WO2001079483A1 - Process for producing alcohol from cellulose fiber - Google Patents

Process for producing alcohol from cellulose fiber Download PDF

Info

Publication number
WO2001079483A1
WO2001079483A1 PCT/JP2001/002429 JP0102429W WO0179483A1 WO 2001079483 A1 WO2001079483 A1 WO 2001079483A1 JP 0102429 W JP0102429 W JP 0102429W WO 0179483 A1 WO0179483 A1 WO 0179483A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
paper
cell surface
yeast
plasmid
Prior art date
Application number
PCT/JP2001/002429
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Fukuda
Akihiko Kondo
Yasuya Fujita
Atsuo Tanaka
Mitsuyoshi Ueda
Hideo Noda
Original Assignee
Kansai Chemical Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Chemical Engineering Co., Ltd. filed Critical Kansai Chemical Engineering Co., Ltd.
Priority to JP2001577466A priority Critical patent/JP4681199B2/en
Publication of WO2001079483A1 publication Critical patent/WO2001079483A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01091Cellulose 1,4-beta-cellobiosidase (3.2.1.91)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a useful substance from waste generated from a paper recycling process. More specifically, the present invention relates to a method for producing alcoholic alcohol from cellulose fiber or paper which is difficult to regenerate as paper.
  • the recovered recovered paper is used as recycled paper. As the paper is recycled many times, the fibers become brittle, and some recycled paper is not used as papermaking raw material. Still, shredded paper has short fibers and is hardly a raw material in most cases. According to the above-mentioned materials, such non-recycled papers are discarded or incinerated in an amount of about ⁇ 10,000 tons, which is one of the causes of environmental destruction. Therefore, not only the recycling of paper but also how to use this discarded waste paper or paper is an important issue in reusing resources and solving environmental problems.
  • glucose can be produced from cellulose fibers or papers that have been conventionally discarded and are difficult to regenerate, and that alcohol can be produced from this glucose. Is completed.
  • the present invention relates to a method for producing glucose, which comprises a step of reacting cellulose fibers or papers, which are difficult to regenerate as paper, with an enzyme or a microorganism capable of cleaving a 1,4-darcoside bond.
  • the cellulose fibers or papers that are difficult to regenerate as paper are cellulose fibers or papers that are decomposed batchwise or continuously by a noncatalytic hydrothermal method.
  • the cellulose fiber that is difficult to regenerate as paper is a cellulose fiber decomposed by a non-catalytic hydrothermal method at 120 to 300 ° C.
  • the microorganism is capable of expressing at least one selected from the group consisting of endo] 31,4-glucanase, cellohydrolase, and j3-dalcosidase on a cell surface.
  • One or more recombinant microorganisms are provided.
  • the microorganism comprises:
  • the microorganism is yeast.
  • the present invention also provides cellulose fibers or papers that are difficult to recycle as paper, reacting an enzyme or a microorganism capable of cleaving a ⁇ 1,4-darcoside bond to produce dulcose; and reacting the obtained glucose with a microorganism B having alcohol fermentation ability. And alcohol production methods.
  • the cellulose fibers or papers which are difficult to regenerate as paper are cellulosic fibers or papers which are decomposed batchwise or continuously by a non-catalytic hydrothermal method.
  • the cellulose fiber that is difficult to regenerate as paper is a cellulose fiber decomposed by a non-catalytic hydrothermal method at 120 to 300 ° C.
  • the microorganism A may express at least one member selected from the group consisting of endo] 31,4-glucanase, cellohydrolase, and J3-dalcosidase on a cell surface.
  • One or more recombinant microorganisms may express at least one member selected from the group consisting of endo] 31,4-glucanase, cellohydrolase, and J3-dalcosidase on a cell surface.
  • said microorganism A comprises:
  • (C) A microorganism that has been recombined to express on the cell surface an enzyme selected from the group consisting of endo / 31,4-glucanase and a combination of 3-darcosidase.
  • microorganism A and the microorganism B are the same microorganism.
  • microorganism A and the microorganism B are the same yeast.
  • FIG. 1 is a diagram showing the decomposition of waste cake by cellulase.
  • FIG. 2 is a schematic diagram of the construction of plasmid pICASl.
  • FIG. 3 is a schematic diagram of the construction of plasmid pBG211.
  • FIG. 4 is a schematic diagram of the construction of plasmid pEG19.
  • FIG. 5 is a schematic diagram of the construction of plasmid pEG23u21.
  • FIG. 6 is a diagram showing the degradation of] 3-glucan using a yeast transformed with the plasmid pEG23u21 and expressing endo-1,4-glucanase on the cell surface.
  • FIG. 7 is a diagram showing the use of cellobiose by yeast expressing jS-dalcosidase 1 on the cell surface.
  • FIG. 8 is a schematic diagram showing the production of alcohol using a] 3-glucan as a substrate by using a yeast expressing ⁇ -darcosidase 1 and endo i3 1,4-gluca ⁇ ”-IIase II on the cell surface. .
  • cellulose fibers that are difficult to recycle as paper refer to wastes containing cellulose fibers generated in a paper manufacturing process or a paper recycling process, and include papermaking lees, waste paper kashiwa, and the like.
  • paper is affected by heat, humidity, light, etc. during use, and undergoes processing steps such as beating, heating, drying, and mechanical pressure in the regeneration process. Deterioration and deterioration such as damage, shortening, and hardness. For this reason, a large amount of cellulose fibers that are not made during papermaking as recycled paper are generated, and waste paper Kashiwa is generated. Cellulose fibers that are difficult to recycle as such paper are used in the present invention.
  • Paper that is difficult to recycle as paper includes, for example, paper with shortened cellulose fibers, such as shredded paper.
  • Paper is a concept that includes not only paper but also cardboard and other paperboard.
  • cellulose fibers or papers that are difficult to regenerate as the paper hereinafter, simply referred to as “raw material cellulose fibers”
  • cellulose fibers which are decomposed batchwise or continuously by a non-catalytic hydrothermal method or Paper is also preferred.
  • the raw cellulose fiber By subjecting the raw cellulose fiber to a non-catalytic hydrothermal treatment, for example, it is treated so as to form an appropriately long cellulose unit or oligosaccharide, or cross-linking between fibers (for example, between cellulose) is released, and cellulose content is reduced. It is considered that the cellulose was changed so that the decomposing enzyme could easily act.
  • the raw material cellulose fiber that has been subjected to this treatment can be used as it is as a substrate for glucose production or alcohol fermentation.
  • a decomposition product suitable for alcoholic fermentation can be obtained by treating at preferably 150 to 280 ° C, more preferably 180 to 250 ° C.
  • the processing time is preferably in the range of 1 hour to 15 seconds.
  • the hydrolysis of the raw material cellulose fiber by the non-catalytic hydrothermal method can also be performed by a continuous method.
  • a non-catalytic hydrothermal method with a slightly higher temperature may be used due to the heat history time.
  • About 10% by weight of raw material cellulose The fiber is run at 120-373 ° C, preferably 150-320 ° C, preferably for 1 hour to 1 second.
  • the raw material cellulose fiber can be converted into a decomposition product suitable for alcohol fermentation.
  • the raw material cellulose fiber is decomposed by adding, for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, or the like to an acidic, preferably weakly acidic condition using a non-catalytic hydrothermal method to obtain a raw material.
  • the cellulose fiber of the family can be used as a decomposition product suitable for alcohol fermentation.
  • the “enzyme capable of cleaving a 31,4-darcoside bond” used in the present invention is not particularly limited as long as it is an enzyme capable of cleaving this ⁇ 1,4-darcoside bond. Endo] 31,4-glucanase, cellobiohydrolase, ⁇ -darcosidase, carboxymethylcellulase and the like are used.
  • a combination of two or more enzymes For example, (1) the ability to combine end j3 1,4-glucanase and ⁇ -darcosidase ⁇ (2) the ability to combine cellopiohydrolase and ⁇ -glucosidase (3) Endo j3 1,4-glucanase, cellopiohydrolase and] 3-glucosidase can be combined. It is most preferred to include
  • Microorganisms that produce enzymes that can cleave ⁇ 1,4-darcoside bonds are also preferably used. Such microorganisms include so-called cellulase producing bacteria. When referring to “cellulase", it is generally end.) 3 1, 4- Dalcanase refers to a group of enzymes that produce glucose from cellulose by cleaving the 1,4-darcoside bond produced together with endo] 31,4-dalcanase (eg, cellobiohydrolase, -dalcosidase). ) Is sometimes called cellulase. ,
  • cellulase-producing bacteria include microorganisms belonging to the genus Trichoderma, the genus Closteridium, the genus Cellus Monas, the genus Pseudomonas, and the like.
  • microorganisms that produce endo / 31 / 4-glucanase, cellobiohydrolase, and jS-darcosidase alone can also be used.
  • a microorganism that has been modified to express 4-Dulcanase on the cell surface or a microorganism that has been modified to express mouth piohydrolase on the cell surface may be used alone or in combination.
  • Examples of the combination include: a combination of endo j31,4-glucanase and ⁇ -glucosidase; and Saccharobiohydrolase; a combination of 3-dalcosidase; Endo] 31,4-glucanase; Lase and glucosidase combinations.
  • Microorganisms that are recombinant so as to express a plurality of enzymes on the cell surface are also preferably used.
  • microorganisms are the following (A) to (C):
  • Such a microorganism is created by applying a cell surface engineering technology using a so-called genetic recombination technology.
  • Murai et al., Applied and Environmental Microbiology, vol. 63, 1362-1366 are examples of cell surface engineering. According to this document, a darcoamylase gene was linked to a gene encoding 320 amino acids of the C-terminal region of ⁇ -gluture of the yeast, and dalcoamylase was immobilized on the cell surface. Disassembly.
  • Microorganisms having an enzyme that cleaves 1,4-darcoside bonds of the present invention, or host microorganisms for expressing such enzymes include, but are not limited to, filamentous fungi, bacteria, and enzymes. . Yeast is preferable in consideration of handling and the like.
  • An enzyme that cleaves a ⁇ 1,4-darcoside bond, a microorganism that produces such an enzyme, or a microorganism that expresses such an enzyme on the cell surface is preferably immobilized on a carrier. This enables reuse.
  • carrier and the method for immobilizing the enzyme those skilled in the art can use carriers and methods commonly used, and examples thereof include a carrier binding method, an entrapment method, and a cross-linking method.
  • a porous body is preferably used as a carrier for immobilizing microorganisms.
  • a foam or resin such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, porous polyformal resin, and silicon foam is preferable.
  • the size of the opening of the porous body may be determined in consideration of the size of the microorganism used. In the case of yeast, 50 to 1000 ⁇ is preferred.
  • the shape of the carrier is not limited. Considering the strength of the carrier, cultivation efficiency, etc., Spherical or cubic are preferred.
  • the size may be determined depending on the microorganism to be used. In general, the diameter is preferably 2 to 50 m;
  • Glucose is produced when the above enzymes, microorganisms, immobilized enzymes, and immobilized microorganism are reacted with the cellulosic fiber of the raw material.
  • concentration of a raw material (cellulose fiber as raw material) serving as a substrate for the enzyme is not particularly limited.
  • the reaction is carried out at an appropriate temperature (for example, generally 10 to 70 ° C) for an appropriate time depending on the enzyme used.
  • the reaction can proceed at 90 ° C. or higher.
  • This reaction can be a continuous reaction using a column when immobilized enzymes or microorganisms are used. Endo 1,4-Dulcanase, cellohydrohydrolase, and 3-Darcosidase treatments can be performed in this order by multistage column treatment. The obtained glucose is isolated by a conventional method.
  • Production of alcohol from glucose is also one of the present inventions. Using the obtained glucose as a substrate, a microorganism capable of alcohol fermentation may be reacted.
  • the microorganism capable of alcohol fermentation is not particularly limited, but yeast is preferably used.
  • the yeast capable of alcohol fermentation is not particularly limited, and includes yeasts conventionally used in the fermentation industry, such as sake yeast, brewer's yeast, wine yeast, and baker's yeast.
  • alcoholic fermentation In alcoholic fermentation, a two-step reaction is generally considered, in which darcos is first produced from the raw material cellulose fiber, and yeast having alcoholic fermentation ability is added thereto.
  • Another method is to perform alcohol fermentation directly from the raw cellulose fiber.
  • This includes (i) a method using a decomposition solution obtained by decomposing the raw material cellulose fiber by a non-catalytic hydrothermal method, and (ii) decomposition of the raw material cellulose fiber and alcohol. And (iii) simultaneous decomposition of cellulose fibers in a decomposition solution obtained by decomposing the raw material cellulose fibers by a non-catalytic hydrothermal method and alcohol fermentation.
  • the decomposition liquid obtained by decomposing the raw material cellulose fiber by the non-catalytic hydrothermal method can be used as it is as the raw material for alcohol fermentation. It is performed by adding yeast having a function.
  • the method (ii) is carried out by coexisting an enzyme capable of decomposing cellulose fibers as a raw material or a (yet-replaced) microorganism and a microorganism having an alcohol fermentation ability.
  • a yeast having an alcohol fermentation ability can be used as a host, for example, by using a yeast that has been modified to express ⁇ -glucosidase and ⁇ or end 3,4-glucanase on the cell surface. , Done.
  • this recombinant yeast is used, the steps of decomposing the cellulose fibers to produce glucose and the step of fermenting the produced glucose with alcohol are performed simultaneously, which is effective.
  • the method (iii) is a combination of the methods (i) and (ii), and is a method for producing alcohol by further effectively utilizing the raw cellulose fiber.
  • Such a microorganism having an alcohol fermentation ability may be immobilized as described above for glucose production.
  • Example 1 Glucose production from cellulose fiber that is difficult to regenerate
  • the waste liquid from the recycled paper manufacturing process was collected, and the unregenerated cellulose fibers were recovered.
  • the recovered cellulose fibers are hereinafter referred to as used paper meal.
  • crystalline Abysse (Avicel) and Filter paper powder C were prepared. These are dispersed in a 0.1 M sodium acetate buffer to a concentration of lOg / L, and reacted at 30 ° C using cellulase derived from Trichoderma reesei (manufactured by Funakoshi Co., Ltd.) to produce glucose. Quantification was performed using CII Test II Co. (Wako Pure Chemical Industries, Ltd.). The results are shown in Figure 1.
  • represents waste paper meal
  • represents Avicel
  • represents Filter paper powder r C, respectively.
  • Figure 1 shows for the first time that waste paper meal is degraded much more efficiently than other cellulosic materials, indicating that waste paper kashiwa is extremely promising as a raw material for glucose production. I have.
  • Example 2 Alcohol production from waste paper meal using yeast expressing ⁇ -darcosidase 1 and / or end 1,4-glucanase I on the cell surface
  • FIGS. 2 and 3 show schematic diagrams for preparing a plasmid that expresses j3-dalcosidase 1 on the cell surface.
  • Figure 2 is a schematic diagram of the creation of the plasmid pICASl, which is the material for the target plasmid, pBG211.
  • a plasmid pYGA2269 (Ashikari et al., Appl. Microbiol. Biotechnol. 30: 515-520 (1989)) having a sequence in which a DAP-coamylase derived from Rhizopus oryzae is connected to GAPDH promoter 1 to goo from baccharomyces cerevisiae Two oligonucleotides 5, -ccgagctcaccagttctcaccggaaca-3
  • Plasmid pGAll (Murai et al., Appl Environ Microbiol 63:.. . 1362- 1366 (1997)) cut out Xhol- Kpnl fragment from, DNA fragment containing the C-terminal 320 amino acids and 44 [rho flanking region of a single Aguruchun shed (Fragment II I) was obtained.
  • plasmid pRS404 (Sikorski et al., Genetics 122: 19-17 (1989)) was cut with Sacl-Kpnl, and the above fragments I to [II were mixed to produce plasmid pICAS1.
  • This plasmid has a sequence containing the GAPDH promoter, a secretory sequence, the C-terminal 320 amino acids of a-agglutinin, and a 446 bp flanking region in this order.
  • FIG. 3 shows the procedure for creating the desired plasmid pBG211 using this plasmid pICASl.
  • Plasmid pICASl was digested with Bglll-Xhol, and the jS-darcosidase 1 gene from Aspergillus acule atus of plasmid pABG7 (Kawaguchi et al., Gene 173: 287-288 (1996)) was inserted into this site.
  • DNA was obtained by PCR using plasmid pABG7 as a template, 5, _gtcgagatctctga1: gaactggcgttctct-3, (distribution system's J number 5 no and -ttcactcgagccttgcaccttcgggagcgccg-3 '(measure ⁇ 1> lj ⁇ " ⁇ 6) as a primer.
  • This fragment was digested with Bglll-Xhol, and this fragment was introduced into the Bglll-Xho cleavage site of the plasmid pICASl to obtain a plasmid pCS.
  • This plasmid pMHCS contains the GAPDH promoter and secretory signal. [J, i3 -.
  • alpha-Aguruchun has a gene sequence comprising the C-terminal region 320 amino acids and 44 6 bp flanking regions pMHCS was digested with BssH II and, GAPDH promoter, a secretory signal sequence BssHII-BssHII DNA fragment (320 amino acids and 446 bp flanking region) of the ⁇ -agglutin C-terminal region and the ⁇ -dalcosidase structural gene Segment IV) was isolate.
  • plasmid pMT34 (+3) containing 2 imDNA (Tajima et al., Yeast 1: 67 7 7 (1985)), and inserted into the Aatll site of plasmid pRS403 (Sikorski et al., Genetics 122: 19-17 (1989)) to produce multicopy plasmid pMHl.
  • This plasmid pffll was digested with BssHII, and fragment IV was inserted therein to obtain a plasmid pBG211 expressing -dalcosidase on the cell surface.
  • Fuhus 3 ⁇ 4> pBG21 ⁇ ⁇ 3 ⁇ 4 ⁇ 3 ⁇ 43 ( ⁇ (; ⁇ 3 ⁇ 3 cerevisiae MT81-1 (MATa ura3 trpl a de leu2 his3)) was introduced by the lithium acetate method using Yeast Maker (manufactured by CLONTEC).
  • Medium (6.7 g / L yeast nitrogen base w / h amino acids, 20 g / L gnorecose, 0.03 g / L leucine, 0.02 g / L tryptophan, 0.02 g / L adenine, 0.02 g / L peracil). and the transformant was designated as MT8- 1 / P BG211.
  • Figure 4 shows a schematic diagram of the construction of plasmid pEG19 that expresses endoglucanase I on the cell surface.
  • the EcoRI DNA fragment of plasmid pWI3 with 2 mDNA was converted to the plasmid pRS405 (Sikorski et al., Genetics 122: 19-17 (1989)).
  • the plasmid was introduced into the Aatll site to generate plasmid pRS405 + 2.
  • GAPDH promoter of the plasmid Picas l, secretion signal sequence, a DNA fragment containing the C-terminal 320 Amino acid and 446bp flanking region of ⁇ - Aguruchinin was amplified by PCR, was cut with EcoRV, a plasmid P RS405 + The plasmid was introduced into the Pvul I-Pvu II site of No. 2 to prepare a plasmid pMLCS5.
  • the primer used for amplification was 5-ggaaacagctatgaccatgatatcgccaagcgcgcaa.tta-3 '(Rooster column number 7)
  • the endo j31,4-glucanase gene derived from Tricoderma reesei was inserted into the Bglll site of this plasmid pMLCS5. That is, as the 1st strana cDNA unplate prepared from the mRNA of T.
  • the obtained plasmid pEG19 was transformed with the yeast Saccharomyces cerevisiae MT—8 in the same manner as in 2-1 to obtain SDi3 ⁇ 4 "i-ya (6.7 g / L yeast nitrogen base w / o amino acids, 20 g / L (Gnorecose, 0.02 g / L tryptophan, 0.02 g / L histidine, 0.02 g / L adenine, 0.02 g / L peracil)
  • the obtained transformant was designated as MT8-l / pEG19.
  • plasmid pEG19 was transformed in the same manner as 2-1.SDJ3 ⁇ 4-3 ⁇ 4 (6.7 g / L yeast nitrogen base w / o amino acids, 20 g / L gnorecose, .02 g / L tryptophan, 0.02 g / L adenine, and 0.02 g / L peracil).
  • the resulting transformant was designated as MT8_1 / pBG211 + pEG19.
  • a transformant (MT8-l / pBG211 + pEG19) that expresses 3-dalcosidase 1 and endoglucanase I on the cell surface is suspended in the SD medium (liquid medium) used for each selection, and then suspended at 30 ° C. C, and cultured for 48 hours to obtain a pre-culture solution.
  • This pre-cultured solution was used as a 2 L jar armmenter (BMJ-02PIAb le) containing 1 L of YPD medium (10 g / L yeast extract, 20 g / L polypeptide, 5 g / L of glucose) containing 40 g / L waste paper meal. ) And cultured under microaerobic conditions of 0.01 to 0.03 ppm. All transformants grew despite the small amount of glucose added. This is probably because glucose was produced by the enzyme expressed on the cell surface, and it grew using the produced darcose. / 3 - Darukoshidaze growth 1 and Endodaru 'Kanaze I and a transformant that expressed on the cell surface (MT8-l / P BG211 + pEG19) was the best.
  • the culture was terminated, the cells were collected by centrifugation, and 5 g / LYPD medium containing 70 g / L waste paper meal was used at 30 ° C, pH 6.0, Fermentation was performed under microaerobic conditions of 0.01 to 0.03 ppm.
  • the results of measuring the ethanol in the culture broth showed that the transformant (MT8-l / pBG211), the transformant (MT8-1 / PEG19) and the transformant (MT8-l / pBG211 + pEG19) ) Produced 3 g / L, 4 g / L and 6 g / L ethanol, respectively.
  • the numbers represent the alcohol concentration (g / s) .
  • Table 1 show that when the waste paper treated at 400 ° C for 15 seconds is added to the culture medium compared to when untreated waste paper is added to the culture medium, the alcohol fermentation The degree was small, and it was even lower when mashed at 400 ° C for 30 minutes. The degree of alcohol fermentation was much greater when waste paper treated under milder conditions was added than without. It is probable that alcohol fermentation did not proceed due to factors such as the decomposition of cellulose to produce the necessary sugars or the formation of substances that hinder the reaction due to the treatment of waste paper under harsh conditions.
  • Example 3 Construction of yeast expressing endo / 3 1,4-glucanase II on cell surface and degradation of glucan
  • endoglucanase II Preparation of yeast that expresses 3-1 endo
  • Figure 5 shows the procedure for preparing plasmid pEG23u31 that expresses endoglucanase II on the cell surface.
  • the plasmid pURI24 created by the present inventors Tanaka and Ueda, was cut with PvuII and BamHI to obtain blunt ends.
  • An EcoRV-EcoRV fragment was inserted into this blunt-ended site to create a plasmid pMUCS.
  • PCR was carried out using the mRNA of Trichoderma reesei as a template and the prepared 1st strand cDNA.
  • the primers used were 5, -cggcgagatctcacagcaga ctgtctgggg-3 '(rooster column number) and D -gacagctcgagggctttcttgcgagacacg-3' (SEQ ID NO: 12).
  • the PCR product was cut with Bglll and Xhol, and A Bgll I-Xhol fragment having a sequence encoding 4-gunolecanase II (glucanase II) was obtained, and the Bglll-Xhol fragment was inserted into the Bglll-Xhol site of plasmid pMUCS to obtain the desired plasmid pEG23u31. .
  • the obtained plasmid pEG23u31 was introduced into the yeast Saccharomyces cerevisiae MT-8 in the same manner as 2-1 and SD ⁇ ya (6.7 g / L yeast nitrogen base w / o ami no acids, 20 g / L glucose). , 0.02 g / L tryptophan, 0.02 g / L histidine, 0.02 g / L adenine, and 0.03 g / L leucine.
  • the resulting transformant was designated as MT8-l / pEG23u31.
  • Example 4 Preparation of yeast expressing 3 dalcosidase 1 and ⁇ or endoglucanase II on the cell surface
  • yeast transformed with a chromosomal integration plasmid was prepared.
  • PCR was performed using pBG211 prepared in 2-1 as a template to obtain a PCR product having a sequence encoding ⁇ -glucosidase 1.
  • the primers used were D-gatctccatggctgatgaactggcgttctctcctcttttc-3 (Rokki No. 13) and 5-tggcgctcgagccttgcaccttcgggagcgccgcgtgaag-3 '(Rokki U number 14).
  • the obtained PCR product was digested with Ncol and Xhol, introduced into the Ncol-Xhoi site of plasmid pIHCS, and the desired plasmid,] 3-dalcosidase 1 surface expression, chromosome-integrated plasmid pIBG13 was prepared. .
  • the obtained plasmid PIBG13 is cut into single-stranded DNA by cutting with Nhel, and then introduced into yeast Saccharomyces cerevisiae MT-8 in the same manner as in 2-1 to obtain an SD medium (6.7 g / h yeast).
  • an SD medium 6 g / h yeast.
  • the transformant was designated as MT8-1 / pIBG13.
  • Endalcanase II was performed by incubating at 30 ° C for 48 hours on an SD selection plate containing lg / L-glucan and staining with lg / L Congo Red to confirm halo.
  • the transformant MT8-l / pEG23u31pIBG13 was transferred to an SD medium (6.7 g / L yeast nitrogen base w / o amino acids, 20 g / L gnorecose, 0.03 g / L leucine, 0.02 g / L triptofan, 0.02 g / L-Adenine, pre-cultured in a medium of 0.02 g / L peracil, and cultured on SD medium (6.7 g / L yeast nitrogen base w / o amino acids ⁇ lOg / L j3-glucan,
  • the cells were cultured with 03 g / L leucine, 0.02 g / L tryptophan, 0.02 g / L adenine, and 0.02 g / L ⁇ racil), and the amount of ethanol formed was measured by gas chromatography. Total sugars were measured by the sorbazole-sulfuric acid method. Fig. 8 shows the results. This result indicates that] -glucan was completely saccharified and alcohol fermentation was performed. Industrial applicability
  • cellulose fibers that are not recycled as paper are effectively reused as resources.
  • a microorganism that has been subjected to an enzyme capable of cleaving a 1,4-darcoside bond is preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Cellulose fiber or paper, which can be hardly reclaimed as paper, is reacted with an enzyme or a microorganism capable of cleaving β-1,4-glucoside bond to produce glucose and then alcohol fermentation is effected to thereby effectively utilize paper resources having been dumped. Glucose and, in its turn, alcohol can be particularly effectively produced by using a microorganism expressing in the cell surface layer at least one enzyme selected from the group consisting of endo-β-1,4-glucanase, cellobiohydrolase and β-glucosidase.

Description

明 細 書 セルロース繊維からのアルコールの製造方法  Description Method for producing alcohol from cellulose fiber
技術分野 Technical field
本発明は、 紙類製造工程あるレ、は紙類再生工程から生じる廃棄物から有用 な物質を生産する方法に関する。 さらに詳しくは、 紙としての再生が困難な セルロース繊維または紙類からダルコースおょぴアルコールを製造する方法 に関する。  The present invention relates to a method for producing a useful substance from waste generated from a paper recycling process. More specifically, the present invention relates to a method for producing alcoholic alcohol from cellulose fiber or paper which is difficult to regenerate as paper.
背景技術 Background art
近年、 環境問題が大きくクローズアップされている。 特に、 最近のコンビ ユーター化に伴って、 紙類の使用が大幅に増加し、 木材の伐採による森林破 壌、 それによる環境の激変などが問題となり、 紙のリサイクルが検討されて いる。 我が国においても、 1996年度の資料によれば、 約 3000万トンの紙類が 消費され、 約半分の 1500万トンが古紙として回収されている。  In recent years, environmental issues have been greatly highlighted. In particular, the use of paper has increased sharply with the recent conversion to consumers, and the destruction of forests due to the cutting of timber, resulting in a drastic change in the environment, has become a problem, and paper recycling is being considered. In Japan as well, according to data from fiscal 1996, about 30 million tons of paper were consumed, and about half, 15 million tons, were recovered as waste paper.
回収された古紙は、 さらに再生紙として利用される力 何度も繰り返し再 生するうち、 繊維が脆くなり、 再生紙として製紙原料とならないものがある。 まだ、 シュレッダーにかけられた紙は、 繊維が短く、 ほとんどの場合、 製紙 原料となりにくい。 このような再生されない紙類は、 前記資科によると、 約 ΙδΟΟ万トンにもおょぴ、 これらが廃棄または焼却され, 環境破壊の原因の 1 つとなっているのが現状である。 従って、 紙の再生だけではなく、 この廃棄 される古紙または紙をどう利用するかは、 資源の再利用と環境問題の解決に おいて、 重要な問題である。  The recovered recovered paper is used as recycled paper. As the paper is recycled many times, the fibers become brittle, and some recycled paper is not used as papermaking raw material. Still, shredded paper has short fibers and is hardly a raw material in most cases. According to the above-mentioned materials, such non-recycled papers are discarded or incinerated in an amount of about ΙδΟΟ10,000 tons, which is one of the causes of environmental destruction. Therefore, not only the recycling of paper but also how to use this discarded waste paper or paper is an important issue in reusing resources and solving environmental problems.
ところで、 古紙の再生に関する研究は広く行われているものの、 その古紙 再生の際に生じる廃棄物の利用に関する研究はほとんど行われていないのが 現状であり、 再生紙とならない古紙柏の有効な利用法が望まれている。 By the way, although research on the recycling of waste paper has been widely conducted, there has been little research on the use of waste generated during the recovery of the recovered paper. At present, there is a demand for an effective use of used paper Kashiwa, which is not recycled paper.
発明の開示 Disclosure of the invention
本発明者らは、 従来廃棄されていた、 再生することが困難なセルロース繊 維または紙類からグルコースを生産し、 このグルコースからアルコ^"ルを製 造することができることを見出して、 本発明を完成させたものである。  The present inventors have found that glucose can be produced from cellulose fibers or papers that have been conventionally discarded and are difficult to regenerate, and that alcohol can be produced from this glucose. Is completed.
すなわち、 本発明は、 紙としての再生が困難なセルロース繊維または紙類 と、 1, 4 -ダルコシド結合を切断し得る酵素または微生物とを反応させるェ 程を含む、 グルコースの製造方法に関する。  That is, the present invention relates to a method for producing glucose, which comprises a step of reacting cellulose fibers or papers, which are difficult to regenerate as paper, with an enzyme or a microorganism capable of cleaving a 1,4-darcoside bond.
好ましい実施態様においては、 前記紙としての再生が困難なセルロース繊 維または紙類が、 無触媒水熱法により回分式であるいは連続的に分解された セルロース繊維または紙類である。  In a preferred embodiment, the cellulose fibers or papers that are difficult to regenerate as paper are cellulose fibers or papers that are decomposed batchwise or continuously by a noncatalytic hydrothermal method.
好ましい実施態様においては、 前記紙としての再生が困難なセルロース繊 維が、 120〜300°Cの無触媒水熱法で分解されたセルロース繊維である。  In a preferred embodiment, the cellulose fiber that is difficult to regenerate as paper is a cellulose fiber decomposed by a non-catalytic hydrothermal method at 120 to 300 ° C.
また、 別の好ましい実施態様においては、 前記微生物が、 エンド ]3 1, 4-グ ルカナーゼ、 セロビォヒドロラーゼ、 および j3 -ダルコシダーゼからなる群 から選択される少なくとも 1種を細胞表層に発現するように組換えられた 1 または 2以上の微生物である。  In another preferred embodiment, the microorganism is capable of expressing at least one selected from the group consisting of endo] 31,4-glucanase, cellohydrolase, and j3-dalcosidase on a cell surface. One or more recombinant microorganisms.
さらに好ましい実施態様においては、 前記微生物が、 以下の:  In a further preferred embodiment, the microorganism comprises:
(A) β -ダルコシダーゼ;  (A) β-Darcosidase;
(Β ) エンド ]3 1, 4-グルカナーゼ;および  (Β) endo] 3 1,4-glucanase; and
( C ) エンド i3 1, 4-グルカナーゼと β -グノレコシダーゼとの組合せ からなる群から選択される酵素を細胞表層に発現するように糸且換えられた微 生物である。  (C) Microorganisms that have been transformed to express an enzyme selected from the group consisting of a combination of endo i31,4-glucanase and β-gnorecosidase on the cell surface.
さらに好ましい実施態様においては、 前記微生物が酵母である。  In a further preferred embodiment, the microorganism is yeast.
本発明は、 また、 紙としての再生が困難なセルロース繊維または紙類と、 β 1, 4 -ダルコシド結合を切断し得る酵素または微生物 Αとを反応させてダル コースを製造する工程、 およぴ該得られたグルコースと、 アルコール発酵能 を有する微生物 Bとを反応させる工程を含む、 アルコールの製造方法に関す る。 The present invention also provides cellulose fibers or papers that are difficult to recycle as paper, reacting an enzyme or a microorganism capable of cleaving a β 1,4-darcoside bond to produce dulcose; and reacting the obtained glucose with a microorganism B having alcohol fermentation ability. And alcohol production methods.
好ましい実施態様においては、 前記紙としての再生が困難なセルロース繊 維または紙類が、 無触媒水熱法により回分式であるいは連続的に分解された セル口ース繊維または紙類である。  In a preferred embodiment, the cellulose fibers or papers which are difficult to regenerate as paper are cellulosic fibers or papers which are decomposed batchwise or continuously by a non-catalytic hydrothermal method.
好ましい実施態様においては、 前記紙としての再生が困難なセルロース繊 維が、 120〜300°Cの無触媒水熱法で分解されたセルロース繊維である。  In a preferred embodiment, the cellulose fiber that is difficult to regenerate as paper is a cellulose fiber decomposed by a non-catalytic hydrothermal method at 120 to 300 ° C.
また、 別の好ましい実施態様においては、 前記微生物 Aが、 エンド ]3 1, 4- グルカナーゼ、 セロビォヒドロラーゼ、 および J3 -ダルコシダーゼからなる 群から選択される少なくとも 1種を細胞表層に発現するように組換えられた 1または 2以上の微生物である。  In another preferred embodiment, the microorganism A may express at least one member selected from the group consisting of endo] 31,4-glucanase, cellohydrolase, and J3-dalcosidase on a cell surface. One or more recombinant microorganisms.
さらに好ましい実施態様においては、 前記微生物 Aが、 以下の:  In a further preferred embodiment, said microorganism A comprises:
(A) ]3 -ダルコシダーゼ;  (A)] 3-Darcosidase;
(B ) エンド 3 1, 4 -ダルカナーゼ;および  (B) endo 31,4-dalcanase; and
(C) エンド /3 1, 4-グルカナーゼと 3 -ダルコシダーゼとの組合せ からなる群から選択される酵素を細胞表層に発現するように組換えられた微 生物である。  (C) A microorganism that has been recombined to express on the cell surface an enzyme selected from the group consisting of endo / 31,4-glucanase and a combination of 3-darcosidase.
さらに好ましい実施態様においては、 前記微生物 Aと微生物 Bとが同一の 微生物である。  In a further preferred embodiment, the microorganism A and the microorganism B are the same microorganism.
より好ましい実施態様においては、 前記微生物 Aと微生物 Bが、 同一の酵 母である。  In a more preferred embodiment, the microorganism A and the microorganism B are the same yeast.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 古 粕のセルラーゼによる分解を示す図である。 図 2は、 プラスミド pICASlの作成の模式図である。 FIG. 1 is a diagram showing the decomposition of waste cake by cellulase. FIG. 2 is a schematic diagram of the construction of plasmid pICASl.
図 3は、 プラスミド pBG211の作成の模式図である。  FIG. 3 is a schematic diagram of the construction of plasmid pBG211.
図 4は、 プラスミド pEG19の作成の模式図である。 図 5は、 プラスミド pEG23u21の作成の模式図である。  FIG. 4 is a schematic diagram of the construction of plasmid pEG19. FIG. 5 is a schematic diagram of the construction of plasmid pEG23u21.
図 6は、 プラスミド pEG23u21で形質転換され、 エンド 1, 4-グルカナーゼ を細胞表層に発現する酵母を用いて ]3 -グルカンを分解することを示す図で ある。  FIG. 6 is a diagram showing the degradation of] 3-glucan using a yeast transformed with the plasmid pEG23u21 and expressing endo-1,4-glucanase on the cell surface.
図 7は、 jS -ダルコシダーゼ 1を細胞表層に発現する酵母によるセロビォ ースの利用を示す図である。  FIG. 7 is a diagram showing the use of cellobiose by yeast expressing jS-dalcosidase 1 on the cell surface.
図 8は、 βダルコシダーゼ 1とエンド i3 1, 4 -グルカ^ "一ゼ IIとを細胞表層 に発現する酵母を用いて、 ]3 -グルカンを基質としてアルコールを製造する ことを示す模式図である。  FIG. 8 is a schematic diagram showing the production of alcohol using a] 3-glucan as a substrate by using a yeast expressing β-darcosidase 1 and endo i3 1,4-gluca ^ ”-IIase II on the cell surface. .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本明細書において、 「紙としての再生が困難なセルロース繊維」 とは、 紙 の製造工程あるいは紙の再生工程において生じるセルロース繊維を含む廃棄 物をいい、 製紙粕、 古紙柏などを含む。  In the present specification, “cellulose fibers that are difficult to recycle as paper” refer to wastes containing cellulose fibers generated in a paper manufacturing process or a paper recycling process, and include papermaking lees, waste paper kashiwa, and the like.
一般に、 紙は、 使用中に熱、 湿度、 光などの影響を受けるとともに、 再生 過程において、 叩解、 加熱、 乾燥、 機械的圧力などの処理工程を経るため、 繰り返し再生されるとセルロース繊維自体が傷む、 短くなる、 硬くなるなど 変質、 劣化する。 このため、 再生紙としての抄造時に抄造されないセルロー ス繊維が大量に発生し、 古紙柏が発生する。 このような紙としての再生が困 難なセルロース繊維が本発明に用いられる。  Generally, paper is affected by heat, humidity, light, etc. during use, and undergoes processing steps such as beating, heating, drying, and mechanical pressure in the regeneration process. Deterioration and deterioration such as damage, shortening, and hardness. For this reason, a large amount of cellulose fibers that are not made during papermaking as recycled paper are generated, and waste paper Kashiwa is generated. Cellulose fibers that are difficult to recycle as such paper are used in the present invention.
「紙としての再生が困難な紙類」 には、 例えば、 シュレッダーにかけられ たような、 セルロース繊維が短くされた紙も,含まれる。 また、 「紙類」 は、 紙のみならずダンボールなどの板紙なども含む概念である。 本発明においては、 前記紙としての再生が困難なセルロース繊維または紙 類 (以下、 単に 「原料のセルロース繊維」 という) 、 無触媒水熱法により 回分式であるいは連続的に分解されたセルロース繊維または紙類であること も好ましい。 原料のセルロース繊維を無触媒水熱処理することにより、 例え ば、 適当な長きのセルロース単位あるいはオリゴ糖を形成するように処理さ れ、 あるいは繊維間 (例えば、 セルロース間) の架橋が外れ、 セルロース分 解酵素が作用し易くなるようにセルロースが変化したものと考えられる。 こ の処理を受けた原料のセルロース繊維は、 そのまま、 グルコース生産の、 あ るいはアルコール発酵の基質となり得る。 “Paper that is difficult to recycle as paper” includes, for example, paper with shortened cellulose fibers, such as shredded paper. “Paper” is a concept that includes not only paper but also cardboard and other paperboard. In the present invention, cellulose fibers or papers that are difficult to regenerate as the paper (hereinafter, simply referred to as “raw material cellulose fibers”), cellulose fibers which are decomposed batchwise or continuously by a non-catalytic hydrothermal method, or Paper is also preferred. By subjecting the raw cellulose fiber to a non-catalytic hydrothermal treatment, for example, it is treated so as to form an appropriately long cellulose unit or oligosaccharide, or cross-linking between fibers (for example, between cellulose) is released, and cellulose content is reduced. It is considered that the cellulose was changed so that the decomposing enzyme could easily act. The raw material cellulose fiber that has been subjected to this treatment can be used as it is as a substrate for glucose production or alcohol fermentation.
従来、 セルロースの分解等を目的として、 無触媒水熱法が種々検討きれて いる。 例えば、 福岡大学工学部集報第 61号 (平成 10年 9月号) には、 578〜67 8K (すなわち 305〜405°C) の熱水でバッチ処理することにより、 セルロース が加水分解されることが記載されている。 この処理で得られるセルロース分 解物にはグルコースが含まれているが、 これを用いてアルコール発酵させて も、 なんらかの理由で、 アルコール発酵がほとんど進行しないことを本発明 者らは見い出した。 さらに、 前記文献の無触媒水熱法では反応時間が極めて 短いため、 安定的に適切な処理をしたセルロース分解物が得られないという 問題がある。  Various non-catalytic hydrothermal methods have been studied for the purpose of decomposing cellulose. For example, Fukuoka University, Faculty of Engineering, Journal No. 61 (September 1998) states that cellulose is hydrolyzed by batch processing with hot water at 578-678K (that is, 305-405 ° C). Is described. The present inventors have found that although alcohol is fermented using the cellulose digest obtained by this treatment, alcohol fermentation hardly progresses for some reason. Furthermore, in the non-catalytic hydrothermal method described in the above-mentioned literature, there is a problem that the reaction time is extremely short, so that a cellulose decomposition product which is appropriately and stably treated cannot be obtained.
そこで、 より低温での、 回分 (バッチ) 式の無触媒水熱法を検討した結果、 処理する濃度にも依存するが、 約 10重量%濃度の、 原料のセルロース繊維を 120〜300°C、 好ましくは 150〜280°C、 より好ましくは 180〜250°Cで処理する ことにより、 アルコール発酵に適した分解物を得ることができることを見出 した。 処理時間は、 一般に、 1時間〜 15秒の範囲が好ましい。  Therefore, as a result of studying a batch (batch) type non-catalytic hydrothermal method at a lower temperature, it depends on the concentration to be treated. It has been found that a decomposition product suitable for alcoholic fermentation can be obtained by treating at preferably 150 to 280 ° C, more preferably 180 to 250 ° C. Generally, the processing time is preferably in the range of 1 hour to 15 seconds.
さらに、 原料のセルロース繊維の、 無触媒水熱法による加水分解は、 連続 法でも行うことができる。 連続法の場合は、 熱履歴時間の関係で、 若干温度 を高くした無触媒水熱法としてもよい。 約 10重量%濃度の原料のセルロース 繊維を 120〜373°C、 好ましくは 150〜320°Cで、 好ましくは 1時間〜 1秒で行 う。 この連続無触媒水熱法により、 原料のセルロース繊維をアルコール発酵 に適した分解物とすることができる。 Further, the hydrolysis of the raw material cellulose fiber by the non-catalytic hydrothermal method can also be performed by a continuous method. In the case of the continuous method, a non-catalytic hydrothermal method with a slightly higher temperature may be used due to the heat history time. About 10% by weight of raw material cellulose The fiber is run at 120-373 ° C, preferably 150-320 ° C, preferably for 1 hour to 1 second. By this continuous non-catalytic hydrothermal method, the raw material cellulose fiber can be converted into a decomposition product suitable for alcohol fermentation.
さらに、 原料のセルロース繊維を、 例えば、 硫酸、 塩酸、 硝酸、 リン酸等 を添カ卩して酸性、 好ましくは、 弱酸性条件下、 無触媒水熱法を用いて分解す ることにより、 原科のセルロース繊維をアルコール発酵に適した分解物とす ることもできる。  Further, the raw material cellulose fiber is decomposed by adding, for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, or the like to an acidic, preferably weakly acidic condition using a non-catalytic hydrothermal method to obtain a raw material. The cellulose fiber of the family can be used as a decomposition product suitable for alcohol fermentation.
本発明に用いられる 「 3 1, 4 -ダルコシド結合を切断し得る酵素」 は、 この β 1, 4 -ダルコシド結合を切断することができる酵素であれば、 特に制限はな いが、 好ましくは、 エンド ]3 1, 4-グルカナーゼ、 セロビォヒドロラーゼ、 β -ダルコシダーゼ、 カルボキシメチルセルラーゼなどが用いられる。  The “enzyme capable of cleaving a 31,4-darcoside bond” used in the present invention is not particularly limited as long as it is an enzyme capable of cleaving this β1,4-darcoside bond. Endo] 31,4-glucanase, cellobiohydrolase, β-darcosidase, carboxymethylcellulase and the like are used.
これらの酵素のうち、 ]3 -ダルコシダーゼ一種のみでも、 セルロース繊維 を分解してグルコースを生産することができる。 また、 これらの酵素を組合 せて、 原料のセルロース繊維 (上記、 無触媒水熱処理で得られたセルロース 繊維または紙類を含む。 以下、 同じ) を分解し、 グルコースを生産できるこ とが、 本発明で初めて見出された。  Of these enzymes, only one of the [3-dalcosidases] can degrade cellulose fibers to produce glucose. In addition, these enzymes can be combined to degrade the raw material cellulose fiber (including the above-mentioned cellulose fiber or papers obtained by non-catalytic hydrothermal treatment; the same applies hereinafter) to produce glucose, which indicates that glucose can be produced. It was first discovered in the invention.
2種以上の酵素を組合せて用いることはより好ましく、 例えば、 (1 ) ェ ンド j3 1, 4-グルカナーゼと β -ダルコシダーゼとを組合せる力 \ ( 2 ) セロ ピオヒドロラーゼと β -グルコシダーゼとを組合せる力 ( 3 ) エンド j3 1, 4 -グルカナーゼとセロピオヒドロラーゼと ]3 -グルコシダーゼとを組合せるこ とができる。 グルコースを生成するためには、 |3 -ダルコシダーゼを含める ことが最も好ましい。 これらの組合せにより、 効率よくセルロース ¾維が分 解され、 グルコースが生産される。  It is more preferable to use a combination of two or more enzymes. For example, (1) the ability to combine end j3 1,4-glucanase and β-darcosidase \ (2) the ability to combine cellopiohydrolase and β-glucosidase (3) Endo j3 1,4-glucanase, cellopiohydrolase and] 3-glucosidase can be combined. It is most preferred to include | 3-dalcosidase to produce glucose. By these combinations, cellulose fiber is efficiently decomposed and glucose is produced.
β 1, 4 -ダルコシド結合を切断することができる酵素を生産する微生物もま た、 好ましく用いられる。 このような微生物には、 いわゆるセルラーゼ生産 菌が含まれる。 なお、 「セルラーゼ」 とレ、うときは、 一般にはエンド )3 1, 4 - ダルカナーゼをいうが、 本明細書では、 エンド ]3 1, 4 -ダルカナーゼとともに 生産される 1, 4 -ダルコシド結合を切断し、 セルロースからグルコースを生 産する一群の酵素 (例えば、 セロビォヒ ドロラーゼ、 -ダルコシダーゼ) を称して、 セルラーゼという場合がある。 , Microorganisms that produce enzymes that can cleave β1,4-darcoside bonds are also preferably used. Such microorganisms include so-called cellulase producing bacteria. When referring to "cellulase", it is generally end.) 3 1, 4- Dalcanase refers to a group of enzymes that produce glucose from cellulose by cleaving the 1,4-darcoside bond produced together with endo] 31,4-dalcanase (eg, cellobiohydrolase, -dalcosidase). ) Is sometimes called cellulase. ,
セルラーゼ生産菌としては、 代表的には、 トリコデルマ属、 クロステリデ ィゥム属、 セル口モナス属、 シユードモナス属などに属する微生物が挙げら れる。  Representative examples of the cellulase-producing bacteria include microorganisms belonging to the genus Trichoderma, the genus Closteridium, the genus Cellus Monas, the genus Pseudomonas, and the like.
また、 エンド /3 1, 4-グルカナーゼ、 セロビォヒドロラーゼ、 jS -ダルコシ ダーゼを単独で生産する微生物もまた、 使用できることはいうまでもない。 本発明では、 -ダルコシダーゼを細胞表層に発現する微生物、 エンド ]3 1, Also, it goes without saying that microorganisms that produce endo / 31 / 4-glucanase, cellobiohydrolase, and jS-darcosidase alone can also be used. In the present invention, a microorganism expressing dalcosidase on the cell surface, endo] 31,
4 -ダルカナーゼを細胞表層に発現するように組換えられた微生物、 またはセ 口ピオヒドロラーゼを細胞表層に発現するように組換えられた微生物を、 単 独で、 あるいは組合せて、 用いてもよい。 糸且合せとしては、 例えば、 エンド j3 1, 4-グルカナーゼと β -グルコシダーゼの組合せ、 セ口ビォヒ ドロラーゼ と;3 -ダルコシダーゼの糸且合せ、 エンド ]3 1, 4 -グルカナーゼ、 セ口ビォヒ ド 口ラーゼぉよび -グルコシダーゼの組合せが挙げられる。 A microorganism that has been modified to express 4-Dulcanase on the cell surface or a microorganism that has been modified to express mouth piohydrolase on the cell surface may be used alone or in combination. Examples of the combination include: a combination of endo j31,4-glucanase and β-glucosidase; and Saccharobiohydrolase; a combination of 3-dalcosidase; Endo] 31,4-glucanase; Lase and glucosidase combinations.
さらに、 以下の (1 ) 〜 (3 ) :  Further, the following (1) to (3):
( 1 ) エンド 1, 4 -グルカ "一ゼと β -グルコシダーゼとの組合せ; (1) Combination of endo 1,4-gluca "l-zetase with β-glucosidase;
( 2 ) セロビォヒドロラーゼと 3 -ダルコシダーゼとの組合せ; (2) a combination of cellobiohydrolase and 3-darcosidase;
( 3 ) エンド ]3 1, 4-グルカナーゼ、 セロビォヒドロラーゼおよぴ jS -グル コシダーゼの組合せ;  (3) endo] 3 1,4-glucanase, cellohydrolase and jS-glucosidase in combination;
のような、 複数の酵素を細胞表層に発現するように組換えられた微生物も好 ましく使用される。 Microorganisms that are recombinant so as to express a plurality of enzymes on the cell surface, such as, for example, are also preferably used.
さらに好ましい微生物は、 以下の (A) 〜 (C ) :  Further preferred microorganisms are the following (A) to (C):
(A) -ダルコシダーゼ;  (A)-dalcosidase;
(B ) エンド J3 1, 4-グルカ "一ゼ;および (C) エンド j3 1, 4-グルカナーゼと j3 -ダルコシダーゼとの組合せ 力 らなる群から選択される酵素を細胞表層に発現するように組換えられた微 生物である。 (B) End J3 1,4-gluca "I; (C) Combination of endo j31,4-glucanase and j3-dalcosidase A microorganism that has been recombined to express on the cell surface an enzyme selected from the group consisting of force.
このような微生物は、 いわゆる遺伝子組換え技術を用いる細胞表層工学技 術を適用して作成される。  Such a microorganism is created by applying a cell surface engineering technology using a so-called genetic recombination technology.
細胞表層工学を利用した例として、 村井ら、 Applied and Environmental Microbiology, vol. 63, 1362-1366 (1997)の文献がある。 この文献には、 酵 母の αァグルチュンの C末端領域 320アミノ酸をコードする遺伝子にダルコ アミラーゼ遺伝子を連結し、 細胞表層にダルコアミラーゼを固定して、 デン フ。ンの分解を行っている。  Murai et al., Applied and Environmental Microbiology, vol. 63, 1362-1366 (1997) are examples of cell surface engineering. According to this document, a darcoamylase gene was linked to a gene encoding 320 amino acids of the C-terminal region of α-gluture of the yeast, and dalcoamylase was immobilized on the cell surface. Disassembly.
本発明の 1, 4 -ダルコシド結合を切断する酵素を有する微生物、 あるいは このいような酵素を発現するための宿主微生物としては、 糸状菌、 細菌、 酵 母などが挙げられるが、 これらに限定されない。 取扱等を考慮すると酵母が 好ましい。  Microorganisms having an enzyme that cleaves 1,4-darcoside bonds of the present invention, or host microorganisms for expressing such enzymes include, but are not limited to, filamentous fungi, bacteria, and enzymes. . Yeast is preferable in consideration of handling and the like.
β 1, 4 -ダルコシド結合を切断する酵素、 このような酵素を生産する微生物、 またはこのような酵素を細胞表層に発現する微生物は、 好ましくは、 担体に 固定される。 そのことにより、 再使用が可能となる。  An enzyme that cleaves a β 1,4-darcoside bond, a microorganism that produces such an enzyme, or a microorganism that expresses such an enzyme on the cell surface is preferably immobilized on a carrier. This enables reuse.
酵素を固定する担体およぴ方法は、 当業者が通常用レ、る担体およぴ方法が 用いられ、 例えば、 担体結合法、 包括法、 架橋法などが挙げられる。  As the carrier and the method for immobilizing the enzyme, those skilled in the art can use carriers and methods commonly used, and examples thereof include a carrier binding method, an entrapment method, and a cross-linking method.
微生物を固定する担体としては、 多孔質体が好ましく用いられる。 例えば、 ポリビニルアルコール、 ポリウレタンフォーム、 ポリスチレンフォーム、 ポ リアクリルアミド、 ポリビュルフオルマール樹脂多孔質体、 シリコンフォー ムなどの発泡体あるいは樹脂が好ましい。 多孔質体の開口部の大きさは、 用 いる微生物おょぴその大きさを考慮して決定すればよい。 酵母の場合、 50〜 1000 μ ιηが好ましい。  A porous body is preferably used as a carrier for immobilizing microorganisms. For example, a foam or resin such as polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, porous polyformal resin, and silicon foam is preferable. The size of the opening of the porous body may be determined in consideration of the size of the microorganism used. In the case of yeast, 50 to 1000 μιη is preferred.
また、 担体の形状は問わない。 担体の強度、 培養効率などを考慮すると、 球状あるいは立方体が好ましい。 大きさは、 用いる微生物により決定すれば よいが、 一般には、 球状の場合、 直径が 2〜50m;m、 立方体状の場合、 2〜50 mm角が好ましい。 The shape of the carrier is not limited. Considering the strength of the carrier, cultivation efficiency, etc., Spherical or cubic are preferred. The size may be determined depending on the microorganism to be used. In general, the diameter is preferably 2 to 50 m;
上記の酵素類、 微生物、 固定化酵素類、 固定化微生物と、 原料のセル口 ス繊維と反応させるとグルコースが生成される。 酵素の基質となる原料 (原 料のセルロース繊維) の濃度は特に制限されない。 反応は、 用いる酵素に応 じて、 適切な温度 (例えば、 一般的には、 10〜70°C) で適切な時間行われる。 耐熱性あるレヽは超耐熱性の酵素を用レ、る場合、 90°Cまたはそれ以上でも反応 は進行し得る。  Glucose is produced when the above enzymes, microorganisms, immobilized enzymes, and immobilized microorganism are reacted with the cellulosic fiber of the raw material. The concentration of a raw material (cellulose fiber as raw material) serving as a substrate for the enzyme is not particularly limited. The reaction is carried out at an appropriate temperature (for example, generally 10 to 70 ° C) for an appropriate time depending on the enzyme used. When using a thermostable enzyme using a hyperthermostable enzyme, the reaction can proceed at 90 ° C. or higher.
この反応は、 固定化酵素あるいは微生物を用いる場合、 カラムを用いた連 続反応とすることができる。 エンド 1, 4 -ダルカナーゼ、 セロビォヒドロラ ーゼ、 および 3 -ダルコシダーゼの各処理を、 この順で多段式カラム処理を 行ってもよレ、。 得られたグルコースは、 常法により単離される。  This reaction can be a continuous reaction using a column when immobilized enzymes or microorganisms are used. Endo 1,4-Dulcanase, cellohydrohydrolase, and 3-Darcosidase treatments can be performed in this order by multistage column treatment. The obtained glucose is isolated by a conventional method.
また、 このグルコースからアルコールを製造することも、 本発明の一つで ある。 得られたグルコースを基質として、 アルコール発酵し得る微生物を反 応させればよい。  Production of alcohol from glucose is also one of the present inventions. Using the obtained glucose as a substrate, a microorganism capable of alcohol fermentation may be reacted.
アルコール発酵し得る微生物としては、 特に制限はないが、 酵母が好まし く用いられる。 アルコール発酵し得る酵母としては特に制限はなく、 清酒酵 母、 ビール酵母、 ワイン酵母、 パン酵母など、 従来から発酵工業に用いられ ている酵母が挙げられる。  The microorganism capable of alcohol fermentation is not particularly limited, but yeast is preferably used. The yeast capable of alcohol fermentation is not particularly limited, and includes yeasts conventionally used in the fermentation industry, such as sake yeast, brewer's yeast, wine yeast, and baker's yeast.
アルコール発酵に際して、 いったん、 原料のセルロース繊維からダルコ一 スを生成し、 これにアルコール発酵能を有する酵母を添加するという 2段階 の反応が一般的に考えられる。  In alcoholic fermentation, a two-step reaction is generally considered, in which darcos is first produced from the raw material cellulose fiber, and yeast having alcoholic fermentation ability is added thereto.
別の方法は、 原料のセルロース繊維から直接アルコール発酵を行う方法で ある。 これには、 (i ) 原料のセルロース繊維を無触媒水熱法で分解して得 られる分解液を用いる方法、 (ii) 原料のセルロース繊維の分解とアルコー ル発酵を同時に行う方法、 および (iii) 原料のセルロース繊維を無触媒水 熱法で分解して得られる分解液中のセルロース繊維の分解とアルコール発酵 を同時に行う方法などが挙げられる。 Another method is to perform alcohol fermentation directly from the raw cellulose fiber. This includes (i) a method using a decomposition solution obtained by decomposing the raw material cellulose fiber by a non-catalytic hydrothermal method, and (ii) decomposition of the raw material cellulose fiber and alcohol. And (iii) simultaneous decomposition of cellulose fibers in a decomposition solution obtained by decomposing the raw material cellulose fibers by a non-catalytic hydrothermal method and alcohol fermentation.
( i ) の方法は、 原料のセルロース繊維を無触媒水熱法で分解して得られ る分解液は、 そのまま、 アルコール努酵の原料とすることができるため、 分 解液に直接、 アルコール発酵能を有する酵母を添加することにより、 行われ る。  In the method (i), the decomposition liquid obtained by decomposing the raw material cellulose fiber by the non-catalytic hydrothermal method can be used as it is as the raw material for alcohol fermentation. It is performed by adding yeast having a function.
(ii)の方法は、 原料のセルロース繊維を分解する酵素あるいは (糸且換え) 微生物と、 アルコール発酵能を有する微生物を共存させることにより、 行わ れる。 あるいは、 アルコール発酵能を有する酵母を宿主とし、 これに、 例え ば、 β -グルコシダーゼぉよび Ζまたはェンド 3 1, 4-グルカナーゼを細胞表 層に発現するように組換えられた酵母を用いることにより、 行われる。 この 組換え酵母を用いると、 セルロース繊維を分解してグルコースを生成するェ 程、 および生じたグルコースをアルコール発酵する工程が同時に行われ、 効 果的である。  The method (ii) is carried out by coexisting an enzyme capable of decomposing cellulose fibers as a raw material or a (yet-replaced) microorganism and a microorganism having an alcohol fermentation ability. Alternatively, a yeast having an alcohol fermentation ability can be used as a host, for example, by using a yeast that has been modified to express β-glucosidase and Ζ or end 3,4-glucanase on the cell surface. , Done. When this recombinant yeast is used, the steps of decomposing the cellulose fibers to produce glucose and the step of fermenting the produced glucose with alcohol are performed simultaneously, which is effective.
(iii) の方法は、 (i ) と (ii) の組み合わせであり、 原料のセルロー ス繊維をさらに有効利用してアルコールを製造する方法である。  The method (iii) is a combination of the methods (i) and (ii), and is a method for producing alcohol by further effectively utilizing the raw cellulose fiber.
このようなアルコール発酵能を有する微生物 (組換え酵母も含む) は、 上 記グルコース生産の所で記載したように、 固定されていてもよい。 実施例  Such a microorganism having an alcohol fermentation ability (including a recombinant yeast) may be immobilized as described above for glucose production. Example
以下、 実施例を挙げて本発明を説明するが、 本発明はこの実施例に限定さ れない。  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
実施例 1 :再生困難なセルロース繊維からのグルコース生産 Example 1: Glucose production from cellulose fiber that is difficult to regenerate
再生紙製造工程の廃液を集め、 再生されないセルロース繊維を回収した。 この回収したセルロース繊維を以下、 古紙粕という,。 別途、 結晶性のアビセ ル (avicel) と Filter paper powder C を準備した。 これらを lOg/L濃度と なるように 0. 1M酢酸ナトリゥム緩衝液に分散させ、 Trichoderma reesei由 来のセルラーゼ ( (株) フナコシ製) を用いて、 30°Cで反応させ、 生成する グルコースをグルコース CIIテストヮコー (和光純薬 (株)製) を用いて定量 した。 結果を図 1に示す。 The waste liquid from the recycled paper manufacturing process was collected, and the unregenerated cellulose fibers were recovered. The recovered cellulose fibers are hereinafter referred to as used paper meal. Separately, crystalline Abysse (Avicel) and Filter paper powder C were prepared. These are dispersed in a 0.1 M sodium acetate buffer to a concentration of lOg / L, and reacted at 30 ° C using cellulase derived from Trichoderma reesei (manufactured by Funakoshi Co., Ltd.) to produce glucose. Quantification was performed using CII Test II Co. (Wako Pure Chemical Industries, Ltd.). The results are shown in Figure 1.
図 1において、 ▲は古紙粕を、 ■はアビセルを、 ·は Filter paper powde r Cをそれぞれ表す。 この図 1は、 古紙粕は、 他のセルロース材料と比較し て、 非常に効率よく分解されることを初めて発見したものであり、 古紙柏が グルコース製造の原料として極めて有望であることを示している。  In Fig. 1, ▲ represents waste paper meal, ■ represents Avicel, and · represents Filter paper powder r C, respectively. Figure 1 shows for the first time that waste paper meal is degraded much more efficiently than other cellulosic materials, indicating that waste paper kashiwa is extremely promising as a raw material for glucose production. I have.
実施例 2 : β -ダルコシダーゼ 1および/またはェンド 1, 4-グルカナーゼ Iを細胞表層に発現する酵母を用いる、 古紙粕からのアルコール生産 Example 2: Alcohol production from waste paper meal using yeast expressing β-darcosidase 1 and / or end 1,4-glucanase I on the cell surface
2-1 ]3 -ダルコシダーゼ 1を細胞表層に発現する酵母の作製 2-1] Preparation of yeast expressing 3-dalcosidase 1 on cell surface
j3 -ダルコシダーゼ 1を細胞表層に発現するプラスミ ド作成の模式図を図 2およぴ図 3に示す。 図 2は、 目的のプラスミ ドである pBG211の材料となる プラスミ ド pICASl作成の模式図である。  FIGS. 2 and 3 show schematic diagrams for preparing a plasmid that expresses j3-dalcosidase 1 on the cell surface. Figure 2 is a schematic diagram of the creation of the plasmid pICASl, which is the material for the target plasmid, pBG211.
baccharomyces cerevisiae由来の GAPDHプロモ1 ~~グーに Rhizopus oryzae由 来のダルコアミラーゼが接続された配列を有するプラスミ ド pYGA2269 (Ashi kariら、 Appl. Microbiol. Biotechnol. 30: 515-520 (1989) ) を テンプレ ートとして、 2つのォリゴヌクレオチド 5, -ccgagctcaccagttctcaccggaaca-3A plasmid pYGA2269 (Ashikari et al., Appl. Microbiol. Biotechnol. 30: 515-520 (1989)) having a sequence in which a DAP-coamylase derived from Rhizopus oryzae is connected to GAPDH promoter 1 to goo from baccharomyces cerevisiae Two oligonucleotides 5, -ccgagctcaccagttctcaccggaaca-3
(酉己歹 IJ番号 1ノ および b — gcccgcggcagaaacgagcaaagaaaa— 3 (酉己歹番 2 ) を用いて、 PCRで増幅し、 Saclおよび SacIIで切断して、 GAPDHプロモーター と Rhizopus oryzae由来のグルコアミラーゼ分泌シグナル配列を有する Sacl 一 SacIIDNAフラグメントを作製した (フラグメント I ) 。 (Rooster system IJ number 1 no and b — gcccgcggcagaaacgagcaaagaaaa-3 (Rooster system number 2), amplified by PCR, cut with Sacl and SacII, GAPDH promoter and glucoamylase secretion signal sequence derived from Rhizopus oryzae A Sacl-SacII DNA fragment having the following sequence was prepared (fragment I).
これとは別に、 2つのオリゴヌクレオチド 5' -ggagatctccatggc-3' (配列 番号 3 ) および 5' -tcgagccatggagatctccgc - 3' (酉己列番号 4 ) とをァニーノレ させて、 SacII-XhoI DNAフラグメントを作製した (フラグメント II) 。 Separately, the two oligonucleotides 5′-ggagatctccatggc-3 ′ (SEQ ID NO: 3) and 5′-tcgagccatggagatctccgc-3 ′ (Rooster column no. This produced a SacII-XhoI DNA fragment (fragment II).
さらに、 プラスミ ド pGAll (Muraiら、 Appl. Environ. Microbiol. 63: 1362- 1366 (1997) ) から Xhol- Kpnl断片を切り出し、 ひ一ァグルチュンの C末端 320 アミノ酸と 44 Ρフランキング領域を含む DNAフラグメント (フラグメント II I) を得た。 Furthermore, plasmid pGAll (Murai et al., Appl Environ Microbiol 63:.. . 1362- 1366 (1997)) cut out Xhol- Kpnl fragment from, DNA fragment containing the C-terminal 320 amino acids and 44 [rho flanking region of a single Aguruchun shed (Fragment II I) was obtained.
他方で、 プラスミ ド pRS404 (Sikorskiら、 Genetics 122 : 19-17 (1989) ) を Sacl - Kpnlで切断し、 上記のフラグメント I〜: [IIを混合してプラスミ ド pIC AS 1を作製した。 このプラスミ ドは、 GAPDHプロモーター、 分泌配列、 a— ァグルチニンの C末端 320アミノ酸、 および 446bpフランキング領域をこの順 で含む配列を有している。  On the other hand, plasmid pRS404 (Sikorski et al., Genetics 122: 19-17 (1989)) was cut with Sacl-Kpnl, and the above fragments I to [II were mixed to produce plasmid pICAS1. This plasmid has a sequence containing the GAPDH promoter, a secretory sequence, the C-terminal 320 amino acids of a-agglutinin, and a 446 bp flanking region in this order.
このプラスミ ド pICASlを用いて、 目的のプラスミ ド pBG211を作成する手順 を図 3に示す。 プラスミ ド pICASlを Bglll - Xholで切断し、 この部位にプラス ミ ド pABG7 (Kawaguchiら、 Gene 173 : 287—288 (1996) ) の Aspergillus acule atus由来の jS -ダルコシダーゼ 1遺伝子を揷入した。 すなわち、 プラスミ ド p ABG7をテンプレートとして、 5,_gtcgagatctctga1:gaactggcgttctct - 3, (配歹' J 番号 5ノ およぴ - ttcactcgagccttgcaccttcgggagcgccg- 3' (目 ΰ歹 lj畨"^ 6 ) を プライマーとして PCRにより DNAを増幅させ、 Bglll - Xholで切断し、 このフラ グメントをプラスミ ド pICASlの Bglll - Xho切断部位の導入し、 プラスミ ド p顧 CSを得た。 このプラスミ ド pMHCSは、 GAPDHプロモーター、 分泌シグナル配歹【J、 i3 -ダルコシダーゼ構造遺伝子、 α—ァグルチュンの C末端領域 320アミノ酸 および 446bpフランキング領域を含む遺伝子配列を有している。 pMHCSを BssH IIで切断して、 GAPDHプロモーター、 分泌シグナル配列、 β -ダルコシダーゼ 構造遺伝子、 α—ァグルチュンの C末端領域 320アミノ酸と 446bpフランキン グ領域を含む BssHII—BssHII DNAフラグメント (フラグメント IV) を単離 した。 Figure 3 shows the procedure for creating the desired plasmid pBG211 using this plasmid pICASl. Plasmid pICASl was digested with Bglll-Xhol, and the jS-darcosidase 1 gene from Aspergillus acule atus of plasmid pABG7 (Kawaguchi et al., Gene 173: 287-288 (1996)) was inserted into this site. That is, DNA was obtained by PCR using plasmid pABG7 as a template, 5, _gtcgagatctctga1: gaactggcgttctct-3, (distribution system's J number 5 no and -ttcactcgagccttgcaccttcgggagcgccg-3 '(measure <1> lj ^ "^ 6) as a primer. This fragment was digested with Bglll-Xhol, and this fragment was introduced into the Bglll-Xho cleavage site of the plasmid pICASl to obtain a plasmid pCS.This plasmid pMHCS contains the GAPDH promoter and secretory signal. [J, i3 -. Darukoshidaze structural gene, alpha-Aguruchun has a gene sequence comprising the C-terminal region 320 amino acids and 44 6 bp flanking regions pMHCS was digested with BssH II and, GAPDH promoter, a secretory signal sequence BssHII-BssHII DNA fragment (320 amino acids and 446 bp flanking region) of the α-agglutin C-terminal region and the β-dalcosidase structural gene Segment IV) was isolate.
他方で、 2 i mDNAを含むプラスミ ド pMT34 (+3) (Tajimaら、 Yeast 1 : 67 7 7(1985)) から EcoRIフラグメントを切り出し、 プラスミ ド pRS403 (Sikorski ら、 Genetics 122:19-17 (1989)) の Aatll部位に挿入し、 多コピープラスミ ド pMHlを作製した。 このプラスミ ド pffllを BssHIIで切断し、 そこにフラグメ ント IVを揷入して、 -ダルコシダーゼを細胞表層に発現するプラスミ ド pBG 211を得た。 On the other hand, plasmid pMT34 (+3) containing 2 imDNA (Tajima et al., Yeast 1: 67 7 7 (1985)), and inserted into the Aatll site of plasmid pRS403 (Sikorski et al., Genetics 122: 19-17 (1989)) to produce multicopy plasmid pMHl. This plasmid pffll was digested with BssHII, and fragment IV was inserted therein to obtain a plasmid pBG211 expressing -dalcosidase on the cell surface.
フフス¾> pBG21丄 ·¾Γ¾3(ϊ(;η3Γοιηγοθ3 cerevisiae MT8一 1 (MATa ura3 trpl a de leu2 his3) に Yeast Maker (CLONTEC社製) を用いて酢酸リチウム法によ り導入した。 形質転換株は SD培地 (6.7g/L yeast nitrogen base w/ひ amino acids, 20g/L グノレコース、 0.03g/L ロイシン、 0.02g/L トリプトファン、 0.02g/L アデニン、 0.02g/L ゥラシル) で選択した。 得られた形質転換体を MT8- 1/PBG211と命名した。 Fuhus ¾> pBG21 丄 · ¾Γ¾3 (ϊ (; η3Γοιηγοθ3 cerevisiae MT81-1 (MATa ura3 trpl a de leu2 his3)) was introduced by the lithium acetate method using Yeast Maker (manufactured by CLONTEC). Medium (6.7 g / L yeast nitrogen base w / h amino acids, 20 g / L gnorecose, 0.03 g / L leucine, 0.02 g / L tryptophan, 0.02 g / L adenine, 0.02 g / L peracil). and the transformant was designated as MT8- 1 / P BG211.
2-2 エンド jS 1, 4 -ダルカナーゼ I (ェンドグルカナーゼ I ) を細胞表層に 発現する酵母の作製 2-2 Preparation of yeast that expresses endo jS 1,4-dalcanase I (endglucanase I) on the cell surface
ェンドグルカナーゼ Iを細胞表層に発現するプラスミ ド pEG19の作成の模 式図を図 4に示す。  Figure 4 shows a schematic diagram of the construction of plasmid pEG19 that expresses endoglucanase I on the cell surface.
2 mDNAを有するプラスミ ド pWI3 (Kanaiら、 Appl. Microbiol. Biotech nol. 44:759-765 (1996)) の EcoRIDNAフラグメントをプラスミ ド pRS405 (Si korskiら、 Genetics 122:19-17 (1989)) の Aatll部位に導入し、 プラスミ ド pRS405+2を作製した。  The EcoRI DNA fragment of plasmid pWI3 with 2 mDNA (Kanai et al., Appl.Microbiol. Biotechnol. 44: 759-765 (1996)) was converted to the plasmid pRS405 (Sikorski et al., Genetics 122: 19-17 (1989)). The plasmid was introduced into the Aatll site to generate plasmid pRS405 + 2.
他方で、 上記プラスミ ド pICAS lの GAPDHプロモーター、 分泌シグナル配列、 α—ァグルチニンの C末端 320ァミノ酸と 446bpフランキング領域を含む DNA フラグメントを PCRで増幅し、 EcoRVで切断して、 プラスミド PRS405+2の Pvul I-PvuII部位に導入し、 プラスミ ド pMLCS5を作製した。 増幅に用いたプライ マーは、 5 - ggaaacagctatgaccatgatatcgccaagcgcgcaa.tta- 3' (酉己列番号 7 )On the other hand, GAPDH promoter of the plasmid Picas l, secretion signal sequence, a DNA fragment containing the C-terminal 320 Amino acid and 446bp flanking region of α- Aguruchinin was amplified by PCR, was cut with EcoRV, a plasmid P RS405 + The plasmid was introduced into the Pvul I-Pvu II site of No. 2 to prepare a plasmid pMLCS5. The primer used for amplification was 5-ggaaacagctatgaccatgatatcgccaagcgcgcaa.tta-3 '(Rooster column number 7)
<±; Χ ΐ) -ttgtaaaacgatatccagtgagcgcgcgtaatacgactca-3' ( ΰ歹' J番^" 8 ) で あった。 <±; Χ ΐ) -ttgtaaaacgatatccagtgagcgcgcgtaatacgactca-3 '(ΰ system' J number ^ "8) there were.
このプラスミ ド pMLCS5の Bglll部位に、 Tricoderma reesei由来のエンド j3 1, 4-グルカナーゼ遺伝子を挿入した。 すなわち、 T. reeseiの mRNAから作成 した 1st strana cDNA アンプレートとして、 & -gctcgagatctcccagcaaccggg taccagcacccccgag-3' (酉 G列番 9 )■ 、 およぴ ΰ - ggagatctggaaggcattgcgagt agtagtcgttgctatact-3' (配列番号 10) をプライマーとして用いて、 PCRで増 幅し、 Bglllで切断して、 エンドグルカナーゼ Iをコードする cDNAの BglllDN Aフラグメントを得、 これをプラスミド pMLCS5の Bglll部位に導入し、 プラス ミ ド pEG19を得た。  The endo j31,4-glucanase gene derived from Tricoderma reesei was inserted into the Bglll site of this plasmid pMLCS5. That is, as the 1st strana cDNA unplate prepared from the mRNA of T. reesei, & -gctcgagatctcccagcaaccggg taccagcacccccgag-3 '(rooster G column 9) ■ and -ggagatctggaaggcattgcgagt agtagtcgttgctatact-3' (SEQ ID NO: 10) Was amplified by PCR and cut with Bglll to obtain a Bglll DNA fragment of cDNA encoding endoglucanase I, which was introduced into the Bglll site of plasmid pMLCS5 to obtain plasmid pEG19.
得られたプラスミド pEG19を、 2- 1と同様の方法で、 酵母 Saccharomyces c erevisiae MT— 8【こ 入し、 SDi¾"i也 (6. 7g/L yeast nitrogen base w/o amino acids, 20g/L グノレコース、 0. 02g/L トリプトファン、 0. 02g/L ヒスチジン、 0. 02g/L アデニン、 0. 02g/L ゥラシル) で選択した。 得られた形質転換体を MT8-l/pEG19とした。  The obtained plasmid pEG19 was transformed with the yeast Saccharomyces cerevisiae MT—8 in the same manner as in 2-1 to obtain SDi¾ "i-ya (6.7 g / L yeast nitrogen base w / o amino acids, 20 g / L (Gnorecose, 0.02 g / L tryptophan, 0.02 g / L histidine, 0.02 g / L adenine, 0.02 g / L peracil) The obtained transformant was designated as MT8-l / pEG19.
2-3 β -ダルコシダーゼ 1とエンドダルカナーゼ Iとを細胞表層に発現する 酵母の作製 2-3 Preparation of yeast expressing β-dalcosidase 1 and endodalcanase I on cell surface
形質転換体 MT8-l/pBG211を宿主として、 プラスミド pEG19を 2 - 1と同様に形 質転換し、 SDJ¾-¾ (6. 7g/L yeast nitrogen base w/o amino acids、 20g/L グノレコース、 0. 02g/L トリプトファン、 0. 02g/L アデニン、 0. 02g/L ゥラシ ル) で形質転換株を得た。 得られた形質転換株を MT8_l/pBG211 +pEG19とし た。  Using the transformant MT8-l / pBG211 as a host, plasmid pEG19 was transformed in the same manner as 2-1.SDJ¾-¾ (6.7 g / L yeast nitrogen base w / o amino acids, 20 g / L gnorecose, .02 g / L tryptophan, 0.02 g / L adenine, and 0.02 g / L peracil). The resulting transformant was designated as MT8_1 / pBG211 + pEG19.
2-4 古紙粕からのァ 7レコール生産2-4 Recall production from waste paper cake
3 -ダルコシダーゼ 1を細胞表層に発現する形質転換体 (MT8-1/PBG211) 、 エンドダルカナーゼ Iを細胞表層に発現する形質転換体 (M'T8- 1/PEG19) お よび ]3 -ダルコシダーゼ 1とェンドグルカナーゼ Iとを細胞表層に発現する 形質転換体 (MT8-l/pBG211 +pEG19) をそれぞれの選択に用いた SD培地 (液 体培地) に懸濁し、 30°C、 48時間培養し、 前培養液を得た。 この前培養液を、 40g/Lの古紙粕を含む Y P D培地 (10g/L yeast extract, 20g/Lポリぺプト ン、 グルコース 5g/L) 1 Lを有する 2 Lジャーフアーメンター (BMJ - 02PIAb le) に植菌し、 0. 01〜0. 03ppmの微好気条件下培養を行った。 いずれの形質 転換体も、 グルコース添加量が少ないにも係わらず、 生育した。 これは、 細 胞表層で発現した酵素により、 グルコースが生産され、 生産されたダルコ一 スを利用して生育したためと思われる。 /3 -ダルコシダーゼ 1とエンドダル' カナーゼ Iとを細胞表層に発現する形質転換体 (MT8-l/PBG211 +pEG19) の 生育が一番よかった。 3 - transformants the Darukoshidaze 1 expressed on the cell surface (MT8-1 / P BG211), transformant end dull mosquito endoglucanase I expressed on the cell surface (M'T8- 1 / P EG19) Contact And] A transformant (MT8-l / pBG211 + pEG19) that expresses 3-dalcosidase 1 and endoglucanase I on the cell surface is suspended in the SD medium (liquid medium) used for each selection, and then suspended at 30 ° C. C, and cultured for 48 hours to obtain a pre-culture solution. This pre-cultured solution was used as a 2 L jar armmenter (BMJ-02PIAb le) containing 1 L of YPD medium (10 g / L yeast extract, 20 g / L polypeptide, 5 g / L of glucose) containing 40 g / L waste paper meal. ) And cultured under microaerobic conditions of 0.01 to 0.03 ppm. All transformants grew despite the small amount of glucose added. This is probably because glucose was produced by the enzyme expressed on the cell surface, and it grew using the produced darcose. / 3 - Darukoshidaze growth 1 and Endodaru 'Kanaze I and a transformant that expressed on the cell surface (MT8-l / P BG211 + pEG19) was the best.
乾燥菌体量が約 15g/Lに達したところで培養を終了し、 遠心分離により菌 体を回収し、 70g/Lの古紙粕を含有する 5g/L Y P D培地で、 30°C、 pH6. 0、 0. 01〜0. 03ppmの微好気条件下、 発酵を行った。 100時間培養後、 '培養液中のェ タノールを測定した結果、 形質転換体 (MT8- l/pBG211) 、 形質転換体 (MT8- 1/PEG19) および形質転換体 (MT8- l/pBG211+pEG19) は、 それぞれ、 3 g/L、 4 g/Lおょぴ 6 g/Lのエタノールを生産した。  When the amount of the dried cells reached about 15 g / L, the culture was terminated, the cells were collected by centrifugation, and 5 g / LYPD medium containing 70 g / L waste paper meal was used at 30 ° C, pH 6.0, Fermentation was performed under microaerobic conditions of 0.01 to 0.03 ppm. After culturing for 100 hours, the results of measuring the ethanol in the culture broth showed that the transformant (MT8-l / pBG211), the transformant (MT8-1 / PEG19) and the transformant (MT8-l / pBG211 + pEG19) ) Produced 3 g / L, 4 g / L and 6 g / L ethanol, respectively.
2-5 無触媒熱水法で分解した古紙粕からのアルコール生産 2-5 Alcohol production from waste paper meal decomposed by non-catalytic hydrothermal method
内容積 35m 1、 内径 16mm、 高さ 200mmの耐圧容器にヒーターを取り付 け、 70g/L濃度の古紙懸濁液を表 1に記載の条件で処理し、 得られた分解液 をそのまま炭素源として用いて、 アルコール発酵を行った。 用いた形質転換 体は、 β -ダルコシダーゼ 1を細胞表層に発現する形質転換体 (ΜΤ8- l/pBG21 1) および -ダルコシダーゼ 1とエンドグルカナーゼ Iとを細胞表層に発現 する形質転換体 (MT8-l/pBG211 +pEG19) である。  Attach a heater to a pressure-resistant container with an internal volume of 35 m1, an inner diameter of 16 mm, and a height of 200 mm, treat a 70 g / L wastepaper suspension under the conditions shown in Table 1, and use the resulting decomposition solution as it is as a carbon source. Was used for alcohol fermentation. The transformants used were a transformant expressing β-dalcosidase 1 on the cell surface (ΜΤ8-l / pBG21 1) and a transformant expressing -dalcosidase 1 and endoglucanase I on the cell surface (MT8-l / pBG211 + pEG19).
70g/Lの処理した古紙の濃度を有する 5g/L Y P D培地で、 30°C、 pH6. 0、 0. 01〜0. 03ppmの微好気条件下、 発酵を行った。 100時間培養後、 培養液中のェ タノールを測定した結果を表 1に示す。 5g / LYPD medium with a concentration of treated waste paper of 70g / L at 30 ° C, pH 6.0, 0. Fermentation was performed under microaerobic conditions of 01-0.03 ppm. Table 1 shows the results of measuring ethanol in the culture solution after culturing for 100 hours.
表 1  table 1
Figure imgf000018_0001
Figure imgf000018_0001
数字はアルコール濃度 (g /し)を表す 表 1の转果は、 何も処理しない古紙を培地に添加した場合よりも、 400°C、 15秒間処理した古紙を培地に添加した場合アルコール発酵の程度は小さかつ たし、 400°C、 30分間処理したものを添カ卩した場合には、 もっと低かった。 これよりも緩い条件で処理した古紙を添加した場合、 処理しない場合よりも はるかにアルコール発酵の程度は大きかった。 過酷な条件で古紙を処理する ことにより、 セルロースが分解されて必要な糖が生成されないか、 反応を阻 害する物質が生成するなどの原因により、 アルコール発酵が進行しなかった ものと考えられる。 他方、 より緩やかな条件で古紙を処理することにより、 古紙が適度に分解され、 酵素が古紙 (セルロース) に対して働き易くなつた ためと考えられる。 実施例 3 :エンド /3 1, 4-グルカナーゼ IIを細胞表層に発.現する酵母の構築と グルカンの分解  The numbers represent the alcohol concentration (g / s) .The results in Table 1 show that when the waste paper treated at 400 ° C for 15 seconds is added to the culture medium compared to when untreated waste paper is added to the culture medium, the alcohol fermentation The degree was small, and it was even lower when mashed at 400 ° C for 30 minutes. The degree of alcohol fermentation was much greater when waste paper treated under milder conditions was added than without. It is probable that alcohol fermentation did not proceed due to factors such as the decomposition of cellulose to produce the necessary sugars or the formation of substances that hinder the reaction due to the treatment of waste paper under harsh conditions. On the other hand, it is probable that the treatment of the used paper under milder conditions decomposed the used paper to an appropriate degree and made it easier for enzymes to work on the used paper (cellulose). Example 3: Construction of yeast expressing endo / 3 1,4-glucanase II on cell surface and degradation of glucan
3-1 エンド |3 1, 4-グルカナーゼ II (以下、 エンドグルカナーゼ IIという) を細胞表層に発現する酵母の作成  Preparation of yeast that expresses 3-1 endo | 31,4-glucanase II (hereinafter referred to as endoglucanase II) on the cell surface
ェンドグルカナーゼ IIを細胞表層に発現するプラスミド pEG23u31の作成手 頁を図 5に示す。  Figure 5 shows the procedure for preparing plasmid pEG23u31 that expresses endoglucanase II on the cell surface.
2-1で作成したプラスミ ド pICASlをテンプレートとして、 配列番号 7およ ぴ 8で示される配列をプローブとして、 PCRによる増幅を行った。 得られた 断片を EcoRVで切断し、 EcoRV- EcoRVフラグメントを得た。 このフラグメント には、 GAPDHプロモーター、 分泌シグナル配列、 α -ァグルチニンの C末端 32 0アミノ酸と 446bpフランキング領域が含まれてレヽる。 Using the plasmid pICASl created in 2-1 as a template, SEQ ID NOs: 7 and Amplification by PCR was performed using the sequence represented by ぴ 8 as a probe. The obtained fragment was digested with EcoRV to obtain an EcoRV-EcoRV fragment. This fragment contains the GAPDH promoter, a secretory signal sequence, the C-terminal 320 amino acids of α-agglutinin and a 446 bp flanking region.
他方、 本発明者の田中、 植田らが作成したプラスミド pURI24を PvuIIおよ び BamHIで切断し、 平滑末端とした。 この平滑末端化部位に、 EcoRV-EcoRVフ ラグメントを挿入し、 プラスミ ド pMUCSを作成した。  On the other hand, the plasmid pURI24 created by the present inventors, Tanaka and Ueda, was cut with PvuII and BamHI to obtain blunt ends. An EcoRV-EcoRV fragment was inserted into this blunt-ended site to create a plasmid pMUCS.
次に、 Trichoderma reeseiの mRNA力、ら作成した 1st strand cDNAをテンプ レートとして、 PCRを行った。 用いたプライマーは 5, -cggcgagatctcacagcaga ctgtctgggg-3' (酉己列番" および D -gacagctcgagggctttcttgcgagacacg-3 ' (配列番号 12) であった。 この PCR産物を Bglllおよび Xholで切断し、 ェン ド 1, 4-グノレカナーゼ II (グルカナーゼ II) をコードする配列を有する Bgll I- Xholフラグメントを得た。 この Bglll-Xholフラグメントをプラスミ ド pMUC Sの Bglll- Xhol部位に挿入し、 目的のプラスミ ド pEG23u31を得た。  Next, PCR was carried out using the mRNA of Trichoderma reesei as a template and the prepared 1st strand cDNA. The primers used were 5, -cggcgagatctcacagcaga ctgtctgggg-3 '(rooster column number) and D -gacagctcgagggctttcttgcgagacacg-3' (SEQ ID NO: 12). The PCR product was cut with Bglll and Xhol, and A Bgll I-Xhol fragment having a sequence encoding 4-gunolecanase II (glucanase II) was obtained, and the Bglll-Xhol fragment was inserted into the Bglll-Xhol site of plasmid pMUCS to obtain the desired plasmid pEG23u31. .
得られたプラスミ ド pEG23u31を、 2-1と同様の方法で、 酵母 Saccharomyces cerevisiae MT - 8に導入し、 SD ±也 (6. 7g/L yeast nitrogen base w/o ami no acids, 20g/L グルコース、 0· 02g/L トリプトファン、 0. 02g/L ヒスチジ ン、 0. 02g/L アデニン、 0. 03g/L ロイシン) で選択した。 得られた形質転換 体を MT8-l/pEG23u31とした。  The obtained plasmid pEG23u31 was introduced into the yeast Saccharomyces cerevisiae MT-8 in the same manner as 2-1 and SD ± ya (6.7 g / L yeast nitrogen base w / o ami no acids, 20 g / L glucose). , 0.02 g / L tryptophan, 0.02 g / L histidine, 0.02 g / L adenine, and 0.03 g / L leucine. The resulting transformant was designated as MT8-l / pEG23u31.
3-3 /3 -グ /レカンの分解 3-3 / 3-G / Recan Decomposition
50mM酢酸バッファー (pH5. 0) に 10g/Lの濃度の ]3 -グルカンを懸濁して、 これにェンドグルカナーゼ IIを細胞表層に発現する酵母 MT8 - l/pEG23u31を添 加して、 6 0時間反応させた。 Somogyi- Nelson法により、 遊離してくる還元 糖量をグルコース当量として測定した。 コントロールとして、 エンドグルカ ナーゼ II遺伝子の組込みに使用した pMUCSを有する MT8-1 (MT8- 1/pMUCS) を 用いた。 結果を図 6に示す。 Suspension of 10-g / L] 3-glucan was suspended in 50 mM acetate buffer (pH 5.0), and yeast MT8-l / pEG23u31, which expresses endoglucanase II on the cell surface, was added to the suspension. Allowed to react for hours. The amount of reducing sugars released was measured as the glucose equivalent by the Somogyi-Nelson method. As a control, MT8-1 (MT8-1 / pMUCS) with pMUCS used for integration of endoglucanase II gene was used. Using. Fig. 6 shows the results.
図 6の結果は、 細胞表層にェンドグルカナーゼ IIを有する酵母は、 βダル 力ンを効率よく分解することを示している。 実施例 4 : 3ダルコシダーゼ 1およぴ Ζまたはェンドグルカナーゼ IIを細胞 表層に発現する酵母の作成  The results in FIG. 6 indicate that yeast having endoglucanase II on the cell surface efficiently degrades β-daltin. Example 4: Preparation of yeast expressing 3 dalcosidase 1 and Ζ or endoglucanase II on the cell surface
4-1 β ダルコシダーゼ 1を細胞表層に発現する酵母の作成  4-1 Preparation of yeast expressing β-dalcosidase 1 on cell surface
ここでは、 染色体組込み型のプラスミ ドで形質転換された酵母を作成した。 Here, yeast transformed with a chromosomal integration plasmid was prepared.
3 - 1と同様、 プラスミ ド pICASlをテンプレートとして、 EcoRV - EcoRVフラグメ ントを調製した。 このフラグメントを染色体組込型ブラスミ ド pRS403 (Siko rski, R. S.および P. Hieter、 (1989) Genetics, 122 : 19-27) の PvuII部位に揷 入し、 プラスミ ド pIHCSを作成した。 As in the case of 3-1, EcoRV-EcoRV fragments were prepared using plasmid pICASl as a template. This fragment was inserted into the PvuII site of a chromosome-integrated plasmid pRS403 (Sikorski, RS and P. Hieter, (1989) Genetics, 122: 19-27) to generate plasmid pIHCS.
他方で、 2- 1で作成した pBG211をテンプレートとして、 PCRを行い、 βグル コシダーゼ 1をコードする配列を有する PCR産物を得た。 用いたプライマー は、 D -gatctccatggctgatgaactggcgttctctcctcctttc-3 (酉己列番 13) およ ぴ 5 -tggcgctcgagccttgcaccttcgggagcgccgcgtgaag-3' (酉己歹 U番号 14) であつ た。 得られた PCR産物を Ncolおよび Xholで切断し、 プラスミ ド pIHCSの Ncol- X hoi部位に導入し、 目的のプラスミ ドである、 ]3 -ダルコシダーゼ 1表層発現 染色体組込型プラスミ ド pIBG13を作成した。  On the other hand, PCR was performed using pBG211 prepared in 2-1 as a template to obtain a PCR product having a sequence encoding β-glucosidase 1. The primers used were D-gatctccatggctgatgaactggcgttctctcctcctttc-3 (Rokki No. 13) and 5-tggcgctcgagccttgcaccttcgggagcgccgcgtgaag-3 '(Rokki U number 14). The obtained PCR product was digested with Ncol and Xhol, introduced into the Ncol-Xhoi site of plasmid pIHCS, and the desired plasmid,] 3-dalcosidase 1 surface expression, chromosome-integrated plasmid pIBG13 was prepared. .
得られたプラスミ ド PIBG13を、 Nhelで切断して一本鎖 DNAにした後、 2-1と 同様の方法で、 酵母 Saccharomyces cerevisiae MT - 8に導入し、 SD培地 (6. 7 g/h yeast nitrogen base w/o amino acids、 20g/L クノレコース、 0. 03g/L ロイシン、 0. 02g/L トリプトファン、 0. 02g/L アデニン、 0. 02g/L ゥラシ ル) で選択して、 得られた形質転換体を MT8-l/pIBG13とした。  The obtained plasmid PIBG13 is cut into single-stranded DNA by cutting with Nhel, and then introduced into yeast Saccharomyces cerevisiae MT-8 in the same manner as in 2-1 to obtain an SD medium (6.7 g / h yeast). nitrogen base w / o amino acids, 20 g / L knorecose, 0.03 g / L leucine, 0.02 g / L tryptophan, 0.02 g / L adenine, 0.02 g / L peracil) The transformant was designated as MT8-1 / pIBG13.
4- 2 jS -ダルコシダーゼ 1およぴェンドグルカナーゼ IIを共発現する酵母の 作成 4- 2 of yeast co-expressing jS-darcosidase 1 and endoglucanase II Create
3-1で得られた、 ェンドグルカナーゼ IIを細胞表層に発現する酵母 MT8-1/P EG23u31を、 4 - 1で得られた & -ダルコシダーゼ 1を細胞表層に発現するプラ スミ ド pIBG13 (染色体組込型) で形質転換し、 形質転換体 MT8- l/pEG23u31pI BG13を作成した。  The yeast MT8-1 / PEG23u31 that expresses endoglucanase II on the cell surface obtained in 3-1 and the plasmid pIBG13 (chromosome) that expresses & -darcosidase 1 obtained in 4-1 on the cell surface (Integrated type) to prepare a transformant MT8-l / pEG23u31pIBG13.
この形質転換体が β -ダルコシダーゼ 1およぴェンドグルカナーゼ IIを発 現していることを、 プレートアツセィにより確認した。  It was confirmed by plate assay that this transformant expressed β-darcosidase 1 and endoglucanase II.
j3 -ダルコシダーゼ 1のアツセィは SD選択プレート上で 30°C、 48時間ィン キュペートした後、 lOmMの合成基質 (4- methylumbellifery- ;3 - D_glucosi de) を含む 7. 5g/Lソフトァガーを重層し、 30°C、 12時間さらにインキュベー トした。 このプレートを波長 300 n mの紫外線を照射し、 基質が分解されて 生成する蛍光物質の蛍光を観察したところ、 蛍光が見られ、 発現が確認され た。  After incubating the j3-dalcosidase 1 at 48 ° C for 30 hours at 30 ° C on an SD selection plate, overlay 7.5 g / L softlager containing lOmM synthetic substrate (4-methylumbellifery-; 3-D-glucoside). Incubation was further performed at 30 ° C for 12 hours. The plate was irradiated with ultraviolet light at a wavelength of 300 nm, and the fluorescence of the fluorescent substance generated by decomposition of the substrate was observed. The fluorescence was observed, and the expression was confirmed.
また、 エンドダルカナーゼ Πの発現は、 lg/L -グルカンを含む SD選択プ レート上で 30°C、 48時間インキュベートし、 lg/Lコンゴレッドで染色するこ とにより行い、 ハローが確認された。  In addition, expression of Endalcanase II was performed by incubating at 30 ° C for 48 hours on an SD selection plate containing lg / L-glucan and staining with lg / L Congo Red to confirm halo. Was.
以上から、 MT8_l/pEG23u31pIBG13は、 ]3 -ダルコシダーゼ 1およびエンド ダルカナーゼ IIを発現していることが確認された。 4. 3 -ダルコシダーゼ 1を細胞表層に発現する酵母によるセロビオースの 利用  From the above, it was confirmed that MT8_l / pEG23u31pIBG13 expressed] 3-darcosidase 1 and endo-dalcanase II. 4.3 Utilization of cellobiose by yeast expressing 3-Darcosidase 1 on cell surface
β -グノレコシダーゼ 1を細胞表層に発現する MT8-l/pIBG13、 および MT8_l/p EG23u31pIBG13を用いて、 セロビオースを単一炭素源として培養し、 酵母の 生育を観察した。 対照として、 MT8- 1株を用いた。 6. 7g/L yeast nitrogen b ase w/o amino acids, lOg/L セロビオース、 0. 03g/L ロイシン、 0. 02g/L トリ'プトファン、 0. 02g/L アデニン、 0. 02g/L ゥラシル) の培地を用い、 3: 0°Cで培養した結果を図 Ίに示す。 Using MT8-l / pIBG13 and MT8_l / pEG23u31pIBG13, which express β-gnorecosidase 1 on the cell surface, cellobiose was cultured as a single carbon source, and the growth of yeast was observed. The MT8-1 strain was used as a control. 6. 7g / L yeast nitrogen base w / o amino acids, lOg / L cellobiose, 0.03g / L leucine, 0.02g / L tri'ptophan, 0.02g / L adenine, 0.02g / L peracil) Using the medium of 3 : The results of culturing at 0 ° C are shown in FIG.
この結果は、 /3 -ダルコシダーゼ 1を細胞表層に発現する酵母は、 元来酵 母が資化することができない二糖であるセロビオースを分解し、 生育できた ことを示している。  This result indicates that the yeast expressing / 3-dalcosidase 1 on the cell surface was able to degrade cellobiose, which is a disaccharide originally incapable of being assimilated by the yeast, and was able to grow.
4-4 ]3 -ダルコシダーゼ 1およびェンドグルカナーゼ IIを発現する酵母によ る可溶性長鎖セルロースからのエタノール生産 4-4] Ethanol production from soluble long-chain cellulose by yeast expressing 3-dalcosidase 1 and endoglucanase II
形質転換体 MT8- l/pEG23u31pIBG13を SD培地 (6. 7g/L yeast nitrogen base w/o amino acids, 20g/L グノレコース、 0. 03g/L ロイシン、 0. 02g/L トリプ トフアン、 0. 02g/L アデニン、 0. 02g/L ゥラシル) の培地で前培養し、 SD培 地 (6. 7g/L yeast nitrogen base w/o amino acidsヽ lOg/L j3 -グルカン、 0. The transformant MT8-l / pEG23u31pIBG13 was transferred to an SD medium (6.7 g / L yeast nitrogen base w / o amino acids, 20 g / L gnorecose, 0.03 g / L leucine, 0.02 g / L triptofan, 0.02 g / L-Adenine, pre-cultured in a medium of 0.02 g / L peracil, and cultured on SD medium (6.7 g / L yeast nitrogen base w / o amino acids ヽ lOg / L j3-glucan,
03g/L ロイシン、 0. 02g/L トリプトファン、 0. 02g/L アデニン、 0. 02g/L ゥ ラシル) で培養し、 生成するエタノ一ルの量をガスクロマトグラフィ一で測 定した。 全糖は、 力ルバゾール ·硫酸法で測定した。 結果を図 8に示す。 この結果は、 ]3 -グルカンが完全に糖化され、 アルコール発酵が行われた ことを示している。 産業上の利用可能性 The cells were cultured with 03 g / L leucine, 0.02 g / L tryptophan, 0.02 g / L adenine, and 0.02 g / L ゥ racil), and the amount of ethanol formed was measured by gas chromatography. Total sugars were measured by the sorbazole-sulfuric acid method. Fig. 8 shows the results. This result indicates that] -glucan was completely saccharified and alcohol fermentation was performed. Industrial applicability
本発明の方法により、 紙として再生されないセルロース繊維が有効に資源 として再利用される。 特に、 1, 4-ダルコシド結合を切断し得る酵素をアン 力リングした微生物が、 好ましく用いられる。  By the method of the present invention, cellulose fibers that are not recycled as paper are effectively reused as resources. In particular, a microorganism that has been subjected to an enzyme capable of cleaving a 1,4-darcoside bond is preferably used.

Claims

請求の範囲 The scope of the claims
1 . 紙としての再生が困難なセルロース繊維または紙類と、 1, 4 -ダルコシ ド結合を切断し得る酵素または微生物とを反応させる工程を含む、 ダルコ一 スの製造方法。 1. A method for producing darcose, comprising a step of reacting a cellulose fiber or paper which is difficult to regenerate as paper with an enzyme or a microorganism capable of cleaving a 1,4-darcoside bond.
2 . 前記紙としての再生が困難なセルロース繊維または紙類が、 無触媒水熱 法により回分式であるいは連続的に分解されたセルロース繊維または紙類で ある、 請求項 1に記載の方法。 2. The method according to claim 1, wherein the cellulose fibers or papers which are difficult to regenerate as paper are cellulose fibers or papers which are decomposed batchwise or continuously by a non-catalytic hydrothermal method.
3 . 前記微生物が、 エンド 1, 4-グルカナーゼ、 セロビォヒドロラーゼ、 お よび ]3 -ダルコシダーゼからなる群から選択される少なくとも 1種を細胞表 層に発現するように組換えられた 1または 2以上の微生物である、 請求項 1 または 2に記載の方法。 3. One or more recombinant microorganisms, wherein the microorganism has been modified to express at least one selected from the group consisting of endo-1,4-glucanase, cellobiohydrolase, and] 3-darcosidase on the cell surface. The method according to claim 1, wherein the microorganism is a microorganism.
4 . 前記微生物が、 以下の (Α) から (C) : 4. The microorganism is any of the following (II) to (C):
(Α) β -ダルコシダーゼ;  (Α) β-Darcosidase;
(Β ) エンド ]3 1, 4-グルカ^ "一ゼ;および  (Β) End] 3 1,4-gluca ^ "I;
( C) エンド ;3 1, 4 -グルカナーゼと β -ダルコシダーゼとの組合せ からなる群から選択される酵素を細胞表層に発現するように組換えられた微 生物である、 請求項 3に記載の方法。  The method according to claim 3, wherein the (C) endo is a microorganism that has been recombined to express an enzyme selected from the group consisting of a combination of 31,4-glucanase and β-darcosidase on the cell surface. .
5 . 前記微生物が酵母である、 請求項 3または 4に記載の方法。 5. The method according to claim 3, wherein the microorganism is a yeast.
6 . 紙としての再生が困難なセルロース繊維または紙類と、 ]3 1, 4 -ダルコシ ド結合を切断し得る酵素または微生物 Αとを反応させてグルコースを製造す る工程、 およぴ該得られたグルコースと、 アルコール発酵能を有する微生物 Bとを反応させる工程を含む、 アルコールの製造方法。 6. Glucose is produced by reacting cellulose fibers or papers, which are difficult to regenerate as paper, with enzymes or microorganisms that can cleave] 3 1,4-darcoside bonds. And a step of reacting the obtained glucose with a microorganism B having alcohol fermentation ability.
7 . 前記紙としての再生が困難なセルロース繊維または紙類が、 無触媒水熱 法により回分式であるいは連続的に分解されたセルロース繊維または紙類で ある、 請求項 6に記載の方法。 7. The method according to claim 6, wherein the cellulose fibers or papers which are difficult to regenerate as paper are cellulose fibers or papers which are decomposed batchwise or continuously by a non-catalytic hydrothermal method.
8 . 前記微生物 Aが、 エンド ]3 1, 4-グルカナーゼ、 セロビォヒドロラーゼ、 および ]3 -ダルコシダーゼからなる群から選択される少なくとも 1種を細胞 表層に発現するように組換えられた 1または 2以上の微生物である、 請求項 6に記載の方法。 8. The microorganism A has been recombined to express at least one selected from the group consisting of endo] 31,4-glucanase, cellohydrolase, and] 3-darcosidase on the cell surface. 7. The method according to claim 6, which is a microorganism as described above.
9 . 前記微生物 Aが、 以下の (A) から (C) : 9. The microorganism A has the following (A) to (C):
(A) ]3 -グノレコシダーゼ;  (A)] 3-Gnorecosidase;
(B ) エンド ]3 1, 4-グルカナーゼ;およぴ  (B) endo] 31,4-glucanase; and
( C) エンド 1, 4-グルカナーゼと j3 -グルコシダーゼとの組合せ からなる群から選択される酵素を細胞表層に発現するように組換えられた微 生物である、 請求項 6から 8のいずれかの項に記載の方法。  (C) The microorganism according to any one of claims 6 to 8, which is a microorganism that has been recombinantly expressed so as to express an enzyme selected from the group consisting of a combination of endo 1,4-glucanase and j3-glucosidase on the cell surface. The method described in the section.
1 0 . 前記微生物 Aと微生物 Bとが同一の微生物である、 請求項 6から 9の いずれかの項に記載の方法。 10. The method according to any one of claims 6 to 9, wherein the microorganism A and the microorganism B are the same microorganism.
1 1 前記微生物が酵母である、 請求項 1 0に記載の方法。 11. The method according to claim 10, wherein the microorganism is a yeast.
PCT/JP2001/002429 2000-04-17 2001-03-26 Process for producing alcohol from cellulose fiber WO2001079483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001577466A JP4681199B2 (en) 2000-04-17 2001-03-26 Method for producing alcohol from cellulose fiber

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000/115685 2000-04-17
JP2000115685 2000-04-17
JP2000243351 2000-08-10
JP2000/243351 2000-08-10
JP2000307000 2000-10-06
JP2000/307000 2000-10-06

Publications (1)

Publication Number Publication Date
WO2001079483A1 true WO2001079483A1 (en) 2001-10-25

Family

ID=27343115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002429 WO2001079483A1 (en) 2000-04-17 2001-03-26 Process for producing alcohol from cellulose fiber

Country Status (2)

Country Link
JP (1) JP4681199B2 (en)
WO (1) WO2001079483A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482192B1 (en) * 2002-09-03 2005-04-13 학교법인 인하학원 Method for producing lactic acid from paper sludge
JP2007259803A (en) * 2006-03-29 2007-10-11 Toyota Central Res & Dev Lab Inc PROTEIN HAVING beta-GLUCOSIDASE ACTIVITY AND UTILIZATION OF THE SAME
JP2008514391A (en) * 2004-09-24 2008-05-08 キャンビ・バイオエタノール・アンパルトセルスカブ Method for treating biomass and organic waste for the purpose of producing desirable biological products
CN100400550C (en) * 2004-10-13 2008-07-09 姜国文 Biological peptide heavy hydrocarbon resolvase double hydrogen transfer factor modified cellulose of and its preparing method
JP2008193935A (en) * 2007-02-09 2008-08-28 Bio−energy株式会社 Method for producing ethanol
JP2009033993A (en) * 2007-07-31 2009-02-19 Toyota Central R&D Labs Inc Cellulase carrying material and utilization thereof
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
WO2009139349A1 (en) * 2008-05-14 2009-11-19 Bio-energy株式会社 Method for introduction of gene into yeast cell, and vector for the method
JP2010538642A (en) * 2007-09-12 2010-12-16 マーテック バイオサイエンシーズ コーポレーション Biological oil and its production and use
WO2011067960A1 (en) * 2009-12-01 2011-06-09 Bio-energy株式会社 Method for producing ethanol
US7960511B2 (en) 2008-04-10 2011-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Acid-resistance endoglucanase and the use of thereof
JPWO2010101158A1 (en) * 2009-03-02 2012-09-10 住友商事株式会社 Novel genes derived from Clostridium celluloborans and their use
US8557586B2 (en) 2010-12-10 2013-10-15 National University Corporation Kobe University Cellulose degradable yeast and method for production thereof
US8574911B2 (en) 2008-09-17 2013-11-05 Kansai Chemical Engineering Co., Ltd. Production and use of yeast having increased cellulose hydrolysis ability
WO2018131653A1 (en) * 2017-01-12 2018-07-19 新日鉄住金エンジニアリング株式会社 Method and apparatus for producing saccharification enzyme for saccharifying lignocellulosic biomass, and uses of said method and apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545306A (en) * 1978-09-25 1980-03-31 Norin Suisansyo Shokuhin Sogo Kenkyusho Enzyme saccharification of cellulose by freeze pulverizing
US5100791A (en) * 1991-01-16 1992-03-31 The United States Of America As Represented By The United States Department Of Energy Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii
JP2000253875A (en) * 1999-03-08 2000-09-19 Daicel Chem Ind Ltd Recombinant vector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545306A (en) * 1978-09-25 1980-03-31 Norin Suisansyo Shokuhin Sogo Kenkyusho Enzyme saccharification of cellulose by freeze pulverizing
US5100791A (en) * 1991-01-16 1992-03-31 The United States Of America As Represented By The United States Department Of Energy Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii
JP2000253875A (en) * 1999-03-08 2000-09-19 Daicel Chem Ind Ltd Recombinant vector

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BADAL C. SAHA ET AL.: "Pretreatment and enzymatic saccharification of corn fiber", APPL. BIOCHEM. BIOTECH., vol. 76, 1999, pages 65 - 77, XP002942426 *
MURAI T. ET AL.: "Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxy methylcellulase from aspergillus aculeatus", APPL. ENVIRON. MICROBIOL., vol. 64, no. 12, 1998, pages 4857 - 4861, XP002942424 *
MURAI T. ET AL.: "Evaluation of the function of arming yeast displaying glucoamylase on its cell surface by direct fermentation of corn to ethanol", J. FERMENT. BIOENG., vol. 86, no. 6, 1998, pages 569 - 572, XP002942427 *
UEDA M. ET AL.: "Molecular breeding of polysaccharide-utilizing yeast cells by cell surface engineering", ANN. N.Y. ACAD. SCI., vol. 864, 1998, pages 528 - 537, XP002942425 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482192B1 (en) * 2002-09-03 2005-04-13 학교법인 인하학원 Method for producing lactic acid from paper sludge
JP4722932B2 (en) * 2004-09-24 2011-07-13 キャンビ・バイオエタノール・アンパルトセルスカブ Method for treating biomass and organic waste for the purpose of producing desirable biological products
JP2008514391A (en) * 2004-09-24 2008-05-08 キャンビ・バイオエタノール・アンパルトセルスカブ Method for treating biomass and organic waste for the purpose of producing desirable biological products
CN100400550C (en) * 2004-10-13 2008-07-09 姜国文 Biological peptide heavy hydrocarbon resolvase double hydrogen transfer factor modified cellulose of and its preparing method
JP2007259803A (en) * 2006-03-29 2007-10-11 Toyota Central Res & Dev Lab Inc PROTEIN HAVING beta-GLUCOSIDASE ACTIVITY AND UTILIZATION OF THE SAME
JP2008193935A (en) * 2007-02-09 2008-08-28 Bio−energy株式会社 Method for producing ethanol
JP2009033993A (en) * 2007-07-31 2009-02-19 Toyota Central R&D Labs Inc Cellulase carrying material and utilization thereof
US9453172B2 (en) 2007-09-12 2016-09-27 Dsm Ip Assets B.V. Biological oils and production and uses thereof
JP2010538642A (en) * 2007-09-12 2010-12-16 マーテック バイオサイエンシーズ コーポレーション Biological oil and its production and use
JP2015002743A (en) * 2007-09-12 2015-01-08 ディーエスエム アイピー アセッツ ビー.ブイ. Biological oils and production and use thereof
JP2009112200A (en) * 2007-11-02 2009-05-28 Nippon Steel Engineering Co Ltd Method for producing ethanol
US7960511B2 (en) 2008-04-10 2011-06-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Acid-resistance endoglucanase and the use of thereof
JPWO2009139349A1 (en) * 2008-05-14 2011-09-22 Bio−energy株式会社 Methods for introducing genes into yeast cells and vectors therefor
WO2009139349A1 (en) * 2008-05-14 2009-11-19 Bio-energy株式会社 Method for introduction of gene into yeast cell, and vector for the method
US8574911B2 (en) 2008-09-17 2013-11-05 Kansai Chemical Engineering Co., Ltd. Production and use of yeast having increased cellulose hydrolysis ability
JPWO2010101158A1 (en) * 2009-03-02 2012-09-10 住友商事株式会社 Novel genes derived from Clostridium celluloborans and their use
WO2011067960A1 (en) * 2009-12-01 2011-06-09 Bio-energy株式会社 Method for producing ethanol
JP5752049B2 (en) * 2009-12-01 2015-07-22 Bio−energy株式会社 Ethanol production method
US8557586B2 (en) 2010-12-10 2013-10-15 National University Corporation Kobe University Cellulose degradable yeast and method for production thereof
WO2018131653A1 (en) * 2017-01-12 2018-07-19 新日鉄住金エンジニアリング株式会社 Method and apparatus for producing saccharification enzyme for saccharifying lignocellulosic biomass, and uses of said method and apparatus

Also Published As

Publication number Publication date
JP4681199B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
Dashtban et al. Overexpression of an exotic thermotolerant β-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw
EP2606131B1 (en) Use of glycoside hydrolase 61 family proteins in processing of cellulose
US9080163B2 (en) Cellobiohydrolase variants
WO2001079483A1 (en) Process for producing alcohol from cellulose fiber
EP3168300A1 (en) Yeast expressing saccharolytic enzymes for consolidated bioprocessing using starch and cellulose
US9745560B2 (en) Expression of enzymes in yeast for lignocellulose derived oligomer CBP
KR20230155591A (en) Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars
JP6537076B2 (en) Secretion signal peptide and protein secretion and cell surface display using the same
WO2014081700A1 (en) Recombinant fungal polypeptides
KR20120106774A (en) Methods for improving the efficiency of simultaneous saccharification and fermentation reactions
JP2008086310A (en) Yeast performing surface display of cellulase and use thereof
WO2013048661A1 (en) Fungal proteases
JP5752049B2 (en) Ethanol production method
CA2815522A1 (en) Improved myceliophthora thermophila strain having reduced cellobiose dehydrogenase i activity
Srivastava et al. Synthetic biology strategy for microbial cellulases: an overview
WO2009139349A1 (en) Method for introduction of gene into yeast cell, and vector for the method
EP2855673B1 (en) Improved endoglucanases for treatment of cellulosic material
JP5279061B2 (en) Ethanol production method
US8859248B2 (en) Method for producing ethanol using recombinant yeast strain
CN108368530A (en) β-glucosyl enzym and application thereof
CN104769107B (en) The enhanced polypeptide of β glucosidase activities under low temperature
JP2021090384A (en) Transformed yeast that expresses cellulase on cell surface layer
JP7319652B2 (en) protein cell surface expressing yeast
CN105492612A (en) Recombinant cellulose diastatic enzyme cocktail, recombinant yeast complex strain, and use thereof
JP2005245334A (en) Arabinofuranosidase-expressing yeast and use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 577466

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase