WO2001077314A1 - MODIFIED α2,3-SIALYLTRANSFERASE GENE AND PROCESS FOR PRODUCING α2,3-SIALYLTRANSFERASE AND COMPLEX SACCHARIDE CONTAINING SIALIC ACID - Google Patents

MODIFIED α2,3-SIALYLTRANSFERASE GENE AND PROCESS FOR PRODUCING α2,3-SIALYLTRANSFERASE AND COMPLEX SACCHARIDE CONTAINING SIALIC ACID Download PDF

Info

Publication number
WO2001077314A1
WO2001077314A1 PCT/JP2001/003110 JP0103110W WO0177314A1 WO 2001077314 A1 WO2001077314 A1 WO 2001077314A1 JP 0103110 W JP0103110 W JP 0103110W WO 0177314 A1 WO0177314 A1 WO 0177314A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
protein
genus
sialic acid
sialyltransferase
Prior art date
Application number
PCT/JP2001/003110
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Endo
Satoshi Koizumi
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to AU2001248749A priority Critical patent/AU2001248749A1/en
Publication of WO2001077314A1 publication Critical patent/WO2001077314A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1081Glycosyltransferases (2.4) transferring other glycosyl groups (2.4.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates

Definitions

  • the present invention relates to a modified ⁇ 2,3-sialyltransferase gene, and a method for producing a 2,3-sialyltransferase and a sialic acid-containing glycoconjugate using the gene.
  • 2,3-sialyltransferase gene a gene derived from an animal [J. Biol. Chem., 267, 21011 (1992), J. Biol. Chem., 268, 22782 (1993), Eur. J. Biochem. ., 216, 377 (1993), Biochem. Biophys. Res. Co., 194, 375 (1993), J. Biol. Chem., 269, 1394 (1994), J. Biol. Chem., 269, 10028 (1994), Glycobiology, 5, 319 (1995)]. It has been reported that the enzyme gene is expressed as an active protein in microorganisms such as Escherichia coli (JP-A-11-253163), but its activity is weak.
  • Sialic acid-containing glycoconjugates are known to be involved in cell adhesion and canceration of cells.Essentials of Glycobiolgy, Cold Spring Harbor Laboratory Press (1999)], pharmaceuticals such as cancer vaccines and reperfusion injury The application as is expected.
  • oligosaccharides containing sialic acid which are abundant in human milk, are known to function as receptors for influenza virus. Virology, 232, 19 (1997)], and are considered to be promising candidates for safe infection preventives.
  • an extraction method from human milk CAnal.
  • An object of the present invention is to provide an industrial method for producing 2,3-sialyltransferase and sialic acid-containing glycoconjugates.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and have described a novel 2,3-sialyltransferase which has not been expressed in large amounts as an active protein in microorganisms such as Escherichia coli.
  • the inventors succeeded in mass production using Escherichia coli and established an industrial method for producing sialic acid-containing glycoconjugates using the enzyme.
  • the present invention has been completed.
  • the present invention relates to the following (1) and (20).
  • a culture solution of a transformant expressing a protein having 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus or a processed product of the culture solution is used as an enzyme source.
  • Complex glycoconjugates and cytidine monophosphate N-acetylneuraminic acid (hereinafter abbreviated as CMP—NeuAc) are allowed to exist in an aqueous medium, and the sialic acid is converted to the receptor via the 2,3 bond in the aqueous medium.
  • a method for producing a sialic acid-containing glycoconjugate comprising producing and accumulating a sialic acid-containing glycoconjugate by transferring to a glycoconjugate, and collecting the sialic acid-containing glycoconjugate from the aqueous medium.
  • a transformant expressing a protein having a 2,3 -sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus is cultured in a medium, and the 2,3 -sialyltransferase activity is added to the culture.
  • microorganism is a microorganism belonging to the genus Escherichia.
  • the recombinant DNA is a recombinant DNA containing DNA encoding a protein having 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemofilus. Production method as described.
  • a DNA encoding a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus is selected from any one of the following [1] to [3]: The production method according to (6).
  • One or more codons in a DNA encoding a protein having an activity of 2,3-sialyltransferase derived from a microorganism belonging to the genus Hemophilus are frequently used in a host cell expressing the DNA.
  • the processed product of the culture solution is a concentrate of the culture solution, a dried product of the culture solution, cells obtained by centrifuging the culture solution, a dried product of the cells, a lyophilized product of the cells, Detergent treated cells, ultrasonically treated cells, mechanically milled cells, solvent-treated cells, enzyme-treated cells, protein of the cells.
  • the method for producing a sialic acid-containing glycoconjugate according to (1) which is a fraction, an immobilized product of the cells, or an enzyme preparation obtained by extraction from the cells. .
  • the DNA of the present invention is a DNA obtained by modifying a DNA encoding a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemofilus, such as a DNA derived from Hemophilus' Duclay.
  • a DNA encoding a protein having 2,3-sialyltransferase activity having a base sequence obtained by modifying one or more codons to codons frequently used in a host organism expressing the DNA; It encodes DNA and a protein comprising a base sequence in which at least one base among the bases of the DNA comprising the base sequence has been deleted, substituted or added, and which has a 2,3-sialyltransferase activity DNA and the like.
  • the host organism is not particularly limited as long as it can express the DNA of the present invention, and may be an individual organism, tissue of an organism, cultured cells of an organism, microbial cells, or the like as the host organism. Can be.
  • Preferred examples of the host organism include microorganisms, more preferably microorganisms belonging to the genus Escherichia, and particularly preferably Escherichia coli.
  • a frequently used codon is a codon in which the codon corresponding to each amino acid is at least 10% or more in the host cell, preferably 15% or more, more preferably 20% or more. Is a codon.
  • Amino acid deletion or substitution occurring in the protein encoded by the mutation-introduced DNA is not particularly limited, but is, for example, 1 to 20, preferably 1 to 15, and more preferably 1 to 5.
  • the mutated DNA in order for the DNA of the present invention to encode a protein having 2,3-sialyltransferase activity, the mutated DNA must have at least the amino acid sequence of SEQ ID NO: 2 and at least BLAST CJ. Mol. Biol. 215, 403 (1990)) and FASTA (Methods in Enzymology, 183, 63-98 (1990)), etc., have a homology of at least 60% or more, usually 80% or more, especially 95% or more. It is preferable to have
  • DNA of the present invention using DNA encoding a protein having a 2,3-sialyltransferase activity derived from Hemophilus duclay, for example, Molecular 'cloning second edition, Current 'Protocols in Molecular Biology, Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci. USA, 79, 6409 (1982), Gene, 34, 315 (1985), Natl. Acad. Sci. USA, 82, 488 (1985), Nucleic Acids Research, 13, 4431 (1985), and the like.
  • Methods using synthetic DNA include, for example,
  • DNA encoding the protein produced by the above method may be prepared according to the method described in Molecular Cloning, Second Edition. Recombinant DNA was prepared by ligating with DNA
  • a host organism is transformed with the recombinant DNA,
  • the obtained transformant is cultured in an appropriate medium in which the transformant can grow, the protein is accumulated in the culture solution, and the protein is obtained from the culture solution.
  • a method of solubilizing the protein, isolating and purifying the protein by ion exchange, gel filtration, one method such as hydrophobic chromatography, or a combination of the chromatography methods is used. can give.
  • the sialic acid-containing glycoconjugate of the present invention can be obtained by using a culture solution of a transformant producing the protein, a processed product of the culture solution, or the purified protein as an enzyme source, a receptor glycoconjugate, CMP-Neu It can be obtained by allowing Ac to coexist in an aqueous solvent.
  • the receptor complex carbohydrate is not particularly limited as long as it becomes a substrate for a protein having a 2,3-sialyltransferase activity encoded by the DNA of the present invention, but preferably, galactose is present at the non-reducing end.
  • a more preferred substrate has a lactose, N-acetyl-lactosamine, lactate N-tetraose, lactate N-neotetraose, Lewis X, or Lewis a structure at the non-reducing end.
  • Sugars can be given. '
  • the generated sialic acid-containing glycoconjugate can be obtained by a usual chromatography method using activated carbon, an ion exchange resin, or the like.
  • the DNA of the present invention can be prepared by the following method. First, the amino acid sequence of 2,3-sialyltransferase is selected. As the amino acid sequence of the enzyme, any amino acid sequence having the enzyme activity can be used. For example, Hemophilus registered in a database such as Genebank represented by SEQ ID NO: 2 can be used. ⁇ Of 2,3-sialyltransferase derived from Duclay Amino acid sequences and the like. Next, a DNA encoding a protein having the enzymatic activity is designed using codons frequently used in host cells expressing the enzymatic activity.
  • the amino acid sequence of the selected enzyme is used as the frequency of codon usage found in the nucleotide sequence of the Escherichia coli gene (Codon Usage aataDase at kazusa (http: // www. In consideration of kazusa.or. jp / codon /)], the DNA of the present invention can be designed by converting it into a DNA sequence so as to have the most frequently used codon.
  • Examples of the DNA designed as described above include DNA having a base sequence of SEQ ID NO: 1 designed based on a 2,3-sialyltransferase gene derived from Hemophilus duclay. .
  • the adjacent synthetic DNAs have an overlapping sequence of 10 to L00 bases with each other, and the 5′-ends are arranged so that they alternate with the sense strand and the antisense strand.
  • Synthetic DNA having a length of 40 to 150 bases from the side is synthesized using an automatic DNA synthesizer (Model 8905 DNA synthesizer manufactured by Perceptive Biosystems). Examples of such synthetic DNAs include DNAs having the nucleotide sequences of SEQ ID NOs: 3 to 16 designed based on the DNA consisting of the nucleotide sequence of SEQ ID NO: 1.
  • the DNA of the present invention is artificially synthesized by PCR according to a conventional method (eg, PCR Protocols, Humana Press (1993), etc.).
  • the PCR conditions are limited as long as a PCR reaction using the synthetic DNA gives an amplified DNA fragment having the same length as the DNA of the present invention, which was the basis for designing the synthetic DNA.
  • a cycle of 94 ° C for 30 seconds, 50 ° C for 30 seconds, and 74 ° C for 60 seconds is one cycle. Conditions for performing 30 cycles can be given.
  • an appropriate restriction enzyme recognition sequence is placed at the 5 'end of the synthetic DNA located at both ends.
  • the DNA of the present invention can be easily cloned into a vector.
  • a synthetic DNA for example, a DNA having the base sequence described in SEQ ID NOS: 3 to 16 was used: The base sequence described in SEQ ID NO: 17 and SEQ ID NO: 18 that can be used in PCR It is possible to obtain a primer set of DNA having
  • the DNA of the present invention prepared in (1) above is used as it is or after being cut with an appropriate restriction enzyme or the like, and then ligated to a vector by a conventional method.
  • any vector such as a phage vector or a plasmid vector can be used as long as it is an autonomously replicable vector in the Escherichia coli K12 strain.
  • ZAP Express [Stratagene, Strategies, 5, 58 (1992)], pBluescript II SK (+) CNucleic Acids Research, 17, 9494 (1989)], human zap II (Stratagene), AgtlO , Agtll CDNA Cloning, A Practical Approach, 1, 9 (1985)], ⁇ TriplEx (manufactured by Clonetech), BlueMid
  • Escherichia coli used as a host for a recombinant DNA obtained by ligating the DNA of the present invention obtained in (1) to this vector can be used as long as it is a microorganism belonging to Escherichia coli.
  • Escherichia coli Y1088 Science, 222 , 778 (1983)
  • Escherichia coli Y109Q Science, 222, 778 (1983)
  • Escherichia coli NM522 J. Mol.
  • Any method for introducing the recombinant DNA can be used as long as it is a method for introducing the DNA into the host cells described above. For example, a method using calcium ions
  • the recombinant DNA is extracted from the transformant obtained as described above, and the nucleotide sequence of the DNA of the present invention contained in the recombinant DNA can be determined.
  • a commonly used nucleotide sequence analysis method for example, the dideoxy method !; Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] or 373A-DNA sequencer
  • the DNA of the present invention obtained in (1) is a DNA having the same nucleotide sequence as the DNA designed as a group for synthesizing the DNA.
  • Examples of the transformant containing the recombinant DNA obtained as described above include Escherichia coli NM522 / pHE5, which has a plasmid DNA having the nucleotide sequence represented by SEQ ID NO: 1. .
  • the protein having 2,3-sialyltransferase activity which is encoded by the DNA of the present invention is described in Molecular Cloning Second Edition, Current Protocols, Molecular Biology, etc.
  • the DNA of the present invention can be expressed in host cells and produced by the following methods, for example. That is, based on the DNA of the present invention, a DNA fragment of an appropriate length containing a portion encoding the protein is prepared, if necessary, and the DNA fragment is inserted downstream of a promoter of an appropriate expression vector. A recombinant DNA is prepared. The recombinant DN
  • a into a host cell suitable for the expression vector to obtain a transformant It can be produced by culturing the transformant in a medium and accumulating a protein having ⁇ 2,3-sialyltransferase activity in the culture solution.
  • any cell that can express the target gene such as bacteria, yeast, animal cells, insect cells, and plant cells, can be used.
  • An expression vector that is capable of autonomous replication in the host cell or that can be integrated into chromosomal DNA and that contains a promoter at a position where the DNA encoding the protein of the present invention can be transcribed. Is used.
  • the recombinant DNA containing the DNA encoding the protein of the present invention is capable of autonomous replication in the prokaryote, and has a promoter, a ribosome binding sequence, It is preferable that the vector comprises the DNA of the present invention and a transcription termination sequence. A gene that controls a promoter may be included.
  • expression vectors include, for example, pBTrp2, pBTacls pBTac2 (all commercially available from Berlin-Mannheim), PKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-l (Promega) ), QE-8 (manufactured by QIAGEN), XYPIO (Japanese Unexamined Patent Publication No. 58- ⁇ 0600), KYP200 CAgric. Biol. Chem., 48, 669 (1984)], pLSAl CAgric. Biol. Chem., 53, 277 (1989) )), PGELl [Proc. Natl. Acad. Sci.
  • trp promoter Isseki one P trp
  • lac promoter Isseki one P L promoter Isseki one
  • P B promoter evening one such as T7 promoter, raising the promo one evening one derived from Escherichia coli or phage, etc.
  • P trp x 2 two series P trp
  • tac promoter tac promoter
  • lacT7 promoter Isseki the let I promoter Isseki be used promoter evening one like that are artificially designed and modified as one it can.
  • a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases).
  • the transcription termination sequence is not necessarily required for the expression of the DNA of the present invention, but it is preferable to arrange the transcription termination sequence immediately below the structural gene.
  • the host cell Eshierihia, Serratia, Bacillus, Purebipaku Teriumu genus Corynebacterium, the genus Microbacterium, microorganisms belonging to Shiyudomonasu genus like, for example, Escherichia coli XU-Blue, Escherichia coli XL2-Blue s Escherichia coli DH1 S Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No.49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli GI698, Escherichia coli TB1, Serratia ficaria s Serratia fonticola s Serratia liquefaciens s Serratia marcescens Bacillus subtilis, Bacill
  • Any method for introducing the recombinant DNA can be used as long as it is a method for introducing the DNA into the above host cells.
  • a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method (JP-A-63-248394), or the method described in Gene, 17, 107 (1982) or Mol. Gen. Genet., 168, 111 (1979).
  • examples of expression vectors include YEP13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, and pHS15.
  • Any promoter may be used as long as it functions in a yeast strain.
  • promoters for glycolytic genes such as hexose-kinase, etc .; PH05 Promoters, PGK Promos, GAP Promos, ADH Promos, al 1 Promos, gal 10 Promos, Heat Shock Polypeptide Promoters, MF al Promoters, CUP 1 Promos, etc.
  • PH05 Promoters, PGK Promos, GAP Promos, ADH Promos, al 1 Promos, gal 10 Promos, Heat Shock Polypeptide Promoters, MF al Promoters, CUP 1 Promos, etc. Can be raised.
  • fe king cells include Saccharomyces, Schizosaccharomyces, Kluyveromyces, Trichosporon, Schwanniomyces, Pichi, Candida and other microorganisms.
  • Saccharomyces Schizosaccharomyces, Kluyveromyces, Trichosporon, Schwanniomyces, Pichi, Candida and other microorganisms.
  • any method can be used as long as it is a method for introducing DNA into yeast, and examples thereof include an electoporation method (Methods EnzymoL, 194, 182 (1990)) and a spheroplast method [ Natl. Acad. Sci: USA, 75, 1929 (1978)], lithium acetate method [J. Bacteriol., 153, 163 (1983)] ', Proc. Natl. Acad. Sci. USA, 75, 1929 ( 1978).
  • an electoporation method Metals EnzymoL, 194, 182 (1990)
  • a spheroplast method [ Natl. Acad. Sci: USA, 75, 1929 (1978)]
  • lithium acetate method J. Bacteriol., 153, 163 (1983)
  • an expression vector for example, cDNAI , PcDM8 (manufactured by Funakoshi), pAGE107 (JP-A-3-22979, Cytotechnology, 3, 133 (1990)), pAS3-3 (JP-A-2-227075), pCDM8 (Nature, 329,840 (1987)), pcDNAI / Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochem., 101, 1307 (1987)], pAGE210 and the like.
  • any promoter can be used as long as it functions in animal cells.
  • the promoter of the immediate early (IE) gene of cytomegalovirus (CMV) the early promoter of SV40, the retro promoter of SV40, etc.
  • IE immediate early
  • CMV cytomegalovirus
  • the enhancer of the IE gene of human CMV may be used together with the promoter.
  • Examples of the host cells include Namalwa cells, which are human cells, COS cells, which are monkey cells, CH0 cells, which are Chinese hamster cells, and HBT5637 (Japanese Patent Publication No. 63-299).
  • any method for introducing DNA into animal cells can be used.
  • electoporation method [; Cytotechnology, 3, 133 (1990)] Calcium phosphate method (Japanese Unexamined Patent Publication No. 2-227075), Lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)], Virology, 52, 456 (1973).
  • the recombinant gene transfer vector and the baculovirus are co-introduced into insect cells to obtain a recombinant virus in the culture supernatant of insect cells, and then the recombinant virus is transmitted to the insect cells to produce proteins. Can be done.
  • the gene transfer vector used in the method includes, for example, pVL1392, pVL1393, pBlueBacIII (both manufactured by Invitorogen) and the like.
  • baculoviruses include, but are not limited to, autographa californica macear polyhedrosis virus, which is a virus that infects night moth insects, such as Atographa, California, Nuclea, Polyhedrosis, etc. 5 Yes.
  • insect cells examples include Spod9, Sf21 (Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company (1992)) which are ovarian cells of Spodoptera f rugiperda, and High 5 (manufactured by Invitrogen) which is an ovarian cell of Trichoplusia ni. Can be used.
  • Methods for co-transferring the above recombinant gene into insect cells and the above baculovirus to prepare a recombinant virus include the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the ribofusion method, and the like. [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • examples of the expression vector include a Ti plasmid and a tobacco mosaic virus vector.
  • Any promoter may be used as long as it functions in plant cells.
  • Examples of the host cell include plant cells of tobacco, potato, tomato, carrot, soybean, abrana, alfa alfa, rice, wheat, wheat, and the like.
  • Any method for introducing the recombinant DNA can be used as long as it is a method for introducing DNA into plant cells.
  • Agrobacterium Agrobacterium
  • electro volatilization method JP-A-60-251887
  • method using particle gun Gene gun
  • Patent No. 2606856, Patent No. 2517813 By culturing the transformant of the present invention obtained as described above in a medium, producing and accumulating a protein having 2,3-sialyltransferase activity in the culture, and collecting from the culture, The protein can be produced.
  • the method for culturing the transformant of the present invention in a medium can be performed according to a usual method used for culturing a host.
  • the transformant of the present invention is a transformant obtained using a prokaryote such as Escherichia coli or a eukaryote such as yeast as a host
  • the transformant can be used as a medium for culturing the transformant.
  • Either a natural medium or a synthetic medium may be used as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like, and can efficiently culture the transformant.
  • Any carbon source may be used as long as the transformant can be assimilated, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid, etc. Alcohols such as organic acids, ethanol, and propanol can be used.
  • nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other ammonium-free salts of ammonium or organic acids, and other nitrogen-containing compounds, as well as peptone, meat extract, yeast extract, and copper extract.
  • Plyka, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof can be used.
  • potassium monophosphate potassium monophosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
  • the culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culturing temperature is preferably 15 to 40 ° C, and the culturing time is usually 16 hours to 7 days. It is preferable to maintain the pH during culturing between 3.0 and 9.0.
  • the pH is adjusted using an inorganic or organic acid, alkaline solution, urea, calcium carbonate, ammonia, etc. Do it.
  • an antibiotic such as ampicillin, tetracycline or chloramphenicol may be added to the medium during the culture.
  • the culture medium When culturing a microorganism transformed with a recombinant DNA using an inducible promoter as a promoter, the culture medium may be supplemented with an inductor if necessary.
  • an inductor For example, when culturing a microorganism transformed with a recombinant DNA using a promoter, isopropyl 1 /?-1 D-thiogalactopyranoside and the like are transformed with a recombinant DNA using a promoter.
  • indole acrylic acid or the like may be added to the medium.
  • RPMI 1640 medium J. Am. Med. Assoc., 199, 519 (1967)
  • Eagle's MEM medium Science , 122, 501 (1952)
  • Dulbecco's modified MEM medium Virology, 8, 396 (1959)
  • 199 medium Proc. Soc. Biol. Med., 73, 1 (1950)
  • a medium containing bovine fetal serum or the like can be used.
  • Culture is carried out usually p H 6 ⁇ 8, 3 0 ⁇ 4 0 ° C, 5% C 0 2 under the conditions such as the presence 1-7 days.
  • antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
  • TNM-FH medium As a medium for culturing a transformant obtained by using an insect cell as a host, generally used TNM-FH medium (Pharmingen), Sf-900II SFM medium (Life Technologies), ExCell400, ExCe 11405 (All manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195, 788 (1962)), etc. can be used.
  • the cultivation is usually carried out for 1 to 5 days under conditions of ⁇ 6 to 7, 25 to 30 ° C and the like. If necessary, an antibiotic such as genyumycin may be added to the medium during the culture.
  • a transformant obtained using a plant cell as a host can be cultured as a cell or after being differentiated into a cell organ of a plant.
  • the culture medium for culturing the transformant may be a commonly used Murashige and Skull (MS) medium, a white (White) medium, or a medium supplemented with a plant hormone such as auxin or cytokinin. Media or the like can be used.
  • the cultivation is usually performed at pH 5 to 9, 20 to 40 ° C for 3 to 60 days.
  • antibiotics such as kanamycin and hygromycin may be added to the medium during the culture.
  • a transformant derived from a microorganism, animal cell, or plant cell having a recombinant DNA into which a DNA encoding a protein having 2,3-sialyltransferase activity is incorporated can be cultured in a normal culture.
  • the protein can be produced by culturing according to the method, producing and accumulating the protein, and collecting the protein from the culture.
  • Methods for producing a protein having 2,3-sialyltransferase activity include a method of producing the protein in a host cell, a method of secreting the protein out of the host cell, and a method of producing the protein on the host cell outer membrane. The method can be selected by changing the structure of the host cell or the protein to be produced.
  • a shellfish can be produced by adding a signal peptide in front of a polypeptide containing the active site of a protein having 2,3-sialyltransferase activity. Actively secretes proteins out of host cells Can be .
  • the production amount can be increased using a gene amplification system using a dihydrofolate reductase gene or the like.
  • the transgenic animal or plant cells are redifferentiated to create transgenic non-human animals or transgenic plants (transgenic plants) into which the gene has been introduced.
  • a protein having 2,3-sialyltransferase activity can also be produced by using E. coli.
  • the protein is produced by breeding or cultivating according to a usual method to produce and accumulate the protein, and collecting the protein from the animal or plant individual. can do.
  • a transgenic non-human animal into which DNA encoding a protein having 2,3-sialyltransferase activity has been introduced is bred, and the protein is produced and accumulated in the animal.
  • the protein can be produced by collecting the protein from the animal. Examples of the place of production and accumulation in the animal include milk (JP-A-63-309192), eggs and the like of the animal.
  • Any promoter that can be used in this case can be used as long as it functions in animals.
  • the zein promoter, casein promoter, and lactate which are mammary cell-specific promoters, can be used.
  • Globulin promoter, whey acid protein promoter, and the like are preferably used.
  • Methods for producing a protein having 2,3-sialyltransferase activity using plant individuals include, for example, transfection into which DNA encoding the protein has been introduced.
  • Nick plants are cultivated according to known methods [tissue culture, 20 (1994), tissue culture, 21 (1995), Trends BiotechnoL, 15, 45 (1997)], and the protein is produced and accumulated in the plants.
  • a method for producing the protein by collecting the protein from the plant.
  • a conventional enzyme isolation and purification method can be used.
  • the protein of the present invention when expressed in a dissolved state in cells, the cells are collected by centrifugation after completion of the culture, suspended in an aqueous buffer, and then sonicated with a sonicator, French press, and Mentongaurinho. Crush cells with a mogenizer, dynomill, etc. to obtain a cell-free extract.
  • an ordinary enzyme isolation and purification method can be used, that is, a solvent extraction method, a salting out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Tylaminoethyl (DEAE)-Sepharose, anion exchange chromatography using a resin such as DIAI0N HPA-75 (manufactured by Mitsubishi Kasei), and cation using a resin such as S-Sepharose FF (manufactured by Pharmacia).
  • Ion exchange chromatography hydrophobic chromatography using resins such as butyl sepharose, phenylsepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, etc.
  • a purified sample can be obtained using techniques such as electrophoresis, such as electrofocusing, alone or in combination.
  • the cell When the protein forms an insoluble substance in the cell, the cell is similarly recovered, crushed, and centrifuged to collect the insoluble protein protein as a precipitate fraction.
  • the insoluble form of the recovered protein is solubilized with a protein denaturant.
  • the protein is returned to a normal three-dimensional structure by diluting or dialyzing the solubilized solution and reducing the concentration of the protein denaturing agent in the solubilized solution. After this operation, a purified sample of the protein can be obtained by the same isolation and purification method as described above.
  • a protein produced by the above method, or a derivative such as a protein having a sugar chain added to the protein is secreted extracellularly, the protein or the derivative is added to the culture supernatant.
  • the derivative of the protein can be recovered. That is, a culture supernatant is obtained by treating the culture by a technique such as centrifugation as described above, and purified from the culture supernatant by using the same isolation and purification method as described above. You can get a sample. Examples of the protein thus obtained include a protein having the amino acid sequence of SEQ ID NO: 2.
  • Proteins having 2,3-sialyltransferase activity can be obtained by chemical synthesis methods such as Fmoc method (fluorenylmethyloxycarbonyl method) and tB0c method (t-butyloxycarbonyl method). Can also be manufactured. Chemical synthesis can also be carried out using a peptide synthesizer such as Advanced ChemTech, Parkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu.
  • Fmoc method fluorenylmethyloxycarbonyl method
  • tB0c method t-butyloxycarbonyl method
  • Examples of the processed product of the culture solution include a concentrate of the culture solution, a dried product of the culture solution, cells obtained by centrifuging the culture solution, a dried product of the cells, a freeze-dried product of the cells, and the cells.
  • Surfactant treated product ultrasonically treated product of the cells, mechanically milled product of the cells, solvent-processed product of the cells, enzyme-treated product of the cells, protein fractionation of the cells Products, immobilized products of the cells, enzyme preparations obtained by extraction from the cells, and the like.
  • the enzyme source used in the production of sialic acid-containing glycoconjugates has an activity capable of producing 1 / mol of sialic acid-containing glycoconjugates per minute at 37 ° C. as 1 unit (U). It is used at a concentration of lmU / L to 100,000 U / L, preferably lmU / L to I, 000 UZL.
  • Aqueous media used in the production of sialic acid-containing glycoconjugates include buffers such as water, citrate, carbonate, acetate, borate, citrate, and tris, and meta- Examples thereof include alcohols such as phenol and ethanol, esters such as ethyl acetate, ketones such as acetone, and amides such as acetoamide. Further, a culture solution of the microorganism used as the enzyme source can be used as an aqueous medium.
  • a surfactant or an organic solvent may be added as necessary.
  • the surfactant include nonionic surfactants such as polyoxyethylene odecyl decylamine (for example, Nymein S-215, manufactured by NOF Corporation), cetyltrimethylammonium, promide, alkyldimethyl, pendiammonium and the like.
  • Cationic surfactants such as muchloride (eg, cation F2-40E, manufactured by NOF Corporation), anionic surfactants such as lauroyl sarcosinate, and alkyldimethylamine (eg, tertiary amine FB, manufactured by NOF Corporation) Any of tertiary amines, such as tertiary amines, which promote the production of sialic acid-containing glycoconjugates may be used, and one or more of them may be used in combination.
  • Surfactants are usually used at a concentration of 0.1 to 50 g / L.
  • the organic solvent include xylene, toluene, aliphatic alcohol, acetone, and ethyl acetate, which are usually used at a concentration of 0.1 to 5 OmlZL.
  • CMP-NeuAc which is a sugar nucleotide substrate used in the production of sialic acid-containing glycoconjugates, is not only a commercially available product, but also a reaction solution generated by utilizing the activity of microorganisms. A purified product can be used.
  • the sugar nucleotide substrate is used at a concentration of 0.1 to 50 Ommo1 / L.
  • the receptor glycoconjugate used in the production of the sialic acid-containing glycoconjugate any one can be used as long as it serves as a substrate for glycosyltransferase.
  • lactose, N-acetyl-lactosamine And an oligosaccharide having not more than 10 sugars having a galactose, lactose, N-acetyllactosamine, lacto-N-tetraose, lacto-N-neotetraose, Lewis X, or Lewis a structure at the non-reducing end Glucose and the like can be exemplified.
  • the receptor glycoconjugate is used at a concentration of 0.1 to 50 Ommo 1 / L.
  • inorganic salts MnC 1 2 or the like if necessary, ⁇ - Merukapute Yunoichiru like can be added.
  • the reaction for producing the sialic acid-containing glycoconjugate is carried out in an aqueous medium at pH 5 to 10, preferably pH 6 to 8, and 20 to 50 ° C for 1 to 96 hours.
  • Quantification of sialic acid-containing glycoconjugates formed in an aqueous medium can be performed according to a known method [Chemical and Industrial, 953 (1990)].
  • the sialic acid-containing glycoconjugate formed in the reaction solution can be collected by a usual method using activated carbon or ion-exchange resin, for example, the method described in Anal.Biochem., 85, 602 (1978). It can be performed according to.
  • FIG. 1 is a diagram showing the structure of a plasmid ⁇ E5 expressing 2,3-sialic acid fe transferase gene.
  • Amp r Ampicillin resistance gene
  • Amino acid sequence of Hemophilus 'Haemophilus ducreyi' represented by the amino acid sequence of SEQ ID NO: 2 as an amino acid sequence of 2,3-sialyltransferase Select (GenBank: AF101047) and enter the Codon Usage Database at kazusa
  • the resulting DNA sequence was converted into a DNA sequence, and a DNA sequence encoding a 2,3-sialyltransferase shown in SEQ ID NO: 1 was designed. Based on the designed base sequence, the DNAs described in SEQ ID NO: 3 to SEQ ID NO: 16 so that adjacent synthetic DNAs have an overlapping sequence of 20 bases with each other and alternate with the sense strand and antisense strand was synthesized using a Perceptive Biosystems 8905 DNA synthesizer.
  • SEQ ID NOS: 17 and 18 were synthesized.
  • Buffer solution consisting of hydrochloric acid (pH 8.0), 0.1% Triton X-100, 0.001% BSA, 200 zmo 1 / L dNTPs, and 2.5 units of KOD DNA polymerase (Toyobo)
  • the total volume is reduced to 50 ⁇ 1, covered with 50/1 mineral oil, set on a DNA thermocycler (PJ480, manufactured by PERK IN ELMER) for 30 seconds at 94 ° C and 30 seconds at 50 ° C. Perform 30 cycles of a reaction at 74 ° C for 60 seconds per cycle. Approximately 0.93 ⁇ 4: 10? The CR product was obtained.
  • PCR product After 0.5 ⁇ g of the PCR product was cleaved with restriction enzymes C1aI and BamHI, it was ligated together with 0.2 ⁇ g of pTrS3ODNA cut with restriction enzymes C1aI and BamHI.
  • the ligation reaction was carried out at 16 ° C for 16 hours using a gate kit (Takara Shuzo).
  • Escherichia coli NM522 strain was transformed according to the above-mentioned known method, and the transformant was transformed into an LB agar medium containing 50 zg / ml of ampicillin [Pactotripton (manufactured by Difco). After application to 10 g / L, yeast extract (manufactured by Difco) 5 g / L, NaCl 5 / L (pH 7.2), agar 15 g / L], the mixture was cultured overnight at 30 ° C. Plasmids were extracted from the thus grown colonies of the transformant according to a conventional method, and the structure of the plasmid was analyzed.
  • the strain is a strain expressing the 2,3-sialyltransferase gene.
  • the Escherichia coli NM522 / pHE5 strain obtained in Example 1 was placed in a large test tube containing 8 ml of LB medium containing 50 ⁇ g / ml of ampicillin, and cultured at 28 ° C. for 17 hours.
  • the culture solution was inoculated at 1% into a large test tube containing 8 ml of LB medium containing 50 ⁇ g / ml of ampicillin and cultured at 37 ° C. for 5 hours.
  • the culture broth 0.1 lm 1 was centrifuged to obtain wet cells.
  • the wet cells could be stored at 120 ° C if necessary, and could be thawed before use.
  • the wet cells (for 0.1 ml), 50 mmol / L citrate buffer (pH 7.0), 10 mmol / L MnCl 2 , 10 mmol / L lactose, 1 mmol / L CMP-NeuAc, 0.
  • a 0.1 ml reaction solution composed of 4% Nimin S-215 was prepared and reacted at 37 ° C for 16 hours.
  • the Escherichia coli NM522 / pHE5 strain obtained in Example 1 was inoculated into a large test tube containing 8 ml of LB medium containing 50 / g / ml of ampicillin, and cultured at 28 ° C. for 17 hours.
  • the culture was inoculated at 1% into a large test tube containing 8 ml of LB medium containing 50 ⁇ g / ml of ampicillin, and cultured at 37 ° C. for 5 hours.
  • a 0.1 ml portion of the culture was centrifuged to obtain wet cells.
  • the wet cells could be stored at 120 ° C if necessary, and could be thawed before use.
  • Wet cells (0. 1 ml min), 50mmo; i / L Kuen acid buffer one (. P H 7 0), 1 Ommo 1 / L MnC 1 2, 1 Ommo 1 / L CMP-NeuAc s 0. 4%
  • a 0.1 ml reaction solution containing Nimin S-215 and 1 Ommo 1 / L lacto-N-neotetraose was prepared and reacted at 37 ° C for 16 hours.
  • reaction product was analyzed using a sugar analyzer (DX-500, manufactured by Dionex) (same as in Example 2), and 0.15 mmo 1 / L (15 Omg / L) of sialyllactol N —Confirmed that neotetraose was generated and accumulated.
  • DX-500 manufactured by Dionex
  • sialic acid-containing glycoconjugates can be efficiently produced by using the enzyme.
  • SEQ ID NO: 3 Description of artificial sequence: Synthetic DNA SEQ ID NO: 4 Description of artificial sequence: Synthetic DNA SEQ ID NO: 5—Description of artificial sequence: Synthetic DNA SEQ ID NO: 6—Description of artificial sequence: Synthetic DNA SEQ ID NO: 7—Description of artificial sequence: Synthetic DNA SEQ ID NO: 8—Artificial sequence Description: Synthetic DNA SEQ ID NO: 9 Artificial Sequence Description: Synthetic DNA SEQ ID NO: 10—Artificial Sequence Description: Synthetic DNA SEQ ID NO: 11 Artificial Sequence Description: Synthetic DNA SEQ ID NO: 12—Artificial Sequence Description: Synthetic DNA Sequence No. 13—Description of Artificial Sequence: Synthetic DNA SEQ ID No.

Abstract

By using a microorganism having a gene obtained by modifying the base sequence of α2,3-sialyltransferase gene originating in a microorganism belonging to the genus Haemophilus, α2,3-sialyltransferase can be produced in a large amount. Moreover, a complex saccharide containing sialic acid can be economically produced in a large amount by bringing a microorganism producing the above-described enzyme with CMP-NeuAc and a receptor complex saccharide in an aqueous medium.

Description

明 細  Detail
改変された α2, 3—シアル酸転移酵素遺伝子および α 2, 3—シアル酸転移 酵素とシアル酸含有複合糖質の製造法 技術分野 Method for producing modified α2,3-sialyltransferase gene and α2,3-sialyltransferase and sialic acid-containing glycoconjugate
本発明は、 改変された《2, 3—シアル酸転移酵素遺伝子、 該遺伝子を用い た 2 , 3ーシアル酸転移酵素およびシアル酸含有複合糖質の製造法に関する。 背 The present invention relates to a modified << 2,3-sialyltransferase gene, and a method for producing a 2,3-sialyltransferase and a sialic acid-containing glycoconjugate using the gene. Height
2, 3-シアル酸転移酵素遺伝子に関しては、 動物由来の遺伝子〔J. Biol. Chem. , 267, 21011 (1992)、 J. Biol. Chem. , 268, 22782 (1993)、 Eur. J. Biochem., 216, 377 (1993)、 Biochem. Biophys. Res. Co腿 un., 194, 375 (1993) 、 J. Biol. Chem. , 269, 1394 (1994)、 J. Biol. Chem. , 269, 10028 (1994)、 Glycobiology, 5, 319 (1995)〕 が取得されている。 該酵素遺伝子をェシエリヒ ァ ·コリなどの微生物で活性のある蛋白質として発現させた報告はあるが (特 開平 11一 253163) 、 その活性は微弱である。  For the 2,3-sialyltransferase gene, a gene derived from an animal [J. Biol. Chem., 267, 21011 (1992), J. Biol. Chem., 268, 22782 (1993), Eur. J. Biochem. ., 216, 377 (1993), Biochem. Biophys. Res. Co., 194, 375 (1993), J. Biol. Chem., 269, 1394 (1994), J. Biol. Chem., 269, 10028 (1994), Glycobiology, 5, 319 (1995)]. It has been reported that the enzyme gene is expressed as an active protein in microorganisms such as Escherichia coli (JP-A-11-253163), but its activity is weak.
一方、 微生物においては、 ナイセリア属およびキャンピロパクター属に属す る微生物からひ 2 , 3—シアル酸転移酵素遺伝子が取得されている (W097/47749, W099/49051)o また、 へモフィラス 'デュークレイにおいても、 ひ 2, 3—シァ ル酸転移酵素遺伝子の存在および活性検出の報告があるが〔J. Biol. Chem., 275, 4747 (1999)〕、 該遺伝子をェシエリヒア 'コリなどの微生物で発現させたとい う例はない。 On the other hand, in a microorganism, microorganisms Karahi 2 belonging to the genus Neisseria and the can pyromellitic Park coater genus, 3-sialyltransferase gene is acquired (W097 / 47749, W099 / 49051 ) o In addition, the Mofirasu 'Duke Ray also reported the presence and activity of the 2,3-sialyltransferase gene [J. Biol. Chem., 275, 4747 (1999)], but the gene was transformed into microorganisms such as Escherichia coli. There is no example of expression in E. coli.
シアル酸含有複合糖質は、 細胞接着や細胞のガン化に関連していることが知 られており に Essentials of Glycobiolgy, Cold Spring Harbor Laboratory Press (1999)〕、 ガンワクチンや再貫流障害などの医薬品としての応用が期待される。 また人乳中に多く含まれているシアル酸を含有するオリゴ糖は、 ィンフルェン ザウィルスの受容体として機能していることが知られていることから 〔 Virology, 232, 19 (1997)〕、 安全な感染予防薬の有力な候補と考えられる。 しかしながら、 シアル酸含有複合糖質の製造に関しては、 人乳からの抽出法 CAnal . Biochem. , 85, 602 ( 1978)〕、化学合成法 (Tetrahedron, 54, 6341 ( 1998) 〕、 酵素を用いた方法〔J. Am. Chem. Soc 114, 9283 ( 1992), W094/25614) が報告されているが、 いずれもコスト面や生産性の面で問題があり、 工業的な 製造法は未だ確立されていない。 Sialic acid-containing glycoconjugates are known to be involved in cell adhesion and canceration of cells.Essentials of Glycobiolgy, Cold Spring Harbor Laboratory Press (1999)], pharmaceuticals such as cancer vaccines and reperfusion injury The application as is expected. In addition, it is known that oligosaccharides containing sialic acid, which are abundant in human milk, are known to function as receptors for influenza virus. Virology, 232, 19 (1997)], and are considered to be promising candidates for safe infection preventives. However, regarding the production of sialic acid-containing glycoconjugates, an extraction method from human milk, CAnal. Biochem., 85, 602 (1978)), a chemical synthesis method (Tetrahedron, 54, 6341 (1998)), and enzymes were used. Methods [J. Am. Chem. Soc 114, 9283 (1992), W094 / 25614) have been reported, but all have problems in terms of cost and productivity, and industrial manufacturing methods have not yet been established. Not.
発明の開示 Disclosure of the invention
本発明は、 2, 3—シアル酸転移酵素およびシアル酸含有複合糖質の工業 的製造法を提供することを課題とする。  An object of the present invention is to provide an industrial method for producing 2,3-sialyltransferase and sialic acid-containing glycoconjugates.
本発明者らは上記課題を解決するために鋭意研究を行い、 これまでェシエリ ヒア ·コリ等の微生物では活性のある蛋白質として大量発現させた例のなかつ たひ 2 , 3—シアル酸転移酵素を、 該酵素をコードする D NAの塩基配列を改 変することにより、 ェシエリヒア ·コリを用いて大量生産することに成功し、 該酵素を用いたシアル酸含有複合糖質の工業的製法を確立し、 本発明を完成す るに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and have described a novel 2,3-sialyltransferase which has not been expressed in large amounts as an active protein in microorganisms such as Escherichia coli. By modifying the nucleotide sequence of the DNA encoding the enzyme, the inventors succeeded in mass production using Escherichia coli and established an industrial method for producing sialic acid-containing glycoconjugates using the enzyme. Thus, the present invention has been completed.
即ち、 本発明は以下の (1 ) ( 2 0 ) に関する。 That is, the present invention relates to the following (1) and (20).
( 1 ) へモフイラス属に属する微生物由来の 2 , 3—シアル酸転移酵素活性 を有する蛋白質を発現する形質転換体の培養液または該培養液の処理物を酵素 源に用い、 該酵素源、 受容体複合糖質およびシチジン一リン酸 N-ァセチルノ イラミン酸 (以下、 CMP— N e u A cと略す) を水性媒体中に存在せしめ、 該水性媒体中でシアル酸をひ 2 , 3結合で受容体複合糖質に転移させることに よりシアル酸含有複合糖質を生成蓄積させ、 該水性媒体中からシアル酸含有複 合糖質を採取することを特徴とするシアル酸含有複合糖質の製造法。  (1) A culture solution of a transformant expressing a protein having 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus or a processed product of the culture solution is used as an enzyme source. Complex glycoconjugates and cytidine monophosphate N-acetylneuraminic acid (hereinafter abbreviated as CMP—NeuAc) are allowed to exist in an aqueous medium, and the sialic acid is converted to the receptor via the 2,3 bond in the aqueous medium. A method for producing a sialic acid-containing glycoconjugate, comprising producing and accumulating a sialic acid-containing glycoconjugate by transferring to a glycoconjugate, and collecting the sialic acid-containing glycoconjugate from the aqueous medium.
( 2 ) へモフイラス属に属する微生物由来のひ 2 , 3—シアル酸転移酵素活性 を有する蛋白質を発現する形質転換体を培地に培養し、 培養物中にひ 2 , 3 - シアル酸転移酵素活性を有する蛋白質を生成蓄積させ、 該培養物から該蛋白質 を採取することを特徴とする、 ひ 2, 3—シアル酸転移酵素活性を有する蛋白 質の製造法。 (2) A transformant expressing a protein having a 2,3 -sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus is cultured in a medium, and the 2,3 -sialyltransferase activity is added to the culture. Producing and accumulating a protein having A method for producing a protein having 2,3-sialyltransferase activity.
(3)形質転換体が、 微生物に組換え体 DN Aを導入して得られる形質転換体 である (1) または (2) に記載の製造法。  (3) The production method according to (1) or (2), wherein the transformant is a transformant obtained by introducing the recombinant DNA into a microorganism.
(4)微生物が、 ェシエリヒア属に属する微生物である (3) に記載の製造法。 (4) The production method according to (3), wherein the microorganism is a microorganism belonging to the genus Escherichia.
(5) ェシエリヒア属に属する微生物が、 ェシエリヒア 'コリである (4) に 記載の製造法。 (5) The production method according to (4), wherein the microorganism belonging to the genus Escherichia is Escherichia coli.
(6)組換え体 DNAが、 へモフイラス属に属する微生物由来のひ 2, 3—シ アル酸転移酵素活性を有する蛋白質をコードする DN Aを含有する組換え体 D NAである (3) に記載の製造法。  (6) The recombinant DNA is a recombinant DNA containing DNA encoding a protein having 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemofilus. Production method as described.
(7) へモフイラス属に属する微生物由来のひ 2, 3—シアル酸転移酵素活性 を有する蛋白質をコードする DN Aが、 以下の [1]〜[3]のいずれか 1つから 選ばれる DN Aである (6) に記載の製造法。  (7) A DNA encoding a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus is selected from any one of the following [1] to [3]: The production method according to (6).
[ 1 ]へモフィラス属に属する微生物由来のひ 2 , 3—シアル酸転移酵素活性を 有する蛋白質をコードする DNAにおいて、 1つ以上のコドンを、 該 DNAを 発現させる宿主細胞において使用頻度が高いコドンに改変して得られる塩基配 列を有する DNA  [1] One or more codons in a DNA encoding a protein having an activity of 2,3-sialyltransferase derived from a microorganism belonging to the genus Hemophilus are frequently used in a host cell expressing the DNA. DNA having a base sequence obtained by modifying
[ 2 ]配列番号 1で表される塩基配列を有する D N A  [2] DNA having the nucleotide sequence represented by SEQ ID NO: 1
[ 3 ]酉己列番号 1で表される塩基配列からなる D N Aにおいて 1以上の塩基が欠 失、 置換若しくは付加された塩基配列を有する DNAであり、 かつひ 2, 3— シアル酸転移酵素活性を有する蛋白質をコードする DN A  [3] A DNA having a base sequence in which one or more bases have been deleted, substituted or added in the DNA consisting of the base sequence represented by the rooster sequence number 1, and the activity of 2,3-sialyltransferase Encoding a protein having
(8) へモフイラス属に属する微生物が、 へモフィラス ·デュークレイである ことを特徴とする、 (1) 、 (2) 、 (6) または (7) に記載の製造法。 (8) The method according to (1), (2), (6) or (7), wherein the microorganism belonging to the genus Hemophilus is Hemophilus Duclay.
(9) 受容体複合糖質が、 非還元末端にガラクトースを有する 10糖以下のォ リゴ糖を含む複合糖質である (1) に記載のシアル酸含有複合糖質の製造法。(9) The method for producing a sialic acid-containing glycoconjugate according to (1), wherein the receptor glycoconjugate is a glycosaccharide containing 10 or less oligosaccharides having galactose at a non-reducing terminal.
(10)オリゴ糖が、 非還元末端にラクト一ス、 N—ァセチルラクトサミン、 ラクトー N-テトラオース、 ラクトー N—ネオテ.トラオース、 ルイス X、 または ルイス a構造を有するオリゴ糖である (9) に記載のシアル酸含有複合糖質の (10) an oligosaccharide having lactose, N-acetyllactosamine at the non-reducing end, The sialic acid-containing glycoconjugate according to (9), which is an oligosaccharide having a lactate N-tetraose, lactate N-neote.traose, Lewis X, or Lewis a structure.
(11)培養液の処理物が、 培養液の濃縮物、 培養液の乾燥物、 培養液を遠心 分離して得られる菌体、 該菌体の乾燥物、 該菌体の凍結乾燥物、 該菌体の界面 活性剤処理物、 該菌体の超音波処理物、 該菌体の機械的摩砕処理物、 該菌体の 溶媒処理物、 該菌体の酵素処理物、 該菌体の蛋白質分画物、 該菌体の固定化物 あるいは該菌体より抽出して得られる酵素標品である (1) に記載のシアル酸 含有複合糖質の製造法。 . (11) The processed product of the culture solution is a concentrate of the culture solution, a dried product of the culture solution, cells obtained by centrifuging the culture solution, a dried product of the cells, a lyophilized product of the cells, Detergent treated cells, ultrasonically treated cells, mechanically milled cells, solvent-treated cells, enzyme-treated cells, protein of the cells The method for producing a sialic acid-containing glycoconjugate according to (1), which is a fraction, an immobilized product of the cells, or an enzyme preparation obtained by extraction from the cells. .
(12)へモフイラス属に属する微生物由来のひ 2, 3—シアル酸転移酵素活 性を有する蛋白質をコードする DNAにおいて、 1つ以上のコドンを、 該 DN Aを発現させる宿主細胞において使用頻度が高いコドンに改変して得られる塩 基配列を有する DNA。  (12) In a DNA encoding a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus, one or more codons are frequently used in a host cell expressing the DNA. DNA having a base sequence obtained by modifying to a high codon.
(13)へモフイラス属に属する微生物が、 へモフィラス ·デュークレイであ る ( 12) に記載の DNA。  (13) The DNA according to (12), wherein the microorganism belonging to the genus Hemophilus is Hemophilus Duclay.
(14)配列番号 1で表される塩基配列を有する DNA。  (14) DNA having the base sequence represented by SEQ ID NO: 1.
(15)配列番号 1で表される塩基配列からなる DNAにおいて 1以上の塩基 が欠失、 置換若しくは付加された塩基配列を有する DNAであり、 かつひ 2, 3—シアル酸転移酵素活性を有する蛋白質をコードする DNA。  (15) DNA having a base sequence in which one or more bases have been deleted, substituted or added in the DNA consisting of the base sequence represented by SEQ ID NO: 1, and which has 2,3-sialyltransferase activity DNA that codes for a protein.
(16) (12) 〜 (15) のいずれか 1つに記載の DNAをべクタ一に連結 して得られる組換え体 DNA。  (16) A recombinant DNA obtained by ligating the DNA according to any one of (12) to (15) in a vector.
(17) (16) に記載の組換え体 DNAを宿主細胞に導入して得られる形質 転換体。  (17) A transformant obtained by introducing the recombinant DNA according to (16) into a host cell.
(18)宿主細胞が、 微生物である (17) に記載の形質転換体。  (18) The transformant according to (17), wherein the host cell is a microorganism.
(19)微生物が、 ェシエリヒア属に属する微生物である (18) に記載の形 質転換体。 ( 2 0 ) ェシエリヒア属に属する微生物が、 ェシエリヒア ·コリである ( 1 9 ) に記載の形質転換体。 本発明の: D N Aは、 へモフイラス属に属する微生物由来のひ 2 , 3—シアル 酸転移酵素活性を有する蛋白質をコードする D NAを改変した D NAであり、 例えば、 へモフィラス 'デュークレイ由来の 2 , 3—シアル酸転移酵素活性 を有する蛋白質をコードする D NAにおいて、 1つ以上のコドンを、 該 D NA を発現させる宿主生物において使用頻度が高いコドンに改変して得られる塩基 配列を有する D N A、 および該塩基配列からなる D N Aの塩基のうち 1個以上 の塩基が欠失、 置換若しくは付加された塩基配列からなり、 かつひ 2, 3—シ アル酸転移酵素活性を有する蛋白質をコードする D N Aなどがあげられる。 上記の宿主生物としては本発明の D N Aを発現させることが可能なものであ れば特に限定されず、 生物個体、 生物の組織、 生物の培養細胞、 微生物菌体な どを宿主生物として用いることができる。宿主生物として、 好ましくは微生物、 より好ましくはェシェリヒア属に属する微生物、 特に好ましくはェシェリヒア •コリを例示することができる。 使用頻度が高いコドンとは、 該宿主細胞にお いて各アミノ酸に対応するコドンの使用頻度が少なくとも 1 0 %以上であるコ ドンであり、 好ましくは 1 5 %以上、 より好ましくは 2 0 %以上であるコドン があげられる。 (19) The transformant according to (18), wherein the microorganism is a microorganism belonging to the genus Escherichia. (20) The transformant according to (19), wherein the microorganism belonging to the genus Escherichia is Escherichia coli. The DNA of the present invention is a DNA obtained by modifying a DNA encoding a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemofilus, such as a DNA derived from Hemophilus' Duclay. A DNA encoding a protein having 2,3-sialyltransferase activity, having a base sequence obtained by modifying one or more codons to codons frequently used in a host organism expressing the DNA; It encodes DNA and a protein comprising a base sequence in which at least one base among the bases of the DNA comprising the base sequence has been deleted, substituted or added, and which has a 2,3-sialyltransferase activity DNA and the like. The host organism is not particularly limited as long as it can express the DNA of the present invention, and may be an individual organism, tissue of an organism, cultured cells of an organism, microbial cells, or the like as the host organism. Can be. Preferred examples of the host organism include microorganisms, more preferably microorganisms belonging to the genus Escherichia, and particularly preferably Escherichia coli. A frequently used codon is a codon in which the codon corresponding to each amino acid is at least 10% or more in the host cell, preferably 15% or more, more preferably 20% or more. Is a codon.
また上記の 1個以上の塩基が欠失、 置換若しくは付加した D N Aは、  In addition, DNA in which one or more bases have been deleted, substituted or added,
Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor
Laboratory Press (1989) (以下、 モレキュラー 'クロ一ニング第 2版と略す) あるいは Current Protocols in Molecular Biology, John Wiley & SonsLaboratory Press (1989) (hereinafter abbreviated as Molecular 'Cloning 2nd Edition) or Current Protocols in Molecular Biology, John Wiley & Sons
(1987-1997) (以下、 カレント 'プロトコ一ルズ 'イン 'モレキュラー 'バイオ 口ジ一と略す) 等に記載の部位特異的変異導入法を用いることで取得可能であ る。 該変異導入 D NAにコードされる蛋白質に生じるアミノ酸の欠失、 置換若 しくは付加される数は特に限定されないが、 例えば 1個から 20個、 好ましくは 1個から 15個、 より好ましくは 1個から 5個があげられる。 (1987-1997) (hereinafter abbreviated as current 'protocols' in 'molecular' bio-mouth) and the like. Amino acid deletion or substitution occurring in the protein encoded by the mutation-introduced DNA. Alternatively, the number to be added is not particularly limited, but is, for example, 1 to 20, preferably 1 to 15, and more preferably 1 to 5.
また、 本発明の DNAがひ 2, 3—シアル酸転移酵素活性を有する蛋白質を コードするには、 該変異導入 D N Aが配列番号 2記載のァミノ酸配列と少なく とも BLAST CJ. Mol. Biol., 215, 403 (1990)〕 や FASTA (Methods in Enzymology, 183, 63-98 (1990)〕等を用いて計算したときに、 少なくとも 60 %以上、 通常は 80%以上、 特に 95%以上の相同性を有していることが好ま しい。  Further, in order for the DNA of the present invention to encode a protein having 2,3-sialyltransferase activity, the mutated DNA must have at least the amino acid sequence of SEQ ID NO: 2 and at least BLAST CJ. Mol. Biol. 215, 403 (1990)) and FASTA (Methods in Enzymology, 183, 63-98 (1990)), etc., have a homology of at least 60% or more, usually 80% or more, especially 95% or more. It is preferable to have
