WO2001076745A1 - Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays - Google Patents

Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays Download PDF

Info

Publication number
WO2001076745A1
WO2001076745A1 PCT/EP2001/004000 EP0104000W WO0176745A1 WO 2001076745 A1 WO2001076745 A1 WO 2001076745A1 EP 0104000 W EP0104000 W EP 0104000W WO 0176745 A1 WO0176745 A1 WO 0176745A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
biopolymer
tip
pipette tip
liquid
Prior art date
Application number
PCT/EP2001/004000
Other languages
English (en)
French (fr)
Inventor
Heinz Eipel
Markus Beier
Stefan Matysiak
Original Assignee
Basf Aktiengesellschaft
DEUTSCHES KREBSFORSCHUNGZENTRUM Stiftung des öffentlichen Rechtes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft, DEUTSCHES KREBSFORSCHUNGZENTRUM Stiftung des öffentlichen Rechtes filed Critical Basf Aktiengesellschaft
Priority to DE50103326T priority Critical patent/DE50103326D1/de
Priority to JP2001574254A priority patent/JP2003530549A/ja
Priority to DK01929522T priority patent/DK1274511T3/da
Priority to AU2001256267A priority patent/AU2001256267A1/en
Priority to IL15185001A priority patent/IL151850A0/xx
Priority to AT01929522T priority patent/ATE273754T1/de
Priority to EP01929522A priority patent/EP1274511B1/de
Priority to CA002405866A priority patent/CA2405866A1/en
Publication of WO2001076745A1 publication Critical patent/WO2001076745A1/de
Priority to IL151850A priority patent/IL151850A/en
Priority to NO20024875A priority patent/NO20024875L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00364Pipettes
    • B01J2219/00367Pipettes capillary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00418Means for dispensing and evacuation of reagents using pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/027Drop detachment mechanisms of single droplets from nozzles or pins electrostatic forces between substrate and tip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0418Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electro-osmotic flow [EOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1039Micropipettes, e.g. microcapillary tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the invention relates to a method and a device for microdosing the smallest amounts of liquid for biopolymer arrays or biopolymer fields.
  • micropolymer fields For the highly parallel analysis of biopolymers such as nucleic acids, proteins or polysaccharides, micropolymer fields, also known as microarrays, are used.
  • micropolymer fields In order to produce such fields or arrays, very small biopolymer samples in the range from picoliters to nanoliters dissolved or suspended in liquids have to be applied in regular arrangements on substrate surfaces, for example on slides. Conventional pipetting methods fail with such small amounts of liquid.
  • Notches or furrows are provided to accommodate a larger amount of sample substrate to be loaded on the pen. This could increase the capacity of the nibs, so that with one
  • the object of the invention is to supply biopolymer arrays in a simple and reliable manner with the smallest amounts of liquid.
  • this object is achieved in that in a method for microdosing the smallest amounts of liquid for the production of biopolymer arrays, the sample liquid to be analyzed being able to be supplied by means of a supply device which can be connected to a rinsing fluid, a reversible electrical voltage can be applied to the supply device, so that the resulting electro-osmotic flow can be used to transport the sample liquid onto a detection surface.
  • the application of an electrical voltage to a drive capillary and the feed device causes a biopolymer to be sucked out of a sample supply and, after the voltage has been reversed, the liquid to be metered is dispensed.
  • the liquid to be metered is dispensed.
  • the electrical voltage for transporting the sample substrate is applied between the capillary head and the capillary space of the drive capillary. This allows the electrical supply line to be supplied in the upper part of the glass capillary, at the end of the glass capillary opposite the pipetting tip.
  • the pipetting tip of the capillary space can be moved in three dimensions.
  • the pipette tip can be placed in the Z direction on the surface of the detection field before a voltage which causes liquid ejection is applied to the contents of the capillary cavity.
  • the drive capillary and its pipetting tip are connected by means of a valve to a buffer solution which is stored in a pressurized container, with the buffer solution being used to generate an electro-osmotic pressure and a cheap buffer solution appropriate pH and ion concentration is used.
  • the voltage-reversing switching elements are integrated in the electrical feed line for applying a voltage to a drive capillary and are connected to the contents of a buffer container via an electrical contact.
  • Buffer solution a flow resistance above a buffer solution container is accommodated on a branch of the drive capillary located behind a valve.
  • a bubble and void-free supply of the drive capillary with buffer fluid can be achieved.
  • the pipette tip of a drive capillary or the pipette tips of several drive capillaries can advantageously be moved via a simple X, Y positioning unit above the detection field, and the correct positions can be set in which the biopolymer stains are to be applied to the detection surface.
  • the pipette tip can also be positioned in the Z direction on the surface of the detection field via the positioning unit, for example a commercially available plotter.
  • the drive capillary or the pipette tip is advantageously made of glass or quartz.
  • the pipette tip of the microcapillary is advantageously drawn out with a tip drawn out to a small diameter and having a tip diameter in the range between 10 ⁇ m and 1000 ⁇ m.
  • the diameter range of the pipetting tip between 50 ⁇ m and 300 ⁇ m is particularly preferred.
  • connection is provided between the pipetting tip and the drive capillary for generating an electro-osmotic flow, a platinum wire electrode being accommodated in the capillary head of the drive capillary, and the further electrical connection of the end of the drive capillary being immersed in an electrically contacted buffer vessel.
  • the voltage circuit on the drive capillary is only interrupted by the pole-reversal switch and can be used by this in a corresponding to the required loading frequency Biopolymer spots on the detection surface are interrupted or closed.
  • the single figure shows the schematically represented structure of a device proposed according to the invention for applying the smallest amounts of liquid in the pico or nanoliter range.
  • This capillary is connected at its end via a micro tube to a drive capillary 2 made of glass or quartz, as is customary in gas chromatography.
  • a platinum wire electrode 3 is inserted into the hose connection of the micro hose for producing an electrical contact.
  • the fluid accommodated in the buffer container 14 is continuously supplied by a line branch 16, in which a flow resistance 13 is accommodated, so that the electrical connection 4 is always connected to the fluid in the drive capillary 2.
  • the pipetting tip 1 of a glass capillary is first moved over a waste container 7 using an XY positioning device, for example in the form of a commercially available graphic plotter or another XY positioning device. Subsequently, a valve 5 arranged in front of the drive capillary 2 is briefly opened, and so the drive capillary 2 together with the pipette tip 1, positioned above the waste container 1, continuously with fresh buffer solution, its pH and Ion concentration for generating an electro-osmotic flow in the drive capillary 2 is suitably set, from which a pressurized storage container 11 is filled via a gas connection 6 and thus the pipette tip 1 is simultaneously blown out over the waste container 7.
  • an XY positioning device for example in the form of a commercially available graphic plotter or another XY positioning device.
  • the flow resistance 13 located in the branch 16 mentioned, for example in the form of a frit, causes a small amount of buffer fluid to be pressed into the buffer container 14, so that it is ensured that the drive capillary 2, which opens into the pipette tip, is always continuous and continuous extending buffer supply is applied.
  • a switching element 10 shown here in a schematic representation, is added.
  • the switching contacts of the switching element 10 are followed by two electrical voltage sources, designated by reference numerals 12 a and 12 b, which are connected to ground via a ground 17.
  • a suitably polarized electrical voltage for generating a backward-directed electro-osmotic flow in the drive capillary 2 is applied to the two electrical connections 3 and 4 via the switch 10.
  • the pipette tip 1 seen in the Z direction, is immersed in the sample vessel 8, so that 1 sample substrate can be sucked in through the opening of the pipette tip in accordance with the applied voltage.
  • the automatic micro pipettor ie the XY positioning device, positions the pipettor tip 1 over the substrate to be loaded.
  • the substrate can be, for example, a slide 9, as is often used in microscopy.
  • a slide surface 18 is provided on the slide 9, onto which the individual droplets of biopolymer emerging from the pipette tip 1 are applied.
  • the detection surface 18 can also be a chemical binding or the biopolymer be physico-chemically interacting surface.
  • the biopolymer stains are applied to the slide surface 18 by means of the XY feed device, which also enables the pipette tip 1 to be lowered in the direction of the detection field 18.
  • the switch 10 applies a reversed electrical voltage to the drive capillary for a preselectable time 2 is applied, whereby the liquid to be pipetted is pressed out of the pipette tip 1 by the electro-osmotic flow now running in the opposite direction and exits onto the detection surface 18 of the slide 9.
  • the sample liquid can be dispensed both onto the detection surface 18 and into another vessel.
  • a single voltage source with a corresponding switchover element can also be used; other variants, for example of the ground connection, are also entirely possible.
  • the amount of liquid dispensed can be metered or when the individual biopolymer spots are generated on the detection surface 18 of the slide are kept approximately constant.
  • a biopolymer pattern 19 can be produced on the detection surface 18 of the slide 9, which contains biopolymer spots which are arranged at regular intervals 20 from one another both in the X and in the Y direction.
  • a suitably polarized electrical voltage can additionally be applied between the connection 3 of the pipetting tip 1 and an electrically conductive surface can be placed on the slide 9. This can cause a Electrophoretic deposition of electrically charged biopolymer species takes place on the slide shortly after their application, which is very necessary for further analysis and sample evaluation.
  • the head of the drive capillary 2 is accommodated in a capillary head 21, which in turn is enclosed by a socket 22, for example a short piece of tubing.
  • the glass or quartz pipette tip 1 which has a cavity 23 into which the sample liquid to be pipetted is sucked in or ejected from the cavity 23 when the electro-osmotic flow is reversed, is suitably embedded in the holder 22.
  • the pipette tip 1, which is preferably made of glass, can contain openings in the range between 10 ⁇ m and 1000 ⁇ m, a diameter between 50 ⁇ m and 300 ⁇ m preferably being formed at the pipette tip opening 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Mikrodosierung kleinster Flüssigkeitsmengen für die Herstellung von Biopolymerrarrays. Die zu analysierenden Probenflüssigkeiten werden mittels einer Zuführeinrichtung (1) zugeführt, die mit einem Spülfluidvorrat verbindbar ist. An die Zuführeinrichtung (1) ist eine umpolbare elektrische Spannung (10) anlegbar, so das der sich einstellende elektro-osmotische Fluss zum Transport der Probenflüssigkeiten auf ein Detektionsfeld nutzbar ist.

Description

Verfahren und Vorrichtung zur Mikrodosierung kleinster Flüssigkeitsmengen für Biopolymerarrays
Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Mikrodosierung kleinster Flüssigkeitsmengen für Biopolymerarrays oder Biopolymerfelder.
Zur hochparallelen Analytik von Biopolymeren wie beispielsweise Nucleinsäuren, Proteinen oder Polysacchariden werden Mikropolymerfelder, auch als Mikroarrays bezeichnet, eingesetzt. Zur Herstellung solcher Felder oder Arrays müssen sehr kleine in Flüssigkeiten gelöste oder suspendierte Biopolymerproben im Bereich von Picolitern bis Nanolitern in regelmäßigen Anordnungen auf Substratoberflächen beispielsweise auf Objektträger aufgebracht werden. Herkömmliche Pipettierverfahren versagen bei solchen kleinen Flüssigkeitsmengen.
Da eine genaue Dosierung der zu übertragenden Menge bisher sehr schwierig ist, wird meist auf eine genaue Dosierung verzichtet, und die Mengen werden durch eine mechanisch kontaktierende Anordnung, ähnliche einer Schreibfeder, übertragen. Solche eingesetzten Schreibfedern haben jedoch nur eine begrenzte
Flüssigkeitsaufnahmekapazität, so daß das Beschicken einer Vielzahl von
Substratträgeroberflächen mit einer Schreibfederfüllung nicht möglich ist. Zur Kapazitätserweiterang der eingesetzten Schreibfedern hat man versucht, an diesen
Einkerbungen oder Furchen vorzusehen, um eine größere Menge von zu beschickendem Probensubstrat an der Schreibfeder aufzunehmen. Damit ließ sich zwar die Kapazität der Schreibfedern erhöhen, so daß mit einer
Schreibfederfüllung eine größere Anzahl von Biopolymerflecken auf einen Objektträger aufgebracht werden konnte, jedoch gestaltete sich die Reinigung einer solcherart beschaffenen, mit Furchen und Schlitzen versehenen Schreibfeder sehr schwierig. Es muß dafür Sorge getragen werden, daß auch die die Kapazität der Schreibfeder erweiternden Furchen und Schlitze von Resten aus vorhergehenden Proben Beschickungsläufe gereinigt werden, wenn mit der Schreibfeder eine neue Biopolymerprobe auf einen zu beschickenden Objektträger aufgebracht werden soll.
Um die Meßfehler bei der Analytik mit Hilfe solcher Biopolymerarrays ausreichend klein zu halten, werden üblicherweise interne Standards verwendet.
Angesichts der aus dem Stand der Technik bekannten Lösungen und der diesen anhaftenden Nachteile liegt der Erfindung die Aufgabe zugrunde, Biopolymerarrays auf eine einfache und zuverlässig erfolgende Weise mit geringsten Flüssigkeitsmengen zu beschicken.
Erfindungsgemäß wird dieses Aufgabe dadurch gelöst, daß bei einem Verfahren zur Mikrodosierung kleinster Flüssigkeitsmengen für die Herstellung von Biopolymerarrays, wobei die zu analysierenden Probenflüssigkeit mittels einer Zuführeinrichtung zuführbar sind, die mit einem Spülfluid verbindbar ist, an die Zuführeinrichtung eine umpolbare elektrische Spannung anlegbar ist, so daß der sich einstellende elektro-osmotische Fluß zum Transport der Probenflüssigkeit auf eine Detektionsoberfläche nutzbar ist.
Die mit dem erfindungsgemäß vorgeschlagenen Verfahren erzielbaren Vorteile sind vor allem daran zu erblicken, daß mittels einer an die Pipettierspitze des das Probensubstrat aufnehmenden Kapillarröhrchens anlegbaren Spannung eine genaueste Dosierung kleinster Flüssigkeitsmengen zu dem Zeitpunkt erfolgen kann, an dem die Pipettierspitze an die Detektionsfläche des jeweiligen Objektträgers angestellt ist. Werden mehrere parallel zueinander betriebene Pipettierspitzen von Kapillarröhren durch Anlegen der den Transport der Probenflüssigkeit erzeugenden Spannung verwendet, so lassen sich in präziser Weise unter Erzielung hochgenauer Abstände voneinander, einzelne Biopolymerflecken auf den Detektionsoberflächen von Objektträgern kostengünstig und schnell anordnen.
In weiterer Ausgestaltung des erfindungsgemäß vorgeschlagenen Verfahrens wird durch Anlegen einer elektrischen Spannung an eine Antriebskapillare und der Zuführeinrichtung das Ansaugen eines Biopolymers aus einem Probenvorrat und nach Umpolen der Spannung die Abgabe der zu dosierenden Flüssigkeit bewirkt. Zur Abgabe der Probenflüssigkeitsmengen und zur Erzeugung der Biopolymerflecken auf der Oberfläche des Detektionsfeldes bedarf es demnach keiner mechanisch zu betätigenden Komponenten innerhalb des Hohlraumes des Kapillarröhrchens mehr.
Gemäß einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäß vorgeschlagenen Verfahrens wird die elektrische Spannung zum Transport des Probensubstrates zwischen Kapillarkopf und Kapillarraum der Antriebskapillare angelegt. Dies gestattet eine Zuführung der elektrischen Zuleitung im oberen Teil der Glaskapillare, an dem der Pipettierspitze gegenüberliegenden Ende der Glaskapillare.
Gemäß eines weiteren vorteilhaften Gedankens der erfindungsgemäßen Lösung ist die Pipettierspitze des Kapillarraumes in drei Dimensionen verfahrbar. Neben einer Verfahrbarkeit der Pipettierspitze in X bzw. Y-Richtung oberhalb des Detektionsfeldes läßt sich die Pipettierspitze in Z-Richtung an die Oberfläche des Detektionsfeldes anstellen, bevor eine einen Flüssigkeitsausstoß bewirkende Spannung an dem Inhalt des Kapillarhohlraums angelegt wird.
Zur Vermeidung von Probenflüssigkeitsverlusten und Störungen im Ausbringen des Biopolymermusters auf der Detektionsoberfläche, erfolgt eine Umpolung der elektrischen Spannung, die einen Austritt des Probensubstrates aus dem Kapillarraum der Kapillarröhre bewirkt, in der an die Detektionsoberfläche angestellten Position der Pipettierspitze. Schließlich ist gemäß des erfindungsgemäß vorgeschlagenen Verfahrens zur Dosierung kleinster Flüssigkeitsmengen vorgesehen, die Antriebskapillare und deren Pipettierspitze mittels eines Ventiles mit einer Pufferlösung in Verbindung zu bringen, die in einem druckbeaufschlagten Behälter bevorratet wird, wobei als Pufferlösung der Erzeugung eines elektro-osmotischen Druckes günstige Pufferlösung mit entsprechendem pH- Wert und Ionenkonzentration Verwendung findet.
Schließlich ist vorgesehen, über eine auf der Oberfläche des Objektträgers, d. h. auf die Detektionsoberfläche aufzubringende leitfähige Schicht eine elektrophoretische Abscheidung geladener Biopolymerspezies auf dem Objektträger vorzunehmen. Mit dieser Variante des erfindungsgemäß vorgeschlagenen Verfahrens können Analyseschritte nachfolgender Analyseoperationen bereits beim Aufbringen und Erzeugen der Biopolymerarrays vorgenommen werden.
Gemäß der erfindungsgemäß weiter vorgeschlagenen Vorrichtung zur Mikrodosierung kleinster Flüssigkeiten, sind in die elektrische Zuleitung zum Anlegen einer Spannung an einer Antriebskapillare die Spannung umpolende Schaltelemente integriert, die über einen elektrischen Kontakt mit dem Inhalt eines Pufferbehälters in Verbindung stehen. Mit der erfindungsgemäß vorgeschlagenen Vorrichtung kann durch einfaches Umpolen der Spannung aufgrund des elektro-osmotischen Flusses im Probensubstrat ein Ausbringen kleinster Flüssigkeitsmengen durch die Pipettierspitze im abgesenkten Zustand oberhalb eines Detektionsfeldes eines Objektträgers erfolgen.
Zur Sicherstellung einer kontinuierlichen Versorgung der Antriebskapillare mit
Pufferlösung, ist an einem hinter einem Ventil befindlichen Abzweig der Antriebskapillare ein Strömungswiderstand oberhalb eines Pufferlösungsbehälters aufgenommen. Durch geeignete Dimensionierung des Strömungswiderstandes ist eine blasen- und hohlraumfreie Versorgung der Antriebskapillare mit Pufferfluid erzielbar.
In vorteilhafter Weise läßt sich die Pipettierspitze einer Antriebskapillare oder die Pipettierspitzen mehrerer Antriebskapillaren über eine einfache gestaltete X-, Y- Positioniereinheit oberhalb des Detektionsfeldes verfahren und es lassen sich dadurch die richtigen Positionen einstellen, in denen die Biopolymerflecken auf die Detektionsfläche aufzubringen sind. Neben der Verfahrbarkeit der Pipettierspitze in X- bzw. Y-Richtung kann über die Positioniereinheit - beispielsweise ein handelsüblicher Plotter - auch ein Anstellen der Pipettierspitze in Z-Richtung an die Oberfläche des Detektionsfeldes erfolgen.
Vorteilhafterweise ist die Antriebskapillare bzw. die Pipettierspitze aus Glas oder Quarz gefertigt.
Die Pipettierspitze der Mikrokapillare ist in vorteilhafter Weise mit einer auf einen kleinen Durchmesser ausgezogenen Spitze mit einem Spitzendurchmesser im Bereich zwischen 10 μm und 1000 μm ausgezogen. Besonders bevorzugt ist der Durchmesserbereich der Pipettierspitze zwischen 50 μ m und 300 μm.
Zur Sicherstellung einer Masseverbindung ist zwischen Pipettierspitze und Antriebskapillare eine elektrische Erdung vorgesehen.
Schließlich ist zwischen Pipettierspitze und Antriebskapillare eine Verbindung vorgesehen zur Erzeugung eines elektro-osmotischen Flusses, wobei eine Platindraht-Elektrode im Kapillarkopf der Antriebskapillare aufgenommen ist, sowie der weitere elektrische Anschluß des Endes der Antriebskapillare in ein elektrisch kontaktiertes Puffergefaß eintaucht. Somit ist der Spannungskreis an der Antriebskapillare lediglich durch den Umpolschalter unterbrochen und kann durch diesen in einer entsprechend der geforderten Beschickungsfrequenz der Biopolymerflecken auf die Detektionsfläche unterbrochen bzw. geschlossen werden.
Anhand der Zeichnung wird die Erfindung nachfolgend detailliert erläutert.
In der einzigen Figur ist der schematisch wiedergegebene Aufbau einer erfindungsgemäß vorgeschlagenen Vorrichtung zur Aufbringung kleinster Flüssigkeitsmengen im Pico- bzw. Nanoliterbereich dargestellt.
Als Pipettierspitze 1 zum Aufbringen einer Probenflüssigkeit auf die Detektionsfläche 18 eines Objektträgers 9 wird eine sehr kostengünstig herstellbare Glaskapillare mit einer auf einen Durchmesser von beispielsweise 200 μm ausgezogenen Spitze verwendet. Diese Kapillare ist an ihrem Ende über einen Mikroschlauch an eine Antriebskapillare 2 aus Glas oder Quarz, wie sie in der Gaschromatographie üblich ist, angeschlossen. In den Schlauchanschluß des Mikroschlauches ist eine Platindrahtelektrode 3 zur Herstellung eines elektrischen Kontaktes eingesteckt. Am gegenüberliegenden Ende der Antriebskapillare 2 befindet sich ein zweiter elektrischer Anschluß 4, der in den in einem Pufferbehälter 14 aufgenommenen Inhalt von Pufferlösung hineinragt. Das in dem Pufferbehälter 14 aufgenommene Fluid wird durch einen Leitungsabzweig 16, in dem ein Strömungswiderstand 13 aufgenommen ist, kontinuierlich versorgt, so daß der elektrische Anschluß 4 stets mit dem Fluid in der Antriebskapillare 2 in Verbindung steht.
Zu Beginn eines Pipettiervorganges wird zunächst die Pipettierspitze 1 einer Glaskapillare mit einer X-Y-Positioniervorrichtung beispielsweise in Gestalt eines handelsüblichen graphischen Plotters oder einer anderen X-Y- Positioniereinrichtung über einen Abfallbehälter 7 gefahren. Anschließend wird ein vor der Antriebskapillare 2 angeordnetes Ventil 5 kurzzeitig geöffnet und so die Antriebskapillare 2 samt Pipettierspitze 1, positioniert über dem Abfallbehälter 1, durchgehend mit frischer Pufferlösung, deren pH- und Ionenkonzentration zur Erzeugung eines elektro-osmotischen Flusses in der AntriebskapiUare 2 geeignet eingestellt ist, aus der über einen Gasanschluß 6 „ unter Druck stehender Vorratsbehälter 11 gefüllt und somit gleichzeitig die Pipettierspitze 1 über dem Abfallbehälter 7 ausgeblasen. Der im erwähnten Abzweig 16 befindliche Strömungswiderstand 13, beispielsweise in Form einer Fritte bewirkt, daß eine kleine Menge Pufferfluid in den Pufferbehälter 14 gedrückt wird, so daß sichergestellt ist, daß die AntriebskapiUare 2, die in die Pipettierspitze mündet, stets mit einem durchgehend und kontinuierlich sich erstreckenden Puffervorrat beaufschlagt ist.
Zwischen der Zuleitung 3 und dem elektrischen Kontakt 4 zum Pufferbehälter 14 ist ein Schaltelement 10, hier in schematischer Darstellung wiedergegeben, aufgenommen. An die Schaltkontakte des Schaltelementes 10 schließen sich zwei elektrische Spannungsquellen, mit Bezugszeichen 12 a bzw. 12 b bezeichnet, an, die über eine Erdung 17 mit Masse verbunden sind.
Zum Ansaugen der im Biopolymergefäß 8 bereitgestellten zu pipettierenden Biopolymerlösung wird über den Schalter 10 an die beiden elektrischen Anschlüsse 3 bzw. 4 eine geeignet gepolte elektrische Spannung zur Erzeugung eines rückwärts gerichteten elektro-osmotischen Flusses in der AntriebskapiUare 2 angelegt. Zu diesem Zeitpunkt ist die Pipettierspitze 1 in Z-Richtung gesehen in das Probengefäß 8 eingetaucht, so daß entsprechend der angelegten Spannung durch die Öffnung der Pipettierspitze 1 Probensubstrat angesaugt werden kann. Ist genügend Pipettiergut aus dem Biopolymergefäß 8, hier beispielsweise ein Töpfchen einer Mikrotiterplatte angesaugt, positioniert der Mikro- Pipettierautomat, d.h. die X-Y-Positioniervorrichtung die Pipettierspitze 1 über das zu beschickende Substrat. Das Substrat kann beispielsweise ein Objektträger 9 sein, wie sie in der Mikroskopie häufig verwendet werden. Auf dem Objektträger 9 ist eine Objektträgeroberfläche 18 vorgesehen, auf die die einzelnen aus der Pipettierspitze 1 austretenden Biopolymertröpfchen aufgebracht werden. Die Detektionsfläche 18 kann auch eine das Biopolymer chemisch bindende oder physiko-chemisch wechselwirkende Oberfläche sein. Mittels der X-Y- Zufuhrvorrichtung, welche zudem eine Absenkung der Pipettierspitze 1 in Richtung auf das Detektionsfeld 18 ermöglicht, erfolgt der Auftrag der Biopolymerflecken auf die Objektträgeroberfläche 18. Zu diesem Zweck wird über den Schalter 10 eine umgepolte elektrische Spannung für eine vorwählbare Zeit an die AntriebskapiUare 2 angelegt, wodurch die zu pipettierende Flüssigkeit aus der Pipettierspitze 1 durch den nun in umgekehrter Richtung laufenden elektro-osmotischen Fluß herausgedrückt wird und auf die Detektionsoberfläche 18 des Objektträgers 9 austritt. Dadurch läßt sich die Probenflüssigkeit sowohl auf die Detektionsoberfläche 18 als auch in ein anderes Gefäß ausbringen. Alternativ zur Verwendung zweier Spannungsquellen kann auch eine einzige Spannungsquelle mit einem entsprechenden Umschaltelement verwendet werden, auch sind andere Varianten beispielweise der Massenverbindung durchaus möglich.
Durch entsprechende Einstellung der den elektro-osmotischen Fluß beeinflussenden Parameter, wie hauptsächlich der Ionenkonzentration und des pH- Wertes des Puffers sowie der Höhe der angelegten elektrischen Spannung, kann die Menge der abgegebenen Flüssigkeitsmenge dosiert bzw. bei der Erzeugung der einzelnen Biopolymerflecken auf der Detektionsoberfläche 18 des Objektträgers annähernd konstant gehalten werden. Dadurch läßt sich ein Biopolymermuster 19 auf der Detektionsoberfläche 18 des Objektträgers 9 erzeugen, welches Biopolymerflecken enthält, die in regelmäßigen Abständen 20 voneinander sowohl in X- als auch in Y-Richtung angeordnet sind.
Zur Beschleunigung und zur elektrochemischen Aktivierung der Anbindung der Biopolymerflecken an eine geeignete, mit dem Biopolymer chemisch oder physiko-chemisch Wechsel wirkende Oberfläche 18 des Objektträgers 9, kann nach Kontaktierung der Pipettierspitze 1 zusätzlich eine geeignet gepolte elektrische Spannung zwischen dem Anschluß 3 der Pipettierspitze 1 und einer elektrisch leitenden Oberfläche auf dem Objektträger 9 angelegt werden. Dadurch kann eine elektrophoretische Abscheidung elektrisch geladener Biopolymerspezies bereits auf dem Objektträger kurz nach deren Aufbringen erfolgen, was für eine weitere Analyse und Probenauswertung sehr forderlich ist.
Wie Fig. 1 entnommen werden kann, ist der Kopf der Antriebskapillare 2 in einem Kapillarkopf 21 aufgenommen, der seinerseits von einer Fassung 22, beispielsweise ein kurzes Schlauchstück, umschlossen ist. In die Fassung 22 ist in geeigneter Weise die gläserne oder aus Quarz beschaffene Pipettierspitze 1 eingelassen, die einen Hohlraum 23 aufweist, in den die zu pipettierende Probenflüssigkeit angesaugt bzw. bei Umkehrung des elektro-osmotischen Flusses aus dem Hohlraum 23 ausgestoßen wird. Die Pipettierspitze 1, die vorzugsweise aus Glas beschaffen ist, kann Öffnungen im Bereich zwischen 10 μm und 1000 μm enthalten, wobei vorzugsweise an der Pipettierspitzenöffnung 1 ein Durchmesser zwischen 50 μm und 300 μm ausgebildet ist.
Bezugszeichenliste
Pipettierspitze
AntriebskapiUare elektrischer Kontakt elektrischer Anschluß
Ventil
Gasanschluß
Abfallbehälter
Biopolymergefäß
Objektträger
Umpolschalter
Vorratsflasche a elektrische Spannungsquelle + b elektrische Spannungsquelle -
Strömungswiderstand
Pufferbehälter
Druckleitung
T-Stück
Masseanschluß
Obj ektträgeroberfläche
Biopolymermuster
Abstand der Biopolymerflecke
Kapillarkopf
Fassung
Kapillarhohlraum
Pufferlösung

Claims

Patentansprüche
1. Verfahren zur Mikrodosierung kleinster Flüssigkeitsmengen für die Herstellung von Biopolymerarrays, wobei die zu analysierenden Proben mittels einer Zuführeinrichtung (1, 23) zuführbar sind, die mit einem Spülfluid (24) verbindbar ist, dadurch gekennzeichnet, daß zwischen die Zuführeinrichtung (1, 23) und einem Puffergefäß (14) eine umpolbare elektrische Spannung anlegbar ist, so daß der sich einstellende elektro- osmotische Fluß zum Transport der Probenflussigkeiten auf eine
Detektionsoberfläche (18) nutzbar ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß durch Anlegen einer elektrischen Spannung an einer AntriebskapiUare (2) der Zuführeinrichtung (1, 23) das Ansaugen eines Biopolymeres aus einem Gefäß
(8) und nach Umpolen der Spannung die Abgabe der zu dosierenden Flüssigkeit des Biopolymers bewirkt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Pipettierspitze (1) des Kapillarraumes (23) dreidimensional verfahrbar ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Umpolung der elektrischen Spannung, die einen Austritt der Probenflüssigkeit aus dem Kapillarraum (23) bewirkt, nach Erreichen der an die Detektionsoberfläche (18) angestellten Position der Pipettierspitze (1) erfolgt.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die AntriebskapiUare (2) und die Pipettierspitze (1) mittels eines Ventiles (5) mit einer Pufferlösung (24) versorgbar sind, die in einem druckbeaufschlagten Behälter bevorratet wird und einen für die Erzeugung eines elektro-osmotischen Druckes geeigneten pH- Wert, sowie eine geeignete Ionenkonzentration aufweist.
6. Verfahren nach Ansprach 1, dadurch gekennzeichnet, daß durch eine elektrisch leitfähige Schicht auf der Objektträgeroberfläche (18) eine elektrophoretische Abscheidung geladener Biopolymerspezies auf dem Objektträger (9) vorgenommen wird.
7. Vorrichtung zur Mikrodosierung kleinster Flüssigkeitsmengen für die Herstellung von Biopolymerarrays, wobei die zu analysierenden
Probensubstrate mittels einer Zuführeinrichtung (1, 23) zuführbar sind, die mit einem Spülfluid (24) verbindbar ist, dadurch gekennzeichnet, daß in die elektrischen Zuleitung (3) zum Anlegen einer Spannung an eine AntriebskapiUare (2) die Spannung umpolende Schaltelemente (10) integriert sind, die über einen elektrischen Kontakt (4) mit dem Inhalt eines
Pufferlösungsbehälters (14) verbunden sind.
8. Vorrichtung nach Ansprach 7, dadurch gekennzeichnet, daß in einen Abzweig (16) der AntriebskapiUare (2) ein Strömungswiderstand (13) zur Sicherstellung einer durchgehenden Versorgung der AntriebskapiUare (2) und zur Spülung mit einer Pufferlösung (24) eingebracht ist.
9. Vorrichtung nach Ansprach 8, dadurch gekennzeichnet, daß zur Positionierung der Pipettierspitze (1) in Bezug auf das Detektionsfeld (18) eine X-, Y-Positioniervorrichtung vorgesehen ist, die ein Anstellen der
Pipettierspitze (1) an die Oberfläche des Objektträgers (9) bewirkt.
10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die AntriebskapiUare (2) aus Glas oder Quarz besteht.
11. Vorrichtung nach Ansprach 8, dadurch gekennzeichnet, daß die Pipettierspitze (1) aus einer Glaskapillare mit einer auf einen kleinen Durchmesser ausgezogenen Spitze mit einem Spitzendurchmesser im Bereich zwischen 10 μm und 1000 μm ausgezogen ist.
12. Vorrichtung nach Ansprach 11, dadurch gekennzeichnet, daß die Pipettierspitze (1) aus einer Glaskapillare mit einer auf einen kleinen Durchmesser, ausgezogenen Spitze mit einem Durchmesser im Bereich zwischen 50 μm und 300 μm ausgezogen ist.
13. Vorrichtung nach Ansprach 8, dadurch gekennzeichnet, daß eine elektrische Erdung zwischen Pipettierspitze (1) und AntriebskapiUare (2) vorgesehen ist.
14. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß eine Verbindung zwischen Pipettierspitze (1) und AntriebskapiUare (2) vorgesehen ist zur
Erzeugung eines elektro-osmotischen Flusses, wobei eine Platindrahtelektrode (3) im Kapillarkopf (21) sowie ein weiterer elektrischer Anschluß (4) am Ende der AntriebskapiUare (2) in ein elektrisch kontaktiertes Puffergefaß (14) eintaucht.
PCT/EP2001/004000 2000-04-10 2001-04-06 Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays WO2001076745A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE50103326T DE50103326D1 (de) 2000-04-10 2001-04-06 Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays
JP2001574254A JP2003530549A (ja) 2000-04-10 2001-04-06 バイオポリマーアレイ用の極少量の液体を微量計量するための方法および装置
DK01929522T DK1274511T3 (da) 2000-04-10 2001-04-06 Fremgangsmåde og indretning til mikrodosering af de mindste væskemængder til biopolymerarrays
AU2001256267A AU2001256267A1 (en) 2000-04-10 2001-04-06 Method and device for microdosing the smallest amounts of liquid for biopolymer arrays
IL15185001A IL151850A0 (en) 2000-04-10 2001-04-06 Method and device for microdosing the smallest amounts of liquid for biopolymer arrays
AT01929522T ATE273754T1 (de) 2000-04-10 2001-04-06 Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays
EP01929522A EP1274511B1 (de) 2000-04-10 2001-04-06 Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays
CA002405866A CA2405866A1 (en) 2000-04-10 2001-04-06 Method and device for microdosing the smallest amounts of liquid for biopolymer arrays
IL151850A IL151850A (en) 2000-04-10 2002-09-19 METHOD AND DEVICE FOR MINIMUM DOSAGE OF THE MOST MINIMUM AMOUNT OF LIQUID FOR BIOPOLYMER ARRANGEMENTS
NO20024875A NO20024875L (no) 2000-04-10 2002-10-09 FremgangsmÕte og anordning for mikromÕling av ekstremt smÕ mengder av viske for biopolymerrekker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10017791.3 2000-04-10
DE10017791A DE10017791A1 (de) 2000-04-10 2000-04-10 Verfahren und Vorrichtung zur Mikrodosierung kleinster Flüssigkeitsmengen für Biopolymerarrays

Publications (1)

Publication Number Publication Date
WO2001076745A1 true WO2001076745A1 (de) 2001-10-18

Family

ID=7638240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/004000 WO2001076745A1 (de) 2000-04-10 2001-04-06 Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays

Country Status (16)

Country Link
US (1) US20030138358A1 (de)
EP (1) EP1274511B1 (de)
JP (1) JP2003530549A (de)
KR (1) KR20030003718A (de)
CN (1) CN1172747C (de)
AT (1) ATE273754T1 (de)
AU (1) AU2001256267A1 (de)
CA (1) CA2405866A1 (de)
CZ (1) CZ20023371A3 (de)
DE (2) DE10017791A1 (de)
DK (1) DK1274511T3 (de)
ES (1) ES2227181T3 (de)
IL (2) IL151850A0 (de)
NO (1) NO20024875L (de)
RU (1) RU2280507C2 (de)
WO (1) WO2001076745A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858593B2 (en) 2000-08-05 2005-02-22 Smithkline Beecham Corporation Anti-inflammatory androstane derivative compositions

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059626A1 (de) * 2001-01-25 2002-08-01 Tecan Trading Ag Pipettiervorrichtung
DE10159207B4 (de) * 2001-11-29 2005-06-16 Cybio Incusys Gmbh Vorrichtung zur automatischen Bereitstellung gekühlter Probenflüssigkeit zur Aufnahme durch einen Multipipettierautomaten
DE102004001916B4 (de) * 2004-01-14 2006-02-16 Max Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Vorrichtung und Verfahren zur Probenahme
EP1464965B1 (de) * 2004-01-15 2006-03-08 Agilent Technologies Inc. a Delaware Corporation Positionierungssystem und Verfahren für eine Flüssigkeitstransfereinrichtung
KR100666825B1 (ko) 2005-03-26 2007-01-11 한국표준과학연구원 전기전도성 관을 이용한 전기삼투압류 구동 극미세 피펫장치
SG186677A1 (en) * 2005-04-25 2013-01-30 Advanced Tech Materials Liner-based liquid storage and dispensing systems with empty detection capability
CN102101634B (zh) 2005-06-06 2014-12-17 高级技术材料公司 流体储存和分配系统以及方法
EP1895308A1 (de) * 2006-09-01 2008-03-05 Agilent Technologies, Inc. Tropfenbasierte Flüssigkeitsübertragung auf mikrofluidische Vorrichtungen
US9816130B2 (en) 2011-12-22 2017-11-14 Somagenics, Inc. Methods of constructing small RNA libraries and their use for expression profiling of target RNAs
CN103008037B (zh) 2012-12-31 2015-04-01 浙江大学 一种具有皮升级精度的自动化微液滴阵列筛选系统的使用方法
EP2961852A4 (de) * 2013-03-01 2016-09-14 Somagenics Inc Verfahren, zusammensetzungen und systeme zur analyse von nukleinsäuremolekülen
JP2015102370A (ja) * 2013-11-22 2015-06-04 日本写真印刷株式会社 供給機器、処理装置及び供給方法
US11014957B2 (en) 2015-12-21 2021-05-25 Realseq Biosciences, Inc. Methods of library construction for polynucleotide sequencing
CN106492895B (zh) * 2016-12-08 2019-01-29 北京工业大学 一种制备纳米尖端移液管的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US5384093A (en) * 1992-04-03 1995-01-24 Toa Medical Electronics Co., Ltd. Apparatus for aspirating and discharging a liquid sample
WO1998029736A1 (en) * 1996-12-31 1998-07-09 Genometrix Incorporated Multiplexed molecular analysis apparatus and method
US5900130A (en) * 1997-06-18 1999-05-04 Alcara Biosciences, Inc. Method for sample injection in microchannel device
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784737A (en) * 1986-04-18 1988-11-15 The United States Department Of Energy Electromicroinjection of particles into living cells
JPH0682063B2 (ja) * 1986-10-16 1994-10-19 富士写真フイルム株式会社 液面検出装置
US5045172A (en) * 1987-11-25 1991-09-03 Princeton Biochemicals, Inc. Capillary electrophoresis apparatus
JPH063644A (ja) * 1992-06-23 1994-01-14 Casio Comput Co Ltd 液晶プロジェクタ
JPH06265447A (ja) * 1993-03-16 1994-09-22 Hitachi Ltd 微量反応装置およびこれを使用する微量成分測定装置
EP0909385B1 (de) * 1996-06-28 2008-09-10 Caliper Life Sciences, Inc. Verfahren zum Transport von Fluidproben durch einen mikrofluidischen Kanal
DE19628178C1 (de) * 1996-07-12 1997-09-18 Bruker Franzen Analytik Gmbh Verfahren zum Beladen von Probenträgern für Massenspektrometer
US6235471B1 (en) * 1997-04-04 2001-05-22 Caliper Technologies Corp. Closed-loop biochemical analyzers
JP2002503336A (ja) * 1997-05-16 2002-01-29 アルバータ リサーチ カウンシル 微量流通システムおよびその使用方法
JP2000002675A (ja) * 1998-06-12 2000-01-07 Asahi Chem Ind Co Ltd キャピラリー光熱変換分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US5384093A (en) * 1992-04-03 1995-01-24 Toa Medical Electronics Co., Ltd. Apparatus for aspirating and discharging a liquid sample
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
WO1998029736A1 (en) * 1996-12-31 1998-07-09 Genometrix Incorporated Multiplexed molecular analysis apparatus and method
US5900130A (en) * 1997-06-18 1999-05-04 Alcara Biosciences, Inc. Method for sample injection in microchannel device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858593B2 (en) 2000-08-05 2005-02-22 Smithkline Beecham Corporation Anti-inflammatory androstane derivative compositions

Also Published As

Publication number Publication date
AU2001256267A1 (en) 2001-10-23
NO20024875L (no) 2002-11-04
CA2405866A1 (en) 2001-10-18
ES2227181T3 (es) 2005-04-01
IL151850A (en) 2006-08-01
DE50103326D1 (de) 2004-09-23
JP2003530549A (ja) 2003-10-14
DE10017791A1 (de) 2001-10-11
DK1274511T3 (da) 2004-10-18
RU2280507C2 (ru) 2006-07-27
CN1422185A (zh) 2003-06-04
CZ20023371A3 (cs) 2003-04-16
ATE273754T1 (de) 2004-09-15
CN1172747C (zh) 2004-10-27
EP1274511A1 (de) 2003-01-15
EP1274511B1 (de) 2004-08-18
US20030138358A1 (en) 2003-07-24
KR20030003718A (ko) 2003-01-10
IL151850A0 (en) 2003-04-10
NO20024875D0 (no) 2002-10-09

Similar Documents

Publication Publication Date Title
EP1274511B1 (de) Verfahren und vorrichtung zur mikrodosierung kleinster flüssigkeitsmengen für biopolymerarrays
DE4214430C2 (de) Probenverteilungsverfahren
DE60317305T2 (de) Kontaktloses verfahren zur verteilung geringer flüssigkeitsmengen
WO2018015419A1 (de) Pipettenspitze für eine automatisierte pipettiervorrichtung sowie verfahren zu deren herstellung
EP0206113B1 (de) Verfahren und Einrichtung zum automatischen Überführen kleiner Mengen flüssiger Proben in der Gaschromatographie
DE2011239B2 (de) Vorrichtung zum Übertragen von Flüssigkeit in Aufnahmebehälter
DE112015006171B4 (de) Elektrophoresevorrichtung und Elektrophoreseverfahren
EP3452835A1 (de) Pipettenspitze für eine automatisierte pipettiervorrichtung sowie verfahren zu deren herstellung
DE3228767A1 (de) Verfahren und vorrichtung zur bestimmung der grenzflaeche zwischen blutplasma und einer blutkoerperchen-suspension
DE2704239C3 (de) Gerät zur wiederholten Entnahme von Meßproben aus Flüssigkeiten
DE19919135A1 (de) Verfahren und Vorrichtung zum Aufbringen kleiner Flüssigkeitsmengen
DE2028929C3 (de) Einrichtung zur Abgabe von durch ein Fluid voneinander getrennten Flüssigkeitsproben
EP1303349A1 (de) Verfahren und vorrichtung zur herstellung von biopolymer-feldern
CH623243A5 (de)
EP3600673B1 (de) Verfahren und dosiervorrichtung zum kontaktdosieren von flüssigkeiten
DE10013513A1 (de) Vorrichtung zum Transfer und Dosieren von fluiden Proben
WO2001076746A1 (de) Verfahren zur herstellung von biopolymer-feldern mit echtzeitkontrolle
EP0072558A2 (de) Pipettierverfahren und -automat
EP1272864A1 (de) Vorrichtung und verfahren zur durchführung von präparation und nmr-messung von proben
DE10108968B4 (de) Vorrichtung zum Durchführen elektrophysiologischer Messungen an Zellen
EP2347268B1 (de) Automatisierte analysevorrichtung mit einer automatischen pipettiervorrichtung und mit einer pipettiernadelspülstation
EP1392437A1 (de) Biosensorchip-dispensier-anordnung und verfahren zum dispensieren einer zu dispensierenden lösung unter verwendung der dispensier-anordnung auf einem biosensorchip
EP0666110A1 (de) Kunststoffpipette mit Levelsensorfunktion
DE102008002156A1 (de) Chip mit fluidkommunizierenden Wells, die als Separat betreibbare Gruppen und/oder Linear angeordnet sind
DE8234090U1 (de) Vorrichtung zum Analysieren einer Vielzahl von Flüssigkeitsproben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 151850

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2405866

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027013540

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 574254

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2002-3371

Country of ref document: CZ

Ref document number: 10257330

Country of ref document: US

Ref document number: 018078613

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001929522

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2002 2002129927

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027013540

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001929522

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2002-3371

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2001929522

Country of ref document: EP