WO2001080321A1 - Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif - Google Patents

Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif Download PDF

Info

Publication number
WO2001080321A1
WO2001080321A1 PCT/FR2001/001172 FR0101172W WO0180321A1 WO 2001080321 A1 WO2001080321 A1 WO 2001080321A1 FR 0101172 W FR0101172 W FR 0101172W WO 0180321 A1 WO0180321 A1 WO 0180321A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
photovoltaic module
photovoltaic
switch
capacitor
Prior art date
Application number
PCT/FR2001/001172
Other languages
English (en)
Inventor
Jean-Paul Berry
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to EP01927977A priority Critical patent/EP1275157A1/fr
Priority to US10/257,369 priority patent/US20030159728A1/en
Priority to CA002406449A priority patent/CA2406449A1/fr
Priority to JP2001577615A priority patent/JP2004501506A/ja
Priority to AU54861/01A priority patent/AU773348B2/en
Publication of WO2001080321A1 publication Critical patent/WO2001080321A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a device intended to protect and preserve the photovoltaic cells of a photovoltaic module. It allows in particular to avoid abnormal functioning of the cells causing their heating and therefore their accelerated aging.
  • the device is thus designated by "anti-hot spot” device.
  • the invention finds applications in the production of photovoltaic generators.
  • Photovoltaic generators and in particular high power photovoltaic generators, are generally divided into several sub-generators.
  • the sub-generators comprise one or more photovoltaic modules, associated in a chain, and are themselves associated to increase the total power of the generator. Each sub-generator can then be equipped with a regulator allowing it to be controlled at its maximum power point.
  • the subdivision of the generators into sub-generators individually slaved to their maximum power point, aims to limit imbalances which may appear, or exist initially, between different photovoltaic modules of the generator.
  • Imbalances exist not only between modules, or chains of modules, but also between different individual photovoltaic cells making up the modules.
  • the operating imbalances can come from a non-homogeneous illumination of the photovoltaic cells, from differences between the temperatures of the cells, from their aging, from false contacts, or even from the surface condition of the cells.
  • the imbalances can also result from a dispersion of the initial physical characteristics of the associated cells. They are then accentuated by an illumination or a non-homogeneous operating temperature.
  • a cell whose polarity is reversed, absorbs the electrical energy of all the cells with which it is connected in series. It therefore receives significant electrical power, which may deteriorate it. In addition, the power absorbed by the cell is subtracted from the total power delivered by the generator.
  • the generator of FIG. 1 comprises a plurality of photovoltaic modules 10, identical to each other, connected in series to form a chain of modules.
  • the module chain is terminated by output terminals 12, 14 to which an electrical load can be connected.
  • the modules are for example modules with a power of 50 W, formed by the series connection of 36 photovoltaic cells.
  • the individual photovoltaic cells are not shown for reasons of clarity.
  • a bypass diode 20 is connected in parallel respectively to each module 10.
  • a defective cell therefore only supports a maximum power of 50 W when it operates as a receiver.
  • bypass diode 20 associated with the module containing the defective cell.
  • This has the additional advantage that the generator is only cut off from the power supplied by the module containing the defective cell.
  • the bypass diodes are reverse biased.
  • the bypass diode associated with a module containing a defective cell that is to say a module at the terminals of which the voltage collapses, lets pass the current imposed by the other modules of the chain, operating normally.
  • bypass diodes Although reducing certain negative effects, the use of bypass diodes does not make it possible to obtain generators whose reliability can be guaranteed over a long period of time.
  • a photovoltaic cell When a photovoltaic cell functions as a receiver, following an inversion of its polarity, it absorbs, as indicated previously, all or part of the energy supplied by the other cells in series with it.
  • the cell operating as a receiver sees its temperature increase under the effect of a thermal dissipation of the power received from the other cells of the module of which it is a part. This forms what is called the hot spot.
  • the hot spot lock may possibly disappear when the photovoltaic generator ceases to be lit, so that the current supplied to the locked cell disappears and its cooling is possible.
  • the object of the present invention is to propose a photovoltaic generator which does not have the problems mentioned above.
  • An aim is also to propose a device, called anti-hot spot device, which tends to reduce the premature aging of certain cells by avoiding their locking in hot spot.
  • an aim is to propose a simple and economical device making it possible to increase the life, reliability and production of photovoltaic generators.
  • the invention more specifically relates to an anti-hot spot device for at least one photovoltaic module connected in a chain of photovoltaic modules.
  • the device includes:
  • Means for detecting at least one operating characteristic of the photovoltaic module and
  • Means for preventing the flow of current in the module in response to the detection of an abnormal operating characteristic By preventing the flow of current in the module, it is in particular possible to prevent a current from passing through an inverted cell of the module.
  • An abnormal operating characteristic is understood to mean a characteristic which deviates from a tolerance range, for example when its value crosses, positively or negatively, a threshold value.
  • the bypass diode when a module has a defective cell, the bypass diode is always used to derive a current produced by the other modules in the chain, operating normally.
  • the module having a defective cell for example a cell whose polarity has been reversed following a operating imbalance, is isolated from the chain.
  • the electrical insulation of the module having a defective cell makes it possible to prevent the other cells of the module, which operate normally, from discharging a current in the defective cell, which would operate as a receiver.
  • the temperature of the defective cell is therefore neither maintained nor increased by heat dissipation.
  • the cell can thus find or maintain a temperature corresponding to that of neighboring cells.
  • the electrical insulation of the module concerned makes it possible to avoid locking in a hot spot of the defective cell. This allows faster restoration of a balance between the cell in question and the other cells of the module.
  • the equilibrium is understood here as a dispersion of characteristics sufficiently small to allow all the photovoltaic cells to function normally as a generator. However, this does not mean that the characteristics are perfectly identical from one cell to another.
  • the insulation of the module makes it possible to avoid premature aging of the defective cell, linked to locking in hot spot.
  • the means for isolating the photovoltaic module can include:
  • - a power switch connected in series with the photovoltaic module in the module chain, between the terminals of the bypass diode, and - Threshold control means, controlled by the means for detecting an operating characteristic, to open the switch in response to a crossing of the threshold.
  • threshold control means makes it possible not to cause isolation of the module for slight operating imbalances, but only when a malfunction such as a reverse polarity occurs for a cell.
  • the crossing of the threshold mentioned above can be a crossing by higher or lower values depending on the operating characteristic taken into account.
  • the opening of the switch can be caused by a value of the voltage below a threshold voltage corresponding to a lower limit of operation of the module considered to be normal.
  • the switch control means can include means for periodically causing the switch to close, independent of the operating characteristic.
  • each periodic closing of the switch is followed respectively by a new opening of the switch, caused by the detection of an operating characteristic corresponding to faulty operation.
  • the means for causing the periodic closing of the switch can be assimilated to a timed automatic "resetting" system making it possible to avoid switching off the entire generator, or any intervention by an operator.
  • the automatic delayed reset (monostable) means may include a capacitor, connected in parallel to the photovoltaic module and maintained in a state of charge by a resistor when the voltage across the module is greater than a threshold.
  • a discharge diode, in series with the capacitor, is then provided to discharge the capacitor when the bypass diode becomes conductive.
  • the capacitor, associated with the discharge diode is representative, by its state of charge, of an operating characteristic of the module. Indeed, the voltage across the capacitor is substantially equal to the voltage of the module in normal operation.
  • the means for controlling the power switch may include a threshold switch. This is connected to the terminals of the capacitor in order to carry out a switching as a function of the voltage existing between the terminals of the capacitor, that is to say as a function of its charge.
  • a threshold switch This is connected to the terminals of the capacitor in order to carry out a switching as a function of the voltage existing between the terminals of the capacitor, that is to say as a function of its charge.
  • the power switch opens (hangs).
  • the capacitor is then recharged by a resistor. At the end of a given time there is rearming.
  • the power switch may include one or more MOSFET transistors (metal-oxide-semiconductor field effect transistors).
  • MOSFET transistors metal-oxide-semiconductor field effect transistors.
  • the threshold switch makes it possible to operate the power switch either in a conducting mode, or in a blocked mode, to isolate or not the module.
  • the invention also relates to a photovoltaic generator comprising a plurality of photovoltaic modules connected in series, in which each photovoltaic module is equipped with an anti-hot spot device as described.
  • FIG. 1 is a schematic representation of a branch of a photovoltaic generator of known type, equipped with a chain of several photovoltaic modules.
  • FIG. 2 is a diagrammatic representation on a larger scale of a photovoltaic module equipped with an anti-hot spot device, according to the invention, and connected in a branch of a generator partially shown.
  • FIG. 2 shows a photovoltaic module 10 connected in series with other modules between a first terminal 12 and second terminal 14 of a photovoltaic generator to form a chain of modules.
  • terminal 12 is a negative terminal of the generators and terminal 14 is a positive terminal.
  • the module 10, of a type known per se, preferably comprises a plurality of photovoltaic cells connected in series. It is connected in a branch of the generator, in series with an MOSFET transistor 22 of type N whose source is connected to a first terminal 24 of the module and the drain of which is connected either to a terminal of a previous module in the chain, or, in the example of the figure, to the first terminal 12 of the generator.
  • the MOSFET transistor used here as a power switch, is part of an anti-hot spot device 30, also connected to a second terminal 26 of the module 10.
  • bypass diode 20 whose anode is connected to the drain of transistor 22 and whose cathode is connected to the second terminal 26 of the module.
  • the bypass diode 20 allows the passage of an electric current produced by other modules in the chain when the module in question, equipped with the diode, is isolated from the chain.
  • the gate of the MOSFET transistor 22 is connected to its source, and therefore to the first terminal 24 of the module, via a first bias resistor 32.
  • the grid is also connected to the second terminal 26 of the module, by a threshold switch 34 which is closed (in conduction) in a normal operating mode.
  • MOSFET 22 is conductive and connects module 10 to the chain, putting it in series with the other modules. Its grid is polarized at the module voltage by the closed control switch (conductor).
  • a transistor capable of conducting a high current and having a voltage drop sufficiently small to be negligible compared to the nominal voltage of the module is preferably chosen.
  • the threshold switch 34 is controlled by the voltage across a capacitor 36.
  • the capacitor is connected across the module via a second resistor 38 and a diode 40. More precisely, the second resistor and the diode are connected in parallel to each other, and connect one of the armatures of the capacitor 36 to the second terminal 26 of the module. The other armature of the capacitor is directly connected to the first terminal 24 of the module 10.
  • the diode 40 is also designated by "discharge diode" in the rest of the text.
  • the diode 40 When the module 10 operates normally, that is to say when all the cells of the module behave as a generator, the diode 40 is polarized in the blocking direction.
  • the capacitor 36 charged via the second resistor, makes it possible to apply a sufficient voltage to the input of the threshold switch 34 so that it remains closed (conductor).
  • the threshold switch 34 when the threshold switch 34 is closed (conductive), the MOSFET transistor 22 operates in conduction mode, and can be compared to a closed switch.
  • the discharge diode 40 When the voltage of the module 10 collapses following a conduction of the bypass diode 20 imposed by the current injected by the external chain, the discharge diode 40 is biased directly and discharges the capacitor 36.
  • the drop in capacitor voltage causes the threshold switch 34 to open (block).
  • the gate of the MOSFET 22 then discharges through the resistor 32.
  • the MOSFET 22 opens (blocks). It then behaves like an open switch and isolates the module 10 considered from the other modules in the chain.
  • the capacitor 36 After its discharge, the capacitor 36 does not remain in a discharged state. It recharges at the terminals of the isolated module 10, via the second resistor 38.
  • the capacitor 36 remains charged and the module is kept connected in the chain. If, on the other hand, the fault persists, a new discharge of the capacitor 36 takes place through the discharge diode 40 and the module is again isolated by blocking the MOSFET transistor 22.
  • the temporary isolation of a module makes it possible to avoid locking in a hot spot and therefore preserves the cells concerned from premature aging.
  • the photoelectric generator comprises a chain of photoelectric modules 10 each associated with an anti-hot spot device 30.
  • the assembly formed by a module and a anti-hot spot device is identified with the reference 50.
  • only two assemblies 50 of the chain of FIG. 2 are shown.
  • an anti-hot spot device can be associated with a variable number of photovoltaic cells or modules.
  • the generator can comprise several chains of modules in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Dispositif anti-point chaud pour au moins un module photovoltaïque (10) comprenant : une diode (20) de dérivation du module photovoltaïque, des moyens (36, 40) de détection d'au moins une caractéristique de fonctionnement du module photovoltaïque, et des moyens (22, 34) pour isoler le module photovoltaïque (10) de la chaîne en réponse à la détection d'une caractéristique de fonctionnement anormale.

Description

DISPOSITIF ANTI-POINTS CHAUDS POUR MODULE
PHOTOVOLTAÏQUE ET MODULE PHOTOVOLTAÏQUE EQUIPE
D'UN TEL DISPOSITIF
DESCRIPTION
Domaine technique
La présente invention concerne un dispositif destiné à protéger et préserver les cellules photovoltaïques d'un module photovoltaïque. Il permet en particulier d'éviter un fonctionnement anormal des cellules provoquant leur chauffement et donc leur vieillissement accéléré.
Le dispositif est ainsi désigné par dispositif "anti-point chaud" .
L'invention trouve des applications dans la réalisation de générateurs photovoltaïques.
Etat de la techniqτιe antérieure Les générateurs photovoltaïques, et en particulier les générateurs photovoltaïques de forte puissance, sont généralement divisés en plusieurs sous-générateurs .
Les sous-générateurs comportent un ou plusieurs modules photovoltaïques, associés en une chaîne, et sont eux-mêmes associés pour accroître la puissance totale du générateur. Chaque sous-générateur peut alors être équipé d'un régulateur permettant de l'asservir à son point de puissance maximum. La subdivision des générateurs en sous-générateurs asservis individuellement à leur point de puissance maximum, a pour but de limiter des déséquilibres pouvant apparaître, ou exister initialement, entre différents modules photovoltaïques du générateur.
Les déséquilibres existent non seulement entre les modules, ou chaînes de modules, mais aussi entre différentes cellules photovoltaïques individuelles composant les modules . Les déséquilibres de fonctionnement peuvent provenir d'un éclairement non-homogène des cellules photovoltaïques, de différences entre les températures des cellules, de leur vieillissement, de faux contacts, ou encore de l'état de surface des cellules. Les déséquilibres peuvent aussi provenir d'une dispersion des caractéristiques physiques initiales des cellules associées. Ils sont alors accentués par un éclairement ou une température de fonctionnement non-homogène.
Les déséquilibres de fonctionnement, lorsqu'ils sont importants, peuvent entraîner une inversion de la polarité de certaines cellules photovoltaïques dans les modules . Ces cellules fonctionnent alors en récepteur plutôt qu'en générateur de courant, et absorbent de l'énergie électrique au lieu d'en fournir.
Plus précisément, une cellule dont la polarité est inversée, absorbe l'énergie électrique de toutes les cellules avec lesquelles elle est connectée en série. Elle reçoit donc une puissance électrique importante, susceptible de la détériorer. De plus, la puissance absorbée par la cellule est soustraite à la puissance totale délivrée par le générateur.
Pour limiter la puissance absorbée par une cellule défectueuse, il est connu d'associer une diode de dérivation à des ensembles formés d'un certain nombre de cellules en série. Un générateur équipé de diodes de dérivation est illustré par la figure 1 annexée.
Le générateur de la figure 1 comprend une pluralité de modules photovoltaïques 10, identiques l'un à l'autre, connectés en série pour former une chaîne de modules. La chaîne de modules est terminée par des bornes de sortie 12, 14 auxquelles peut être connectée une charge électrique.
Les modules sont par exemple des modules d'une puissance de 50 W, formés par la mise en série de 36 cellules photovoltaïques. Sur la figure, les cellules photovoltaïques individuelles ne sont pas représentées pour des raisons de clarté.
Comme le montre la figure 1, une diode de dérivation 20 est connectée en parallèle respectivement à chaque module 10.
Dans un dispositif conforme à la figure 1, lorsqu'une cellule individuelle de l'un des modules photovoltaïques trouve sa polarité inversée, elle absorbe non pas la puissance électrique fournie par
1 ' ensemble des cellules en série entre les bornes de sortie 12, 14, mais seulement la puissance fournie par les cellules du module photovoltaïque dont elle fait partie. Ainsi, dans l'exemple choisi, une cellule défectueuse ne supporte donc qu'une puissance maximale de 50 W lorsqu'elle fonctionne en récepteur.
Le courant fourni par les autres modules de la chaîne passe par la diode de dérivation 20 associée au module contenant la cellule défectueuse. Ceci a pour avantage supplémentaire que le générateur n'est amputé que de la puissance fournie par le module contenant la cellule défectueuse. En fonctionnement normal les diodes de dérivation sont polarisées en inverse. Cependant, la diode de dérivation associée à un module contenant une cellule défectueuse, c'est-à-dire un module aux bornes duquel la tension s'effondre, laisse passer le courant imposé par les autres modules de la chaîne, fonctionnant normalement .
Bien que réduisant certains effets négatifs, l'utilisation de diodes de dérivation ne permet pas d'obtenir des générateurs' dont la fiabilité puisse être garantie sur une période de temps longue .
En effet, certain nombre de problèmes supplémentaires, identifiés par l'inventeur, et exposés ci-après, contribuent à la réduction de la durée de vie et de la production des générateurs photovoltaïques .
Lorsqu'une cellule photovoltaïque fonctionne en récepteur, suite à une inversion de sa polarité, elle absorbe, comme indiqué précédemment, tout ou partie de l'énergie fournie par les autres cellules en série avec elle.
Ainsi, même lorsque des diodes de dérivation sont prévues, la cellule fonctionnant en récepteur voit sa température augmenter sous l'effet d'une dissipation thermique de la puissance reçue des autres cellules du module dont elle fait partie. Il se forme ainsi ce qu'on appelle le point chaud.
L'augmentation de la température accroît alors le déséquilibre entre cette cellule et les autres cellules demeurant à la température normale . Ce mécanisme conduit à un verrouillage en point chaud, c'est-à-dire un verrouillage qui empêche le retour de la cellule à un mode de fonctionnement normal, en générateur, même lorsque la cause du déséquilibre initial a disparu.
Le verrouillage en point chaud peut éventuellement disparaître lorsque le générateur photovoltaïque cesse d'être éclairé, de sorte que le courant fourni à la cellule verrouillée disparaisse et que son refroidissement soit possible.
Toutefois, on observe un vieillissement accéléré des cellules lorsqu'elles sont verrouillées en point-chaud. Les caractéristiques physiques de ces cellules évoluent en effet différemment des cellules fonctionnant normalement. Ceci a pour conséquence d'accroître les dispersions de caractéristiques et les déséquilibres entre cellules, et donc de favoriser le mécanisme de verrouillage en point chaud.
Le vieillissement prématuré de certaines cellules multiplie aussi le nombre de verrouillages en point chaud et réduit la durée de vie et la fiabilité de
1 ' ensemble du générateur .
Exposé de 1 ' invention
La présente invention a pour but de proposer un générateur photovoltaïque ne présentant pas les problèmes mentionnés ci-dessus. Un but est aussi de proposer un dispositif, appelé dispositif anti-point chaud, qui tend à réduire le vieillissement prématuré de certaines cellules en évitant de leur verrouillage en point chaud.
Un but est enfin de proposer un dispositif simple et économique permettant d'augmenter la durée de vie, la fiabilité et la production des générateurs photovoltaïques . Pour atteindre ces buts, l'invention a plus précisément pour objet un dispositif anti-point chaud pour au moins un module photovoltaïque connecté dans une chaîne de modules photovoltaïques. Le dispositif comprend :
— une diode de dérivation du module photovoltaïque ,
— des moyens de détection d'au moins une caractéristique de fonctionnement du module photovoltaïque, et
— des moyens pour empêcher la circulation d'un courant dans le module en réponse à la détection d'une caractéristique de fonctionnement anormale. En empêchant la circulation d'un courant dans le module on peut, en particulier, éviter qu'un courant ne traverse une cellule inversée du module.
On entend par caractéristique de fonctionnement anormale une caractéristique qui s'écarte d'une plage de tolérance, par exemple lorsque sa valeur franchit, positivement ou négativement, une valeur de seuil.
Dans le dispositif de l'invention, lorsqu'un module présente une cellule défectueuse, la diode de dérivation sert toujours à dériver un courant produit par les autres modules de la chaîne, fonctionnant normalement .
De plus, conformément à l'invention, le module présentant une cellule défectueuse, par exemple une cellule dont la polarité s'est inversée suite à un déséquilibre de fonctionnement, se trouve isolé de la chaîne .
L'isolation électrique du module présentant une cellule défectueuse permet d'éviter que les autres cellules du module, qui fonctionnent normalement, ne débitent un courant dans la cellule défectueuse, qui fonctionnerait en récepteur.
La température de la cellule défectueuse n'est donc pas entretenue ni augmentée par une dissipation thermique. La cellule peut ainsi retrouver ou conserver une température correspondant à celle des cellules voisines. En d'autres termes, l'isolation électrique du module concerné permet d'éviter le verrouillage en point chaud de la cellule défectueuse. Ceci permet un rétablissement plus rapide d'un équilibre entre la cellule en question et les autres cellules du module. L'équilibre est compris ici comme une dispersion de caractéristiques suffisamment faible pour permettre à toutes les cellules photovoltaïques de fonctionner normalement en générateur. Cela ne suppose toutefois pas que les caractéristiques soient parfaitement identiques d'une cellule à l'autre.
En outre, l'isolation du module permet d'éviter le vieillissement prématuré de la cellule défectueuse, lié au verrouillage en point chaud.
Selon une réalisation particulière du dispositif, les moyens pour isoler le module photovoltaïque peuvent comporter :
— un interrupteur de puissance connecté en série avec le module photovoltaïque dans la chaîne de modules, entre les bornes de la diode de dérivation, et — des moyens, à seuil, de commande de l'interrupteur, pilotés par les moyens de détection d'une caractéristique de fonctionnement, pour ouvrir l'interrupteur en réponse à un franchissement du seuil .
L'utilisation de moyens de commande à seuil permet de ne pas provoquer d'isolation du module pour de légers déséquilibres de fonctionnement, mais seulement lorsqu'un dysfonctionnement tel qu'une inversion de polarité se produit pour une cellule.
Par ailleurs, on peut observer que la mise en série de 1 ' interrupteur avec le module photovoltaïque entre les bornes de la diode de dérivation, permet d'éviter que cette diode, lorsqu'elle est en conduction, ne mette en court-circuit le module isolé.
Le franchissement du seuil mentionné ci-dessus peut être un franchissement par valeurs supérieures ou inférieures selon la caractéristique de fonctionnement prise en compte. A titre d'exemple, lorsque la caractéristique de fonctionnement détectée est une tension aux bornes du module, ou une valeur liée à cette tension, l'ouverture de 1 ' interrupteur peut être provoquée par une valeur de la tension inférieure à une tension de seuil correspondant à une limite inférieure d'un fonctionnement du module considéré comme normal.
Dans un autre exemple, où l'on détecterait la température des cellules, une ouverture de 1 ' interrupteur pourrait être provoquée en réponse à la détection d'une température d'une cellule photovoltaïque excédant une température de consigne maximale . Selon une autre particularité avantageuse de l'invention, les moyens de commande de l'interrupteur peuvent comporter des moyens pour provoquer périodiquement une fermeture de l'interrupteur, indépendante de la caractéristique de fonctionnement.
Cette caractéristique permet de maintenir l'état d'isolement du module le moins longtemps possible. En effet, si la cause du dysfonctionnement a disparu, la fermeture de 1 ' interrupteur permet de remettre en circuit le module et recouvrer ainsi la pleine puissance de la chaîne.
Si, en revanche, le déséquilibre de la cellule persiste, chaque fermeture périodique de l'interrupteur est suivie respectivement d'une nouvelle ouverture de l'interrupteur, provoqué par la détection d'une caractéristique de fonctionnement correspondant à un fonctionnement défectueux.
Les moyens pour provoquer la fermeture périodique de l'interrupteur sont assimilables à un système de "réarmement" automatique temporisé permettant d'éviter une mise hors circuit de l'ensemble du générateur, ou une quelconque intervention d'un opérateur.
Dans une mise en oeuvre particulière des moyens de réarmement automatique temporisé (monostable) ceux-ci peuvent comporter un condensateur, connecté en parallèle au module photovoltaïque et maintenu dans un état de charge par une résistance lorsque la tension aux bornes du module est supérieure à un seuil. Une diode de décharge, en série avec le condensateur, est alors prévue pour décharger le condensateur lorsque la diode de dérivation devient conductrice. Dans cette réalisation, le condensateur, associé à la diode de décharge, est représentatif, par son état de charge, d'une caractéristique de fonctionnement du module. En effet, la tension aux bornes du condensateur est sensiblement égale à la tension du module en fonctionnement normal.
En association avec le condensateur, les moyens de commande de 1 ' interrupteur de puissance peuvent comporter un commutateur à seuil. Celui-ci est connecté aux bornes du condensateur pour effectuer une commutation en fonction de la tension existant entre les bornes du condensateur, c'est-à-dire en fonction de sa charge. Lorsque la tension aux bornes du condensateur passe en dessous d'un seuil (par décharge à travers la diode) l'interrupteur de commande s'ouvre
(se bloque). La grille de l'interrupteur de puissance n'est plus polarisée par l'interrupteur de commande et se décharge à travers une résistance grille-drain.
L'interrupteur de puissance s'ouvre (se bloque). Le condensateur est rechargé alors par une résistance. Au bout d'un temps donné il y a réarmement.
L'interrupteur de puissance peut comporter un ou plusieurs transistors MOSFET (transistors à effet de champ de type métal-oxyde-semiconducteur) . Dans ce cas, le commutateur de seuil permet de faire fonctionner 1 ' interrupteur de puissance soit dans un régime conducteur, soit dans un régime bloqué, pour isoler ou non le module.
L ' invention concerne également un générateur photovoltaïque comprenant une pluralité de modules photovoltaïques connectés en série, dans lequel chaque module photovoltaïque est équipé d'un dispositif anti-point chaud tel que décrit.
D'autres caractéristiques et avantages de
1 ' invention ressortiront de la description qui va suivre, en référence aux figures des dessins annexés.
Cette description est donnée à titre purement illustratif et non limitatif.
Brève description des figures La figure 1, déjà décrite, est une représentation schématique d'une branche d'un générateur photovoltaïque de type connu, équipée d'une chaîne de plusieurs modules photovoltaïques.
La figure 2 est une représentation schématique à plus grande échelle d'un module photovoltaïque équipé d'un dispositif anti-point chaud, conforme à l'invention, et connecté dans une branche d'un générateur partiellement représenté.
Description détaillée de modes de mise en oeuvre de 1 ' invention
La figure 2 montre un module photovoltaïque 10 connecté en série avec d'autres modules entre une première borne 12 et deuxième borne 14 d'un générateur photovoltaïque pour former une chaîne de modules. Dans l'exemple de la figure, la borne 12 est une borne négative des générateurs et la borne 14 est une borne positive. Le module 10, d'un type connu en soi, comporte de préférence une pluralité de cellules photovoltaïques connectées en série. Il est connecté dans une branche du générateur, en série avec un transistor MOSFET 22 de type N dont la source est reliée à une première borne 24 du module et dont le drain est relié soit à une borne d'un module précédent dans la chaîne, soit, dans l'exemple de la figure, à la première borne 12 du générateur. Le transistor MOSFET, utilisé ici comme interrupteur de puissance, fait partie d'un dispositif anti-point chaud 30, relié par ailleurs à une deuxième borne 26 du module 10.
On observe également une diode de dérivation 20 dont l'anode est reliée au drain du transistor 22 et dont la cathode est reliée à la deuxième borne 26 du module. La diode de dérivation 20 permet le passage d'un courant électrique produit par d'autres modules de la chaîne lorsque le module considéré, équipé de la diode, se trouve isolé de la chaîne. La grille du transistor MOSFET 22 est reliée à sa source, et donc à la première borne 24 du module, par l'intermédiaire d'une première résistance 32 de polarisation. La grille est encore reliée à la deuxième borne 26 du module, par un commutateur à seuil 34 qui est fermé (en conduction) dans un mode de fonctionnement normal.
Dans ce mode de fonctionnement, le transistor
MOSFET 22 est conducteur et relie le module 10 à la chaîne, en le mettant en série avec les autres modules. Sa grille est polarisée à la tension du module par l'interrupteur de commande fermé (conducteur).
A cet effet, on choisit de préférence un transistor capable de conduire un fort courant et présentant une chute de tension suffisamment faible pour être négligeable par rapport à la tension nominale du module . Le commutateur à seuil 34 est commandé par la tension aux bornes d'un condensateur 36. Le condensateur est connecté aux bornes du module par l'intermédiaire d'une deuxième résistance 38 et d'une diode 40. Plus précisément, la deuxième résistance et la diode sont connectées en parallèle l'une à l'autre, et relient l'une des armatures du condensateur 36 à la deuxième borne 26 du module. L'autre armature du condensateur est directement reliée à la première borne 24 du module 10. La diode 40 est encore désignée par "diode de décharge" dans la suite du texte.
Lorsque le module 10 fonctionne normalement, c'est-à-dire lorsque toutes les cellules du module se comportent en générateur, la diode 40, est polarisée dans le sens bloquant. Le condensateur 36, chargé par l'intermédiaire de la deuxième résistance permet d'appliquer à l'entrée du commutateur à seuil 34 une tension suffisante pour que celui-ci se maintienne fermé (conducteur) . Or, comme indiqué précédemment, lorsque le commutateur à seuil 34 est fermé (conducteur) , le transistor MOSFET 22 fonctionne en régime de conduction, et est assimilable à un interrupteur fermé .
Lorsque la tension du module 10 s'effondre suite à une mise en conduction de la diode de dérivation 20 imposée par le courant injecté par la chaîne externe, la diode de décharge 40 se polarise en direct et décharge le condensateur 36.
La chute de la tension du condensateur provoque l'ouverture (blocage) du commutateur à seuil 34. La grille du MOSFET 22 se décharge alors à travers la résistance 32. Le MOSFET 22 s'ouvre (se bloque). Il se comporte alors comme un interrupteur ouvert et isole le module 10 considéré des autres modules de la chaîne.
Après sa décharge, le condensateur 36 ne reste pas dans un état déchargé. Il se recharge aux bornes du module isolé 10, par l'intermédiaire de la deuxième résistance 38.
Dès que la tension aux bornes du condensateur dépasse à nouveau le seuil du commutateur 34, celui-ci se ferme (conduit) et le transistor MOSFET 22 est remis en conduction.
Si le défaut de fonctionnement affectant le module considéré 10, ou tout au moins l'une de ses cellules, a disparu, le condensateur 36 reste chargé et le module est maintenu connecté dans la chaîne. Si en revanche, le défaut persiste, une nouvelle décharge du condensateur 36 s'opère à travers la diode de décharge 40 et le module se trouve à nouveau isolé par blocage du transistor MOSFET 22. L'ensemble formé par le condensateur 36, la diode de décharge 40 et la deuxième résistance 38, constitue ainsi un circuit monostable qui fixe le temps pendant lequel le module est isolé.
Comme expliqué précédemment, l'isolation temporaire d'un module permet d'éviter des verrouillages en point chaud et préserve donc les cellules concernées d'un vieillissement prématuré.
Dans l'exemple décrit ici, le générateur photoélectrique comprend une chaîne de modules photoélectriques 10 associés chacun à un dispositif anti-point chaud 30. L'ensemble formé par un module et un dispositif anti-point chaud est repéré avec la référence 50. Pour des raisons de simplification, seuls deux ensembles 50 de la chaîne de la figure 2 sont représentés .
Il convient de préciser également qu'un dispositif anti-point chaud peut être associé à un nombre variable de cellules ou de modules photovoltaïques.
En outre, il convient de préciser que le générateur peut comporter plusieurs chaînes de modules en parallèle.

Claims

REVENDICATIONS
1. Dispositif anti-point chaud pour au moins un module photovoltaïque (10) connecté dans une chaîne de modules photovoltaïques, comprenant :
- une diode (20) de dérivation du module photovoltaïque,
- des moyens (36, 40) de détection d'au moins une caractéristique de fonctionnement du module photovoltaïque, et
- des moyens (22, 34) pour empêcher la circulation d'un courant dans le module photovoltaïque (10) de la chaîne, en réponse à la détection d'une caractéristique de fonctionnement anormale.
2. Dispositif selon la revendication 1, dans lequel les moyens pour empêcher la circulation d'un courant dans le module photovoltaïque comportent :
— un interrupteur de puissance (22) connecté en série avec le module photovoltaïque (10) dans la chaîne de modules, entre les bornes de la diode de dérivation (20) , et
— des moyens (34) de commande de l'interrupteur, pilotés par les moyens de détection d'une caractéristique de fonctionnement, pour ouvrir
1 ' interrupteur en réponse à un franchissement d'un seuil par la caractéristique.
3. Dispositif selon la revendication 2, comportant en outre des moyens (38) pour provoquer périodiquement une fermeture de l'interrupteur, indépendante de la caractéristique de fonctionnement.
4. Dispositif selon la revendication 3, dans lequel les moyens (38) pour provoquer périodiquement une fermeture de 1 ' interrupteur de puissance font partie d'un circuit monostable (36, 38, 40).
5. Dispositif selon la revendication 1 ou 2 , dans lequel la caractéristique de fonctionnement est une tension aux bornes du module photovoltaïque.
6. Dispositif selon la revendication 5, dans lequel les moyens pour détecter la caractéristique de fonctionnement comportent un condensateur (36) , connecté en parallèle au module photovoltaïque et maintenu dans un état de charge lorsque la tension aux bornes du module est supérieure à un seuil de conduction de la diode de dérivation (20), et une diode de décharge (40) , en série avec le condensateur (36) , pour décharger le condensateur lorsque la diode de dérivation (20) devient conductrice.
7. Dispositif selon la revendication 2, dans lequel les moyens de commande de 1 ' interrupteur de puissance comportent un commutateur à seuil (34) , connecté aux bornes du condensateur (36) .
8. Dispositif selon la revendication 2, dans lequel l'interrupteur de puissance (22) comporte un transistor MOSFET.
9. Générateur photovoltaïque comprenant une pluralité de modules photovoltaïques (10) connectés en série, dans lequel chaque module photovoltaïque est équipé d'un dispositif anti-point chaud (30) conforme à 1 ' une quelconque des revendications précédentes .
10. Module photovoltaïque comprenant une pluralité de cellules photovoltaïques et un dispositif anti-point chaud conforme à l'une quelconque des revendications 1 à 8.
PCT/FR2001/001172 2000-04-18 2001-04-17 Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif WO2001080321A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01927977A EP1275157A1 (fr) 2000-04-18 2001-04-17 Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif
US10/257,369 US20030159728A1 (en) 2000-04-18 2001-04-17 Device for protecting a photovoltaic module against hot spots and photovoltaic module equipped with same
CA002406449A CA2406449A1 (fr) 2000-04-18 2001-04-17 Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif
JP2001577615A JP2004501506A (ja) 2000-04-18 2001-04-17 光起電性モジュールのためのアンチホットスポットデバイス、および、そのようなデバイスを備えられた光起電性モジュール
AU54861/01A AU773348B2 (en) 2000-04-18 2001-04-17 Device for protecting a photovoltaic module against hot spots and photovoltaic module equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0004976A FR2807882B1 (fr) 2000-04-18 2000-04-18 Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif
FR00/04976 2000-04-18

Publications (1)

Publication Number Publication Date
WO2001080321A1 true WO2001080321A1 (fr) 2001-10-25

Family

ID=8849369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001172 WO2001080321A1 (fr) 2000-04-18 2001-04-17 Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif

Country Status (8)

Country Link
US (1) US20030159728A1 (fr)
EP (1) EP1275157A1 (fr)
JP (1) JP2004501506A (fr)
AU (1) AU773348B2 (fr)
CA (1) CA2406449A1 (fr)
FR (1) FR2807882B1 (fr)
WO (1) WO2001080321A1 (fr)
ZA (1) ZA200208345B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2171765A2 (fr) * 2007-08-03 2010-04-07 Advanced Energy Industries, Inc. Système, procédé et appareil pour coupler des réseaux de photopiles
FR2955208A1 (fr) * 2010-01-12 2011-07-15 Arnaud Thierry Systeme de gestion et de commande de panneaux photovoltaiques
FR2955209A1 (fr) * 2010-01-12 2011-07-15 Arnaud Thierry Systeme de gestion et de commande de panneaux photovoltaiques
WO2011098235A3 (fr) * 2010-02-09 2012-06-07 Wieland Electric Gmbh Circuit de dérivation de module pour un module photovoltaïque
US9172296B2 (en) 2007-05-23 2015-10-27 Advanced Energy Industries, Inc. Common mode filter system and method for a solar power inverter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005036153B4 (de) * 2005-05-24 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schutzschalteinrichtung für ein Solarmodul
JP2007059423A (ja) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology 太陽光発電制御装置
US7893349B2 (en) * 2009-02-19 2011-02-22 Suncore, Inc. Photovoltaic multi-junction wavelength compensation system and method
US8319470B2 (en) 2010-02-12 2012-11-27 Suncore, Inc. Stand alone solar battery charger
US10615743B2 (en) * 2010-08-24 2020-04-07 David Crites Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
US20120049855A1 (en) * 2010-08-24 2012-03-01 Crites David E Dark IV monitoring system for photovoltaic installations
CN104778345A (zh) * 2015-01-07 2015-07-15 天津大学 一种模拟光伏电池模型老化故障的非线性参数计算方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456782A (en) * 1981-03-20 1984-06-26 Fuji Electric Co., Ltd. Solar cell device
US4481378A (en) * 1982-07-30 1984-11-06 Motorola, Inc. Protected photovoltaic module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317056A (en) * 1980-03-24 1982-02-23 Gte Products Corporation Voltage monitoring and indicating circuit
DE3307202A1 (de) * 1983-03-01 1984-09-06 Siemens AG, 1000 Berlin und 8000 München Solarzellenmodul
JPH11330521A (ja) * 1998-03-13 1999-11-30 Canon Inc 太陽電池モジュ―ル、太陽電池アレイ、太陽光発電装置、太陽電池モジュ―ルの故障特定方法
JP2000269531A (ja) * 1999-01-14 2000-09-29 Canon Inc 太陽電池モジュール、太陽電池モジュール付き建材、太陽電池モジュール外囲体及び太陽光発電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456782A (en) * 1981-03-20 1984-06-26 Fuji Electric Co., Ltd. Solar cell device
US4481378A (en) * 1982-07-30 1984-11-06 Motorola, Inc. Protected photovoltaic module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9172296B2 (en) 2007-05-23 2015-10-27 Advanced Energy Industries, Inc. Common mode filter system and method for a solar power inverter
EP2171765A2 (fr) * 2007-08-03 2010-04-07 Advanced Energy Industries, Inc. Système, procédé et appareil pour coupler des réseaux de photopiles
EP2171765A4 (fr) * 2007-08-03 2012-11-28 Advanced Energy Ind Inc Système, procédé et appareil pour coupler des réseaux de photopiles
FR2955208A1 (fr) * 2010-01-12 2011-07-15 Arnaud Thierry Systeme de gestion et de commande de panneaux photovoltaiques
FR2955209A1 (fr) * 2010-01-12 2011-07-15 Arnaud Thierry Systeme de gestion et de commande de panneaux photovoltaiques
WO2011086295A2 (fr) 2010-01-12 2011-07-21 Arnaud, Thierry Système de gestion et de commande de panneaux photovoltaïques
WO2011086295A3 (fr) * 2010-01-12 2011-09-09 Arnaud, Thierry Système de gestion et de commande de panneaux photovoltaïques
CN102770970A (zh) * 2010-01-12 2012-11-07 斯瑞·阿诺 用于管理和控制光伏板的系统
AU2011206464B2 (en) * 2010-01-12 2015-06-11 Arnaud, Thierry System for managing and controlling photovoltaic panels
WO2011098235A3 (fr) * 2010-02-09 2012-06-07 Wieland Electric Gmbh Circuit de dérivation de module pour un module photovoltaïque

Also Published As

Publication number Publication date
FR2807882B1 (fr) 2002-05-24
AU5486101A (en) 2001-10-30
AU773348B2 (en) 2004-05-20
FR2807882A1 (fr) 2001-10-19
EP1275157A1 (fr) 2003-01-15
JP2004501506A (ja) 2004-01-15
CA2406449A1 (fr) 2001-10-25
ZA200208345B (en) 2003-10-13
US20030159728A1 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
EP2452384B1 (fr) Batterie d'accumulateurs a pertes reduites
EP1764891B1 (fr) Déclencheur électronique pourvu de moyens de surveillance et procédé de surveillance correspondant
WO2001080321A1 (fr) Dispositif anti-points chauds pour module photovoltaique et module photovoltaique equipe d'un tel dispositif
WO2014180935A1 (fr) Système de sécurisation pour module de batterie d'accumulateurs et procédé d'équilibrage d'un module de batterie correspondant
EP2781000A1 (fr) Batterie d'accumulateurs protegee contre les courts-circuits internes
EP3066707B1 (fr) Batterie d'accumulateurs assurant une continuite de service lors d'un dysfonctionnement
EP1111751B1 (fr) Dispositif de sécurité pour batterie d'accumulateurs électriques et batterie équipée de ce dispositif
EP3869659B1 (fr) Système d'alimentation électrique comprenant une pluralité de batteries
WO2022023203A9 (fr) Système de gestion de batteries d'accumulateurs semi modulaire
FR2788382A1 (fr) Protection pour module de batterie avec memorisation par diode
WO2018167306A1 (fr) Systeme d'alimentation en energie electrique d'un reseau de bord d'un sous-marin
FR3091052A1 (fr) Système de commande d’un convertisseur de tension
WO2022023204A1 (fr) Système de gestion de batteries
FR2733648A1 (fr) Relais statique protege
WO2018219811A1 (fr) Compteur electrique monophase
WO2008142332A2 (fr) Dispositif d'interrupteur electronique pour commander l'alimentation d'une charge de forte puissance dans un vehicule automobile
WO2024133276A1 (fr) Generation electrique ac comprenant un dispositif de protection de surtension non inductive
EP0772220A1 (fr) Dispositif d'alimentation électrique d'un ensemble de tubes électroniques à fiabilité accrue
FR3077689A1 (fr) Methode et dispositif pour detection de depassement d'un seuil de temperature predefini.
FR3077688A1 (fr) Methode et dispositif pour detection et identification d'une source de chaleur ayant depasse un seuil de temperature predefini
FR2737057A1 (fr) Circuit de communication a signalisation de defaut et module de test associe
FR2796502A1 (fr) Installation de securite pour camera thermique
FR2719722A1 (fr) Appareil d'alimentation électrique utilisable notamment comme alimentation de sauvegarde.
FR2742272A1 (fr) Dispositif d'alimentation electrique d'un circuit electronique integre divise en blocs fonctionnels repartis suivant une distribution pluridimensionnelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001927977

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 577615

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2002/08345

Country of ref document: ZA

Ref document number: 10257369

Country of ref document: US

Ref document number: 200208345

Country of ref document: ZA

Ref document number: 2406449

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 54861/01

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001927977

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 54861/01

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 2001927977

Country of ref document: EP