WO2001077499A1 - Steam turbine and its moisture separating structure - Google Patents

Steam turbine and its moisture separating structure Download PDF

Info

Publication number
WO2001077499A1
WO2001077499A1 PCT/JP2000/002314 JP0002314W WO0177499A1 WO 2001077499 A1 WO2001077499 A1 WO 2001077499A1 JP 0002314 W JP0002314 W JP 0002314W WO 0177499 A1 WO0177499 A1 WO 0177499A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
wall
outer ring
steam
circumferential direction
Prior art date
Application number
PCT/JP2000/002314
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuaki Kimura
Yoshiharu Nakayama
Naoaki Shibashita
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to AU2000236753A priority Critical patent/AU2000236753A1/en
Priority to JP2001574734A priority patent/JPWO2001077499A1/en
Priority to PCT/JP2000/002314 priority patent/WO2001077499A1/en
Publication of WO2001077499A1 publication Critical patent/WO2001077499A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles

Definitions

  • the present invention relates to a steam tarpin used for a nuclear power plant, a geothermal power plant, a thermal power plant and the like, and a moisture separating structure thereof.
  • condensers are installed to reduce the steam pressure at the turbine outlet to a pressure close to vacuum. For this reason, in a steam turbine where the steam temperature at the turbine inlet is high and superheated steam is used, the steam is driven by wet steam in the low-pressure stage near the outlet. For nuclear and geothermal turbines with low inlet steam temperature, most of the stages will be driven in wet steam.
  • Japanese Utility Model Laid-Open No. 59-116502 discloses a steam turbine.
  • the total opening area of the drain holes provided in the outer ring of the nozzle diaphragm is 0.1% to 0.7% of the total opening area of the nozzle outlet.
  • Japanese Patent Publication No. 4 (1995) discloses a honeycomb-type sealing device, in which a plurality of rows of honeycomb cells communicate moisture collected in each honeycomb cell to a moisture drainage channel installed in a cylindrical body. A hole is described.
  • the steam flow (drain flow) flowing out from the stationary blade in the turbine stage is approximately 70 to 80 in the turbine axial direction. Flows into the rotor blade at a turning angle of.
  • the drain holes described in the prior art for example, the above-mentioned Japanese Utility Model Application Laid-Open No. 59-116502, are installed radially in the radial direction along the inner wall of the diaphragm outer ring. When the drain flow having an angle flows into the drain hole, the flow is disturbed, and the resistance to the flow of the drain flow is increased. As a result, the efficiency of the drain to be discharged is reduced. ,.
  • An object of the present invention is to provide a steam turbine and a moisture separation structure that can improve drain discharge efficiency. Disclosure of the invention
  • the present invention provides the following steam turbine and its moisture separator.
  • the stationary blade row is installed on an inner wall of a diaphragm outer ring.
  • a drain discharge hole for discharging drain is formed in the inner wall of the outer ring of the diaphragm on the downstream side so as to be inclined in the circumferential direction with respect to the radial direction of the rotor.
  • the moisture separation structure of the present invention includes a plurality of output stages each including a stationary blade row installed on an inner wall of a diaphragm outer ring and a moving blade row installed on a turbine rotor.
  • a drain discharge hole inclined in the circumferential direction with respect to the radial direction of the rotor is formed in the inner wall of the outer ring of the diaphragm on the flow side.
  • FIG. 1 shows a partial cross-sectional view of a steam turbine according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • Fig. 3 shows the steam flow between the stationary blade and the moving blade.
  • Figure 4 shows the steam flow in the output paragraph.
  • FIG. 5 shows the steam flow at the outlet shown in FIG.
  • FIG. 6 shows the steam flow at the output stage in this embodiment.
  • FIG. 7 shows a steam flow in the drain discharge hole in the present embodiment.
  • FIG. 8 shows the relationship between the inclination angle of the drain discharge hole and the drain flow.
  • FIG. 9 shows the relationship between the inclination angle of the drain discharge hole and the drain discharge efficiency.
  • FIG. 10 shows an example of drain retention in the seal fin ring portion.
  • FIG. 11 is a partial sectional view of a steam turbine according to another embodiment of the present invention.
  • FIG. 12 is a detailed view of the drain removal groove shown in FIG.
  • FIG. 13 shows another embodiment of the drain removal groove.
  • Fig. 14 shows the relationship between the amount of steam leakage from the paragraph and the pressure difference at the tip of the bucket.
  • FIG. 1 is a partial sectional view of a steam turbine according to one embodiment of the present invention.
  • the steam turbine bin shown in FIG. 1 includes a stationary blade 3, a diaphragm outer ring 1 and a diaphragm inner ring 2 for fixing each end of the stationary blade 3 in the radial direction, and a stationary blade 3 viewed from the flow direction of the steam 7.
  • a moving blade 5 installed on the wake side of the vehicle, and a paragraph structure is formed by these configurations.
  • the blade root of the rotor blade 5 is fixed to a disk (not shown) of the rotor 4.
  • a shroud cover 6 is provided at the blade tip of the moving blade 5, and a plurality of adjacent moving blades 5 are connected to each other by the shroud cover 6.
  • the diaphragm outer ring 1 holding one end of the stationary blade 3 is fixed to a casing 11 installed on the outer peripheral side thereof. Furthermore, a plurality of seal fin rings 9 are provided on the inner peripheral portion 1a of the diaphragm outer ring 1 at a position facing the shield cover 6 to form a seal, and a cylinder between the diaphragm outer ring 1 and the shroud cover 6 is formed. This prevents vapor 7 as the working fluid from leaking from the space. Further, in this embodiment, between the seal fin rings on the inner wall circumference of the diaphragm outer ring 1 and downstream of the first seal fin ring 9 (between the second and third seal fin rings in the example of FIG. 1).
  • a drain discharge hole 10 for draining is installed.
  • the discharge hole 10 is formed so as to communicate from the inner wall of the diaphragm outer ring 1 to an external space 12 formed between the diaphragm outer ring 1 and the casing 11.
  • the drain guided to the external space 12 by the drain discharge hole 10 is supplied to a water heater or the like that is connected to the external space 11 by a bleed pipe (not shown).
  • the drain discharge hole 10 is formed in the inner peripheral wall of the diaphragm outer ring facing the shroud cover 6 at the tip of the rotor blade, in other words, between the seal fin rings 9 in which a plurality of sheets are installed.
  • the seal fin ring 9 may be formed at a position upstream of the steam flow, that is, at a position upstream of the seal fin ring 9.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the discharge holes 10 provided on the inner wall circumference of the diaphragm outer ring 1 are formed so as to have an angle inclined in the circumferential direction with respect to the radial direction of the diaphragm outer ring 1 (rotor 3). ing.
  • the drain flow can be efficiently drained from the steam flow having a swirl angle flowing out of the stationary blade 3. Can be collected. Details will be described below with reference to the drawings.
  • FIG. 3 is a diagram showing the steam flow between the stationary blade and the moving blade
  • Fig. 4 is a diagram showing the steam flow at the output stage when the discharge hole is not inclined in the circumferential direction
  • Fig. 5 is a view showing a steam flow of the discharge hole shown in FIG. 4.
  • the steam flowing out of the trailing edge of the stationary blade 3 has a predetermined swirl angle with respect to the axial direction, for example, an angle of 70 to 80 °.
  • the angled steam flow is guided to the leading edge of the bucket 5.
  • the angle between the drain discharge flow and the discharge hole 10 is inconsistent. Drain can not be discharged. That is, as shown in FIG. 5 showing the details of the steam flow in the discharge hole 10, particularly at the inlet of the discharge hole 10, a strong vortex is generated due to the turbulence of the steam flow. As a result, drainage could not be efficiently collected, and erosion could occur.
  • FIG. 6 is a diagram showing a steam flow in an output paragraph section in the present embodiment
  • FIG. 7 is a diagram showing a steam flow in a discharge hole in the present embodiment. 6 and 7 show the case where the discharge hole 10 is inclined 45 ° in the circumferential direction.
  • the discharge hole 10 in consideration of the inflow steam having a swirl angle, is formed in a structure inclined in the circumferential direction as described above.
  • the present embodiment allows the drain to be discharged effectively. For example, in Fig. 5, a vortex is generated due to the turbulence of the steam flow at the inlet of the discharge hole 10.
  • the inclination angle of the discharge hole 10 in the circumferential direction is formed so as to match the inflow angle of the steam (drain), so that the shroud force bar 6 and the seal fin ring 9 It is possible to reduce the resistance of the drain flow guided to the discharge hole 10 from the gap. Further, as is apparent from FIG. 7, the generation of the vortex can be suppressed at the inlet of the drain discharge hole 10 without disturbing the drain flow. Therefore, according to the present embodiment, the drain can be efficiently collected, and the occurrence of erosion can be reduced.
  • FIG. 8 is a diagram showing the state of the drain discharge flow depending on the inclination angle of the discharge hole
  • FIG. 9 is a diagram showing the relationship between the inclination angle of the drain discharge hole and the drain discharge efficiency.
  • the dotted line in FIG. 8 indicates the radial direction 17 from the center of the evening pin rotor, and indicates the angle of inclination of the turbine rotor in the circumferential direction with respect to the radial direction 17.
  • the inclination angle ⁇ is based on the radial direction 17 indicated by the dotted line as the reference, and the positive direction is the same direction (right direction in the figure) as the swirl flow direction of steam (drain).
  • ( ⁇ ) to ( ⁇ ) show the drain discharge flow when the inclination angle ⁇ of the discharge hole 10 is formed at 130 °, 0 °, 30 °, 45 °, and 60 °.
  • ( ⁇ ) shows a state in which the inclination angle a of the discharge hole 10 is inclined at 130 °, that is, in the direction opposite to the swirl angle of the drain flow.
  • the inclination angle ⁇ of the discharge hole 10 greatly impedes the flow 8 of the drain to be discharged, it can be said that the drain discharge efficiency is extremely poor.
  • ( ⁇ ) in the figure indicates that the inclination angle of the exhaust hole 10 is 0 °, that is, the turbine A discharge hole 10 is formed in a direction perpendicular to the rotor axis. As shown in Fig.
  • FIGS. 8 (C) to (E) are diagrams showing the drain flow state when the discharge hole 10 is formed by inclining the inclination angle ⁇ in the circumferential direction.
  • (C) shows an inclination angle a of the discharge hole 10 of 30 °
  • (D) shows an inclination angle ⁇ of 45 °
  • ( ⁇ ) shows an inclination angle of 60 °.
  • the larger the inclination angle of the discharge hole 10 in the circumferential direction that is, the more the discharge hole 10 is inclined in the same direction as the swirl component of the drain flow, the more the discharge hole 1 0 It is possible to suppress the generation of vortices at the inlet and its vicinity or the occurrence of turbulence in the drain flow, and it is possible to effectively discharge the drain.
  • Fig. 9 shows the results of analyzing drainage efficiencies in the configurations shown in ( ⁇ ) to ( ⁇ ) in Fig. 8.
  • the inclination angle ⁇ of the drain discharge hole is negative ( ⁇ less than 0 °)
  • the discharge hole 10 is inclined in the direction that impedes the drain flow as shown in Fig. 8 ( ⁇ ). Therefore, the drain discharge efficiency is extremely reduced as compared with the case where the inclination angle is positive ((0 ⁇ 0 °)).
  • the drain discharge efficiency is remarkably improved around the point where the inclination angle ⁇ exceeds about 20 °. And the angle of inclination exceeds about 45 °, about 60. Emission efficiency is most improved up to the vicinity. If the inclination angle ⁇ exceeds about 75 °, the angle becomes too acute with respect to the circumferential direction, and consequently, the flow of the drain flow flowing into the discharge hole 10 is hindered, and the discharge efficiency is reduced. Let me do it.
  • the leakage flow around the drain discharge hole 10 at the tip of the bucket is assumed.
  • the velocity component in the direction is about 100 mZs to 200 m / s
  • the velocity component in the radial direction is about 50 m / s to 150 m / s. From the synthesis of this velocity component, the inclination angle of the general drain flow with respect to the radial direction is about 30 to 75 °.
  • the inclination angle ⁇ of the drain discharge hole is about 70 °, because it becomes difficult to drill the hole and the drilling distance from the inner wall to the outer wall of the diaphragm outer ring becomes extremely long.
  • the inclination angle of the drain discharge hole is the circumferential direction of the turbine rotor with respect to the radial direction, that is, the same direction as the velocity component of the drain flow (swirl flow). It may be formed so as to be within the angle range of 20 to 75 °.
  • the angle of inclination of the general drain flow in the radial direction is 30 ° or more, and considering the workability of machining the drain discharge hole, the upper limit of the inclination angle of the drain discharge hole is 70 °. For this reason, it is desirable to form the inclination angle ⁇ of the drain discharge hole in the range of 30 ° to 70 °.
  • the drain discharge hole with an inclination angle ⁇ in the range of 45 ° to 60 °.
  • the drain discharge hole is formed to be inclined in the circumferential direction in accordance with the leaked steam flow flowing in at a swirl angle.
  • Shroud cover and seal fin It is possible to reduce the resistance when the drain flow that has flowed from the gap between the drain and the drain flows into the drain discharge hole that discharges the drain, and as a result, it is possible to improve the drain discharge efficiency.
  • the turbulence of the flow at the drain discharge port entrance is reduced, so that the erosion due to the turbulence can be reduced.
  • FIG. 10 is a diagram showing an example of drain retention at the blade tip and seal fin ring.
  • the shroud cover 6 of the present embodiment is provided on the blade tip side of the rotor blade 5 and has a stepped portion so that the central portion 6b of the outer peripheral surface of the shroud cover has a larger diameter than the end portion 6a. Is formed.
  • seal fin rings 9a and 9b are installed on the diagram outer ring 1 facing the upstream and downstream ends 6a with respect to the steam flow of the shroud cover 6. I have. Further, the seal outer ring 1 is provided between the seal fin rings 9a and 9b and at a position facing the central portion 6b of the shroud cover formed to have a larger diameter than the end 6a of the shroud cover. 9 c and 9 d are installed. The seal fin rings 9c and 9d are formed to have a smaller diameter than the seal fin rings 9a and 9b installed on the one end 6a side of the shroud force bar. Thus, in the present embodiment, the seal structure adopts the multiple fin seal structure.
  • the multiple fin seal structure described above can drastically reduce the amount of steam leaking from the blade tip, so it is operated in a dry steam region such as a steam turbine for thermal power from the viewpoint of improving efficiency. Used for middle paragraphs that do not have them.
  • seal fin rings having different diameters are combined, and a step is formed in the shroud cover.
  • the drain 16 tends to stay between the seal fin rings more easily than the normal seal structure.
  • erosion may occur in the seal fin ring 9 itself.
  • a drain discharge hole 10 is formed in the circumferential direction between seal fin rings 9 installed on the diagram outer ring 1 facing the cover 16. It is formed inclined.
  • a plurality of drain holes 10 are provided on the inner wall circumference of the diaphragm outer ring 1.
  • the above-described drain discharge hole is provided between the seal fin rings at the upstream and downstream ends in the outer peripheral axial direction of the shroud cover of the multiple fin seal structure described in this embodiment.
  • the seal fin By installing the seal fin, it is possible to remove most of the drain that remains between the seal fin rings, and a large amount of drain stays between the seal fin rings, which may cause erosion of the seal fin ring itself. Can be solved. Therefore, even in a turbine stage operated in a wet steam range, it is possible to adopt a multiple fin seal structure that has a remarkable effect of reducing leaked steam. As a result, the above-mentioned drain discharge hole is not provided. As compared with the conventional seal fin structure, it is possible to achieve an effect that leakage steam can be reduced by about 20%.
  • Drain mixed with the steam flow having a swirl component from the stator blade outlet and flowing to the tip of the rotor blade is leaked steam flowing through the extremely small gap flow path between the seal fin ring at the tip of the rotor blade and the shroud cover. Is mixed into a two-phase flow, and is discharged to the external space through the drain discharge hole 10. At this time, since the leaked steam discharged to the external space accompanying the drain discharge is the leaked steam flowing through the seal fin at the blade tip, a drain discharge hole is provided before the seal structure at the blade tip.
  • each one is constituted by a honeycomb cell having only a small expansion space.
  • the seal is made up of a plurality of seal fin rings as in the present embodiment, and a structure that ensures a sufficiently large thermal expansion space around the entire periphery of the seal fin rings provides a seal.
  • FIG. 11 is a partial cross-sectional view of a steam turbine according to another embodiment of the present invention
  • FIG. 12 is a detailed view of the drain removal groove shown in FIG.
  • a drain removal groove 15 is formed on the outer ring 1 of the diaphragm between the seal fin rings in order to further improve the effect of collecting the drain accumulated between the seal fin rings.
  • the drain removal groove 15 is formed on the inner wall circumference of the diaphragm outer ring 1 along the circumferential direction along a plurality of drain discharge holes provided on the inner wall circumference.
  • An inclined surface or a step is formed so as to guide the drain to the inlet portion of the 10.
  • the drain removal groove 15 shown in FIGS. 11 and 12 is provided with the seal fin ring 9 c installed on the upstream side as viewed from the drain discharge hole 10, and also installed on the downstream side.
  • the inner wall of the diaphragm outer ring 1 is configured to be inclined from the seal fin ring 9 d toward the drain discharge hole 10 side.
  • the drain removal groove 15 has an inclined shape, but a step may be formed.
  • FIG. 13 is a view showing another embodiment of the drain removal groove.
  • the drain removal groove 15 is formed along the circumferential direction on the inner wall of the diaphragm outer ring, but in the embodiment shown in this figure, the leakage steam at the blade tip
  • a drain removal groove 15 is formed on the inner wall of the diaphragm outer ring 1 so as to have an angle with respect to the circumferential direction.
  • a drain discharge hole 10 is provided on the downstream side in the axial direction of the drain removal groove 15 with respect to the steam flow so as to discharge the accumulated drain most efficiently.
  • the blade tip leakage flow 8 having a swirl component causes the drain removal grooves 15 formed so as to be in the same direction as the swirl component to collect the drainage flowing on the inner surface of the diaphragm outer ring 1. It will be easier. Further, by providing the drain discharge hole 10 on the downstream side of the drain removal groove 15, the drain accumulated in the drain removal groove 15 can be discharged most efficiently.
  • the total area of the drain discharge holes 10 where a plurality of drain holes are installed is about 10% of the entire peripheral area in the gap between the seal fin ring 9 and the shroud cover 6, and the performance is the most efficient.
  • FIG. 14 is a diagram showing the relationship between the amount of steam leakage from the paragraph and the pressure difference at the tip of the moving blade.
  • the hatched area in the figure shows the effect of the present embodiment.
  • the drain discharge hole is provided downstream of the first seal fin ring, the leakage amount of the mainstream steam can be reduced, and the drain discharge efficiency described above can be reduced. Combined with the improvement in the efficiency, the efficiency of tarpin paragraph can be improved by 1.0%.
  • the steam turbine and the moisture separation device of the present invention are used in the field of generating electricity by driving a turbine by generated steam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A steam turbine capable of increasing a drain discharging efficiency, comprising an output stage formed of a stationary cascade and a moving cascade, characterized in that the stationary cascade is installed on the inner wall of a diaphragm outer ring (1), and draining holes (10) discharging a drain are formed in the inner wall of the diaphragm outer ring (1) located on the downstream side of the stationary cascade aslant in circumferential direction relative to the radial direction of a rotor.

Description

明 細 書  Specification
蒸気タービン及びその湿分分離構造 技術分野  Technical field of steam turbine and its moisture separation structure
本発明は、 原子力、 地熱或は火力発電プラント等に用いられる蒸気 ターピン及びその湿分分離構造に関する。 背景技術  TECHNICAL FIELD The present invention relates to a steam tarpin used for a nuclear power plant, a geothermal power plant, a thermal power plant and the like, and a moisture separating structure thereof. Background art
一般に、 軸流タービンを備えた発電プラントでは、 復水器を設置して、 タービン出口の蒸気圧力を真空に近い圧力まで下げるようにしている。 このため、 タービン入口蒸気温度が高く、 過熱蒸気となる火カタ一ビン においてでは、 出口に近い低圧段落では湿り蒸気で駆動される。 また、 入口蒸気温度が低い原子力や地熱タービンにあっては、 その大半の段落 が湿り蒸気中で駆動されることになる。  Generally, in power plants equipped with axial flow turbines, condensers are installed to reduce the steam pressure at the turbine outlet to a pressure close to vacuum. For this reason, in a steam turbine where the steam temperature at the turbine inlet is high and superheated steam is used, the steam is driven by wet steam in the low-pressure stage near the outlet. For nuclear and geothermal turbines with low inlet steam temperature, most of the stages will be driven in wet steam.
このような湿り蒸気中で作動されるタービン段落では、 乾き蒸気の場 合と比べて損失が大きくなるため性能の低下を招くだけでなく、 湿り蒸 気中の液滴 (ドレン) が動翼に衝突することによりエロージョンが発生 してしまい、 ターピンの信頼性を損ねてしまう可能性があった。  In such a turbine stage operated in wet steam, the loss is larger than that in the case of dry steam, so not only performance is deteriorated, but also droplets (drain) in wet steam are deposited on the rotor blades. The collision could cause erosion, which could impair the reliability of the tarpin.
このため、 前述したような湿り損失やエロージョンの発生を抑制する 技術としては従来より種々のものが提案されており、 例えば実開昭 5 9 - 1 1 6 5 0 2号公報には、 蒸気タービンのノズルダイヤフラム外輪に 備えられたドレン穴の総開口面積を、 ノズル部の出口部総開口面積の 0. 1 %乃至 0. 7 %に形成したものが、 また特開平 4一 2 5 9 6 0 4号公報 には、 ハニカム形シール装置であって、 複数列のハニカムセルに、 各ハ 二カムセルに集められた水分を筒体に設置された水分排水路に連絡する 穴を形成したものが記載されている。 For this reason, various techniques have been proposed for suppressing the loss of moisture and the occurrence of erosion as described above. For example, Japanese Utility Model Laid-Open No. 59-116502 discloses a steam turbine. The total opening area of the drain holes provided in the outer ring of the nozzle diaphragm is 0.1% to 0.7% of the total opening area of the nozzle outlet. Japanese Patent Publication No. 4 (1995) discloses a honeycomb-type sealing device, in which a plurality of rows of honeycomb cells communicate moisture collected in each honeycomb cell to a moisture drainage channel installed in a cylindrical body. A hole is described.
ところで、 タービン段落において静翼から流出した蒸気流 (ドレン 流) は、 タービン軸方向に対しておよそ 7 0〜 8 0。 の旋回角度をもつ て動翼に流入する。 これに対して、 従来技術、 例えば前述した実開昭 5 9 - 1 1 6 5 0 2号公報に記載のドレン穴は、 ダイヤフラム外輪内壁 に沿って半径方向へ放射状に設置しているため、 旋回角度を有している ドレン流がドレン穴に流入する際に流れに乱れが生じ、 ドレン流の流れ に対する抵抗が大きくなり、 この結果、 排出しょうとするドレンの効率 低下を招いてしまっていた。 ,.  By the way, the steam flow (drain flow) flowing out from the stationary blade in the turbine stage is approximately 70 to 80 in the turbine axial direction. Flows into the rotor blade at a turning angle of. On the other hand, the drain holes described in the prior art, for example, the above-mentioned Japanese Utility Model Application Laid-Open No. 59-116502, are installed radially in the radial direction along the inner wall of the diaphragm outer ring. When the drain flow having an angle flows into the drain hole, the flow is disturbed, and the resistance to the flow of the drain flow is increased. As a result, the efficiency of the drain to be discharged is reduced. ,.
本発明の目的は、 ドレンの排出効率を向上させることを可能とする蒸 気タービンおよび湿分分離構造を提供することにある。 発明の開示  An object of the present invention is to provide a steam turbine and a moisture separation structure that can improve drain discharge efficiency. Disclosure of the invention
上記目的を達成するために、 本発明は以下の蒸気タービン及びその湿 分分離装置を提供する。  In order to achieve the above object, the present invention provides the following steam turbine and its moisture separator.
すなわち、 本発明の蒸気タービンは、 静翼列と動翼列とで出力段落が 構成される蒸気ターピンにおいて、 前記静翼列はダイヤフラム外輪内壁 に設置されるものであって、 前記静翼列より後流側のダイヤフラム外輪 内壁に、 ドレンを排出するドレン排出孔をロー夕の半径方向に対して周 方向に傾斜させて形成したことを特徴とするものである。  That is, in the steam turbine of the present invention, in a steam turbine in which an output stage is composed of a stationary blade row and a moving blade row, the stationary blade row is installed on an inner wall of a diaphragm outer ring. A drain discharge hole for discharging drain is formed in the inner wall of the outer ring of the diaphragm on the downstream side so as to be inclined in the circumferential direction with respect to the radial direction of the rotor.
また、 本発明の湿分分離構造は、 ダイヤフラム外輪内壁に設置される 静翼列と、 タービンロータに設置される動翼列とで構成される出力段落 を複数段備え、 前記静翼列より後流側のダイヤフラム外輪内壁に、 ロー 夕の半径方向に対して周方向に傾斜させたドレン排出孔を形成したこと を特徴とするものである。 図面の簡単な説明 Further, the moisture separation structure of the present invention includes a plurality of output stages each including a stationary blade row installed on an inner wall of a diaphragm outer ring and a moving blade row installed on a turbine rotor. A drain discharge hole inclined in the circumferential direction with respect to the radial direction of the rotor is formed in the inner wall of the outer ring of the diaphragm on the flow side. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施例である蒸気タービンの部分断面図を示す。 第 2図は、 第 1図の A— A線に沿う断面図を示す。  FIG. 1 shows a partial cross-sectional view of a steam turbine according to one embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line AA of FIG.
第 3図は、 静翼 ·動翼間の蒸気流れを示す。  Fig. 3 shows the steam flow between the stationary blade and the moving blade.
第 4図は、 出力段落部の蒸気流れを示す。  Figure 4 shows the steam flow in the output paragraph.
第 5図は、 第 4図に示す排出孔の蒸気流れを示す。  FIG. 5 shows the steam flow at the outlet shown in FIG.
第 6図は、 本実施例における出力段落部の蒸気流れを示す。  FIG. 6 shows the steam flow at the output stage in this embodiment.
第 7図は、 本実施例におけるドレン排出孔内の蒸気流れを示す。  FIG. 7 shows a steam flow in the drain discharge hole in the present embodiment.
第 8図は、 ドレン排出孔の傾斜角度とドレン流との関係を示す。  FIG. 8 shows the relationship between the inclination angle of the drain discharge hole and the drain flow.
第 9図は、 ドレン排出孔の傾斜角度とドレン排出効率の関係を示す。 第 1 0図は、 シールフィンリング部のドレン滞留例を示す。  FIG. 9 shows the relationship between the inclination angle of the drain discharge hole and the drain discharge efficiency. FIG. 10 shows an example of drain retention in the seal fin ring portion.
第 1 1図は、 本発明の他の実施例である蒸気タービンの部分断面図を 示す。  FIG. 11 is a partial sectional view of a steam turbine according to another embodiment of the present invention.
第 1 2図は、 第 1 1図に示すドレン除去溝の詳細図を示す。  FIG. 12 is a detailed view of the drain removal groove shown in FIG.
第 1 3図は、 ドレン除去溝の他の実施形態を示す。  FIG. 13 shows another embodiment of the drain removal groove.
第 1 4図は、 段落蒸気漏洩量と動翼先端部の圧力差との関係を示す。 発明を実施するための最良の形態  Fig. 14 shows the relationship between the amount of steam leakage from the paragraph and the pressure difference at the tip of the bucket. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について図面を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図は、 本発明の一実施例である蒸気タービンの部分断面図を示し たものである。 第 1図に示す蒸気夕一ビンは、 静翼 3と、 静翼 3の半径 方向のそれぞれの端部を固定するダイヤフラム外輪 1及びダイヤフラム 内輪 2と、 蒸気 7の流路方向からみて静翼 3の後流側に設置される動翼 5とを備えており、 これらの構成により段落構造が形成される。 また、 動翼 5の翼根部はロータ 4の図示しないディスク部に固定され、 さらに 動翼 5の翼先端部にはシュラウドカバ一 6が設置され、 複数枚設置され た隣り合う動翼 5同士をシユラウドカバ一 6によって連結されている。 また、 静翼 3の一端を保持するダイヤフラム外輪 1は、 その外周側に 設置されるケーシング 1 1に固定されている。 さらに、 ダイヤフラム外 輪 1の内周部 1 aには、 シユラゥドカバー 6に対向する位置にシール フィンリング 9を複数枚設置してシールを形成し、 ダイヤフラム外輪 1 とシユラウドカバー 6との間の円筒空間から、 作動流体である蒸気 7が 漏れることを抑制をしている。 また、 本実施例ではダイヤフラム外輪 1 の内壁円周上であって、 シールフィンリング 9の 1枚目より下流側の シールフィンリング間 (第 1図の例では 2枚目と 3枚目の間) にドレン を排出するドレン排出孔 1 0を設置している。 この排出孔 1 0は、 ダイ ャフラム外輪 1の内壁から、 ダイヤフラム外輪 1とケーシング 1 1との 間に形成された外部空間 1 2まで連通するように形成されている。 なお、 ドレン排出孔 1 0によって外部空間 1 2に導かれたドレンは、 外部空間 1 1と図示しない抽気管によって連通された給水加熱器等に供給される。 また、 第 1図ではドレン排出孔 1 0は動翼先端のシュラウドカバー 6に 対向するダイヤフラム外輪の内周壁、 換言すれば、 複数枚が設置された シ一ルフィンリング 9間に形成されているが、 これより蒸気流れに対し て上流側の位置、 つまりシールフィンリング 9より上流側に形成しても 良い。 FIG. 1 is a partial sectional view of a steam turbine according to one embodiment of the present invention. The steam turbine bin shown in FIG. 1 includes a stationary blade 3, a diaphragm outer ring 1 and a diaphragm inner ring 2 for fixing each end of the stationary blade 3 in the radial direction, and a stationary blade 3 viewed from the flow direction of the steam 7. And a moving blade 5 installed on the wake side of the vehicle, and a paragraph structure is formed by these configurations. In addition, the blade root of the rotor blade 5 is fixed to a disk (not shown) of the rotor 4. A shroud cover 6 is provided at the blade tip of the moving blade 5, and a plurality of adjacent moving blades 5 are connected to each other by the shroud cover 6. Further, the diaphragm outer ring 1 holding one end of the stationary blade 3 is fixed to a casing 11 installed on the outer peripheral side thereof. Furthermore, a plurality of seal fin rings 9 are provided on the inner peripheral portion 1a of the diaphragm outer ring 1 at a position facing the shield cover 6 to form a seal, and a cylinder between the diaphragm outer ring 1 and the shroud cover 6 is formed. This prevents vapor 7 as the working fluid from leaking from the space. Further, in this embodiment, between the seal fin rings on the inner wall circumference of the diaphragm outer ring 1 and downstream of the first seal fin ring 9 (between the second and third seal fin rings in the example of FIG. 1). ) A drain discharge hole 10 for draining is installed. The discharge hole 10 is formed so as to communicate from the inner wall of the diaphragm outer ring 1 to an external space 12 formed between the diaphragm outer ring 1 and the casing 11. The drain guided to the external space 12 by the drain discharge hole 10 is supplied to a water heater or the like that is connected to the external space 11 by a bleed pipe (not shown). In FIG. 1, the drain discharge hole 10 is formed in the inner peripheral wall of the diaphragm outer ring facing the shroud cover 6 at the tip of the rotor blade, in other words, between the seal fin rings 9 in which a plurality of sheets are installed. However, the seal fin ring 9 may be formed at a position upstream of the steam flow, that is, at a position upstream of the seal fin ring 9.
第 2図は、 第 1図の A— A線に沿う断面図である。 本実施例では、 ダ ィャフラム外輪 1の内壁円周上に設けられた排出孔 1 0を、 ダイヤフラ ム外輪 1 (ロータ 3 ) の半径方向に対して周方向に傾斜した角度を持つ ように形成している。 このように、 排出孔 1 0を周方向に傾斜させるこ とで、 静翼 3から流出した旋回角度を有する蒸気流から効率良く ドレン を回収することが可能となる。 詳細については、 以下図面を用いて説明 する。 FIG. 2 is a cross-sectional view taken along line AA of FIG. In the present embodiment, the discharge holes 10 provided on the inner wall circumference of the diaphragm outer ring 1 are formed so as to have an angle inclined in the circumferential direction with respect to the radial direction of the diaphragm outer ring 1 (rotor 3). ing. By inclining the discharge hole 10 in the circumferential direction in this way, the drain flow can be efficiently drained from the steam flow having a swirl angle flowing out of the stationary blade 3. Can be collected. Details will be described below with reference to the drawings.
第 3図は、 静翼 ·動翼間の蒸気流れを示した図、 第 4図は、 排出孔を 周方向に傾斜させていない場合における出力段落部の蒸気流れを示した 図、 第 5図は、 第 4図に示す排出孔の蒸気流れを示した図である。  Fig. 3 is a diagram showing the steam flow between the stationary blade and the moving blade, Fig. 4 is a diagram showing the steam flow at the output stage when the discharge hole is not inclined in the circumferential direction, Fig. 5 FIG. 5 is a view showing a steam flow of the discharge hole shown in FIG. 4.
第 3図に示すように、 静翼 3の後縁部から流出する蒸気流は、 軸方向 に対して所定の旋回角度、 例えば 7 0〜 8 0 ° の角度を有しており、 こ の旋回角度を有する蒸気流が動翼 5の前縁部に導かれることになる。 こ のとき、 排出孔 1 0に傾斜を設けていない従来技術では、 第 4図および 第 5図に示すように、 ドレンの排出流と排出孔 1 0との角度が不一致で あるため、 効果的にドレンの排出を行うことができない。 すなわち、 排 出孔 1 0の蒸気流れの詳細を示した第 5図にあるように、 特に、 排出孔 1 0の入口部では蒸気流の乱れにより強い渦が発生してしまっている。 このため、 ドレンの回収を効率的に行うことができず、 エロージョンの 発生を招いてしまう可能性があった。  As shown in FIG. 3, the steam flowing out of the trailing edge of the stationary blade 3 has a predetermined swirl angle with respect to the axial direction, for example, an angle of 70 to 80 °. The angled steam flow is guided to the leading edge of the bucket 5. At this time, in the prior art in which the discharge hole 10 is not inclined, as shown in FIGS. 4 and 5, the angle between the drain discharge flow and the discharge hole 10 is inconsistent. Drain can not be discharged. That is, as shown in FIG. 5 showing the details of the steam flow in the discharge hole 10, particularly at the inlet of the discharge hole 10, a strong vortex is generated due to the turbulence of the steam flow. As a result, drainage could not be efficiently collected, and erosion could occur.
次に、 排出孔 1 0を周方向に傾斜させた本実施例の蒸気流れについて、 第 6図および第 7図を用いて説明する。 第 6図は、 本実施例における出 力段落部の蒸気流れを示した図、 第 7図は、 本実施例の排出孔の蒸気流 れを示した図である。 なお、 第 6図および第 7図では排出孔 1 0を周方 向に 4 5 ° 傾斜させたものについて図示している。  Next, the steam flow of the present embodiment in which the discharge holes 10 are inclined in the circumferential direction will be described with reference to FIGS. 6 and 7. FIG. FIG. 6 is a diagram showing a steam flow in an output paragraph section in the present embodiment, and FIG. 7 is a diagram showing a steam flow in a discharge hole in the present embodiment. 6 and 7 show the case where the discharge hole 10 is inclined 45 ° in the circumferential direction.
本実施例では、 旋回角度を有する流入蒸気を考慮して、 前述したよう に排出孔 1 0を周方向に傾斜させた構造に形成している。 この結果、 第 4図及び第 5図に示した排出孔 1 0を周方向に傾斜させていない構造と 比べて、 -本実施例では効果的にドレンの排出を行うことが可能となった。 例えば、 第 5図では排出孔 1 0の入口部で蒸気流の乱れにより渦が発生 していたが、 本実施例では排出孔 1 0の周方向への傾斜角度を蒸気 (ド レン) の流入角度と一致させるように形成しているので、 シュラウド力 バー 6とシールフィンリング 9との間隙から排出孔 1 0に導かれるドレ ン流の抵抗を低減することが可能となる。 また、 第 7図から明らかなよ うに、 ドレン排出孔 1 0の入口部ではドレン流が乱れることなく、 渦の 発生を抑制することができる。 従って、 本実施例によれば効率的にドレ ンの回収を行うことができ、 エロージョンの発生を低減することが可能 となった。 In the present embodiment, in consideration of the inflow steam having a swirl angle, the discharge hole 10 is formed in a structure inclined in the circumferential direction as described above. As a result, compared with the structure in which the discharge holes 10 are not inclined in the circumferential direction shown in FIGS. 4 and 5, the present embodiment allows the drain to be discharged effectively. For example, in Fig. 5, a vortex is generated due to the turbulence of the steam flow at the inlet of the discharge hole 10. However, in this embodiment, the inclination angle of the discharge hole 10 in the circumferential direction is formed so as to match the inflow angle of the steam (drain), so that the shroud force bar 6 and the seal fin ring 9 It is possible to reduce the resistance of the drain flow guided to the discharge hole 10 from the gap. Further, as is apparent from FIG. 7, the generation of the vortex can be suppressed at the inlet of the drain discharge hole 10 without disturbing the drain flow. Therefore, according to the present embodiment, the drain can be efficiently collected, and the occurrence of erosion can be reduced.
次に、 ドレン排出孔の傾斜角度とドレン流との関係について第 8図及 び第 9図を用いて説明する。 第 8図は、 排出孔の傾斜角度によるドレン 排出流の状態を示した図、 第 9図は、 ドレン排出孔の傾斜角度とドレン 排出効率の関係を示した図である。  Next, the relationship between the inclination angle of the drain discharge hole and the drain flow will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a diagram showing the state of the drain discharge flow depending on the inclination angle of the discharge hole, and FIG. 9 is a diagram showing the relationship between the inclination angle of the drain discharge hole and the drain discharge efficiency.
第 8図中に示す点線は、 夕一ピンロータ中心からの半径方向 1 7を表 しており、 この半径方向 1 7に対するタービンロータの周方向への傾斜 角度をひで表す。 傾斜角度 αは、 点線で示す半径方向 1 7を基準として、 蒸気 (ドレン) の旋回流方向と同方向 (図中右方向) を正方向としてい る。 なお、 図中 (Α ) 〜 (Ε ) は排出孔 1 0の傾斜角度 αが、 一 3 0 ° , 0 ° , 3 0 ° , 4 5 ° , 6 0 ° に形成された場合におけるドレン排出流 の状態を示したものである。  The dotted line in FIG. 8 indicates the radial direction 17 from the center of the evening pin rotor, and indicates the angle of inclination of the turbine rotor in the circumferential direction with respect to the radial direction 17. The inclination angle α is based on the radial direction 17 indicated by the dotted line as the reference, and the positive direction is the same direction (right direction in the figure) as the swirl flow direction of steam (drain). In the figures, (Α) to (Ε) show the drain discharge flow when the inclination angle α of the discharge hole 10 is formed at 130 °, 0 °, 30 °, 45 °, and 60 °. FIG.
まず、 図中 (Α ) に示す構成について説明する。 (Α) は排出孔 1 0 の傾斜角度 aを一 3 0 ° 、 つまり ドレン流の旋回角度と逆方向に傾斜さ せた状態を示したものである。 このように、 (Α ) の構成では、 排出孔 1 0の傾斜角度 αが排出されるべきドレンの流れ 8を大きく妨げる状態 となることから、 極めてドレンの排出効率が悪い状態にあると言える。 また、 図中 (Β ) は排出孔 1 0の傾斜角度ひを 0 ° 、 つまりタービン ロータ軸と垂直方向に排出孔 1 0が形成されたものである。 (B) のよ うに、 排出孔 1 0を周方向に傾斜させずに、 タービンロータと垂直方向 に形成した構成の場合では、 前述した第 5図と同様に、 蒸気流の乱れに より排出孔 1 0の入口部で渦が発生してしまうため、 効率的にドレンの 排出を行なえるものとは言えない。 First, the configuration shown in (Α) in the figure will be described. (Α) shows a state in which the inclination angle a of the discharge hole 10 is inclined at 130 °, that is, in the direction opposite to the swirl angle of the drain flow. As described above, in the configuration of (Α), since the inclination angle α of the discharge hole 10 greatly impedes the flow 8 of the drain to be discharged, it can be said that the drain discharge efficiency is extremely poor. Also, (Β) in the figure indicates that the inclination angle of the exhaust hole 10 is 0 °, that is, the turbine A discharge hole 10 is formed in a direction perpendicular to the rotor axis. As shown in Fig. 5 (B), in the case of a configuration in which the discharge hole 10 is formed not perpendicularly to the turbine rotor but in the vertical direction with respect to the turbine rotor, the discharge hole 10 Vortex is generated at the inlet of 10 and drainage cannot be said to be efficient.
第 8図 (C) 〜 (E) は、 排出孔 1 0の傾斜角度 αを周方向に傾斜さ せて形成した場合のドレン流状態を示した図である。 (C)は排出孔 1 0 の傾斜角度 aを 3 0 ° 、 (D) は傾斜角度 αを 45 ° 、 (Ε) は傾斜角 度ひを 60 ° に形成している。 (C) 〜(Ε) に示すように、 排出孔 1 0 の周方向への傾斜角度を大きくする、 つまり排出孔 1 0をドレン流の旋 回成分と同方向に傾斜させるほど、 排出孔 1 0入口部やその近傍での渦 の発生、 或いはドレン流の乱れの発生を抑制することができ、 効果的に ドレンの排出を行なうことが可能になる。  FIGS. 8 (C) to (E) are diagrams showing the drain flow state when the discharge hole 10 is formed by inclining the inclination angle α in the circumferential direction. (C) shows an inclination angle a of the discharge hole 10 of 30 °, (D) shows an inclination angle α of 45 °, and (Ε) shows an inclination angle of 60 °. As shown in (C) to (Ε), the larger the inclination angle of the discharge hole 10 in the circumferential direction, that is, the more the discharge hole 10 is inclined in the same direction as the swirl component of the drain flow, the more the discharge hole 1 0 It is possible to suppress the generation of vortices at the inlet and its vicinity or the occurrence of turbulence in the drain flow, and it is possible to effectively discharge the drain.
第 9図は、 第 8図の (Α) 〜 (Ε) 各図に示した構成におけるドレン 排出効率の解析結果を示したものである。 第 9図に示すように、 ドレン 排出孔の傾斜角度 αが負の場合 (αく 0 ° ) には、 第 8図 (Α) のよう に排出孔 1 0がドレンの流れを妨げる方向に傾斜していることになるた め、 傾斜角度 が正 ((¾<0 ° ) の場合と比べて、 極端にドレンの排出 効率が低下してしまう。  Fig. 9 shows the results of analyzing drainage efficiencies in the configurations shown in (Α) to (Ε) in Fig. 8. As shown in Fig. 9, when the inclination angle α of the drain discharge hole is negative (α less than 0 °), the discharge hole 10 is inclined in the direction that impedes the drain flow as shown in Fig. 8 (Α). Therefore, the drain discharge efficiency is extremely reduced as compared with the case where the inclination angle is positive ((0 <0 °)).
一方、 傾斜角度 αを正とした場合には、 本図からも分かるように傾斜 角度 αが約 20 ° を超えたあたりからドレン排出効率が著しく向上して いる。 そして、 傾斜角度ひが約 4 5 ° を超えて約 6 0。 付近までが最も 排出効率が向上している。 なお、 傾斜角度 αが約 7 5 ° を超えると、 周 方向に対して角度が鋭角になり過ぎるため、 逆に排出孔 1 0に流入する ドレン流の流れを阻害してしまい、 排出効率を低下させてしまう。 · また、 動翼の先端径ゃ回転数にもよるが、 本実施例の構造を採用する ような一般的なタービンの中間段落では、 動翼先端部のドレン排出孔 1 0付近における漏洩流の周方向の速度成分は 1 0 O mZ sから 2 0 0 m/ s程度、 同じく半径方向の速度成分は 5 0 / sから 1 5 0 m/ s 程度である。 この速度成分の合成から、 一般的なドレン流の半径方向に 対する傾斜角度は、 およそ 3 0〜 7 5 ° 程度である。 さらに、 実際に製 造する場合、 ドレン排出孔 1 0を工具により穴あけ加工する際、 傾斜角 度ひがあまりにも大きい場合には、 加工面に対して十分な角度がとれな くなりその加工作業が困難になることや、 ダイヤフラム外輪の内壁から 外壁までの穴あけ加工距離が非常に長くなることから、 ドレン排出孔の 傾斜角度 αの上限はおよそ 7 0 ° となる。 On the other hand, when the inclination angle α is positive, as can be seen from this figure, the drain discharge efficiency is remarkably improved around the point where the inclination angle α exceeds about 20 °. And the angle of inclination exceeds about 45 °, about 60. Emission efficiency is most improved up to the vicinity. If the inclination angle α exceeds about 75 °, the angle becomes too acute with respect to the circumferential direction, and consequently, the flow of the drain flow flowing into the discharge hole 10 is hindered, and the discharge efficiency is reduced. Let me do it. · In addition, although it depends on the tip diameter of the bucket and the number of rotations, in the middle stage of a general turbine adopting the structure of this embodiment, the leakage flow around the drain discharge hole 10 at the tip of the bucket is assumed. The velocity component in the direction is about 100 mZs to 200 m / s, and the velocity component in the radial direction is about 50 m / s to 150 m / s. From the synthesis of this velocity component, the inclination angle of the general drain flow with respect to the radial direction is about 30 to 75 °. Furthermore, in actual manufacturing, when drilling the drain discharge hole 10 with a tool, if the inclination angle is too large, it is not possible to take a sufficient angle to the machined surface and the machining work The upper limit of the inclination angle α of the drain discharge hole is about 70 °, because it becomes difficult to drill the hole and the drilling distance from the inner wall to the outer wall of the diaphragm outer ring becomes extremely long.
以上述べたように、 先ずドレン排出の効率面から考慮すると、 ドレン 排出孔の傾斜角度は、 半径方向を基準としてタービンロー夕の周方向、 つまり ドレン流 (旋回流) の速度成分と同一の方向となるように、 2 0 〜 7 5 ° の角度範囲内になるように形成すれば良い。  As described above, first, considering the drain discharge efficiency, the inclination angle of the drain discharge hole is the circumferential direction of the turbine rotor with respect to the radial direction, that is, the same direction as the velocity component of the drain flow (swirl flow). It may be formed so as to be within the angle range of 20 to 75 °.
そして、 一般的なドレン流の半径方向の傾斜角度が 3 0 ° 以上である こと、 またドレン排出孔の加工作業性といった製造面から考慮すると、 ドレン排出孔の傾斜角度の上限は 7 0 ° であることから、 ドレン排出孔 の傾斜角度 αを 3 0 ° 〜 7 0 ° の範囲に形成することが望ましい。  Considering that the angle of inclination of the general drain flow in the radial direction is 30 ° or more, and considering the workability of machining the drain discharge hole, the upper limit of the inclination angle of the drain discharge hole is 70 °. For this reason, it is desirable to form the inclination angle α of the drain discharge hole in the range of 30 ° to 70 °.
さらに、 ドレン排出の効率を最も高くする観点から考えれば、 ドレン 排出孔の傾斜角度 αを 4 5 ° 〜 6 0 ° の範囲に形成することが最も効果 的である。  Further, from the viewpoint of maximizing drain discharge efficiency, it is most effective to form the drain discharge hole with an inclination angle α in the range of 45 ° to 60 °.
以上説明した本実施例によれば、 旋回角度をもって流入してくる漏洩 蒸気流に合せて、 ドレン排出孔を周方向に傾けて形成した構造とするこ とにより、 例えば第 1図の例では、 シュラウドカバーとシールフィンリ ングとの間隙から流入したドレン流が、 ドレンを排出するドレン排出孔 に流入する際の抵抗を低減することが可能となり、 この結果、 ドレンの 排出効率を向上させることが可能となる。 また、 ドレン排出孔入口部で の流れの乱れが少なくなるため、 この乱れによるエロージョンが低減で きる。 According to the present embodiment described above, the drain discharge hole is formed to be inclined in the circumferential direction in accordance with the leaked steam flow flowing in at a swirl angle. For example, in the example of FIG. Shroud cover and seal fin It is possible to reduce the resistance when the drain flow that has flowed from the gap between the drain and the drain flows into the drain discharge hole that discharges the drain, and as a result, it is possible to improve the drain discharge efficiency. In addition, the turbulence of the flow at the drain discharge port entrance is reduced, so that the erosion due to the turbulence can be reduced.
第 1 0図は、 動翼先端部及びシールフィンリング部のドレン滞留例を 示した図である。 本実施例のシュラウドカバー 6は、 動翼 5の翼先端側 に設けられ、 シュラウドカバー外周面の中央部 6 bが端部 6 aよりもそ の径が大きくなるように、 段差部を有する形状に形成されている。  FIG. 10 is a diagram showing an example of drain retention at the blade tip and seal fin ring. The shroud cover 6 of the present embodiment is provided on the blade tip side of the rotor blade 5 and has a stepped portion so that the central portion 6b of the outer peripheral surface of the shroud cover has a larger diameter than the end portion 6a. Is formed.
次に、 シール構造について説明する。 第 1 0図に示す本実施例では、 シュラウドカバ一 6の蒸気流れに対して上流側及び下流側端部 6 aに対 向するダイヤグラム外輪 1にシールフィンリング 9 a, 9 bを設置して いる。 さらに、 このシ一ルフィンリング 9 a, 9 b間であって、 シユラ ウドカバー端部 6 aより大径に形成されたシユラウドカバー中央部 6 b に対向する位置のダイヤグラム外輪 1にシ一ルフィンリング 9 c , 9 d を設置している。 また、 シールフィンリング 9 c , 9 dはシユラウド力 バ一端部 6 a側に設置されるシールフィンリング 9 a, 9 bより小径に 形成されている。 このように、 本実施例ではマルチプルフィンシール構 造を採用したシール構造となっている。  Next, the seal structure will be described. In this embodiment shown in FIG. 10, seal fin rings 9a and 9b are installed on the diagram outer ring 1 facing the upstream and downstream ends 6a with respect to the steam flow of the shroud cover 6. I have. Further, the seal outer ring 1 is provided between the seal fin rings 9a and 9b and at a position facing the central portion 6b of the shroud cover formed to have a larger diameter than the end 6a of the shroud cover. 9 c and 9 d are installed. The seal fin rings 9c and 9d are formed to have a smaller diameter than the seal fin rings 9a and 9b installed on the one end 6a side of the shroud force bar. Thus, in the present embodiment, the seal structure adopts the multiple fin seal structure.
以上説明したマルチプルフィンシール構造は、 動翼先端部の漏洩蒸気 量を大幅に低減できることから、 効率向上の観点から火力用蒸気ターピ ン等の乾き蒸気域で運転され、 動翼先端にスラント角度を持たない中間 段落部分に採用されている。 しかし、 原子力用蒸気タービン等の湿り蒸 気域で運転されるタービン段落では、 前述したように径が異なるシール フィンリングが組み合わされ、 シュラウドカバーに段差部が形成されて いるという構成上、 通常のシール構造に比べて、 第 1 0図に図示してい るように、 シ一ルフィンリング間にドレン 1 6が滞留しやすくなるとい う性質があった。 また、 シールフィンリング間に大量のドレンが滞留す ることによって、 シールフィンリング 9自体にエロ一ジョンが発生する 虞があった。 The multiple fin seal structure described above can drastically reduce the amount of steam leaking from the blade tip, so it is operated in a dry steam region such as a steam turbine for thermal power from the viewpoint of improving efficiency. Used for middle paragraphs that do not have them. However, in a turbine stage operated in a wet steam region such as a nuclear steam turbine, as described above, seal fin rings having different diameters are combined, and a step is formed in the shroud cover. As shown in FIG. 10, the drain 16 tends to stay between the seal fin rings more easily than the normal seal structure. In addition, since a large amount of drain stays between the seal fin rings, erosion may occur in the seal fin ring 9 itself.
これに対して、 本実施例では前述した第 1図に示したように、 シユラ ゥドカバ一 6に対向するダイヤグラム外輪 1に設置されたシールフィン リング 9間に、 ドレン排出孔 1 0を周方向に傾けて形成している。 すな わち、 第 1図に示す例では、 蒸気流れに対して軸方向上流側から 2枚目 と 3枚目のシールフィンリング間 (第 1 0図では、 9 cと 9 dの間の位 置) であって、 ダイヤフラム外輪 1の内壁円周上にドレン排出孔 1 0が 複数個設置される。  On the other hand, in the present embodiment, as shown in FIG. 1 described above, a drain discharge hole 10 is formed in the circumferential direction between seal fin rings 9 installed on the diagram outer ring 1 facing the cover 16. It is formed inclined. In other words, in the example shown in Fig. 1, between the second and third seal fin rings from the upstream side in the axial direction with respect to the steam flow (in Fig. 10, between 9c and 9d). A plurality of drain holes 10 are provided on the inner wall circumference of the diaphragm outer ring 1.
以上のように構成することにより、 第 1 0図を用いて説明したシール ドフィンリング間に滞留するドレン 1 6は、 ドレン排出孔 1 0からその 大部分を除去できるため、 シールフィンリング 9自体にエロージョンが 発生することを抑制することが可能となる。  With the above-described configuration, most of the drain 16 stagnated between the seal fin rings described with reference to FIG. 10 can be removed from the drain discharge hole 10. Thus, it is possible to suppress the occurrence of erosion.
従って、 湿り蒸気域で運転されるタービン段落であっても、 本実施例 で説明したマルチプルフィンシール構造のシュラウドカバ一外周軸方向 の上流及び下流端部のシールフィンリング間に前述のドレン排出孔を設 置することにより、 シールフィンリング間に滞留するドレンの大部分を 除去することが可能となり、 シールフィンリング間に大量のドレンが滞 留し、 シールフィンリング自体のエロージョンが懸念される従来の課題 を解決できる。 よって、 湿り蒸気域で運転されるタービン段落であって も、 漏洩蒸気の低減効果が著しいマルチプルフィンシ一ル構造を採用す ることが可能となる。 この結果、 上述したドレン排出孔を備えていない 従来技術のシールフィン構造に比べて、 約 2 0 %の漏洩蒸気の低減を図 れるという効果を奏することができる。 Therefore, even in a turbine stage operated in a wet steam range, the above-described drain discharge hole is provided between the seal fin rings at the upstream and downstream ends in the outer peripheral axial direction of the shroud cover of the multiple fin seal structure described in this embodiment. By installing the seal fin, it is possible to remove most of the drain that remains between the seal fin rings, and a large amount of drain stays between the seal fin rings, which may cause erosion of the seal fin ring itself. Can be solved. Therefore, even in a turbine stage operated in a wet steam range, it is possible to adopt a multiple fin seal structure that has a remarkable effect of reducing leaked steam. As a result, the above-mentioned drain discharge hole is not provided. As compared with the conventional seal fin structure, it is possible to achieve an effect that leakage steam can be reduced by about 20%.
また、 静翼出口から旋回成分をもつ蒸気流と混合されて、 動翼先端部 へと流れていく ドレンは、 動翼先端部のシールフィンリングとシュラウ ドカバーとの極小間隙流路を流れる漏洩蒸気と混合され二相流となり、 ドレン排出孔 1 0より外部空間に排出される。 このとき、 ドレンの排出 に随伴して外部空間に排出される漏洩蒸気は、 動翼先端部のシールフィ ンを流れる漏洩蒸気である為、 動翼先端部のシール構造の前にドレン排 出孔を設けている実開昭 5 9 - 1 1 6 5 0 2号公報に記載の従来技術の ように、 段落の主流蒸気を余分に漏洩する必要はなく、 このドレン排出 に伴う漏洩蒸気量の低減効果により、 効率向上を図ることが可能となる。 さらに、 動翼先端部のシール構造の前にドレン排出孔を設けたもので は、 集積したドレンを蒸気流に随伴させてドレン排出孔から排出させて いるのに対して、 本実施例では、 シールフィンリングとシュラウド力 バーとで形成される極小な間隙流路を蒸気とドレンの二相の混合気体が 通過する為に、 ドレンを加速するためのエネルギー消費が大きくなる。 この結果、 シールドフィンリングとシュラウドカバ一との間隙流路を蒸 気のみが通過する場合よりも流動抵抗が大きくなり、 蒸気漏洩量が少な くなるので、 タービンの段落効率の向上に寄与することができる。  Drain mixed with the steam flow having a swirl component from the stator blade outlet and flowing to the tip of the rotor blade is leaked steam flowing through the extremely small gap flow path between the seal fin ring at the tip of the rotor blade and the shroud cover. Is mixed into a two-phase flow, and is discharged to the external space through the drain discharge hole 10. At this time, since the leaked steam discharged to the external space accompanying the drain discharge is the leaked steam flowing through the seal fin at the blade tip, a drain discharge hole is provided before the seal structure at the blade tip. Unlike the prior art described in Japanese Unexamined Patent Publication No. 59-1-16502, there is no need to leak the mainstream steam in the paragraph extra, and the effect of reducing the amount of leaked steam accompanying this drainage is eliminated. As a result, efficiency can be improved. Further, in the case where the drain discharge hole is provided in front of the seal structure at the tip of the bucket, the accumulated drain is discharged from the drain discharge hole along with the steam flow. Since the two-phase mixed gas of steam and drain passes through the extremely small gap flow path formed by the seal fin ring and the shroud force bar, the energy consumption for accelerating the drain increases. As a result, the flow resistance is larger and the amount of steam leakage is smaller than when only steam passes through the gap flow path between the shield fin ring and the shroud cover, which contributes to the improvement of turbine stage efficiency. Can be.
また、 前述した特開平 4一 2 5 9 6 0 4号公報で提案されているハニ カム形シール構造のように、 1つ 1つが微小な膨張空間しか持たないハ 二カムセルで構成されるようなシール構造ではなく、 本実施例のように 複数枚のシールフィンリングにて構成され、 シ一ルフィンリング間の全 周で十分な大きさの熱膨張空間が確保された構造とすることにより、 シールフィンリング前で飽和状態にあるドレンと蒸気の混合流が、 シー ルフィンリングとシュラウドカバーとで形成される極小な間隙流路を通 過し、 シールフィンリング下流の熱膨張空間に流入する際、 シ一ルフィ ンリング下流側で減圧してフラッシングが生じ、 漏洩流体が熱膨張空間 内で急膨張する。 このとき、 シール部を通過する体積流量が増加するこ とから流動抵抗が大きくなり、 蒸気漏洩量が少なくなることによつても タービン段落効率が向上する。 In addition, as in the honeycomb-type seal structure proposed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 4-259604, each one is constituted by a honeycomb cell having only a small expansion space. Instead of a seal structure, the seal is made up of a plurality of seal fin rings as in the present embodiment, and a structure that ensures a sufficiently large thermal expansion space around the entire periphery of the seal fin rings provides a seal. The mixed flow of drain and steam that is saturated before fin ring When passing through the very small gap flow path formed by the ruffin ring and the shroud cover and flowing into the thermal expansion space downstream of the seal fin ring, the pressure is reduced on the downstream side of the seal fin ring to generate flushing, and the leaked fluid is generated. It expands rapidly in the thermal expansion space. At this time, the flow resistance increases due to an increase in the volume flow rate passing through the seal portion, and the turbine stage efficiency is improved by reducing the amount of steam leakage.
第 1 1図は、 本発明の他の実施例である蒸気タービンの部分断面図、 第 1 2図は、 第 1 1図に示すドレン除去溝の詳細図である。 本実施例で は、 シールフィンリング間に堆積するドレンの集積効果をさらに向上さ せるために、 シールフィンリング間のダイヤフラム外輪 1にドレン除去 溝 1 5を形成している。 そして、 このドレン除去溝 1 5は第 1 2図に示 すように、 ダイヤフラム外輪 1の内壁円周上に周方向に沿って、 その内 壁円周上に設けられた複数個のドレン排出孔 1 0の入口部分にドレンを 導くように傾斜面、 あるいは段差部が形成されている。  FIG. 11 is a partial cross-sectional view of a steam turbine according to another embodiment of the present invention, and FIG. 12 is a detailed view of the drain removal groove shown in FIG. In this embodiment, a drain removal groove 15 is formed on the outer ring 1 of the diaphragm between the seal fin rings in order to further improve the effect of collecting the drain accumulated between the seal fin rings. As shown in FIG. 12, the drain removal groove 15 is formed on the inner wall circumference of the diaphragm outer ring 1 along the circumferential direction along a plurality of drain discharge holes provided on the inner wall circumference. An inclined surface or a step is formed so as to guide the drain to the inlet portion of the 10.
すなわち、 第 1 1図および第 1 2図に示すドレン除去溝 1 5は、 ドレ ン排出孔 1 0から見て上流側に設置されたシ一ルフィンリング 9 cと、 同じく下流側に設置されたシ一ルフィンリング 9 dから、 ドレン排出孔 1 0側に向かってダイヤフラム外輪 1の内壁を傾斜させた形状に構成し ている。 なお、 第 1 1図ではドレン除去溝 1 5は傾斜した形状であるが、 段差部を形成しても良い。 このように、 ダイヤフラム外輪内面に周方向 に沿ってドレン除去溝 1 5を形成することにより、 ダイヤフラム外輪 1 の内面上を流れるドレンの集積を促進させる効果がある。  That is, the drain removal groove 15 shown in FIGS. 11 and 12 is provided with the seal fin ring 9 c installed on the upstream side as viewed from the drain discharge hole 10, and also installed on the downstream side. The inner wall of the diaphragm outer ring 1 is configured to be inclined from the seal fin ring 9 d toward the drain discharge hole 10 side. In FIG. 11, the drain removal groove 15 has an inclined shape, but a step may be formed. By forming the drain removal groove 15 on the inner surface of the diaphragm outer ring in the circumferential direction in this manner, there is an effect of accumulating the drain flowing on the inner surface of the diaphragm outer ring 1.
第 1 3図は、 ドレン除去溝の他の実施形態を示した図である。 第 1 1 図では、 ドレン除去溝 1 5はダイヤフラム外輪内壁上に周方向に沿って 形成されていたが、 本図に示す実施例では、 動翼先端部分の漏洩蒸気の 旋回成分を考慮して、 ダイヤフラム外輪 1の内壁上に、 周方向に対して 角度を持たせた形状にドレン除去溝 1 5を形成している。 さらに、 本実 施例では堆積したドレンを最も効率良く排出させるように、 蒸気流れに 対してドレン除去溝 1 5の軸方向下流側にドレン排出孔 1 0を設けてい る。 FIG. 13 is a view showing another embodiment of the drain removal groove. In FIG. 11, the drain removal groove 15 is formed along the circumferential direction on the inner wall of the diaphragm outer ring, but in the embodiment shown in this figure, the leakage steam at the blade tip In consideration of the turning component, a drain removal groove 15 is formed on the inner wall of the diaphragm outer ring 1 so as to have an angle with respect to the circumferential direction. Furthermore, in this embodiment, a drain discharge hole 10 is provided on the downstream side in the axial direction of the drain removal groove 15 with respect to the steam flow so as to discharge the accumulated drain most efficiently.
以上の構成により、 旋回成分を有する翼先端漏洩流 8は、 この旋回成 分と同方向になるように形成されたドレン除去溝 1 5により、 ダイヤフ ラム外輪 1の内面上を流れるドレンの集積を容易にすることが可能とな る。 さらには、 ドレン除去溝 1 5の下流側にドレン排出孔 1 0を設置し たことにより、 ドレン除去溝 1 5で集積したドレンを最も効率良く排出 することができる。  With the above configuration, the blade tip leakage flow 8 having a swirl component causes the drain removal grooves 15 formed so as to be in the same direction as the swirl component to collect the drainage flowing on the inner surface of the diaphragm outer ring 1. It will be easier. Further, by providing the drain discharge hole 10 on the downstream side of the drain removal groove 15, the drain accumulated in the drain removal groove 15 can be discharged most efficiently.
なお、 複数個が設置されるドレン排出孔 1 0の総面積は、 シ一ルフィ ンリング 9とシュラウドカバー 6の間隙における全周面積の約 1 0 %が 性能的に最も効率的である。  The total area of the drain discharge holes 10 where a plurality of drain holes are installed is about 10% of the entire peripheral area in the gap between the seal fin ring 9 and the shroud cover 6, and the performance is the most efficient.
第 1 4図は、 段落蒸気漏洩量と動翼先端部の圧力差との関係を示した 図である。 なお、 図中に斜線で示した領域が本実施例による効果を示し ている。 段落蒸気漏洩量は動翼先端部の圧力差に比例して大きくなるが、 本図から明らかなように、 前述したドレン排出孔を用いた本実施例のマ ルチプルフィンシール構造を適用することで、 従来技術と比較して蒸気 漏洩量を 3 0〜4 0 %程度低減することが可能となった。  FIG. 14 is a diagram showing the relationship between the amount of steam leakage from the paragraph and the pressure difference at the tip of the moving blade. The hatched area in the figure shows the effect of the present embodiment. Although the amount of steam leakage increases in proportion to the pressure difference at the tip of the rotor blade, it is clear from this figure that the multiple fin seal structure of the present embodiment using the above-mentioned drain discharge hole should be applied. As a result, it has become possible to reduce the amount of steam leakage by about 30 to 40% compared to the conventional technology.
また、 実開昭 5 9— 1 1 6 5 0 2号公報に記載の従来技術では、 飛散 した水滴の大部分をドレン排出孔から外部空間に排出することは可能で あるが、 動翼先端部のシール構造の前にドレン排出孔を設けているため、 ドレンの排出と同時に段落内を流れる主流蒸気をも大量に外部空間に漏 洩させてしまう。 このドレン排出に伴う蒸気漏洩は、 本来タービン段落 内部において口一夕を回転させることに有効に働くべきである蒸気が、 仕事をせずに外部に漏洩することになり、 タービン効率の低下要因とな る。 このように、 従来のドレン排出構造は、 ドレン排出により段落中の 湿り成分を除去し、 段落の湿り損失を低減させることはできるが、 それ に伴い主流蒸気の漏洩により段落効率の低下を招いてしまっていた。 これに対して、、本実施例では、 1枚目のシールフィンリングより下流 側にドレン排出孔を設けているため、 主流蒸気の漏洩量の低減を図るこ とができ、 前述のドレン排出効率の向上と合せると、 ターピン段落の効 率を 1 . 0 %向上させることが可能となった。 産業上の利用可能性 Further, according to the conventional technique described in Japanese Utility Model Application Laid-Open No. 59-116650, it is possible to discharge most of the scattered water droplets to the external space from the drain discharge hole, Since the drain discharge hole is provided in front of the seal structure, a large amount of the mainstream steam flowing in the paragraph is leaked to the external space at the same time as the drain is discharged. The steam leakage due to drainage is originally caused by turbine stage Steam, which should work effectively to rotate the mouth inside, leaks to the outside without doing work, which reduces turbine efficiency. As described above, the conventional drain discharge structure can remove the wet component in the paragraph by drain discharge and reduce the wet loss of the paragraph.However, the leakage of the mainstream steam causes a decrease in the paragraph efficiency. Was gone. On the other hand, in the present embodiment, since the drain discharge hole is provided downstream of the first seal fin ring, the leakage amount of the mainstream steam can be reduced, and the drain discharge efficiency described above can be reduced. Combined with the improvement in the efficiency, the efficiency of tarpin paragraph can be improved by 1.0%. Industrial applicability
本発明の蒸気タービン及びその湿分分離装置は、 発生蒸気によりター ピンを駆動して発電する分野に使用する。  INDUSTRIAL APPLICABILITY The steam turbine and the moisture separation device of the present invention are used in the field of generating electricity by driving a turbine by generated steam.

Claims

請 求 の 範 囲 The scope of the claims
1 . 静翼列と動翼列とで出力段落が構成される蒸気タ一ビンにおいて、 前記静翼列はダイヤフラム外輪内壁に設置されるものであって、 前記 静翼列より後流側のダイヤフラム外輪内壁に、 ドレンを排出するドレン 排出孔を口一夕の半径方向に対して周方向に傾斜させて形成したことを 特徴とする蒸気タービン。 1. In a steam turbine having an output stage composed of a stationary blade row and a moving blade row, the stationary blade row is installed on an inner wall of a diaphragm outer ring, and a diaphragm downstream of the stationary blade row is provided. A steam turbine, characterized in that a drain discharge hole for discharging drain is formed on an inner wall of an outer ring so as to be inclined in a circumferential direction with respect to a radial direction of the mouth.
2 . ダイヤフラム外輪内壁に複数の静翼が前記ダイヤフラム外輪内壁の 周方向に配置され構成される静翼列と、 夕一ビンロータの周方向に複数 の動翼が配置されて構成される動翼列とを備え、 該静翼列と動翼列とに よって出力段落が形成される蒸気タービンにおいて、  2. A row of stationary blades in which a plurality of stationary blades are arranged on the inner wall of the diaphragm outer ring in the circumferential direction of the inner wall of the outer ring of the diaphragm, and a row of rotor blades in which a plurality of rotor blades are arranged in the circumferential direction of the evening bin rotor. In the steam turbine in which an output stage is formed by the stationary blade row and the rotor blade row,
前記静翼列より蒸気流れに対して後流側のダイヤフラム外輪内壁に、 ドレンを排出するドレン排出孔を前記ダイヤフラム外輪内壁の周方向に 沿って複数設け、 該ドレン排出孔はロー夕の半径方向に対して周方向に 傾斜して形成されていることを特徴とする蒸気タービン。  A plurality of drain discharge holes for discharging drain are provided on the inner wall of the diaphragm on the downstream side of the steam flow from the stationary blade row along the circumferential direction of the inner wall of the diaphragm, and the drain discharge holes are formed in the radial direction of the rotor. A steam turbine characterized in that it is formed so as to be inclined in the circumferential direction with respect to.
3 . ダイヤフラム外輪内壁に複数の静翼が前記ダイヤフラム外輪内壁の 周方向に配置され構成される静翼列と、 タービンロー夕のディスク外周 部に順次係合されて、 該タービンロータの周方向に複数の動翼が配置さ れて構成される動翼列とを備え、 該静翼列と動翼列とによって出力段落 が形成される蒸気夕一ビンにおいて、  3. A plurality of stator vanes are arranged on the inner wall of the diaphragm outer ring in the circumferential direction of the inner wall of the diaphragm outer ring, and are sequentially engaged with the outer peripheral portion of the disk of the turbine rotor. A steam cascade in which a plurality of moving blades are arranged, and wherein a stationary blade row and a moving blade row form an output stage;
前記動翼はその先端にシュラウドカバーが備えられ、 一方の動翼の翼 腹側のシュラウドと、 隣り合う他方の動翼の翼背側のシュラウドが互い に接触するように設置され、 該シュラウドと対向するダイヤフラム外輪 内壁にはシール構造が形成されたものであって、 前記静翼列より後流側 のダイヤフラム外輪内壁に、 ドレンを排出するドレン排出孔を、 ロータ の半径方向に対して周方向に傾斜させて形成していることを特徴とする 蒸気夕一ビン。 The moving blade is provided with a shroud cover at a tip thereof, and is installed so that a shroud on the abdominal side of one moving blade and a shroud on the back side of the adjacent moving blade are in contact with each other. A seal structure is formed on the inner wall of the opposed diaphragm outer ring, and a drain discharge hole for discharging drain is formed in the inner wall of the diaphragm outer ring on the downstream side of the stationary blade row in a circumferential direction with respect to a radial direction of the rotor. It is characterized by being formed to be inclined Steam evening bottle.
4 . ダイヤフラム外輪内壁に複数の静翼が前記ダイャフラム外輪内壁の 周方向に配置され構成される静翼列と、 夕一ビンロータのディスク外周 部に順次係合されて、 該夕一ビンロータの周方向に複数の動翼が配置さ れて構成される動翼列とを備え、 該静翼列と動翼列とによって出力段落 が形成される蒸気夕一ビンにおいて、  4. A plurality of stationary blades are arranged on the inner wall of the diaphragm outer ring in the circumferential direction of the inner wall of the diaphragm, and are sequentially engaged with the outer peripheral portion of the disk of the evening bin rotor. A plurality of moving blades arranged in a row, and a steam turbine bin in which an output paragraph is formed by the stationary blade row and the moving blade row;
前記動翼はその先端にシュラウドカバーが備えられ、 一方の動翼の翼 腹側のシュラウドと、 隣り合う他方の動翼の翼背側のシュラウドが互い に接触するように設置され、 該シュラウドと対向するダイヤフラム外輪 内壁にはシール構造が形成されたものであって、 該シ一ル構造が構成さ れたダイヤフラム外輪内壁に、 ロータの半径方向に対して周方向に傾斜 させたドレン排出孔を設置したことを特徴とする蒸気タービン。  The moving blade is provided with a shroud cover at a tip thereof, and is installed such that a shroud on the abdominal side of one moving blade and a shroud on the back side of the blade adjacent to the other moving blade come into contact with each other. A seal structure is formed on the inner wall of the opposed diaphragm outer ring, and a drain discharge hole inclined in the circumferential direction with respect to the radial direction of the rotor is formed on the inner wall of the diaphragm outer ring having the seal structure. A steam turbine characterized by being installed.
5 . ダイヤフラム外輪内壁に複数の静翼が前記ダイヤフラム外輪内壁の 周方向に配置され構成される静翼列と、 タービンロータのディスク外周 部に順次係合されて、 該タービンロータの周方向に複数の動翼が配置さ れて構成される動翼列とを備え、 該静翼列と動翼列とによって出力段落 が形成される蒸気夕一ビンにおいて、 5. A plurality of stator vanes are arranged on the inner wall of the diaphragm outer ring in the circumferential direction of the inner wall of the diaphragm outer ring, and are sequentially engaged with the outer peripheral portion of the disk of the turbine rotor. A rotor blade row in which the rotor blades are arranged, and in a steam bin where an output paragraph is formed by the stator blade row and the rotor blade row,
前記動翼はその先端にシュラウドカバーが備えられ、 一方の動翼の翼 腹側のシュラウドと、 隣り合う他方の動翼の翼背側のシュラウドが互い に接触するように設置され、 該シュラウドと対向するダイヤフラム外輪 内壁には、 複数枚のシールフィンリングを設置してシールを形成したも のであって、 蒸気流れに対して 1枚目のシ一ルフィンリングより下流側 のシールフィンリング間に位置するダイヤフラム外輪内壁に、 ロー夕の 半径方向に対して周方向に傾斜させたドレン排出孔を設置したことを特 徴とする蒸気タービン。 The moving blade is provided with a shroud cover at a tip thereof, and is installed so that a shroud on the abdominal side of one moving blade and a shroud on the back side of the adjacent moving blade are in contact with each other. A seal is formed by installing a plurality of seal fin rings on the inner wall of the opposed diaphragm outer ring, and is located between the seal fin rings downstream of the first seal fin ring with respect to the steam flow. A steam turbine characterized by a drain discharge hole that is inclined in the circumferential direction with respect to the radial direction of the rotor on the inner wall of the outer ring of the diaphragm.
6 . 前記ドレン排出孔は、 半径方向に対して周方向に 2 0〜 7 5 ° の角 度範囲に傾斜させて形成されていることを特徴とする請求項 1から 5の 何れかに記載の蒸気タービン。 6. The drain discharge hole according to any one of claims 1 to 5, wherein the drain discharge hole is formed so as to be inclined at an angular range of 20 to 75 ° in a circumferential direction with respect to a radial direction. Steam turbine.
7 . 前記ドレン排出孔は、 望ましくは、 半径方向に対して周方向に 3 0 〜 7 0 ° の角度範囲に傾斜させて形成されていることを特徴とする請求 項 1から 5の何れかに記載の蒸気タービン。  7. The drain hole according to claim 1, wherein the drain discharge hole is desirably formed to be inclined at an angle of 30 to 70 ° in a circumferential direction with respect to a radial direction. The steam turbine as described.
8 . 前記ドレン排出孔は、 更に望ましくは、 半径方向に対して周方向に 4 5〜 6 0 ° の角度範囲に傾斜させて形成されていることを特徴とする 請求項 1から 5の何れかに記載の蒸気夕一ビン。  8. The drain discharge hole is more desirably formed so as to be inclined at an angle of 45 to 60 ° in a circumferential direction with respect to a radial direction. Steam one bottle described in.
9 . 前記蒸気タービンは、 ダイヤフラム外輪内壁にその周方向に沿って ドレン除去溝が形成され、 該ドレン除去溝には前記ドレン排出孔の入口 部が位置することを特徴とする請求項 1から 5の何れかに記載の蒸気 夕一ビン。  9. The steam turbine according to any one of claims 1 to 5, wherein a drain removal groove is formed in the inner wall of the diaphragm outer ring along a circumferential direction thereof, and an inlet of the drain discharge hole is located in the drain removal groove. The steam bottle according to any one of the above.
1 0 . 前記蒸気タービンは、 前記シュラウドカバーと対向する位置で あって、 前記シールフィンリングの間隙における全周面積の 1 0 %とな るように、 前記ドレン排出孔の開口部を形成することを特徴とする請求 項 5に記載の蒸気タービン。  10. The steam turbine, wherein the opening of the drain discharge hole is formed at a position facing the shroud cover so as to be 10% of a total peripheral area in a gap between the seal fin rings. The steam turbine according to claim 5, wherein:
1 1 . ダイヤフラム外輪内壁に設置される静翼列と、 タービン口一夕に 設置される動翼列とで構成される出力段落を複数段備え、 前記静翼列よ り後流側のダイヤフラム外輪内壁に、 ロー夕の半径方向に対して周方向 に傾斜させたドレン排出孔を形成したことを特徴とする蒸気タービンの 湿分分離構造。  1 1. A multistage output stage consisting of a stationary blade row installed on the inner wall of the diaphragm outer ring and a moving blade row installed over the turbine port is provided, and the diaphragm outer ring downstream of the stator blade row is provided. A moisture separation structure for a steam turbine, characterized in that a drain discharge hole that is inclined in the circumferential direction with respect to the radial direction of the rotor is formed on the inner wall.
1 2 . ダイヤフラム外輪内壁に設置される静翼列と、 タービンロータに 設置される動翼列とで構成される出力段落を複数段備え、 前記動翼先端 部に設置されたシュラウドカバーに対向するダイヤフラム外輪内壁に シール装置を設け、 該シール装置が設置されたダイヤフラム外輪内壁に、 ロータの半径方向に対して周方向に傾斜させたドレン排出孔を形成した ことを特徴とする蒸気タービンの湿分分離構造。 1 2. Equipped with a plurality of output stages composed of a row of stationary blades installed on the inner wall of the diaphragm outer ring, and a row of moving blades installed on the turbine rotor, facing the shroud cover installed on the tip of the moving blade On the inner wall of the diaphragm outer ring A moisture separation structure for a steam turbine, comprising: a sealing device; and a drain discharge hole inclined in a circumferential direction with respect to a radial direction of the rotor, formed on an inner wall of a diaphragm outer ring in which the sealing device is installed.
1 3 . ダイヤフラム外輪内壁に設置される静翼列と、 タービンロータに 設置される動翼列とで構成される出力段落を備えた蒸気夕一ビンの湿分 分離構造において、  1 3. In a moisture separation structure of a steam bin with an output stage composed of a stationary blade row installed on the inner wall of the diaphragm outer ring and a moving blade row installed on the turbine rotor,
前記動翼はその先端にシュラウドカバーが備えられ、 一方の動翼の翼 腹側のシュラウドと、 隣り合う他方の動翼の翼背側のシュラウドが互い に接触するように設置され、 該シュラウドと対向するダイヤフラム外輪 内壁には、 複数枚のシールフィンリングを設置してシールを形成し、 蒸 気流れに対して最上流側のシールフィンリングより下流側であって、 最 下流側のシールフィンリングより上流側に位置するダイヤフラム外輪内 壁に、 ロータの半径方向に対して周方向に傾斜させたドレン排出孔を設 置したことを特徴とする蒸気タービンの湿分分離構造。  The moving blade is provided with a shroud cover at a tip thereof, and is installed such that a shroud on the abdominal side of one moving blade and a shroud on the back side of the blade adjacent to the other moving blade come into contact with each other. A plurality of seal fin rings are installed on the inner wall of the facing diaphragm outer ring to form a seal, and the seal fin ring on the downstream side of the seal fin ring on the most upstream side with respect to the steam flow and on the downstream side A moisture separation structure for a steam turbine, wherein a drain discharge hole inclined in a circumferential direction with respect to a radial direction of a rotor is provided on an inner wall of a diaphragm outer ring located further upstream.
1 4 . 前記ドレン排出孔は、 半径方向に対して周方向に 2 0〜 7 5。 の 角度範囲に傾斜させて形成されていることを特徴とする請求項 1 1から 1 3の何れかに記載の蒸気タービンの湿分分離構造。  14. The drain discharge hole is 20 to 75 in the circumferential direction with respect to the radial direction. The moisture separation structure for a steam turbine according to any one of claims 11 to 13, wherein the moisture separation structure is formed so as to be inclined at an angle range of:
1 5 . 前記ドレン排出孔は、 望ましくは、 半径方向に対して周方向に 15. The drain hole is desirably in the circumferential direction with respect to the radial direction.
3 0〜 7 0 ° の角度範囲に傾斜させて形成されていることを特徵とする 請求項 1 1から 1 3の何れかに記載の蒸気夕一ビンの湿分分離構造。The moisture separating structure for a steam bin according to any one of claims 11 to 13, wherein the steam separating bottle is formed so as to be inclined in an angle range of 30 to 70 °.
1 6 . 前記ドレン排出孔は、 更に望ましくは、 半径方向に対して周方向 に 4 5〜 6 0 ° の角度範囲に傾斜させて形成されていることを特徴とす る請求項 1 1から 1 3の何れかに記載の蒸気夕一ビンの湿分分離構造。16. The drain hole according to claim 11, wherein the drain discharge hole is more desirably formed so as to be inclined at an angle of 45 to 60 ° in a circumferential direction with respect to a radial direction. 4. The moisture separation structure for a steam bottle according to any one of 3.
1 7 . 前記蒸気タービンの湿分分離構造は、 ダイヤフラム外輪内壁にそ の周方向に沿ってドレン除去溝が形成され、 該ドレン除去溝には前記ド レン排出孔の入口部が位置することを特徴とする請求項 1 1から 1 3の 何れかに記載の蒸気夕一ビンの湿分分離構造。 17. The moisture separation structure of the steam turbine has a drain removal groove formed in the inner wall of the diaphragm outer ring along a circumferential direction thereof, and the drain removal groove has the drain removal groove formed therein. The moisture separation structure for a steam bin according to any one of claims 11 to 13, wherein an inlet portion of the drain hole is located.
PCT/JP2000/002314 2000-04-10 2000-04-10 Steam turbine and its moisture separating structure WO2001077499A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2000236753A AU2000236753A1 (en) 2000-04-10 2000-04-10 Steam turbine and its moisture separating structure
JP2001574734A JPWO2001077499A1 (en) 2000-04-10 2000-04-10 Steam turbine and its moisture separation structure
PCT/JP2000/002314 WO2001077499A1 (en) 2000-04-10 2000-04-10 Steam turbine and its moisture separating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002314 WO2001077499A1 (en) 2000-04-10 2000-04-10 Steam turbine and its moisture separating structure

Publications (1)

Publication Number Publication Date
WO2001077499A1 true WO2001077499A1 (en) 2001-10-18

Family

ID=11735908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002314 WO2001077499A1 (en) 2000-04-10 2000-04-10 Steam turbine and its moisture separating structure

Country Status (3)

Country Link
JP (1) JPWO2001077499A1 (en)
AU (1) AU2000236753A1 (en)
WO (1) WO2001077499A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140037431A1 (en) * 2012-08-02 2014-02-06 Kabushiki Kaisha Toshiba Sealing structure in steam turbine
WO2018181331A1 (en) * 2017-03-30 2018-10-04 三菱日立パワーシステムズ株式会社 Drain removing device and steam turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127914U (en) * 1978-02-28 1979-09-06
JPS6297201U (en) * 1985-12-10 1987-06-20
JPS62141602U (en) * 1986-03-03 1987-09-07
JPH0742506A (en) * 1993-07-28 1995-02-10 Hitachi Ltd Drain discharging structure of steam turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127914U (en) * 1978-02-28 1979-09-06
JPS6297201U (en) * 1985-12-10 1987-06-20
JPS62141602U (en) * 1986-03-03 1987-09-07
JPH0742506A (en) * 1993-07-28 1995-02-10 Hitachi Ltd Drain discharging structure of steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140037431A1 (en) * 2012-08-02 2014-02-06 Kabushiki Kaisha Toshiba Sealing structure in steam turbine
US9732627B2 (en) * 2012-08-02 2017-08-15 Kabushiki Kaisha Toshiba Sealing structure in steam turbine
WO2018181331A1 (en) * 2017-03-30 2018-10-04 三菱日立パワーシステムズ株式会社 Drain removing device and steam turbine
JP2018168844A (en) * 2017-03-30 2018-11-01 三菱日立パワーシステムズ株式会社 Drain removal device and steam turbine

Also Published As

Publication number Publication date
JPWO2001077499A1 (en) 2004-04-30
AU2000236753A1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
JP2007315385A (en) Airfoil and method for removing moisture and injecting steam
WO2012052740A1 (en) Sealing device for reducing fluid leakage in turbine apparatus
US6447247B1 (en) Steam turbine
JP2016166569A (en) Steam turbine
JPH022441B2 (en)
JP6884665B2 (en) Steam turbine
JPH04259604A (en) Honeycomb type sealing device and moisture content draining device
US8425181B2 (en) Axial-flow turbine with flow extraction means
JP2011069308A (en) Axial flow turbine
JP6518526B2 (en) Axial flow turbine
US8870532B2 (en) Exhaust hood diffuser
KR102243462B1 (en) Steam turbine
JP2015048716A (en) Steam turbine
US20130064638A1 (en) Boundary Layer Blowing Using Steam Seal Leakage Flow
JP5651532B2 (en) Steam turbine
EP2527617B1 (en) A vortex reducer
WO2001077499A1 (en) Steam turbine and its moisture separating structure
JPH0326802A (en) Stationary blade apparatus of steam turbine
JP3815143B2 (en) Steam turbine
RU2567524C2 (en) System and method of work fluid extraction from internal volume of turbine machine, and turbine machine with such system
JP2016135998A (en) Steam turbine
JP2016217285A (en) Steam turbine
JPS61265305A (en) Steam turbine
JP5173646B2 (en) Steam turbine
JP2007138864A (en) Steam turbine stage and steam turbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 574734

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase