WO2001074796A1 - SUCCINOYLAMINO HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION - Google Patents

SUCCINOYLAMINO HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION Download PDF

Info

Publication number
WO2001074796A1
WO2001074796A1 PCT/US2001/010297 US0110297W WO0174796A1 WO 2001074796 A1 WO2001074796 A1 WO 2001074796A1 US 0110297 W US0110297 W US 0110297W WO 0174796 A1 WO0174796 A1 WO 0174796A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenyl
alkyl
substituted
occurrence
independently selected
Prior art date
Application number
PCT/US2001/010297
Other languages
French (fr)
Inventor
Lorin Andrew Thompson
Padmaja Kasireddy
Original Assignee
Bristol-Myers Squibb Pharma Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol-Myers Squibb Pharma Company filed Critical Bristol-Myers Squibb Pharma Company
Priority to EP01924498A priority Critical patent/EP1268454A1/en
Priority to CA002404314A priority patent/CA2404314A1/en
Priority to AU2001251147A priority patent/AU2001251147A1/en
Priority to JP2001572489A priority patent/JP2003529594A/en
Publication of WO2001074796A1 publication Critical patent/WO2001074796A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/20Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
    • C07D211/22Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/26Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/42Oxygen atoms attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/10Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D241/14Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D241/20Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/58Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • This invention relates to novel succinoylamino heterocycles having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of A ⁇ -peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to ⁇ -amyloid production such as Alzheimer's disease and Down's Syndrome.
  • AD Alzheimer's disease
  • AD is a degenerative brain disorder characterized clinically by progressive loss of memory, temporal and local orientation, cognition, reasoning, judgment and emotional stability.
  • AD is a common cause of progressive dementia in humans and is one of the major causes of death in the United States.
  • AD has been observed in all races and ethnic groups worldwide, and is a major present and future health problem. No treatment that effectively prevents AD or reverses the clinical symptoms and underlying pathophysiology is currently available (for review, Dennis J. Sel oe; Cell Biology of the amyloid (beta) -protein precursor and the mechanism of Alzheimer's disease, Annu Rev Cell Biol, 1994, 10: 373- 403) .
  • a ⁇ is an internal polypeptide derived from a type 1 integral membrane protein, termed ⁇ amyloid precursor protein (APP) .
  • APP amyloid precursor protein
  • ⁇ APP is normally produced by many cells both in vivo and in cultured cells, derived from various animals and humans.
  • a ⁇ is derived from cleavage of ⁇ APP by as yet unknown enzyme (protease) system (s) , collectively termed secretases .
  • proteolytic activities include ⁇ secretase (s) , generating the N-terminus of A ⁇ , a secretase (s) cleaving around the 16/17 peptide bond in A ⁇ , and ⁇ secretases, generating C-terminal A ⁇ fragments ending at position 38, 39, 40, 42, and 43 or generating C-terminal extended precursors which are subsequently truncated to the above polypeptides.
  • a ⁇ is the major protein found in amyloid plaques.
  • a ⁇ is neurotoxic and may be causally related to neuronal death observed in AD patients .
  • missense DNA mutations at position 717 in the 770 isoform of ⁇ APP can be found in effected members but not unaffected members of several families with a genetically determined (familiar) form of AD.
  • ⁇ APP mutations have been described in familiar forms of AD.
  • similar neuropathological changes have been observed in transgenic animals overexpressing mutant forms of human ⁇ APP.
  • individuals with Down's syndrome have an increased gene dosage of ⁇ APP and develop early-onset AD. Taken together, these observations strongly suggest that A ⁇ depositions may be causally related to the AD.
  • Methods of treatment could target the formation of A ⁇ through the enzymes involved in the proteolytic processing of ⁇ amyloid precursor protein.
  • Compounds that inhibit ⁇ or ⁇ secretase activity could control the production of A ⁇ .
  • compounds that specifically target ⁇ secretases could control the production of A ⁇ .
  • Such inhibition of ⁇ or ⁇ secretases could thereby reduce production of A ⁇ , which, thereby, could reduce or prevent the neurological disorders associated with A ⁇ protein.
  • EP 0652009A1 relates to the general formula:
  • One object of the present invention is to provide novel compounds which are useful as inhibitors of the production of A ⁇ protein or pharmaceutically acceptable salts or prodrugs thereof.
  • R 3 , R 3a , R 5 , R 5a , R 11 , t, B, L, and Z are effective inhibitors of the production of A ⁇ protein.
  • the present invention provides a novel compound of Formula (I) :
  • n 0, 1, 2, or 3;
  • n 0, 1, 2, or 3;
  • R 3a is H, OH, C1-C4 alkyl, C1-C4 alkoxy, C2-C4 alkenyl, or C2-C4 alkenyloxy;
  • R 3 and.R a and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-2 R 4 ; provided that R5 and R ⁇ a are not combined to form a 3-8 membered cycloalkyl moiety;
  • R 4 is H, OH, OR 1 , C ⁇ C6 alkyl substituted with 0-3 R ,
  • R 4a is independently selected from: H, F, Cl, Br, I, CF3,
  • R 5 is H, OR 14 ; C1-C6 alkyl substituted with 0-3 R 5b ;
  • R 5a is H, OH, C1-C4 alkyl, C1-C4 alkoxy, C2-C4 alkenyl, or C2-C alkenyloxy;
  • R ⁇ and R ⁇ a may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-2 R ⁇ k; provided that R 3 and R 3a are not combined to form a 3-8 membered cycloalkyl moiety;
  • R 7 is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , and C1-C4 alkyl;
  • R 7a is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , CF3 , aryl and C1-C4 al yl ;
  • R 7 is independently selected from H and C1-C4 alkyl
  • L is a bond, C 1 -C alkyl, C 2 -C 4 alkenyl, C 2 ⁇ C 4 alkynyl, -(CH2)p-0-(CH2)q-, or - (CH2 ) -NR 10 - (CH2) q-;
  • p 0, 1, 2, or 3 ;
  • q 0, 1, 2, or 3;
  • Z is C 3 -C 10 carbocycle substituted with 0-2 R ⁇ b.
  • Rl2 wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
  • RH at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, Br, I, -OH, CN, NO2 , NR 18 R 19 ,
  • two R 11 substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical, wherein said carbocycle or benzo fused radical is substituted with 0-4 R 13 ;
  • R ⁇ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroato s selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R ⁇ 3 ;
  • R.llb each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR 15 R 16 , CF3 , acetyl,
  • t 0, 1, 2 or 3;
  • R 13 at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR 15 R 16 , and CF3 ;
  • R ⁇ at each occurrence, is independently selected from:
  • R 14a ⁇ s H, phenyl, benzyl, or C1-C4 alkyl
  • R ⁇ 5 and R l ⁇ on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroato s selected from N and O;
  • R 17 is H, aryl, aryl-CH2 ⁇ , C1-C6 alkyl, or C2-C6 alkoxyalkyl;
  • R ⁇ 8 and R 19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5- to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0.
  • R 3 is -(CR 7 R 7a ) n -R 4 ,
  • n 0, 1, 2, or 3;
  • n 0, 1, 2, or 3;
  • R 3a is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, or butoxy;
  • R 3 and R 3a may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-1 R 4b ; provided that R5 and R ⁇ a are not combined to form a 3-8 membered cycloalkyl moiety;
  • R 4 is H, OH, 0R 1 ,
  • Ci-C ⁇ alkyl substituted with 0-3 R a C2-C6 alkenyl substituted with 0-3 R 4a , C2-C6 alkynyl substituted with 0-3 R a ,
  • R a is independently selected from: H, F, Cl, Br, I, CF3,
  • R 5 is H, OR 14 ;
  • R 5a is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy,or allyl;
  • R ⁇ c is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , NR 15 R 16 , CF3 , acetyl,
  • R ⁇ and R ⁇ a may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-1 R 5b ; provided that R 3 and R 3a are not combined to form a 3-8 membered cycloalkyl moiety;
  • R 7 is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , and C1-C4 alkyl;
  • R 7a is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , aryl and C1-C4 alkyl ;
  • R 7 is independently selected from H and C1-C4 alkyl ;
  • L is a bond, C- L -C 4 alkyl , C 2 -C alkenyl , C 2 -C alkynyl , - (CH2 ) p-0- (CH2 ) q- , or - (CH2 ) p-NR l ⁇ - (CH2 ) q- ;
  • p 0, 1, 2, or 3 ;
  • q 0, 1, 2, or 3;
  • Z is C 3 -C 10 carbocycle substituted with 0-2 R 12b ; C6- l0 aryl substituted with 0-4 R ⁇ b. anc 5 to 10 membered heterocycle substituted with 0-5
  • Rl2b wherein the heterocycle contains 1, 2, 3 or 4 heteroato s selected from N, 0 and S;
  • a each occurrence is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR 15 R 16 , or CF3;
  • RH at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, Br, I, OH, CN, 02 , R 18 R1 9 ,
  • two R ⁇ substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical wherein said benzo fused radical is substituted with 0-4 R 13 ;
  • R ⁇ 1 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R 13 ;
  • R ll at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR 15 R 16 , CF3 , C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
  • t 0, 1, 2 or 3;
  • R ⁇ 3 is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR 15 R 16 , and CF3 ;
  • R 14 is H, phenyl, benzyl, Ci-C ⁇ alkyl, or C2-C6 alkoxyalkyl ;
  • R 14a is H, phenyl, benzyl, or C1-C4 alkyl
  • R 15 and R 16 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0;
  • R 17 is H, aryl, (aryl)CH2-, C1-C6 alkyl, or C2-C6 alkoxyalkyl ;
  • RI 9 is independently selected from:
  • R ⁇ 8 and R ⁇ 9 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and O .
  • the present invention provides a compound of Formula (I) wherein:
  • R 3 is -(CHR 7 ) n -R 4 , -(CHR 7 ) n -S-(CHR 7) m-R 4 ,
  • n 0, 1, or 2;
  • n 0, 1, or 2;
  • R 3 is H
  • R 3 and R 3a and the carbon to which they are attached, may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl moiety; provided that R ⁇ and R ⁇ a are no t combined to form a cycloalkyl moiety;
  • R 4 is H, OH, OR 1 a ,
  • R a is independently selected from: H, F, Cl, Br, I CF3,
  • R 5 is H, OR 14 ;
  • R a is H
  • R ⁇ b at each occurrence, is independently selected from:
  • R ⁇ and R ⁇ >a and the carbon to which they are attached, may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl moiety; provided that R 3 and R 3a are not combined to form a cycloalkyl moiety;
  • R 7 at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , CF3 , and C1-C4 alkyl;
  • R 7b is independently selected from: H, methyl, ethyl, propyl, and butyl;
  • p 0, 1, 2, or 3 ;
  • q 0, 1, 2, or 3;
  • Z is C 3 -C 10 carbocycle substituted with 0-2 R 12 ;
  • heterocycle substituted with 0-5 l b ; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
  • B is a 5, 6, or 7 membered amino-heterocyclic ring, comprising one N atom, 3 to 6 carbon atoms, and optionally, an additional heteroatom -N(R LZ )-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein R LZ is either R 10 or the substituent -L-Z;
  • R 1 ⁇ )b at each occurrence, is independently selected from H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2 , NR 15 R l ⁇ , or CF3;
  • two R 1 substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical wherein said benzo fused radical is substituted with 0-4 R 13 ;
  • R 1 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R 13 ;
  • t 0, 1, 2 or 3;
  • R 13 at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR 15 R 16 , and CF3 ;
  • R 4 is H, phenyl, benzyl, C ⁇ Cg alkyl, or C2-Cg alkoxyalkyl;
  • R 4a is H, phenyl, benzyl, or C1-C4 alkyl
  • R ⁇ and R l ⁇ on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
  • R 17 is H, aryl, (aryl)CH2-, C1-C6 alkyl, or C2-C6 alkoxyalkyl ;
  • R 1 ⁇ and R 19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl.
  • R 3 is C1-C4 alkyl substituted with 0-2 R 4a ,
  • R 4a at each occurrence, is independently selected from: H, F, Cl, CF3,
  • R 5 is C1-C6 alkyl substituted with 0-3 R 5b ; C2-C6 alkenyl substituted with 0-2 R 5 ; or C2-C6 alkynyl substituted with 0-2 R 5b ;
  • p 0, 1, 2, or 3;
  • q 0, 1, or 2;
  • Z is C 3 -C 10 carbocycle substituted with 0-2 R 2 * 3 ; 6- 10 aryl substituted with 0-4 R 12b ; and 5 to 10 membered heterocycle substituted with 0-5 R 12 , wherein the heterocycle contains 1, 2, 3 or
  • B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(R LZ )-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein R LZ is either R 10 or the substituent -L-Z;
  • R ⁇ )b at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, C1-C3 alkoxy, Cl, F, Br, I, CN, N02, NR 15 R 16 , or CF3;
  • R 1 at each occurrence, is independently selected from:
  • R llb at each occurrence, is independently selected from:
  • t 0, 1, or 2;
  • R 3 at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR 15 R 16 , and CF3 ;
  • R 14 is H, phenyl, benzyl, C1-C4 alkyl, or C2-C4 alkoxyalkyl ;
  • R 1 ⁇ and R " on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
  • R 7 is H, phenyl, benzyl, 4-fluorophenyl, 4-chlorophenyl, 4-methylphenyl , 4-trifluorophenyl , (4-fluorophenyl) methyl, (4-chlorophenyl) methyl, (4-methylphenyl) ethyl, (4-trifluorophenyl) ethyl, methyl, ethyl, propyl, butyl, methoxymethyl , methyoxyethyl, ethoxymethyl, or ethoxyethyl;
  • R 18 at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl ;
  • R 9 is independently selected from: H, methyl, and ethyl
  • R 18 and R 19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl .
  • R 3 is C1-C4 alkyl, C2-C4 alkenyl, or C2-C4 alkynyl;
  • R 5 is C1-C6 alkyl, C2-C6 alkenyl, or C2-C6 alkynyl;
  • p 0, 1, 2, or 3;
  • q 0, 1, or 2;
  • Z is C 3 -C 10 carbocycle substituted with 0-2 R 1 b ; C6- 10 aryl substituted with 0-4 R 12b ; and 5 to 10 membered heterocycle substituted with 0-5
  • R 1 wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
  • B is a 6 membered amino-heterocyclic ring, comprising one N atom, 4 or 5 carbon atoms, and optionally, an additional heteroatom -N(R LZ )-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein R LZ is either R 10 or the substituent -L-Z;
  • R 10b is independently selected from: H, OH, C1-C4 alkyl, C1-C3 alkoxy, Cl, F, Br, I, CN, R 1 , at each occurrence, is independently selected from:
  • R l at each occurrence, is independently selected from:
  • t 0, 1, or 2;
  • R 3 at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR 15 R 16 , and CF3 ;
  • R 14 is H, phenyl, benzyl, methyl, ethyl, propyl, butyl;
  • R 15 and R 16 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl ;
  • R 17 is H, phenyl, benzyl, 4-fluorophenyl, 4-chlorophenyl, 4-methyIpheny1 , 4-1rifluorophenyl , (4-fluorophenyl) methyl , (4-chlorophenyl) methyl , ( -methyIpheny1)methyl , (4-trifluorophenyl ) methyl , methyl, ethyl, propyl, butyl, methoxymethyl , methyoxyethyl , ethoxymethyl , or ethoxyethyl;
  • R 8 at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;
  • R 9 is independently selected from: H, methyl, ethyl, and
  • R 8 and R 9 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl.
  • the present invention provides a compound of Formula (lb) :
  • R 3 is -CH3, -CH2CH3, -CH2CH2CH3, -CH2CH2CH2CH3 ,
  • Z is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl 2-F-phenyl, 3 -F-phenyl, 4-F-phenyl, 2-Cl- phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2 , 3-diF-phenyl, 2, 4-diF-phenyl, 2, 5-diF-phenyl, 2, 6-diF-phenyl, 3 , 4-diF-phenyl, 3 , 5-diF-phenyl, 2, 3-diCl-phenyl, 2,4-diCl-phenyl, 2 , 5-diCl-phenyl, 2 , 6-diCl-phenyl, 3 , -diCl-phenyl , 3 , 5-diCl-phenyl , 2,3 -diMe-phenyl , 2 , 4-diMe-phenyl
  • B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(R LZ )-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein R LZ is either R 10 or the substituent -L-Z;
  • t 0, 1, or 2;
  • two R 1 substituents on the same or adjacent carbon atoms may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or a benzo fused radical .
  • the present invention provides a compound of Formula (lb) :
  • -CH2CH C(CH3)2, cyclopropyl-CH2-, cyclobutyl-CH2 ⁇ , eye1open yl-CH2- , eye1o exyl-CH2- ,
  • Z is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl 2-F-phenyl, 3 -F-phenyl, 4-F-phenyl, 2-C1- phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2 , 3-diF-phenyl, 2, 4-diF-phenyl, 2 , 5-diF-phenyl, 2 , 6-diF-phenyl, 3, -diF-phenyl, 3 , 5-diF-phenyl, 2 , 3-diCl-phenyl, 2, 4-diCl-phenyl, 2 , 5-diCl-phenyl, 2 , 6-diCl-phenyl, 3 , 4-diCl-phenyl, 3 , 5-diCl-phenyl, 2, 3-diMe-phenyl, 2 , 4-diMe-phenyl, 2
  • B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(R LZ )-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein R LZ is the substituent -L-Z;
  • t 0 or 1.
  • the present invention provides a compound selected from one of the Examples in Table 5a, Table 5b, Table 5c, Table 5d, Table 5e, Table 5f or Table 5g.
  • R 3 is R 4 ,
  • R 3a is H, methyl, ethyl, propyl, or butyl;
  • R 4 is C ⁇ -C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl
  • R 5 is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl
  • R ⁇ a i H, methyl, ethyl, propyl, or butyl
  • R 3 , R 3a , R ⁇ and R 5a equals seven or more.
  • R 3 is C3-C4 alkyl or C3-C4 alkenyl
  • R 3a is H
  • R 5 is C3-C5 alkyl or C3-C5 alkenyl
  • R a is H.
  • R 3 is R 4 ;
  • R 3a is H;
  • R 4 is C1-C4 alkyl substituted with 1-2 R a ,
  • R 4a at each occurrence, is independently selected from C3-C6 cycloalkyl substituted with 0-3 R b , phenyl substituted with 0-3 R 4b , or
  • R 5 is C2-C4 alkyl substituted with 0-3 R 5b ; C2-C4 alkenyl substituted with 0-2 R 5b ; or C2-C4 alkynyl substituted with 0-2 R 5b ;
  • R 3 is R 4 ;
  • R 3a is H
  • R 4 is C2-C4 alkyl substituted with 0-2 R a , C2-C4 alkenyl substituted with 0-2 R 4a , C2-C4 alkynyl substituted with 0-2 R 4a ,
  • R 4a at each occurrence, is independently selected from is H, F, CF3,
  • R 5 is C1-C4 alkyl substituted with 1-2 R 5 ;
  • R ⁇ k at each occurrence, is independently selected from: C3-C6 cycloalkyl substituted with 0-2 R$ c ; phenyl substituted with 0-3 R ⁇ c ; or
  • Also included in the present invention in a preferred embodiment are compounds as set forth above wherein the total number of carbon atoms in R 3 , R 3 , R 5 , and R 5a , equals four or more .
  • R 3 , R 3a , R 5 , and R 5a are compounds as set forth above wherein the total number of carbon atoms in R 3 , R 3a , R 5 , and R 5a , equals seven or more.
  • R 3a and R 5a are hydrogen, and R 3 and R 5 are not hydrogen.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of Formula (I) and a pharmaceutically acceptable carrier.
  • the present invention provides a method for the treatment of neurological disorders associated with ⁇ -amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Formula (I) •
  • the neurological disorder associated with ⁇ -amyloid production is Alzheimer's Disease.
  • the present invention provides a method for inhibiting ⁇ -secretase activity for the treatment of a physiological disorder associated with inhibiting ⁇ -secretase activity comprising administering to a host in need of such inhibition a therapeutically effective amount of a compound of Formula (I) that inhibits ⁇ -secretase activity.
  • the physiological disorder associated with inhibiting ⁇ -secretase activity is Alzheimer's Disease.
  • the present invention provides a compound of Formula (I) for use in therapy.
  • the present invention provides a compound of Formula (I) for use in therapy of Alzheimer's Disease.
  • the present invention provides for the use of a compound of Formula (I) for the manufacture of a medicament for the treatment of Alzheimer's Disease.
  • a ⁇ denotes the protein designated A ⁇ , ⁇ -amyloid peptide, and sometimes ⁇ /A4, in the art.
  • a ⁇ is an approximately 4.2 kilodalton (kD) protein of about 39 to 43 amino acids found in amyloid plaques, the walls of meningeal and parenehymal arterioles, small arteries, capillaries, and sometimes, venules .
  • the isolation and sequence data for the first 28 amino acids are described in U.S. Pat. No 4,666,829.
  • the 43 amino acid sequence is :
  • an ami o acid sequence 1-43 represents the maximum sequence of amino acids for A ⁇ peptide.
  • APP refers to the protein known in the art as ⁇ amyloid precursor protein. This protein is the precursor for A ⁇ and through the activity of "secretase” enzymes, as used herein, it is processed into A ⁇ . Differing secretase enzymes, known in the art, have been designated ⁇ secretase, generating the N-terminus of A ⁇ , a secretase cleaving around the 16/17 peptide bond in A ⁇ , and " ⁇ secretases”, as used herein, generating C- terminal A ⁇ fragments ending at position 38, 39, 40, 41, 42, and 43 or generating C-terminal extended precursors which are subsequently truncated to the above polypeptides .
  • the compounds herein described may have asymmetric centers .
  • any variable e.g. , R 4:b , R 5b , R llb , R 1 ⁇ , etc.
  • its definition at each occurrence is independent of its definition at every other occurrence.
  • R ⁇ b the definition of R ⁇ b.
  • substituents and/or variables are permissible only if such combinations result in stable compounds .
  • alkyl or “alkylene” is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; for example, "Ci-C ⁇ alkyl” denotes alkyl having 1, 2, 3, 4, 5 and 6 carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, pentyl, and hexyl .
  • Preferred "alkyl” group is "C1-C4 alkyl", more preferred is methyl, ethyl, propyl, and butyl.
  • alkenyl or “alkenylene” is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain.
  • C2-C6 alkenyl include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 1- butenyl, 2-butenyl, 3-butenyl, 3-methyl-2-butenyl, 2- pentenyl, 3-pentenyl, hexenyl, and the like.
  • alkynyl or “alkynylene” is intended to include hydrocarbon chains of either a straight or branched configuration and one or more carbon-carbon triple bonds which may occur in any stable point along the chain.
  • C2-C6 alkynyl include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, and the like.
  • Alkoxy or "alkyloxy” represents an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge.
  • alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy.
  • Preferred alkoxy groups are methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy.
  • alkylthio or “thioalkoxy” represents an alkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge .
  • Halo or "halogen” as used herein refers to fluoro, chloro, bromo, and iodo. Unless otherwise specified, preferred halo is fluoro and chloro.
  • Counterion is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate, and the like.
  • haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, 2, 2, 2-trifluoroethyl, 2, 2-difluoroethyl, heptafluoropropyl, and heptachloropropyl .
  • Haloalkoxy is intended to mean a haloalkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge; for example trifluoromethoxy, pentafluoroethoxy, 2,2,2- trifluoroethoxy, and the like.
  • Halothioalkoxy is intended to mean a haloalkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge.
  • Cycloalkyl is intended to include saturated ring groups, having the specified number of carbon atoms.
  • C3-C6 cycloalkyl denotes such as cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • carbocycle is intended to mean any stable 3, 4, 5, 6 and 7-membered monocyclic or bicyclic or 7, 8, 9, 10, 11, 12 and 13 -membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic.
  • carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4.
  • OJbicyclodecane (decalin) , [2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin) .
  • Preferred "carbocycle” are cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • heterocycle or “heterocyclic ring” is intended to mean a stable 5, 6, and 7- membered monocyclic or bicyclic or 7 , 8, 9, 10, 11, 12, 13 and 1 -membered bicyclic heterocyclic ring which is saturated partially unsaturated or unsaturated (aromatic) , and which consists of carbon atoms and 1, 2, 3 or 4 heteroatoms, preferably 1, 2, or 3 heteroatoms, independently selected from the group consisting of N, 0 and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring.
  • the nitrogen and sulfur heteroatoms may optionally be oxidized.
  • the heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure.
  • the heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than 1.
  • heterocycles include, but are not limited to, lH-indazole, 2-pyrrolidonyl, 2H, 6H-1, 5, 2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1, 2 , 5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl , benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aIf-carbazolyl, b-carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinol,
  • Preferred 5 to 10 membered heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl, benzofuranyl, benzothiofuranyl, indolyl, benzimidazolyl, liT-indazolyl, oxazolidinyl, isoxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, quinolinyl, and isoquinolinyl.
  • Preferred 5 to 6 membered heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl; more preferred 5 to 6 membered heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, and tetrazolyl.
  • fused ring and spiro compounds containing, for example, the above heterocycles are fused ring and spiro compounds containing, for example, the above heterocycles.
  • aryl C6-C10 aryl or aromatic residue, is intended to mean an aromatic moiety containing the specified number of carbon atoms; for example phenyl, pyridinyl or naphthyl; preferably phenyl or naphthyl.
  • amino-heterocyclic ring is intended to denote a heterocyclic ring of Formula (I) :
  • H ⁇ J ? (I) comprising at least one nitrogen atom, carbon atoms and optionally a second additional heteroatom selected from oxygen, nitrogen and sulfur; wherein the total number of members of "amino-heterocycle ring” B does not exceed 8.
  • amino-heterocyclic ring B also contains 3, 4,
  • amino-heterocycle ring B comprises one nitrogen atom and a second additional heteroatom
  • amino-heterocyclic ring B contains 3, 4, 5, or 6 carbons. It is preferred that the total number of atoms of amino-heterocyclic ring B is 5,
  • amino-heterocyclic ring B is five or six. It is further understood that amino-heterocyclic ring B may be saturated or partially unsaturated (i.e. two adjacent atoms in the ring form a double bond) wherein the backbone of amino-heterocyclic ring B may contain one, two or three double bonds, but not fully unsaturated. Examples of amino-heterocyclic ring B include, but are not limited to piperidine, piperazine, and pyrrolidine.
