in gene technology: the molecular biology of immune diseases and the immune response. ICSU Short reports 10: Proc. Miami Bio / Technology Winter Symp .; 1990: 50
7. Schäfer C, Bahn H, Giese A, Fischer P, Holzhausen H-J, Fels C, Wellman M, Nisvikis A, Rainov ΝG. Gamma-glutamyltransferase expression in malignant gliomas in culture and in vivo. Proc.Am.Assoc.Cancer Res. 1999; 40:674 (Abstract)7. Schäfer C, Bahn H, Giese A, Fischer P, Holzhausen H-J, Fels C, Wellman M, Nisvikis A, Rainov ΝG. Gamma-glutamyltransferase expression in malignant gliomas in culture and in vivo. Proc.Am.Assoc.Cancer Res. 1999; 40: 674 (abstract)
8. Fischer P, Baum RP, Tauber M, Boeckmann W, Weier S, Scherberich JE. Immunoscintigraphic localization of renal tumours in an extracoφoreal perfusion model with a monoclonal antibody against gamma-glutamyltransferase. Cancer Immunol.Immunother. 1992; 35:283-288.8. Fischer P, Baum RP, Tauber M, Boeckmann W, Weier S, Scherberich JE. Immunoscintigraphic localization of renal tumors in an extracoφoreal perfusion model with a monoclonal antibody against gamma-glutamyltransferase. Cancer Immunol.Immunother. 1992; 35: 283-288.
9. Rachel U, Baum RP, Fischer P, Jonas D, Scherberich JE. Monoclonal antibody 138H11 in immunoscintigraphy of human kidney tumors~in vitro results. Investig. Urol.Berl. 1994; 5:66-68.9. Rachel U, Baum RP, Fischer P, Jonas D, Scherberich JE. Monoclonal antibody 138H11 in immunoscintigraphy of human kidney tumors ~ in vitro results. Investig. Urol.Berl. 1994; 5: 66-68.
10. Fischer P, Scherberich JE. Hybridomas reveal shared immunodominant epitopes of gamma-glutamyltransferase isoforms from human kidney and renal cell carcinoma. Tumor Biol. 1996; 17:369-377.10. Fischer P, Scherberich JE. Hybridomas reveal shared immunodominant epitopes of gamma-glutamyltransferase isoforms from human kidney and renal cell carcinoma. Tumor Biol. 1996; 17: 369-377.
11. Schmidt CS, Wrasidlo W, Kaufmann O, Scherberich JE, Gaedicke G, Fischer P. Monoclonal antibody 138H11 against gamma glutamyltransferase provides a possible tool for targeting calicheamicin to renal cell carcinomas. Adv.Exp.Med.Biol. 1998; 451:431-436.11. Schmidt CS, Wrasidlo W, Kaufmann O, Scherberich JE, Gaedicke G, Fischer P. Monoclonal antibody 138H11 against gamma glutamyltransferase provides a possible tool for targeting calicheamicin to renal cell carcinomas. Adv.Exp.Med.Biol. 1998; 451: 431-436.
12. Fischer P, Knoll K, Scherberich JE, Gaedicke G, Wrasidlo W. Targeted therapy of renal cell carcinoma xerografts with a chemoimmunoconjugate of mAb 138H11 and calicheamicin θ. Proc.Am.Assoc.Cancer Res. 2000; 41:79 (Abstract) 12. Fischer P, Knoll K, Scherberich JE, Gaedicke G, Wrasidlo W. Targeted therapy of renal cell carcinoma xerografts with a chemoimmunoconjugate of mAb 138H11 and calicheamicin θ. Proc.Am.Assoc.Cancer Res. 2000; 41:79 (abstract)
PCT/DE2001/001530 2000-04-22 2001-04-23 Means for diagnosing and treating carcinomas WO2001080904A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001265749A AU2001265749A1 (en) 2000-04-22 2001-04-23 Means for diagnosing and treating carcinomas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10020034.6 2000-04-22
DE2000120034 DE10020034A1 (en) 2000-04-22 2000-04-22 Means for diagnosis and therapy of carcinomas

Publications (2)

Publication Number Publication Date
WO2001080904A2 true WO2001080904A2 (en) 2001-11-01
WO2001080904A3 WO2001080904A3 (en) 2002-04-04

Family

ID=7639748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001530 WO2001080904A2 (en) 2000-04-22 2001-04-23 Means for diagnosing and treating carcinomas

Country Status (3)

Country Link
AU (1) AU2001265749A1 (en)
DE (1) DE10020034A1 (en)
WO (1) WO2001080904A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511651A (en) * 1982-07-30 1985-04-16 American Monitor Corporation Reagent composition and assay for the determination of γ-glutamyltransferase activity
EP0207406A2 (en) * 1985-06-20 1987-01-07 Fuji Photo Film Co., Ltd. Reagent sheet and integral multilayer analytical element for measurement of gamma-glutamyl transferase activity
WO1998017804A2 (en) * 1996-10-17 1998-04-30 Institut Pasteur A HELICOBACTER ANTIGEN (η-GLUTAMYLTRANSFERASE) AND SEQUENCES ENCODING THE SAME
US5854006A (en) * 1997-03-28 1998-12-29 The University Of Virginia Gamma-glutamyl transpeptidase-specific antibody, prodrugs for the treatment of gamma-glutamyl transpeptidase-expressing tumors, and methods of administration thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720152A1 (en) * 1997-05-02 1998-11-05 Max Delbrueck Centrum Retroviral vector system for gene therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511651A (en) * 1982-07-30 1985-04-16 American Monitor Corporation Reagent composition and assay for the determination of γ-glutamyltransferase activity
EP0207406A2 (en) * 1985-06-20 1987-01-07 Fuji Photo Film Co., Ltd. Reagent sheet and integral multilayer analytical element for measurement of gamma-glutamyl transferase activity
WO1998017804A2 (en) * 1996-10-17 1998-04-30 Institut Pasteur A HELICOBACTER ANTIGEN (η-GLUTAMYLTRANSFERASE) AND SEQUENCES ENCODING THE SAME
US5854006A (en) * 1997-03-28 1998-12-29 The University Of Virginia Gamma-glutamyl transpeptidase-specific antibody, prodrugs for the treatment of gamma-glutamyl transpeptidase-expressing tumors, and methods of administration thereof

Also Published As

Publication number Publication date
WO2001080904A3 (en) 2002-04-04
DE10020034A1 (en) 2001-10-31
AU2001265749A1 (en) 2001-11-07

Similar Documents

Publication Publication Date Title
EP2053063B1 (en) Recognition molecules for treatment and detection of tumours
KR102353885B1 (en) Antigen binding constructs to cd8
DE69909459T2 (en) CD19XCD3 SPECIFIC POLYPEPTIDES AND THEIR USE
JP4488746B2 (en) Anti-human tenascin monoclonal antibody
EP2480574A2 (en) Anti-cd33 antibodies and use thereof for immunotargeting in treating cd33-associated illnesses
DE10256900A1 (en) Tumor-specific recognition molecules
WO2013019730A1 (en) Antibodies to tip-1 and grp78
DE69020182T2 (en) Cross-linked antibodies and methods for their production.
JP2024512858A (en) Anti-TSLP nanoantibodies and their uses
JP5191036B2 (en) Anti-human tenascin monoclonal antibody
WO2021082573A1 (en) Anti-il-4r single-domain antibody and use thereof
DE69633506T2 (en) TRANSEPITHELIAL TRANSPORT OF MOLECULAR SPECIES
DE60109359T2 (en) USE OF ANTI-FERRITINE ANTIBODIES IN THE TREATMENT OF SPECIFIC CANCER TYPES
Savage et al. Construction, characterisation and kinetics of a single chain antibody recognising the tumour associated antigen placental alkaline phosphatase
JP2003513985A (en) Antibodies that bind non-naturally occurring enantiomers (L-biotin) and the use of such antibodies as targeting agents
DE69829001T2 (en) HUMANIZED MONOCLONAL ANTIBODIES WITH HIGH AFFINITY AGAINST DAY-72
Ceriani et al. Biological activity of two humanized antibodies against two different breast cancer antigens and comparison to their original murine forms
WO2001080904A2 (en) Means for diagnosing and treating carcinomas
EP1090927A1 (en) Polypeptide (scFv) for the detection and removal of CA19-9 antigen positive cells
DE69334036T2 (en) Hybridoma and humanized anti-KC-4 momoclonal antibody, DNA and RNA encoding it, kit and diagnostic methods
DE3854926T2 (en) USE OF ANTIBODIES AGAINST ANGIOGENIN: IMMUNOTHERAPEUTIC AGENTS
WO2001081423A1 (en) Antibodies against native gp96, production and use thereof
WO2024099310A1 (en) Anti-il-13 long-acting nanobody sequence and use thereof
DE69822779T2 (en) Human interleukin-2 peptide to increase vasopermeability and its immunoconjugates
WO2023066389A1 (en) Bispecific antibody targeting pd-1, and preparation therefor and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP