WO2001075328A1 - Articulation hydroelastique - Google Patents

Articulation hydroelastique Download PDF

Info

Publication number
WO2001075328A1
WO2001075328A1 PCT/EP2001/003139 EP0103139W WO0175328A1 WO 2001075328 A1 WO2001075328 A1 WO 2001075328A1 EP 0103139 W EP0103139 W EP 0103139W WO 0175328 A1 WO0175328 A1 WO 0175328A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroelastic
articulation
joint
hydraulic circuits
axis
Prior art date
Application number
PCT/EP2001/003139
Other languages
English (en)
Inventor
Etienne De Fontenay
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to AU2001254705A priority Critical patent/AU2001254705A1/en
Priority to JP2001572774A priority patent/JP2003529730A/ja
Priority to DE60117773T priority patent/DE60117773T2/de
Priority to EP01927756A priority patent/EP1272775B1/fr
Publication of WO2001075328A1 publication Critical patent/WO2001075328A1/fr
Priority to US10/260,852 priority patent/US20030086750A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Definitions

  • the present invention relates to elastic joints containing a fluid, generally called “hydroelastic joints", and it relates to methods of obtaining these joints.
  • These hydroelastic joints generally made up of an interior reinforcement and an exterior reinforcement that are substantially coaxial and are interconnected by at least one deformable body, generally have a dual role. On the one hand, they allow degrees of freedom to the rigid elements which they connect, and on the other hand they filter a significant part of the vibrations or shocks transmitted by the road or by the engine to the body of the vehicle.
  • a liquid circulates, through channels, between working chambers according to the deformations imposed on the joint. The inertia of this liquid generates reaction forces whose characteristics vary according to the frequency of the stresses. The effect of the reaction forces is generally measured by the phase shift angle introduced between the stresses and the result of the reaction forces.
  • Another characteristic parameter is the frequency for which the dynamic stiffness of the joint is minimal.
  • a hydroelastic joint is generally subjected to different stresses in several directions and we may want different responses (therefore different characteristics depending on the stressing directions).
  • a difficulty in the design of hydroelastic joints is to allow these specific characteristics independently of each other. It is not uncommon to lose the advantages that a determined design brings in a direction when we modify parameters a priori linked to performance in a different direction. Very different behaviors according to the directions are not necessarily independent, far from it.
  • a hydroelastic articulation is often subjected to stresses of frequencies and amplitudes variable in time following each direction and one wishes adapted answers in the field of stresses as broad as possible. That is to say that we would like to be able to adjust several operating points in this area without having to agree to degrade one to improve the other.
  • An objective of the invention is therefore a hydroelastic articulation which allows both different behaviors according to the directions and the types of stresses and a limited interdependence of these different behaviors.
  • a hydroelastic articulation comprising an interior reinforcement and an exterior reinforcement that are substantially coaxial, said reinforcements being integral with an elastomeric sleeve, said elastomeric sleeve comprising, along its axis, substantially parallel hydraulic circuits.
  • Figure 1 is a radial section of a hydroelastic joint according to the invention
  • Figure 2 is a section along the axis of a hydroelastic joint according to the invention
  • Figure 3 is a radial section of a joint hydroelastic according to the invention
  • Figure 4 is a section along the axis of a hydroelastic joint according to the invention
  • Figure 5 is a perspective view of a basic element constituting a hydroelastic joint according to l invention
  • the figure is a section along the axis of a hydroelastic joint according to the invention.
  • Figure 1 is a radial section of a hydroelastic joint (1) according to the invention.
  • An inner frame (3) and an outer frame (2) are linked by an elastomeric sleeve (4). Rotations and radial and axial movements of one armature relative to the other are thus possible.
  • FIG. 2 is a section along the broken line ZOX of the hydroelastic joint (1) of Figure 1 in view along AA.
  • the hydroelastic articulation comprises, in this example, 4 main hydraulic circuits (5, 5 ', 6, 6') independent arranged substantially parallel, ie juxtaposed, along the OY axis.
  • the term “hydraulic circuit” means an assembly comprising at least two chambers and at least one conduit connecting these chambers. This schematic representation allows you to view the section variation of the different circuits. It can be understood from this figure that the circuits (5, 5 ′) located at the ends of the articulation have a reduced section at the level of the OXY plane (horizontal plane of FIG. 1).
  • This reduction in section directly influences the vibratory behavior of the articulation along the OZ axis (vertical radial axis in FIG. 1).
  • the circuits (6, 6 ') located here in the center of the joint have a reduced section at the level of the OYZ plane (vertical axial plane of FIG. 1).
  • This reduction in section directly influences the vibratory behavior of the articulation along the OX axis (horizontal radial axis in FIG. 1).
  • the hydroelastic articulation of the invention combines different behaviors according to the different axes of stress and these behaviors are relatively independent.
  • the shapes of the hydraulic circuits are described here quite schematically, just as the axes are chosen arbitrarily to illustrate the principle of the invention.
  • the annular projections of the elastomeric sleeve (4) can take any form useful for hydraulic operation and for the transmission of mechanical forces (radial compression, axial torsion, conical torsion, etc.).
  • Those skilled in the art know how to configure the different rooms and conduits connecting the rooms according to the desired response in a given direction and a given stress profile.
  • the articulation of the invention as described in FIG. 2 may have a dynamic rigidity in the direction OX which is minimum around 250 Hz (to limit, for example, the transmission to the cash register a vibration generated by the tire) and also have a dynamic rigidity in the direction OZ which is minimum around 100 Hz (to limit, for example, the transmission to the body of a vibration generated by an element of the ground connection) .
  • Another interesting example of adaptation of the hydroelastic articulation of the invention is that which consists in configuring circuits so that they provide, in substantially identical directions, different minima of dynamic rigidity in order to obtain, by superimposition of the different responses of each circuit, a global response of the joint having a wide frequency range where the rigidity is substantially minimal. Such a result is not achievable by the joints of the state of the art.
  • a joint according to the invention can combine a large number of circuits and integrate the two adaptation modes described above.
  • each direction corresponding to an identified stressing mode can receive, depending on the desired response, one, two or more similar or different hydraulic circuits.
  • channels can connect adjacent circuits, for example along the external reinforcement (2) or through conduits passing through the annular projections of the elastomeric sleeve (4).
  • the presence of such communication can also facilitate the operation of filling the joint with liquid.
  • each circuit can have less than one revolution or, on the contrary, more than one revolution around the axis of the joint, so as to give the desired dimensions to the hydraulic fluid conduit.
  • said circuits may have a slightly oblique configuration relative to the axis of the joint.
  • Figures 3 to 6 show preferred methods of manufacturing a hydroelastic joint (11, 21) according to the invention.
  • the figures (for the sake of clarity) do not show any variation in section.
  • Such a configuration can have satisfactory hydraulic operation in certain applications, but it is obvious that the variations in sections envisaged and described above can be obtained by these preferred methods of manufacture.
  • Figures 3 and 4 are views similar to those of Figures 1 and 2.
  • the elastomeric sleeve (14) can be molded or extruded on the inner frame (13) in one or more operations from a single or different material for each annular projection.
  • the rigid rings (19, 19 ') (additional to FIGS. 1 and 2) can be adhered to the annular projections in a known manner. These rigid rings (19, 19 ') allow crimping (known per se) by plastic radial compression of the external frame (12).
  • a seal (18) seals the hydraulic circuits. This seal can be formed during the molding of the elastomeric sleeve (14).
  • the elastomeric sleeve, the internal frame (13) and possibly the rigid rings (19, 19 ') can be assembled in great length or continuously (infinite length), then the length necessary for a given joint is cut and then the crimping, by shrinking, of the outer frame (12) is carried out.
  • the hydraulic circuits (15) can be filled, for example, by vacuum through orifices made in one or the other of the frames or by immersion during the assembly of the outer frame. Sealing, essential at the ends of the joint, may not be essential between circuits. This is why the 3 central rigid rings (19 ') shown here can, in an alternative embodiment, be omitted.
  • Figures 5 and 6 show an alternative manufacturing method.
  • Figure 5 is a perspective view of a base member (20).
  • Figure 6 is a half view in axial section of a hydroelastic joint (21), consisting of base elements (20) adjacent axially arranged, and forming therebetween independent hydraulic circuits (25).
  • the base element (20) has an inner sub-frame (26) and an outer sub-frame (29) connected by an elastomeric sleeve (24).
  • External (28) and internal (27) seals are integral with the corresponding sub-frames.
  • the basic elements (20) are assembled by means of an internal frame (23) and an external frame (22). The connections are, as previously described, ensured by crimping, tight adjustment, gluing, bonding or any known means.
  • the profile of the sleeves (24) provides, between two adjoining or distant elements (20), a hydraulic circuit (25).
  • a hydraulic circuit 25.
  • This embodiment of the invention which allows the assembly of a variable number of different basic elements, according to free orientations and spacings.
  • this modularity allows significant optimization.
  • this greater freedom of adaptation can be particularly useful for fixing, in the development phase, all the vibration parameters of a vehicle parallel to the adaptation of the torsional rigidity.
  • each basic element (20) may include one or more hydraulic circuit (s) in the volume of its sleeve (24).
  • the articulation of the invention is then constituted from a plurality of basic elements each having its own hydroelastic operation giving this assembly the desired behavior.
  • this configuration can be combined with that described in the paragraph above, with or without hydraulic communication between the circuits specific to each base element and the cavities formed between adjacent elements.
  • the articulation according to the invention is intended to ensure, in addition to the role of connection and filtering described in the preamble, also a function of torsion spring, for example in the context of the suspension of a wheel arm of the type described in document WO97 / 47486.
  • torsion spring for example in the context of the suspension of a wheel arm of the type described in document WO97 / 47486.
  • section of a hydroelastic articulation according to the invention is not limited to a circular profile as shown in the figures. This configuration is the most common, but the same effects of the principles of the invention can be expected with other articulation profiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Vehicle Body Suspensions (AREA)
  • Sealing Devices (AREA)
  • Lubricants (AREA)
  • Paper (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'articulation hydroélastique (1) comporte des circuits hydrauliques parallèles (5, 5', 6, 6') apportant un fonctionnement hydraulique différent selon des directions de sollicitations différentes. Le nombre et la configuration des circuits hydrauliques est fonction du profil de sollicitations et du comportement visé par l'articulation.

Description

Articulation hydroélastique
La présente invention concerne les articulations élastiques contenant un fluide, appelées généralement " articulations hydroélastique ", et elle concerne les procédés d'obtention de ces articulations.
Ces articulations que l'on désigne également sous les noms de cales, manchons, " bushing " sont utilisées en particulier dans le domaine automobile dans la liaison au sol ou pour la liaison du groupe propulseur à la caisse du véhicule.
Ces articulations hydroélastiques, généralement constituées d'une armature intérieure et d'une armature extérieure sensiblement coaxiales reliées entre elles par au moins un corps déformable, ont généralement un double rôle. D'une part, elles permettent des degrés de liberté aux éléments rigides qu'elles relient, et d'autre part elles filtrent une part importante des vibrations ou des chocs transmis par la route ou par le moteur à la caisse du véhicule. Afin d'améliorer les performances d'amortissement, un liquide circule, par des canaux, entre des chambres de travail en fonction des déformations imposées à l'articulation. L'inertie de ce liquide engendre des forces de réaction dont les caractéristiques varient en fonction de la fréquence des sollicitations. On mesure généralement l'effet des forces de réaction par l'angle de déphasage introduit entre les sollicitations et la résultante des forces de réaction. Un autre paramètre caractéristique est la fréquence pour laquelle la rigidité dynamique de l'articulation est minimale. En choisissant les caractéristiques des chambres de travail, des canaux, des corps déformables, on sait adapter la réponse d'une articulation hydroélastique à un profil prévu de sollicitation (fréquence, amplitude, direction). On obtient ainsi une nette amélioration de l'amortissement par rapport à une articulation classique ne contenant pas de liquide.
Cependant, une articulation hydroélastique est généralement soumise à des sollicitations différentes suivant plusieurs directions et on peut souhaiter des réponses différentes (donc des caractéristiques différentes selon les directions de sollicitations). Une difficulté dans la conception d'articulations hydroélastiques est de permettre ces caractéristiques spécifiques indépendamment les uns des autres. Il n'est pas rare de perdre les avantages qu'une conception déterminée apporte selon une direction lorsque l'on modifie des paramètres a priori liés aux performances selon une direction différente. Des comportements très différents selon les directions ne sont pas nécessairement indépendants, loin s'en faut. De la même manière, une articulation hydroélastique est souvent soumise à des sollicitations de fréquences et d'amplitudes variables dans le temps suivant chaque direction et on souhaite des réponses adaptées dans le domaine de sollicitations le plus large possible. C'est à dire que l'on voudrait pouvoir régler plusieurs points de fonctionnement dans ce domaine sans devoir accepter de dégrader l'un pour améliorer l'autre.
Un objectif de l'invention est donc une articulation hydroélastique qui permette à la fois des comportements différents selon les directions et les types de sollicitations et une interdépendance limitée de ces différents comportements.
Cet objectif est atteint par une articulation hydroélastique comportant une armature intérieure et une armature extérieure sensiblement coaxiales, lesdites armatures étant solidaires d'un manchon élastomérique, ledit manchon élastomérique comportant, le long de son axe, des circuits hydrauliques sensiblement parallèles.
Les différents principes de l'invention, ainsi que des modes préférés de réalisation, seront mieux compris à l'aide de la description des figures suivantes :
La figure 1 est une coupe radiale d'une articulation hydroélastique selon l'invention, La figure 2 est une coupe le long de l'axe d'une articulation hydroélastique selon l'invention, La figure 3 est une coupe radiale d'une articulation hydroélastique selon l'invention, La figure 4 est une coupe le long de l'axe d'une articulation hydroélastique selon l'invention, La figure 5 est une vue en perspective d'un élément de base constitutif d'une articulation hydroélastique selon l'invention, La figure est une coupe le long de l'axe d'une articulation hydroélastique selon l'invention.
La figure 1 est une coupe radiale d'une articulation hydroélastique (1) selon l'invention. Une armature intérieure (3) et une armature extérieure (2) sont liées par un manchon élastomérique (4). Des rotations et des mouvements radiaux et axiaux d'une armature par rapport à l'autre sont ainsi possibles.
La figure 2 est une coupe le long de la ligne brisée ZOX de l'articulation hydroélastique (1) de la figure 1 en vue selon AA. L'articulation hydroélastique comprend, sur cet exemple, 4 circuits hydrauliques principaux (5, 5', 6, 6') indépendants disposés sensiblement parallèlement, c'est à dire juxtaposées, le long de l'axe OY. On entend par « circuit hydraulique » un ensemble comprenant au moins deux chambres et au moins un conduit reliant ces chambres. Cette représentation schématique permet de visualiser la variation de section des différents circuits. On comprend sur cette figure que les circuits (5, 5') situés aux extrémités de l'articulation comportent une section réduite au niveau du plan OXY (plan horizontal de la figure 1). Cette réduction de section influence directement le comportement vibratoire de l'articulation selon l'axe OZ (axe radial vertical sur la figure 1). Les circuits (6, 6') situés ici au centre de l'articulation comportent une section réduite au niveau du plan OYZ (plan axial vertical de la figure 1). Cette réduction de section influence directement le comportement vibratoire de l'articulation selon l'axe OX (axe radial horizontal sur la figure 1). De cette façon, l'articulation hydroélastique de l'invention combine des comportements différents selon les différents axes de sollicitation et ces comportements sont relativement indépendants.
Les formes des circuits hydrauliques sont décrites ici de façon tout à fait schématique, de même que les axes sont choisis de façon arbitraire pour illustrer le principe de l'invention. En particulier, les projections annulaires du manchon élastomérique (4) peuvent prendre toute forme utile au fonctionnement hydraulique et à la transmission des efforts mécaniques (compression radiale, torsion axiale, torsion conique, etc .). L'homme du métier sait configurer les différentes chambres et conduits reliant les chambres en fonction de la réponse souhaitée selon une direction donnée et un profil de sollicitation donné. Le nombre de circuits nécessaires et également variable, on comprend bien qu'il est en particulier dépendant de la complexité du profil de sollicitations envisagé.
Par exemple, l'articulation de l'invention telle qu'elle est décrite sur la figure 2 peut présenter une rigidité dynamique selon la direction OX qui soit minimale autour de 250 Hz (pour limiter, par exemple, la transmission à la caisse d'une vibration engendrée par le pneumatique) et présenter également une rigidité dynamique selon la direction OZ qui soit minimale autour de 100 Hz (pour limiter, par exemple, la transmission à la caisse d'une vibration générée par un élément de la liaison au sol).
Un autre exemple intéressant d'adaptation de l'articulation hydroélastique de l'invention est celui qui consiste à configurer des circuits de sorte qu'ils procurent, dans des directions sensiblement identiques, des minima de rigidité dynamique différents afin d'obtenir, par la superposition des différentes réponses de chaque circuit, une réponse globale de l'articulation présentant un large domaine de fréquence où la rigidité est sensiblement minimale. Un tel résultat n'est pas réalisable par les articulations de l'état de la technique.
Bien sûr, une articulation selon l'invention peut combiner un grand nombre de circuits et intégrer les deux modes d'adaptation décrit ci dessus. Ainsi, chaque direction correspondant à un mode de sollicitation identifié peut recevoir en fonction de la réponse recherchée, un, deux ou plusieurs circuits hydrauliques similaires ou différents.
Afin d'influencer le fonctionnement hydraulique lors de déformations coniques (rotation relative des armatures autour de l'axe OX, par exemple), des canaux peuvent relier des circuits adjacents, par exemple le long de l'armature extérieure (2) ou à travers des conduits traversant les projections annulaires du manchon élastomérique (4). La présence d'une telle communication peut également faciliter l'opération de remplissage de l'articulation en liquide.
Les circuits sont ici représentés en boucles, c'est à dire qu'ils forment un anneau autour de l'axe de l'articulation, mais cette configuration n'est pas limitative. En effet le principe de fonctionnement hydraulique connu en soi s'applique de façon similaire si l'anneau est interrompu. De plus, chaque circuit peut compter moins d'une révolution ou, au contraire, plus d'une révolution autour de l'axe de l'articulation, de manière à donner les dimensions souhaitées au conduit de liquide hydraulique. Dans ce cas, par exemple pour des raisons d'encombrement ou de fabrication, lesdits circuits pourront avoir une configuration légèrement oblique par rapport à l'axe de l'articulation.
Les figures 3 à 6 représentent des modes préférés de fabrication d'une articulation hydroélastique (11, 21) selon l'invention. Les figures (dans un souci de clarté) ne montrent pas de variation de section. Une telle configuration peut présenter un fonctionnement hydraulique satisfaisant dans certaines applications mais il est évident que les variations de sections envisagées et décrites plus haut peuvent être obtenues par ces modes préférés de fabrication.
Les figures 3 et 4 sont des vues similaires à celles des figures 1 et 2. Le manchon élastomérique (14) peut être moulé ou extrudé sur l'armature intérieure (13) en une ou plusieurs opérations à partir d'un matériau unique ou différent pour chaque projection annulaire. Les anneaux (19, 19') rigides (supplémentaires par rapport aux figures 1 et 2) peuvent être adhérisés aux projections annulaires de façon connue. Ces anneaux rigides (19, 19') permettent un sertissage (connu en soi) par compression radiale plastique de l'armature extérieure (12). De préférence, un joint (18) assure l'étanchéité des circuits hydrauliques. Ce joint peut être constitué lors du moulage du manchon élastomérique (14). Comme le suggèrent les figures, l'assemblage du manchon élastomérique, de l'armature intérieure (13) et éventuellement des anneaux rigides (19, 19') peut se faire en grande longueur ou en continu (longueur infinie) puis la longueur nécessaire pour une articulation donnée est tronçonnée et l'on procède ensuite au sertissage, par rétreint, de l'armature extérieure (12). Le remplissage des circuits hydrauliques (15) peut se faire par exemple par dépression par l'intermédiaire d'orifices pratiqués dans l'une ou l'autre des armatures ou par immersion lors de l'assemblage de l'armature extérieure. L'étanchéité, indispensable aux extrémités de l'articulation, peut ne pas être indispensable entre les circuits. C'est pourquoi les 3 anneaux rigides centraux (19') représentés ici peuvent, dans une réalisation alternative, être omis.
Les figures 5 et 6 représentent un mode alternatif de fabrication. La figure 5 est une vue en perspective d'un élément de base (20). La figure 6 est une demie vue en coupe axiale d'une articulation hydroélastique (21), constituée d'éléments de base (20) adjacents axialement disposés, et formant, entre eux, des circuits hydrauliques (25) indépendants. L'élément de base (20) comporte une sous-armature intérieure (26) et une sous-armature extérieure (29) reliée par un manchon élastomérique (24). Des joints d'étanchéité extérieur (28) et intérieur (27) sont solidaires des sous-armatures correspondantes. Les éléments de base (20) sont assemblés par l'intermédiaire d'une armature intérieure (23) et d'une armature extérieure (22). Les liaisons sont, comme précédemment décrit, assurées par sertissage, ajustement serré, collage, adhérisation ou tout moyen connu. Le profil des manchons (24) ménage, entre deux éléments (20) jointifs ou distants, un circuit hydraulique (25). On comprend l'intérêt de ce mode de réalisation de l'invention qui permet l'assemblage d'un nombre variable d'éléments de base différents, selon des orientations et des écartements libres. On peut naturellement utiliser une grande diversité de profil, d'épaisseur, de nature, de rigidité, de hauteur des manchons (24). Ainsi, tant au stade de la conception que de la fabrication en petites séries, cette modularité permet une importante optimisation. Dans le cas d'une articulation ayant également une fonction de ressort de torsion (voir plus haut), cette plus grande liberté d'adaptation peut être particulièrement utile pour fixer, dans la phase de mise au point, tous les paramètres vibratoires d'un véhicule parallèlement à l'adaptation de la rigidité de torsion. Alternativement, comme décrit plus haut en liaison avec la figure 1, chaque élément de base (20) peut comporter un ou des circuit(s) hydraulique(s) dans le volume de son manchon (24). L'articulation de l'invention est alors constituée à partir d'une pluralité d'éléments de base ayant chacun un fonctionnement hydroélastique propre donnant à cet ensemble le comportement recherché. Naturellement, cette configuration peut être combinée à celle décrite au paragraphe ci dessus, avec ou sans communication hydraulique entre les circuits propres à chaque élément de base et les cavités ménagées entre des éléments adjacents.
De préférence, l'articulation selon l'invention est destinée à assurer, en plus du rôle de liaison et de filtrage décrit en préambule, également une fonction de ressort de torsion, par exemple dans le cadre de la suspension d'un bras de roue du type décrit dans le document W097/47486. Ainsi, on peut désirer obtenir une articulation hydroélastique qui soit, à la fois, extrêmement rigide en torsion autour de son axe, relativement rigide en translation axiale et statiquement et dynamiquement très peu rigide en translation radiale. Ceci est réalisé par les configurations décrites sur les figures où la section soumise à la torsion est peu réduite par rapport à une pièce monobloc mais où la raideur radiale est diminuée de façon importante du fait des cavités hydrauliques dans le manchon élastique, ces cavités empêchant la saturation du caoutchouc.
Naturellement, la section d'une articulation hydroélastique selon l'invention n'est pas limitée à un profil circulaire comme représenté sur les figures. Cette configuration est la plus courante mais on peut attendre les mêmes effets des principes de l'invention avec d'autres profils d'articulations.

Claims

REVENDICATIONS
1. Articulation hydroélastique (1, 11, 21) comportant une armature intérieure (3, 13, 23) et une armature extérieure (2, 12, 22) sensiblement coaxiales, lesdites armatures étant solidaires d'un manchon élastomérique (4, 14, 24), ledit manchon élastomérique comportant, le long de son axe (OY), des circuits hydrauliques (5, 5', 6, 6', 25) sensiblement parallèles.
2. Articulation hydroélastique selon la revendication 1, caractérisée en ce qu'elle est destinée à assurer une fonction de ressort de suspension sollicité en torsion autour de son axe (OY).
3. Articulation hydroélastique selon l'une des revendications précédentes, caractérisée en ce qu'elle est constituée d'éléments de base (20) adjacents axialement disposés, entre une armature intérieure (23) et une armature extérieure (22), chaque élément de base comprenant une sous-armature extérieure (29) et une sous-armature intérieure (26) solidaires d'un manchon élastomérique (24), lesdits circuits hydrauliques ( 25) étant ménagés entre lesdits éléments de base (20).
4. Articulation hydroélastique selon l'une des revendications précédentes, caractérisée en ce que des circuits hydrauliques sont configurés pour présenter des minima de rigidité dynamique selon différentes directions de sollicitations.
5. Articulation hydroélastique selon l'une des revendications 1 à 3, caractérisée en ce que des circuits hydrauliques sont configurés pour présenter, selon une direction de sollicitations sensiblement commune, des minima de rigidité dynamique différents.
PCT/EP2001/003139 2000-03-31 2001-03-19 Articulation hydroelastique WO2001075328A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001254705A AU2001254705A1 (en) 2000-03-31 2001-03-19 Hydroelastic articulation
JP2001572774A JP2003529730A (ja) 2000-03-31 2001-03-19 流体弾性継手
DE60117773T DE60117773T2 (de) 2000-03-31 2001-03-19 Hydroelastisches gelenk
EP01927756A EP1272775B1 (fr) 2000-03-31 2001-03-19 Articulation hydroelastique
US10/260,852 US20030086750A1 (en) 2000-03-31 2002-09-30 Hydroelastic joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/04529 2000-03-31
FR0004529 2000-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/260,852 Continuation US20030086750A1 (en) 2000-03-31 2002-09-30 Hydroelastic joint

Publications (1)

Publication Number Publication Date
WO2001075328A1 true WO2001075328A1 (fr) 2001-10-11

Family

ID=8849045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/003139 WO2001075328A1 (fr) 2000-03-31 2001-03-19 Articulation hydroelastique

Country Status (8)

Country Link
US (1) US20030086750A1 (fr)
EP (1) EP1272775B1 (fr)
JP (1) JP2003529730A (fr)
CN (1) CN1205422C (fr)
AT (1) ATE319948T1 (fr)
AU (1) AU2001254705A1 (fr)
DE (1) DE60117773T2 (fr)
WO (1) WO2001075328A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106523563B (zh) * 2017-01-13 2019-03-15 太原科技大学 一种带液压环路的管状橡胶减振器
CN113833806B (zh) * 2021-10-15 2022-11-11 中国舰船研究设计中心 用于衰减轴系横向振动的橡胶轴承

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343931A1 (fr) * 1974-05-20 1977-10-07 Ace Controls Dispositif amortisseur de chocs contre le bruit
JPS5943239A (ja) * 1982-09-06 1984-03-10 Tokai Rubber Ind Ltd クツシヨンゴム装置
US4892444A (en) * 1987-02-24 1990-01-09 Dunlop Limited A British Company Resilient unit
DE4117129A1 (de) * 1991-05-25 1992-11-26 Daimler Benz Ag Hydraulisch daempfendes lager
EP0528253A1 (fr) * 1991-08-20 1993-02-24 Lemfoerder Metallwaren Ag. Palier de support à amortissement hydraulique pour parties de châssis de voiture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2267312A (en) * 1940-02-08 1941-12-23 Budd Edward G Mfg Co Rubber spring and method for making same
JPS5673239A (en) * 1979-11-15 1981-06-17 Nissan Motor Co Ltd Vibration isolating rubber bush
US4964623A (en) * 1987-12-07 1990-10-23 Lord Corporation Fluid filled resilient bushing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2343931A1 (fr) * 1974-05-20 1977-10-07 Ace Controls Dispositif amortisseur de chocs contre le bruit
JPS5943239A (ja) * 1982-09-06 1984-03-10 Tokai Rubber Ind Ltd クツシヨンゴム装置
US4892444A (en) * 1987-02-24 1990-01-09 Dunlop Limited A British Company Resilient unit
DE4117129A1 (de) * 1991-05-25 1992-11-26 Daimler Benz Ag Hydraulisch daempfendes lager
EP0528253A1 (fr) * 1991-08-20 1993-02-24 Lemfoerder Metallwaren Ag. Palier de support à amortissement hydraulique pour parties de châssis de voiture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 146 (M - 307) 7 July 1984 (1984-07-07) *

Also Published As

Publication number Publication date
AU2001254705A1 (en) 2001-10-15
US20030086750A1 (en) 2003-05-08
EP1272775B1 (fr) 2006-03-08
DE60117773D1 (de) 2006-05-04
ATE319948T1 (de) 2006-03-15
JP2003529730A (ja) 2003-10-07
EP1272775A1 (fr) 2003-01-08
CN1205422C (zh) 2005-06-08
DE60117773T2 (de) 2006-10-19
CN1420970A (zh) 2003-05-28

Similar Documents

Publication Publication Date Title
EP0072262B1 (fr) Cale élastique, notamment pour la suspension d'un moteur de véhicule
EP1436524B1 (fr) Articulation hydroelastique rotulee
FR2670552A1 (fr) Attache hydroelastique de suspension et biellette de liaison geometrique liee a cette attache.
EP0452169A1 (fr) Perfectionnements apportés aux manchons antivibratoires hydrauliques
FR2914717A1 (fr) Palier hydraulique a amortissement biaxial
EP0359655B1 (fr) Perfectionnements apportés aux manchons antivibratoires hydrauliques
EP0721071B1 (fr) Perfectionnements aux manchons de support antivibratoires hydrauliques
EP0479654B1 (fr) Perfectionnements aux manchons antivibratoires hydrauliques et aux ensembles d'amortissement équipés de tels manchons
EP1645773B1 (fr) Dispositif antivibratoire hydraulique pour véhicule et procédé de fabrication d'un tel dispositif
EP0486369B1 (fr) Manchon antivibratoire hydraulique
WO2008074507A1 (fr) Dispositif de decouplage frequentiel et articulation hydro elastique comprenant une chambre de liquide de faible epaisseur
EP1272775B1 (fr) Articulation hydroelastique
FR2904075A1 (fr) Support antivibratoire hydraulique, manchon interne pour un tel support et procede de fabrication d'un tel support.
WO2005042274A1 (fr) Essieu souple dont la raideur transversale est augmentee a l'aide d'au moins une piece formant coupelle de ressort, coupelle de ressort et vehicule correspondant
FR2712652A1 (fr) Perfectionnements apportés aux manchons antivibratoires hydrauliques.
FR2880933A1 (fr) "dispositif d'articulation elastique a inserts elastiques amovibles"
FR2702021A1 (fr) Support hydroélastique modulaire.
EP0539282B1 (fr) Perfectionnements aux supports antivibratoires hydrauliques
EP0442764B1 (fr) Articulation hydroélastique à double effet à armatures concentriques
EP1074761B1 (fr) Support hydroélastique, notamment pour la suspension d'un groupe motopropulseur dans la caisse d'un véhicule automobile
FR2853380A1 (fr) Articulation elastique
EP0845617B1 (fr) Support antivibratoire et véhicule automobile comportant un tel support
FR2686957A1 (fr) Cale hydroelastique.
FR2656393A1 (fr) Palier elastique support d'un arbre tournant.
EP1443239A1 (fr) Articulation antivibratoire hydraulique à butées axiales, véhicule équipé d'un telle articulation, et procédé de fabrication d'un telle articulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 018073794

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 572774

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10260852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001927756

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001927756

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001927756

Country of ref document: EP