  • substituent -L-Z of Formula (I) is attached to amino- heterocyclic ring B through a ring carbon.
  • the compounds herein described may have asymmetric centers.
  • One enantiomer of a compound of Formula (I) may display superior chemical activity over the opposite enantiomer.
  • separation of the racemic material can be achieved by methods known in the art .
  • the carbon atoms to which R 3 and R ⁇ are attached may describe chiral carbons which may display superior chemical activity over the opposite enantiomer.
  • R 3 and R ⁇ are not H, then the configuration of the two centers may be described as (2R,3R), (2R,3S), (2S,3R), or (2S,3S). All configurations are considered part of the invention; however, the (2R,3S) and the (2S,3R) are preferred and the (2R,3S) is more preferred.
  • phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salts refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
  • inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like
  • organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic,
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
  • such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred.
  • Lists of suitable salts are found in Remington 's Pharmaceutical Sciences, 17th ed. , Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.
  • Prodrugs are intended to include any covalently bonded carriers which release the active parent drug according to Formula (I) in vivo when such prodrug is administered to a mammalian subject.
  • Prodrugs of a compound of Formula (I) are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound.
  • Prodrugs include compounds of Formula (I) wherein a hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug or compound of Formula (I) is administered to a mammalian subject, cleaves to form a free hydroxyl, free amino, or free sulfhydryl group, respectively.
  • prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of Formula (I) , and the like.
  • Stable compound and “stable structure” are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent .
  • effective amount means an amount of a compound/composition according to the present invention effective in producing the desired therapeutic effect.
  • treating refers to: (i) preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; (ii) inhibiting the disease, disorder or condition, i.e., arresting its development; and (iii) relieving the disease, disorder or condition, i.e., causing regression of the disease, disorder and/or condition.
  • patient or "host” includes both human and other mammals .
  • the compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis.
  • the compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. All references cited herein are hereby incorporated in their entirety herein by reference.
  • the novel compounds of this invention may be prepared using the reactions and techniques described in this section. The reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected.
  • Disubstituted suecinate derivatives can be prepared by a number of known procedures.
  • the procedure of Evans (D. A. Evans et al, Org. Synth . 86, p83 (1990)) is outlined in Scheme 1 where acylation of an oxazolidinone with an acylating agent such as an acid chloride provides structures 1.
  • Alkylation to form 2 followed by cleavage of the chiral auxiliary and subsequent alkylation of the dianion of the carboxylic acid 3 provides a variety of disubstituted succinates which can be separated and incorporated into structures of Formula (I) by those skilled in the art. Additional examples are found in P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett, (1993) , 137-138, incorporated herein by reference.
  • Scheme 1 is found in P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett
  • Diastereomerically pure suecinate derivatives can be accessed using the chemistry outlined below, adapted from P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett, (1993), 137-138 incorporated herein by reference. This reference provides the synthesis below to obtain compound 9.
  • Compound 11 is used as an intermediate and is prepared from 9 by hydrogenation of the allyl group followed by coupling of 9-fluorenemethanol under standard conditions using DCC and DMAP in CH 2 C1 2 . Deprotection of the tert- butyl ester is accomplished by treatment with 50% trifluoroacetic acid.
  • the compounds of the present invention may be synthesized using the succinates 4 and substituted heterocyclic amines as is shown in Scheme 3.
  • the acid 11 can be coupled onto a variety of solid supports to initiate solid-phase parallel synthesis .
  • the solid-phase synthesis of the compounds of Claim 1 is shown in Scheme 8, where coupling of 11 to Peptide Amide Linker (PAL) resin (commercially available from Perkin Elmer Biosystems) produces the resin-bound succinamide 37.
  • PAL Peptide Amide Linker
  • This coupling can be accomplished using a variety of coupling agents such as diisopropylcarbodiimide (DICI) with the additive 1-hydroxybenzotriazole (HOBt) , HATU (O- (7-azabenzotriazol-l-yl) -1,1,3,3,- tetramethyluronium hexafluorophosphate) in the presence of a base such as diisopropylethylamine (DIEA) or triethylamine, PyBOP (benzotriazole-1-yl-oxy-tris- pyrrolidino-phosphonium hexafluorophosphate) or other coupling agents known to those skilled in the art (DICI with hydroxybenzotriazole is preferred) .
  • Preferred solvents for coupling reactions include N, N- dimethylformamide (DMF) , N-methylpyrrolidinone (NMP) , and dichloromethane (DCM) .
  • the fluorenylmethyl ester is removed from the compounds by treatment with piperidine and the resultant carboxylic acid can be reacted with a variety of animes to form the corresponding amides.
  • Treatment with trifluoroacetic acid in dichloromethane then releases the desired compounds 14 from the solid support.
  • Suecinate 9 is prepared according to the literature procedure (P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett, (1993), 137-138).
  • Suecinate 9 (17.8 g, 66 mmol) is dissolved in 250 mL of ethyl acetate and placed in a Parr shaker bottle.
  • To the solution is added 890 mg of 5% palladium on carbon, and the bottle is pressurized to 40 psi with hydrogen gas and shaken for 2.5 h at rt. The hydrogen is removed and the palladium catalyst is removed by filtration through a pad of celite. Concentration of the ethyl acetate solution provides 17.5 g (98%) of suecinate 10. No further purification is necessary.
  • MS (M-H) + 271.
  • Suecinate 10 (6.3 g, 23.1 mmol) is dissolved in 125 mL of CH 2 CI 2 and 4.8 g (23.3 mmol) of dicyclohexylcarbodiimide is added. The solution is stirred at rt for 30 min and then 4.6 g (23.4 mmol) of 9-fluorenemethanol is added followed by 122 mg (1 mmol) of 4-dimethylaminopyridine. After 5 h of stirring at rt, the reaction solution was diluted with an additional 100 mL of CH 2 CI 2 and filtered through a pad of celite to remove precipitated dicyclohexylurea.
  • the solution was then washed 3 x with 50 mL of a IN HCI solution, 3 x with 50 mL of a saturated sodium bicarbonate solution, and 2 x with 50 mL of brine.
  • the crude product was dried over MgS ⁇ 4 and concentrated onto 15 g of silica gel. Chromatography eluting with a gradient of 2.5% to 5% ethyl acetate/hexanes provided 6.4 g (61%) of the diester as an oil.
  • the purified diester (6.4 g 14.2 mmol) is then dissolved in 25 mL of CH 2 CI 2 25 mL of trifluoroacetic acid is added, and the reaction solution is stirred at rt for 2 h.
  • Resin 37 of Scheme 8 Commercial Fmoc-PAL resin (Perkin Elmer Biosyste s) (9 grams, 0.42 mmol/g, 3.78 mmol) is washed for 20 min with 3 x 50 L of 20% piperidine in DMF. The resulting free amine resin is then washed under standard conditions. The resin is then slurried in 100 mL of DMF and and 4.47 grams (11.34 mmol) of suecinate 11 is then added, followed by HOBt (1.74 g, 11.34 mmol) and diisopropylcarbodiimide (1.82 mL, 11.34 mmol). The resin is placed on a shaker table for 16 h and then washed under standard conditions and dried in vacuo .
  • Fmoc-PAL resin Perkin Elmer Biosyste s
  • Resin 38 of Scheme 8 Resin 12 of scheme 3 is washed for 20 min with 3 x 50 mL of 20% piperidine in DMF. The resulting free carboxylic acid resin is then washed under standard conditions .
  • Products 39 of Scheme 8 Six grams of resin is suspended in a 2:3 mixture of DMF and CH 2 Cl 2 and pipetted into 118 of the wells of two commercial polyfiltronics 96-well filter blocks, approximately 50 mg of resin per well. The solvents are removed by filtration, and 200 ⁇ L of DMF is added to each reaction well, followed by 110 ⁇ L of a 1 M solution of the desired amine in DMF. A stock solution of PyBOP (6.56 g, 12.6 mmol) dissolved in 24 mL of DMF is then prepared, and 200 ⁇ L of this solution (0.10 mmol) is added to each well.
  • Diisopropylethylamine (0.21 mmol, 36.5 ⁇ L ) is then added to each well and the reaction block is sealed and mixed on a shaker table for 16 h. The plates are then washed under standard conditions . The compounds are then cleaved from the solid support employing 1 mL of a 95:5 trifluoroacetic acid/triethylsilane solution for 3 h. The cleavage solution is drained from the well and the resin is washed with an additional 0.5 L of DCM and the combined filtrates are concentrated. The samples are redissolved in 1 mL of methanol and reconcentrated to remove any volatile impurities .
  • Examples 1-106 For each reagent listed in Table 1, the corresponding product 39 was prepared. The products of Examples 1-106 were verified by the presence of the desired compound in ESI MS (M+H+ or M+Na + ) .
  • Example 31 (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-3- carboxylic acid. MS [M+H]+ 327.1.
  • Examples 108-116 For each reagent listed in Table 2, the corresponding product was prepared according to the preparation of the compound of Example 107. The products of Examples 108-116 were verified by the presence of the desired compound in ESI MS (M + H) + . Table 2
  • the resin was washed thoroughly with DMF, MeOH and CH 2 C1 and dried well under vacuum. The resin was then suspended in DMF and acylated with 12 eq (0.075 mmoles,
  • Examples 118-122 For each reagent listed in Table 3, the corresponding product was prepared according to the preparation of the compound of Example 117. The products of Examples 118-122 were verified by the presence of the desired compound in ESI MS (M + H) + .
  • Examples 124-129 For each reagent listed in Table 4, the corresponding product was prepared according to the preparation of the compound of Example 123. The compounds of Examples 128 and 129 were prepared according to the preparation of the compound of Example 117, but using 3- piperidone. The products of Examples 124-129 were verified by the presence of the desired compound in ESI MS (M + H) + .
  • Example 130(c) The resin from example 130(b) (50 mg, 0.8 mmol/g, 0.040 ⁇ ol) was suspended in 1 mL of THF and 15 mg of tetrakis (triphenylphosphine) palladium (0), 70 mg (0.37 mmol) of 4-trifluoromethylphenyl boronic acid, and 200 ⁇ L of a 2 M sodium carbonate solution were added. The suspension was heated to 60 °C for 16 h, and the esin was isolated by filtration and washed with DMF, dichloromethane, and methanol.
  • Example 132 (a) : To a solution of 2 g (10.6 mmol) of 3-piperidione in 50 mL of THF at 0 2 C is added dropwise 10 L of a 1M solition of 4-fluorophenylmagnesium bromide in THF. After 30 min, the reaction was quenched with IN HCI and the THF was removed by rotary evaporation. The resultant aqueous layer was extracted twice with 50 mL of CH 2 CI 2 to provide
  • Example 132 (b) 1.9 g (66%) of an oil which was used without further purification.
  • Example 132 (b) 1.9 g (66%) of an oil which was used without further purification.
  • Example 132(c) To a 0.2 g portion of resin from example 130(a) (0.16 mmol, 0.83 mmol/g) was added 0.83 mmol (162 mg) of the compound of example 135(b), 0.83 mmol (432 mg) of PyBop, and 1.66 mmol (289 ⁇ L) of DIEA. The suspension was stirred for 2 days and then the resin was washed thoroughly with DMF, DCM, and methanol. The resin was then suspended in 2 mL of a 1:1:8 solution of acetic acid, trifluoroethanol, and dichloromethane and the suspension was stirred for 2 h. Evaporation gave the crude acid (56 mg, 83%) which was used without further purification.
  • Example 134(a) 7.3 g of suecinate 10 of scheme 2 was dissolved in 70 mL of DMF and activated with 13.3 g of HATU and 14.73 mL of N-methylmorpholine . After stirring at rt for 30 min 7.4 g of 4 (S) -benzylhydroxyproline methyl ester hydrochloride was added and the reaction solution was stirred at rt for 2 h. The reaction solution was diluted with 100 L of water and the resulting solution was extracted 3 X with ethyl acetate.
  • Example 134(c) Alkanesufonamide safety catch resin (Novabiochem, 4.5 g, 0.8 mmol/g, 3.6 mmol) was washed well and then suspended in 50 mL of DMF. The acid from example 134(b) (5.133 g, 10.8 mmol), PyBop (5.62 g, 10.8 mmol) and DIEA (5.65 L, 32.4 mmol) were added and the suspension was shaken for 16 h. The resin was then rinsed thoroughly with DMF, dichloromethane, and methanol and dried.
  • Example 134(d) A 25 mg portion of the resin from example 134(c) (0.02 mmol) was suspended in a 1:1 solution of dichloromethane and tricluoroacetic acid (0.5 L) and allowed to shake for 2 h at rt . The resin was then washed thoroughly, and resuspended in 0.5 mL of DMF. and treated with HATU (38 mg, 0.1 mmol) and 150 mL of a saturated solution of ammonia in THF. The reaction suspension was allowed to stir at rt for 1.5 h and then the resin was washed thoroughly.
  • Tables 5a-5g below provide representative Examples of the compounds of Formula (I) of the present invention.
  • AD Alzheimer's Disease
  • the compounds of the present invention have utility for the prevention and treatment of
  • AD by inhibiting A ⁇ production.
  • Methods of treatment target formation of A ⁇ production through the enzymes involved in the proteolytic processing of ⁇ -amyloid precursor protein.
  • Compounds that inhibit ⁇ or ⁇ secretase activity either directly or indirectly, control the production of A ⁇ .
  • Such inhibition of ⁇ or ⁇ secretases reduces production of A ⁇ , and is expected to reduce or prevent the neurological disorders associated with A ⁇ protein, such as Alzheimer's Disease.
  • Cellular screening methods for inhibitors of A ⁇ production, testing methods for the in vivo suppression of A ⁇ production, and assays for the detection of secretase activity are known in the art and have been disclosed in numerous publications, including J. Med. Chem. 1999, 42, 3889-3898, PCT publication number WO 98/22493, EPO publication number 0652009, US patent 5703129 and US patent 5593846; all hereby incorporated by reference.
  • the compounds of the present invention have utility for the prevention and treatment of disorders involving A ⁇ production, such as cerebrovascular disorders.
  • Compounds of Formula (I) are expected to possess ⁇ - secretase inhibitory activity.
  • the ⁇ -secretase inhibitory activity of the compounds of the present invention is demonstrated using assays for such activity, for Example, using the assay described below.
  • Compounds of the present invention have been shown to inhibit the activity of ⁇ secretase, as determined by the A ⁇ immunoprecipitation assay.
  • Compounds provided by this invention should also be useful as standards and reagents in determining the ability of a potential pharmaceutical to inhibit A ⁇ production.
  • ⁇ g denotes icrogram
  • mg denotes milligram
  • g denotes gram
  • ⁇ L denotes microliter
  • mL denotes illiliter
  • L denotes liter
  • nM denotes nanomolar
  • ⁇ M denotes micromolar
  • mM denotes millimolar
  • M denotes molar
  • nm denotes nanometer
  • SDS denotes sodium dodecyl sulfate
  • DMSO denotes dimethyl sulfoxide
  • EDTA denotes ethylenediaminetetraacetato .
  • a compound is considered to be active if it has an IC50 or K-j_ value of less than about lOO ⁇ M for the inhibition of A ⁇ production.
  • the IC50 or K j _ value is less than about lO ⁇ M; more preferrably the IC50 or K j _ value is less than about O.l ⁇ M.
  • the present invention has been shown to inhibit A ⁇ protein production with an IC50 or K ⁇ value of less than 100 ⁇ M.
  • ⁇ APPA assay ⁇ Amyloid Precursor Protein Accumulation Assay
  • An assay to evaluate the accumulation of A ⁇ protein was developed to detect potential inhibitors of secretases.
  • the assay uses the N 9 cell line, characterized for expression of exogenous APP by immunoblotting and immunoprecipitation.
  • test compounds The effect of test compounds on the accumulation of A ⁇ in the conditioned medium is tested by immunoprecipitation.
  • N 9 cells are grown to confluency in 6-well plates and washed twice with 1 x Hank's buffered salt solution. The cells are starved in methionine/cysteine deficient media for 30 min., followed by replacement with fresh deficient media containing 150uCi Tran35S-LABELTM (ICN) .
  • Test compounds dissolved in DMSO final concentration 1%) are added, over a range of 1 picomolar to 100 micromolar, together with the addition of the fresh media containing
  • Tran35S-LABELTM The cells are incubated for 4 h at 37°C in a tissue culture incubator. At the end of the incubation period, the conditioned medium is harvested and pre-cleared by the addition of 5 ⁇ l normal mouse serum and 50ul of protein A Sepharose (Pharmacia) , mixed by end-over-end rotation for 30 minutes at 4 C, followed by a brief centrifugation in a microfuge.
  • a monoclonal antibody examples include but are not limited by, clone 1101.1, directed against an internal peptide sequence in A ⁇ ; or 6E10 from Senetek; or 4G8 from Senetek; additionally polyclonals from rabbit antihuman A ⁇ from Boehringer Mannheim) and 50 ⁇ l protein A Sepharose.
  • the samples are washed three times with high salt washing buffer (50mM Tris, pH 7.5, 500mM NaCl, 5mM EDTA, 0.5% Nonidet P-40) , three times with low salt wash buffer (50mM Tris, pH 7.5, 150mM NaCl, 5mM EDTA, 0.5% Nonidet P-40), and three times with lOmM Tris, pH 7.5.
  • high salt washing buffer 50mM Tris, pH 7.5, 500mM NaCl, 5mM EDTA, 0.5% Nonidet P-40
  • low salt wash buffer 50mM Tris, pH 7.5, 150mM NaCl, 5mM EDTA, 0.5% Nonidet P-40
  • lOmM Tris pH 7.5.
  • the pellet after the last wash is resuspended in SDS sample buffer (Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680-5, 1970.) and
  • the supernatant is then fractionated on either 10-20% Tris/Tricine SDS gels or on 16.5% Tris/Tricine SDS gels.
  • the gels are dried and exposed to X-ray film or analyzed by phosphorimaging .
  • the resulting image is analyzed for the presence of A ⁇ polypeptides.
  • the steady-state level of A ⁇ in the presence of a test compound is compared to wells treated with DMSO (1%) alone.
  • a ⁇ accumulation in the conditioned medium is considered active with an IC50 less than 100 ⁇ M.
  • test compounds on the accumulation of C- terminal fragments is determined by immunoprecipitation of APP and fragments thereof from cell lysates .
  • N 9 cells are metabolically labeled, as above, with media containing
  • Tran35S-LABELTM in the presence or absence of test compounds.
  • the conditioned medium are harvested and cells lysed in RIPA buffer (10 mM Tris, pH 8.0 containing 1% Triton X-100, 1% deoxycholate, 0.1% SDS, 150mM aCl, 0.125% NaN3 ) .
  • RIPA buffer 10 mM Tris, pH 8.0 containing 1% Triton X-100, 1% deoxycholate, 0.1% SDS, 150mM aCl, 0.125% NaN3 .
  • lysates are precleared with 5ul normal rabbit serum/50ul protein A Sepharose, followed by the addition of BC-1 antiserum (15 ⁇ l;) and 50 ⁇ l protein A Sepharose for 16 hours at 4°C.
  • the immunoprecipitates are washed as above, bound proteins eluted by boiling in SDS sample buffer and fractionated by Tris/Tricine SDS-PAGE. After exposure to X-ray film or phosphorimager, the resulting images are analyzed for the presence of C-terminal APP fragments. The steady-state level of C-terminal APP fragments is compared to wells treated with DMSO (1%) alone. A typical test compound in this assay stimulates C-terminal fragment accumulation in the cell lysates, and is considered active with an IC50 less than 100 ⁇ M.
  • This immunoprecipitation assay is specific for g secretase activity (i.e., proteolytic activity required to generate the C-terminal end of A ⁇ either by direct cleavage or generating a C-terminal extended species which is subsequently further proteolyzed) .
  • N 9 cells are pulse labeled with media containing Tran35S-LABELTM in the presence of a reported g secretase inhibitor (MDL 28170; Higaki J, Quon D, Zhong Z, Cordell B.
  • MDL 28170 reported g secretase inhibitor
  • Higaki J Quon D, Zhong Z, Cordell B.
  • Inhibition of beta- amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14, 651-659, 1995) for 1 h, followed by washing to remove 35g radiolabel and MDL 28170.
  • test compounds are added over a dose range (for example 0. lnM to lOOuM) .
  • the cells are chased for increasing periods of times and A ⁇ is isolated from the conditioned medium and C-terminal fragments from cell lysates (see accumulation assay above) .
  • the activity of test compounds are characterized by whether a stabilization of C-terminal fragments is observed and whether A ⁇ is generated from these accumulated precursor.
  • a typical test compound in this assay prevents the generation of A ⁇ out of accumulated C-terminal fragments and is considered active with an IC50 less than 100 ⁇ M.
  • the compounds determined from the present invention can be administered orally using any pharmaceutically acceptable dosage form known in the art for such administration.
  • the active ingredient can be supplied in solid dosage forms such as dry powders, granules, tablets or capsules, or in liquid dosage forms, such as syrups or aqueous suspensions .
  • the active ingredient can be administered alone, but is generally administered with a pharmaceutical carrier.
  • a valuable treatise with respect to pharmaceutical dosage forms is Remington's Pharmaceutical Sciences, Mack Publishing.
  • the compounds determined from the present invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions.
  • intravenous bolus or infusion
  • intraperitoneal subcutaneous
  • intramuscular form all using dosage forms well known to those of ordinary skill in the pharmaceutical arts.
  • An effective but non-toxic amount of the compound desired can be employed to prevent or treat neurological disorders related to ⁇ -amyloid production or accumulation, such as Alzheimer's disease and Down's Syndrome.
  • the compounds of this invention can be administered by any means that produces contact of the active agent with the agent's site of action in the body of a host, such as a human or a mammal . They can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents . They can be administered alone, but generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
  • the dosage regimen for the compounds determined from the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired.
  • An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
  • compounds determined from the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.
  • the compounds identified using the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches wall known to those of ordinary skill in that art.
  • the dosage administration will, of course, be continuous rather than intermittant throughout the dosage regimen.
  • the compounds herein described in detail can form the active ingredient, and are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as carrier materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.
  • suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as carrier materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices.
  • the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl callulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
  • suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture.
  • Suitable binders include starch, gelatin, natural sugars such as glucose or ⁇ -lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like.
  • Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
  • the compounds determined from the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamallar vesicles, and multilamellar vesicles.
  • Liposomes can be formed from a variety of phospholipids , such as cholesterol, stearylamine, or phosphatidylcholines .
  • Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers.
  • Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropyImethacrylamide-pheno1, polyhydroxyethylaspartamidephenol, or polyethyleneoxide- polylysine substituted with palmitoyl residues.
  • the compounds determined from the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.
  • a class of biodegradable polymers useful in achieving controlled release of a drug
  • a drug for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.
  • Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets . Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
  • powdered carriers such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets . Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
  • Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.
  • water, a suitable oil, saline, aqueous dextrose (glucose) , and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions .
  • Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances.
  • Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents.
  • citric acid and its salts and sodium EDTA are also used.
  • parenteral solutions can contain preservatives, such as henzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol .
  • Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, Mack Publishing Company, a standard reference text in this field.
  • Table 6 demonstrates representative substituents on the left end, or suecinate end, of the compound of Formula (I), showing compounds envisaged within the scope of the present invention.
  • Each of the fragments a through bt is attached to A, below.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Neurology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This invention relates to a novel succinoylamino heterocycles of Formula (I) having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.

Description

TITLE SUCCINOYLAMINO HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN
PRODUCTION
FIELD OF THE INVENTION
This invention relates to novel succinoylamino heterocycles having drug and bio-affecting properties, their pharmaceutical compositions and methods of use. These novel compounds inhibit the processing of amyloid precursor protein and, more specifically, inhibit the production of Aβ-peptide, thereby acting to prevent the formation of neurological deposits of amyloid protein. More particularly, the present invention relates to the treatment of neurological disorders related to β-amyloid production such as Alzheimer's disease and Down's Syndrome.
BACKGROUND OF THE INVENTION Alzheimer's disease (AD) is a degenerative brain disorder characterized clinically by progressive loss of memory, temporal and local orientation, cognition, reasoning, judgment and emotional stability. AD is a common cause of progressive dementia in humans and is one of the major causes of death in the United States. AD has been observed in all races and ethnic groups worldwide, and is a major present and future health problem. No treatment that effectively prevents AD or reverses the clinical symptoms and underlying pathophysiology is currently available (for review, Dennis J. Sel oe; Cell Biology of the amyloid (beta) -protein precursor and the mechanism of Alzheimer's disease, Annu Rev Cell Biol, 1994, 10: 373- 403) .
Histopathological examination of brain tissue derived upon autopsy or from neurosurgical specimens in effected individuals revealed the occurrence of amyloid plaques and neurofibrillar tangles in the cerebral cortex of such patients. Similar alterations were observed in patients with Trisomy 21 (Down's syndrome), and hereditary cerebral hemorrhage with amyloidosis of the Dutch-type. Neurofibrillar tangles are nonmerαbrane-bound bundles of abnormal proteinaceous filaments and biochemical and immunochemical studies led to the conclusion that their principle protein subunit is an altered phosphorylated form of the tau protein (reviewed in Selkoe, 1994) .
Biochemical and immunological studies revealed that the dominant proteinaceous component of the amyloid plaque is an approximately 4.2 kilodalton (kD) protein of about 39 to 43 amino acids. This protein was designated Aβ, β- amyloid peptide, and sometimes β/A4; referred to herein as Aβ. In addition to deposition of Aβ in amyloid plaques, Aβ is also found in the walls of meningeal and parenchymal arterioles, small arteries, capillaries, and sometimes, venules . Aβ was first purified, and a partial amino acid reported, in 1984 (Glenner and Wong, Biochem. Biophys. Res. Commun. 120: 885-890). The isolation and sequence data for the first 28 amino acids are described in U.S. Pat. No 4,666,829. Compelling evidence accumulated during the last decade revealed that Aβ is an internal polypeptide derived from a type 1 integral membrane protein, termed β amyloid precursor protein (APP) . β APP is normally produced by many cells both in vivo and in cultured cells, derived from various animals and humans. Aβ is derived from cleavage of β APP by as yet unknown enzyme (protease) system (s) , collectively termed secretases .
The existence of at least four proteolytic activities has been postulated. They include β secretase (s) , generating the N-terminus of Aβ, a secretase (s) cleaving around the 16/17 peptide bond in Aβ, and γ secretases, generating C-terminal Aβ fragments ending at position 38, 39, 40, 42, and 43 or generating C-terminal extended precursors which are subsequently truncated to the above polypeptides.
Several lines of evidence suggest that abnormal accumulation of Aβ plays a key role in the pathogenesis of AD. Firstly, Aβ is the major protein found in amyloid plaques. Secondly, Aβ is neurotoxic and may be causally related to neuronal death observed in AD patients . Thirdly, missense DNA mutations at position 717 in the 770 isoform of β APP can be found in effected members but not unaffected members of several families with a genetically determined (familiar) form of AD. In addition, several other β APP mutations have been described in familiar forms of AD. Fourthly, similar neuropathological changes have been observed in transgenic animals overexpressing mutant forms of human β APP. Fifthly, individuals with Down's syndrome have an increased gene dosage of β APP and develop early-onset AD. Taken together, these observations strongly suggest that Aβ depositions may be causally related to the AD.
It is hypothesized that inhibiting the production of Aβ will prevent and reduce neurological degeneration, by controlling the formation of amyloid plaques, reducing neurotoxicity and, generally, mediating the pathology associated with Aβ production. One method of treatment methods would therefore be based on drugs that inhibit the formation of Aβ in vivo.
Methods of treatment could target the formation of Aβ through the enzymes involved in the proteolytic processing of β amyloid precursor protein. Compounds that inhibit β or γ secretase activity, either directly or indirectly, could control the production of Aβ. Advantageously, compounds that specifically target γ secretases, could control the production of Aβ. Such inhibition of β or γ secretases could thereby reduce production of Aβ, which, thereby, could reduce or prevent the neurological disorders associated with Aβ protein.
PCT publication number WO 96/29313 discloses the general formula:
Figure imgf000004_0001
covering metalloprotease inhibiting compounds useful for the treatment of diseases associated with excess and/or unwanted matrix metalloprotease activity, particularly collagenase and or stromelysin activity. Compounds of general formula:
Figure imgf000005_0001
are disclosed in PCT publication number WO 95/22966 relating to matrix metalloprotease inhibitors. The compounds of the invention are useful for the treatment of conditions associated with the destruction of cartilage, including corneal ulceration, osteoporosis, periodontitis and cancer . European Patent Application number EP 0652009A1 relates to the general formula:
R1 (CH2)i
N R H
and discloses compounds that are protease inhibitors that inhibit Aβ production.
US Patent Number 5703129 discloses the general formula :
Figure imgf000005_0002
which covers 5-amino-6-cyclohexyl-4-hydroxy-hexanamide derivatives that inhibit Aβ production and are useful in the treatment of Alzheimer's disease. Thus there remains a need to develop compounds which are useful as inhibitors of the production of Aβ protein or pharmaceutically acceptable salts or prodrugs thereof, for the treatment of degenerative neurological disorders, such as Alzheimer's disease.
None of the above references teaches or suggests the compounds of the present invention which are described in detail below.
SUMMARY OF THE INVENTION One object of the present invention is to provide novel compounds which are useful as inhibitors of the production of Aβ protein or pharmaceutically acceptable salts or prodrugs thereof.
It is another object of the present invention to provide pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof .
It is another object of the present invention to provide a method for treating degenerative neurological disorders comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the compounds of the present invention or a pharmaceutically acceptable salt or prodrug form thereof. These and other objects, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that compounds of Formula (I) :
Figure imgf000006_0001
(I)
or pharmaceutically acceptable salt or prodrug forms thereof, wherein R3, R3a, R5, R5a, R11, t, B, L, and Z are defined below, are effective inhibitors of the production of Aβ protein.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Thus, in a first embodiment, the present invention provides a novel compound of Formula (I) :
Figure imgf000007_0001
(i) or a pharmaceutically acceptable salt or prodrug thereof, wherein:
Figure imgf000007_0002
-(CR7R7a)n-S-(CR7R a)m-R4, -(CR7R7a)n-0-(CR7R7a)m-R4,
- (CR7R7 ) n-N (R7b) - (CR7R7a) m-R4 ,
- (CR7R7a) n-S (=0) - (CR7R7a)m-R4,
- (CR7R7a)n-S (=0) 2- (CR7R7a)m-R4,
- (CR7R7a) n-C (=0) - (CR7R7a)m-R4, -(CR7R7a)n-N(R7b)C(=0)-(CR7R7a)ιrl-R4,
- (CR7R a) n-C (=0)N (R b) - (CR7R7 )m-R4 ,
- (CR7R7a) n-N (R7b) S (=0) 2" (CR7R7 )m-R4 , or
- (CR7R7a) n-S (=0) 2 (R7b) - (CR7R7a)m-R4 ; provided R3 is not hydrogen when R^ is hydrogen;
n is 0, 1, 2, or 3;
m is 0, 1, 2, or 3;
R3a is H, OH, C1-C4 alkyl, C1-C4 alkoxy, C2-C4 alkenyl, or C2-C4 alkenyloxy;
alternatively, R3 and.R a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-2 R4 ; provided that R5 and R^a are not combined to form a 3-8 membered cycloalkyl moiety;
R4 is H, OH, OR1 , Cι~C6 alkyl substituted with 0-3 R ,
C2~C6 alkenyl substituted with 0-3 R4a, C2~C6 alkynyl substituted with 0-3 R4a, C3-C10 carbocycle substituted with 0-3 R , 6~Cιo aryl substituted with 0-3 R4b, or 5 to 10 membered heterocycle substituted with 0-3 R ;
R4a, at each occurrence, is independently selected from: H, F, Cl, Br, I, CF3,
C3-C10 carbocycle substituted with 0-3 R , C -C10 aryl substituted with 0-3 R4b, or
5 to 10 membered heterocycle substituted with 0-3 R4^3;
R4 , at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
R5 is H, OR14; C1-C6 alkyl substituted with 0-3 R5b;
C1-C6 alkoxy substituted with 0-3 R5£>;
C2- 6 alkenyl substituted with 0-3 R5b;
C2-C6 alkynyl substituted with 0-3 R5 ;
C3-C10 carbocycle substituted with 0-3 >c ; Cg-Cio aryl substituted with 0-3 R^c; or
5 to 10 membered heterocycle substituted with 0-3 R^c; provided R^ is not hydrogen when R3 is hydrogen;
R5a is H, OH, C1-C4 alkyl, C1-C4 alkoxy, C2-C4 alkenyl, or C2-C alkenyloxy;
R^b, at each occurrence, is independently selected from: H, C1-C6 alkyl, CF3 , OR14, Cl, F, Br, I, =0, CN, NO2 ,
NR15R ; C3-C10 carbocycle substituted with 0-3 R^c; 6_Cιo aryl substituted with 0-3 R5c; or 5 to 10 membered heterocycle substituted with 0-3 R^C;
R5C, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Ci-Ce alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
alternatively, R^ and R^a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-2 R^k; provided that R3 and R3a are not combined to form a 3-8 membered cycloalkyl moiety;
R7 , at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , and C1-C4 alkyl;
R7a, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , CF3 , aryl and C1-C4 al yl ;
R7 is independently selected from H and C1-C4 alkyl;
L is a bond, C1-C alkyl, C2-C4 alkenyl, C2~C4 alkynyl, -(CH2)p-0-(CH2)q-, or - (CH2 ) -NR10- (CH2) q-;
p is 0, 1, 2, or 3 ;
q is 0, 1, 2, or 3;
Z is C3-C10 carbocycle substituted with 0-2 R^b. C6_Cιo aryl substituted with 0-4 R^b. anf 5 to 10 membered heterocycle substituted with 0-5
Rl2 wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
Rl2b^ at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C -Cβ alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, C1-C4 halothioalkoxy, aryl substituted with 0-4 R!2C.
R!2C / t each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
B is a 4 to 8 membered amino-heterocyclic ring, comprising one N atom, 3 to 7 carbon atoms, and optionally, an additional heteroatom selected from -0-, -S-, -S(=0)-, -S(=0)2-# and -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)OR17, - (C1-C3 alkyl) -C (=0) OR17 , C(=0)NR18R19, S(=0)2NR18R19, S(=0)2R17; C1-C6 alkyl substituted with 0-2 R10a; C6_Cιo aryl substituted with 0-4 Rl0:b; C3-C10 carbocycle substituted with 0-3 RlO . or 5 to 10 membered heterocycle optionally substituted with 0-3 R10b;
at each occurrence, is independently selected from: H, Ci-Cg alkyl, OR14, Cl, F, Br, I, =0, CN, N02 , NR15R, CF3, or aryl substituted with 0-4 R10b ; ^10b at each occurrence, is independently selected from: H, OH, C3.-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, CF3, acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
RH, at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, Br, I, -OH, CN, NO2 , NR18R19,
C(=0)R17, C(=0)OR17, C(=0)NR18R19, S (=0) 2NR18R19 , CF3;
C1-C6 alkyl substituted with 0-1 Rlla; 6- ιo aryl substituted with 0-3 R1^; C3-C10 carbocycle substituted with 0-3 Rll ; or 5 to 10 membered heterocycle substituted with 0-3 Rllb;
alternatively, two R11 substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical, wherein said carbocycle or benzo fused radical is substituted with 0-4 R13;
additionally, two R^ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroato s selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R^3;
R^a, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, O2 , NR15R16/ CF3/ or phenyl substituted with 0-3 Rll ;
R.llb each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl,
SCH3, S(=0)CH3, S (=0) 2CH3, C1-C6 alkyl, C1.-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkox ;
t is 0, 1, 2 or 3;
R13, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, and CF3 ;
R^ , at each occurrence, is independently selected from:
H, phenyl, benzyl, Cχ-C6 alkyl, or C2-C6 alkoxyalkyl;
R14a ±s H, phenyl, benzyl, or C1-C4 alkyl;
R1^, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl), -S (=0) 2- (C±-Cβ alkyl), and aryl;
R, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, benzyl, phenethyl, -C(=0) - {C1-C6 alkyl) and -S (=0) 2- (C3.-C6 alkyl);
alternatively, R^5 and R on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroato s selected from N and O;
R17 is H, aryl, aryl-CH2~, C1-C6 alkyl, or C2-C6 alkoxyalkyl;
R^8, at each occurrence, is independently selected from: H, Ci-Cg alkyl, benzyl, phenethyl, -C(=0) - (C1-C6 alkyl) and -S(=0) 2- (C1-C6 alkyl);
R!9, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, phenyl, benzyl, phenethyl, -C(=0)- (C1-C6 alkyl) -S (=0) ~ (Ci-Ce alkyl); and
alternatively, R^8 and R19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5- to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0.
[2] In a preferred embodiment the present provides a compound of Formula (I) wherein:
R3 is -(CR7R7a)n-R4,
- (CR7R7a) n-S- (CR7R7a)m-R4, -(CR7R7a)n-0-(CR7R7a)m-R4,
- (CR7R7a) n-N (R7b) - (CR7R7a) m-R4 ,
- (CR7R7a) n-S (=0) - (CR7R7a)m-R4 ,
- (CR7R7a)n-S (=0) 2- (CR7R7a)m-R4,
- (CR7R7a)n-C (=0) - (CR7R7a)m-R4, -(CR7R7a)n-NHC(=0)-(CR7R7a)m-R4,
-(CR7R7 )n-C(=0)NH-(CR7R7a)m-R4,
- (CR7R7a) n-NHS (=0) 2~ (CR7R7a)m-R4 , or
- (CR7R7a) n-S ( =0) 2NH- (CR7R7a)m-R4 ; provided R3 is not hydrogen when R^ is hydrogen;
n is 0, 1, 2, or 3;
m is 0, 1, 2, or 3;
R3a is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, or butoxy;
alternatively, R3 and R3a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-1 R4b; provided that R5 and R^a are not combined to form a 3-8 membered cycloalkyl moiety; R4 is H, OH, 0R1 ,
Ci-Cε alkyl substituted with 0-3 R a, C2-C6 alkenyl substituted with 0-3 R4a, C2-C6 alkynyl substituted with 0-3 R a,
C3-C10 carbocycle substituted with 0-3 R4 ,
C6- l0 aryl substituted with 0-3 R4b, or
5 to 10 membered heterocycle substituted with 0-3 R4 ;
R a, at each occurrence, is independently selected from: H, F, Cl, Br, I, CF3,
C3-C10 carbocycle substituted with 0-3 R4 , C6- ιo aryl substituted with 0-3 R4b, or 5 to 10 membered heterocycle substituted with 0-3 R ^;
R4 , at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
R5 is H, OR14;
Ci-Ce alkyl substituted with 0-3 R5 ;
C1-C6 alkoxy substituted with 0-3 R^b;
C2-Cg alkenyl substituted with 0-3 R^b; C2-C6 alkynyl substituted with 0-3 R5b;
C3-C10 carbocycle substituted with 0-3 ~R c ; 6_ ιo aryl substituted with 0-3 R^c ; or
5 to 10 membered heterocycle substituted with 0-3R5C ; provided R^ is not hydrogen when R3 is hydrogen;
R5a is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy,or allyl;
R5fc>, at each occurrence, is independently selected from: H, C1-C6 alkyl, CF3 , OR14, Cl, F, Br, I, =0, CN, O2 , NR15R16; C3-C10 carbocycle substituted with 0-3 R^> c ; C6~Cl0 aryl substituted with 0-3 5C; or
5 to 10 membered heterocycle substituted with 0-3 R^c;
R^c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , NR15R16, CF3 , acetyl,
SCH3, S(=0)CH3, S(=0) 2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
alternatively, R^ and R^a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-1 R5b; provided that R3 and R3a are not combined to form a 3-8 membered cycloalkyl moiety;
R7, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , and C1-C4 alkyl;
R7a, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , aryl and C1-C4 alkyl ;
R7 is independently selected from H and C1-C4 alkyl ;
L is a bond, C-L-C4 alkyl , C2-C alkenyl , C2-C alkynyl , - (CH2 ) p-0- (CH2 ) q- , or - (CH2 ) p-NR- (CH2 ) q- ;
p is 0, 1, 2, or 3 ;
q is 0, 1, 2, or 3;
Z is C3-C10 carbocycle substituted with 0-2 R12b; C6- l0 aryl substituted with 0-4 R^b. anc 5 to 10 membered heterocycle substituted with 0-5
Rl2b; wherein the heterocycle contains 1, 2, 3 or 4 heteroato s selected from N, 0 and S; Rl2 / at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0) 2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, aryl substituted with 0-4 R1 c;
R12C / at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Ci-Ce alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
B is a 4 to 8 membered amino-heterocyclic ring, comprising one N atom, 3 to 7 carbon atoms, and optionally, an additional heteroato selected from -0-, -S-, -S(=0)-, -S(=0)2-» and -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)OR17, - (C1-C3 alkyl) -C (=0) OR17 , C(=0)NR18R19, S(=0)2NR18R19, S(=0)2R17; Ci-Cg alkyl substituted with 0-1 R10 ; C6- 1O aryl substituted with 0-4 R10 ; C3-C10 carbocycle substituted with 0-3 Rl0b; or 5 to 10 membered heterocycle optionally substituted with 0-3 R10b;
R.10a at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, O2 , NR15R16, CF3, or phenyl substituted with 0-4 R10b;
p>10 ; a each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, or CF3;
RH, at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, Br, I, OH, CN, 02 , R18R19 ,
C(=0)R17, C(=0)OR17, C(=0)NR18R19, S(=0)2NR18R19, CF3;
C1-C6 alkyl substituted with 0-1 Rlla; C6-C10 aryl substituted with 0-3 Rllb;
C3-C10 carbocycle substituted with 0-3 Rll ; or
5 to 10 membered heterocycle substituted with 0-3 Rllb.
alternatively, two R^ substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical wherein said benzo fused radical is substituted with 0-4 R13 ;
additionally, two R^1 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R13 ;
Rlla, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, O2 , NR15R16, CF3, or phenyl substituted with 0-3 Rllb;
Rll , at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
t is 0, 1, 2 or 3;
R^3 , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, and CF3 ; R14 is H, phenyl, benzyl, Ci-Cζ alkyl, or C2-C6 alkoxyalkyl ;
R14a is H, phenyl, benzyl, or C1-C4 alkyl;
R^5f at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C{=0) - (C1-C6 alkyl) and -S (=0) 2- (C1-C6 alkyl);
R1^, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl) -S (=0) 2- (Ci-Cβ alkyl), and phenyl substituted with 0-3 R13;
alternatively, R15 and R16 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0;
R17 is H, aryl, (aryl)CH2-, C1-C6 alkyl, or C2-C6 alkoxyalkyl ;
R18, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl) and -S (=0) 2- (C1-C6 alkyl);
RI9, at each occurrence, is independently selected from:
H, OH, C1-C6 alkyl, phenyl, benzyl, phenethyl, -C(=0)- (C1-C6 alkyl) and -S (=0) 2- (C1-C6 alkyl); and
alternatively, R^8 and R^9 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and O . [3] In a another preferred embodiment the present invention provides a compound of Formula (I) wherein:
R3 is -(CHR7)n-R4, -(CHR7)n-S-(CHR7)m-R4,
-(CHR7)n-0-(CHR7)m-R4, or -(CHR7)n-N{R7b)-(CHR7)m-R4; provided R3 is not hydrogen when R^ is hydrogen;
n is 0, 1, or 2;
m is 0, 1, or 2;
R3 is H;
alternatively, R3 and R3a, and the carbon to which they are attached, may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl moiety; provided that R^ and R^a are not combined to form a cycloalkyl moiety;
R4 is H, OH, OR1 a,
C1-C4 alkyl substituted with 0-2 R4a, C2-C4 alkenyl substituted with 0-2 R4a, C2-C4 alkynyl substituted with 0-2 R4a,
C3-C6 cycloalkyl substituted with 0-3 R , phenyl substituted with 0-3 R4*3, or
5 to 6 membered heterocycle substituted with 0-3 R4b;
R a, at each occurrence, is independently selected from: H, F, Cl, Br, I CF3,
C3-C10 carbocycle substituted with 0-3 R b, phenyl substituted with 0-3 R4^0, or 5 to 6 membered heterocycle substituted with 0-3 R ;
R4b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
R5 is H, OR14;
C1-C6 alkyl substituted with 0-3 R5b; C2-C6 alkenyl substituted with 0-3 R5b; C2-C6 alkynyl substituted with 0-3 R^t> ; C3-C10 carbocycle substituted with 0-3 R^C; C6-C10 aryl substituted with 0-3 R5c; or
5 to 10 membered heterocycle substituted with 0-3R5C ; provided R^ is not hydrogen when R3 is hydrogen;
R a is H;
R^b, at each occurrence, is independently selected from:
H, C1-C6 alkyl, CF3 , OR14, Cl, F, Br, I, =0, CN, O2 ,
NR15R16; C3-C10 carbocycle substituted with 0-3 R5C ; C6-C10 aryl substituted with 0-3 R^c; or
5 to 10 membered heterocycle substituted with 0-3 R5C ;
R5O / at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2, NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
alternatively, R^ and R^>a, and the carbon to which they are attached, may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl moiety; provided that R3 and R3a are not combined to form a cycloalkyl moiety;
R7, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , CF3 , and C1-C4 alkyl; R7b is independently selected from: H, methyl, ethyl, propyl, and butyl;
L is a bond, -CH2-. -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, - (CH2)p-0-(CH2)q-, or - (CH2)p-NRl°- (CH2) q- ;
p is 0, 1, 2, or 3 ;
q is 0, 1, 2, or 3;
Z is C3-C10 carbocycle substituted with 0-2 R12 ;
C6- 10 aryl substituted with 0-4 R12b; and
5 to 10 membered heterocycle substituted with 0-5 l b; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
j^l2b/ at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1.-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, phenyl substituted with 0-3 12c;
R12o at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
B is a 5, 6, or 7 membered amino-heterocyclic ring, comprising one N atom, 3 to 6 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)OR17, - (C1-C3 alkyl) -C (=0) OR17 , C(=0)NR18R19, S(=0)2NR18R19, S(=0)2R17; C1-C6 alkyl substituted with 0-1 R10a; C6-C10 aryl substituted with 0-4 R10b; C3-C10 carbocycle substituted with 0-3 R1^. or 5 to 10 membered heterocycle optionally substituted ith 0-3 R 0 ;
Ri0a, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, O2, NR15R16, CF3, or phenyl substituted with 0-4 R10b;
R1^)b, at each occurrence, is independently selected from H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2 , NR15R, or CF3;
R1 , at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, NR18R19, C(=0)R17, C(=0)OR17, C(=0)NR18R19, S(=0)2NR18R19, CF3 C1-C6 alkyl substituted with 0-1 Rlla; C6- 10 aryl substituted with 0-3 Rllb; C3-C10 carbocycle substituted with 0-3 R lb; or 5 to 10 membered heterocycle substituted with 0-3 Rllb.
alternatively, two R 1 substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical wherein said benzo fused radical is substituted with 0-4 R13 ;
additionally, two R1 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R13 ;
R la, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, NO2 , NR15R16, CF3, or phenyl substituted with 0-3 Rllb; R , at each occurrence, is independently selected from:
H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
t is 0, 1, 2 or 3;
R13 , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR15R16, and CF3 ;
R 4 is H, phenyl, benzyl, Cι~Cg alkyl, or C2-Cg alkoxyalkyl;
R 4a is H, phenyl, benzyl, or C1-C4 alkyl;
R ^, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl), -S (=0) 2- (C1-C6 alkyl), and aryl;
R, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, benzyl, phenethyl, -C(=0) - (C1-C6 alkyl) and -S (=0) 2- (C3.-C6 alkyl);
alternatively, R ^ and R on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
R17 is H, aryl, (aryl)CH2-, C1-C6 alkyl, or C2-C6 alkoxyalkyl ;
R18, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C(=0) - (Ci-Cg alkyl) and -S (=0) 2- (C1-C6 alkyl); R1 , at each occurrence, is independently selected from:
H, OH, C1-C6 alkyl, phenyl, benzyl, phenethyl, -C(=0)- (C1-C6 alkyl) and -S (=0) 2- (C1-C6 alkyl); and
alternatively, R1^ and R19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl.
[4] In a another preferred embodiment the present invention provides a compound of Formula (Ic) :
Figure imgf000024_0001
(Ic)
or a pharmaceutically acceptable salt or prodrug thereof, wherei :
R3 is C1-C4 alkyl substituted with 0-2 R4a,
C2-C4 alkenyl substituted with 0-2 R4a, or C2-C4 alkynyl substituted with 0-1 R4a;
R4a, at each occurrence, is independently selected from: H, F, Cl, CF3,
C3-C6 cycloalkyl substituted with 0-3 R4b, phenyl substituted with 0-3 R4b, or 5 to 6 membered heterocycle substituted with 0-3 R *3;
R4 , at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2, NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
R5 is C1-C6 alkyl substituted with 0-3 R5b; C2-C6 alkenyl substituted with 0-2 R5 ; or C2-C6 alkynyl substituted with 0-2 R5b;
R^b, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, CF3 , OR14, =0; C3-C6 cycloalkyl substituted with 0-2 R5c; phenyl substituted with 0-3 R5O ; or 5 to 6 membered heterocycle substituted with 0-2 R$c ;
R^c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
L is a bond, -CH2~, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, - (CH2)p-0-(CH2)q-, or - (CH2) p-NR10- (CH2) q-;
p is 0, 1, 2, or 3;
q is 0, 1, or 2;
Z is C3-C10 carbocycle substituted with 0-2 R 2*3; 6- 10 aryl substituted with 0-4 R12b; and 5 to 10 membered heterocycle substituted with 0-5 R12 , wherein the heterocycle contains 1, 2, 3 or
4 heteroatoms selected from N, 0 and S;
R12b, at each occurrence, is independently selected from: H, OH, Cl, F, NR15R16, CF3 , acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, C1-C4 alkyl, C3.-C3 alkoxy, C1-C haloalkyl,
C1-C2 haloalkoxy, phenyl substituted with 0-3 R12c;
R12c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy; B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)OR17, - (C3.-C3 alkyl) -C (=0) OR17 ; C1-C4 alkyl substituted with 0-1 R10 ; phenyl substituted with 0-4 R10t);
C3-C6 carbocycle substituted with 0-3 R ^; or
5 to 6 membered heterocycle optionally substituted with 0-3 R10b;
R (^a, at each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, Cl, F, Br, I, =0, CN, NO2 , NR15R16, CF3, or phenyl substituted with 0-4 R10b;
R ^)b, at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, C1-C3 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, or CF3;
R 1, at each occurrence, is independently selected from:
C1-C4 alkoxy, Cl, F, OH, NR18R19, C(=0)R17, C(=0)OR17, CF3;
C1-C4 alkyl substituted with 0-1 Rlla; phenyl substituted with 0-3 Rll ;
C3-C6 carbocycle substituted with 0-3 R ; or
5 to 6 membered heterocycle substituted with 0-3 Rllb;
alternatively, two R substituents on adjacent carbon atoms may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or a benzo fused radical; Rll , at each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, F, =0, NR15R16, CF3 , or phenyl substituted with 0-3 Rllb;
Rllb, at each occurrence, is independently selected from:
H, OH, Cl, F, NR15R16, CF3 , C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
t is 0, 1, or 2;
R 3, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR15R16, and CF3 ;
R14 is H, phenyl, benzyl, C1-C4 alkyl, or C2-C4 alkoxyalkyl ;
R ^, at each occurrence, is independently selected from: H, C1-C4 alkyl, benzyl, phenethyl, -C (=0) - (C3.-C4 alkyl), -S(=0) 2- (C1-C4 alkyl), and aryl;
R1^, at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, benzyl, phenethyl, -C (=0) - (C1-C4 alkyl) and -S (=0) ~ (C1-C4 alkyl);
alternatively, R1^ and R " on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
R 7 is H, phenyl, benzyl, 4-fluorophenyl, 4-chlorophenyl, 4-methylphenyl , 4-trifluorophenyl , (4-fluorophenyl) methyl, (4-chlorophenyl) methyl, (4-methylphenyl) ethyl, (4-trifluorophenyl) ethyl, methyl, ethyl, propyl, butyl, methoxymethyl , methyoxyethyl, ethoxymethyl, or ethoxyethyl; R18, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl ;
R 9, at each occurrence, is independently selected from: H, methyl, and ethyl; and
alternatively, R18 and R19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl .
[5] In another embodiment the present invention provides a compound of Formula (Ic) :
Figure imgf000028_0001
(Ic)
or a pharmaceutically acceptable salt or prodrug thereof, wherein :
R3 is C1-C4 alkyl, C2-C4 alkenyl, or C2-C4 alkynyl;
R5 is C1-C6 alkyl, C2-C6 alkenyl, or C2-C6 alkynyl;
L is a bond, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, - (CH2)p-0-(CH2)q-, or - (CH2)p-NR10- (CH ) q-;
p is 0, 1, 2, or 3;
q is 0, 1, or 2;
Z is C3-C10 carbocycle substituted with 0-2 R1 b; C6- 10 aryl substituted with 0-4 R12b; and 5 to 10 membered heterocycle substituted with 0-5
R1 ^, wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
R12b at each occurrence, is independently selected from: H, OH, Cl, F, NR15R16, CF3 , acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C1-C2 haloalkyl, C1-C2 haloalkoxy, phenyl substituted with 0-3 R 2c;
R 2c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
B is a 6 membered amino-heterocyclic ring, comprising one N atom, 4 or 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)0R17, - (C1-C3 alkyl) -C (=0) OR17 ; C1-C4 alkyl substituted with 0-1 R10a; phenyl substituted with 0-4 R10b;
C3-C6 carbocycle substituted with 0-3 R1^)b; or
5 to 6 membered heterocycle optionally substituted with 0-3 R10 ;
R1^9-, t each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, Cl, F, Br, I, =0, CN, O2, NR15R16, CF3, or phenyl substituted with 0-4 R10b;
R10b; at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, C1-C3 alkoxy, Cl, F, Br, I, CN,
Figure imgf000029_0001
R1 , at each occurrence, is independently selected from:
C1-C4 alkoxy, Cl, F, OH, NR18R19, C(=0)R17, C(=0)OR17,
CF3; C1-C4 alkyl substituted with 0-1 Rlla; phenyl substituted with 0-3 Rl b;
C3-C6 carbocycle substituted with 0-3 R b; or
5 to 6 membered heterocycle substituted with 0-3 Rl b;
R la, at each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, F, =0, NR15R16, CF3 , or phenyl substituted with 0-3 Rllb;
R l , at each occurrence, is independently selected from:
H, OH, Cl, F, NR15R16, CF3 , C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
t is 0, 1, or 2;
R 3 , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR15R16, and CF3 ;
R14 is H, phenyl, benzyl, methyl, ethyl, propyl, butyl;
R15, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, and phenyl substituted with 0-3 substituents selected from OH, OCH3, Cl, F, Br, I, CN, O2 , H2 , N(CH3)H, (CH3)2, CF3, OCF3, C(=0)CH3, SCH3, S(=0)CH3, S(=0)2CH3, CH3 , CH2CH3, CO2H, and CO2CH3;
R ^, at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, benzyl, phenethyl, -C (=0) - (C1-C4 alkyl) and -S (=0) 2- (C1-C4 alkyl);
alternatively, R15 and R16on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl ;
R17 is H, phenyl, benzyl, 4-fluorophenyl, 4-chlorophenyl, 4-methyIpheny1 , 4-1rifluorophenyl , (4-fluorophenyl) methyl , (4-chlorophenyl) methyl , ( -methyIpheny1)methyl , (4-trifluorophenyl ) methyl , methyl, ethyl, propyl, butyl, methoxymethyl , methyoxyethyl , ethoxymethyl , or ethoxyethyl;
R 8, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;
R 9, at each occurrence, is independently selected from: H, methyl, ethyl, and
alternatively, R 8 and R 9 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl.
[6] In another preferred embodiment the present invention provides a compound of Formula (lb) :
Figure imgf000031_0001
(lb)
or a pharmaceutically acceptable salt or prodrug thereof, wherein :
R3 is -CH3, -CH2CH3, -CH2CH2CH3, -CH2CH2CH2CH3 ,
-CH2(CH3)2, -CH(CH3)CH2CH3, -CH2CH (CH3 ) 2 , -CH2C(CH3)3, -CF3, -CH2CF3, -CH2CH2CF3, -CH2CH2CH2CF3 ;
-CH=CH2, -CH2CH=CH2, -CH2C (CH3 ) =CH2 , -CH2CH=C (CH3 ) 2 , -CH2CH2CH=CH2 , -CH2CH2C (CH3) =CH2 , -CH2CH2CH=C (CH3 ) 2 , cis-CH2CH=CH (CH3 ) , cis-CH2CH2CH=CH (CH3 ) , trans-CH2CH=CH (CH3 ) , trans-CH2CH2CH=CH (CH3 ) ; -C≡CH, -CH2C≡CH, -CH2C≡C(CH3) ; cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-, cyclohexyl-CH2-, cyclopropyl-CH2CH2-, cyclobutyl- CH2CH2-, cyclopentyl-CH2CH2~, cyclohexyl-CH2CH2~; phenyl-CH2-, (2-F-phenyl)CH2~, (3 -F-phenyl ) CH2-, (4-F-phenyl)CH2-, (2-Cl-phenyl) CH2- , (3-Cl-phenyl)CH2-, (4-Cl-phenyl) CH2-,
(2,3-diF-phenyl)CH2-, (2 , 4-diF-phenyl) CH2- , (2, 5-diF-phenyl)CH2-, (2 , 6-diF-phenyl ) CH2-, (3, 4-diF-phenyl )CH2-, (3 , 5-diF-phenyl) CH2-, (2,3-diCl-phenyl)CH2~, (2 , 4-diCl-phenyl) CH2-, (2,5-diCl-phenyl)CH2-, ( , 6-diCl-phenyl) CH2-, (3 , 4-diCl-phenyl) CH2-, (3 , 5-diCl-phenyl) CH2- , (3-F-4-Cl-phenyl)CH2~, (3-F-5-Cl-phenyl)CH2-, (3-Cl-4-F-phenyl)CH2-, phenyl-CH2CH2-, (2-F-phenyl)CH2CH2-, (3-F-phenyl) CH2CH2- , (4-F-phenyl)CH2CH2-, (2-Cl-phenyl ) CH2CH2- ,
(3 -C1-phenyl )CH2CH2~, (4-Cl-phenyl ) CH2CH2-, (2,3 -diF-phenyl ) CH2CH2- , (2 , 4-diF-phenyl) CH2CH2- , (2,5-diF-phenyl)CH2CH2-, (2 , 6-diF-phenyl) CH2CH2-, (3 , 4-diF-phenyl ) CH2CH2- , (3 , 5-diF-phenyl ) CH2CH2- , (2,3-diCl-phenyl)CH2CH2-, (2 , 4-diCl-phenyl) CH2CH2-, (2 , 5-diCl-phenyl) CH2CH2- , (2 , 6-did-phenyl) CH2CH2- , (3 , 4-diCl-phenyl) CH2CH2-, (3 , 5-diCl-phenyl)CH2CH2-, (3-F-4-Cl-phenyl)CH2CH2-, or (3-F-5-Cl-phenyl) CH2CH2-;
-CH3, -CH2CH3, -CH2CH2CH3, -CH2(CH3)2, -CH2CH2CH2CH3 ,
-CH(CH3)CH2CH3, -CH2CH (CH3 ) 2 , -CH2C(CH3)3> -CH2CH2CH2CH2CH3 , -CH (CH3 ) CH2CH2CH3 , -CH2CH(CH3)CH2CH3, -CH2CH2CH (CH3) 2 , -CH (CH2CH3) 2 , -CF3, -CH2CF3, -CH2CH2CF3, -CH2CH2CH2CF3 , -CH2CH2CH2CH2CF3 , -CH=CH2, -CH2CH=CH2, -CH=CHCH3 , -CH2C (CH3 ) =CH2 , cis-CH2CH=CH (CH3 ) , trans-CH2CH=CH (CH3 ) , trans-CH2CH=CH (C6H5 ) , -CH2CH=C (CH3 ) 2 , cis-CH2CH=CHCH2CH3 , trans-CH2CH=CHCH2CH3 , cis-CH2CH2CH=CH (CH3 ) , trans-CH2CH2CH=CH (CH3 ) , trans-CH2CH=CHCH2 ( 6H5) , -C≡CH, -CH2C≡CH, -CH2C≡C(CH3) , -CH2C≡C (C6H5) , -CH2CH2C≡CH, -CH2CH2C≡C (CH3 ) , -CH2CH2C≡C (C6H5) , -CH2CH2CH2C≡CH, -CH2CH2CH2C≡C (CH3 ) , -CH2CH2CH2C≡C{C6H5) , cyclopropyl-CH2-, cyclobutyl-CH2~, cyclopentyl-CH2-, cyclohexyl-CH2-, (2-CH3-cyclopropyl) CH2- , (3-CH3-cyclobutyl)CH2~, cyclopropyl-CH2CH2- , cyclobutyl-CH2CH2-, cyclopentyl-CH2CH2- , cyclohexyl-CH2CH2-, (2-CH3-cyclopropyl) CH2CH2- , (3-CH3-cyclobutyl)CH2CH2-, phenyl-CH2~, (2-F-phenyl)CH2-, (3-F-phenyl) CH2-, ( -F-phenyl) CH -, furanyl-CH2-, thienyl-CH2-, pyridyl-CH2~, l-imidazolyl-CH2-, oxazolyl-CH2-/ isoxazolyl-CH2-/ phenyl-CH2CH2- , (2-F-phenyl ) CH2CH2 - , (3-F-phenyl) CH2CH2- , (4-F-phenyl) CH2CH2- , furanyl-CH2CH2-, thienyl-CH2CH2- , pyridyl~CH2CH2-, l-imidazolyl-CH2CH2-, oxazolyl-CH2CH2- , or isoxazolyl-CH2CH2~;
L is a bond, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2 , O, -CH2O-, -(CH2)2~0-, -(CH2)3-0-, - (CH2) -0- (CH2) 2 ~ . -(CH2)2-0-(CH2)-, - (CH2) 2~0- (CH2) 2~ , NH, NMe, -CH2NH- -(CH2)2-NH-, -(CH2)3-NH-, - (CH2) -NH- (CH2) 2~ , -(CH2)2-NH-(CH )-, - (CH2) 2~NH- (CH2) 2~ , and -N(benzoyl) -;
Z is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl 2-F-phenyl, 3 -F-phenyl, 4-F-phenyl, 2-Cl- phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2 , 3-diF-phenyl, 2, 4-diF-phenyl, 2, 5-diF-phenyl, 2, 6-diF-phenyl, 3 , 4-diF-phenyl, 3 , 5-diF-phenyl, 2, 3-diCl-phenyl, 2,4-diCl-phenyl, 2 , 5-diCl-phenyl, 2 , 6-diCl-phenyl, 3 , -diCl-phenyl , 3 , 5-diCl-phenyl , 2,3 -diMe-phenyl , 2 , 4-diMe-phenyl , 2 , 5-diMe-phenyl , 2 , 6-diMe-phenyl , 3 , 4-diMe-phenyl, 3 , 5-diMe-phenyl, 2 , 3 -diMeO-phenyl , 2,4-diMeO-phenyl, 2 , 5-diMeO-phenyl, 2 , 6-diMeO-phenyl, 3,4-diMeO-phenyl, 3 , 5-diMeO-phenyl, 3-F-4-Cl-phenyl, 3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl, 3-MeO-phenyl, 4-MeO-phenyl, 2-EtO-phenyl,
3-EtO-phenyl, 4-EtO-phenyl, 2-Me-phenyl, 3-Me-phenyl, 4-Me-phenyl, 2-Et-phenyl, 3-Et-phenyl, 4-Et-phenyl, 2-CF3-phenyl, 3 -CF3-phenyl, 4-CF3-phenyl, 2-N02- phenyl, 3 -NO2-phenyl , 4-NO2-phenyl , 2-CN-phenyl, 3-CN-phenyl, 4-CN-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl, 2-CF3θ-phenyl, 3-CF3θ-phenyl, 4-CF3θ-phenyl, 2-Me-5-Cl-phenyl, 3-CF3-4-Cl-phenyl, 3-CF3-5-F-phenyl, 3-MeO-4-Me-phenyl, furanyl, thienyl, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, pyrimidyl, pyrazinyl,
2-Me-pyridyl, 3-Me-pyridyl, 3-CF3~pyrid-2-yl, 5-CF3~pyrid-2-yl, 4-Me-pyridyl, pyrrolidinyl,
1-imidazolyl, oxazolyl, isoxazolyl, 1-benzimidazolyl, 2-keto-l-benzimidazolyl, 4-benzo [1,3] dioxol-5-yl, morpholino, N-piperidyl, 4-piperidyl, naphthyl, 4 (phenyl ) phenyl- , 4 (4-CF3 -phenyl )phenyl- , 3, 5-bis-CF3-phenyl-, 4-iPr-phenyl- , N-piperidino-CH2~ , l-Me-pyrrolidin-2-yl, and 1-pyrrolidinyl;
B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R ^ is H, methyl, ethyl, phenyl, benzyl, phenethyl, 4-F- phenyl, (4-F-phenyl)CH2~, (4-F-phenyl) CH2CH2-, 4-Cl- phenyl, (4-Cl-phenyl)CH2-, ( -Cl-phenyl ) CH2CH2-, 4- CH3 -phenyl, (4-CH3-phenyl) CH2-, (4-CH3-phenyl) CH2CH2-, 4-CF3-phenyl, ( 4-CF3-phenyl) CH2-, (4-CF3- phenyl)CH2CH2-, -CH2C(=0)Et, -C(=0)Me, or 4-Cl-benzhydryl;
R 1, at each occurrence, is independently selected from: H, OH, methyl, ethyl, -CN, -C(=0)Me, -C(=0)OEt, -C(=0)Et, -CH20H, -C(=0)NH2, -C(=0)OH, -C (=0)N (Et) 2 , phenyl, benzyl, phenethyl, 4-F-phenyl, (4-F- phenyl) CH2-, (4-F-phenyl )CH2CH2~, 4-Cl-phenyl, (4-C1- phenyl)CH2-, ( 4-Cl-phenyl) CH2CH2-, 4-CH3-phenyl, (4- CH3-phenyl)CH2-, (4-CH3 -phenyl) CH2CH2- , 4-CF3-phenyl, (4-CF3 -phenyl)CH2~, (4-CF3-phenyl) CH2CH2- , and -
Figure imgf000035_0001
t is 0, 1, or 2;
alternatively, two R1 substituents on the same or adjacent carbon atoms may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or a benzo fused radical .
[7] In another preferred embodiment the present invention provides a compound of Formula (lb) :
Figure imgf000035_0002
(lb)
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R3 is -CH2CH2CH3, -CH2CH2CH2CH3 , -CH2(CH3)2, -CH2CH (CH3 ) , -CH2CH=CH2, -CH2CH2CH=CH2 , -CH2CH2CH=C (CH3 ) 2 , cis-CH2CH=CH (CH3 ) , cis-CH2CH2CH=CH (CH3 ) , trans-CH2CH=CH (CH3 ) , trans-CH2CH2CH=CH (CH3 ) ; cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-, cyclohexyl-CH2-, cyclopropyl-CH2CH2-, cyclobutyl- CH2CH2-, cyclopentyl-CH2CH2-, or cyclohexyl-CH2CH2-; R5 is-CH2(CH3)2, -CH2CH2CH2CH3 , -CH (CH3) CH2CH3 ,
-CH2CH(CH3)2, -CH2C(CH3)3, -CH2CH2CH2CH2CH3 , -CH(CH3)CH2CH2CH3, -CH2CH (CH3 ) CH2CH3 , -CH2CH2CH (CH3 ) 2 , -CH(CH2CH3)2, -CH2CH=CH2, -CH2C (CH3 ) =CH2 , cis-CH2CH=CH(CH3) , trans-CH2CH=CH(CH3 ) ,
-CH2CH=C(CH3)2, cyclopropyl-CH2-, cyclobutyl-CH2~, eye1open yl-CH2- , eye1o exyl-CH2- ,
(2-CH3-cyclopropyl)CH2~, or (3 -CH3-cyclobutyl) CH2- ,
L is a bond, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, 0, -CH2O-, -(CH2)2-0-, ~(CH2)3-0-, - (CH2 ) -O- (CH2) 2 ~ , -(CH2)2-0-(CH2)-, -(CH2)2-0-(CH2)2-. NH, NMe, -CH2NH- , -(CH2)2-NH-, -(CH2)3-NH-, - (CH ) -NH- (CH ) 2~ , -(CH2)2-NH-(CH2)-, - {CH2) 2"NH- (CH2) 2 ~ , and -N(benzoyl) -;
Z is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl 2-F-phenyl, 3 -F-phenyl, 4-F-phenyl, 2-C1- phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2 , 3-diF-phenyl, 2, 4-diF-phenyl, 2 , 5-diF-phenyl, 2 , 6-diF-phenyl, 3, -diF-phenyl, 3 , 5-diF-phenyl, 2 , 3-diCl-phenyl, 2, 4-diCl-phenyl, 2 , 5-diCl-phenyl, 2 , 6-diCl-phenyl, 3 , 4-diCl-phenyl, 3 , 5-diCl-phenyl, 2, 3-diMe-phenyl, 2 , 4-diMe-phenyl, 2 , 5-diMe-phenyl, 2 , 6-diMe-phenyl, 3, 4-diMe-phenyl, 3 , 5-diMe-phenyl, 2 , 3-diMeO-phenyl,
2 , 4-diMeO-phenyl , 2,5-diMeO-phenyl , 2,6-diMeO-phenyl ,
3, 4-diMeO-phenyl, 3 , 5-diMeO-phenyl, 3-F-4-Cl-phenyl, 3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl,
3-MeO-phenyl , 4-MeO-phenyl , 2-Eto-phenyl , 3-EtO-phenyl, 4-EtO-phenyl, 2-Me-phenyl, 3-Me-phenyl, 4-Me-phenyl, 2-Et-phenyl, 3-Et-phenyl, 4-Et-phenyl, 2-CF3-phenyl, 3-CF3-phenyl, 4-CF3-phenyl, 2-N02- phenyl, 3-NO2-phenyl , -NO2-phenyl , 2-CN-phenyl,
3-CN-phenyl, 4-CN-phenyl, 2-MeS-phenyl, 3 -MeS-phenyl, 4-MeS-phenyl, 2-CF3θ-phenyl, 3-CF3θ-phenyl,
4-CF3θ-phenyl, 2-Me-5-Cl-phenyl, 3-CF3~4-Cl-phenyl, 3-CF3-5-F-phenyl, 3-MeO-4-Me-phenyl, furanyl, thienyl, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, pyrimidyl, pyrazinyl, 2-Me-pyridyl, 3-Me-pyridyl, 3-CF3~pyrid-2-yl, 5-CF3-pyrid-2-yl, 4-Me-pyridyl, pyrrolidinyl, 1-imidazolyl, oxazolyl, isoxazolyl, 1-benzimidazolyl, 2-keto-l-benzimidazolyl, 4-benzo[l, 3 ] dioxol-5-yl, morpholino, N-piperidyl, 4-piperidyl, naphthyl, 4 (phenyl)phenyl-, 4 (4-CF3-phenyl) phenyl-, 3 , 5-bis-CF3-phenyl-, 4-iPr-phenyl-, N-piperidino-CH2~ , l-Me-pyrrolidin-2-yl, and 1-pyrrolidinyl;
B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is the substituent -L-Z;
R , at each occurrence, is independently selected from: H, OH, methyl, ethyl, -CN, -C(=0)Me, -C(=0)0Et, -C(=0)Et, -CH2OH, -C(=0)NH2, -C(=0)0H, -C (=0)N (Et) 2 , and -N(Me)2~;
t is 0 or 1.
In another preferred embodiment the present invention provides a compound of the present invention wherein B is
Figure imgf000037_0001
In another preferred embodiment the present invention provides a compound of the present invention wherein B is
Figure imgf000038_0001
In another preferred embodiment the present invention provides a compound selected from one of the Examples in Table 5a, Table 5b, Table 5c, Table 5d, Table 5e, Table 5f or Table 5g.
In another even further more preferred embodiment the present invention provides for a compound selected from:
5-Methyl-2-propyl-3- [4- (3-tri luoromethyl-phenyl) - piperazine-1-carbonyl] -hexanoic acid amide;
3- [4- ( 5-Chloro-2-methyl-phenyl) -piperazine-1-carbonyl] -5- methyl-2-propyl-hexanoic acid amide;
3- [3 -Hydroxy-4- (3-trifluoromethyl-phenyl) -piperidine-1- carbonyl] -5-methyl-2-propyl-hexanoic acid amide;
3- [4- (3 , 4-Dichloro-phenyl) -piperazine-1-carbonyl] -5-methy1- 2-propyl-hexanoic acid amide;
3- [4- (4-Chloro-3-trifluoromethyl-phenyl) -piperazine-1- carbonyl] -5-methyl-2-propyl-hexanoic acid amide;
3- [4- (4-Chloro-3-trifluoromethyl-phenyl) -4-hydroxy- piperidine-1-carbonyl] -5-methyl-2-propyl-hexanoicacid amide;
5-Methyl-3- (4-phenyl-piperidine-l-carbonyl) -2-propyl- hexanoic acid amide;
3- (3-Benzyl-pyrrolidine-l-carbonyl) -5-methyl-2-propyl- hexanoic acid amide; 5-Methyl-3- (4-phenyl-piperidine-l-carbonyl) -2-propyl- hexanoic acid amide; and
3- (3-Benzyl-pyrrolidine-l-carbonyl) -5-methyl-2-propyl- hexanoic acid amide.
In another preferred embodiment
R3 is R4,
R3a is H, methyl, ethyl, propyl, or butyl;
R4 is Cι-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl
R5 is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl
R^a i H, methyl, ethyl, propyl, or butyl; and
the total number of carbon atoms in R3 , R3a, R^ and R5a equals seven or more.
In another preferred embodiment
R3 is C3-C4 alkyl or C3-C4 alkenyl,
R3a is H;
R5 is C3-C5 alkyl or C3-C5 alkenyl, and
R a is H.
In another preferred embodiment
R3 is R4;
R3a is H; R4 is C1-C4 alkyl substituted with 1-2 R a,
R4a, at each occurrence, is independently selected from C3-C6 cycloalkyl substituted with 0-3 R b, phenyl substituted with 0-3 R4b, or
5 to 6 membered heterocycle substituted with 0-3 R4b;
R4b, at each occurrence, is independently selected from H, OH, Cl, F, NR15R, CF3, acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C1-C2 haloalkyl, and C -C2 haloalkoxy;
R5 is C2-C4 alkyl substituted with 0-3 R5b; C2-C4 alkenyl substituted with 0-2 R5b; or C2-C4 alkynyl substituted with 0-2 R5b;
R^k, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, CF3 , OR14, =0; C3-C6 cycloalkyl substituted with 0-2 R$c ; phenyl substituted with 0-3 R^c ; or
5 to 6 membered heterocycle substituted with 0-2 R5c; and
R5C at each occurrence, is independently selected from H, OH, Cl, F, NR15R16, CF3, acetyl, SCH3 , S(=0)CH3, S(=0)2 H3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy.
In another preferred embodiment
R3 is R4;
R3a is H;
R4 is C2-C4 alkyl substituted with 0-2 R a, C2-C4 alkenyl substituted with 0-2 R4a, C2-C4 alkynyl substituted with 0-2 R4a,
R4a, at each occurrence, is independently selected from is H, F, CF3,
C3-C6 cycloalkyl substituted with 0-3 R4 , phenyl substituted with 0-3 R4b, or
5 to 6 membered heterocycle substituted with 0-3 R ;
R4b, at each occurrence, is independently selected from H, OH, Cl, F, NR15R, CF3, acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
R5 is C1-C4 alkyl substituted with 1-2 R5 ;
R^k, at each occurrence, is independently selected from: C3-C6 cycloalkyl substituted with 0-2 R$c ; phenyl substituted with 0-3 R^c ; or
5 to 6 membered heterocycle substituted with 0-2 R^c ; and
R5C, at each occurrence, is independently selected from H, OH, Cl, F, NR15R, CF3 , acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C1-C2 haloalkyl, and Cχ-C2 haloalkoxy.
Also included in the present invention in a preferred embodiment are compounds as set forth above wherein the total number of carbon atoms in R3, R3 , R5, and R5a, equals four or more .
Also included in the present invention in a preferred embodiment are compounds as set forth above wherein the total number of carbon atoms in R3 , R3a, R5, and R5a, equals seven or more.
Also included in the present invention in a preferred embodiment are compounds as set forth above wherein R3a and R5a are hydrogen, and R3 and R5 are not hydrogen.
It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment to descibe additional even more preferred embodiments of the present invention.
In a second embodiment, the present invention provides a pharmaceutical composition comprising a compound of Formula (I) and a pharmaceutically acceptable carrier.
In a third embodiment, the present invention provides a method for the treatment of neurological disorders associated with β-amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Formula (I) •
In a preferred embodiment the neurological disorder associated with β-amyloid production is Alzheimer's Disease.
In a fourth embodiment, the present invention provides a method for inhibiting γ-secretase activity for the treatment of a physiological disorder associated with inhibiting γ-secretase activity comprising administering to a host in need of such inhibition a therapeutically effective amount of a compound of Formula (I) that inhibits γ-secretase activity. In a preferred embodiment the physiological disorder associated with inhibiting γ-secretase activity is Alzheimer's Disease.
In a fifth embodiment, the present invention provides a compound of Formula (I) for use in therapy.
In a preferred embodiment the present invention provides a compound of Formula (I) for use in therapy of Alzheimer's Disease.
In a sixth embodiment, the present invention provides for the use of a compound of Formula (I) for the manufacture of a medicament for the treatment of Alzheimer's Disease.
DEFINITIONS As used herein, the term "Aβ" denotes the protein designated Aβ, β-amyloid peptide, and sometimes β/A4, in the art. Aβ is an approximately 4.2 kilodalton (kD) protein of about 39 to 43 amino acids found in amyloid plaques, the walls of meningeal and parenehymal arterioles, small arteries, capillaries, and sometimes, venules . The isolation and sequence data for the first 28 amino acids are described in U.S. Pat. No 4,666,829. The 43 amino acid sequence is :
1
Asp Ala Glu Phe Arg His Asp Ser Gly Tyr
11
Glu Val His His Gin Lys Leu Val Phe Phe
21
Ala Glu Asp Val Gly Ser Asn Lys Gly Ala
31 lie lie Gly Leu Met Val Gly Gly Val Val
41
He Ala Thr. However, a skilled artisan knows that fragments generated by enzymatic degradation can result in loss of amino acids 1-10 and/or amino acids 39-43. Thus, an ami o acid sequence 1-43 represents the maximum sequence of amino acids for Aβ peptide.
The term "APP", as used herein, refers to the protein known in the art as β amyloid precursor protein. This protein is the precursor for Aβ and through the activity of "secretase" enzymes, as used herein, it is processed into Aβ. Differing secretase enzymes, known in the art, have been designated β secretase, generating the N-terminus of Aβ, a secretase cleaving around the 16/17 peptide bond in Aβ, and "γ secretases", as used herein, generating C- terminal Aβ fragments ending at position 38, 39, 40, 41, 42, and 43 or generating C-terminal extended precursors which are subsequently truncated to the above polypeptides .
The compounds herein described may have asymmetric centers . Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials . Many geometric iso ers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. All chiral, diastereomeric, racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomeric form is specifically indicated. The term "substituted, " as used herein, means that any one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substituent is keto (i.e., =0), then 2 hydrogens on the atom are replaced.
When any variable (e.g. , R4:b, R5b, Rllb, R1 ^, etc.) occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-2 R^b, then said group may optionally be substituted with up to two R^b groups and R^b at each occurrence is selected independently from the definition of R^b. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds . When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom via which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
As used herein, "alkyl" or "alkylene" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms; for example, "Ci-Cβ alkyl" denotes alkyl having 1, 2, 3, 4, 5 and 6 carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, pentyl, and hexyl . Preferred "alkyl" group, unless otherwise specified, is "C1-C4 alkyl", more preferred is methyl, ethyl, propyl, and butyl.
As used herein, "alkenyl" or "alkenylene" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain. Examples of "C2-C6 alkenyl" include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 1- butenyl, 2-butenyl, 3-butenyl, 3-methyl-2-butenyl, 2- pentenyl, 3-pentenyl, hexenyl, and the like. As used herein, "alkynyl" or "alkynylene" is intended to include hydrocarbon chains of either a straight or branched configuration and one or more carbon-carbon triple bonds which may occur in any stable point along the chain. Examples of "C2-C6 alkynyl" include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, and the like.
"Alkoxy" or "alkyloxy" represents an alkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. Examples of alkoxy include, but are not limited to, methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, and s-pentoxy. Preferred alkoxy groups are methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy. Similarly, "alkylthio" or "thioalkoxy" represents an alkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge .
"Halo" or "halogen" as used herein refers to fluoro, chloro, bromo, and iodo. Unless otherwise specified, preferred halo is fluoro and chloro. "Counterion" is used to represent a small, negatively charged species such as chloride, bromide, hydroxide, acetate, sulfate, and the like.
"Haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogen (for example -CvFw where v = 1 to 3 and w = 1 to (2v+l) ) . Examples of haloalkyl include, but are not limited to, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, 2, 2, 2-trifluoroethyl, 2, 2-difluoroethyl, heptafluoropropyl, and heptachloropropyl . "Haloalkoxy" is intended to mean a haloalkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge; for example trifluoromethoxy, pentafluoroethoxy, 2,2,2- trifluoroethoxy, and the like. "Halothioalkoxy" is intended to mean a haloalkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge.
"Cycloalkyl" is intended to include saturated ring groups, having the specified number of carbon atoms. For -example, "C3-C6 cycloalkyl" denotes such as cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
As used herein, "carbocycle" is intended to mean any stable 3, 4, 5, 6 and 7-membered monocyclic or bicyclic or 7, 8, 9, 10, 11, 12 and 13 -membered bicyclic or tricyclic, any of which may be saturated, partially unsaturated, or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, [3.3.0]bicyclooctane, [4.3.0]bicyclononane, [4.4. OJbicyclodecane (decalin) , [2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, or tetrahydronaphthyl (tetralin) . Preferred "carbocycle" are cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. As used herein, the term "heterocycle" or "heterocyclic ring" is intended to mean a stable 5, 6, and 7- membered monocyclic or bicyclic or 7 , 8, 9, 10, 11, 12, 13 and 1 -membered bicyclic heterocyclic ring which is saturated partially unsaturated or unsaturated (aromatic) , and which consists of carbon atoms and 1, 2, 3 or 4 heteroatoms, preferably 1, 2, or 3 heteroatoms, independently selected from the group consisting of N, 0 and S and including any bicyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be oxidized. The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. If specifically noted, a nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than 1.
Examples of heterocycles include, but are not limited to, lH-indazole, 2-pyrrolidonyl, 2H, 6H-1, 5, 2-dithiazinyl, 2H-pyrrolyl, 3H-indolyl, 4-piperidonyl, 4aH-carbazole, 4H-quinolizinyl, 6H-1, 2 , 5-thiadiazinyl, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl , benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalonyl, carbazolyl, 4aIf-carbazolyl, b-carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H-1 , 5, 2-dithiazinyl, dihydrofuro [2,3 -b] tetrahydrofuran, furanyl , furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, lJJ-indazolyl, indolenyl, indolinyl, indolizinyl, indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl , octahydroisoquinolinyl, oxadiazolyl, 1, 2 , 3-oxadiazolyl, 1, 2 , 4-oxadiazolyl, 1, 2, 5-oxadiazolyl, 1, 3 , 4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinylperimidinyl, phenanthridinyl , phenanthrolinyl, phenarsazinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, piperidonyl, 4-piperidonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, pyrrolyl, quinazolinyl, quinolinyl, 4iϊ~quinolizinyl, quinoxalinyl, quinuclidinyl, carbolinyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl , 6H-1, 2, 5-thiadiazinyl, 1,2, 3-thiadiazolyl,
1, 2, 4-thiadiazolyl, 1, 2 , 5-thiadiazolyl, 1, 3 , 4-thiadiazolyl, thianthrenyl , thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2, 3-triazolyl, 1, 2 , 4-triazolyl, 1, 2 , 5-triazolyl,
1, 3 , 4-triazolyl, xanthenyl . Preferred 5 to 10 membered heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl, benzofuranyl, benzothiofuranyl, indolyl, benzimidazolyl, liT-indazolyl, oxazolidinyl, isoxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, quinolinyl, and isoquinolinyl. Preferred 5 to 6 membered heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl; more preferred 5 to 6 membered heterocycles include, but are not limited to, pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, and tetrazolyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles. As used herein, the term "aryl", "C6-C10 aryl" or aromatic residue, is intended to mean an aromatic moiety containing the specified number of carbon atoms; for example phenyl, pyridinyl or naphthyl; preferably phenyl or naphthyl. Unless otherwise specified, "aryl" may be unsubstituted or substituted with 0 to 3 groups selected from H, OH, OCH3 , Cl, F, Br, I, CN, O2 , NH2 , N(CH3)H, N(CH3)2, CF3, OCF3 , C(=0)CH3, SCH3 , S(=0)CH3, S(=0)2CH3, CH3, CH2CH3, CO2H, and CO2CH3.
The phrase "amino-heterocyclic ring", as used herein, is intended to denote a heterocyclic ring of Formula (I") :
H<J? (I") comprising at least one nitrogen atom, carbon atoms and optionally a second additional heteroatom selected from oxygen, nitrogen and sulfur; wherein the total number of members of "amino-heterocycle ring" B does not exceed 8. When "a ino-heterocycle ring" B comprises one nitrogen atom, then amino-heterocyclic ring B also contains 3, 4,
5, 6 or 7 carbons. Alternatively, when "amino-heterocycle ring" B comprises one nitrogen atom and a second additional heteroatom, then amino-heterocyclic ring B contains 3, 4, 5, or 6 carbons. It is preferred that the total number of atoms of amino-heterocyclic ring B is 5,
6, or 7; it is more preferred that the total number of atoms of amino-heterocyclic ring B is five or six. It is further understood that amino-heterocyclic ring B may be saturated or partially unsaturated (i.e. two adjacent atoms in the ring form a double bond) wherein the backbone of amino-heterocyclic ring B may contain one, two or three double bonds, but not fully unsaturated. Examples of amino-heterocyclic ring B include, but are not limited to piperidine, piperazine, and pyrrolidine.
It is further understood that amino-heterocyclic ring B may contain a second additional heteroatom selected from oxygen, nitrogen and sulfur; for example -0-, -S-, -S(=0)-, -S(=0)2-/ -N=, and -N(RLZ)-. When the second additional heteroatom is selected from oxygen and sulfur; then substituent -L-Z of Formula (I) is attached to amino- heterocyclic ring B through a ring carbon. When the second additional heteroatom is selected from nitrogen, then substituent -L-Z of Formula (I) is attached to amino- heterocyclic ring B through the second nitrogen or through a ring carbon. When substituent -L-Z of Formula (I) is attached to amino-heterocyclic ring B through the second nitrogen the second nitrogen is designated as -N(RZ)~. Alternatively, when substituent -L-Z of Formula (I) is attached to amino-heterocyclic ring B through a ring carbon then the second nitrogen is designated as -N(R10)- or -N=. It is further understood that amino-heterocyclic ring B may be substituted with 0, 1, 2, or 3 R11 groups. Such R11 groups are substituted on amino-heterocyclic ring B through the ring carbon atoms . It is understood when amino-heterocyclic ring B is substituted with 2 or 3 R11 groups then two such R11 groups may be substituted in the same or adjacent carbon.
The compounds herein described may have asymmetric centers. One enantiomer of a compound of Formula (I) may display superior chemical activity over the opposite enantiomer. When required, separation of the racemic material can be achieved by methods known in the art . For example, the carbon atoms to which R3 and R^ are attached may describe chiral carbons which may display superior chemical activity over the opposite enantiomer. For example, where R3 and R^ are not H, then the configuration of the two centers may be described as (2R,3R), (2R,3S), (2S,3R), or (2S,3S). All configurations are considered part of the invention; however, the (2R,3S) and the (2S,3R) are preferred and the (2R,3S) is more preferred.
The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, and the like.
The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington 's Pharmaceutical Sciences, 17th ed. , Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.
"Prodrugs" are intended to include any covalently bonded carriers which release the active parent drug according to Formula (I) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of a compound of Formula (I) are prepared by modifying functional groups present in the compound in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compound. Prodrugs include compounds of Formula (I) wherein a hydroxy, amino, or sulfhydryl group is bonded to any group that, when the prodrug or compound of Formula (I) is administered to a mammalian subject, cleaves to form a free hydroxyl, free amino, or free sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of Formula (I) , and the like. "Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent . As used herein the term "effective amount" means an amount of a compound/composition according to the present invention effective in producing the desired therapeutic effect.
As used herein the term "treating" or "treatment" refers to: (i) preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; (ii) inhibiting the disease, disorder or condition, i.e., arresting its development; and (iii) relieving the disease, disorder or condition, i.e., causing regression of the disease, disorder and/or condition.
As used herein the term "patient" or "host" includes both human and other mammals .
SYNTHESIS The compounds of the present invention can be prepared in a number of ways well known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. All references cited herein are hereby incorporated in their entirety herein by reference. The novel compounds of this invention may be prepared using the reactions and techniques described in this section. The reactions are performed in solvents appropriate to the reagents and materials employed and are suitable for the transformations being effected. Also, in the description of the synthetic methods described below, it is to be understood that all proposed reaction conditions, including choice of solvent, reaction atmosphere, reaction temperature, duration of the experiment and workup procedures, are chosen to be the conditions standard for that reaction, which should be readily recognized by one skilled in the art. It is understood by one skilled in the art of organic synthesis that the functionality present on various portions of the molecule must be compatible with the reagents and reactions proposed. Such restrictions to the substituents which are compatible with the reaction conditions will be readily apparent to one skilled in the art and alternate methods must then be used. Patent publication WO 00/07995 and US Patent
Application 09/505,788 both describe synthesis of suecinate derivatives . The synthetic disclosure of each of these applications is hereby incorporated by reference.
Disubstituted suecinate derivatives can be prepared by a number of known procedures. The procedure of Evans (D. A. Evans et al, Org. Synth . 86, p83 (1990)) is outlined in Scheme 1 where acylation of an oxazolidinone with an acylating agent such as an acid chloride provides structures 1. Alkylation to form 2 followed by cleavage of the chiral auxiliary and subsequent alkylation of the dianion of the carboxylic acid 3 provides a variety of disubstituted succinates which can be separated and incorporated into structures of Formula (I) by those skilled in the art. Additional examples are found in P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett, (1993) , 137-138, incorporated herein by reference. Scheme 1
Figure imgf000055_0001
4
Diastereomerically pure suecinate derivatives can be accessed using the chemistry outlined below, adapted from P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett, (1993), 137-138 incorporated herein by reference. This reference provides the synthesis below to obtain compound 9. Compound 11 is used as an intermediate and is prepared from 9 by hydrogenation of the allyl group followed by coupling of 9-fluorenemethanol under standard conditions using DCC and DMAP in CH2C12. Deprotection of the tert- butyl ester is accomplished by treatment with 50% trifluoroacetic acid.
Scheme 2
Figure imgf000056_0001
(21) in scheme 5
The compounds of the present invention may be synthesized using the succinates 4 and substituted heterocyclic amines as is shown in Scheme 3.
Scheme 3
Figure imgf000056_0002
Figure imgf000056_0003
Additional examples may be prepared by adding a bifunctional amine followed by preparation of extended derivatives, as is demonstrated in Schemes 4 and 5, using piperazine and 4-piperidinone, respectively. In addition, these transformations may be carried out in parallel on solid phase starting with resin 13 of Scheme 8. Scheme 4
Figure imgf000057_0002
ent
Figure imgf000057_0001
NaBH(OAc)3H
Figure imgf000057_0003
Scheme 5
Figure imgf000057_0004
Additional examples of the compounds of Claim 1 can be synthesized as is shown in Scheme 6, thus acylation of the Kenner Safety Catch linker (see Backes, B. J.; Virgilio, A. A.; Ellman, J. A. J . Amer . Chem . Soc . 1996, 118, 3055-3056, Backes, B. J. ; Ellman, J. A. J. Amer. Chem. Soc. 1994, 116, 11171-11172, Backes, B. J.; Ellman, J. J. Org. Chem. 1999, 64 , 2322-2330) with functionalized a inocyclic amides such as 24 provides the protected suecinate 25. Deprotection followed by amide formation gives the succinamide which can be further elaborated upon cleavage to prepare a varitey of compounds such as 27 which are examples of the current invention.
Scheme 6
Figure imgf000058_0001
A wide variety of substituted piperidine derivatives are items of commerce. Additional derivatives are simply prepared starting from benzyl protected 3- or 4- piperidone as is shown in Scheme 7. Addition of lithium or Grignard reagents provides the functionalized piperidinols, which can be used to prepare compounds of this invention. Additionally, dehydration followed by deprotection of the benzyl group and hydrogenation of the olefin provides additional reagents, see for example references 1) V.
Breu, H.-P. Maerki, E. Vieira and W. Wostl, WO 00/64873 Al (2000); 2) B. Lohri and E. Vieira, WO 00/63173 Al (2000);
3) R. Guller, A. Binggeli, V. Breu, D. Bur, W. Fischli, G. Hirth, C. Jenny, M. Kansy, F. Montavon, M. Muller, C. Oefner, H. Stadler, E. Vieira, M. Wilhel , W. Wostl and
H.P. Marki, Bioorg. Med. Chem. Lett . , 9, 1403 (1999); and
4) E. Vieira, A. Binggeli, V. Breu, D. Bur, W. Fischli, R. Guller, G. Hirth, H.P. Marki, M. Muller, C. Oefner, M. Scalone, H. Stadler, M. Wilhelm and W. Wostl, Bioorg. Med. Chem. Lett . , 9, 1397 (1999)
Scheme 7
Figure imgf000059_0001
Additionally, the acid 11 can be coupled onto a variety of solid supports to initiate solid-phase parallel synthesis . The solid-phase synthesis of the compounds of Claim 1 is shown in Scheme 8, where coupling of 11 to Peptide Amide Linker (PAL) resin (commercially available from Perkin Elmer Biosystems) produces the resin-bound succinamide 37. This coupling can be accomplished using a variety of coupling agents such as diisopropylcarbodiimide (DICI) with the additive 1-hydroxybenzotriazole (HOBt) , HATU (O- (7-azabenzotriazol-l-yl) -1,1,3,3,- tetramethyluronium hexafluorophosphate) in the presence of a base such as diisopropylethylamine (DIEA) or triethylamine, PyBOP (benzotriazole-1-yl-oxy-tris- pyrrolidino-phosphonium hexafluorophosphate) or other coupling agents known to those skilled in the art (DICI with hydroxybenzotriazole is preferred) . Preferred solvents for coupling reactions include N, N- dimethylformamide (DMF) , N-methylpyrrolidinone (NMP) , and dichloromethane (DCM) .
Scheme 8
Figure imgf000060_0001
Fmoc-PAL Resin
Figure imgf000060_0003
Figure imgf000060_0002
13
The fluorenylmethyl ester is removed from the compounds by treatment with piperidine and the resultant carboxylic acid can be reacted with a variety of animes to form the corresponding amides. Treatment with trifluoroacetic acid in dichloromethane then releases the desired compounds 14 from the solid support.
Additional methods useful for the preparation of suecinate derivatives are known by those skilled in the art. Such references include, McClure and Axt, Bioorganic & Medicinal Chemistry Letters, 8 (1998) 143-146; Jacobson and Reddy, Tetrahedron Letters, Vol 37, No. 46, 8263-8266 (1996); Pratt et al . , SYNLETT, May 1998, p. 531; WO 97/18207; and WO 98/51665. The synthetic disclosures of WO97/18207 and WO 98/51665 are hereby incorporated by reference .
EXAMPLES
Suecinate 10 of Scheme 2:
Suecinate 9 is prepared according to the literature procedure (P. Becket, M. J. Crimmin, M. H. Davis, Z. Spavold, Synlett, (1993), 137-138). Suecinate 9 (17.8 g, 66 mmol) is dissolved in 250 mL of ethyl acetate and placed in a Parr shaker bottle. To the solution is added 890 mg of 5% palladium on carbon, and the bottle is pressurized to 40 psi with hydrogen gas and shaken for 2.5 h at rt. The hydrogen is removed and the palladium catalyst is removed by filtration through a pad of celite. Concentration of the ethyl acetate solution provides 17.5 g (98%) of suecinate 10. No further purification is necessary. MS (M-H)+ = 271.
Suecinate 11 of Scheme 1:
Suecinate 10 (6.3 g, 23.1 mmol) is dissolved in 125 mL of CH2CI2 and 4.8 g (23.3 mmol) of dicyclohexylcarbodiimide is added. The solution is stirred at rt for 30 min and then 4.6 g (23.4 mmol) of 9-fluorenemethanol is added followed by 122 mg (1 mmol) of 4-dimethylaminopyridine. After 5 h of stirring at rt, the reaction solution was diluted with an additional 100 mL of CH2CI2 and filtered through a pad of celite to remove precipitated dicyclohexylurea. The solution was then washed 3 x with 50 mL of a IN HCI solution, 3 x with 50 mL of a saturated sodium bicarbonate solution, and 2 x with 50 mL of brine.The crude product was dried over MgSθ4 and concentrated onto 15 g of silica gel. Chromatography eluting with a gradient of 2.5% to 5% ethyl acetate/hexanes provided 6.4 g (61%) of the diester as an oil. The purified diester (6.4 g 14.2 mmol) is then dissolved in 25 mL of CH2CI2 25 mL of trifluoroacetic acid is added, and the reaction solution is stirred at rt for 2 h. The reaction solution is directly concentrated in vacuo to an oil which is then redissolved in 25 L of toluene and reconcentrated, followed by drying in vacuo to provide 6.3 g (98%) of the desired suecinate 9 as an oil which solidifies on standing. MS (M+Na)+ = 471, (M+2Na)+ = 439.
General Procedure for Solid-phase Synthesis According to Scheme 8
General : The phrase "washed under standard conditions" when applied to a resin refers to rinsing the resin as a slurry three times in DMF followed by 3 times in methanol followed by three times in dichloromethane using approximately 10 L of solvent per gram of resin.
Resin 37 of Scheme 8: Commercial Fmoc-PAL resin (Perkin Elmer Biosyste s) (9 grams, 0.42 mmol/g, 3.78 mmol) is washed for 20 min with 3 x 50 L of 20% piperidine in DMF. The resulting free amine resin is then washed under standard conditions. The resin is then slurried in 100 mL of DMF and and 4.47 grams (11.34 mmol) of suecinate 11 is then added, followed by HOBt (1.74 g, 11.34 mmol) and diisopropylcarbodiimide (1.82 mL, 11.34 mmol). The resin is placed on a shaker table for 16 h and then washed under standard conditions and dried in vacuo .
Resin 38 of Scheme 8: Resin 12 of scheme 3 is washed for 20 min with 3 x 50 mL of 20% piperidine in DMF. The resulting free carboxylic acid resin is then washed under standard conditions .
Products 39 of Scheme 8: Six grams of resin is suspended in a 2:3 mixture of DMF and CH2Cl2 and pipetted into 118 of the wells of two commercial polyfiltronics 96-well filter blocks, approximately 50 mg of resin per well. The solvents are removed by filtration, and 200 μL of DMF is added to each reaction well, followed by 110 μL of a 1 M solution of the desired amine in DMF. A stock solution of PyBOP (6.56 g, 12.6 mmol) dissolved in 24 mL of DMF is then prepared, and 200 μL of this solution (0.10 mmol) is added to each well. Diisopropylethylamine (0.21 mmol, 36.5 μL ) is then added to each well and the reaction block is sealed and mixed on a shaker table for 16 h. The plates are then washed under standard conditions . The compounds are then cleaved from the solid support employing 1 mL of a 95:5 trifluoroacetic acid/triethylsilane solution for 3 h. The cleavage solution is drained from the well and the resin is washed with an additional 0.5 L of DCM and the combined filtrates are concentrated. The samples are redissolved in 1 mL of methanol and reconcentrated to remove any volatile impurities .
Examples 1-106. For each reagent listed in Table 1, the corresponding product 39 was prepared. The products of Examples 1-106 were verified by the presence of the desired compound in ESI MS (M+H+ or M+Na+) .
Example 1
3 (R) - (4-Benzo [1, 3] dioxol-5-ylmethyl-piperazine-l-carbonyl) - 5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 418.1.
Example 2
5-Methyl-3 (R) - (piperazine-1-carbonyl) -2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 284.1.
Example 3
5-Methyl-3 (R) - (4-phenyl-piperazine-1-carbonyl) -2 (S) -propyl- hexanoic acid amide. MS [M+H]+ 360.1.
Example 4
3 (R) - [4- (2-Methoxy-phenyl) -piperazine-1-carbonyl] -5-methyl- 2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 390.1.
Example 5 5-Methyl-2 (S) -propyl-3 (R) - [4- (3-trifluoromethyl-phenyl) - piperazine-1-carbonyl] -hexanoic acid amide. MS [M+H]+ 428.1.
Example 6 3 (R) - [4- (4-Fluoro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 378.1.
Example 7
5-Methyl-3 (R) - [4- (4-nitro-phenyl) -piperazine-1-carbonyl] - 2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 405.1. Example 8
5-Methyl-3 (R) - (4-methyl-piperazine-l-carbonyl) -2 (S) -propyl- hexanoic acid amide. MS [M+H] + 298.1.
Example 9
3 (R) - (4-Benzyl-piperazine-l-carbonyl) -5-methyl-2 (S) -propyl- hexanoic acid amide. MS [M+H]+ 374.1
Example 10 3 (R) - [4- (2-Hydroxy-ethyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 328.1
Example 11
5-Methyl-2 (S) -propyl-3 (R) - (4-pyridin-2-yl-piperazine-l- carbonyl) -hexanoic acid amide. MS [M+H] + 361.1.
Example 12
3 (R) - [4- (2-Chloro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 394.1.
Example 13
5-Methyl-3 (R) - (3 -methyl- -phenyl-piperazine-1-carbonyl) -
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 374.1.
Example 14
3 (R) - [4- (4-Methoxy-phenyl) -3 -methyl-piperazine-1-carbonyl] -
5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 404.2.
Example 15 5-Methyl-2 (S) -propyl-3 (R) - (4-p-tolyl-piperazine-l- carbonyl) -hexanoic acid amide. MS [M+H]+ 374.1.
Example 16
3 (R) - [4- (3-Methoxy-phenyl) -piperazine-1-carbonyl] -5-methyl- 2 (S) -propyl-hexanoic acid amide. MS [M+H] + 390.1. Example 17
[4- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperazin-1-yl] - acetic acid ethyl ester. MS [M+H] + 370.1.
Example 18
5-Methyl-3 (R) - (3-methyl-4-m-tolyl-piperazine-l-carbonyl) -
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 388.2.
Example 19 3 (R) - (4-Acetyl-piperazine-l-carbonyl) -5-methyl-2 (S) -propyl- hexanoic acid amide. MS [M+H] + 326.1.
Example 20
3 (R) - (4-Ethyl-piperazine-l-carbonyl) -5-methyl-2 (S) -propyl- hexanoic acid amide. MS [M+H] + 312.2.
Example 21
5-Methyl-3 (R) - [4- (3 -phenyl-allyl) -piperazine-1-carbonyl] -
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 400.2.
Example 22
3 (R) -{4- [2- (2-Hydroxy-ethoxy) -ethyl] -piperazine-1- carbonyl}-5-methyl-2 (S) -propyl-hexanoic acid amide. MS
[M+H]+ 372.2
Example 23
5-Methyl-2 (S) -propyl-3 (R) - (4- {2- [ (pyridin-2-ylmethyl) - amino] -ethyl} -piperazine-1-carbonyl) -hexanoic acid amide.
MS [M+H]+ 418.1.
Example 24
3 (R) - [4- (5-Chloro-2-methyl-phenyl) -piperazine-1-carbonyl] -
5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 408.1.
Example 25 5-Methyl-3 (R) - (octahydro-quinoxaline-1-carbonyl) -2 (S) - propyl-hexanoic acid amide. MS [M+H] + 338.5.
Example 26 5-Methyl-3 (R) - (4- (2-keto-l-benzimidazolinyl) - piperidine-1- carbonyl) -2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 415.1.
Example 27
5-Methyl-3 (R) - (2-methyl-piperidine-l-carbonyl) -2 (S) -propyl- hexanoic acid amide. MS [M+H]+ 297.1.
Example 28
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-2- carboxylic acid ethyl ester. MS [M+H] + 355.1.
Example 29
3 (R) - (2-Hydroxymethyl-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H] + 313.1.
Example 30
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-3 - carboxylic acid amide. MS [M+H] + 326.1.
Example 31 1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-3- carboxylic acid. MS [M+H]+ 327.1.
Example 32
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-3- carboxylic acid ethyl ester. MS [M+H] + 355.1.
Example 33
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-3 - carboxylic acid diethylamide. MS [M+H] + 382.2.
Example 34 3 (R) - (3 , 5-Dimethyl-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H]+ 311.1.
Example 35 3 (R) - (3-Hydroxymethyl-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H]+ 313.1.
Example 36
3 (R) - (4-Hydroxy-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H]+ 299.1.
Example 37
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-4- carboxylic acid ethyl ester. MS [M+H]+ 355.1.
Example 38
5-Methyl-3 (R) - (4-methyl-piperidine-l-carbonyl) -2 (S) -propyl- hexanoic acid amide. MS [M+H] + 297.1.
Example 39
3 (R) - (4-Benzyl-piperidine-1-carbonyl) -5-methyl-2 (S) -propyl- hexanoic acid amide. MS [M+H] + 373.1. Example 40 3 (R) - (4-Aminomethyl-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H] + 312.1.
Example 41
3 (R) - [4- (2-Hydroxy-ethyl) -piperidine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 327.1.
Example 42
3 (R) - ( [1 , 4 ' ] Bipiperidinyl-1 ' -carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H]+ 366.2.
Example 43 5-Methyl-3 (R) - (octahydro-quinoline-1-carbonyl) -2 (S) -propyl- hexanoic acid amide. MS [M+H] + 337.1.
Example 44 5-Methyl-3 (R) - [4- (2-piperidin-4-yl-ethyl) -piperidine-1- carbonyl] -2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 394.2.
Example 45
3 (R) - (3-Hydroxy-piperidine-1-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H]+ 299.1.
Example 46
3 (R) -{2- [2- (3 , 5-Bis-trifluoromethyl-phenylamino) -ethyl] - piperidine-l-carbonyl}~5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 538.1.
Example 47
3 (R) -{2- [2- (4-Isopropyl-phenylamino) -ethyl] -piperidine-1- carbonyl}-5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 441.2.
Example 48
3 (R) - (4-Dimethylamino-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H] + 326.2.
Example 49
5-Methyl-3 (R) - [4- (3-phenyl-propyl) -piperidine-1-carbonyl] -
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 401.2.
Example 50
5-Methyl-2 (S) -propyl-3 (R) - (4-propyl-piperidine-l-carbonyl) - hexanoic acid amide. MS [M+H]+ 325.2.
Example 51 5-Methyl-3 (R) - (4-phenyl-4-propionyl-piperidine-l-carbonyl) -
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 415.1. Example 52
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -4-dimethylamino- piperidine-4-carboxylic acid amide. MS [M+H]+ 369.2.
Example 53
5-Methyl-2 (S) -propyl-3 (R) - (4-pyrrolidin-l-yl-piperidine-l- carbonyl) -hexanoic acid amide. MS [M+H]+ 352.2.
Example 54
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidine-4- carboxylic acid amide. MS [M+H]+ 326.1.
Example 55 5-Methyl-3 (R) - (piperidine-1-carbonyl) -2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 327.1.
Example 56
5-Methyl-3 (R) - (2-piperidin-l-ylmethyl-piperidine-l- carbonyl) -2 (S) -propyl-hexanoic acid amide. MS [M+H] + 380.2.
Example 57
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -4-phenylamino- piperidine-4-carboxylic acid amide. MS [M+H] + 417.1.
Example 58
3 (R) -{4- [ (2-Amino-ethylamino) -methyl] -piperidine-1- carbonyl}-5-methyl-2 (S) -propyl-hexanoic acid amide. MS
[M+H]+ 355.2.
Example 59
1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -4- cyclohexylamino-piperidine-4-carboxylic acid amide. MS
[M+H]+ 423.2.
Example 60 1- (3 (S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -4-ethylamino- piperidine-4-carboxylic acid amide. MS [M+H] + 369.2.
Example 61 5-Methyl-3 (R) - (3 -methyl-3-phenyl-piperidine-1-carbonyl) -
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 373.1.
Example 62
3 (R) - [3-Hydroxy-4- (3 -trifluoromethyl-phenyl) -piperidine-1- carbonyl] -5-methyl-2 (S) -propyl-hexanoic acid amide. MS
[M+H]+ 443.1.
Example 63
3 (R) - (3-Bromo-piperidine-l-carbonyl) -5-methyl-2 (S) -propyl- hexanoic acid amide. MS [M+H] + 361.3.
Example 64
3 (R) - (3-Hydroxy-piperidine-l-carbonyl) -5-methyl-2 (S) - propyl-hexanoic acid amide. MS [M+H] + 298.4.
Example 65
3 (R) - [4- (4-Chloro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 394.1.
Example 66
3 (R) - [4- (2-Ethoxy-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 404.6.
Example 67 3 (R) - [4- (4-Fluoro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 378.1.
Example 68
3 (R) - [4- (2, 4-Dimethyl-phenyl) -piperazine-1-carbonyl] -5- methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 388.2. Example 69
3 (R) - [4- (4-Chloro-phenyl) -3-methyl-piperazine-1-carbonyl] -
5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 408.1.
Example 70
3 (R) - [4- (3 , 4-Dichloro-phenyl) -piperazine-1-carbonyl] -5- methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 430.0.
Example 71 3 (R) - [4- (3 , 4-Dimethyl-phenyl) -piperazine-1-carbonyl] -5- ethyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 388.2.
Example 72
3 (R) - [4- (2, 6-Dimethyl-phenyl) -piperazine-1-carbonyl] -5- methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 388.2.
Example 73
3 (R) - [4- (3-Chloro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 394.1.
Example 74
3 (R) - [4- (2-Fluoro-phenyl) -piperazine~l-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 378.1.
Example 75
3 (R) - [4- (2-Chloro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 394.1.
Example 76 3 (R) - [4- (2-Nitro-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 405.1.
Example 77
3 (R) - [4- (2-Methyl-phenyl) -piperazine-1-carbonyl] -5-methyl- 2 (S) -propyl-hexanoic acid amide. MS [M+H] + 374.1. Example 78
3 (R) - [4- (2-Ethyl-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 388.2.
Example 79
3 (R) - [4- (3-Methyl-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 374.1.
Example 80 3 (R) - [4- (4-Chloro-3-trifluoromethyl-phenyl) -piperazine-1- carbonyl] -5-methyl-2 (S) -propyl-hexanoic acid amide. MS
[M+H]+ 462.0.
Example 81 3 (R) - [4- (4-Methyl-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 374.1.
Example 82
5-Methyl-2 (S) -propyl-3 (R) - (4-pyrimidin-2-yl-piperazine-l- carbonyl) -hexanoic acid amide. MS [M+H] + 361.1.
Example 83
3 (R) - [4- (2 , 3 -Dimethyl-phenyl) -piperazine-1-carbonyl] -5- methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 388.2.
Example 84
5-Methyl-2 (S) -propyl-3 (R) - (4-pyridin-4-yl-piperazine-l- carbonyl) -hexanoic acid amide. MS [M+H] + 361.1.
Example 85
3 (R) - [4- (3 , 5-Dichloro-phenyl) -piperazine-1-carbonyl] -5- methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 428.1.
Example 86 5-Methyl-2 (S) -propyl-3 (R) - [4- (4-trifluoromethyl-phenyl) - piperazine-1-carbonyl] -hexanoic acid amide. MS [M+H]+ 428.1.
Example 87
5-Methyl-2 (S) -propyl-3 (R) - (4-pyrazin-2-yl-piperazine-l- carbonyl-carbonyl) -hexanoic acid amide. MS [M+H]+ 362.1.
Example 88 3 (R) - [4- (2 -Cyano-phenyl) -piperazine-1-carbonyl] -5-methyl- (S) -propyl-hexanoic acid amide. MS [M+H] + 385.1.
Example 89
3 (R) - [4- (2 , 4-Dimethoxy-phenyl) -piperazine-1-carbonyl] -5- methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 420.1.
Example 90
3 (R) - (4-Benzo [1,3] dioxol-5-yl-piperazine-l-carbonyl) -5- ethyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 404.1.
Example 91
5-Methyl-3 (R) - (3-methyl-4-p-tolyl-piperazine-l-carbonyl) -
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 388.2.
Example 92
3 (R) - [4- (3-Methoxy-phenyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 390.1.
Example 94 3 (R) - [4- (4-Chloro-3 -trifluoromethyl-phenyl) -4-hydroxy- piperidine-1-carbonyl] -5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H] + 477.0.
Example 96 3 (R) -{4- [ (4-Chloro-phenyl) -phenyl-methyl] -piperazine-1- carbonyl} -5-methyl-2 (S) -propyl-hexanoic acid amide. MS
[M+H]+ 485.1.
Example 97
5-Methyl-3 (R) - [2- (l-methyl-pyrrolidin-2-ylmethyl) - piperidine-1-carbonyl] -2 (S) -propyl-hexanoic acid amide. MS
[M+H]+ 380.0.
Example 98
5-Methyl-2 (S) -propyl-3 (R) - [4- (5-trifluoromethyl-pyridin-2- yl) -piperazine-1-carbonyl] -hexanoic acid amide. MS [M+H] + 429.1.
Example 99
5-Methyl-2 (S) -propyl-3 (R) - [4- (3-trifluoromethyl-pyridin-2- yl) -piperazine-1-carbonyl] -hexanoic acid amide. MS [M+H]+ 428.492.
Example 100
3 (R) - (4-Cyano-4-phenyl-piperidine-l-carbonyl) -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 384.1.
Example 101 3 (R) - (4-Hydroxy-4-phenyl-piperidine-l-carbonyl) -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 375.1.
Example 102
5-Methyl-2 (S) -propyl-3 (R) - (4-pyrrolidin-l-yl-piperidine-l- carbonyl) -hexanoic acid amide. MS [M+H] + 352.2.
Example 103
3 (R) - (4-Acetyl-4-phenyl-piperidine-l-carbonyl) -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 401.1.
Example 104 3 (R) - [4- (4-Chloro-phenyl) -4-hydroxy-piperidine-l-carbonyl] - 5-methyl-2 (S) -propyl-hexanoic acid amide. MS [M+H]+ 392.1.
Example 105 3 (R) - [4- (3-Hydroxy-propyl) -piperazine-1-carbonyl] -5-methyl-
2 (S) -propyl-hexanoic acid amide. MS [M+H] + 342.1.
Example 106
3 (R) - [4- (3-Chloro-phenyl) -piperazine-1-carbonyl] -5-methyl- 2 (S) -propyl-hexanoic acid amide. MS [M+H] + 395.1.
Table 1
Figure imgf000075_0001
Reagent Name Molecular Weight Example for (un) substituted Ring B of Product
1 1-piperonylpiperazine 418.1
2 piperazine 284.1
3 1-phenylpiperazine 360.1
4 1- (2-methoxyphenyl)piperazine 390.1
5 n- (3-trifluoromethylphenyl)piperazine 428.1
6 1- (4-fluorophenyl) iperazine 378.1
7 1- (4-nitrophenyl) piperazine 405.1
8 1-methylpiperazine 298.1
9 1-benzylpiperazine 374.1
10 n- (2-hydroxyethyl) iperazine 328.1
11 1- (2-pyridyl)piperazine 361.1
12 1- (2-chlorophenyl) -piperazine, 394.1 monohydrochloride
13 2-methyl-l-phenylpiperazine 374.1
14 1- (4-methoxyphenyl) -2-methylpiperazine 404.2
15 1- (p-tolyl) -piperazine dihydrochloride 374.1
16 1- (3-methoxyphenyl)piperazine 390.1 dihydrochloride n- ( carboethoxyme thyl) iperazine 370.1 2-methyl-l- ( 3 -methylphenyl ) piperazine 388.2 1-acetylpiperazine 326.1 n-ethylpiperazine 312.2 trans-1-cinnamylpiperazine 400.2 1-hydroxyethylethoxypiperazine 372.2 1- (2- (2-pyridylmethylamino) -ethyl) - 418.1 piperazine 1- (5-chloro-ortho-tolyl) -piperazine 408.1 perhydroquinoxaline 338.5 4- (2-keto-l-benzimidazolinyl)piperidine 415.1 2-methylρiperidine 297.1 ethyl pipecolinate 355.1 2-piperidinemethanol 313.1 nipecotamide 326.1 nipecotic acid 327.1 ethyl nipecotate 355.1 n,n-diethylnipecotamide 382.2 3 , 5-dimethylpiperidine 311.1 3-piperidinemethanol 313.1 4-hydroxypiperidine 299.1 ethyl isonipecotate 355.1 4-methylpiperidine 297.1 4-benzylρiperidine 373.1 4- (aminomethyl) piperidine 312.1 4-piperidineethanol 327.1 4-piperidinopiperidine 366.2 decahydroguinoline 337.1 4,4'-ethylenediρiperidine 2HC1 394.2 3-hydroxypiperidine 299.1 N- [2- (2-piperidyl) ethyl] -3 , 5-bis- 538.1
(trifluoromethyl) aniline 2- (2- (4-isopropylanilino) ethyl) - 444.2 piperidine 4- (dimethylamino) -piperidine 326.2 4- (3-phenylpropyl) -piperidine 401.2 4-n-propylpiperidine 325.2 4-phenyl-4-propionylpiperidine HCI 415.1 4-carbamoyl-4- (dimethylamino) piperidine 369.2 dihydrochloride 4- (1-pyrrolidinyl) piperidine 352.2 isonipecotamide 326.1 dl-pipecolinic acid 327.1
2- (piperidinorαethyl) -piperidine 380.2
4-anilino-4-carbamylpiperidine 417.1 n- (4-piperidylmethyl) -ethylenediamine 355.2
4- (cyclohexylamino) -isonipecotamide 423.2
4- (ethylamino) -isonipecotamide 369.2
3-methyl-3-phenylpiperidine 373.1
4- (3- (trifluoromethyl) phenyl) -3- 443.1 piperidinol HCI 4-bromopiperidine HBr 361.3
(r) - (+) -3-hydroxypiperidine HCI 298.4
1- (4-chlorophenyl) iperazine 2HC1 394.1
1- (2-ethoxyphenyl) iperazine HCI 404 . 6
1- (4-fluorophenyl) piperazine 2HC1 378.1
1- (2 , 4-dimethyIphenyl) piperazine 388.2
1- (4-chlorophenyl) -2-methylpiperazine 408.1 n- (3 , 4-dichlorophenyl) piperazine 430.0
1- (3 , 4-dimethyIphenyl) iperazine 388.2
1- (2, 6-dimethyIphenyl) piperazine 388.2
1- (3-chlorophenyl) piperazine HCI 394.1
1- (2-fluorophenyl) piperazine 378.1
1- (2-chlorophenyl) piperazine 394.1
1- (2-nitrophenyl) iperazine 405.1
1- (2-methylphenyl) piperazine 374.1
1- (2-ethylphenyl) iperazine 388.2
1- (3-methylphenyl) piperazine 374.1
1- (3~trifluoromethyl-4-chlorophenyl) - 462.0 piperazine 1- (4-methylphenyl) piperazine 374.1
1- (2-pyrimidyl) piperazine 362.1
1- (2, 3-dimeth Iphenyl) piperazine 388.2
1- (4-pyridyl) piperazine 361.1
1- (3 , 5-dichlorophenyl) piperazine 428.1
1- (4-trifluoromethyIphenyl) piperazine 428.1
1- (2-pyrazinyl)piperazine 362.1
1- (2-cyanophenyl) iperazine 385.1
1- (2 , 4-dimethoxyphenyl) piperazine 420.1
1- (3 , 4-methylenedioxyphenyl) piperazine 404.1 hydrochloride 91 1- (4-methylphenyl) -2-methylpiperazine 388.2
92 1- (3-methoxyphenyl) piperazine 2HC1 390.1
93 1, 3-dihydro-l- (1,2,3, 6-tetrahydro-4- 413.1 pyridinyl) -2h-benzimidazole-2-one
94 4-[4-chloro-3- (trifluoromethyl) phenyl ] - 477.0
4-piperidinol
95 4- (2-keto-l-benzimidazolinyl)piperidine 415.1
96 1- (4-chlorobenzhydryl) piperazine 485.1
97 (s) - (-) -l-methyl-2- (1-piperidino- 380.0 methyl ) pyrrolidine
98 l-[5-(trifluoromethyl)pyrid-2-yl]- 429.1 piperazine
99 1- [3- (trif luoromethyl) pyrid-2- 429.1 yl] piperazine
100 4-cyano-4-phenylpiperidine HCI 384.1
101 4-hydroxy-4-phenylpiperidine 375.1
102 4- (1-pyrrolidinyl) piperidine 352.2
103 4-acetyl-4-phenylpiperidine HCI 401.1
104 4- (4-chlorophenyl) -1,2,3, 6- 392.1 tetrahydropyridine HCI
105 1-piperazinepropanol 342.1
106 1- (3-chlorophenyl)piperazine 395.1
Example 107
5-Methyl-2 (S) -propyl-3 (R) - [4- (3-trifluoromethyl- benzylamino) -piperidine-1-carbonyl] -hexanoic acid amide.
Scheme 9
Figure imgf000078_0001
Fmoc-Pal resin (1.000 g, 0.355 mmol/g) was washed and deprotected with 50% Piperidine / DMF for 10 min. The resin was washed and suspended in DMF. Addition of 3 eq (1.065 mmoles, M.W. = 394, 419.6 mg) of Succinic acid fluorenylmethyl ester (11) followed by 3 eq (1.065 mmoles, M.W. = 153, 163 mg) of HOBt and 3 eq (1.065 mmoles, M.W. = 126.2, d = 0.806, 352 μL) of N,N-Diisopropylcarbodiimide and the reaction solution was allowed to shake overnight. A small sample was monitored by Ninhydrin test (negative) . The resin was washed thoroughly with DMF, MeOH, CHC12 and
DMF. About 100 mg (sub=0.033mmoles) of resin was taken and deprotected with 50% Piperidine/DMF for 10 min. The resin was washed thoroughly and suspended in DMF . Then 5 eq (0.165 mmoles, M.W. = 153.61, 253 mg) of 4-Piperidone monohydrate . HCI was added followed by 5 eq (0.165 mmoles, M.W. = 520.3, 86 mg) of PyBOP and 10 eq (0.33 mmoles, M.W. = 129.25, d = 0.742, 58 μL) of DIEA. Another 5 eq of DIEA was added to neutralize the HCL salt, and the reaction solution was allowed to shake overnight.
The resin was washed thoroughly with DMF, MeOH and CH2Cl2 a d suspended in DCM. It was reductively alkylated with 5 eq (0.165 mmoles, M.W. = 175.16, d=1.222, 24 μL) of 3-trifluoromethyl benzylamine followed by 5 eq (0.165 mmoles, M.W.= 212, 35mg) of NaBH(0Ac)3 and 1% AcOH (v/v, 10 μL) and allowed to shake overnight. Next day, a small sample was checked with Chloranil test (positive) . The resin was washed thoroughly with DMF, MeOH and CH2C12 and dried well under vacuum. The resin was treated with a mixture of TFA/ CH2C12(9:1) for 2 h, filtered and concentrated in vacuum to give the crude compound. Purification by preparative LC/MS provided the title compound of example 107 as a powder (8 mg) . MS (M + H)+ = 456.6.
Examples 108-116. For each reagent listed in Table 2, the corresponding product was prepared according to the preparation of the compound of Example 107. The products of Examples 108-116 were verified by the presence of the desired compound in ESI MS (M + H)+. Table 2
Figure imgf000080_0001
115 3-Fluoro-5- 3 (R) - [4- (3-Fluoro-5- 474 . 4
(trifluoromethy trifluorome hyl-benzyla ino) -
1) benzylamine piperidine- 1-carbonyl] -5 -methyl - 2 (S) -propyl-hexanoic acid amide .
116 5-Methyl-2 (S) -propyl-3 (R) - [4- (4- 442 . 4
Trif luoromethyl trif luoro-methyl-phenylamino) - aniline piperidine-1-carbonyl] -hexanoic acid amide .
Example 117
N- [1- ( 3 ( S) -Carbamoyl-2 (R) -isobutyl-hexanoyl) -piperidin-4- yl] -jy-naphthalen-1-ylmethyl-benzamide .
Fmoc-Pal resin (1.000 g, 0.355 mmol/g) was washed and deprotected with 50% Piperidine / DMF for 10 min. The resin was washed and suspended in DMF. Addition of 3 eq (1.065 mmoles, M.W. = 394, 419.6 mg) of Succinic acid fluorenylmethyl ester (11) followed by 3 eq (1.065 mmoles, M.W. = 153, 163 mg) of HOBt and 3 eq (1.065 mmoles, M.W. = 126.2, d = 0.806, 352 μL) of N,N-Diisopropylcarbodiimide and the reaction solution was allowed to shake overnight. A small sample was monitored by Ninhydrin test (negative) . The resin was washed thoroughly with DMF, MeOH, CH2C12 and
DMF. About 100 mg (sub=0.033mmoles) of resin was taken and deprotected with 50% Piperidine/DMF for 10 min. The resin was washed thoroughly and suspended in DMF . Then 5 eq (0.165 mmoles, M.W. = 153.61, 253 mg) of 4-Piperidone monohydrate.HCl was added followed by 5 eq (0.165 mmoles, M.W. = 520.3, 86 mg) of PyBOP and 10 eq (0.33 mmoles, M.W. = 129.25, d = 0.742, 58 μL) of DIEA. Another 5 eq of DIEA was added to neutralize the HCL salt, and the reaction solution was allowed to shake overnight. The resin was washed thoroughly with DMF, MeOH and CH2C12 and suspended in DCM. It was reductively alkylated with 5 eq (0.165 mmoles, M.W. = 157.16, 26 mg) of 1- naphthylmethylamine followed by 5 eq (0.165 mmoles, M.W.= 212, 35mg) of NaBH(OAc)3 and 1% AcOH (v/v, 10 μL) and allowed to shake overnight. Next day, a small sample was checked with Chloranil test (positive) .
The resin was washed thoroughly with DMF, MeOH and CH2C1 and dried well under vacuum. The resin was then suspended in DMF and acylated with 12 eq (0.075 mmoles,
M.W. = 129.25, d = 0.742, 131 μL) of DIEA and 10 eq (0.625 mmoles, M.W. = 140.57, d ~ 1.211, 73 μL) of Benzoyl
Chloride and allowed to shake overnight. The resin was then washed thoroughly with DMF, MeOH and CH2C12 and dried well under vacuum. The resin was cleaved with a mixture of TFA/ CH2C1 (9:1) for 3 h, filtered and concentrated in vacuum to give the crude compound. Purification by preparative LC/MS provided the title compound of example 117 as a white powder MS (M + H) + = 542.4.
Examples 118-122: For each reagent listed in Table 3, the corresponding product was prepared according to the preparation of the compound of Example 117. The products of Examples 118-122 were verified by the presence of the desired compound in ESI MS (M + H)+.
Table 3
Figure imgf000082_0001
Figure imgf000083_0001
Scheme 10
Figure imgf000084_0001
Example 123
5-Methyl-3 (R) -{3- [ (naphthalen-1-ylmethyl) -amino] - piperidine-1-carbonyl} -2 (S) -propyl-hexanoic acid amide.
3-benzylpiperidine HCI hydrate 10 g, 41 mmol) was dissolved in 100 mL of methanol and placed in a Parr flask. A 0.5 g portion of 10% palladium on carbon was added and the reaction solution was shaken under 50 p.s.i. of dihydrogen for 16 h. The catalyst was removed by filtration and the solvent was removed in vacuo to provide the crude 3-piperidone which was used without further purification. The compound of example 123 was then prepared according to the preparation of the compound of example 107 but using 3-piperidone, yielding 11 mg of the desired compound. MS (M + H)+ = 438.4. Examples 124-129: For each reagent listed in Table 4, the corresponding product was prepared according to the preparation of the compound of Example 123. The compounds of Examples 128 and 129 were prepared according to the preparation of the compound of Example 117, but using 3- piperidone. The products of Examples 124-129 were verified by the presence of the desired compound in ESI MS (M + H)+.
Table 4
Figure imgf000085_0001
Example 130
3 (R) - [4-Hydroxy-4- (4 ' -tri luoromethyl-biphenyl-4-yl) - piperidine-1-carbonyl] -5-methyl-2 (S) -propyl-hexanoic acid amide.
Scheme 11
Figure imgf000086_0001
PyBop / DIEA /DMF
2-Chlorotrityl chloride resin subn = 0.83 mmoi/g
Figure imgf000086_0002
Figure imgf000086_0003
Example 130(a) 2-Chlorotrityl chloride resin (Novabiochem, 0.250 g, 0.21 mmol) was washed and suspended in DCM. Then ~ 2 eq (0.5 mmol, M.W. = 394.5, 197 mg) of fluorenylmethyl protected succinic acid derivative was added and the resin was allowed to shake for 5 min. Then 2 eq (with respect to acid) (1.0 mmole, M.W. = 129.25, d = 0.742, 174 μL) of DIEA was added and the resin was allowed to shake overnight. The resin was washed thoroughly and the fluorenylmethyl group was deprotected with 50% Piperidine/DMF for 10 min and the resin was washed again. Example 130(b) : A 120 mg portion (0.1 mmol) of the resin from example 130(a) was suspended in DMF and then treated with 5 eq (0.5 mmol, M.W. = 256.14, 128 mg) of 4- (4- Bromophenyl) -4-Piperidinol, 5 eq (o.5 mmol, M.W. = 520.3, 260 mg) of PyBop and 10 eq (1.0 mmol, M.W. = 129.25, d = 0.742, 174 μL) of DIEA. The resin was allowed to shake overnight and then washed with DMF, dichloromethane, and methanol .
Example 130(c): The resin from example 130(b) (50 mg, 0.8 mmol/g, 0.040 μ ol) was suspended in 1 mL of THF and 15 mg of tetrakis (triphenylphosphine) palladium (0), 70 mg (0.37 mmol) of 4-trifluoromethylphenyl boronic acid, and 200 μL of a 2 M sodium carbonate solution were added. The suspension was heated to 60 °C for 16 h, and the esin was isolated by filtration and washed with DMF, dichloromethane, and methanol.
Preparation of the title compound of example 130. The resin from example 130(c) was suspended in 2 mL of a 1:1:8 solution of acetic acid, trifluoroethanol, and dichloromethane and the suspension was stirred for 1 h. Evaporation gave the crude acid which was dissolved in 1 mL of DMF and treated with HATU (4 mg, 0.01 mmol) and N- methylmorpholine (5 μL, 0.04 mmol) . After 5 min ammonia was introduced by bubbling and the solution was allowed to stir for 16 h. The solution was then partitioned between ethyl acetate and water and the organic layer was isolated, dried and concentrated. Purification by RP-HPLC afforded 1.0 mg (10%) of the title compound of example 130. MS (M + H)+ = 519.4, (M + Na)+ = 541.4.
Example 131
3 (R) - (4-Biphenyl-4-yl-4-hydroxy-piperidine-l-carbonyl) -5- methyl-2 (S) -propyl-hexanoic acid amide The compound of Example 131 was prepared in a manner analogous to the preparation of the compound of Example 130, but using phenylboronic acid. Purification by RP-HPLC afforded 1 mg (10%) of the title compound of example 131. MS (M + H)+ = 451.4,
Scheme 12
Figure imgf000088_0001
PyBOP / DIEA
Figure imgf000088_0002
45 of scheme 11
Figure imgf000088_0003
Example 132
Example 132
3 (R) - [3- (4-Fluoro-phenyl) -3-hydroxy-piperidine-l-carbonyl] - 5-methyl-2 (S) -propyl-hexanoic acid amide.
Example 132 (a) : To a solution of 2 g (10.6 mmol) of 3-piperidione in 50 mL of THF at 0 2C is added dropwise 10 L of a 1M solition of 4-fluorophenylmagnesium bromide in THF. After 30 min, the reaction was quenched with IN HCI and the THF was removed by rotary evaporation. The resultant aqueous layer was extracted twice with 50 mL of CH2CI2 to provide
1.9 g (66%) of an oil which was used without further purification. Example 132 (b) :
The oil from above was dissolved in 25 mL of methanol and 380 mg of 20% paddadium on carbon was added. The reaction solution was placed under 50 p.s.i. of dihydrogen and shaken at rt for 16 h. The catalyst was then removed by filtration and the resulting piperidine was used without further purification.
Example 132(c): To a 0.2 g portion of resin from example 130(a) (0.16 mmol, 0.83 mmol/g) was added 0.83 mmol (162 mg) of the compound of example 135(b), 0.83 mmol (432 mg) of PyBop, and 1.66 mmol (289 μL) of DIEA. The suspension was stirred for 2 days and then the resin was washed thoroughly with DMF, DCM, and methanol. The resin was then suspended in 2 mL of a 1:1:8 solution of acetic acid, trifluoroethanol, and dichloromethane and the suspension was stirred for 2 h. Evaporation gave the crude acid (56 mg, 83%) which was used without further purification.
Preparation of the title compound of example 132. The acid of example 132(c) (56 mg, 0.142 mmol) was dissolved in 2 L of DMF and 70 mg (0.184 mmol) of HATU and 62 μL (0.57 mmol) of N- methylmorpholine was added. After 1 h ammonia gas was introduced by bubbling for 1 min and the reaction solution was allowed to stir for 16 . The reaction solution was then partitioned between dichloromethane and water and the organic layer was separated, dried, and concentrated. Purification by RP- HPLC afforded 10 mg (18%) of the title compound of example 132 as a white powder. MS (M + H) + = 393.5, (M + Na)+ = 415.4.
Scheme 13
Figure imgf000090_0001
55 Example 134
Example 134.
4 (S) -Benzyloxy-1- (3 (S) -carbamoyl-2 (R) -isobutyl-hexanoyl) - pyrrolidine-2 (S) -carboxylic acid phenethyl-amide.
Example 134(a): 7.3 g of suecinate 10 of scheme 2 was dissolved in 70 mL of DMF and activated with 13.3 g of HATU and 14.73 mL of N-methylmorpholine . After stirring at rt for 30 min 7.4 g of 4 (S) -benzylhydroxyproline methyl ester hydrochloride was added and the reaction solution was stirred at rt for 2 h. The reaction solution was diluted with 100 L of water and the resulting solution was extracted 3 X with ethyl acetate. The combined organic layers were dried and concentrated and ther residue was purified by chromatography eluting with 10-25% ethyl acteate in hexanes to provide 8.4 g (66%) of the desired amide. MS (M + H)+ = 490.4
Example 134(b) The methyl ester from example 134(a) (8.4 g, 17.1 mmol) in 30 mL of dioxane was cooled to 0 °C and 20 mL of 1 N NaOH was added. The solution was stirred for 2 h and additional portions of dioxane (15 mL) and NaOH (20 L) were added, followed by stiring for another 2 h. The reaction solution was then acidified to pH 3 with citric acid and then extracted 3 X with ethyl acetate. The combined organic layers were dried and concentrated to provide the crude acid which required no further purification. MS (M + H) + = 476.3
Example 134(c): Alkanesufonamide safety catch resin (Novabiochem, 4.5 g, 0.8 mmol/g, 3.6 mmol) was washed well and then suspended in 50 mL of DMF. The acid from example 134(b) (5.133 g, 10.8 mmol), PyBop (5.62 g, 10.8 mmol) and DIEA (5.65 L, 32.4 mmol) were added and the suspension was shaken for 16 h. The resin was then rinsed thoroughly with DMF, dichloromethane, and methanol and dried.
Example 134(d) : A 25 mg portion of the resin from example 134(c) (0.02 mmol) was suspended in a 1:1 solution of dichloromethane and tricluoroacetic acid (0.5 L) and allowed to shake for 2 h at rt . The resin was then washed thoroughly, and resuspended in 0.5 mL of DMF. and treated with HATU (38 mg, 0.1 mmol) and 150 mL of a saturated solution of ammonia in THF. The reaction suspension was allowed to stir at rt for 1.5 h and then the resin was washed thoroughly.
Preparation of the title compound of example 134
The resin from example 138(d) was suspended in 0.5 mL of NMP and activated with 0.1 mmol of DIEA (18 μL) and 0.25 mmol (30 μL) of bromoacetonitrile at rt for 16 h. The resin was then washed thoroughly and suspended in 300 uL of THF to which 0.008 mmol of phenethylamine (40 uL of a 0.2M solution) was added. The reaction solution was stirred at rt for 2 days and then concentrated to provide 2.6 mg of the title compound of example 134 (63%) . MS (M + H) + = 522.3, MS ESI ", (M - H) " = 520.2.
Tables 5a-5g below provide representative Examples of the compounds of Formula (I) of the present invention.
Table 5a
Figure imgf000092_0001
Molecular Weight z Rll of Product
-CH2- 4-benzo[l,3]dioxol-5-yl H 417.54
- H H 283.407
- phenyl H 359.505
- 2-MeO-pheny1 H 389.53
- 3-CF3-phenyl H 427.502
- 4-F-phenyl H 377.495
- 4-N02-phenyl H 404.502
-CH2- H H 297.434
-CH2- phenyl H 373.531
-CH2CH20- H H 327.46
- 2-pyridyl H 360.493
- 2-Cl-phenyl H 394
- phenyl Me 373.531
- 4-MeO-phenyl Me 403.557
- 4-Me-phenyl H 373.5
- 3-MeO-phenyl H 389.5
- 3-Me-phenyl Me 387.558
-CH2CH2- H H 311.461
-CH2CH=CH2- phenyl H 399.569
-(CH2)2-0-(CH2)2- H H 371.512
-(CH2)2-NH-CH2- 2-pyridyl H 417.588
- 2-Me-5-Cl-phenyl H 407.976
- 4-Cl-phenyl H 394
- 2-EtO-phenyl H 403.6
- 4-F-phenyl H 377.5
- 2 , 4-diMe-phenyl H 387.561
- 4-Cl-phenyl Me 407.979
- 3 , 4-diCl-phenyl H 428.397
- 3 , 4-diMe-phenyl H 387.561
- 2 , 6-diMe-phenyl H 387.561
- 3-Cl-phenyl H 394
- 2-F-phenyl H 377.497 75 - 2 -Cl -phenyl H 393.952
76 - 2 -N02 -phenyl H 404.504
77 - 2-Me-phenyl H 373.534
78 - 2-Et-phenyl H 387.561
79 - 3-Me-phenyl H 373.534
80 - 3-CF3-4-Cl-phenyl H 461.95
81 - 4 -Me -phenyl H 373.534
82 - 2-pyrimidyl H 361.482
83 - 2 , 3 -diMe-phenyl H 387.561
84 - 4-pyridyl H 360.494
85 - 3 , 5-diCl-phenyl H 428.397
86 - 4-CF3 -phenyl H 427.505
87 - 2-pyrazinyl H 361.482
88 - 2-CN-phenyl H 384.516
89 - 2 , 4 -diMeO -phenyl H 419.559
90 - 4-benzo[l,3]dioxol-5-yl H 403.5
91 - 4-Me-phenyl Me 387.561
92 - 3 -MeO-pheny 1 H 389.5
96 - 4 - chlor obenzhydry 1 H 485.1
98 - 5 -CF3 -pyrid- 2 -yl H 428.492
99 - 3-CF3-pyrid-2-yl H 428.492
105 -(CH2)3-0- H H 341.486
106 - 3 -Cl -phenyl H 393.95
Table 5a"
Figure imgf000093_0001
Molecular Weight Ex # RlO R11 of Product
17 -CH2C(=0)OEt H 369.496
19 -C(=0)Me H 325.444
96 4-Cl-benzhydryl H 484.077 Table 5b
Figure imgf000094_0001
L 2 Mol Wt
- 2-keto-l-benzimidazolinyl 414.54
0 H 298.418
-CH2- H 296.446
-CH2- phenyl 372.543
-CH2-NH- H 311.461
-(CH )2-0- H 326.472
- N-piperidyl 365.552
-CH2CH2- 4-piperidyl 393.6
-(CH2)3- phenyl 400.597
-(CH2)3- H 324.499
-CH2-NH-(CH2)2- NH2 354.529
- 1-pyrrolidinyl 351.527
-NH-CH2- 3-CF3-phenyl 456.6
-NH-CH2- naphthalen-1-yl 438.4
-NH- 3 , 4- (methylendioxy) -phenyl 418.4
-NH- phenyl 374.4
-NH- 3-MeO-phenyl 404.4
-NH- i-propyl 340.4
-NH- 3-MeO-4-Me-phenyl 418.4
-NH- benzhydryl 464.4
-NH-CH2- 3-CF3~5-F-phenyl 474.4
-NH- 4-CF3-phenyl 442.4
-N(benzoyl)-CH2- naphthalen-1-yl 542.4
-N(benzoyl) - 3 , 4- (methylendioxy) -phenyl 522.33
-N(benzoyl) - phenyl 478.3
-N(benzoyl) - 3-MeO-phenyl 508.4
-N(benzoyl) - i-propyl 444.4 122 -N (benzoyl ) -CH2- 3 -CF3- 5 -F-phenyl 578 .4
Table 5c
Figure imgf000095_0001
Ex # L Z Mol Wt
123 -NH-CH2- naphthalen-1-yl 438.4
124 -NH- 3-MeO-4-Me-phenyl 418.4
125 -NH- phenyl 374.4
126 -NH- 3-MeO-phenyl 404.4
127 -NH-CH2- 3-CF3-5-F-phenyl 474.4
128 -N(benzoyl)-CH2- naphthalen-1-yl 542.4
129 -N(benzoyl)-CH2- 3-CF3-5-F-phenyl 578.4
Table 5d
Figure imgf000095_0002
Ex # z Rll Mol Wt
30 H -C(=0)NH2 325.444 31 H -C(=0)OH 326.428 32 H -C(=0)OEt 354.482 33 H -C(=0)N(Et)2 381.551 35 H -CH2OH 312 . 445 45 H -OH 298.418 62 3-CF3-phenyl -OH 442.5 64 H -OH 298.4 133 3-CF3-phenyl -OH Table 5e
Figure imgf000096_0001
Molecular
Ex # Weight of Product
27 - methyl 296.446
28 - -C(=0)OEt 354.482
29 - -CH20H 312.445
46 -CH2CH2NH- 3 , 5-bis-CF3-phenyl 537.579
47 -CH2CH2NH- 4-iPr-phenyl 443.665
55 - -C(=0)OH 326.428
56 -CH2- N-piperidino 379.579
97 -CH2- l-Me-pyrrolidin-2- -yl 379.581
Table 5f
Figure imgf000096_0002
Molecular
Ex # Rll Weight of Product
34 H Me 310 .472
Table 5g
Figure imgf000096_0003
Ex # L z Rll Mol Wt
37 - H -C(=0)OEt 354.482
48 - H -N(Me)2 325.487
51 - phenyl -C(=0)Et 414.6
52 -N(Me)- Me -C(=0)NH2 368.5
53 - H 1 -pyrrol i dinyl 351.525
54 - H -C(=0)NH2 325.444
57 -NH- phenyl -C(=0)NH2 416.556
59 -NH- cyclohexyl -C(=0)NH2 422.604
60 -NH- Et -C(=0)NH2 368.512
61 - phenyl Me 372.543
94 - 4-Cl-3-CF3 -phenyl -OH 476.962
100 - phenyl -CN 383.5
101 - phenyl -OH 374.518
103 - phenyl -C(=0)Me 400.6
104 - 4-Cl-phenyl -OH 391
130 4- ( 4 -CF3 -phenyl) - -OH 519.4 phenyl 131 ; 4- (phenyl) -phenyl -OH 451.4
132 - 4-F-phenyl -OH 393.5
UTILITY Aβ production has been implicated in the pathology of
Alzheimer's Disease (AD). The compounds of the present invention have utility for the prevention and treatment of
AD by inhibiting Aβ production. Methods of treatment target formation of Aβ production through the enzymes involved in the proteolytic processing of β-amyloid precursor protein. Compounds that inhibit β or γ secretase activity, either directly or indirectly, control the production of Aβ. Such inhibition of β or γ secretases reduces production of Aβ, and is expected to reduce or prevent the neurological disorders associated with Aβ protein, such as Alzheimer's Disease. Cellular screening methods for inhibitors of Aβ production, testing methods for the in vivo suppression of Aβ production, and assays for the detection of secretase activity are known in the art and have been disclosed in numerous publications, including J. Med. Chem. 1999, 42, 3889-3898, PCT publication number WO 98/22493, EPO publication number 0652009, US patent 5703129 and US patent 5593846; all hereby incorporated by reference.
The compounds of the present invention have utility for the prevention and treatment of disorders involving Aβ production, such as cerebrovascular disorders.
Compounds of Formula (I) are expected to possess γ- secretase inhibitory activity. The γ-secretase inhibitory activity of the compounds of the present invention is demonstrated using assays for such activity, for Example, using the assay described below. Compounds of the present invention have been shown to inhibit the activity of γ~ secretase, as determined by the Aβ immunoprecipitation assay.
Compounds provided by this invention should also be useful as standards and reagents in determining the ability of a potential pharmaceutical to inhibit Aβ production.
These would be provided in commercial kits comprising a compound of this invention.
As used herein "μg" denotes icrogram, "mg" denotes milligram, "g" denotes gram, "μL" denotes microliter, "mL" denotes illiliter, "L" denotes liter, "nM" denotes nanomolar, "μM" denotes micromolar, "mM" denotes millimolar, "M" denotes molar, "nm" denotes nanometer,
"SDS" denotes sodium dodecyl sulfate, and "DMSO" denotes dimethyl sulfoxide, and "EDTA" denotes ethylenediaminetetraacetato .
A compound is considered to be active if it has an IC50 or K-j_ value of less than about lOOμM for the inhibition of Aβ production. Preferrably the IC50 or Kj_ value is less than about lOμM; more preferrably the IC50 or Kj_ value is less than about O.lμM. The present invention has been shown to inhibit Aβ protein production with an IC50 or K± value of less than 100μM.
β Amyloid Precursor Protein Accumulation Assay (βAPPA assay)
An assay to evaluate the accumulation of Aβ protein was developed to detect potential inhibitors of secretases. The assay uses the N 9 cell line, characterized for expression of exogenous APP by immunoblotting and immunoprecipitation.
The effect of test compounds on the accumulation of Aβ in the conditioned medium is tested by immunoprecipitation. N 9 cells are grown to confluency in 6-well plates and washed twice with 1 x Hank's buffered salt solution. The cells are starved in methionine/cysteine deficient media for 30 min., followed by replacement with fresh deficient media containing 150uCi Tran35S-LABEL™ (ICN) . Test compounds dissolved in DMSO (final concentration 1%) are added, over a range of 1 picomolar to 100 micromolar, together with the addition of the fresh media containing
Tran35S-LABEL™. The cells are incubated for 4 h at 37°C in a tissue culture incubator. At the end of the incubation period, the conditioned medium is harvested and pre-cleared by the addition of 5 μl normal mouse serum and 50ul of protein A Sepharose (Pharmacia) , mixed by end-over-end rotation for 30 minutes at 4 C, followed by a brief centrifugation in a microfuge. The supernatant is then harvested and transferred to fresh tubes containing 5ug of a monoclonal antibody (examples of antibodies include but are not limited by, clone 1101.1, directed against an internal peptide sequence in Aβ; or 6E10 from Senetek; or 4G8 from Senetek; additionally polyclonals from rabbit antihuman Aβ from Boehringer Mannheim) and 50 μl protein A Sepharose. After incubation overnight at 4 C, the samples are washed three times with high salt washing buffer (50mM Tris, pH 7.5, 500mM NaCl, 5mM EDTA, 0.5% Nonidet P-40) , three times with low salt wash buffer (50mM Tris, pH 7.5, 150mM NaCl, 5mM EDTA, 0.5% Nonidet P-40), and three times with lOmM Tris, pH 7.5. The pellet after the last wash is resuspended in SDS sample buffer (Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680-5, 1970.) and boiled for 3 minutes. The supernatant is then fractionated on either 10-20% Tris/Tricine SDS gels or on 16.5% Tris/Tricine SDS gels. The gels are dried and exposed to X-ray film or analyzed by phosphorimaging . The resulting image is analyzed for the presence of Aβ polypeptides. The steady-state level of Aβ in the presence of a test compound is compared to wells treated with DMSO (1%) alone. A typical test compound in this assay blocks
Aβ accumulation in the conditioned medium, and is considered active with an IC50 less than 100 μM.
C-Terminus β-Amyloid Precursor Protein Accumulation Assay
(CTF assay)
The effect of test compounds on the accumulation of C- terminal fragments is determined by immunoprecipitation of APP and fragments thereof from cell lysates . N 9 cells are metabolically labeled, as above, with media containing
Tran35S-LABEL™, in the presence or absence of test compounds. At the end of the incubation period, the conditioned medium are harvested and cells lysed in RIPA buffer (10 mM Tris, pH 8.0 containing 1% Triton X-100, 1% deoxycholate, 0.1% SDS, 150mM aCl, 0.125% NaN3 ) . Again, lysates are precleared with 5ul normal rabbit serum/50ul protein A Sepharose, followed by the addition of BC-1 antiserum (15μl;) and 50μl protein A Sepharose for 16 hours at 4°C. The immunoprecipitates are washed as above, bound proteins eluted by boiling in SDS sample buffer and fractionated by Tris/Tricine SDS-PAGE. After exposure to X-ray film or phosphorimager, the resulting images are analyzed for the presence of C-terminal APP fragments. The steady-state level of C-terminal APP fragments is compared to wells treated with DMSO (1%) alone. A typical test compound in this assay stimulates C-terminal fragment accumulation in the cell lysates, and is considered active with an IC50 less than 100 μM.
Accumulation-Release Assay
This immunoprecipitation assay is specific for g secretase activity (i.e., proteolytic activity required to generate the C-terminal end of Aβ either by direct cleavage or generating a C-terminal extended species which is subsequently further proteolyzed) . N 9 cells are pulse labeled with media containing Tran35S-LABEL™ in the presence of a reported g secretase inhibitor (MDL 28170; Higaki J, Quon D, Zhong Z, Cordell B. Inhibition of beta- amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14, 651-659, 1995) for 1 h, followed by washing to remove 35g radiolabel and MDL 28170. The media is replaced and test compounds are added over a dose range (for example 0. lnM to lOOuM) . The cells are chased for increasing periods of times and Aβ is isolated from the conditioned medium and C-terminal fragments from cell lysates (see accumulation assay above) . The activity of test compounds are characterized by whether a stabilization of C-terminal fragments is observed and whether Aβ is generated from these accumulated precursor. A typical test compound in this assay prevents the generation of Aβ out of accumulated C-terminal fragments and is considered active with an IC50 less than 100 μM.
Dosage and Formulation The compounds determined from the present invention can be administered orally using any pharmaceutically acceptable dosage form known in the art for such administration. The active ingredient can be supplied in solid dosage forms such as dry powders, granules, tablets or capsules, or in liquid dosage forms, such as syrups or aqueous suspensions . The active ingredient can be administered alone, but is generally administered with a pharmaceutical carrier. A valuable treatise with respect to pharmaceutical dosage forms is Remington's Pharmaceutical Sciences, Mack Publishing. The compounds determined from the present invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. Likewise, they may also be administered in intravenous (bolus or infusion) , intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. An effective but non-toxic amount of the compound desired can be employed to prevent or treat neurological disorders related to β-amyloid production or accumulation, such as Alzheimer's disease and Down's Syndrome.
The compounds of this invention can be administered by any means that produces contact of the active agent with the agent's site of action in the body of a host, such as a human or a mammal . They can be administered by any conventional means available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents . They can be administered alone, but generally administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
The dosage regimen for the compounds determined from the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. An ordinarily skilled physician or veterinarian can readily determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the condition.
Advantageously, compounds determined from the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three, or four times daily.
The compounds identified using the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using those forms of transdermal skin patches wall known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittant throughout the dosage regimen.
In the methods of the present invention, the compounds herein described in detail can form the active ingredient, and are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as carrier materials) suitably selected with respect to the intended form of administration, that is, oral tablets, capsules, elixirs, syrups and the like, and consistent with conventional pharmaceutical practices. For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl callulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or β-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
The compounds determined from the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamallar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids , such as cholesterol, stearylamine, or phosphatidylcholines . Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropyImethacrylamide-pheno1, polyhydroxyethylaspartamidephenol, or polyethyleneoxide- polylysine substituted with palmitoyl residues.
Furthermore, the compounds determined from the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.
Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like. Similar diluents can be used to make compressed tablets . Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance. In general, water, a suitable oil, saline, aqueous dextrose (glucose) , and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions . Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as henzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol .
Suitable pharmaceutical carriers are described in Remington's Pharmaceutical Sciences, Mack Publishing Company, a standard reference text in this field.
Table 6 demonstrates representative substituents on the left end, or suecinate end, of the compound of Formula (I), showing compounds envisaged within the scope of the present invention. Each of the fragments a through bt is attached to A, below.
Table 6
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000106_0002
Figure imgf000106_0003
a
Figure imgf000106_0004
Figure imgf000106_0005
m n
Figure imgf000107_0001
Figure imgf000107_0002
u
Figure imgf000107_0003
x
Figure imgf000107_0004
aa
Figure imgf000107_0005
ab ac ad
Figure imgf000108_0001
ae af ag
Figure imgf000108_0002
ak al am
Figure imgf000108_0003
an ao ap_
Figure imgf000108_0004
ag ar as
Figure imgf000109_0001
at au av
Figure imgf000109_0002
aw ax ay
Figure imgf000109_0003
az ba bb
Figure imgf000109_0004
be bd be
Figure imgf000109_0005
bf bg bh
Figure imgf000110_0001
bi bi bk
Figure imgf000110_0002
bl bm bn
Figure imgf000110_0003
bo b£ b-3
Figure imgf000110_0004
br bs bt

Claims

What is claimed is
A compound of Formula (I)
Figure imgf000111_0001
( I )
or a pharmaceutically acceptable salt or prodrug thereof, wherei :
R3 is -(CR7R7a)n-R4,
-(CR7R7a)n-S-(CR7R7 )m-R4,
- (CR7R7 ) n-O- (CR7R7a)m-R4,
- (CR7R7a) n-N (R7b) - (CR7R7a) m-R4 ,
- (CR7R7 ) n-S (=0) - (CR7R7a)m-R4,
- (CR7R )n-S (=0)2- (CR7R7a)m-R4,
- (CR7R7 )n-C(=0) - (CR7R7a)m-R4,
-(CR7R7a) n-N(R7b)C(=0)-(CR7R7a)m-R4,
-(CR7R7a)n-C(=0)N(R7b)-(CR7R7a)m-R4,
-(CR7R7a)n-N(R7b)S(=0)2-(CR7R7 )m-R4, or
- (CR7R7a)n-S (=0) 2N(R7b) - (CR7R7 )ιrι-R4; provided R3 is not hydrogen when R5 is hydrogen;
n is 0, 1, 2, or 3;
m is 0, 1, 2, or 3;
R3 is H, OH, C1-C4 alkyl, C1-C4 alkoxy, C2-C4 alkenyl, or C2-C4 alkenyloxy;
alternatively, R3 and R3a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-2 R4t); provided that R and R^ are not combined to form a 3-8 membered cycloalkyl moiety;
R4 is H, OH, OR1 a, C1-C6 alkyl substituted with 0-3 R4 ,
C2-C6 alkenyl substituted with 0-3 R4a, C2~Cg alkynyl substituted with 0-3 R4a, 3-C10 carbocycle substituted with 0-3 R4b, 6~ ιo aryl substituted with 0-3 R4b, or 5 to 10 membered heterocycle substituted with 0-3 R b
R a, at each occurrence, is independently selected from: H, F, Cl, Br, I, CF3,
C3-C10 carbocycle substituted with 0-3 R4b, C6-C10 aryl substituted with 0-3 R b, or
5 to 10 membered heterocycle substituted with 0-3 R b;
R4b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , NR15R16, CF3 , acetyl, SCH3, S(=0) CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
R5 is H, OR14; C1-C6 alkyl substituted with 0-3 R5b;
C1-C6 alkoxy substituted with 0-3 R5b;
C2-C6 alkenyl substituted with 0-3 R5h;
C2-C6 alkynyl substituted with 0-3 R5b;
C3-C10 carbocycle substituted with 0-3 R5c; C6-C10 aryl substituted with 0-3 R5c; or
5 to 10 membered heterocycle substituted with 0-3 ^c ; provided R^ is not hydrogen when R3 is hydrogen,-
R5a is H, OH, C1-C4 alkyl, C1-C4 alkoxy, C2-C4 alkenyl, or C2-C4 alkenyloxy;
.5b at each occurrence, is independently selected from: H, Ci-Cβ alkyl, CF3 , OR14, Cl, F, Br, I, =0, CN, NO2 ,
NR15R16. C3-C10 carbocycle substituted with 0-3 R^c ; C6_ ιo aryl substituted with 0-3 R5C ; or 5 to 10 membered heterocycle substituted with 0-3 R^c ;
R^c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Ci-Ce alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
alternatively, R^ and R^Ά , and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-2 R^b; provided that R3 and R3a are not combined to form a 3-8 membered cycloalkyl moiety;
R7, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , and C1-C4 alkyl;
R a, at each occurrence, is independently selected -from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , aryl and C1-C4 alkyl ;
R7b is independently selected from H and C1-C4 alkyl;
L is a bond, C^^ alkyl, C2-C4 alkenyl, C2-C alkynyl, -(CH2)p-0-(CH2)q-, or - (CH )p-NR- (CH2) q-;
p is 0, 1, 2, or 3;
q is 0, 1, 2, or 3;
Z is C3-C10 carbocycle substituted with 0-2 R^b. C6- 10 aryl substituted with 0-4 R12b; and 5 to 10 membered heterocycle substituted with 0-5
Rl2 / wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
R^2b at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, C1-C4 halothioalkoxy, aryl substituted with 0-4 R12C.
R^c , at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
B is a 4 to 8 membered amino-heterocyclic ring, comprising one N atom, 3 to 7 carbon atoms, and optionally, an additional heteroatom selected from -0-, -S-, ~S(=0)-,
Figure imgf000114_0001
wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)0R17, -{C1-C3 alkyl) -C (=0) OR17 , C(=0)NR18R19, S(=0)2NR18R19, S(=0)2R17; C1-C6 alkyl substituted with 0-2 R10a; C6- 10 aryl substituted with 0-4 R10b; C3-C10 carbocycle substituted with 0-3 R^-Ok; or 5 to 10 membered heterocycle optionally substituted with 0-3 R10b;
Rl0a, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, NO2, NR15R16, CF3, or aryl substituted with 0-4 R10b; R^Ob. at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, CF3, acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
RH, at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, Br, I, -OH, CN, NO2, NR18R19,
C(=0)R17, C(=0)OR17, C(=0)NR18R19, S (=0) 2NR18R19 , CF3;
C1-C6 alkyl substituted with 0-1 Rlla; C6-C10 aryl substituted with 0-3 Rllb; C3-C10 carbocycle substituted with 0-3 Rllb; or
5 to 10 membered heterocycle substituted with 0-3
Figure imgf000115_0001
alternatively, two RU substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical, wherein said carbocycle or benzo fused radical is substituted with
0-4 R13;
additionally, two RU substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R 3;
RU9-, at each occurrence, is independently selected from:
H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, N02, NR15R16, CF3, or phenyl substituted with 0-3 Rllb;
R b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , NR15R16, CF3 , acetyl,
SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, and C1-C4 halothioalkoxy;
t is 0, 1, 2 or 3 ;
R!3 , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR15R, and CF3 ;
R , at each occurrence, is independently selected from:
H, phenyl, benzyl, Ci-Cς alkyl, or C2-C6 alkoxyalkyl;
R14a j_s nf phenyl, benzyl, or C3.-C4 alkyl;
R!5, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (Ci-Cβ alkyl), -S (=0) 2~ (Ci-Cg alkyl), and aryl;
R ^, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl) and -S (=0) 2~ (C1-C6 alkyl);
alternatively, R!5 and R!6 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0;
RI7 is H, aryl, aryl-CH2~, C±-Cζ alkyl, or C2-C6 alkoxyalkyl ;
R 8, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl) and -S (=0) 2- (Cχ-C6 alkyl);
Ri9, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, phenyl, benzyl, phenethyl, -C(=0)- (C1-C6 alkyl) -S (=0) 2~ (C1-C6 alkyl); and
alternatively, R!8 and 1 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0.
A compound according to Claim 1, wherein:
R3 is -(CR7R7 )n-R4,
- (CR7R7a)n-S- (CR7R7a)m-R4, -(CR7R7a)n-0-(CR7R7a)m-R4,
- (CR7R7a)n-N(R7b) - (CR7R7a)m-R4,
- (CR7R7a) n-S (=0) - (CR7R7a) m-R4 ,
-(CR7R7a)n-S(=0)2-(CR7R7a)m-R4,
- (CR7R a) n-C (=0) - (CR7R7a) m-R4 , -(CR7R7a)n-NHC(=0)-(CR7R7a)m-R4,
- (CR7R7a) n-C (=0) NH- (CR7R7a) m-R ,
-(CR7R7a)n-NHS(=0)2-(CR7R7a)m-R4, or
- (CR7R7a) n-S (=0) 2NH- (CR7R7a)m-R4; provided R3 is not hydrogen when R5 is hydrogen;
n is 0, 1, 2, or 3;
m is 0, 1, 2, or 3;
R3a is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, or butoxy;
alternatively, R3 and R3a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-1 R4b; provided that R5 and R^a are not combined to form a 3-8 membered cycloalkyl moiety; R4 is H, OH, OR1 a,
C1-C6 alkyl substituted with 0-3 R4a, C2-C6 alkenyl substituted with 0-3 R4a, C2-C6 alkynyl substituted with 0-3 R4a,
C3-C10 carbocycle substituted with 0-3 R4b, 6-C10 aryl substituted with 0-3 R4b, or
5 to 10 membered heterocycle substituted with 0-3 R b;
R a, at each occurrence, is independently selected from: H, F, Cl, Br, I, CF3,
C3-C10 carbocycle substituted with 0-3 R b, C6-C10 aryl substituted with 0-3 R4b, or 5 to 10 membered heterocycle substituted with 0-3 R4b;
R b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
R5 is H, OR14;
Cχ-C6 alkyl substituted with 0-3 R5b;
C1-C6 alkoxy substituted with 0-3 R5b;
C2-C6 alkenyl substituted with 0-3 R5b; C2-C6 alkynyl substituted with 0-3 R5b;
C3-C10 carbocycle substituted with 0-3 c ; 6_ ιo aryl substituted with 0-3 R5c; or
5 to 10 membered heterocycle substituted with 0-3R5C ; provided R^ is not hydrogen when R3 is hydrogen;
R5a is H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy,or allyl;
R^b, at each occurrence, is independently selected from: H, Cl-Ce alkyl, CF3 , OR14, Cl, F, Br, I, =0, CN, 02 ,
NR15R16; C3-C10 carbocycle substituted with 0-3 R5C ; C6-C10 aryl substituted with 0-3 R^c; or
5 to 10 membered heterocycle substituted with 0-3 R^O;
R5O / t each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, 02 , NR15R16, CF3 , acetyl,
SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
alternatively, R5 and R^a, and the carbon to which they are attached, may be combined to form a 3-8 membered cycloalkyl moiety substituted with 0-1 R^b; provided that R3 and R3a are not combined to form a 3-8 membered cycloalkyl moiety;
R7, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , CF3 , and C1-C4 alkyl;
R a, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , aryl and C1-C4 alkyl;
R7b is independently selected from H and C1-C4 alkyl;
L is a bond, 0-^-04 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, -(CH2)p-0-(CH2)q-, or - (CH2 )p-NR10- (CH2) q- ;
p is 0, 1, 2, or 3;
q is 0, 1, 2, or 3;
Z is C3-C10 carbocycle substituted with 0-2 R!2b.
C6- 10 aryl substituted with 0-4 R12b; and
5 to 10 membered heterocycle substituted with 0-5
Rl2 ? wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S; R12b^ at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0) CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, aryl substituted with 0-4 R12c;
R 2c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
B is a 4 to 8 membered amino-heterocyclic ring, comprising one N atom, 3 to 7 carbon atoms, and optionally, an additional heteroatom selected from -0-, -S-, -S(=0)-, wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R!° is H, C(=0)Rl?, C(=0)0R17, - (C1-C3 alkyl) -C (=0) OR17, C(=0)NR18R19, S(=0)2NR18R19, S(=0)2R17; C1-C6 alkyl substituted with 0-1 R10a; C6-C10 aryl substituted with 0-4 Rl°b; C3-C10 carbocycle substituted with 0-3 Rl°b; or 5 to 10 membered heterocycle optionally substituted with 0-3 Rl°b;
Rl0 / a each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, N02 , NR15R16, CF3, or phenyl substituted with 0-4 Rl°b;
R10b at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, or CF3;
RU, at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, Br, I, OH, CN, Nθ2 , NR18R19,
C(=0)R17, C(=0)OR17, C(=0)NR18R19, S (=0) 2NR18R19 , CF3;
C1-C6 alkyl substituted with 0-1 Rll ; C6-C10 aryl substituted with 0-3 Rllb;
C3-C10 carbocycle substituted with 0-3 RHb; or
5 to 10 membered heterocycle substituted with 0-3 Rllb.
alternatively, two RH substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical wherein said benzo fused radical is substituted with 0-4 R13 ;
additionally, two R11 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 Ri3 ;
Rlla, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, N02 , NR 5R 6, CF3, or phenyl substituted with 0-3 Rllb;
Rll , at each occurrence, is independently selected from:
H, OH, Cl, F, Br, I, CN, O2 , NR15R16, CF3 , C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
t is 0, 1,
2 or 3;
R!3 , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR15R16, and CF3 ; R14 is H, phenyl, benzyl, Ci-Cg alkyl, or C2-C6 alkoxyalkyl ;
R14a is H, phenyl, benzyl, or C1-C4 alkyl;
R ^, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C(=0) - (Ci-Cβ alkyl) and -S (=0) 2- (C1-C6 alkyl);
R!^, at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl) -S (=0) 2- (Cχ-C6 alkyl), and phenyl substituted with 0-3 Ri3;
alternatively, R1^ and R^on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0;
R17 is H, aryl, (aryl)CH2-, Ci-Cg alkyl, or C2-C6 alkoxyalkyl ;
Ri8, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (C1-C6 alkyl) and -S (=0) 2- (C1-C6 alkyl);
R 9, at each occurrence, is independently selected from:
H, OH, C1-C6 alkyl, phenyl, benzyl, phenethyl, -C(=0)- (C1-C6 alkyl) and -S (=0) 2- (C1-C6 alkyl); and
alternatively, R! and R1 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic fused radical comprises 1 or 2 heteroatoms selected from N and 0.
3. A compound according to Claim 2, wherein:
Figure imgf000123_0001
-(CHR7)n-S-(CHR7)m-R4,
-(CHR7)n-0-(CHR7)m-R4, or
-(CHR7)n-N(R7b)-(CHR7)m-R4; provided R3 is not hydrogen when R^ is hydrogen;
n is 0, 1, or 2;
m is 0, 1, or 2;
R3a is H;
alternatively, R3 and R3a, and the carbon to which they are attached, may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl moiety; provided that R^ and R^a are not combined to form a cycloalkyl moiety;
R4 is H, OH, OR14a,
C1-C4 alkyl substituted with 0-2 R a, C2-C4 alkenyl substituted with 0-2 R4a, C2-C4 alkynyl substituted with 0-2 R a,
C3-C6 cycloalkyl substituted with 0-3 R4b, phenyl substituted with 0-3 R b, or
5 to 6 membered heterocycle substituted with 0-3 R4 ;
R4a, at each occurrence, is independently selected from: H, F, Cl, Br, I CF3,
C3-C10 carbocycle substituted with 0-3 R4b, phenyl substituted with 0-3 R , or 5 to 6 membered heterocycle substituted with 0-3 R4b;
R4b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
R5 is H, OR14;
Cl~C6 alkyl substituted with 0-3 R5 ; C2-C6 alkenyl substituted with 0-3 R5b; C2- 6 alkynyl substituted with 0-3 R^b; C3-C10 carbocycle substituted with 0-3 R5c; C6-C10 aryl substituted with 0-3 R5c; or
5 to 10 membered heterocycle substituted with 0-3R5 ; provided R5 is not hydrogen when R3 is hydrogen;
R5a is H;
R^ , at each occurrence, is independently selected from:
H, C1-C6 alkyl, CF3 , OR14, Cl, F, Br, I, =0, CN, NO2 ,
NR15R16. C3-C10 carbocycle substituted with 0-3 R^o,- C6-C10 aryl substituted with 0-3 R5c; or
5 to 10 membered heterocycle substituted with 0-3 R^c;
R5C, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cι~C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
alternatively, R^ and R^a, and the carbon to which they are attached, may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl moiety; provided that R3 and R3a are not combined to form a cycloalkyl moiety;
R7, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , CF3 , and C1-C4 alkyl; R7b is independently selected from: H, methyl, ethyl, propyl, and butyl;
L is a bond, -CH2-. -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, - (CH2)p-0-(CH2)q~, or - (CH2 )p-NR10- (CH2) q- ;
p is 0, 1, 2, or 3;
q is 0, 1, 2, or 3;
Z is C3-C10 carbocycle substituted with 0-2 R 2b; 6_ClO aryl substituted with 0-4 Rl b; and
5 to 10 membered heterocycle substituted with 0-5
R12b, wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
Rl2b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, phenyl substituted with 0-3 R12c;
R1 c, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, CI-C4 haloalkyl, and C1-C4 haloalkoxy;
B is a 5, 6, or 7 membered amino-heterocyclic ring, comprising one N atom, 3 to 6 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R1° is H, C(=0)R17, C(=0)OR17, - (C1-C3 alkyl) -C (=0) OR17 , C(=0)NR18R19, S(=0)2NR18R19, S(=0)2R17; C1-C6 alkyl substituted with 0-1 R10a; C6-C10 aryl substituted with 0-4 R10b; C3-C10 carbocycle substituted with 0-3 R!0b; or 5 to 10 membered heterocycle optionally substituted with 0-3 R10 ;
10a/ at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, N02 , NR15R16, CF3, or phenyl substituted with 0-4 R10b;
RlOb, at each occurrence, is independently selected from H, OH, Cχ-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2 , NR15R16, or CF3;
R 1, at each occurrence, is independently selected from: C1-C4 alkoxy, Cl, F, NR18R19, C(=0)R17, C(=0)0R17, C(=0)NR18R19, S(=0)2NR18R19, CF3 ; C1-C6 alkyl substituted with 0-1 Rlla; 6- 10 aryl substituted with 0-3 Rllb; C3-C10 carbocycle substituted with 0-3 Rllb; or 5 to 10 membered heterocycle substituted with 0-3
Rllb.
alternatively, two R1 substituents on the same or adjacent carbon atoms may be combined to form a C3-C6 carbocycle or a benzo fused radical wherein said benzo fused radical is substituted with 0-4 R13 ;
additionally, two R11 substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, 0, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R13 ;
RUa, at each occurrence, is independently selected from: H, C1-C6 alkyl, OR14, Cl, F, Br, I, =0, CN, NO2 , NR15R16, CF3, or phenyl substituted with 0-3 Rllb; Rllb, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R, CF3 , C1-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
t is 0, 1, 2 or 3;
R13 , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NRi5Rl6, and CF3 ;
RI4 is H, phenyl, benzyl, Ci-Cς alkyl, or C2-C6 alkoxyalkyl ;
R14a js pj phenyl, benzyl, or C1-C4 alkyl;
R!5, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (Cχ-C6 alkyl), -S (=0) 2~ (C1-C6 alkyl), and aryl;
R!6, at each occurrence, is independently selected from: H, OH, Ci-Ce alkyl, benzyl, phenethyl, -C (=0) - (Cχ-C6 alkyl) and -S (=0) 2~ (C±-Cβ alkyl);
alternatively, R!5 and R!6 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
R17 is H, aryl, (aryl)CH2-, Cχ-C6 alkyl, or C2-C6 alkoxyalkyl ;
R18, at each occurrence, is independently selected from: H, C1-C6 alkyl, benzyl, phenethyl, -C (=0) - (Cχ-C6 alkyl) and -S (=0) 2- (Cχ-C6 alkyl); R19, at each occurrence, is independently selected from:
H, OH, C1-C6 alkyl, phenyl, benzyl, phenethyl, -C(=0)- (C1-C6 alkyl) and -S (=0) 2- (Cχ-C6 alkyl); and
alternatively, R! and RI on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl.
4. A compound according to Claim 3, of Formula (Ic) :
Figure imgf000128_0001
(Ic)
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R3 is C1-C4 alkyl substituted with 0-2 R4a,
C2-C4 alkenyl substituted with 0-2 R4a, or C2-C4 alkynyl substituted with 0-1 R4a;
R4a, at each occurrence, is independently selected from: H, F, Cl, CF3,
C3-C6 cycloalkyl substituted with 0-3 R4b, phenyl substituted with 0-3 R b, or
5 to 6 membered heterocycle substituted with 0-3 R ;
R4b, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, O2 , NR15R 6, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
R5 is C1-C6 alkyl substituted with 0-3 R5b;
C2-C6 alkenyl substituted with 0-2 R5 ; or C2-C6 alkynyl substituted with 0-2 R5b;
R^b, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, CF3 , OR14, =0; C3-C6 cycloalkyl substituted with 0-2 R5c; phenyl substituted with 0-3 R5c; or 5 to 6 membered heterocycle substituted with 0-2 R^c ;
R5C, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl,
SCH3, S(=0)CH3, S(=0)2CH3, C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
L is a bond, -CH2~, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, - (CH )p-0-(CH2)q-, or -(CH2)p-NR10-(CH2)q-;
p is 0, 1, 2, or 3 ;
q is 0, 1, or 2;
Z is C3-C10 carbocycle substituted with 0-2 R12b;
C6-C10 aryl substituted with 0-4 R12b; and
5 to 10 membered heterocycle substituted with 0-5
R12 , wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, 0 and S;
R12bf at each occurrence, is independently selected from: H, OH, Cl, F, NR1SR16, CF3 , acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, C1-C4 alkyl, C1-C3 alkoxy, C3.-C2 haloalkyl, Cχ-C2 haloalkoxy, phenyl substituted with 0-3 R!2C;
R!2C, at each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, N02 , NR15R, CF3 , acetyl, SCH3, S(=0)CH3, S (=0) 2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy; B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)R17, C(=0)OR17, -(C1-C3 alkyl)-C(=0) OR17; C1-C4 alkyl substituted with 0-1 R10a; phenyl substituted with 0-4 R10b;
C3-C6 carbocycle substituted with 0-3 R1^b; or
5 to 6 membered heterocycle optionally substituted with 0-3 R10b;
R1^3-, at each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, Cl, F, Br, I, =0, CN, NO2 , NR15R16, CF3, or phenyl substituted with 0-4 R10b;
R10b, at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, C1-C3 alkoxy, Cl, F, Br, I, CN, N02, NR15R16, or CF3;
R11, at each occurrence, is independently selected from:
C1-C4 alkoxy, Cl, F, OH, NR18R19, C(=0)R17, C(=0)OR17, CF3;
C1-C4 alkyl substituted with 0-1 Rlla; phenyl substituted with 0-3 Rllb ;
C3-C6 carbocycle substituted with 0-3 Rll ; or
5 to 6 membered heterocycle substituted with 0-3 Rll ;
alternatively, two RU substituents on adjacent carbon atoms may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or a benzo fused radical; Rlla, at each occurrence, is independently selected from-. H, C1-C4 alkyl, OR14, F, =0, NR15R16, CF3 , or phenyl substituted with 0-3 Rllb;
R l , at each occurrence, is independently selected from:
H, OH, Cl, F, R15R16, CF3 , C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
t is 0, 1, or 2;
R!3 , at each occurrence, is independently selected from: H, OH, C -CQ alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN, NO2, NR15R16, and CF3 ;
RI4 is H, phenyl, benzyl, C1-C4 alkyl, or C2-C4 alkoxyalkyl ;
R!5 at each occurrence, is independently selected from: H, C1-C4 alkyl, benzyl, phenethyl, -C (=0) - (C1-C4 alkyl), -S (=0) 2- (C1-C4 alkyl), and aryl;
R1^, at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, benzyl, phenethyl, -C (=0) - (C1-C4 alkyl) and -S (=0) 2 ~ (C1-C4 alkyl);
alternatively, R!^ and R1^ on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
R17 is H, phenyl, benzyl, 4-fluorophenyl, 4-chlorophenyl, 4-methylphenyl , 4-trifluorophenyl , (4-fluorophenyl) methyl , (4-chlorophenyl) methyl , (4-methyIphenyl)methyl, (4-trifluorophenyl)methyl, methyl, ethyl, propyl, butyl, methoxymethyl , methyoxyethyl, ethoxymethyl, or ethoxyethyl; R 8, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl ;
R 9, at each occurrence, is independently selected from: H, methyl, and ethyl; and
alternatively, R18 and R19 on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl .
5. A compound according to Claim 4, of Formula (Ic) :
Figure imgf000132_0001
(Ic)
or a pharmaceutically acceptable salt or prodrug thereof, wherein :
R3 is C1-C4 alkyl, C2-C4 alkenyl, or C2-C4 alkynyl;
R5 is Cχ-C6 alkyl, C2-C6 alkenyl, or C2-C6 alkynyl;
L is a bond, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, - (CH )p-0-(CH2)q-, or - (CH )p-NR10- (CH ) q-;
p is 0, 1, 2, or 3;
q is 0, 1, or 2;
Z is C3-C10 carbocycle substituted with 0-2 R12b; C6-C10 aryl substituted with 0-4 R12b; and 5 to 10 membered heterocycle substituted with 0-5
R1 b, wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S;
Rl b, at each occurrence, is independently selected from: H, OH, Cl, F, R15 16, CF3 , acetyl, SCH3 , S(=0)CH3, S(=0)2CH3, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, Cχ-C2 haloalkyl, C1-C2 haloalkoxy, phenyl substituted with 0-3 R12c;
R12c/ a each occurrence, is independently selected from: H, OH, Cl, F, Br, I, CN, NO2 , NR15R16, CF3 , acetyl, SCH3, S(=0)CH3, S(=0)2CH3, Cχ-C6 alkyl, C1-C4 alkoxy, C1-C4 haloalkyl, and C1-C4 haloalkoxy;
B is a 6 membered amino-heterocyclic ring, comprising one N atom, 4 or 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, C(=0)Rl7, C(=0)ORl7, - (C1-C3 alkyl) -C (=0) OR27; C1-C4 alkyl substituted with 0-1 Rl°a; phenyl substituted with 0-4 Rl°b;
C3-C6 carbocycle substituted with 0-3 R ^b; or
5 to 6 membered heterocycle optionally substituted with 0-3 R10b;
R1^9-, at each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, Cl, F, Br, I, =0, CN, NO2 , Ri5R 6, CF3, or phenyl substituted with 0-4 R10b;
R10b( at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, C1-C3 alkoxy, Cl, F, Br, I, CN, NO2, NR15R16, or CF3; R11, at each occurrence, is independently selected from:
C1-C4 alkoxy, Cl, F, OH, NR18R19, C(=0)R17, C(=0)OR17,
CF3; C1-C4 alkyl substituted with 0-1 Rll ; phenyl substituted with 0-3 RHb;
C3-C6 carbocycle substituted with 0-3 RH ; or
5 to 6 membered heterocycle substituted with 0-3 RHb;
Rlla, at each occurrence, is independently selected from: H, C1-C4 alkyl, OR14, F, =0, NR15R16, CF3 , or phenyl substituted with 0-3 Rllb;
Rllb, at each occurrence, is independently selected from:
H, OH, Cl, F, NR15R16, CF3 , C1-C4 alkyl, C1-C3 alkoxy, C1-C2 haloalkyl, and C1-C2 haloalkoxy;
t is 0, 1, or 2;
R , at each occurrence, is independently selected from: H, OH, C1-C6 alkyl, C1-C4 alkoxy, Cl, F, Br, I, CN,
Figure imgf000134_0001
R 4 is H, phenyl, benzyl, methyl, ethyl, propyl, butyl;
R1^, at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, and phenyl substituted with 0-3 substituents selected from OH, OCH3, Cl, F, Br, I, CN, N02, NH2, N(CH3)H, N(CH3)2, CF3, OCF3, C(=0)CH3, SCH3, S(=0)CH3, S(=0)2CH3, CH3 , CH2CH3, CO2H, and CO2CH3 ;
R1^, at each occurrence, is independently selected from: H, OH, C1-C4 alkyl, benzyl, phenethyl, -C (=0) - (C1-C4 alkyl) and -S (=0) 2- (C1-C4 alkyl);
alternatively, R15 and R16on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl;
R17 is H, phenyl, benzyl, 4-fluorophenyl, 4-chlorophenyl, 4-methylphenyl , 4-trifluorophenyl, (4-fluorophenyl)methyl , (4-chlorophenyl) methyl, (4-methylphenyl)methyl , (4-trifluorophenyl)methyl, methyl, ethyl, propyl, butyl, methoxymethyl, methyoxyethyl, ethoxymethyl, or ethoxyethyl;
pl8 at each occurrence, is independently selected from: H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;
R19, at each occurrence, is independently selected from: H, methyl, ethyl, and
alternatively, R! and R! on the same N atom may be combined to form a 5 to 6 membered heterocyclic fused radical, wherein said 5 to 6 membered heterocyclic is selected from pyrrolidonyl, piperidonyl, piperazinyl, and morpholinyl .
A compound according to Claim 4, of Formula (lb)
Figure imgf000135_0001
(lb)
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R3 is -CH3, -CH2CH3, -CH2CH2CH3, -CH2CH2CH2CH3 ,
-CH (CH3)2, -CH(CH3)CH CH3, -CH2CH(CH3 ) 2 , -CH2C(CH3)3, -CF3, -CH2CF3, -CH2CH2CF3, -CH2CH2CH2CF3 ; -CH=CH2, -CH2CH=CH2, -CH2C (CH3) =CH2, -CH2CH=C (CH3) 2 , -CH2CH2CH=CH2, -CH2CH2C (CH3 ) =CH2 , -CH2CH2CH=C {CH3 ) 2 , cis-CH2CH=CH(CH3) , cis-CH2CH2CH=CH(CH3 ) , trans-CH2CH=CH (CH3 ) , trans-CH2CH2CH=CH (CH3 ) ; -C≡CH, -CH2C≡CH, -CH2C≡C(CH3) ; cyclopropyl-CH2-, cyclobutyl-CH2-, eye1opentyl-CH2~, cyclohexyl-CH2~, cyclopropyl-CH2CH2-, cyclobutyl- CH2CH2-, cyclopentyl-CH2CH2~, cyclohexyl-CH2CH2-; phenyl-CH2-, (2-F-phenyl) CH2-, (3 -F-phenyl) CH2-, (4-F-phenyl)CH2-, (2-Cl-phenyl) CH2-, (3-Cl-phenyl)CH2-, (4-Cl-phenyl )CH2~, (2,3-diF-phenyl)CH2-, (2, 4-diF-phenyl )CH2-, (2, 5-diF-phenyl) CH2-, (2, 6-diF-phenyl) CH2-, (3 , 4-diF-phenyl) CH2- , (3,5-diF-phenyl) CH2- , (2,3-diCl-phenyl) CH2- , (2 , 4-diCl-phenyl) CH2- , (2 , 5-diCl-phenyl ) CH2- , (2 , 6-diCl-phenyl) CH2- , (3,4-diCl-phenyl)CH2-, (3 , 5-diCl-phenyl) CH2-, (3-F-4-Cl-phenyl)CH2-, (3-F-5-Cl-phenyl)CH2-, (3 -Cl-4-F-phenyl ) CH2- , phenyl-CH2CH2- , (2-F-phenyl) CH2CH2- , (3-F-phenyl) CH2CH2- , (4-F-phenyl) CH2CH2-, (2-Cl-phenyl) CH2CH2-, (3 -Cl-phenyl)CH2CH2-, (4-Cl-phenyl) CH2CH2-, (2, 3-diF-phenyl)CH2CH2-, (2 , 4-diF-phenyl) CH2CH2-, (2,5-diF-phenyl) CH2CH2- , (2 , 6-diF-phenyl) CH2CH2- , (3 , 4-diF-ρhenyl) CH2CH2- , (3 , 5-diF-phenyl) CH2CH2- , (2,3-diCl-phenyl)CH2CH2-, (2 , 4-diCl-phenyl) CH2CH2-, (2,5-diCl-phenyl)CH2CH2-, (2 , 6-diCl-phenyl) CH2CH2-, (3,4-diCl-phenyl)CH2CH2-, (3 , 5-diCl-phenyl)CH2CH2-, (3-F-4-Cl-phenyl)CH2CH2-, or (3-F-5-Cl-phenyl) CH2CH2-;
-CH3, -CH2CH3, -CH2CH2CH3, -CH2(CH3)2, -CH2CH2CH2CH3 , -CH(CH3)CH2CH3, -CH2CH(CH3 ) 2 , -CH2C(CH3)3, -CH2CH2CH2CH2CH3 , -CH (CH3 ) CH2CH CH3 , -CH CH(CH3)CH2CH3, -CH2CH2CH (CH3 ) 2 , -CH (CH2CH3 ) 2 , -CF3, -CH2CF3, -CH2CH2CF3, -CH2CH2CH2CF3, -CH2CH2CH2CH2CF3, -CH=CH2, -CH2CH=CH2, -CH=CHCH3 , -CH2C(CH3)=CH2, cis-CH2CH=CH (CH3 ) , trans-CH2CH=CH(CH3) , trans-CH2CH=CH (C6H5) , -CH2CH=C (CH3 ) 2 , cis-CH2CH=CHCH2CH3 , trans-CH2CH=CHCH2CH3 , cis-CH2CH2CH=CH (CH3 ) , trans-CH2CH2CH=CH (CH3 ) , trans-CH2CH=CHCH2 (C6H5 ) , -C≡CH, -CH2C≡CH, -CH2C≡C(CH3) , -CH2C=C (C6H5 ) , -CH2CH2C≡CH, -CH2CH2C≡C (CH3 ) , -CH2CH2C≡C (C6H5) , -CH2CH2CH2C≡CH, -CH2CH2CH2C≡C (CH3 ) ,
-CH2CH2CH2C≡C(C6H5) , cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-, cyclohexyl-CH2-, (2-CH3 -cyclopropyl) CH2-, (3-CH3-cyclobutyl) CH2- , cyclopropyl-CH2CH2- , cyclobutyl-CH2CH2~, cyclopentyl-CH2CH2-, cyclohexyl-CH2CH2- , (2-CH3-cyclopropyl) CH2CH2- ,
(3-CH3-cyclobutyl) CH2CH2- , phenyl-CH2- ,
(2-F-phenyl)CH2~, (3 -F-phenyl) CH2- , (4-F-phenyl) CH2-, furanyl-CH2-, thienyl-CH2-, pyridyl-CH2~, l-imidazolyl-CH2-, oxazolyl-CH2- , isoxazolyl-CH2-, phenyl-CH2CH2-, (2-F-phenyl) CH2CH2-, (3-F-phenyl) CH2CH2- , (4-F-phenyl ) CH2CH2- , furanyl-CH2CH2-, thienyl-CH2CH2- , pyridyl-CH2CH2-, l-imidazolyl-CH2CH2-, oxazolyl-CH2CH2-, or isoxazolyl-CH2CH2-;
L is a bond, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, O, -CH2O-, -(CH2)2-0-, -(CH2)3-0-, - (CH2) -0- (CH2) 2~ , -(CH2)2-0-(CH2)-, -(CH2)2-0-(CH2)2-/ NH, NMe, -CH2NH-, -(CH2)2-NH-, -(CH2)3"NH-, - (CH2) -NH- (CH ) 2", -(CH2)2-NH-(CH2)~, - (CH ) 2~NH- (CH2) 2~ , and -N(benzoyl) -;
Z is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl 2-F-phenyl, 3-F-phenyl, 4-F-phenyl, 2-Cl- phenyl , 3-Cl-phenyl , 4-Cl-phenyl , 2,3-diF-phenyl, 2, -diF-phenyl, 2, 5-diF-phenyl, 2 , 6-diF-phenyl, 3, 4-diF-phenyl, 3 , 5-diF-phenyl, 2 , 3-diCl-phenyl, 2, -diCl-phenyl, 2 , 5-diCl-phenyl, 2 , 6-diCl-phenyl, 3, 4-diCl-phenyl, 3 , 5-diCl-phenyl, 2 , 3 -diMe-phenyl, 2 , 4-diMe-phenyl , 2 , 5-diMe-phenyl , 2,6-diMe-phenyl , 3 , 4-diMe-phenyl , 3 , 5-diMe-phenyl , 2,3 -diMeO-phenyl, 2 , 4-diMeO-pheny1 , 2 , 5-diMeO-phenyl , 2,
6-diMeO-phenyl , 3,4-diMeO-phenyl, 3 , 5-diMeO-phenyl, 3-F-4-C1-phenyl, 3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl, 3 -MeO-phenyl, 4-MeO-phenyl, 2-EtO-phenyl, 3-EtO-phenyl, 4-EtO-phenyl, 2-Me-phenyl, 3-Me-phenyl, 4-Me-phenyl, 2-Et-phenyl, 3-Et-phenyl, 4-Et-phenyl, 2-CF3 -phenyl, 3-CF3 -phenyl , 4-CF3 -phenyl, 2-NO2- phenyl, 3 -NO2-phenyl, 4-NO2-phenyl, 2-CN-ρhenyl,
3-CN-phenyl, 4-CN-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl, 2-CF3θ-phenyl, 3-CF3θ-phenyl,
4-CF3θ-phenyl, 2-Me-5-Cl-phenyl, 3-CF3-4-Cl-phenyl, 3 -CF3 -5-F-phenyl, 3-MeO-4-Me-phenyl, furanyl, thienyl, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, pyrimidyl, pyrazinyl, 2-Me-pyridyl, 3-Me-pyridyl, 3-CF3-pyrid-2-yl, 5-CF3-pyrid-2-yl, 4-Me-pyridyl, pyrrolidinyl, 1-imidazolyl, oxazolyl, isoxazolyl, 1-benzimidazolyl, 2-keto-l-benzimidazolyl, 4-benzo [1,3] dioxol-5-yl, morpholino, N-piperidyl, 4-piperidyl, naphthyl, 4 (phenyl) phenyl-, 4 (4-CF3 -phenyl) phenyl-,
3, 5-bis-CF3-phenyl-, 4-iPr-phenyl-, N-piperidino-CH2~, l-Me-pyrrolidin-2-yl, and 1-pyrrolidinyl;
B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is either R10 or the substituent -L-Z;
R10 is H, methyl, ethyl, phenyl, benzyl, phenethyl, 4-F- phenyl, (4-F-phenyl)CH2-, (4-F-phenyl) CH2CH2-, 4-C1- phenyl, (4-Cl-phenyl) CH2-, (4-Cl-phenyl) CH2CH2-, 4- CH3-phenyl, (4-CH3 -phenyl)CH2~, (4-CH3-phenyl JCH2CH2-, 4-CF3-phenyl, (4-CF3-phenyl) CH2-, (4-CF3- phenyl)CH2CH2~, -CH2C(=0)Et, -C(=0)Me, or 4-C1-benzhydry1 ; RH, at each occurrence, is independently selected from: H, OH, methyl, ethyl, -CN, -C(=0)Me, -C(=0)OEt, -C(=0)Et, -CH20H, -C(=0)NH2, -C(=0)OH, -C (=0) N(Et) 2 , phenyl, benzyl, phenethyl, 4-F-phenyl, (4-F- phenyl) CH2-, (4-F-phenyl) CH2CH2-, 4-Cl-phenyl, (4-C1- phenyl)CH2~, (4-Cl-phenyl ) CH2CH2-, 4-CH3 -phenyl, (4- CH3-phenyl)CH2-, (4-CH3-phenyl) CH2CH2-, 4-CF3-phenyl, (4-CF3-phenyl)CH2-, (4-CF3-phenyl ) CH2CH2-, and - N(Me)2-.; a^d
t is 0, 1, or 2;
alternatively, two R ! substituents on the same or adjacent carbon atoms may be combined to form a cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or a benzo fused radical .
7. A compound according to Claim 4, of Formula (lb)
Figure imgf000139_0001
(lb)
or a pharmaceutically acceptable salt or prodrug thereof, wherein:
R3 is -CH2CH2CH3, -CH2CH2CH2CH3 , -CH2(CH3) , -CH2CH(CH3) 2 , -CH2CH=CH2, -CH2CH2CH=CH2 , -CH2CH2CH=C (CH3 ) 2 , cis-CH2CH=CH (CH3 ) , cis-CH2CH2CH=CH (CH3 ) , trans-CH2CH=CH(CH3) , trans-CH2CH2CH=CH (CH3) ; cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2-, cyclohexyl-CH2-, cyclopropyl-CH2CH2-, cyclobutyl- CH2CH2-, cyclopentyl-CH2CH2-, or cyclohexyl-CH2CH2-; R5 is-CH2(CH3)2, -CH2CH2CH2CH3 , -CH (CH3 ) CH2CH3 ,
-CH2CH(CH3)2, -CH2C(CH3)3, -CH2CH2CH2CH2CH3 , -CH(CH3)CH2CH2CH3, -CH2CH (CH3 ) CH2CH3 , -CH2CH2CH (CH3 ) 2 , -CH(CH2CH3)2, -CH2CH=CH2, -CH2C (CH3) =CH2 , cis-CH2CH=CH(CH3) , trans-CH2CH=CH (CH3 ) ,
-CH2CH=C(CH3) , cyclopropyl-CH2-, cyclobutyl-CH2-, cyclopentyl-CH2- , cyclohexyl-CH2- , (2-CH3-cyclopropyl)CH2-, or (3-CH3-cyclobutyl)CH2~,
L is a bond, -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH=CH2, O, -CH20-, -(CH2)2-0-, -(CH2)3-0-. - (CH ) -0- (CH2) 2" , -(CH2)2-0-(CH2)-, -(CH2)2-0-(CH2)2- NH, NMe, -CH2NH-, -(CH2)2-NH-, -(CH2)3-NH-, - (CH2 ) -NH- (CH2 ) 2" , -(CH2)2-NH-(CH )-, - (CH2 ) 2~NH- (CH2 ) 2~/ and -N(benzoyl) -;
Z is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl 2-F-phenyl, 3-F-phenyl, 4-F-phenyl, 2-Cl- phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2 , 3-diF-phenyl, 2, 4-diF-phenyl, 2 , 5-diF-phenyl, 2 , 6-diF-phenyl, 3 , 4-diF-phenyl, 3 , 5-diF-phenyl, 2, 3-diCl-phenyl, 2, 4-die1-phenyl, 2 , 5-diCl-phenyl, 2 , 6-diCl-phenyl, 3 , 4-diCl-phenyl, 3 , 5-diCl-phenyl, 2, 3-diMe-phenyl, 2 , 4-diMe-phenyl, 2 , 5-diMe-phenyl , 2 , 6-diMe-phenyl , 3 , 4-diMe-phenyl, 3 , 5-diMe-phenyl, 2 , 3-diMeO-phenyl,
2 , 4-diMeO-phenyl , 2 , 5-diMeO-phenyl , 2 , 6-diMeO-phenyl, 3, 4-diMeO-phenyl, 3 , 5-diMeO-phenyl, 3-F-4-C1-phenyl, 3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl, 3-MeO-phenyl, 4-MeO-phenyl, 2-EtO-phenyl, 3-EtO-phenyl, 4-EtO-phenyl, 2-Me-phenyl, 3-Me-phenyl, 4-Me-phenyl, 2-Et-phenyl, 3-E -phenyl, 4-Et-phenyl, 2-CF3-phenyl, 3-CF3-phenyl, 4-CF3-phenyl, 2-N02- phenyl, 3-NO2-phenyl , 4-NO2-phenyl, 2-CN-phenyl,
3-CN-phenyl, 4-CN-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl, 2-CF3θ-phenyl, 3-CF3θ-phenyl,
4-CF3O-phenyl, 2-Me-5-Cl-phenyl, 3-CF3-4-Cl-phenyl, 3-CF3-5-F-phenyl, 3-MeO-4-Me-phenyl, furanyl, thienyl, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, pyrimidyl, pyrazinyl, 2-Me-pyridyl, 3-Me-pyridyl, 3-CF3-pyrid-2-yl, 5-CF3-pyrid-2-yl, 4-Me-pyridyl, pyrrolidinyl, 1-imidazolyl, oxazolyl, isoxazolyl, 1-benzimidazolyl, 2-keto-1-benzimidazolyl, 4-benzo [1, 3 ]dioxol-5-yl, morpholino, N-piperidyl, 4-piperidyl, naphthyl, 4 (phenyl) phenyl-, 4 (4-CF3-phenyl) phenyl-, 3, 5-bis-CF3 -phenyl-, 4-iPr-phenyl-, N-piperidino-CH2~, l-Me-pyrrolidin-2-yl, and 1-pyrrolidinyl;
B is a 5 or 6 membered amino-heterocyclic ring, comprising one N atom, 3 to 5 carbon atoms, and optionally, an additional heteroatom -N(RLZ)-; wherein the amino-heterocyclic ring is saturated or partially saturated; and wherein RLZ is the substituent -L-Z;
RU, at each occurrence, is independently selected from: H, OH, methyl, ethyl, -CN, -C(=0)Me, -C(=0)OEt, -C(=0)Et, -CH20H, -C(=0)NH2, -C(=0)OH, -C (=0)N (Et) 2 , and -N(Me)2~;
t is 0 or 1.
8. A compound according to claim 1, wherein:
Figure imgf000141_0001
9. A compound according to claim 2, wherein:
B is
Figure imgf000142_0001
10. A compound according to claim 3, wherein:
B is
Figure imgf000142_0002
11. A compound according to claim 4, wherein:
B is
Figure imgf000142_0003
12. A compound according to claim 5, wherein:
B is
Figure imgf000142_0004
13. A compound according to claim 6, wherein:
B is
Figure imgf000143_0001
14. A compound according to claim 7, wherein:
B is
Figure imgf000143_0002
15. A compound selected from one of the Examples in Table 5a, Table 5b, Table 5c, Table 5d, Table 5e, Table 5f or
Table 5g.
16. A pharmaceutical composition comprising a compound according to one of Claims 1-15 and a pharmaceutically acceptable carrier.
17. A method for the treatment of neurological disorders associated with β-amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound according to one of Claims 1-15.
18. A method for the treatment of Alzheimer's Disease associated with β-amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound according to one of Claims 1-15.
PCT/US2001/010297 2000-03-31 2001-03-30 SUCCINOYLAMINO HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION WO2001074796A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01924498A EP1268454A1 (en) 2000-03-31 2001-03-30 Succinoylamino heterocycles as inhibitors of a-beta protein production
CA002404314A CA2404314A1 (en) 2000-03-31 2001-03-30 Succinoylamino heterocycles as inhibitors of a.beta. protein production
AU2001251147A AU2001251147A1 (en) 2000-03-31 2001-03-30 Succinoylamino heterocycles as inhibitors of abeta protein production
JP2001572489A JP2003529594A (en) 2000-03-31 2001-03-30 Succinoylamino heterocycles as inhibitors of Aβ protein production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19349000P 2000-03-31 2000-03-31
US60/193,490 2000-03-31

Publications (1)

Publication Number Publication Date
WO2001074796A1 true WO2001074796A1 (en) 2001-10-11

Family

ID=22713846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/010297 WO2001074796A1 (en) 2000-03-31 2001-03-30 SUCCINOYLAMINO HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION

Country Status (5)

Country Link
EP (1) EP1268454A1 (en)
JP (1) JP2003529594A (en)
AU (1) AU2001251147A1 (en)
CA (1) CA2404314A1 (en)
WO (1) WO2001074796A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878363B2 (en) 2000-05-17 2005-04-12 Bristol-Myers Squibb Pharma Company Use of small molecule radioligands to discover inhibitors of amyloid-beta peptide production and for diagnostic imaging
WO2007142431A1 (en) * 2006-06-02 2007-12-13 Ewha University - Industry Collaboration Foundation New non-peptide compounds, process for the preparation thereof and pharmaceutical composition comprising the same
WO2008099210A2 (en) 2007-02-12 2008-08-21 Merck & Co., Inc. Piperazine derivatives for treatment of ad and related conditions
WO2009128057A2 (en) 2008-04-18 2009-10-22 UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN et al Psycho-pharmaceuticals
US7622496B2 (en) 2005-12-23 2009-11-24 Zealand Pharma A/S Modified lysine-mimetic compounds
US8044206B2 (en) 2003-03-07 2011-10-25 Astellas Pharma Inc. Nitrogen—containing heterocyclic derivatives having 2,6-disubstituted styryl
EP2489656A1 (en) 2007-12-21 2012-08-22 Ligand Pharmaceuticals Inc. Selective androgen receptor modulators (sarms) and uses thereof
US8629136B2 (en) 2011-03-22 2014-01-14 Bristol-Myers Squibb Company Bisfluoroalkyl-1,4-benzodiazepinone compounds
US8927590B2 (en) 2006-12-21 2015-01-06 Zealand Pharma A/S Synthesis of pyrrolidine compounds
US8999918B2 (en) 2012-09-21 2015-04-07 Bristol-Myers Squibb Company Bis(fluoroalkyl)-1,4-benzodiazepinone compounds and prodrugs thereof
US9133126B2 (en) 2012-09-21 2015-09-15 Bristol-Myers Squibb Company Fluoroalkyl dibenzoazepinone compounds
US9133139B2 (en) 2012-09-21 2015-09-15 Bristol-Myers Squibb Company Fluoroalkyl-1,4-benzodiazepinone compounds
US9187434B2 (en) 2012-09-21 2015-11-17 Bristol-Myers Squibb Company Substituted 1,5-benzodiazepinones compounds
US9242940B2 (en) 2012-09-21 2016-01-26 Bristol-Myers Squibb Company N-substituted bis(fluoroalkyl)-1,4-benzodiazepinone compounds
US9242941B2 (en) 2012-09-21 2016-01-26 Bristol-Myers Squibb Company Alkyl, fluoroalkyl-1,4-benzodiazepinone compounds
US9249157B2 (en) 2012-09-21 2016-02-02 Bristol-Myers Squibb Company Tricyclic heterocycle compounds
US9273075B2 (en) 2012-09-21 2016-03-01 Bristol-Myers Squibb Company Prodrugs of 1,4-benzodiazepinone compounds
US9427442B2 (en) 2012-09-21 2016-08-30 Bristol-Myers Squibb Company Fluoroalkyl and fluorocycloalkyl 1,4-benzodiazepinone compounds
US9492469B2 (en) 2013-04-04 2016-11-15 Bristol-Myers Squibb Company Combination therapy for the treatment of proliferative diseases
EP3613418A1 (en) 2014-01-17 2020-02-26 Ligand Pharmaceuticals, Inc. Methods and compositions for modulating hormone levels
US11324799B2 (en) 2017-05-05 2022-05-10 Zealand Pharma A/S Gap junction intercellular communication modulators and their use for the treatment of diabetic eye disease

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652009A1 (en) * 1993-08-09 1995-05-10 Eli Lilly And Company Identification and use of protease inhibitors
US5703129A (en) * 1996-09-30 1997-12-30 Bristol-Myers Squibb Company 5-amino-6-cyclohexyl-4-hydroxy-hexanamide derivatives as inhibitors of β-amyloid protein production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652009A1 (en) * 1993-08-09 1995-05-10 Eli Lilly And Company Identification and use of protease inhibitors
US5703129A (en) * 1996-09-30 1997-12-30 Bristol-Myers Squibb Company 5-amino-6-cyclohexyl-4-hydroxy-hexanamide derivatives as inhibitors of β-amyloid protein production

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878363B2 (en) 2000-05-17 2005-04-12 Bristol-Myers Squibb Pharma Company Use of small molecule radioligands to discover inhibitors of amyloid-beta peptide production and for diagnostic imaging
US8044206B2 (en) 2003-03-07 2011-10-25 Astellas Pharma Inc. Nitrogen—containing heterocyclic derivatives having 2,6-disubstituted styryl
US7622496B2 (en) 2005-12-23 2009-11-24 Zealand Pharma A/S Modified lysine-mimetic compounds
US8431540B2 (en) 2005-12-23 2013-04-30 Zealand Pharma A/S Modified lysine-mimetic compounds
WO2007142431A1 (en) * 2006-06-02 2007-12-13 Ewha University - Industry Collaboration Foundation New non-peptide compounds, process for the preparation thereof and pharmaceutical composition comprising the same
KR100888069B1 (en) * 2006-06-02 2009-03-11 이화여자대학교 산학협력단 New non-peptide compounds, process for the preparation thereof and pharmaceutical composition comprising the same
US8927590B2 (en) 2006-12-21 2015-01-06 Zealand Pharma A/S Synthesis of pyrrolidine compounds
US9469609B2 (en) 2006-12-21 2016-10-18 Zealand Pharma A/S Synthesis of pyrrolidine compounds
WO2008099210A2 (en) 2007-02-12 2008-08-21 Merck & Co., Inc. Piperazine derivatives for treatment of ad and related conditions
US11358931B2 (en) 2007-12-21 2022-06-14 Ligand Pharmaceuticals Incorporated Selective androgen receptor modulators (SARMs) and uses thereof
EP2489656A1 (en) 2007-12-21 2012-08-22 Ligand Pharmaceuticals Inc. Selective androgen receptor modulators (sarms) and uses thereof
US10730831B2 (en) 2007-12-21 2020-08-04 Ligand Pharmaceuticals Incorporated Selective androgen receptor modulators (SARMs) and uses thereof
US9139520B2 (en) 2007-12-21 2015-09-22 Ligand Pharmaceuticals Incorporated Selective androgen receptor modulators (SARMs) and uses thereof
US10106500B2 (en) 2007-12-21 2018-10-23 Ligand Pharmaceuticals Incorporated Selective androgen receptor modulators (SARMs) and uses thereof
US9675583B2 (en) 2007-12-21 2017-06-13 Ligand Pharmaceuticals Incorporated Selective androgen receptor modulators (SARMS) and uses thereof
WO2009128057A2 (en) 2008-04-18 2009-10-22 UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN et al Psycho-pharmaceuticals
US8822454B2 (en) 2011-03-22 2014-09-02 Bristol-Myers Squibb Company Bisfluoroalkyl-1,4-benzodiazepinone compounds
US8629136B2 (en) 2011-03-22 2014-01-14 Bristol-Myers Squibb Company Bisfluoroalkyl-1,4-benzodiazepinone compounds
US9133139B2 (en) 2012-09-21 2015-09-15 Bristol-Myers Squibb Company Fluoroalkyl-1,4-benzodiazepinone compounds
US9249157B2 (en) 2012-09-21 2016-02-02 Bristol-Myers Squibb Company Tricyclic heterocycle compounds
US9273014B2 (en) 2012-09-21 2016-03-01 Bristol-Myers Squibb Company Bis(fluoroalkyl)-1,4-benzodiazepinone compounds and prodrugs thereof
US9273075B2 (en) 2012-09-21 2016-03-01 Bristol-Myers Squibb Company Prodrugs of 1,4-benzodiazepinone compounds
US9427442B2 (en) 2012-09-21 2016-08-30 Bristol-Myers Squibb Company Fluoroalkyl and fluorocycloalkyl 1,4-benzodiazepinone compounds
US9242941B2 (en) 2012-09-21 2016-01-26 Bristol-Myers Squibb Company Alkyl, fluoroalkyl-1,4-benzodiazepinone compounds
US9242940B2 (en) 2012-09-21 2016-01-26 Bristol-Myers Squibb Company N-substituted bis(fluoroalkyl)-1,4-benzodiazepinone compounds
US9187434B2 (en) 2012-09-21 2015-11-17 Bristol-Myers Squibb Company Substituted 1,5-benzodiazepinones compounds
US9133126B2 (en) 2012-09-21 2015-09-15 Bristol-Myers Squibb Company Fluoroalkyl dibenzoazepinone compounds
US8999918B2 (en) 2012-09-21 2015-04-07 Bristol-Myers Squibb Company Bis(fluoroalkyl)-1,4-benzodiazepinone compounds and prodrugs thereof
US9492469B2 (en) 2013-04-04 2016-11-15 Bristol-Myers Squibb Company Combination therapy for the treatment of proliferative diseases
EP3613418A1 (en) 2014-01-17 2020-02-26 Ligand Pharmaceuticals, Inc. Methods and compositions for modulating hormone levels
US11324799B2 (en) 2017-05-05 2022-05-10 Zealand Pharma A/S Gap junction intercellular communication modulators and their use for the treatment of diabetic eye disease

Also Published As

Publication number Publication date
EP1268454A1 (en) 2003-01-02
JP2003529594A (en) 2003-10-07
CA2404314A1 (en) 2001-10-11
AU2001251147A1 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
WO2001074796A1 (en) SUCCINOYLAMINO HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
US7276496B2 (en) Cyclic malonamides as inhibitors of Aβ protein protection
ES2251838T3 (en) SUCCIONOILAMINO LACTAMAS AS INHIBITORS OF THE PRODUCTION OF PROTEIN TO BETA.
US7718795B2 (en) Succinoylamino benzodiazepines as inhibitors of aβ protein production
US7423033B2 (en) Hydroxyalkanoylaminolactams and related structures as inhibitors of aβ protein production
US7101870B2 (en) Succinoylamino lactams as inhibitors of A-β protein production
US20020061874A1 (en) Substituted cycloalkyls as inhibitors of a beta protein production
JP2004500419A (en) Substituted lactams as Aβ protein production inhibitors
WO2001060826A2 (en) SUCCINOYLAMINO CARBOCYCLES AND HETEROCYCLES AS INHIBITORS OF Aβ PROTEIN PRODUCTION
US6503902B2 (en) Hydroxyalkanoylaminolactams and related structures as inhibitors of a β protein production
US20030232985A1 (en) Succinoylamino heterocycles as inhibitors of a beta protein production
EP1140838A1 (en) 1, 4-piperazine derivatives having 5ht1a receptor activity
MXPA01006065A (en) 1,4-piperazine derivatives having 5ht1a receptor activity

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BR CA CH CN CZ DE DK EE ES FI GB HU IL IN JP KR LT LU LV MX NO NZ PL PT RO RU SE SG SI SK UA VN ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001251147

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2404314

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 572489

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001924498

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001924498

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001924498

Country of ref document: EP