本発明の DN Aの作製方法としては、 へモフィラス ·デュークレイ由来のひ 2 , 3—シアル酸転移酵素活性を有する蛋白質をコードする DNAを用いて、 例えば、 モレキュラー 'クロ一ニング第 2版、 カレント 'プロトコールズ ·ィ ン ·モレキュラー■バイオロジー、 Nucleic Acids Research, 10, 6487 (1982) 、 Proc. Natl. Acad. Sci. USA, 79, 6409 (1982)、 Gene, 34, 315 (1985)、 Nucleic Acids Research, 13, 4431 (1985)、 Proc. Natl. Acad. Sci. USA, 82, 488 (1985) 等に記載の部位特異的変異導入法を用いて調製する方法をあげることができる。 また合成 DN Aを用いた方法としては、 例えば  As a method for producing the DNA of the present invention, using DNA encoding a protein having a 2,3-sialyltransferase activity derived from Hemophilus duclay, for example, Molecular 'cloning second edition, Current 'Protocols in Molecular Biology, Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci. USA, 79, 6409 (1982), Gene, 34, 315 (1985), Natl. Acad. Sci. USA, 82, 488 (1985), Nucleic Acids Research, 13, 4431 (1985), and the like. Methods using synthetic DNA include, for example,
(1) 常法 CPCR Protocols, Humana Press (1993)等〕 に従って PCI こより、 人工的に D N Aを合成する方法、  (1) A method of artificially synthesizing DNA from PCI according to a standard method such as CPCR Protocols, Humana Press (1993),
(2) 目的とする DNAの全長をカバ一するように 10 Obp程度の合成 DNA をセンス鎖、 アンチセンス鎖とも作製し、 アニーリング後、 DNAリガーゼで 連結する方法、 をあげることができる。  (2) Synthetic DNA of about 10 Obp is prepared for both the sense strand and the antisense strand so as to cover the entire length of the target DNA, and the resulting DNA is annealed and then ligated with DNA ligase.
本発明の DNAを用いて α2, 3—シアル酸転移酵素活性を有する蛋白質を 製造する方法としては、 例えば上記方法により作製した該蛋白質をコードする DNAをモレキュラー ·クローニング第 2版記載の方法に従ってべク夕一 DN Αと連結することで組換え体 DNAを作製し、 モレキユラ一 ·クロ一ニング第 As a method for producing a protein having α2,3-sialyltransferase activity using the DNA of the present invention, for example, DNA encoding the protein produced by the above method may be prepared according to the method described in Molecular Cloning, Second Edition. Recombinant DNA was prepared by ligating with DNA
2版記載の方法に従って、 該組換え体 DN Aを用いて宿主生物を形質転換し、 得られた形質転換体を該形質転換体が生育し得る適当な培地中で培養し、 該培 養液中に該蛋白質を蓄積させ、 該培養液から該蛋白質を得る方法があげられる。 また該培養液から該蛋白質を採取するには、 該蛋白質を可溶化後、 イオン交換、 ゲルろ過あるいは疎水性ク口マトグラフィ一法等、 または該クロマトグラフィ —法を組み合わせることにより単離精製する方法があげられる。 According to the method described in the second edition, a host organism is transformed with the recombinant DNA, The obtained transformant is cultured in an appropriate medium in which the transformant can grow, the protein is accumulated in the culture solution, and the protein is obtained from the culture solution. In order to collect the protein from the culture solution, a method of solubilizing the protein, isolating and purifying the protein by ion exchange, gel filtration, one method such as hydrophobic chromatography, or a combination of the chromatography methods is used. can give.
本発明のシアル酸含有複合糖質は、 該蛋白質を生産する形質転換体の培養液 や培養液の処理物、 あるいは精製した該蛋白質を酵素源に用い、 受容体複合糖 質、 C M P— N e u A cを水性溶媒中で共存させることにより得ることができ る。  The sialic acid-containing glycoconjugate of the present invention can be obtained by using a culture solution of a transformant producing the protein, a processed product of the culture solution, or the purified protein as an enzyme source, a receptor glycoconjugate, CMP-Neu It can be obtained by allowing Ac to coexist in an aqueous solvent.
受容体複合糖質は、 本発明の D N Aがコードするひ 2 , 3—シアル酸転移酵 素活性を有する蛋白質の基質になるものであれば特に限定されないが、 好まし くは非還元末端にガラクトースを有する糖があげられ、 より好ましい基質とし ては非還元末端にラクト一ス、 N—ァセチルラクトサミン、 ラクトー N-テトラ オース、 ラクト一N—ネオテトラオ一ス、 ルイス X、 またはルイス a構造を有 する糖をあげることができる。 '  The receptor complex carbohydrate is not particularly limited as long as it becomes a substrate for a protein having a 2,3-sialyltransferase activity encoded by the DNA of the present invention, but preferably, galactose is present at the non-reducing end. A more preferred substrate has a lactose, N-acetyl-lactosamine, lactate N-tetraose, lactate N-neotetraose, Lewis X, or Lewis a structure at the non-reducing end. Sugars can be given. '
生成したシアル酸含有複合糖質は、 活性炭やイオン交換樹脂などを用いる通 常のクロマトグラフィー法によって取得することができる。  The generated sialic acid-containing glycoconjugate can be obtained by a usual chromatography method using activated carbon, an ion exchange resin, or the like.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
[ 1 ] a 2 , 3—シアル酸転移酵素活性を有する蛋白質を生産する形質転換 体の作製  [1] Preparation of transformant producing a protein having a2,3-sialyltransferase activity
( 1 ) 本発明の D N Aの作製  (1) Preparation of DNA of the present invention
本発明の D N Aは、 以下に示す方法で作製することができる。 まず、 ひ 2 , 3—シアル酸転移酵素のアミノ酸配列を選択する。 該酵素のアミノ酸配列とし ては、 該酵素活性を有するァミノ酸配列であればいかなるものでも用いること ができるが、 例えば、 配列番号 2で表される Genebank等のデータペースに登録 されているへモフィラス ·デュークレイ由来の 2 , 3ーシアル酸転移酵素の アミノ酸配列等があげられる。 次に、 該酵素活性を発現させる宿主細胞におい て使用頻度の高いコドンを用いて該酵素活性を有する蛋白質をコードする DN Aを設計する。 The DNA of the present invention can be prepared by the following method. First, the amino acid sequence of 2,3-sialyltransferase is selected. As the amino acid sequence of the enzyme, any amino acid sequence having the enzyme activity can be used. For example, Hemophilus registered in a database such as Genebank represented by SEQ ID NO: 2 can be used. · Of 2,3-sialyltransferase derived from Duclay Amino acid sequences and the like. Next, a DNA encoding a protein having the enzymatic activity is designed using codons frequently used in host cells expressing the enzymatic activity.
例えば宿主細胞にェシエリヒア ·コリを用いる場合は、 選択した該酵素のァ ミノ酸配列をェシエリヒア ·コリの遺伝子の塩基配列に見られるコドンの使用 頻度 [Codon Usage aataDase at kazusa (http://www.kazusa.or. jp/codon/)]を 考慮して、 最も使用頻度の高いコドンを有するように DNA配列に変換するこ とで本発明の DN Aを設計できる。  For example, when Escherichia coli is used as a host cell, the amino acid sequence of the selected enzyme is used as the frequency of codon usage found in the nucleotide sequence of the Escherichia coli gene (Codon Usage aataDase at kazusa (http: // www. In consideration of kazusa.or. jp / codon /)], the DNA of the present invention can be designed by converting it into a DNA sequence so as to have the most frequently used codon.
上記のように設計した DNAとしては、 例えばへモフィラス ·デュークレイ 由来のひ 2 , 3—シアル酸転移酵素遺伝子を基に設計した配列番号 1記載の塩 基配列を有する DN Aをあげることができる。  Examples of the DNA designed as described above include DNA having a base sequence of SEQ ID NO: 1 designed based on a 2,3-sialyltransferase gene derived from Hemophilus duclay. .
次に、 設計した塩基配列に基づき、 隣り合う合成 DNAが互いに 10〜: L 0 0塩基の重複配列を有し、 かつそれらがセンス鎖、 アンチセンス鎖と交互にな るように、 5'末端側から 40〜150塩基の長さから成る合成 DNAを自動 D NA合成機 (パ一セプティブ ·バイオシステムズ社製 8905型 DN A合成装置) を用いて合成する。 このような合成 DNAとして、 例えば配列番号 1に記載の 塩基配列からなる D N Aを基に設計した配列番号 3〜 16に記載の塩基配列を 有する DNAをあげることができる。 上記の合成 DN Aを用いて常法〔例えば、 PCR Protocols, Humana Press (1993)等〕 に従って PCRにより、 本発明の D NAを人工的に合成する。 PCRの条件は、 該合成 DNAを用いて PCR反応 をした際、 該合成 D N Aの設計の基となつた本発明の D N Aと同一の長さの増 幅 D N A断片を与えるような条件であれば限定されないが、 例えば配列番号 3 〜 16に記載の塩基配列を有する DNAを用いた場合、 94°Cで 30秒間、 5 0°Cで 30秒間、 74°Cで 60秒間を 1サイクルとするサイクルを 30サイク ル行う条件をあげることができる。  Next, based on the designed base sequence, the adjacent synthetic DNAs have an overlapping sequence of 10 to L00 bases with each other, and the 5′-ends are arranged so that they alternate with the sense strand and the antisense strand. Synthetic DNA having a length of 40 to 150 bases from the side is synthesized using an automatic DNA synthesizer (Model 8905 DNA synthesizer manufactured by Perceptive Biosystems). Examples of such synthetic DNAs include DNAs having the nucleotide sequences of SEQ ID NOs: 3 to 16 designed based on the DNA consisting of the nucleotide sequence of SEQ ID NO: 1. Using the above-mentioned synthetic DNA, the DNA of the present invention is artificially synthesized by PCR according to a conventional method (eg, PCR Protocols, Humana Press (1993), etc.). The PCR conditions are limited as long as a PCR reaction using the synthetic DNA gives an amplified DNA fragment having the same length as the DNA of the present invention, which was the basis for designing the synthetic DNA. However, for example, when a DNA having the nucleotide sequence of SEQ ID NO: 3 to 16 is used, a cycle of 94 ° C for 30 seconds, 50 ° C for 30 seconds, and 74 ° C for 60 seconds is one cycle. Conditions for performing 30 cycles can be given.
また、 両端に位置する合成 DN Aの 5, 末端に適当な制限酵素の認識配列を 導入することで、 本発明の D N Aをべクタ一に容易にクローニングすることも 可能である。 このような合成 D NAとして、 例えば上記配列番号 3〜1 6に記 載の塩基配列を有する D N Aを用いた: P C Rの際に使用できる、 配列番号 1 7 および配列番号 1 8に記載の塩基配列を有する D NAのプライマ一セヅトをぁ げることができる。 In addition, an appropriate restriction enzyme recognition sequence is placed at the 5 'end of the synthetic DNA located at both ends. By introduction, the DNA of the present invention can be easily cloned into a vector. As such a synthetic DNA, for example, a DNA having the base sequence described in SEQ ID NOS: 3 to 16 was used: The base sequence described in SEQ ID NO: 17 and SEQ ID NO: 18 that can be used in PCR It is possible to obtain a primer set of DNA having
( 2 ) 本発明の D NAのクローン化と塩基配列の確認  (2) Cloning of DNA of the present invention and confirmation of nucleotide sequence
上記 (1 ) で調製した本発明の D NAをそのまま、 あるいは適当な制限酵素 などで切断後、 常法によりべクタ一に連結する。  The DNA of the present invention prepared in (1) above is used as it is or after being cut with an appropriate restriction enzyme or the like, and then ligated to a vector by a conventional method.
該 D NAを連結するべクタ一としては、 ェシエリヒア 'コリ K 1 2株中で自 立複製可能なベクタ一であればファ一ジベクタ一、 プラスミドベクタ一等いず れも使用可能であるが、具体的には、 ZAP Express〔Stratagene社製、 Strategies, 5, 58 (1992)〕、 pBluescript II SK (+) CNucleic Acids Research, 17, 9494 (1989) 〕 、 人 zap I I (Stratagene社製) 、 AgtlO, Agtll CDNA Cloning, A Practical Approach, 1, 9 (1985)〕、 λ TriplEx (クローンテック社製)、 え BlueMid As a vector for linking the DNA, any vector such as a phage vector or a plasmid vector can be used as long as it is an autonomously replicable vector in the Escherichia coli K12 strain. Specifically, ZAP Express [Stratagene, Strategies, 5, 58 (1992)], pBluescript II SK (+) CNucleic Acids Research, 17, 9494 (1989)], human zap II (Stratagene), AgtlO , Agtll CDNA Cloning, A Practical Approach, 1, 9 (1985)], λ TriplEx (manufactured by Clonetech), BlueMid
(クロ一ンテック社製) 、 AExCell (フアルマシア社製) 、 pT7T318U (フアル マシア社製) 、 cD2 CMol. Cell. Biol. , 3, 280 (1983)〕、 pUC18 (Gene, 33, 103 (1985)〕 等をあげることができる。 (Clontech), AExCell (Pharmacia), pT7T318U (Pharmacia), cD2 CMol. Cell. Biol., 3, 280 (1983)], pUC18 (Gene, 33, 103 (1985)) Etc. can be given.
該ベクタ一に (1 ) で取得した本発明の D N Aを連結して得られる組換え体 D NAの宿主に用いるェシエリヒア ·コリは、 ェシエリヒア ·コリに属する微 生物であればいずれでも用いることができるが、具体的には、 Escherichia coli XLl-Blue MRF' 〔Stratagene社製ヽ Strategies, 5, 81 (1992))、 Escherichia coli C600 C Genetics, 39, 440 (1954))、 Escherichia coli Y1088 〔Science, 222, 778 (1983)〕、 Escherichia coli Y109Q〔Science, 222, 778 (1983)〕、 Escherichia coli NM522 〔J. Mol. Biol. , 166, 1 (1983)〕、 Escherichia coli K802 〔J. Mol. Biol. , 16, 118 (1966)〕、 Escherichia coli JM105 〔Gene, 38, 275 (1985)〕 等をあげることができる。 組換え体 D N Aの導入方法としては、 上記宿主細胞へ D N Aを導入する方法 であればいずれも用いることができ、 例えば、 カルシウムイオンを用いる方法Escherichia coli used as a host for a recombinant DNA obtained by ligating the DNA of the present invention obtained in (1) to this vector can be used as long as it is a microorganism belonging to Escherichia coli. However, specifically, Escherichia coli XLl-Blue MRF '(Stratagene; Strategies, 5, 81 (1992)), Escherichia coli C600 C Genetics, 39, 440 (1954)), Escherichia coli Y1088 (Science, 222 , 778 (1983)), Escherichia coli Y109Q (Science, 222, 778 (1983)), Escherichia coli NM522 (J. Mol. Biol., 166, 1 (1983)), Escherichia coli K802 (J. Mol. Biol. , 16, 118 (1966)] and Escherichia coli JM105 [Gene, 38, 275 (1985)]. Any method for introducing the recombinant DNA can be used as long as it is a method for introducing the DNA into the host cells described above. For example, a method using calcium ions
CProc. Natl. Acad. Sci. USA, 69, 2110 (1972)〕 、 プロトプラスト法 (特開 昭 63- 248394) 、 エレクトロボレ一シヨン法 Nucleic Acids Research, 16, 6127 (1988)〕等をあげることができる。 Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method (Japanese Patent Laid-Open No. 63-248394), and the electrolysis method Nucleic Acids Research, 16, 6127 (1988)). it can.
上記のようにして得られた形質転換体から組換え体 D N Aを抽出し、 該組換 え D N Aに含まれる本発明の D N Aの塩基配列を決定することができる。 塩基 配列の決定には、通常用いられる塩基配列解析方法、例えばジデォキシ法!; Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)〕 または 373A- D N Aシ一クェンサ一 The recombinant DNA is extracted from the transformant obtained as described above, and the nucleotide sequence of the DNA of the present invention contained in the recombinant DNA can be determined. For the determination of the nucleotide sequence, a commonly used nucleotide sequence analysis method, for example, the dideoxy method !; Proc. Natl. Acad. Sci. USA, 74, 5463 (1977)] or 373A-DNA sequencer
(パーキン .エルマ一社製) 等の塩基配列分析装置を用いることができる。 こ のようにして (1 ) で取得した本発明の D N Aが、 該 D NAを合成する基とし て設計した D N Aと同一の塩基配列からなる D N Aであることを確認すること ができる。 (Perkin. Elma Inc.) or the like can be used. Thus, it can be confirmed that the DNA of the present invention obtained in (1) is a DNA having the same nucleotide sequence as the DNA designed as a group for synthesizing the DNA.
上記のようにして取得した組換え体 D N Aを保有する形質転換株として、 例 えば配列番号 1で表される塩基配列を有するプラスミド D N Aを保有する大腸 菌、 Escherichia coli NM522/pHE5をあげることができる。  Examples of the transformant containing the recombinant DNA obtained as described above include Escherichia coli NM522 / pHE5, which has a plasmid DNA having the nucleotide sequence represented by SEQ ID NO: 1. .
[ 2 ] 本発明の; D NAを用いた α 2, 3—シアル酸転移酵素活性を有する蛋 白質の調製  [2] Preparation of a protein of the present invention having α 2,3-sialyltransferase activity using DNA
本発明の D Ν Αがコードする 2 , 3—シアル酸転移酵素活性を有する蛋白 質は、 モレキュラー ·クロ一ニング第 2版やカレント ·プロトコールズ ·ィン •モレキュラー■バイオロジー等に記載された方法等を用い、 例えば以下の方 法により、 本発明の D N Aを宿主細胞中で発現させて、 製造することができる。 即ち、 本発明の D N Aを基にして、 必要に応じて該蛋白質をコードする部分 を含む適当な長さの D N A断片を調製し、 該 D N A断片を適当な発現べクタ一 のプロモーターの下流に挿入した組換え体 D N Aを作製する。 該組換え体 D N The protein having 2,3-sialyltransferase activity which is encoded by the DNA of the present invention is described in Molecular Cloning Second Edition, Current Protocols, Molecular Biology, etc. The DNA of the present invention can be expressed in host cells and produced by the following methods, for example. That is, based on the DNA of the present invention, a DNA fragment of an appropriate length containing a portion encoding the protein is prepared, if necessary, and the DNA fragment is inserted downstream of a promoter of an appropriate expression vector. A recombinant DNA is prepared. The recombinant DN
Aを、 該発現べクタ一に適合した宿主細胞に導入して形質転換株を取得し、 該 形質転換株を培地中で培養し、 該培養液に《2 , 3—シアル酸転移酵素活性を 有する蛋白質を蓄積せしめることにより製造できる。 A into a host cell suitable for the expression vector to obtain a transformant, It can be produced by culturing the transformant in a medium and accumulating a protein having << 2,3-sialyltransferase activity in the culture solution.
宿主細胞としては、 細菌、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 目的と する遺伝子を発現できるものであればいずれも用いることができる。  As the host cell, any cell that can express the target gene, such as bacteria, yeast, animal cells, insect cells, and plant cells, can be used.
発現べクタ一としては、 上記宿主細胞において自立複製可能ないしは染色体 D NA中への組込が可能で、 本発明の蛋白質をコードする D N Aを転写できる 位置にプロモ一夕一を含有しているものが用いられる。  An expression vector that is capable of autonomous replication in the host cell or that can be integrated into chromosomal DNA and that contains a promoter at a position where the DNA encoding the protein of the present invention can be transcribed. Is used.
細菌等の原核生物を宿主細胞として用いる場合は、 本発明の蛋白質をコード する D N Aを含有してなる組換え体 D N Aは原核生物中で自立複製可能である と同時に、 プロモーター、 リボソーム結合配列、 本発明の D NA、 転写終結配 列、 より構成されたべクタ一であることが好ましい。 プロモーターを制御する 遺伝子が含まれていてもよい。  When a prokaryote such as a bacterium is used as a host cell, the recombinant DNA containing the DNA encoding the protein of the present invention is capable of autonomous replication in the prokaryote, and has a promoter, a ribosome binding sequence, It is preferable that the vector comprises the DNA of the present invention and a transcription termination sequence. A gene that controls a promoter may be included.
発現べクタ一としては、 例えば、 pBTrp2、 pBTacls pBTac2 (いずれもべ一リ ンガ一マンハイム社より市販)、 PKK233-2 (Pharmacia社製)、 pSE280 ( Invitrogen 社製)、 pGEMEX-l (Promega社製)、 QE-8 (QIAGEN社製)、 XYPIO (特開昭 58- Π0600 )、 KYP200 CAgric. Biol. Chem. , 48, 669 (1984)〕、 pLSAl CAgric. Biol. Chem. , 53, 277 (1989)〕、 pGELl 〔Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)〕、 pBluescript II S (-) (Stratagene社製) 、 pTrS30 CEscherichia coli JM109/pTrS30 (FERM BP- 5407) より調製〕、 pTrS32 CEscherichia coli JM109/pTrS32 (FERM BP-5408) より調製〕、 pGHA2 CEscherichia coli IGHA2 ( FERM B-400) より調製、 特開昭 60- 221091〕、 GKA2 CEscherichia coli I6KA2 (匪 BP- 6798) より調製、特開昭 60- 221091〕、 pPAC31 (W098/12343)、 pTerm2 (讓 86191、 US4939094 US5160735)、 pSupex, pUB110、 pTP5、 pC194、 pEG400 〔J. Bacteriol. , 172, 2392 (1990)〕、 pGEX (Pharmacia社製) 、 pETシステム (Novagen社製) 等をあげることができる。  Examples of expression vectors include, for example, pBTrp2, pBTacls pBTac2 (all commercially available from Berlin-Mannheim), PKK233-2 (Pharmacia), pSE280 (Invitrogen), pGEMEX-l (Promega) ), QE-8 (manufactured by QIAGEN), XYPIO (Japanese Unexamined Patent Publication No. 58-Π0600), KYP200 CAgric. Biol. Chem., 48, 669 (1984)], pLSAl CAgric. Biol. Chem., 53, 277 (1989) )), PGELl [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)], pBluescript II S (-) (Stratagene), pTrS30 prepared from CEscherichia coli JM109 / pTrS30 (FERM BP-5407)] Prepared from pTrS32 CEscherichia coli JM109 / pTrS32 (FERM BP-5408)), prepared from pGHA2 CEscherichia coli IGHA2 (FERM B-400), JP-A-60-221091), prepared from GKA2 CEscherichia coli I6KA2 (banded BP-6798) JP-A-60-221091), pPAC31 (W098 / 12343), pTerm2 (8686, US4939094 US5160735), pSupex, pUB110, pTP5, pC194, pEG400 (J. Bacteriol., 172, 2392 (1990)), pGEX ( Pharmacia), pET The stem (Novagen Co., Ltd.), and the like can be mentioned.
プロモー夕一としては、 宿主細胞中で機能するものであればいかなるもので もよい。 例えば、 trpプロモ一夕一 (Ptrp) 、 lacプロモ一夕一、 PLプロモ一夕一、 PBプロモー夕一、 T7プロモーター等の、大腸菌やファージ等に由来するプロモ一 夕一をあげることができる。 また Ptrpを 2つ直列させたプロモーター (Ptrpx 2 ) 、 tacプロモーター、 lacT7プロモ一夕一、 let Iプロモ一夕一のように人為的に 設計改変されたプロモー夕一等も用いることができる。 Promote any material that works in the host cell. Is also good. For example, trp promoter Isseki one (P trp), lac promoter Isseki one, P L promoter Isseki one, P B promoter evening one, such as T7 promoter, raising the promo one evening one derived from Escherichia coli or phage, etc. Can be. Promoter in which two series P trp (P trp x 2) , tac promoter, lacT7 promoter Isseki one, the let I promoter Isseki be used promoter evening one like that are artificially designed and modified as one it can.
リボゾーム結合配列であるシャイン一ダルガノ ( Shine-Dalgarno) 配列と開 始コドンとの間を適当な距離 (例えば 6〜18塩基) に調節したプラスミ ドを用 いることが好ましい。  It is preferable to use a plasmid in which the distance between the Shine-Dalgarno sequence, which is a ribosome binding sequence, and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 bases).
本発明の組換え体 D N Aにおいては、 本発明の D N Aの発現には転写終結配 列は必ずしも必要ではないが、 構造遺伝子の直下に転写終結配列を配置するこ とが好ましい。  In the recombinant DNA of the present invention, the transcription termination sequence is not necessarily required for the expression of the DNA of the present invention, but it is preferable to arrange the transcription termination sequence immediately below the structural gene.
宿主細胞としては、 ェシエリヒア属、 セラチア属、 バチルス属、 プレビパク テリゥム属、 コリネバクテリウム属、 ミクロバクテリウム属、 シユードモナス 属等に属する微生物、 例えば、 Escherichia coli XU-Blue、 Escherichia coli XL2-Blues Escherichia coli DH1S Escherichia coli MC1000、 Escherichia coli KY3276、 Escherichia coli W1485、 Escherichia coli JM109、 Escherichia coli HB101、 Escherichia coli No.49、 Escherichia coli W3110、 Escherichia coli NY49、 Escherichia coli GI698、 Escherichia coli TB1、 Serratia ficarias Serratia fonticolas Serratia liquefacienss Serratia marcescens Bacillus subtilis、 Bacillus amyloliquefaciness Corynebacterium 睡 oniagenes、 Brevibacterium inmariophilum ATCC14068、 Brevibacterium saccharolyticum ATCC14066、 Brevibacteri聰 fla蘭 ATCC1權 7、 Brevibacterium lactofermentum ATCC13869、 Corynebacterium glutamicum ATCC13032、 Corynebacterium glutamicum ATCC13869、 Corynebacterium acetoacidophilum ATCC13870、 Microbacterium ammoniaphilum ATCC1535^ Pseudomonas putida 、 Pseudomonas sp. D 0110等をあげることができる。 組換え体 D N Aの導入方法としては、 上記宿主細胞へ D N Aを導入する方法 であればいずれも用いることができ、 例えば、 カルシウムイオンを用いる方法 〔Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)〕、 プロトプラスト法 (特開 昭 63- 248394)、 または Gene, 17, 107 (1982)や Mol . Gen. Genet. , 168, 111 (1979) に記載の方法等をあげることができる。 The host cell, Eshierihia, Serratia, Bacillus, Purebipaku Teriumu genus Corynebacterium, the genus Microbacterium, microorganisms belonging to Shiyudomonasu genus like, for example, Escherichia coli XU-Blue, Escherichia coli XL2-Blue s Escherichia coli DH1 S Escherichia coli MC1000, Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No.49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli GI698, Escherichia coli TB1, Serratia ficaria s Serratia fonticola s Serratia liquefaciens s Serratia marcescens Bacillus subtilis, Bacillus amyloliquefacines s Corynebacterium sleep oniagenes, Brevibacterium inmariophilum ATCC14068, Brevibacterium saccharolyticum ATCC14066, Brevibacterium AT bacterium ATCCbacterium ATCCbacterium ATCC1130 CC13869, Corynebacterium acetoacidophilum ATCC13870, Microbacterium ammoniaphilum ATCC1535 ^ Pseudomonas putida, Pseudomonas sp. D0110 and the like. Any method for introducing the recombinant DNA can be used as long as it is a method for introducing the DNA into the above host cells. For example, a method using calcium ions [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], the protoplast method (JP-A-63-248394), or the method described in Gene, 17, 107 (1982) or Mol. Gen. Genet., 168, 111 (1979).
酵母を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 YEP13 (ATCC37115) 、 YEp24 (ATCC37051) 、 YCp50 (ATCC37419) 、 pHS19、 pHS15等を あげることができる。  When yeast is used as a host cell, examples of expression vectors include YEP13 (ATCC37115), YEp24 (ATCC37051), YCp50 (ATCC37419), pHS19, and pHS15.
プロモ一夕一としては、 酵母菌株中で機能するものであればいずれのものを 用いてもよく、 例えば、 へキソ一スキナ ゼ等の解糖系の遺伝子のプロモ一夕 ―、 ; P H 0 5プロモーター、 P G Kプロモ一夕一、 GA Pプロモ一夕一、 A D Hプロモ一夕一、 al 1プロモー夕一、 gal 10プロモ一夕一、 ヒートショックポ リペプチドプロモーター、 MF a l プロモーター、 CUP 1プロモー夕一等をあげる ことができる。  Any promoter may be used as long as it functions in a yeast strain. For example, promoters for glycolytic genes such as hexose-kinase, etc .; PH05 Promoters, PGK Promos, GAP Promos, ADH Promos, al 1 Promos, gal 10 Promos, Heat Shock Polypeptide Promoters, MF al Promoters, CUP 1 Promos, etc. Can be raised.
fe王細胞としては、 Saccharomyces属、 Schizosaccharomyces属、 Kluyveromyces 属ヽ Trichosporon属、 Schwanniomyces属、 Pichi属、 Candida属等に属する微生 物ヽ 例えは、 Saccnaromyces cerevisiaes Schizosaccharomyces pomoeゝ fe king cells include Saccharomyces, Schizosaccharomyces, Kluyveromyces, Trichosporon, Schwanniomyces, Pichi, Candida and other microorganisms.For example, Saccnaromyces cerevisiae s Schizosaccharomyces pomoe
Kluyveromyces lactiss Trichosporon pullulans、 Scnranniomyces alluviuss Candida utilis等をあげることができる。 Kluyveromyces lactis s Trichosporon pullulans, Scnranniomyces alluvius s Candida utilis and the like.
組換え体 D N Aの導入方法としては、 酵母に D N Aを導入する方法であれば いずれも用いることができ、 例えば、 エレクト口ポレーシヨン法 〔Methods EnzymoL , 194, 182 ( 1990)〕 、 スフエロプラスト法〔Proc. Natl. Acad. Sci: USA, 75, 1929 ( 1978)〕、 酢酸リチウム法 〔J. Bacteriol. , 153, 163 ( 1983) 〕'、 Proc. Natl . Acad. Sci. USA, 75, 1929 (1978)記載の方法等をあげること ができる。  As a method for introducing a recombinant DNA, any method can be used as long as it is a method for introducing DNA into yeast, and examples thereof include an electoporation method (Methods EnzymoL, 194, 182 (1990)) and a spheroplast method [ Natl. Acad. Sci: USA, 75, 1929 (1978)], lithium acetate method [J. Bacteriol., 153, 163 (1983)] ', Proc. Natl. Acad. Sci. USA, 75, 1929 ( 1978).
動物細胞を宿主として用いる場合には、発現べクタ一として、例えば、 cDNAI 、 pcDM8 (フナコシ社製) 、 pAGE107〔特開平 3-22979、 Cytotechnology, 3, 133 (1990)〕、 pAS3-3 (特開平 2-227075) 、 pCDM8 (Nature, 329, 840 (1987)〕、 pcDNAI/Amp (Invitrogen社製)、 pREP4 ( Invitrogen社製)、 pAGE103〔J. Biochem. , 101, 1307 (1987)〕、 pAGE210等をあげることができる。 When an animal cell is used as a host, as an expression vector, for example, cDNAI , PcDM8 (manufactured by Funakoshi), pAGE107 (JP-A-3-22979, Cytotechnology, 3, 133 (1990)), pAS3-3 (JP-A-2-227075), pCDM8 (Nature, 329,840 (1987)), pcDNAI / Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 [J. Biochem., 101, 1307 (1987)], pAGE210 and the like.
プロモー夕一としては、 動物細胞中で機能するものであればいずれも用いる ことができ、 例えば、 サイトメガロウィルス (CMV) の IE (immediate early) 遺伝子のプロモ一夕一、 SV40の初期プロモーター、 レトロウイルスのプロモ一 夕一、 メタ口チォネインプロモ一夕一、 ヒートショックプロモ一夕一、 S R Q: プロモー夕一等をあげることができる。 また、 ヒト C MVの I E遺伝子のェン ハンサ一をプロモーターと共に用いてもよい。  Any promoter can be used as long as it functions in animal cells. For example, the promoter of the immediate early (IE) gene of cytomegalovirus (CMV), the early promoter of SV40, the retro promoter of SV40, etc. Virus Promo One Night, Meta Mouth Chainone Promo One Night, Heat Shock Promo One Night, SRQ: Promo One Night, etc. Alternatively, the enhancer of the IE gene of human CMV may be used together with the promoter.
宿主細胞としては、 ヒトの細胞であるナマルバ (Namalwa) 細胞、 サルの細胞 である COS細胞、 チャイニーズ.ハムスターの細胞である CH0細胞、 HBT5637 (特 開昭 63- 299) 等をあげることができる。  Examples of the host cells include Namalwa cells, which are human cells, COS cells, which are monkey cells, CH0 cells, which are Chinese hamster cells, and HBT5637 (Japanese Patent Publication No. 63-299).
動物細胞への組換え体 D N Aの導入方法としては、 動物細胞に D N Aを導入 する方法であればいずれも用いることができ、 例えば、 エレクト口ポレーショ ン法 [; Cytotechnology, 3, 133 (1990)〕、 リン酸カルシウム法(特開平 2-227075 )、 リポフエクシヨン法 〔Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)〕、 Virology, 52, 456 ( 1973)等をあげることができる。  As a method for introducing the recombinant DNA into animal cells, any method for introducing DNA into animal cells can be used. For example, electoporation method [; Cytotechnology, 3, 133 (1990)] Calcium phosphate method (Japanese Unexamined Patent Publication No. 2-227075), Lipofection method [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)], Virology, 52, 456 (1973).
昆虫細胞を宿主として用いる場合には、 例えばカレント ·プロトコールズ - ィン ·モレキュラー ·ノ、、ィォロジ一、 Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company (1992)、 Bio/Technology, 6, 47 ( 1988)等に記載された方法によって、 蛋白質を生産することができる。  When an insect cell is used as a host, for example, current protocols-in molecular-no, biology, Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company (1992), Bio / Technology, 6, 47 (1988) and the like.
即ち、 組換え遺伝子導入べクタ一およびバキュロウィルスを昆虫細胞に共導 入して昆虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィルス を昆虫細胞に感染させ、 蛋白質を生産させることができる。  That is, the recombinant gene transfer vector and the baculovirus are co-introduced into insect cells to obtain a recombinant virus in the culture supernatant of insect cells, and then the recombinant virus is transmitted to the insect cells to produce proteins. Can be done.
該方法において用いられる遺伝子導入べクタ一としては、 例えば、 pVL1392、 pVL1393、 pBlueBacIII (ともに Invitorogen社製) 等をあげることができる。 バキュロウィルスと 'しては、 例えば、 夜盗蛾科昆虫に感染するウィルスであ るァゥトグラファ ·カリフォルニ力 ·ヌクレア一 ·ポリへドロシス ·ウィルス (Autographa californica miciear polyhedrosis virus)等を用 1 /ヽること力5、でき る。 The gene transfer vector used in the method includes, for example, pVL1392, pVL1393, pBlueBacIII (both manufactured by Invitorogen) and the like. Examples of baculoviruses include, but are not limited to, autographa californica miciear polyhedrosis virus, which is a virus that infects night moth insects, such as Atographa, California, Nuclea, Polyhedrosis, etc. 5 Yes.
昆虫細胞としては、 Spodoptera f rugiperdaの卵巣細胞である Sf 9、 Sf21 〔 Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company (1992)〕、 Trichoplusia niの卵巣細胞である High 5 (Invitrogen社製 ) 等を用いることができる。  Examples of insect cells include Spod9, Sf21 (Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company (1992)) which are ovarian cells of Spodoptera f rugiperda, and High 5 (manufactured by Invitrogen) which is an ovarian cell of Trichoplusia ni. Can be used.
組換えウィルスを調製するための、 昆虫細胞への上記組換え遺伝子導入ぺク 夕一と上記バキュロウィルスの共導入方法としては、 例えば、 リン酸カルシゥ ム法 (特開平 2-227075) 、 リボフヱクシヨン法 〔Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)〕 等をあげることができる。  Methods for co-transferring the above recombinant gene into insect cells and the above baculovirus to prepare a recombinant virus include the calcium phosphate method (Japanese Patent Laid-Open No. 2-227075), the ribofusion method, and the like. [Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)].
植物細胞を宿主細胞として用いる場合には、 発現べクタ一として、 例えば、 T iプラスミド、 タバコモザイクウィルスベクタ一等をあげることができる。 プロモー夕一としては、 植物細胞中で機能するものであればいずれのものを 用いてもよく、 例えば、 カリフラワーモザイクウィルス (CaMV) の 35Sプロモー 夕一、 ィネアクチン 1プロモ一夕一等をあげることができる。  When a plant cell is used as a host cell, examples of the expression vector include a Ti plasmid and a tobacco mosaic virus vector. Any promoter may be used as long as it functions in plant cells. For example, cauliflower mosaic virus (CaMV) 35S promoter, inineactin 1 promoter, etc. it can.
宿主細胞としては、 タバコ、 ジャガイモ、 トマト、 ニンジン、 ダイズ、 アブ ラナ、 アルフアルファ、 イネ、 コムギ、 ォォムギ等の植物細胞等をあげること ができる。  Examples of the host cell include plant cells of tobacco, potato, tomato, carrot, soybean, abrana, alfa alfa, rice, wheat, wheat, and the like.
組換え体 D N Aの導入方法としては、 植物細胞に D N Aを導入する方法であ ればいずれも用いることができ、 例えば、 ァグロパクテリゥム (Agrobacterium ) (特開昭 59- 140885、 特開昭 60-70080、 W094/00977) 、 エレクトロボレ一ショ ン法 (特開昭 60- 251887) 、 パーティクルガン (遺伝子銃) を用いる方法 (特許 第 2606856、 特許第 2517813) 等をあげることができる。 以上のようにして得られる本発明の形質転換体を培地に培養し、 培養物中に 2 , 3—シアル酸転移酵素活性を有する蛋白質を生成蓄積させ、 該培養物か ら採取することにより、 該蛋白質を製造することができる。 Any method for introducing the recombinant DNA can be used as long as it is a method for introducing DNA into plant cells. For example, Agrobacterium (Agrobacterium) (JP-A-59-140885, JP-A 60-70080, W094 / 00977), electro volatilization method (JP-A-60-251887), method using particle gun (gene gun) (Patent No. 2606856, Patent No. 2517813) and the like. By culturing the transformant of the present invention obtained as described above in a medium, producing and accumulating a protein having 2,3-sialyltransferase activity in the culture, and collecting from the culture, The protein can be produced.
本発明の形質転換体を培地に培養する方法は、 宿主の培養に用いられる通常 の方法に従って行うことができる。  The method for culturing the transformant of the present invention in a medium can be performed according to a usual method used for culturing a host.
本発明の形質転換体が大腸菌等の原核生物あるいは酵母等の真核生物を宿主 として得られた形質転換体である場合、 該形質転換体を培養する培地として、 該形質転換体が資化し得る炭素源、 窒素源、 無機塩類等を含有し、 該形質転換 体の培養を効率的に行える培地であれば天然培地、 合成培地のいずれを用いて もよい。  When the transformant of the present invention is a transformant obtained using a prokaryote such as Escherichia coli or a eukaryote such as yeast as a host, the transformant can be used as a medium for culturing the transformant. Either a natural medium or a synthetic medium may be used as long as it contains a carbon source, a nitrogen source, inorganic salts, and the like, and can efficiently culture the transformant.
炭素源としては、 該形質転換体が資化し得るものであればよく、 グルコース、 フラクト一ス、 スクロース、 これらを含有する糖蜜、 デンプンあるいはデンプ ン加水分解物等の炭水化物、 酢酸、 プロピオン酸等の有機酸、 エタノール、 プ ロパノ一ルなどのアルコ一ル類等を用 、ることができる。  Any carbon source may be used as long as the transformant can be assimilated, such as glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, acetic acid, propionic acid, etc. Alcohols such as organic acids, ethanol, and propanol can be used.
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸 アンモニゥム、 リン酸アンモニゥム等の無禪酸もしくは有機酸のアンモニゥム 塩、 その他の含窒素化合物、 ならびに、 ペプトン、 肉エキス、 酵母エキス、 コ 一ンスチ一プリカ一、 カゼイン加水分解物、 大豆粕および大豆粕加水分解物、 各種発酵菌体およびその消化物等を用いることができる。  Examples of nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other ammonium-free salts of ammonium or organic acids, and other nitrogen-containing compounds, as well as peptone, meat extract, yeast extract, and copper extract. Plyka, casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof can be used.
無機塩としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネ シゥム、 硫酸マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫酸マンガン、 硫 酸銅、 炭酸カルシウム等を用いることができる。  As the inorganic salt, potassium monophosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like can be used.
培養は、 振盪培養または深部通気攪拌培養などの好気的条件下で行う。 培養 温度は 1 5〜4 0 °Cがよく、 培養時間は、 通常 1 6時間〜 7日間である。 培養 中の p Hは 3 . 0〜9 . 0に保持することが好ましい。 p Hの調整は、 無機ま たは有機の酸、 アルカリ溶液、 尿素、 炭酸カルシウム、 アンモニアなどを用い て行う。 The culture is performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culturing temperature is preferably 15 to 40 ° C, and the culturing time is usually 16 hours to 7 days. It is preferable to maintain the pH during culturing between 3.0 and 9.0. The pH is adjusted using an inorganic or organic acid, alkaline solution, urea, calcium carbonate, ammonia, etc. Do it.
また、 培養中必要に応じて、 アンピシリン、 テトラサイクリンやクロラムフ ェニコール等の抗生物質を培地に添加してもよい。  If necessary, an antibiotic such as ampicillin, tetracycline or chloramphenicol may be added to the medium during the culture.
プロモー夕一として誘導性のプロモーターを用いた組換え体 D N Aで形質転 換した微生物を培養するときには、 必要に応じてィンデュ一サ一を培地に添カロ してもよい。例えば、 プロモー夕—を用いた組換え体 D NAで形質転換した 微生物を培養するときにはィソプロピル一/?一 D—チォガラクトピラノシド等 を、 ^プロモー夕一を用いた組換え体 D N Aで形質転換した微生物を培養する ときにはィンドールァクリル酸等を培地に添加してもよい。  When culturing a microorganism transformed with a recombinant DNA using an inducible promoter as a promoter, the culture medium may be supplemented with an inductor if necessary. For example, when culturing a microorganism transformed with a recombinant DNA using a promoter, isopropyl 1 /?-1 D-thiogalactopyranoside and the like are transformed with a recombinant DNA using a promoter. When culturing the transformed microorganism, indole acrylic acid or the like may be added to the medium.
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に 使用されている RPMI 1640培地〔J. Am. Med. Assoc. , 199, 519 (1967)〕、 Eagle の MEM培地〔Science, 122, 501 (1952)〕、 ダルベッコ改変 MEM培地〔Virology, 8, 396 (1959)〕、 1 9 9培地〔Proc. Soc. Biol. Med. , 73, 1 (1950)〕 また はこれら培地に牛胎児血清等を添加した培地等を用いることができる。  As a medium for culturing transformants obtained using animal cells as a host, commonly used RPMI 1640 medium [J. Am. Med. Assoc., 199, 519 (1967)], Eagle's MEM medium [Science , 122, 501 (1952)), Dulbecco's modified MEM medium (Virology, 8, 396 (1959)), 199 medium (Proc. Soc. Biol. Med., 73, 1 (1950)) A medium containing bovine fetal serum or the like can be used.
培養は、 通常 p H 6〜8、 3 0〜4 0 °C、 5 % C 02存在下等の条件下で 1〜 7日間行う。 Culture is carried out usually p H 6~8, 3 0~4 0 ° C, 5% C 0 2 under the conditions such as the presence 1-7 days.
また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地 に添加してもよい。  If necessary, antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
昆虫細胞を宿主として得られた形質転換体を培養する培地としては、 一般に 使用されている TNM-FH培地 (Pharmingen社製) 、 Sf- 900 II SFM培地 (Life Technologies社製) 、 ExCell400、 ExCe 11405 (いずれも JRH Biosciences社製) 、 Grace' s Insect Medium (Nature, 195, 788 (1962)〕等を用いることができ る ο  As a medium for culturing a transformant obtained by using an insect cell as a host, generally used TNM-FH medium (Pharmingen), Sf-900II SFM medium (Life Technologies), ExCell400, ExCe 11405 (All manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195, 788 (1962)), etc. can be used.
培養は、 通常 ρ Η 6〜7、 2 5〜3 0 °C等の条件下で、 1〜5日間行う。 また、 培養中必要に応じて、 ゲン夕マイシン等の抗生物質を培地に添加して もよい。 - 植物細胞を宿主として得られた形質転換体は、 細胞として、 または植物の細 胞ゃ器官に分化させて培養することができる。 該形質転換体を培養する培地と しては、 一般に使用されているムラシゲ■アンド ·スク一グ (MS)培地、 ホワイ White)培地、 またはこれら培地にオーキシン、 サイトカイニン等、 植物ホル モンを添カロした培地等を用いることができる。 The cultivation is usually carried out for 1 to 5 days under conditions of ρΗ6 to 7, 25 to 30 ° C and the like. If necessary, an antibiotic such as genyumycin may be added to the medium during the culture. - A transformant obtained using a plant cell as a host can be cultured as a cell or after being differentiated into a cell organ of a plant. The culture medium for culturing the transformant may be a commonly used Murashige and Skull (MS) medium, a white (White) medium, or a medium supplemented with a plant hormone such as auxin or cytokinin. Media or the like can be used.
培養は、 通常 p H 5〜9、 2 0〜4 0 °Cの条件下で 3〜6 0日間行う。  The cultivation is usually performed at pH 5 to 9, 20 to 40 ° C for 3 to 60 days.
また、 培養中必要に応じて、 カナマイシン、 ハイグロマイシン等の抗生物質 を培地に添加してもよい。  If necessary, antibiotics such as kanamycin and hygromycin may be added to the medium during the culture.
上記のとおり、 ひ 2 , 3—シアル酸転移酵素活性を有する蛋白質をコードす る D N Aを組み込んだ組換え体 D N Aを保有する微生物、 動物細胞、 あるいは 植物細胞由来の形質転換体を、 通常の培養方法に従って培養し、 該蛋白質を生 成蓄積させ、 該培養物より該蛋白質を採取することにより、 該蛋白質を製造す ることができる。 As described above, a transformant derived from a microorganism, animal cell, or plant cell having a recombinant DNA into which a DNA encoding a protein having 2,3-sialyltransferase activity is incorporated can be cultured in a normal culture. The protein can be produced by culturing according to the method, producing and accumulating the protein, and collecting the protein from the culture.
2 , 3—シアル酸転移酵素活性を有する蛋白質の生産方法としては、 宿主 細胞内に生産させる方法、 宿主細胞外に分泌させる方法、 あるいは宿主細胞外 膜上に生産させる方法等があり、 使用する宿主細胞や、 生産させる蛋白質の構 造を変えることにより、 該方法を選択することができる。  Methods for producing a protein having 2,3-sialyltransferase activity include a method of producing the protein in a host cell, a method of secreting the protein out of the host cell, and a method of producing the protein on the host cell outer membrane. The method can be selected by changing the structure of the host cell or the protein to be produced.
2 , 3—シアル酸転移酵素活性を有する蛋白質が宿主細胞内あるいは宿主 細胞外膜上に生産される場合、,ポールソンらの方法〔J. Biol . Chem. , 264, 17619 ( 1989)〕、 ロウらの方法 Proc. Natl . Acad. Sci . USA, 86, 8227 ( 1989)、 Genes Develop. , 4, 1288 (1990)〕、 または特開平 5-336963、 WO 94/23021等に記載の 方法を準用することにより、 該蛋白質を宿主細胞外に積極的に分泌させること ができる。  When a protein having 2,3-sialyltransferase activity is produced in a host cell or on the host cell outer membrane, the method of Paulson et al. [J. Biol. Chem., 264, 17619 (1989)] Natl. Acad. Sci. USA, 86, 8227 (1989), Genes Develop., 4, 1288 (1990)] or the method described in JP-A-5-336963, WO 94/23021, etc. By doing so, the protein can be actively secreted out of the host cell.
すなわち、 遺伝子組換えの手法を用いて、 ひ 2 , 3—シアル酸転移酵素活性 を有する蛋白質の活性部位を含むポリべプチドの手前にシグナルべプチドを付 加した形で生産させることにより、 貝蛋白質を宿主細胞外に積極的に分泌させ ることができる。 . In other words, by using a genetic recombination technique, a shellfish can be produced by adding a signal peptide in front of a polypeptide containing the active site of a protein having 2,3-sialyltransferase activity. Actively secretes proteins out of host cells Can be .
また、 特開平 2- 227075に記載されている方法に準じて、 ジヒドロ葉酸還元酵 素遺伝子等を用いた遺伝子増幅系を利用して生産量を上昇させることもできる。 さらに、 遺伝子導入した動物または植物の細胞を再分化させることにより、 遺伝子が導入された動物個体 (トランスジエニック非ヒト動物) または植物個 体 (トランスジヱニック植物) を造成し、 これらの個体を用いて 2 , 3—シ アル酸転移酵素活性を有する蛋白質を製造することもできる。  Further, according to the method described in Japanese Patent Application Laid-Open No. 2-227075, the production amount can be increased using a gene amplification system using a dihydrofolate reductase gene or the like. Furthermore, the transgenic animal or plant cells are redifferentiated to create transgenic non-human animals or transgenic plants (transgenic plants) into which the gene has been introduced. A protein having 2,3-sialyltransferase activity can also be produced by using E. coli.
形質転換体が動物個体または植物個体の場合は、 通常の方法に従って、 飼育 または栽培し、 該蛋白質を生成蓄積させ、 該動物個体または植物個体より該蛋 白質を採取することにより、 該蛋白質を製造することができる。  When the transformant is an animal or plant individual, the protein is produced by breeding or cultivating according to a usual method to produce and accumulate the protein, and collecting the protein from the animal or plant individual. can do.
動物個体を用いてひ 2 , 3—シアル酸転移酵素活性を有する蛋白質を製造す る方法としては、 例えば公知の方法 〔Am. J. Clin. Nutr. , 63, 639S (1996)、 Am. J. Clin. Nutr. , 63, 627S (1996)、 Bio/Technology, 9, 830 (1991)〕 に 準じて遺伝子を導入して造成した動物中に該蛋白質を生産する方法があげられ る。  As a method for producing a protein having 2,3-sialyltransferase activity using an animal individual, for example, a known method [Am. J. Clin. Nutr., 63, 639S (1996), Am. Clin. Nutr., 63, 627S (1996), Bio / Technology, 9, 830 (1991)] and a method for producing the protein in an animal constructed by introducing a gene.
動物個体の場合は、 例えば、 2 , 3—シアル酸転移酵素活性を有する蛋白 質をコードする D NAを導入したトランスジエニック非ヒト動物を飼育し、 該 蛋白質を該動物中に生成 ·蓄積させ、 該動物中より該蛋白質を採取することに より、 該蛋白質を製造することができる。 該動物中の生成 ·蓄積場所としては、 例えば、 該動物のミルク (特開昭 63-309192) 、 卵等をあげることができる。 こ の際に用いられるプロモー夕一としては、 動物で機能するものであればいずれ も用いることができるが、 例えば、 乳腺細胞特異的なプロモーターであるひ力 ゼインプロモーター、 カゼインプロモー夕一、 ?ラクトグロブリンプロモー 夕一、 ホェ一酸性プロティンプロモー夕一等が好適に用いられる。  In the case of an animal individual, for example, a transgenic non-human animal into which DNA encoding a protein having 2,3-sialyltransferase activity has been introduced is bred, and the protein is produced and accumulated in the animal. The protein can be produced by collecting the protein from the animal. Examples of the place of production and accumulation in the animal include milk (JP-A-63-309192), eggs and the like of the animal. Any promoter that can be used in this case can be used as long as it functions in animals.For example, the zein promoter, casein promoter, and lactate, which are mammary cell-specific promoters, can be used. Globulin promoter, whey acid protein promoter, and the like are preferably used.
植物個体を用いてひ 2, 3—シアル酸転移酵素活性を有する蛋白質を製造す . る方法としては、 例えば該蛋白質をコードする D N Aを導入したトランスジェ ニック植物を公知の方法 〔組織培養, 20 (1994)、 組織培養, 21 (1995)、 Trends BiotechnoL , 15, 45 (1997)〕 に準じて栽培し、 該蛋白質を該植物中に生成- 蓄積させ、 該植物中より該蛋白質を採取することにより、 該蛋白質を生産する 方法があげられる。 Methods for producing a protein having 2,3-sialyltransferase activity using plant individuals include, for example, transfection into which DNA encoding the protein has been introduced. Nick plants are cultivated according to known methods [tissue culture, 20 (1994), tissue culture, 21 (1995), Trends BiotechnoL, 15, 45 (1997)], and the protein is produced and accumulated in the plants. And a method for producing the protein by collecting the protein from the plant.
'本発明の形質転換体により製造された蛋白質を単離精製するためには、 通常 の酵素の単離精製法を用いることができる。 例えば本発明の蛋白質が、 細胞内 に溶解状態で発現した場合には、 培養終了後、 細胞を遠心分離により回収し、 水系緩衝液にけん濁後、 超音波破砕機、 フレンチプレス、 マントンガウリンホ モゲナイザー、 ダイノミル等により細胞を破砕し、 無細胞抽出液を得る。 該無 細胞抽出液を遠心分離することにより得られる上清から、 通常の酵素の単離精 製法、 即ち、 溶媒抽出法、 硫安等による塩析法、 脱塩法、 有機溶媒による沈殿 法、 ジェチルアミノエチル (DEAE) —セファロ一ス、 DIAI0N HPA- 75 (三菱化成 社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、 S- Sepharose FF (Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、 ブ チルセファロ一ス、 フエ二ルセファロ一ス等のレジンを用いた疎水性クロマト グラフィ一法、 分子篩を用いたゲルろ過法、 ァフィ二ティ一クロマトグラフィ 一法、 クロマトフォーカシング法、 等電点電気泳動等の電気泳動法等の手法を 単独あるいは組み合わせて用い、 精製標品を得ることができる。  'In order to isolate and purify the protein produced by the transformant of the present invention, a conventional enzyme isolation and purification method can be used. For example, when the protein of the present invention is expressed in a dissolved state in cells, the cells are collected by centrifugation after completion of the culture, suspended in an aqueous buffer, and then sonicated with a sonicator, French press, and Mentongaurinho. Crush cells with a mogenizer, dynomill, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, an ordinary enzyme isolation and purification method can be used, that is, a solvent extraction method, a salting out method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, Tylaminoethyl (DEAE)-Sepharose, anion exchange chromatography using a resin such as DIAI0N HPA-75 (manufactured by Mitsubishi Kasei), and cation using a resin such as S-Sepharose FF (manufactured by Pharmacia). Ion exchange chromatography, hydrophobic chromatography using resins such as butyl sepharose, phenylsepharose, gel filtration using molecular sieve, affinity chromatography, chromatofocusing, etc. A purified sample can be obtained using techniques such as electrophoresis, such as electrofocusing, alone or in combination.
また、 該蛋白質が細胞内に不溶体を形成した場合は、 同様に細胞を回収後、 破砕し、 遠心分離を行うことにより、 沈殿画分として蛋白貲の不溶体を回収す る。 回収した蛋白質の不溶体を蛋白質変性剤で可溶化する。 該可溶化液を希釈 または透析し、 該可溶化液中の蛋白質変性剤の濃度を下げることにより、 該蛋 白質を正常な立体構造に戻す。 該操作の後、 上記と同様の単離精製法により該 蛋白質の精製標品を得ることができる。  When the protein forms an insoluble substance in the cell, the cell is similarly recovered, crushed, and centrifuged to collect the insoluble protein protein as a precipitate fraction. The insoluble form of the recovered protein is solubilized with a protein denaturant. The protein is returned to a normal three-dimensional structure by diluting or dialyzing the solubilized solution and reducing the concentration of the protein denaturing agent in the solubilized solution. After this operation, a purified sample of the protein can be obtained by the same isolation and purification method as described above.
上記方法により製造される蛋白質、 あるいは該蛋白質に糖鎖の付加された蛋 白質等の誘導体が細胞外に分泌された場合には、 培養上清に該蛋白質あるいは 該蛋白質の誘導体を回収することができる。 即ち、 該培養物を上記と同様の遠 心分離等の手法により処理することにより培養上清を取得し、 該培養上清から、 上記と同様の単離精製法を用レヽることにより、 精製標品を得ることができる。 このようにして取得される蛋白質として、 例えば配列番号 2記載のアミノ酸 配列を有する蛋白質をあげることができる。 When a protein produced by the above method, or a derivative such as a protein having a sugar chain added to the protein is secreted extracellularly, the protein or the derivative is added to the culture supernatant. The derivative of the protein can be recovered. That is, a culture supernatant is obtained by treating the culture by a technique such as centrifugation as described above, and purified from the culture supernatant by using the same isolation and purification method as described above. You can get a sample. Examples of the protein thus obtained include a protein having the amino acid sequence of SEQ ID NO: 2.
また、 ひ 2 , 3—シアル酸転移酵素活性を有する蛋白質は、 F m o c法 (フ ルォレニルメチルォキシカルボニル法) 、 t B 0 c法 (t —ブチルォキシカル ボニル法) 等の化学合成法によっても製造することができる。 また、 Advanced ChemTech社、 パ一キン ·エルマ一社、 Pharmacia社、 Protein Technology Instrument社、 Synthecell-Vega社、 PerSeptive社、 島津製作所等のぺプチド合 成機を利用して化学合成することもできる。  Proteins having 2,3-sialyltransferase activity can be obtained by chemical synthesis methods such as Fmoc method (fluorenylmethyloxycarbonyl method) and tB0c method (t-butyloxycarbonyl method). Can also be manufactured. Chemical synthesis can also be carried out using a peptide synthesizer such as Advanced ChemTech, Parkin Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu.
[ 3 ] シアル酸含有複合糖質の調製 [3] Preparation of glycoconjugate containing sialic acid
上記 [ 2 ] 記載の培養により得られた形質転換体の培養液および該培養液を 種々処理した培養液の処理物を酵素源として用い、 水性媒体中でシアル酸含有 複合糖質を製造することができる。  Production of a sialic acid-containing glycoconjugate in an aqueous medium using, as an enzyme source, a culture solution of the transformant obtained by the culture according to the above [2] and a culture product obtained by variously treating the culture solution as an enzyme source. Can be.
培養液の処理物としては、 培養液の濃縮物、 培養液の乾燥物、 培養液を遠心 分離して得られる菌体、 該菌体の乾燥物、 該菌体の凍結乾燥物、 該菌体の界面 活性剤処理物、 該菌体の超音波処理物、 該菌体の機械的摩砕処理物、 該菌体の 溶媒処理物、 該菌体の酵素処理物、 該菌体の蛋白質分画物、 該菌体の固定化物 あるいは該菌体より抽出して得られる酵素標品などをあげることができる。 シアル酸含有複合糖質の生成において用いられる酵素源は、 3 7 °Cで 1分間 に 1 /モルのシアル酸含有複合糖質を生成することのできる活性を 1単位 (U) として、 0 . l mU/L〜1 0, 0 0 0 U/Lであり、 好ましくは l mU/L 〜; I, 0 0 0 UZLの濃度で用いる。  Examples of the processed product of the culture solution include a concentrate of the culture solution, a dried product of the culture solution, cells obtained by centrifuging the culture solution, a dried product of the cells, a freeze-dried product of the cells, and the cells. Surfactant treated product, ultrasonically treated product of the cells, mechanically milled product of the cells, solvent-processed product of the cells, enzyme-treated product of the cells, protein fractionation of the cells Products, immobilized products of the cells, enzyme preparations obtained by extraction from the cells, and the like. The enzyme source used in the production of sialic acid-containing glycoconjugates has an activity capable of producing 1 / mol of sialic acid-containing glycoconjugates per minute at 37 ° C. as 1 unit (U). It is used at a concentration of lmU / L to 100,000 U / L, preferably lmU / L to I, 000 UZL.
シアル酸含有複合糖質の生成において用いられる水性媒体としては、 水、 り ん酸塩、 炭酸塩、 酢酸塩、 ほう酸塩、 クェン酸塩、 トリスなどの緩衝液、 メタ · ノール、 エタノールなどのアルコール類、 酢酸ェチルなどのエステル類、 ァセ トンなどのケトン類、 ァセトアミ ドなどのアミ ド類などをあげることができる。 また、 酵素源として用いた微生物の培養液を水性媒体として用いることができ る。 Aqueous media used in the production of sialic acid-containing glycoconjugates include buffers such as water, citrate, carbonate, acetate, borate, citrate, and tris, and meta- Examples thereof include alcohols such as phenol and ethanol, esters such as ethyl acetate, ketones such as acetone, and amides such as acetoamide. Further, a culture solution of the microorganism used as the enzyme source can be used as an aqueous medium.
シアル酸含有複合糖質の生成において、 必要に応じて界面活性剤あるいは有 機溶媒を添加してもよい。 界面活性剤としては、 ポリオキシエチレン ·ォク夕 デシルァミン (例えばナイミーン S- 215、 日本油脂社製) などの非イオン界面活 性剤、 セチルトリメチルアンモニゥム ·プロマイドゃアルキルジメチル■ペン ジルアンモニゥムクロライ ド (例えばカチオン F2-40E、 日本油脂社製) などの カチオン系界面活性剤、 ラウロイル ·ザルコシネートなどのァニオン系界面活 性剤、 アルキルジメチルァミン (例えば三級アミン FB、 日本油脂社製) などの 三級アミン類など、 シアル酸含有複合糖質の生成を促進するものであればいず れでもよく、 1種または数種を混合して使用することもできる。 界面活性剤は、 通常 0.1〜50 g/Lの濃度で用いられる。 有機溶剤としては、 キシレン、 トルエン 、 脂肪族アルコール、 アセトン、 酢酸ェチルなどが挙げられ、 通常 0 . 1〜5 O m lZLの濃度で用いられる。  In producing the sialic acid-containing glycoconjugate, a surfactant or an organic solvent may be added as necessary. Examples of the surfactant include nonionic surfactants such as polyoxyethylene odecyl decylamine (for example, Nymein S-215, manufactured by NOF Corporation), cetyltrimethylammonium, promide, alkyldimethyl, pendiammonium and the like. Cationic surfactants such as muchloride (eg, cation F2-40E, manufactured by NOF Corporation), anionic surfactants such as lauroyl sarcosinate, and alkyldimethylamine (eg, tertiary amine FB, manufactured by NOF Corporation) Any of tertiary amines, such as tertiary amines, which promote the production of sialic acid-containing glycoconjugates may be used, and one or more of them may be used in combination. Surfactants are usually used at a concentration of 0.1 to 50 g / L. Examples of the organic solvent include xylene, toluene, aliphatic alcohol, acetone, and ethyl acetate, which are usually used at a concentration of 0.1 to 5 OmlZL.
シアル酸含有複合糖質の生成において用いられる糖ヌクレオチド基質である CMP— N e u A cとしては、 市販品の他、 微生物等の活性を利用して生成し た反応液ある ヽは該反応液から精製したものを用いることができる。  CMP-NeuAc, which is a sugar nucleotide substrate used in the production of sialic acid-containing glycoconjugates, is not only a commercially available product, but also a reaction solution generated by utilizing the activity of microorganisms. A purified product can be used.
該糖ヌクレオチド基質は 0 . 1〜5 0 O mm o 1 /Lの濃度で用いる。  The sugar nucleotide substrate is used at a concentration of 0.1 to 50 Ommo1 / L.
シアル酸含有複合糖質の生成において用いられる受容体複合糖質としては、 糖転移酵素の基質となるものであればいずれも用いることができ、 例えば、 ラ クト一ス、 N—ァセチルラクトサミンの他、 非還元末端にガラクトース、 ラク ト一ス、 N—ァセチルラクトサミン、 ラクト一N-テトラオース、 ラクト一 N— ネオテトラオース、 ルイス X、 またはルイス a構造を有する 1 0糖以下のオリ ゴ糖などを例示することができる。 該受容体複合糖質は 0. 1〜50 Ommo 1/Lの濃度で用いる。 As the receptor glycoconjugate used in the production of the sialic acid-containing glycoconjugate, any one can be used as long as it serves as a substrate for glycosyltransferase. For example, lactose, N-acetyl-lactosamine And an oligosaccharide having not more than 10 sugars having a galactose, lactose, N-acetyllactosamine, lacto-N-tetraose, lacto-N-neotetraose, Lewis X, or Lewis a structure at the non-reducing end Glucose and the like can be exemplified. The receptor glycoconjugate is used at a concentration of 0.1 to 50 Ommo 1 / L.
該生成反応において、 必要に応じて MnC 12等の無機塩、 ^—メルカプトェ 夕ノ一ル等を添加することができる。 In the production reaction, inorganic salts MnC 1 2 or the like, if necessary, ^ - Merukapute Yunoichiru like can be added.
シアル酸含有複合糖質の生成反応は水性媒体中、 p H 5〜 10、 好ましくは pH6〜8、 20〜50°Cの条件で 1〜96時間行う。  The reaction for producing the sialic acid-containing glycoconjugate is carried out in an aqueous medium at pH 5 to 10, preferably pH 6 to 8, and 20 to 50 ° C for 1 to 96 hours.
水性媒体中に生成したシアル酸含有複合糖質の定量は公知の方法に準じて行 うことができる 〔化学と工業, , 953 (1990)〕 。  Quantification of sialic acid-containing glycoconjugates formed in an aqueous medium can be performed according to a known method [Chemical and Industrial, 953 (1990)].
反応液中に生成したシアル酸含有複合糖質の採取は、 活性炭やイオン交換樹 脂などを用いる通常の方法によって行うことができ、例えば、 Anal. Biochem., 85, 602 (1978)記載の方法に準じて行うことができる。  The sialic acid-containing glycoconjugate formed in the reaction solution can be collected by a usual method using activated carbon or ion-exchange resin, for example, the method described in Anal.Biochem., 85, 602 (1978). It can be performed according to.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図 2 , 3—シアル酸 fe移酵素遺伝子発現ブラスミ ド ρ E 5の構造 を示す図である。  FIG. 1 is a diagram showing the structure of a plasmid ρE5 expressing 2,3-sialic acid fe transferase gene.
第 1図で用いられる符号の意味を以下に説明する。  The meaning of the symbols used in FIG. 1 will be described below.
Ampr:アンピシリン耐性遺伝子 Amp r : Ampicillin resistance gene
Ptrp : t r pプロモ一夕一 P trp : trp Promo Overnight
1 s t : a2, 3—シアル酸転移酵素遺伝子 1 st: a2,3-Sialyltransferase gene
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施例を示すが、 本発明はこれら実施例に限定されるもので はない。  Examples of the present invention will be described below, but the present invention is not limited to these examples.
実施例 1 2, 3—シアル酸転移酵素発現株の造成 Example 1 Construction of a strain expressing 2,3-sialyltransferase
ひ 2, 3—シアル酸転移酵素のアミノ酸配列として、 配列番号 2に記載のァ ミノ酸配列で表されるへモフィラス 'デュ一クレイ (Haemophilus ducreyi) の ひ 2, 3—シアル酸転移酵素アミノ酸配列 (GenBank: AF101047) を選択し、 大 腸菌のコドンの使用頻度 [Codon Usage database at kazusa  Amino acid sequence of Hemophilus 'Haemophilus ducreyi' represented by the amino acid sequence of SEQ ID NO: 2 as an amino acid sequence of 2,3-sialyltransferase Select (GenBank: AF101047) and enter the Codon Usage Database at kazusa
(http:〃 ww. kazusa.or.jp/codon/)]を考慮して、 使用頻度が最も高いコドンで 構成される DN A配列に変換し、 配列番号 1に示すひ 2, 3—シアル酸転移酵 素をコードする DNA配列を設計し.た。 設計した塩基配列に基づき、 隣り合う 合成 DN Aが互いに 20塩基の重複配列を有し、 かつ、 それらがセンス鎖、 ァ ンチセンス鎖と交互になるように、 配列番号 3から配列番号 16記載の DNA をパ一セプティブ ·バイオシステムズ社製 8905型 DN A合成装置を用いて合成 した。 また上記で設計した 2, 3—シアル酸転移酵素をコードする DNAの 両末端に、 ベクターへクローニングするための制限酵素認識配列を導入するた めに、 配列番号 17および 18記載の; DNAも同様に合成した。 (http: 〃 ww. kazusa.or.jp/codon/)], considering the most frequently used codon The resulting DNA sequence was converted into a DNA sequence, and a DNA sequence encoding a 2,3-sialyltransferase shown in SEQ ID NO: 1 was designed. Based on the designed base sequence, the DNAs described in SEQ ID NO: 3 to SEQ ID NO: 16 so that adjacent synthetic DNAs have an overlapping sequence of 20 bases with each other and alternate with the sense strand and antisense strand Was synthesized using a Perceptive Biosystems 8905 DNA synthesizer. Further, in order to introduce a restriction enzyme recognition sequence for cloning into a vector at both ends of the DNA encoding the 2,3-sialyltransferase designed as described above, SEQ ID NOS: 17 and 18; Was synthesized.
各 DNAを最終濃度が 0. 02〃mo 1/Lとなる様に、 l Smmol/^L 硫酸アンモニゥム、 10mmo l/L 塩化カリウム、 lmmo l/L 塩ィ匕マ グネシゥム、 20mmo l/L トリス-塩酸 (pH 8. 0) 、 0. 1%T r i t on X— 100、 0. 001% BSA、 200 zmo 1/L dNTPs、 及び 2. 5単位の KOD DNA polymerase (東洋紡社製) よりなる緩衝液に加えて 全量で 50 〃1とし、 50 /1の鉱油で覆い、 DNAサ一マルサイクラ一 (PJ480、 PERK IN ELMER社製) にセヅトし、 94°Cで 30秒間、 50°Cで 30秒間、 74 °Cで 60秒間を 1サイクルとする反応を 30サイクル行い、 約 0. 9 ¾:10の? CR産物を取得した。  L Smmol / ^ L ammonium sulfate, 10mmoL / L potassium chloride, lmmol / L Shimadani Magnesium, 20mmoL / L Tris- so that the final concentration of each DNA is 0.02〃mo 1 / L. Buffer solution consisting of hydrochloric acid (pH 8.0), 0.1% Triton X-100, 0.001% BSA, 200 zmo 1 / L dNTPs, and 2.5 units of KOD DNA polymerase (Toyobo) In addition, the total volume is reduced to 50〃1, covered with 50/1 mineral oil, set on a DNA thermocycler (PJ480, manufactured by PERK IN ELMER) for 30 seconds at 94 ° C and 30 seconds at 50 ° C. Perform 30 cycles of a reaction at 74 ° C for 60 seconds per cycle. Approximately 0.9¾: 10? The CR product was obtained.
該 PCR産物 0. 5ugを制限酵素 C 1 a Iおよび B a mH Iで切断後、 制 限酵素 C 1 a Iおよび B amH Iで切断した p T r S 3 ODNA 0. 2〃gと 共にライゲーシヨンキヅト (宝酒造社製) を用いて、 16°Cで 16時間、 連結 反応を行った。  After 0.5 μg of the PCR product was cleaved with restriction enzymes C1aI and BamHI, it was ligated together with 0.2 μg of pTrS3ODNA cut with restriction enzymes C1aI and BamHI. The ligation reaction was carried out at 16 ° C for 16 hours using a gate kit (Takara Shuzo).
該連結反応液を用いて Escherichia coli NM522株を前述の公知の方法に従つ て形質転換し、 該形質転換体をアンピシリン 50 zg/mlを含む LB寒天培 地〔パクトトリプトン (ディフコ社製) 10g/L、 酵母エキス (ディフコ社 製) 5g/L、 NaCl 5 /L (pH7. 2 )、 寒天 15 g/L〕 に塗布 後、 30°Cで一晩培養した。 生育してきた形質転換体のコロニーより、 常法に従ってプラスミドを抽出し、 該プラスミドの構造を解析したところ、 プラスミド pTrS30の Clalと BamH I部位に 0. 9 k bの全合成した D N A断片が挿入した第 1図に示す ような構造を有していたことより、 プラスミド pHE5が得られたことを確認した。 また、 該 0. 9 kb挿入断片の DNA塩基配列を決定したところ、 配列表の 配列番号 1に示すようなォ一プンリーディングフレーム (ORF) が見い出さ れた。 Using the ligation reaction solution, Escherichia coli NM522 strain was transformed according to the above-mentioned known method, and the transformant was transformed into an LB agar medium containing 50 zg / ml of ampicillin [Pactotripton (manufactured by Difco). After application to 10 g / L, yeast extract (manufactured by Difco) 5 g / L, NaCl 5 / L (pH 7.2), agar 15 g / L], the mixture was cultured overnight at 30 ° C. Plasmids were extracted from the thus grown colonies of the transformant according to a conventional method, and the structure of the plasmid was analyzed. As a result, it was confirmed that a 0.9 kb fully synthesized DNA fragment was inserted into the Clal and BamHI sites of the plasmid pTrS30. Based on the structure shown in FIG. 1, it was confirmed that the plasmid pHE5 was obtained. Further, when the DNA base sequence of the 0.9 kb inserted fragment was determined, an open reading frame (ORF) as shown in SEQ ID NO: 1 in the sequence listing was found.
以上のことより、 ひ 2, 3—シアル酸転移酵素遺伝子発現株である  Based on the above, the strain is a strain expressing the 2,3-sialyltransferase gene.
Escherichia coli M522/pHE5株が得られたことを確認した。 It was confirmed that Escherichia coli M522 / pHE5 strain was obtained.
実施例 2 3' -シァリルラクト一スの生産 Example 2 Production of 3'-Sialyl lactose
実施例 1で得られた Escherichia coli NM522/pHE5株をァンピシリン 50〃 g/mlを含む LB培地 8 mlの入った太型試験管に接瘇し 28°Cで 17時 間培養した。 該培養液をアンピシリン 50〃 g/mlを含む LB培地 8ml の入った太型試験管に 1%接種し 37°Cで 5時間培養した。 該培養液 0. lm 1を遠心分離し湿菌体を取得した。 該湿菌体は必要に応じて一 20°Cで保存す ることが可能で、 使用前に解凍して用いることができた。  The Escherichia coli NM522 / pHE5 strain obtained in Example 1 was placed in a large test tube containing 8 ml of LB medium containing 50 μg / ml of ampicillin, and cultured at 28 ° C. for 17 hours. The culture solution was inoculated at 1% into a large test tube containing 8 ml of LB medium containing 50 μg / ml of ampicillin and cultured at 37 ° C. for 5 hours. The culture broth 0.1 lm 1 was centrifuged to obtain wet cells. The wet cells could be stored at 120 ° C if necessary, and could be thawed before use.
該湿菌体 (0.1ml分) 、 50mmo l/L クェン酸バッファー (pH7. 0 ) 、 10 mmo 1/L MnCl2、 10 mm o 1/L lactose、 1 Ommo 1/ L CMP-NeuAc, 0. 4% ナイミ一ン S - 215からなる 0. 1mlの反応 液を調製し、 37 °Cで 16時間反応を行った。 The wet cells (for 0.1 ml), 50 mmol / L citrate buffer (pH 7.0), 10 mmol / L MnCl 2 , 10 mmol / L lactose, 1 mmol / L CMP-NeuAc, 0. A 0.1 ml reaction solution composed of 4% Nimin S-215 was prepared and reacted at 37 ° C for 16 hours.
反応終了後、 反応生成物をダイォネックス社製糖分析装置 (M-500)を用いて 以下の分析条件で分析し、 反応液中に 0. 05mmo l/L (30mg/L) の 35 —シァリルラクトースが生成蓄積していることを確認した。 After completion of the reaction, the reaction product using Daionekkusu Inc. sugar analyzer (M-500) were analyzed under the following analysis conditions, 3 0. 05mmo l / L (30mg / L) in the reaction solution 5 - Shiariru It was confirmed that lactose was produced and accumulated.
分析条件 Analysis conditions
カラム: CarboPAC PA10  Column: CarboPAC PA10
溶離液: A;H20、 B;500匪 ol/L NaOH、 C;100醒 ol/L NaOH、 500腿 ol/L NaOAc グラジェント : 70% A、 20%B、 10%C— 45%A、 30%B、 25%C in 15min 流量: i.OfflL/min Eluent: A; H20, B; 500 marl ol / L NaOH, C; 100 awake ol / L NaOH, 500 thigh ol / L NaOAc Gradient: 70% A, 20% B, 10% C—45% A, 30% B, 25% C in 15min Flow rate: i.OfflL / min
検出器:パルスドアンべロメトリー検出器  Detector: pulsed enberometry detector
実施例 3 シァリルラクト一N—ネオテトラオースの生産 Example 3 Production of sialyl lacto-N-neotetraose
実施例 1で得られた Escherichia coli NM522/pHE5株をァンピシリン 50 / g/mlを含む LB培地 8mlの入った太型試験管に接種し、 28°Cで 17時 間培養した。  The Escherichia coli NM522 / pHE5 strain obtained in Example 1 was inoculated into a large test tube containing 8 ml of LB medium containing 50 / g / ml of ampicillin, and cultured at 28 ° C. for 17 hours.
該培養液をアンピシリン 50〃g/mlを含む LB培地 8mlの入った太 型試験管に 1 %接種し、 37 °Cで 5時間培養した。  The culture was inoculated at 1% into a large test tube containing 8 ml of LB medium containing 50 μg / ml of ampicillin, and cultured at 37 ° C. for 5 hours.
該培養液 0. 1ml分を遠心分離し湿菌体を取得した。該湿菌体は必要に応 じて一 20°Cで保存することが可能で、 使用前に解凍して用いることができた。 該湿菌体 (0. 1ml分) 、 50mmo;i/L クェン酸バッファ一 (p H 7 . 0)、 1 Ommo 1/L MnC 12、 1 Ommo 1/L CMP-NeuAcs 0. 4% ナイミ一ン S- 215および 1 Ommo 1/L ラクト一N—ネオテトラオ —スを含む反応液 0. 1mlを調製し、 37 °Cで 16時間反応を行った。 A 0.1 ml portion of the culture was centrifuged to obtain wet cells. The wet cells could be stored at 120 ° C if necessary, and could be thawed before use. Wet cells (0. 1 ml min), 50mmo; i / L Kuen acid buffer one (. P H 7 0), 1 Ommo 1 / L MnC 1 2, 1 Ommo 1 / L CMP-NeuAc s 0. 4% A 0.1 ml reaction solution containing Nimin S-215 and 1 Ommo 1 / L lacto-N-neotetraose was prepared and reacted at 37 ° C for 16 hours.
反応終了後、 反応生成物をダイォネヅクス社製糖分析装置 (DX- 500)を用いて 分析し (実施例 2と同様) 、 反応液中に 0. 15mmo 1/L (15 Omg/ L)のシァリルラクトー N—ネオテトラオースが生成蓄積していることを確認 した。  After completion of the reaction, the reaction product was analyzed using a sugar analyzer (DX-500, manufactured by Dionex) (same as in Example 2), and 0.15 mmo 1 / L (15 Omg / L) of sialyllactol N —Confirmed that neotetraose was generated and accumulated.
産業上の利用可能性 Industrial applicability
本発明により、 a 2, 3—シアル酸転移酵素を遺伝子組換え手法により大量 に生産することが可能となる。 また、 該酵素を用いることによりシアル酸含有 複合糖質を効率的に製造できる。  According to the present invention, it is possible to produce a2,3-sialyltransferase in a large amount by a gene recombination technique. In addition, sialic acid-containing glycoconjugates can be efficiently produced by using the enzyme.
「配列フリーテキスト」  "Sequence free text"
配列番号 1一人工配列の説明:合成 D N A SEQ ID NO: 1 Description of artificial sequence: Synthetic DNA
配列番号 3—人工配列の説明:合成 DNA 配列番号 4一人工配列の説明:合成 DNA 配列番号 5—人工配列の説明:合成 D N A 配列番号 6—人工配列の説明:合成 DNA 配列番号 7—人工配列の説明:合成 DNA 配列番号 8—人工配列の説明:合成 DNA 配列番号 9一人工配列の説明:合成 DNA 配列番号 10—人工配列の説明:合成 DNA 配列番号 11一人工配列の説明:合成 D N A 配列番号 12—人工配列の説明:合成 DNA 配列番号 13—人工配列の説明:合成 DNA 配列番号 14一人工配列の説明:合成 DNA 配列番号 15—人工配列の説明:合成 DNA 配列番号 16—人工配列の説明:合成 D N A 配列番号 17—人工配列の説明:合成 DNA 配列番号 18—人工配列の説明:合成 DNA SEQ ID NO: 3—Description of artificial sequence: Synthetic DNA SEQ ID NO: 4 Description of artificial sequence: Synthetic DNA SEQ ID NO: 5—Description of artificial sequence: Synthetic DNA SEQ ID NO: 6—Description of artificial sequence: Synthetic DNA SEQ ID NO: 7—Description of artificial sequence: Synthetic DNA SEQ ID NO: 8—Artificial sequence Description: Synthetic DNA SEQ ID NO: 9 Artificial Sequence Description: Synthetic DNA SEQ ID NO: 10—Artificial Sequence Description: Synthetic DNA SEQ ID NO: 11 Artificial Sequence Description: Synthetic DNA SEQ ID NO: 12—Artificial Sequence Description: Synthetic DNA Sequence No. 13—Description of Artificial Sequence: Synthetic DNA SEQ ID No. 14—Description of Artificial Sequence: Synthetic DNA SEQ ID No. 15—Description of Artificial Sequence: Synthetic DNA SEQ ID No. 16—Description of Artificial Sequence: Synthetic DNA SEQ ID No. 17—Description of Artificial Sequence Description: Synthetic DNA SEQ ID NO: 18—Description of Artificial Sequence: Synthetic DNA

Claims

請求の範囲 The scope of the claims
1. へモフイラス属に属する微生物由来のひ 2, 3—シアル酸転移酵素活性 を有する蛋白質を発現する形質転換体の培養液または該培養液の処理物を酵素 源に用い、 該酵素源、 受容体複合糖質およびシチジン一リン酸 N-ァセチルノ イラミン酸 (以下、 CMP— NeuAcと略す) を水性媒体中に存在せしめ、 該水性媒体中でシアル酸をひ 2, 3結合で受容体複合糖質に転移させることに よりシアル酸含有複合糖質を生成蓄積させ、 該水性媒体中からシアル酸含有複 合糖質を採取することを特徴とするシアル酸含有複合糖質の製造法。  1. A culture solution of a transformant expressing a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemofilus or a processed product of the culture solution is used as an enzyme source. Glycoconjugate and cytidine monophosphate N-acetylneuraminic acid (hereinafter abbreviated as CMP-NeuAc) are present in an aqueous medium, and sialic acid is converted to the receptor complex saccharide by two or three bonds in the aqueous medium. A method for producing a sialic acid-containing glycoconjugate, comprising producing and accumulating a sialic acid-containing glycoconjugate by transferring the sialic acid-containing glycoconjugate from the aqueous medium.
2. へモフイラス属に属する微生物由来のひ 2, 3—シアル酸転移酵素活性 を有する蛋白質を発現する形質転換体を培地に培養し、 培養物中に α 2, 3- シアル酸転移酵素活性を有する蛋白質を生成蓄積させ、 該培養物から該蛋白質 を採取することを特徴とする、 α2, 3—シアル酸転移酵素活性を有する蛋白 質の製造法。  2. A transformant expressing a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus is cultured in a medium, and α2,3-sialyltransferase activity is measured in the culture. A method for producing a protein having α2,3-sialyltransferase activity, comprising producing and accumulating a protein having the same, and collecting the protein from the culture.
3. 形質転換体が、 微生物に組換え体 DN Αを導入して得られる形質転換体 である、 請求項 1または 2に記載の製造法。  3. The method according to claim 1, wherein the transformant is a transformant obtained by introducing a recombinant DN DN into a microorganism.
4. 微生物が、 ェシヱリヒア属に属する微生物である請求項 3に記載の製造 法。  4. The method according to claim 3, wherein the microorganism is a microorganism belonging to the genus Escherichia.
5. ェシエリヒア属に属する微生物が、 ェシエリヒア 'コリである請求項 4 に記載の製造法。  5. The method according to claim 4, wherein the microorganism belonging to the genus Escherichia is Escherichia coli.
6. 組換え体 DNAが、 へモフイラス属に属する微生物由来の α 2, 3—シ アル酸転移酵素活性を有する蛋白質をコードする DN Αを含有する組換え体 D N Aである請求項 3に記載の製造法。  6. The recombinant DNA according to claim 3, wherein the recombinant DNA is a DNA containing DNΑ encoding a protein having α2,3-sialyltransferase activity derived from a microorganism belonging to the genus Haemophilus. Manufacturing method.
7. へモフイラス属に属する微生物由来の α 2, 3—シアル酸転移酵素活性 を有する蛋白質をコードする DNAが、 以下の (1)〜 (3)のいずれか 1つ から選ばれる D Ν Αである請求項 6に記載の製造法。  7. DNA encoding a protein having α2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemophilus is D Ν 選 ば selected from any one of the following (1) to (3): 7. The production method according to claim 6, wherein:
(1)へモフイラス属に属する微生物由来のひ 2, 3—シアル酸転移酵素活性 を有する蛋白質をコードする D NAにおいて、 1つ以上のコドンを、 該 D NA を発現させる宿主細胞において使用頻度が高いコドンに改変して得られる塩基 配列を有する D N A (1) 2,3-Sialyltransferase activity from microorganisms belonging to the genus Hemophilus DNA having a base sequence obtained by modifying one or more codons into codons that are frequently used in a host cell that expresses the DNA in a DNA encoding a protein having
( 2 ) 配列番号 1で表される塩基配列を有する D NA  (2) DNA having the nucleotide sequence represented by SEQ ID NO: 1
( 3 ) 配列番号 1で表される塩基配列を有する D NAにおいて 1以上の塩基が 欠失、 置換若しくは付加された塩基配列からなる D NAであり、 かつ《2, 3 —シアル酸転移酵素活性を有する蛋白質をコードする D N A .  (3) a DNA having the nucleotide sequence represented by SEQ ID NO: 1 in which one or more bases are deleted, substituted or added, and << 2,3-sialyltransferase activity DNA encoding a protein having
8. へモフイラス属に属する微生物が、 へモフィラス 'デュークレイである 請求項 1、 2、 6または 7に記載の製造法。,  8. The production method according to claim 1, 2, 6, or 7, wherein the microorganism belonging to the genus Hemophilus is Hemophilus' Duclay. ,
9. 受容体複合糖質が、 非還元末端にガラクト一スを有する 1 0糖以下のォ リゴ糖を含む複合糖質である請求項 1に記載のシアル酸含有複合糖質の製造法。  9. The method for producing a sialic acid-containing complex saccharide according to claim 1, wherein the receptor complex saccharide is a complex saccharide containing 10 or less oligosaccharides having galactose at a non-reducing end.
10. オリゴ糖が、 非還元末端にラクト一ス、 N—ァセチルラクトサミン、 ラクトー N-テトラオース、 ラクト一N—ネオテトラオース、 ルイス X、 または ルイス a構造を有するォリゴ糖である請求項 9に記載のシアル酸含有複合糖質 の製造法。  10. The oligosaccharide is an oligosaccharide having a lactose, N-acetyllactosamine, lactate N-tetraose, lactate N-neotetraose, Lewis X, or Lewis a structure at the non-reducing end. 3. The method for producing a sialic acid-containing glycoconjugate according to item 1.
11. 培養液の処理物が、 培養液の濃縮物、 培養液の乾燥物、 培養液を遠心 分離して得られる菌体、 該菌体の乾燥物、 該菌体の凍結乾燥物、 該菌体の界面 活性剤処理物、 該菌体の超音波処理物、 該菌体の機械的摩砕処理物、 該菌体の 溶媒処理物、 該菌体の酵素処理物、 該菌体の蛋白質分画物、 該菌体の固定化物 あるいは該菌体より抽出して得られる酵素標品である請求項 1に記載のシアル 酸含有複合糖質の製造法。  11. The processed product of the culture solution is a concentrate of the culture solution, a dried product of the culture solution, a cell obtained by centrifuging the culture solution, a dried product of the cell, a lyophilized product of the cell, Body treated with surfactant, ultrasonically treated cell, mechanically ground cell, solvent-treated cell, enzyme-treated cell, protein content of cell 2. The method for producing a sialic acid-containing glycoconjugate according to claim 1, which is a product, an immobilized product of the cells, or an enzyme preparation obtained by extraction from the cells.
12. へモフイラス属に属する微生物由来のひ 2, 3—シアル酸転移酵素活 性を有する蛋白質をコードする D NAにおいて、 1つ以上のコドンを、 該 D N Aを発現させる宿主細胞において使用頻度が高いコドンに改変して得られる塩 基配列を有する D NA。  12. One or more codons are frequently used in a host cell that expresses a DNA encoding a protein having a 2,3-sialyltransferase activity derived from a microorganism belonging to the genus Hemofilus. A DNA having a base sequence obtained by modifying codons.
13. へモフイラス属に属する微生物が、 へモフィラス 'デュークレイであ ることを特徴とする、 請求項 12に記載の DNA。 13. The microorganism belonging to the genus Hemofilus is The DNA according to claim 12, wherein the DNA is used.
14. 配列番号 1で表される塩基配列を有する DNA。  14. DNA having the nucleotide sequence of SEQ ID NO: 1.
15. 配列番号 1で表される塩基配列からなる DNAにおいて 1以上の塩基 が欠失、 置換若しくは付加された塩基配列を有する DN Aであり、 かつひ 2, 3—シアル酸転移酵素活性を有する蛋白質をコードする DNA。  15. A DNA having a base sequence in which one or more bases have been deleted, substituted or added in the DNA consisting of the base sequence represented by SEQ ID NO: 1, and which has a 2,3-sialyltransferase activity DNA that codes for a protein.
16. 請求項 12〜15のいずれか 1項に記載の DN Aをべクタ一に連結し て得られる組換え体 DNA。  16. A recombinant DNA obtained by linking the DNA according to any one of claims 12 to 15 to a vector.
17. 請求項 16に記載の組換え体 DNAを宿主細胞に導入して得られる形  17. A form obtained by introducing the recombinant DNA according to claim 16 into a host cell.
18. 宿主細胞が、 微生物である請求項 17に記載の形質転換体。 18. The transformant according to claim 17, wherein the host cell is a microorganism.
19. 微生物が、 ェシヱリヒア属に属する微生物である請求項 18に記載の 形質転換体。  19. The transformant according to claim 18, wherein the microorganism is a microorganism belonging to the genus Escherichia.
20. ェシエリヒア属に属する微生物が、 ェシエリヒア 'コリである請求項 19に記載の形質転換体。  20. The transformant according to claim 19, wherein the microorganism belonging to the genus Escherichia is Escherichia coli.
PCT/JP2001/003110 2000-04-11 2001-04-11 MODIFIED α2,3-SIALYLTRANSFERASE GENE AND PROCESS FOR PRODUCING α2,3-SIALYLTRANSFERASE AND COMPLEX SACCHARIDE CONTAINING SIALIC ACID WO2001077314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001248749A AU2001248749A1 (en) 2000-04-11 2001-04-11 Modified alpha2,3-sialyltransferase gene and process for producing alpha2,3-sialyltransferase and complex saccharide containing sialic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-109149 2000-04-11
JP2000109149 2000-04-11

Publications (1)

Publication Number Publication Date
WO2001077314A1 true WO2001077314A1 (en) 2001-10-18

Family

ID=18621881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003110 WO2001077314A1 (en) 2000-04-11 2001-04-11 MODIFIED α2,3-SIALYLTRANSFERASE GENE AND PROCESS FOR PRODUCING α2,3-SIALYLTRANSFERASE AND COMPLEX SACCHARIDE CONTAINING SIALIC ACID

Country Status (2)

Country Link
AU (1) AU2001248749A1 (en)
WO (1) WO2001077314A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112040A1 (en) * 2005-04-15 2006-10-26 Japan Tobacco Inc. NOVEL β-GALACOTSIDE-α-2,3-SIALYLTRANSFERASE, GENE ENCODING THE SAME AND METHOD OF PRODUCING THE SAME
WO2006112253A1 (en) * 2005-04-15 2006-10-26 Japan Tobacco Inc. NOVEL β-GALACTOSIDE-α2,3-SIALYLTRANSFERASE, GENE ENCODING THE SAME, AND PROCESS FOR PRODUCTION OF THE SAME
WO2008126993A1 (en) * 2007-04-13 2008-10-23 Gene Chem Inc Novel 2, 3-sialyltransferase and use thereof
JP4856636B2 (en) * 2005-04-15 2012-01-18 日本たばこ産業株式会社 Novel β-galactoside-α2,3-sialyltransferase, gene encoding the same, and method for producing the same
US20210087599A1 (en) * 2017-07-26 2021-03-25 Jennewein Biotechnologie Gmbh Sialyltransferases and their use in producing sialylated oligosaccharides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211375A (en) * 1990-02-05 1992-08-03 Ajinomoto Co Inc Synthetic gene and production of human serum albumin using the synthetic gene
JPH11253163A (en) * 1998-03-11 1999-09-21 Toyobo Co Ltd Production of sialyltransferase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211375A (en) * 1990-02-05 1992-08-03 Ajinomoto Co Inc Synthetic gene and production of human serum albumin using the synthetic gene
JPH11253163A (en) * 1998-03-11 1999-09-21 Toyobo Co Ltd Production of sialyltransferase

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ENDO T. ET AL.: "Large-scale production of CMP-NeuAc and sialylated oligosaccharides through bacterial coupling", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 53, no. 3, March 2000 (2000-03-01), pages 257 - 261, XP002941556 *
JOEL A. BOZUE ET AL.: "Haemophilus ducreyi produces a novel sialyltransferase", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 7, 1999, pages 4106 - 4114, XP002941555 *
TAKASHI YASUKAWA ET AL.: "Kouzou kaiseki no tameno tanpakushitsu tairyou san seikei", JIKKEN IGAKU, vol. 13, no. 17, 1995, pages 2051 - 2055, XP002941558 *
YASUKAZU NAKAMURA ET AL.: "Codon usage tabulated from international DNA sequence databases: status for the year 2000", NUCLEIC ACIDS RESEARCH, vol. 28, no. 1, January 2000 (2000-01-01), pages 292, XP002941557 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112040A1 (en) * 2005-04-15 2006-10-26 Japan Tobacco Inc. NOVEL β-GALACOTSIDE-α-2,3-SIALYLTRANSFERASE, GENE ENCODING THE SAME AND METHOD OF PRODUCING THE SAME
WO2006112025A1 (en) * 2005-04-15 2006-10-26 Japan Tobacco Inc. NOVEL β-GALACTOSIDE-α-2,3-SIALYLTRANSFERASE, GENE ENCODING THE SAME AND METHOD FOR PRODUCING THE SAME
WO2006112253A1 (en) * 2005-04-15 2006-10-26 Japan Tobacco Inc. NOVEL β-GALACTOSIDE-α2,3-SIALYLTRANSFERASE, GENE ENCODING THE SAME, AND PROCESS FOR PRODUCTION OF THE SAME
US8030043B2 (en) 2005-04-15 2011-10-04 Japan Tobacco Inc. β-galactoside-α2,3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
JP4856636B2 (en) * 2005-04-15 2012-01-18 日本たばこ産業株式会社 Novel β-galactoside-α2,3-sialyltransferase, gene encoding the same, and method for producing the same
EP2434018A2 (en) 2005-04-15 2012-03-28 Japan Tobacco Inc. A novel beta-galactoside-alpha2, 3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
EP2434018A3 (en) * 2005-04-15 2012-04-25 Japan Tobacco Inc. A novel beta-galactoside-alpha2, 3-sialyltransferase, a gene encoding thereof, and a method for producing thereof
WO2008126993A1 (en) * 2007-04-13 2008-10-23 Gene Chem Inc Novel 2, 3-sialyltransferase and use thereof
US20210087599A1 (en) * 2017-07-26 2021-03-25 Jennewein Biotechnologie Gmbh Sialyltransferases and their use in producing sialylated oligosaccharides

Also Published As

Publication number Publication date
AU2001248749A1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
WO2001046400A1 (en) MODIFIED α-1,2-FUCOSYLTRANSFERASE GENE AND PROCESS FOR PRODUCING α-1,2-FUCOSYLTRANSFERASE AND FUCOSE-CONTAINING SUGAR CHAIN
JP4188561B2 (en) Glycosyltransferase and DNA encoding the enzyme
US20050266517A1 (en) Transformant containing transaldolase gene
WO2001077313A1 (en) α1,2-FUCOSYLTRANSFERASE AND PROCESS FOR PRODUCING FUCOSE-CONTAINING COMPLEX CARBOHYDRATE
JP4275529B2 (en) α2,3 / α2,8-sialyltransferase and method for producing sialic acid-containing complex carbohydrate
WO2001077314A1 (en) MODIFIED α2,3-SIALYLTRANSFERASE GENE AND PROCESS FOR PRODUCING α2,3-SIALYLTRANSFERASE AND COMPLEX SACCHARIDE CONTAINING SIALIC ACID
JP3939096B2 (en) N-acetylglucosamine 2-epimerase and DNA encoding the enzyme
JP5079272B2 (en) Method for producing cytidine-5&#39;-monophosphate-N-acetylneuraminic acid and N-acetylneuraminic acid-containing carbohydrates
US7223581B2 (en) F0F1-ATPase and DNA encoding the same
JPWO2002088364A1 (en) β1,3-galactosyltransferase and DNA encoding the enzyme
JP4142582B2 (en) Process for producing β1,3-N-acetylglucosamine transferase and N-acetylglucosamine-containing complex carbohydrate
WO2000065072A1 (en) Novel mannose isomerase and dna encoding the enzyme
US6911326B1 (en) GlmU polypeptide and DNA encoding the polypeptide
JPWO2002033070A1 (en) N-acetylneuraminic acid synthase and DNA encoding the enzyme
JP4124732B2 (en) Method for producing α1,4-galactose transferase and galactose-containing complex carbohydrate
JP2002335969A (en) alpha1,4-GLUCOSE/GALACTOSE TRANSFERASE AND DNA ENCODING THE ENZYME
WO2001077337A1 (en) α1,4-N-ACETYLGALACTOSAMINE TRANSFERASE GENE AND PROCESS FOR PRODUCING THIS ENZYME AND N-ACETYLGALACTOSAMINE-CONTAINING COMPLEX CARBOHYDRATE
JP2002119288A (en) Alpha 1,2-fucose transferase and dna encoding the enzyme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 575168

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase