WO2001073632A1 - Patrol service schedule preparation method, preparation system and preparation device - Google Patents

Patrol service schedule preparation method, preparation system and preparation device Download PDF

Info

Publication number
WO2001073632A1
WO2001073632A1 PCT/JP2001/002812 JP0102812W WO0173632A1 WO 2001073632 A1 WO2001073632 A1 WO 2001073632A1 JP 0102812 W JP0102812 W JP 0102812W WO 0173632 A1 WO0173632 A1 WO 0173632A1
Authority
WO
WIPO (PCT)
Prior art keywords
schedule
work
service
machines
signal
Prior art date
Application number
PCT/JP2001/002812
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Adachi
Toichi Hirata
Genroku Sugiyama
Hiroshi Watanabe
Koichi Shibata
Hideki Komatsu
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to JP2001571275A priority Critical patent/JP3735068B2/en
Publication of WO2001073632A1 publication Critical patent/WO2001073632A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to a method for creating a schedule for a patrol service by remotely grasping the state of an engine, a hydraulic pump, a hydraulic motor, and other movable mechanisms and components of a working machine such as a construction machine, a schedule creation system, and a schedule creation system. It relates to a schedule creation device.
  • construction equipment hydraulic excavators and crane
  • each part requires maintenance and inspection at predetermined intervals.
  • Simple maintenance inspections can be performed by construction machine operators, but highly skilled maintenance inspections must be performed by qualified service personnel.
  • An object of the present invention is to provide a method, a schedule creation system, and a schedule creation device for creating a schedule so as to efficiently perform a patrol service for a plurality of working machines such as construction machines.
  • the traveling service schedule creation method of the present invention includes a plurality of operations.
  • Each industrial machine 1) detects the state of each part of each work machine, 2) transmits a state signal indicating the detected state, and the work machine monitoring facility 1) is transmitted from multiple work machines.
  • the schedule is created based on the status signals sent from each of the plurality of work machines so that the number of tour services for the plurality of work machines is reduced as much as possible.
  • the history of the working state of each of the plurality of working machines is further accumulated, and the timing of the patrol service for each of the plurality of working machines is calculated based on the state signal and the history of the working state. Based on the results, it is preferable to create a schedule so that the number of patrol services for a plurality of work machines will be small at all.
  • each of the plurality of work machines further transmits a position signal indicating the position of each work machine
  • the work monitoring facility further receives a position signal transmitted from each work machine, and transmits a status signal of the plurality of work machines. It is preferable to create a schedule for a patrol service for a plurality of working machines based on the received position signal in addition to the signal.
  • the traveling service schedule creation system of the present invention is provided in each of a plurality of working machines, and is provided in each of the plurality of working machines to detect a state of each part of each working machine.
  • a transmitting device that transmits a status signal that indicates the detected status
  • a receiving device that is installed in a work equipment monitoring facility that monitors the working equipment, and that receives the status signal transmitted from the transmitting device, and a receiving device that receives the status signal
  • a schedule creation device for creating a schedule of a patrol service for the plurality of working machines based on the state signals of the plurality of working machines.
  • the schedule creation device creates the schedule based on the status signals sent from each of the plurality of work machines so that the number of tour services for the plurality of work machines is minimized.
  • the work equipment monitoring facility further includes a storage device that stores the history of the work state of each of the plurality of work equipments. The timing of the patrol service for each work machine is calculated, and based on the calculation result, the number of times the patrol service for a plurality of work machines has It is preferable to create the schedule so that
  • a traveling service schedule creation device includes a receiving device that receives a status signal transmitted from a plurality of working machines and indicates a state of each unit of each working machine, and a plurality of working machines based on the received status signal. And a schedule creation device for creating a schedule for the tour service.
  • Another traveling service schedule creation method of the present invention receives a status signal transmitted from a plurality of working machines and indicates a state of each part of each working machine, and, based on the received status signal, transmits a plurality of working machines. Create a tour schedule.
  • a position signal indicating the position of each work implement transmitted from the plurality of work implements is received, and in addition to the status signals of the plurality of work implements, a plurality of work work is performed based on the received position signals. It is preferable to create an appointment for a patrol service for the aircraft. In this case, it is preferable to group a plurality of working machines based on the position of each working machine based on the received position signal.
  • Another traveling service schedule creation device of the present invention receives a status signal transmitted from a plurality of working machines and indicating a state of each part of each working machine, and, based on the received status signal, transmits a plurality of working machines. Create a tour schedule.
  • FIG. 1 is a diagram showing an operating state of a hydraulic excavator to which the patrol service schedule creation method according to the present invention is applied.
  • Figure 2 shows an example of a hydraulic excavator
  • Figure 3 shows an example of the hydraulic circuit of a hydraulic excavator
  • Fig. 4 is a block diagram showing the configuration of the controller of the excavator.
  • Fig. 5 is a diagram illustrating details of the sensors of the hydraulic excavator.
  • Figure 6 is a diagram explaining the storage device of the excavator
  • FIG. 7 is a flowchart showing an example of a procedure for calculating a travel operation time and the like.
  • FIG. 8 is a flowchart showing an example of a routine transmission processing procedure of the excavator.
  • FIG. 9 is a flowchart showing an example of a processing procedure of the excavator for detecting an alarm or a failure.
  • FIG. 10 is a diagram showing an example of data transmitted from the excavator.
  • Figure 11 is a block diagram showing the configuration of the base station.
  • Figure 12 is a flowchart showing an example of the processing procedure at the base station.
  • Fig. 13 is a diagram illustrating data summarized for each excavator unit.
  • Fig. 14 is a diagram explaining the data compiled for each service factory.
  • Figure 15 is a block diagram for information management in service factories.
  • Figure 16 is a flow chart showing an example of the processing procedure at a service factory.
  • Figure 17 is a flowchart showing an example of the processing procedure at a service factory.
  • Figure 18 shows an example of a daily report output at a service factory.
  • Figures 19A to 19C show examples of scheduled maintenance output at a service factory.
  • Figures 20A and 20B show the running load frequency distribution and the excavation load frequency distribution.
  • Figure 21 is a diagram illustrating the schedule for providing efficient patrol services.
  • Figure 22 shows the serviceman's calendar
  • Figures 23A and 23B show engine operating time distribution
  • Fig. 24 is a flow chart showing an example of the procedure for calculating the fuel consumption for the operating time along with the driving operation time.
  • Figure 25 shows another example of connecting a radio base station, a hydraulic excavator manufacturing factory, and a service factory via a communication line.
  • Figure 26 shows the system configuration in a hydraulic excavator manufacturing plant.
  • FIG. 27 is a diagram showing an example of communication with a hydraulic excavator using a mobile phone.
  • FIG. 1 is a diagram for explaining the operation status of a hydraulic shovel to which the patrol service schedule creation method according to the present invention is applied.
  • a plurality of hydraulic shovels are operating in each of the plurality of work areas A, B, and C.
  • Excavators a1 to an operate in district A
  • excavators b1 to bn operate in district B
  • excavators c1 to cn operate in district C.
  • Districts A, B, and C are geographically separated rather than at the same work site.
  • the state of each part of each excavator is detected, and the detected signal is transmitted via the communication satellite CS.
  • Received at base station BC Received at base station BC.
  • the base station BC transmits the received signal to an appropriate service factory SF1 to SFn using the general public switched telephone network PC.
  • Each excavator is equipped with a GPS receiver and can receive signals from the GPS satellite GS to calculate the current location. This current location information is transmitted to the service factory SF via the base station BC together with signals from the various parts of the excavator, and the service factory SF can recognize the operating area of each excavator.
  • the hydraulic excavator is configured as shown in FIG.
  • the hydraulic excavator includes a traveling body 81 and a revolving body 82 rotatably connected to an upper portion of the traveling body 81.
  • the revolving unit 82 is provided with a cab 83, a working device 84, an engine 85, and a revolving motor 86.
  • the working device 84 includes a boom BM rotatably attached to the main body of the revolving superstructure 82, an arm AM rotatably connected to the boom BM, and an attachment mechanism rotatably connected to the arm AM.
  • a bucket BK For example, a bucket BK.
  • the boom BM is moved up and down by the boom cylinder C1, the arm AM is crowded and dumped by the arm cylinder C2, and the bucket BK is crowded and dumped by the bucket cylinder C3.
  • An operation is performed.
  • the traveling body 81 is provided with left and right traveling hydraulic motors 87, 88.
  • Fig. 3 shows the outline of the hydraulic circuit of the hydraulic excavator.
  • the engine 85 drives the hydraulic pump 2.
  • the pressure oil discharged from the hydraulic pump 2 is controlled by a plurality of control valves 3 s, 3 tr, 3 tl, 3 b, 3 a, and 3 bk to control the direction and amount of oil. 6.
  • the multiple control valves 3 s, 3 tr, 3 t 1, 3 b, 3 a, and 3 bk are respectively connected to the corresponding pilot valves 4 s, 4 tr, 4 t and 4 b, 4 a, and 4 bk. Switching is performed by the supplied pilot pressure.
  • the pilot valves 4 s, 4 tr, 4 t 1, 4 b, 4 a, and 4 bk are supplied with a pilot pressure of a predetermined pressure from the pilot hydraulic pump 5, and the operation levers 4 L s, 4 L tr, Outputs the pilot pressure according to the operation amount of 4 Ltl, 4 Lb, 4 La, 4 bk.
  • Multiple control valves 3 s, 3 t r, 3 t 3 b, 3 a and 3 bk are combined into one valve block.
  • a plurality of pilot valves 4s, 4tr, 4t1, 4b, 4a and 4bk are also integrated in one valve block.
  • FIG. 4 is a block diagram of a controller for detecting and transmitting the state of each part of the excavator.
  • the hydraulic excavator is equipped with a sensor group 10 having a plurality of sensors for detecting the states of the above-described components, and a state detection signal output from the sensor group 10 is transmitted to the controller 20 at a predetermined timing. Is read.
  • the controller 20 has a timer function 20a for accumulating the running operation time, the turning operation time, and the front (digging) operation time.
  • the controller 20 calculates the traveling operation time, the turning operation time, and the front operation time based on the read state detection signal. These calculated operation times are stored in the storage device 21.
  • the hydraulic excavator also has a key switch 22 for starting the engine 85 and an arbiter 23 for measuring the operation time of the engine 85.
  • the hydraulic excavator is equipped with a GPS receiver 24.
  • the GPS receiver 24 receives the GPS signal from the GPS satellite GS, calculates the position of the excavator based on the GPS signal, and outputs the calculated position to the controller 20.
  • the driver's seat of the excavator is provided with a monitor 25 for displaying various information.
  • the controller 20 has a clock function 20b, and can recognize the ON time, the OFF time, the engine start time, and the engine stop time of the key switch 22. These times are also stored in the storage device 21.
  • the measured value of the parameter 23 is also read by the controller 20 at a predetermined timing and stored in the storage device 21.
  • the running time, turning operation, front operation time, key switch-on time and the like stored in the storage device 21 are transmitted via the transmitter 30 at a predetermined timing.
  • the radio wave transmitted from the transmitter 30 is received by the base station BC via the satellite CS.
  • the receiver 20 is also connected to the controller 20.
  • the receiver 35 receives a signal sent from the service factory SF via the communication satellite CS and the base station BC, such as a troubleshooting method, and sends the signal to the controller 20.
  • the controller 20, the transmitter 30 and the receiver 35 are always in a state where they can be driven by the power from the vehicle-mounted battery even when the main switch of the excavator is turned off.
  • the sensor group 10 includes a pressure sensor 11 for detecting a pressure state of the main hydraulic circuit system.
  • a pressure sensor 11 p for measuring the discharge pressure of the hydraulic pump 2
  • pressure sensors 11 tr and 11 t 1 for measuring the driving pressure of the traveling hydraulic motors 87, 88, and a swing hydraulic motor 86.
  • the sensor group 10 also includes a pressure sensor 13 for detecting the pressure state of the pilot hydraulic circuit system. That is, the pressure sensors 13 tr and 13 t 1 that measure the pilot pressures P tr and P t 1 output from the traveling hydraulic pilot valves 4 tr and 4 t 1 and the output from the swing hydraulic pilot valve 4 s Pressure sensor 13 s for measuring the pilot pressure P s to be applied, pressure sensor 13 b for measuring the pilot pressure P b output from the boom hydraulic pilot valve 4 b, and arm hydraulic pilot valve 4 a pressure sensor 13a for measuring the pilot pressure Pa output from a and a pressure sensor 13bk for measuring the pilot pressure Pbk output from the bucket hydraulic pilot valve 4bk. Have.
  • the traveling operation time is the total time during which the pressure Ptr or Pt1 detected by the traveling pilot pressure sensors 13tr and 13t1 is equal to or greater than a predetermined value.
  • the turning operation time is a time obtained by integrating the time during which the pressure Ps detected by the turning pilot pressure sensor 13 s is equal to or more than a predetermined value.
  • the front operation time is determined by the pressures Pb, Pa, and Pbk detected by any of the boom, arm, and bucket pressure sensors 13b, 13a, and 13bk. This is the time obtained by integrating the above times.
  • the sensor group 10 also includes a pressure sensor 14 f for detecting clogging of a filter provided in the main hydraulic line, and a temperature sensor 14 for detecting the temperature of hydraulic oil for driving a hydraulic motor or a hydraulic cylinder. It also has a t. Further, the sensor group 10 has various sensors 15 for detecting the state of the engine gun.
  • a cooling water temperature sensor 15 w that detects the cooling water temperature of the engine 85
  • an engine oil pressure sensor 150 D that detects the pressure of the engine oil
  • an engine oil temperature sensor 1 that detects the temperature of the engine oil 50 t and the engine level to detect the engine oil level Filter level sensor 15 o1
  • a clogging sensor 15 af that detects clogging of the air filter
  • a fuel level sensor 15 f that measures the remaining fuel level
  • a battery charging voltage It has a battery voltage sensor 15 V for detecting and a speed sensor 15 r for detecting the engine speed.
  • the signal indicating the state of each part of the hydraulic excavator is transmitted to the service factory SF via the communication satellite CS and the base station BC, but the signal indicating the normal state of each part is daily report data. Then, the whole day's worth is sent at midnight, when communication charges are low. Signals indicating alarms and failures are sent each time they are issued. In addition, even when the remaining fuel amount becomes equal to or less than the predetermined value, information indicating this is transmitted immediately regardless of the time zone.
  • the above-described daily report data includes the following information, and is stored in the storage device 21 in a predetermined format.
  • the daily report data also includes running load frequency distribution (see Fig. 2 OA), excavation load frequency (see Fig. 20B), or fuel consumption (per unit time, operation, no load, etc.).
  • the following information is available as alarm data.
  • FIG. 6 is a diagram showing an example of the storage device 21.
  • the storage device 21 has a first area R 1 for storing the measured values of the parameters 23 of the engine 85, a second area R 2 for storing the traveling operation time (running operation time), and a turning operation time ( A third area R3 for storing the turning operation time), a fourth area R4 for storing the front operation time (front operating time), and other state signals, alarm signals or failure signals.
  • Region R5 A plurality of regions Rn are provided.
  • FIG. 7 is a flowchart showing a processing procedure for integrating running, turning, and front operation times performed by the controller 20 of each excavator. For example, one of travel pilot pressure Ptr or Pt1, swivel pilot pressure Ps, boom pilot pressure Pb, arm pilot pressure Pa, and socket pilot pressure Pbk At this point, the controller 20 starts the program shown in FIG. Then, in step S1, the corresponding operation time measurement timer of the traveling, turning, and front timer functions 20a is started. Also starts the load frequency distribution measurement timer.
  • a timer for the traveling operation time is used. If the swing pilot pressure Ps is equal to or greater than a predetermined value, a timer for the turning operation time is used. If the pressure Pb, the arm pilot pressure Pa, or the bucket pilot pressure Fbk is higher than a predetermined value, the front timer is started. If it is determined in step S2 that the pilot pressure has become less than the predetermined value, the process proceeds to step S3, and the corresponding timer is stopped.
  • Travel operation time is T t
  • turning operation time is T s
  • front operation time is ⁇ ⁇
  • the following equation is calculated in step S 4.
  • T s T s + T M s
  • T f T f + T M f
  • the time measured by the timer is added to the current value of each operation time storage area, and the operation time area is updated with the addition result.
  • the operation time was measured for traveling, turning, and front.However, if the hydraulic shovel is equipped with other attachments, such as braking force, the operation time of that attachment is detected. Similarly, the attachment operation time may be measured.
  • step S2 is denied and the routine proceeds to step S2A.
  • the load frequency distribution measuring timer measures ⁇ tf in step S2A
  • the process proceeds to step S2B.
  • step S2B the running pressure, swing pressure, and pump pressure at that time are read, and in step S2C, 1 is added to the histogram of the corresponding pressure value. For example, if the traveling pressure is 10 Mpa, 1 is added to the frequency of 10 Mpa.
  • step S2D the load frequency timer is reset and restarted, and the process returns to step S2.
  • the running load frequency distribution is shown in Figure 2OA and the excavation load frequency distribution is shown in Figure 20B.
  • FIG. 8 is a flowchart showing a processing procedure for transmitting daily report data at a certain time.
  • the controller 20 starts the program shown in FIG.
  • the daily report data to be transmitted is read from the storage device 21.
  • the read daily report data is processed into predetermined transmission data in step S12, and is sent to the transmitter 30 in step S13.
  • the transmitter 30 transmits daily report data indicating the operating state of the excavator for one day to the service factory SF via the communication satellite CS and the base station BC (step S14).
  • FIG. 9 is a flowchart showing a processing procedure for transmitting an alarm signal and a failure signal.
  • the controller 20 starts the program of FIG.
  • step S21 the detected alarm signal or fault signal Is stored in the storage device 21. If it is determined in step S22 that these alarm signals or fault signals need to be transmitted to the service factory, the process proceeds to step S23.
  • step S23 the details of the failure are displayed on the monitor 25 of the driver's seat, and the fact that the failure has been transmitted to the service factory is displayed.
  • an alarm signal or a failure signal is read from the storage device 21, and in step S25 they are processed into transmission data. The processed transmission data is transmitted to the transmitter 30 in step S26, and an alarm signal or a failure signal is transmitted from the transmitter 30 in step S27.
  • step S28 when the controller 20 determines that a signal indicating a countermeasure for the failure has been received from the service factory, the controller 20 displays the countermeasure for the failure on the driver's monitor 25 in step S29. I do. If the instruction from the service factory has not been received, in step S30, it is determined whether or not a predetermined time has elapsed after transmitting the alarm signal or the failure signal. If the predetermined time has elapsed, a message "Please contact the service factory" is displayed in step S31. If step S30 is negative, step S28 is repeated. In other words, if the service factory does not send a remedy instruction even after the predetermined time has elapsed, it is highly likely that communication has failed for some reason. Notify you what you will do.
  • step S32 the content of the alarm corresponding to the alarm signal is displayed on the driver's seat monitor 25.
  • step S33 the countermeasure is calculated.
  • a method of coping with an alarm signal is stored in a database in the storage device 21 in advance, and a database is accessed by the alarm signal to calculate a coping method.
  • step S34 a countermeasure is displayed on the monitor 25 of the driver's seat.
  • FIG. 10 shows an example of a data string created for transmitting daily report data, alarm data, or failure data.
  • the header of the data string is provided with an identifier HD that identifies the excavator.
  • FIG. 11 is a block diagram showing the configuration of the base station BC.
  • the base station BC transmits the received various signals to service factories in various places.
  • the base station BC has a receiver 31 for receiving the signal transmitted from the communication satellite CS, a storage device 32 for storing the signal received by the receiver 31, and data to be transmitted to the service factory. And a control device 34 for controlling these various devices.
  • FIG. 12 is a flowchart showing a processing procedure for receiving a status signal and the like at the base station BC and transmitting it to the service factory.
  • the control device 34 of the base station BC starts the program shown in FIG.
  • the received signal is temporarily stored in the storage device 32.
  • the excavator is identified from the identifier HD recorded in the header of the received status signal, and the received signals are classified for each excavator as shown in FIG.
  • the service factory in charge is identified based on the identified excavator (based on the identifier), and as shown in FIG. 14, the received signal of the excavator is determined for each service factory. Put together.
  • the telephone numbers of the identified service factories are read from the database created in advance in the storage device 32, and in step S305, the signals compiled in step S303 are read. Send to each service factory via modem 33.
  • the reception signal may be sent to the service factory closest to the current location of the excavator. Further, transmission of various information from the base station BC to each service factory SF may be performed by a dedicated line, a LAN line, or the like. For example, if the base station B C and the service factory SF are facilities of a hydraulic excavator maker, various kinds of information may be exchanged via a so-called in-house LAN (intranet).
  • in-house LAN intranet
  • FIG. 15 is a block diagram for information management in service factory SF.
  • the service factory SF includes a modem 41 for receiving signals transmitted from the base station BC via the general public network PC, a storage device 42 for storing the signals received by the modem 41, and various other components. And a display device 44 and a printer 45 connected to the processing device 43, and a keyboard 46.
  • the processor 43 creates a daily report based on the status signal (daily report data) stored in the storage device 42, Performs calculation processing to display the load frequency distribution calculated by the controller 20 of the excavator in a graph format, calculates the maintenance time for each excavator-determines whether there is a failure or abnormality, and provides patrol services. Create an event for.
  • a database 47 is also connected to the processor 43.
  • This database 47 stores the maintenance history of each excavator, the history of past failures and abnormalities, and the history of services.
  • the data stored in the database 47 includes data collected from the storage device 21 of the hydraulic shovel by the service technician who has visited the patrol service using the portable information terminal device 51.
  • the portable information terminal device 51 may be provided with a communication function.
  • the service person may input various information by key input of the portable information terminal device 51 and input various information to the database 47 by communication.
  • FIG. 16 is a flowchart showing various processing procedures executed by the processing device 43 based on the status signal, the alarm signal, and the failure signal received at the service factory.
  • the processing unit 43 of the service factory Upon receiving the status signal-alarm signal or failure signal, the processing unit 43 of the service factory starts the program shown in FIG.
  • step S41 the received state signal, alarm signal or failure signal is stored in the storage device 42.
  • step S42 the excavator is identified from the identifier HD of the received signal. If the received signal is for multiple excavators, identify each excavator and arrange the received signals in an appropriate order
  • step S43 it is determined whether the signal received from the first hydraulic excavator is daily report data, an alarm signal, or a failure signal.
  • the database 47 is accessed using the identified excavator identifier and the past history of the excavator is read.
  • step S45 the daily report data is read from the storage device 42, and in step S46, a daily report as shown in FIG. 18 is created. A specific example of the daily report will be described later.
  • step S47 the next maintenance time is calculated based on the daily report data and the past maintenance information read from the database 47.
  • step S48 if it is determined that the processing has not been completed for all the excavator reception signals, the process returns to step S43, and the same applies to the next excavator reception signal. Is performed. If it is determined in step S48 that the processing for all the received signals has been completed, the flow advances to step S49 to create a schedule for the traveling service. The schedule creation method will be described later.
  • step S43 If it is determined in step S43 that the received signal is an alarm signal or a failure signal, the flow advances to step S50 to read the alarm signal or the failure signal from the storage device 42.
  • step S51 the processing method for the read alarm signal or failure signal is read from the database 47.
  • step S52 the read countermeasure is transmitted to the corresponding excavator via the base station BC or the mobile communication system.
  • the telephone number of the excavator is stored in the storage device 42 of the service factory in advance.
  • the header of the data to be sent to the excavator is provided with the identifier of the excavator, followed by data for indicating the remedy.
  • step S53 processing for dispatching the serviceman to the work area is performed.
  • step S54 if it is determined that the processing has not been completed for the received signals of all the excavators, the process returns to step S43 to repeat the same processing.
  • the processing for the received signals of all the excavators is completed, the processing is completed.
  • FIG. 17 is a flowchart showing a processing procedure for dispatching a serviceman executed in step S53 of FIG.
  • a GPS receiver is carried by all service personnel, and a current location signal transmitted to the service factory at predetermined time intervals is stored in the storage device 42 of the service factory. Then, in step S61 of FIG. 17, the current positions of all servicemen are read from the storage device 42, and in step S62, the serviceman closest to the work area of the corresponding excavator is identified. Search for.
  • step S63 the process proceeds to step S63, and the corresponding hydraulic excavator, the work area, the details of the alarm or the failure, the method of handling the failure, the parts to be brought, and the parts to be brought into the base station are transmitted to the portable information terminal device 51 of the serviceman. Transmit via BC or mobile communication system.
  • the work schedule of the service technician may be stored in a database (see Figure 22), and the service technician who has free time may be searched. At that time, the order of parts may be automatically notified to the parts management department.
  • Figure 18 shows an example of daily report data created based on the status signal (daily report data) received by the service factory. The daily report is prepared daily for each excavator. Fig. 18 shows the daily report of Unit A's Unit 253, dated March 16, 2000, for example.
  • the first page shows the engine running time, the running operation time, the turning operation time, the accumulated time of the front operation time, and the time related to the work performed on March 16 on the second page. Maintenance information is displayed. For example, 100 hours until engine oil filter replacement, 60 hours before engine oil replacement, etc., the time for each maintenance target part and target part is displayed.
  • This daily report is printed out at the service factory and distributed to each service person. It may be distributed to the serviceman by e-mail.
  • the daily report shown in FIG. 18 may be transmitted to the hydraulic excavator No. 25 and No. 3 and displayed on the monitor 25 of the driver's seat, or may be transmitted to the user A's management department.
  • FIGS. 19A to 19C are diagrams illustrating an example of the maintenance schedule.
  • Fig. 19A shows the maintenance schedule for the traveling rollers
  • Fig. 19B shows the maintenance schedule for the bush
  • Fig. 19C shows the maintenance schedule for the pins.
  • the cumulative operating time of each hydraulic excavator's engine operating time, running operation time, turning operation time, and front operating time is received as a status signal (daily report data) at the service factory. Based on this, it is determined whether each part has reached its replacement time.
  • the replacement time will be within 150 hours until the replacement time. It is determined that it is time to go and schedule the patrol service for the excavator a1 within 150 hours.
  • the excavator a1 is displayed in the maintenance schedule for this month. The same applies to other units.
  • the replacement time of the bush provided on the boom rotation axis is 30000 hours
  • the hydraulic excavator a2 in the same area A has been operating for more than 295 hours
  • the replacement time is required. It is determined that it is time for maintenance within 50 hours.
  • the hydraulic shovel a2 patrol service will be scheduled within 50 hours. This month in Figure 19B
  • the excavator a2 is displayed in the maintenance schedule of. The same applies to other units.
  • the recommended replacement time of the pins provided on the pivot axis of the bucket is 400 hours
  • the front operating time of the excavator a6 in the same district A to date exceeds 3920 hours, It is within 80 hours until the replacement time, and it is determined that it is the maintenance time, and the patrol service of the excavator a3 will be scheduled within 80 hours.
  • the excavator a6 is displayed in the maintenance schedule for this month. The same applies to other units.
  • a maintenance schedule chart as shown in Fig. 19 is created. Areas A to C are under the jurisdiction of the same service factory. Based on the maintenance schedule shown in Fig. 19, the parts required for maintenance can be known in advance. Therefore, parts may be arranged based on this schedule.
  • the parts arrangement is completed, for example, by automatically sending a parts purchase order to a parts center attached to a service factory via an intranet in the company.
  • the maintenance cost may be calculated according to the schedule and the parts arrangement, and may be sent to the user.
  • the maintenance time was calculated by comparing the usage time of the target component up to the present with the standard maintenance time set in advance.
  • the working load of hydraulic excavators varies greatly depending on the work site and the type of work. Therefore, it is preferable to make the maintenance time variable according to the load condition.
  • the running load frequency distribution and the front (digging) load frequency distribution are calculated based on the daily report data sent from the excavator on a daily basis as shown in Figs. 20A and 20B. Display a bar graph.
  • a standard running load frequency distribution and excavation load frequency distribution are set in advance. Then, it is determined whether the calculated load frequency distribution is operated on the light load side or the heavy load side as compared with the standard load frequency distribution. During maintenance Calculate the interval.
  • is a value less than 1, and / 3 is a value exceeding 1, and is determined in advance by experiments or the like.
  • the maintenance time is calculated based on whether the traveling load frequency distribution is a heavy load or a light load.
  • the maintenance time is calculated based on whether the digging load frequency distribution is heavy or light. That is, the maintenance time is made variable in consideration of the load frequency distribution related to the target component.
  • the heavy load maintenance time, the standard load maintenance time, and the light load maintenance time are provided in advance as a table, and are set according to the load. May be used to select the table to be used.
  • the history of the previous maintenance situation may be read from the database 47 of the service factory SF, and the maintenance time may be made variable according to the history. That is, if the previous maintenance time is shorter or longer than the standard maintenance time, the current maintenance time is changed to the previous maintenance time, and the maintenance time is calculated. .
  • Figure 21 shows the maintenance schedule of the excavators a1 to a5 operating in work area ⁇ .
  • This maintenance schedule is calculated by the processing device 43 of the service factory.
  • the excavator a1 is scheduled for maintenance between March 6 and March 17, and the excavator a2 is scheduled for maintenance between March 9 and March 17
  • the excavator a3 is scheduled for maintenance between March 16 and March 24, and the excavator a4 is scheduled for maintenance between March 15 and March 23.
  • the maintenance schedule is set for the excavator a5 between March 17 and March 22.
  • the maintenance schedule is set based on, for example, the remaining time until maintenance and the average daily operating time of the excavator. Replacement time is expected and calculated.
  • the remedy is read from the service factory database 47 based on the alarm signal and the failure signal.
  • an AI Artificial Intelligence
  • a countermeasure may be determined by inferring the content of the countermeasure based on the alarm signal or the failure signal.
  • the status signal (daily report data) is transmitted on a regular basis at night.
  • a switch for transmitting the daily report data may be provided in the driver's seat, and the daily report data may be transmitted by the switch for transmitting the daily report.
  • the daily report data may be transmitted when the engine is stopped or started.
  • FIG. 18 the daily report shown in Fig. 18 was created based on the daily report data.
  • Figures 23A and 23B a daily report containing the engine operating time distribution may be created.
  • Figure 23A shows the total operating time, excavating time, turning time, running time, breaker time, drive time of attachments other than breaker, and cumulative time of no load, respectively. These accumulated times are created at the service factory based on the daily operating hours sent from the excavator controller 20, and are displayed as bar graphs.
  • Figure 23B shows a bar graph of engine operation time and idle time for each month.
  • Monthly engine operating hours and idle hours are also created at service plants based on the daily operating hours sent from the excavator controller 20, and are displayed as bar graphs.
  • the hydraulic excavator is equipped with the fuel remaining amount sensor 15f. Therefore, the controller 20 can also calculate the fuel consumption per unit time and the fuel consumption rate by using the signal from the fuel remaining amount sensor 15f. By transmitting these fuel consumption and fuel consumption rate as daily report data from a hydraulic excavator, The fuel consumption and fuel consumption rate can be displayed visually at the service factory.
  • the fuel consumption per hour is calculated by dividing the daily fuel consumption by the daily engine operating time.
  • the operating consumption is the amount of fuel consumed while working on the implementation, and the standby consumption is the amount of fuel consumed while the engine is running with no load.
  • the 6 month total consumption is literally the integrated value of the fuel consumption for 6 months. If the standby consumption is higher than the predetermined reference amount, a message such as "Please reduce the standby consumption and try to save energy" is output.
  • the fuel consumption is calculated in the process of FIG. 7 for calculating the traveling operation time, the turning operation time, and the front operation time.
  • the pilot pressure for traveling, turning, or excavation becomes equal to or higher than a predetermined value, that is, when those operations are started
  • the operating fuel consumption FI is read in step S5
  • the remaining fuel amount is read in step S6.
  • the pilot pressure is less than the predetermined value, that is, when the above operations are completed, the process proceeds to step S7, where the measured value of the fuel remaining amount sensor 15f is read and substituted into the variable FF.
  • FS—FF + FI is calculated to update the operating fuel consumption FI.
  • information on fuel can be processed from various viewpoints and used as a daily report.
  • the signals from the hydraulic excavators a1 to cn are transmitted to the base station BC using the communication satellite CS, and the signals are transmitted from the base station BC to the service factory SF via the general public network PC.
  • the signal from the hydraulic shovel may be transmitted using a mobile communication system such as a PHS phone or a mobile phone without using a communication satellite.
  • the signal from the excavator was processed and output in various forms at the service factory.
  • the signal was transmitted to the facility of the excavator administrator (manufacturer's service shop, user's management department), and the same The information may be processed and output. In this case, if the excavator is equipped with an ID card reader, Can also be used to manage working hours.
  • the operator causes his ID card to be read by the ID card reader.
  • This information is transmitted to the excavator owner's facility, for example, the human resources department, together with the engine start and stop times in the daily report data.
  • the HR department can manage the working hours of operators based on the transmitted ID information and the engine start and stop times and use them for payroll calculations.
  • the work amount of the hydraulic excavator for example, the amount of excavated sediment can be calculated.
  • the excavator manager may be a rental agent.
  • a search may be made of a road map from to a hydraulic excavator operation site and the road map may be transmitted together.
  • a navigation device is installed in the serviceman's vehicle, and at a service factory, the optimum route from the point where the serviceman is located to the operation site of the excavator is searched. Based on the search result, the navigation device is displayed on the monitor of the navigation device. The route may be guided.
  • the route search may be performed by a navigation device.
  • the alarm signal and the failure signal detected by the hydraulic excavator sensor group 10 are received by the service factory, the details of the failure are determined by the service factory, and the countermeasures are calculated.
  • the controller 20 of the hydraulic excavator determines the content of the failure based on the replacement signal and the failure signal, and transmits a code representing the content of the failure, for example, a failure flag / abnormal code to the service factory, and provides a service.
  • the factory may search the database based on the error flag or error code for a solution.
  • the state signal of the excavator is transmitted to the service factory SF via the communication satellite SC and the base station BC, but the signal from the communication satellite CS may be directly received at the service factory. .
  • the wireless base station BCA is connected to the excavator manufacturing plant OW via a general public network PC, and the excavator manufacturing plant OW and a plurality of service plants SF1 to SFn are connected. Connection (intranet) may be made using a dedicated line.
  • the base station BCA shown in Fig. 25 is a satellite communication service using satellites, for example. It is a base station of a provider that provides one service. Therefore, as shown in FIG. 26, a system similar to the system in the radio base station BC shown in FIG.
  • the manufacturing plant OW receives the signal transmitted from the communication satellite CS via the wireless base station BCA and the general public line network PC via the modem 31A and the modem 31A.
  • Storage device 32A for storing the transmitted signals, a modem 33A for transmitting data to be transmitted to the service factory via a dedicated line, and a control device 34A for controlling these various devices. ing. Then, the same processing as in FIG. 12 is executed by the control device 34A.
  • the function of the hydraulic excavator manufacturing plant O W may be provided in the headquarters of the hydraulic excavator manufacturing company or in the rental company described above.
  • a mobile communication system such as a mobile phone or a PHS phone may be used.
  • Fig. 27 is a diagram showing this situation.
  • Base station B CB is the base station of the mobile phone operator.
  • a mobile phone 100 is mounted on each excavator. In this case, the position of each excavator may be specified using the position information provided by the mobile phone system.
  • hydraulic shovel has been described as an example, but the present invention can be widely applied to construction machines other than the hydraulic shovel and working machines including other working vehicles.
  • the service factory SF recognizes in which work area A, B, or C each excavator is operating based on the current location information transmitted from each excavator.
  • the current location information is calculated by the hydraulic shovel receiving the GPS signal by the GPS receiver 24.
  • the work areas A, B, and C may not be set in advance, and those having a certain distance or positional relationship may be grouped based on the current location information transmitted from each excavator.
  • one hydraulic shovel is specified, and hydraulic shovels of a predetermined size are grouped in order from the one closest to the specified hydraulic shovel. This process is repeated to group the entire plurality of excavators.
  • Various other grouping methods are conceivable, and any method can be employed in the present invention.
  • the schedule of the efficient patrol service should be created based on the grouped groups.
  • an optimal schedule for the patrol service may be created.
  • the processing device 43 uses a mobile phone system (mobile communication system) to transmit data such that a failure check list or the like is displayed on the display unit of the mobile phone.
  • the failure check list is a list of items that should be checked by a serviceman when a work machine fails.
  • the service technician checks while checking the checklist displayed on the mobile phone, operates the keys on the mobile phone, and performs input corresponding to the checklist. Also input the status of each part, failure information, and replacement part information. The input information is transmitted to the processing device 43 via the mobile phone system.
  • the processing device 43 receives the information transmitted via the mobile phone system and stores the information in the storage device 42 and the database 47 as information relating to the failure.
  • the processing device 43 may be connected to the mobile phone system in the same configuration as in FIG. 27 described above. Using a mobile phone in this way makes it possible to easily create a database of advanced failure information that cannot be obtained with sensors alone, using simple means.
  • the schedule was created so that the number of patrol services for multiple work machines would be as small as possible. Can be minimized.
  • the history of the working state of each of the plurality of working machines is accumulated, and the timing of the patrol service for each of the plurality of working machines is calculated based on the state signal and the history of the working state, and based on the calculation result.
  • the schedule is created so that the number of patrol services for a plurality of work machines will be small, the number of service personnel can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Operation Control Of Excavators (AREA)
  • Alarm Systems (AREA)

Abstract

A patrol service schedule preparation method comprising: the steps of, in respective work machines, (1) detecting the conditions of the respective units of the respective work machines, and (2) transmitting condition signals showing the detected conditions; and the steps of, in a work machine monitoring facilities, (1) receiving respective condition signals transmitted from work machines, and (2) preparing patrol service schedules for work machines based on received condition signals for work machines.

Description

明細書 巡回サービス予定作成方法、 作成システムおよび作成装置 本出願は日本国特許出願 2 0 0 0年第 9 9 1 3 8号 ( 2 0 0 0年 3月 3 1 日出 願) を基礎として、 その内容は引用文としてここに組み込まれる。 技術分野  Description patrol service schedule creation method, creation system, and creation device This application is based on Japanese Patent Application No. 1991, No. 913 (filed on March 31, 2000). Its contents are incorporated herein by reference. Technical field
本発明は、 建設機械などの作業機のエンジン、 油圧ポンプ、 油圧モータ、 その 他の可動機構や部品などの状態を遠隔地で把握して巡回サービスの予定を作成す る方法、 予定作成システムおよび予定作成装置に関する。 背景技術  The present invention relates to a method for creating a schedule for a patrol service by remotely grasping the state of an engine, a hydraulic pump, a hydraulic motor, and other movable mechanisms and components of a working machine such as a construction machine, a schedule creation system, and a schedule creation system. It relates to a schedule creation device. Background art
たとえば油圧ショベルやク レーン (以後、 建設機械とする) は複数の部品から 構成されており、 各々の部品は所定時間ごとに保守点検が必要である。 簡単な保 守点検は建設機械のオペレータが行えるが、 高度な技能を有する保守点検はメ一 力のサービスマンが行う必要がある。  For example, hydraulic excavators and crane (hereinafter referred to as construction equipment) are composed of multiple parts, and each part requires maintenance and inspection at predetermined intervals. Simple maintenance inspections can be performed by construction machine operators, but highly skilled maintenance inspections must be performed by qualified service personnel.
建設機械の保守点検作業は、 建設機械が稼働している地域のサービス工場が行 つている。 そのため、 各サービス工場では、 建設機械ごとに台帳を作成し、 この 台帳に基づいて保守点検のための巡回サービスの予定を作成している。 しかしな がら、 複数の建設機械の台帳に記載されている記録を確認し、 複数の建設機械に 対する巡回サ一ビスの日時を決定しているため、 効率よ く最適な時期にサービス を行うことが難しかった。 発明の開示  Maintenance and inspection work for construction machinery is performed by service factories in the area where the construction machinery is operating. Therefore, at each service factory, a ledger is created for each construction machine, and a patrol service schedule for maintenance and inspection is created based on the ledger. However, since records in the ledgers of multiple construction machines are checked and the date and time of patrol services for multiple construction machines are determined, services must be provided efficiently and at the best time. Was difficult. Disclosure of the invention
本発明の目的は、 建設機械などの複数の作業機に対する巡回サービスを効率よ く行う よう にその予定を作成する方法、 予定作成システムおよび予定作成装置を 提供することにある。  An object of the present invention is to provide a method, a schedule creation system, and a schedule creation device for creating a schedule so as to efficiently perform a patrol service for a plurality of working machines such as construction machines.
上記目的を達成するために、 本発明の巡回サービス予定作成方法は、 複数の作 業機のそれぞれでは、 ①各作業機の各部の状態をそれぞれ検出し、 ②検出された 状態を表す状態信号をそれぞれ送信し、 作業機監視施設では、 ①複数の作業機か ら送信されてく る状態信号をそれぞれ受信し、 ②受信した複数の作業機の状態信 号に基づいて、 複数の作業機に対する巡回サービスの予定を作成する。 In order to achieve the above object, the traveling service schedule creation method of the present invention includes a plurality of operations. Each industrial machine 1) detects the state of each part of each work machine, 2) transmits a state signal indicating the detected state, and the work machine monitoring facility 1) is transmitted from multiple work machines. Receiving status signals, and (2) based on the received status signals of a plurality of implements, create a schedule for patrol services for a plurality of implements.
この巡回サービス予定作成方法はさらに、 複数の作業機からそれぞれ送られて きた状態信号に基づいて、 複数の作業機に対する巡回サービスがもつとも少ない 回数となるよう にその予定を作成するのが好ま しい。 この場合、 さらに、 複数の 作業機のそれぞれの作業状態の履歴を蓄積し、 状態信号と作業状態の履歴とに基 づいて、 複数の作業機の各々に対する巡回サービスの時期を演算し、 この演算結 果に基づいて、 複数の作業機に対する巡回サービスがもつとも少ない回数となる よう にその予定を作成するのが好ましい。  In this patrol service schedule creation method, it is preferable that the schedule is created based on the status signals sent from each of the plurality of work machines so that the number of tour services for the plurality of work machines is reduced as much as possible. In this case, the history of the working state of each of the plurality of working machines is further accumulated, and the timing of the patrol service for each of the plurality of working machines is calculated based on the state signal and the history of the working state. Based on the results, it is preferable to create a schedule so that the number of patrol services for a plurality of work machines will be small at all.
また、 複数の作業機のそれぞれではさらに、 各作業機の位置を表す位置信号を 送信し、 作業監視施設ではさらに、 各作業機から送信されてく る位置信号を受信 し、 複数の作業機の状態信号に加え、 受信した位置信号に基づき、 複数の作業機 の巡回サービスの予定を作成するのが好ましい。  In addition, each of the plurality of work machines further transmits a position signal indicating the position of each work machine, and the work monitoring facility further receives a position signal transmitted from each work machine, and transmits a status signal of the plurality of work machines. It is preferable to create a schedule for a patrol service for a plurality of working machines based on the received position signal in addition to the signal.
本発明の巡回サービス予定作成システムは、 複数の作業機のそれぞれに設けら れ、 各作業機の各部の状態を検出する状態検出装置と、 複数の作業機のそれぞれ に設けられ、 状態検出装置でそれぞれ検出された状態を表す状態信号をそれぞれ 送信する送信装置と、 作業機を監視する作業機監視施設に設けられ、 送信装置か ら送信された状態信号を受信する受信装置と、 受信装置で受信した複数の作業機 の状態信号に基づいて、 複数の作業機に対する巡回サービスの予定を作成する予 定作成装置とを備える。  The traveling service schedule creation system of the present invention is provided in each of a plurality of working machines, and is provided in each of the plurality of working machines to detect a state of each part of each working machine. A transmitting device that transmits a status signal that indicates the detected status, a receiving device that is installed in a work equipment monitoring facility that monitors the working equipment, and that receives the status signal transmitted from the transmitting device, and a receiving device that receives the status signal And a schedule creation device for creating a schedule of a patrol service for the plurality of working machines based on the state signals of the plurality of working machines.
この巡回サービス予定作成システムにおいて、 予定作成装置は、 複数の作業機 からそれぞれ送られてきた状態信号に基づいて、 複数の作業機に対する巡回サー ビスがもっとも少ない回数となるようにその予定を作成するのが好ましい。 この 場合、 作業機監視施設に設けられ、 複数の作業機のそれぞれの作業状態の履歴を 蓄積する蓄積装置をさらに備え、 予定作成装置は、 状態信号と作業状態の履歴と に基づいて、 複数の作業機の各々に対する巡回サービスの時期を演算し、 その演 算結果に基づいて、 複数の作業機に対する巡回サービスがもつとも少ない回数と なるようにその予定を作成するのが好ましい。 In this patrol service schedule creation system, the schedule creation device creates the schedule based on the status signals sent from each of the plurality of work machines so that the number of tour services for the plurality of work machines is minimized. Is preferred. In this case, the work equipment monitoring facility further includes a storage device that stores the history of the work state of each of the plurality of work equipments. The timing of the patrol service for each work machine is calculated, and based on the calculation result, the number of times the patrol service for a plurality of work machines has It is preferable to create the schedule so that
本発明の巡回サービス予定作成装置は、 複数の作業機から送信される、 各作業 機の各部の状態を表す状態信号を受信する受信装置と、 受信した状態信号に基づ いて、 複数の作業機の巡回サービスの予定を作成する予定作成装置とを備える。 本発明の他の巡回サービス予定作成方法は、 複数の作業機から送信される、 各 作業機の各部の状態を表す状態信号を受信し、 受信した状態信号に基づいて、 複 数の作業機の巡回サービスの予定を作成する。  A traveling service schedule creation device according to the present invention includes a receiving device that receives a status signal transmitted from a plurality of working machines and indicates a state of each unit of each working machine, and a plurality of working machines based on the received status signal. And a schedule creation device for creating a schedule for the tour service. Another traveling service schedule creation method of the present invention receives a status signal transmitted from a plurality of working machines and indicates a state of each part of each working machine, and, based on the received status signal, transmits a plurality of working machines. Create a tour schedule.
この巡回サービス予定作成方法において、 複数の作業機から送信される各作業 機の位置を表す位置信号を受信し、 複数の作業機の状態信号に加え、 受信した位 置信号に基づき、 複数の作業機の巡回サ—ビスの予定を作成するのが好ま しい。 この場合、 受信した位置信号に基づく各作業機の位置に基づき複数の作業機をグ ループ化するのが好ましい。  In this patrol service schedule creation method, a position signal indicating the position of each work implement transmitted from the plurality of work implements is received, and in addition to the status signals of the plurality of work implements, a plurality of work work is performed based on the received position signals. It is preferable to create an appointment for a patrol service for the aircraft. In this case, it is preferable to group a plurality of working machines based on the position of each working machine based on the received position signal.
本発明の他の巡回サービス予定作成装置は、 複数の作業機から送信される、 各 作業機の各部の状態を表す状態信号を受信し、 受信した状態信号に基づいて、 複 数の作業機の巡回サービスの予定を作成する。 図面の簡単な説明  Another traveling service schedule creation device of the present invention receives a status signal transmitted from a plurality of working machines and indicating a state of each part of each working machine, and, based on the received status signal, transmits a plurality of working machines. Create a tour schedule. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明による巡回サービス予定作成方法が適用される油圧ショベルの 稼働状態を示す図  FIG. 1 is a diagram showing an operating state of a hydraulic excavator to which the patrol service schedule creation method according to the present invention is applied.
図 2は、 油圧ショベルの一例を示す図  Figure 2 shows an example of a hydraulic excavator
図 3は、 油圧ショベルの油圧回路例を示す図  Figure 3 shows an example of the hydraulic circuit of a hydraulic excavator
図 4は、 油圧ショベルのコン トローラの構成を示すブロック図  Fig. 4 is a block diagram showing the configuration of the controller of the excavator.
図 5は、 油圧ショベルのセンサ群の詳細を説明する図  Fig. 5 is a diagram illustrating details of the sensors of the hydraulic excavator.
図 6 は、.油圧ショベルの記憶装置を説明する図  Figure 6 is a diagram explaining the storage device of the excavator
図 7は、 走行操作時間などを算出する手順例を示すフローチヤ一ト  FIG. 7 is a flowchart showing an example of a procedure for calculating a travel operation time and the like.
図 8は、 油圧ショベルの定時送信処理手順例を示すフローチヤ一ト  FIG. 8 is a flowchart showing an example of a routine transmission processing procedure of the excavator.
図 9は、 警報や故障を検出する油圧ショベの処理手順例を示すフローチヤ一ト 図 1 0は、 油圧ショベルから送信されるデータの一例を示す図  FIG. 9 is a flowchart showing an example of a processing procedure of the excavator for detecting an alarm or a failure. FIG. 10 is a diagram showing an example of data transmitted from the excavator.
図 1 1は、 基地局の構成を示すブロック図 図 1 2は、 基地局での処理手順例を示すフローチヤ一ト Figure 11 is a block diagram showing the configuration of the base station. Figure 12 is a flowchart showing an example of the processing procedure at the base station.
図 1 3は、 油圧ショベルの号機ごとにまとめたデータを説明する図  Fig. 13 is a diagram illustrating data summarized for each excavator unit.
図 1 4は、 サービス工場単位でまとめたデータを説明する図  Fig. 14 is a diagram explaining the data compiled for each service factory.
図 1 5は、 サービス工場における情報管理のためのブロック図  Figure 15 is a block diagram for information management in service factories.
図 1 6は、 サービス工場での処理手順例を示すフローチヤ一ト  Figure 16 is a flow chart showing an example of the processing procedure at a service factory.
図 1 7は、 サービス工場での処理手順例を示すフローチヤ一ト  Figure 17 is a flowchart showing an example of the processing procedure at a service factory.
図 1 8は、 サービス工場で出力される日報の一例を示す図  Figure 18 shows an example of a daily report output at a service factory.
図 1 9 A〜 1 9 Cは、 サービス工場で出力されるメンテナンス予定の一例を示 す図  Figures 19A to 19C show examples of scheduled maintenance output at a service factory.
図 2 0 A、 2 0 Bは、 走行負荷頻度分布と掘削負荷頻度分布を示す図  Figures 20A and 20B show the running load frequency distribution and the excavation load frequency distribution.
図 2 1 は、 効率よ く巡回サービスを行う予定を説明する図  Figure 21 is a diagram illustrating the schedule for providing efficient patrol services.
図 2 2は、 サ一ビスマンの予定表を示す図  Figure 22 shows the serviceman's calendar
図 2 3 A、 2 3 Bは、 エンジン稼働時間分布を示す図  Figures 23A and 23B show engine operating time distribution
図 2 4は、 走行操作時間などとともに稼働分燃料消費量を算出する手順例を示 すフローチヤ一ト  Fig. 24 is a flow chart showing an example of the procedure for calculating the fuel consumption for the operating time along with the driving operation time.
図 2 5は、 無線基地局と油圧ショベル製造工場とサービス工場を通信回線で接 続する他の例を示す図  Figure 25 shows another example of connecting a radio base station, a hydraulic excavator manufacturing factory, and a service factory via a communication line.
図 2 6は、 油圧ショベル製造工場内のシステム構成を示す図  Figure 26 shows the system configuration in a hydraulic excavator manufacturing plant.
図 2 7は、 携帯電話を利用して油圧ショベルと通信する例を示す図 発明を実施するための最良の形態  FIG. 27 is a diagram showing an example of communication with a hydraulic excavator using a mobile phone.
図 1〜図 2 4 によ り本発明を油圧ショベルの巡回サービスの予定を作成する方 法に適用した場合について説明する。 図 1 は本発明による巡回サービス予定作成 方法が適用される油圧ショべルの稼働状況を説明する図である。  A case in which the present invention is applied to a method of creating a tour schedule of a hydraulic shovel will be described with reference to FIGS. FIG. 1 is a diagram for explaining the operation status of a hydraulic shovel to which the patrol service schedule creation method according to the present invention is applied.
すなわち、 複数の作業地区 A , B , Cではそれぞれ複数の油圧ショベルが稼働 している。 地区 Aでは油圧ショベル a 1〜 a nが、 地区 Bでは油圧ショベル b 1 〜b nが、 地区 Cでは油圧ショベル c 1〜 c nがそれぞれ稼働している。 地区 A, B, Cは同一の作業現場ではなく地理的に離れている。 この実施の形態では、 各 油圧ショベルの各部の状態を検出し、 検出した信号は通信衛星 C Sを経由して基 地局 B Cで受信される。 基地局 B Cは受信した信号を適宜のサービス工場 S F 1 〜 S F nへ一般公衆回線網 P Cを利用して送信する。 サービス工場 S F 1〜 S F nでは、 受信した信号に基づいて、 後述するような日報を作成したり、 故障を診 断したり、 巡回サービスの予定を作成したりする。 各油圧ショベルは GP S受信 機を搭載し、 GP S衛星 G Sからの信号を受信して現在地を算出することができ る。 この現在地情報は、 油圧ショベルの各部の信号とともに基地局 B Cを経由し てサービス工場 S Fへ送信され、 サービス工場 S Fは各油圧ショベルの稼働地区 を認識するこ とができる。 In other words, a plurality of hydraulic shovels are operating in each of the plurality of work areas A, B, and C. Excavators a1 to an operate in district A, excavators b1 to bn operate in district B, and excavators c1 to cn operate in district C. Districts A, B, and C are geographically separated rather than at the same work site. In this embodiment, the state of each part of each excavator is detected, and the detected signal is transmitted via the communication satellite CS. Received at base station BC. The base station BC transmits the received signal to an appropriate service factory SF1 to SFn using the general public switched telephone network PC. At the service factories SF1 to SFn, based on the received signals, a daily report as described below is created, a failure is diagnosed, and a schedule for a patrol service is created. Each excavator is equipped with a GPS receiver and can receive signals from the GPS satellite GS to calculate the current location. This current location information is transmitted to the service factory SF via the base station BC together with signals from the various parts of the excavator, and the service factory SF can recognize the operating area of each excavator.
油圧ショベルは図 2に示すように構成される。 油圧ショベルは、 走行体 8 1 と, 走行体 8 1の上部に旋回可能に連結された旋回体 82とを有する。 旋回体 8 2に は、 運転室 8 3と、 作業装置 84と、 エンジン 8 5と、 旋回モータ 8 6とが設け られている。 作業装置 84は、 旋回体 82の本体に回動可能に取り付けられたブ —ム BMと、 ブーム BMに回動可能に連結されたアーム AMと、 アーム AMに回 動可能に連結されたアタ ッチメ ン ト、 例えばバケッ ト B Kとからなる。 ブーム B Mはブームシリ ンダ C 1によ り昇降され、 アーム A Mはァ一ムシリ ンダ C 2によ り クラウ ドとダンプ操作が行われ、 バケツ ト B Kはバケッ トシリ ンダ C 3によ り クラウ ドとダンプ操作が行われる。 走行体 8 1には左右の走行用油圧モータ 8 7, 8 8が設けられている。  The hydraulic excavator is configured as shown in FIG. The hydraulic excavator includes a traveling body 81 and a revolving body 82 rotatably connected to an upper portion of the traveling body 81. The revolving unit 82 is provided with a cab 83, a working device 84, an engine 85, and a revolving motor 86. The working device 84 includes a boom BM rotatably attached to the main body of the revolving superstructure 82, an arm AM rotatably connected to the boom BM, and an attachment mechanism rotatably connected to the arm AM. For example, a bucket BK. The boom BM is moved up and down by the boom cylinder C1, the arm AM is crowded and dumped by the arm cylinder C2, and the bucket BK is crowded and dumped by the bucket cylinder C3. An operation is performed. The traveling body 81 is provided with left and right traveling hydraulic motors 87, 88.
油圧ショベルの油圧回路の概略を図 3に示す。 エンジン 8 5は油圧ポンプ 2を 駆動する。 この油圧ポンプ 2から吐出される圧油は、 複数のコン トロールバルブ 3 s、 3 t r、 3 t l、 3 b、 3 aおよび 3 b kでその方向と油量が制御され、 上述した旋回油圧モータ 8 6、 左右の走行用油圧モータ 8 7, 8 8、 油圧シリン ダ C 1、 C 2、 C 3を駆動する。 複数のコン トロールバルブ 3 s、 3 t r、 3 t 1、 3 b、 3 aおよび 3 b kはそれぞれ対応する複数のパイロッ トバルブ 4 s、 4 t r , 4 t し 4 b、 4 aおよび 4 b kからそれぞれ供給されるパイロッ ト圧 力によつて切換操作される。 パイロッ トバルブ 4 s、 4 t r , 4 t 1、 4 b、 4 aおよび 4 b kは、 パイロッ ト油圧ポンプ 5から所定圧力のパイロッ ト油圧が供 給され、 操作レバ一 4 L s、 4 L t r , 4 L t l、 4 L b、 4 L a、 4 b kの操 作量に応じたパイ口ッ ト圧力を出力する。 複数のコン トロールバルブ 3 s、 3 t r、 3 t 3 b、 3 aおよび 3 b kは 1つのバルブプロックに集約される。 ま た、 複数のパイロッ トバルブ 4 s、 4 t r , 4 t 1、 4 b、 4 aおよび 4 b k も 1つのバルブブロックに集約される。 Fig. 3 shows the outline of the hydraulic circuit of the hydraulic excavator. The engine 85 drives the hydraulic pump 2. The pressure oil discharged from the hydraulic pump 2 is controlled by a plurality of control valves 3 s, 3 tr, 3 tl, 3 b, 3 a, and 3 bk to control the direction and amount of oil. 6. Drive the left and right traveling hydraulic motors 87, 88, hydraulic cylinders C1, C2, C3. The multiple control valves 3 s, 3 tr, 3 t 1, 3 b, 3 a, and 3 bk are respectively connected to the corresponding pilot valves 4 s, 4 tr, 4 t and 4 b, 4 a, and 4 bk. Switching is performed by the supplied pilot pressure. The pilot valves 4 s, 4 tr, 4 t 1, 4 b, 4 a, and 4 bk are supplied with a pilot pressure of a predetermined pressure from the pilot hydraulic pump 5, and the operation levers 4 L s, 4 L tr, Outputs the pilot pressure according to the operation amount of 4 Ltl, 4 Lb, 4 La, 4 bk. Multiple control valves 3 s, 3 t r, 3 t 3 b, 3 a and 3 bk are combined into one valve block. In addition, a plurality of pilot valves 4s, 4tr, 4t1, 4b, 4a and 4bk are also integrated in one valve block.
図 4は油圧ショベルの各部の状態を検出して送信するためのコントローラのブ ロック図である。 油圧ショベルには、 上述した各部の状態を検出する複数のセン サを有するセンサ群 1 0が搭載され、 センサ群 1 0から出力される状態検出信号 は所定のタイ ミ ングでコン トローラ 2 0に読み込まれる。 コン トローラ 2 0は走 行操作時間、 旋回操作時間、 およびフロン ト (掘削) 操作時間を積算するための タィマ機能 2 0 aを有している。 コン トローラ 2 0は読み込んだ状態検出信号に 基づいて、 走行操作時間、 旋回操作時間、 フロン ト操作時間を算出する。 これら 算出された操作時間は記憶装置 2 1 に格納される。 油圧ショベルは、 エンジン 8 5 を起動するキースィ ツチ 2 2 と、 エンジン 8 5の稼働時間を計測するァヮメ一 タ 2 3 も有している。  FIG. 4 is a block diagram of a controller for detecting and transmitting the state of each part of the excavator. The hydraulic excavator is equipped with a sensor group 10 having a plurality of sensors for detecting the states of the above-described components, and a state detection signal output from the sensor group 10 is transmitted to the controller 20 at a predetermined timing. Is read. The controller 20 has a timer function 20a for accumulating the running operation time, the turning operation time, and the front (digging) operation time. The controller 20 calculates the traveling operation time, the turning operation time, and the front operation time based on the read state detection signal. These calculated operation times are stored in the storage device 21. The hydraulic excavator also has a key switch 22 for starting the engine 85 and an arbiter 23 for measuring the operation time of the engine 85.
油圧ショベルには G P S受信機 2 4が搭載されている。 G P S受信機 2 4は、 G P S衛星 G Sからの G P S信号を受信し、 G P S信号に基づいて油圧ショベル の位置を算出してコン トローラ 2 0へ出力する。 油圧ショベルの運転席には各種 情報を表示するためのモニタ 2 5が設けられている。  The hydraulic excavator is equipped with a GPS receiver 24. The GPS receiver 24 receives the GPS signal from the GPS satellite GS, calculates the position of the excavator based on the GPS signal, and outputs the calculated position to the controller 20. The driver's seat of the excavator is provided with a monitor 25 for displaying various information.
コン トローラ 2 0は時計機能 2 0 bを有しており、 キースィッチ 2 2のオン時 刻、 オフ時刻、 エンジン始動時刻、 エンジン停止時刻を認識することができる。 これらの時刻も記憶装置 2 1 に格納される。 ァヮメータ 2 3の計測値も所定のタ イ ミ ングでコン トローラ 2 0に読み込まれ、 記憶装置 2 1 に格納される。 記憶装 置 2 1 に記憶された走行、 旋回およぴフロン トの操作時間とキースィッチオン時 刻などは所定のタイミ ングで送信機 3 0を介して送信される。 送信機 3 0から送 信された電波は衛星 C Sを経由して基地局 B Cで受信される。 コン トローラ 2 0 には受信機 3 5 も接続されている。 受信機 3 5は、 通信衛星 C Sおよび基地局 B Cを経由してサービス工場 S Fから送られてく る故障時の対処法などの信号を受 信してコン トローラ 2 0へ送出する。 コン トローラ 2 0、 送信機 3 0およぴ受信 機 3 5は、 油圧ショベルのメイ ンスィ ッチがオフされていても、 車載バッテリか らの電源で常時駆動可能状態となっている。 図 5に示すよう に、 センサ群 1 0は、 メイ ン油圧回路系の圧力状態を検出する 圧力センサ 1 1 を備えている。 すなわち、 油圧ポンプ 2の吐出圧力を計測する圧 力センサ 1 1 p と、 走行油圧モータ 8 7, 8 8の駆動圧力を計測する圧力センサ 1 1 t r, 1 1 t 1 と、 旋回油圧モータ 8 6の駆動圧力を計測する圧力センサ 1 I s と、 ブーム油圧シリ ンダ C 1の駆動圧力を計測する圧力センサ 1 1 b と、 ァ —ム油圧シリ ンダ C 2の駆動圧力を計測する圧力センサ 1 1 a と、 バケツ ト油圧 シリンダ C 3の駆動圧力を計測する圧力センサ 1 1 b kとを備えている。 The controller 20 has a clock function 20b, and can recognize the ON time, the OFF time, the engine start time, and the engine stop time of the key switch 22. These times are also stored in the storage device 21. The measured value of the parameter 23 is also read by the controller 20 at a predetermined timing and stored in the storage device 21. The running time, turning operation, front operation time, key switch-on time and the like stored in the storage device 21 are transmitted via the transmitter 30 at a predetermined timing. The radio wave transmitted from the transmitter 30 is received by the base station BC via the satellite CS. The receiver 20 is also connected to the controller 20. The receiver 35 receives a signal sent from the service factory SF via the communication satellite CS and the base station BC, such as a troubleshooting method, and sends the signal to the controller 20. The controller 20, the transmitter 30 and the receiver 35 are always in a state where they can be driven by the power from the vehicle-mounted battery even when the main switch of the excavator is turned off. As shown in FIG. 5, the sensor group 10 includes a pressure sensor 11 for detecting a pressure state of the main hydraulic circuit system. A pressure sensor 11 p for measuring the discharge pressure of the hydraulic pump 2, pressure sensors 11 tr and 11 t 1 for measuring the driving pressure of the traveling hydraulic motors 87, 88, and a swing hydraulic motor 86. Pressure sensor 1 Is that measures the driving pressure of the boom hydraulic cylinder C 1, pressure sensor 1 1 b that measures the driving pressure of the boom hydraulic cylinder C 1, and pressure sensor 1 1 that measures the driving pressure of the arm hydraulic cylinder C 2 a, and a pressure sensor 11 bk for measuring the driving pressure of the bucket hydraulic cylinder C3.
センサ群 1 0は、 パイ口ッ ト油圧回路系の圧力状態を検出する圧力センサ 1 3 も備えている。 すなわち、 走行油圧パィロッ トバルブ 4 t r , 4 t 1から出力さ れるパイロッ ト圧力 P t r, P t 1 を計測する圧力センサ 1 3 t r, 1 3 t 1 と、 旋回油圧パイ口ッ トバルブ 4 sから出力されるパイ口ッ ト圧力 P sを計測する圧 力センサ 1 3 s と、 ブーム油圧パイロッ トバルブ 4 bから出力されるパイロッ ト 圧力 P bを計測する圧力センサ 1 3 b と、 アーム油圧パィロッ トバルブ 4 aから 出力されるパイロッ ト圧力 P aを計測する圧力センサ 1 3 a と、 バケツ ト油圧パ イロッ トバルブ 4 b kから出力されるパイ口ッ ト圧力 P b kを計測する圧力セン サ 1 3 b kとを有している。  The sensor group 10 also includes a pressure sensor 13 for detecting the pressure state of the pilot hydraulic circuit system. That is, the pressure sensors 13 tr and 13 t 1 that measure the pilot pressures P tr and P t 1 output from the traveling hydraulic pilot valves 4 tr and 4 t 1 and the output from the swing hydraulic pilot valve 4 s Pressure sensor 13 s for measuring the pilot pressure P s to be applied, pressure sensor 13 b for measuring the pilot pressure P b output from the boom hydraulic pilot valve 4 b, and arm hydraulic pilot valve 4 a pressure sensor 13a for measuring the pilot pressure Pa output from a and a pressure sensor 13bk for measuring the pilot pressure Pbk output from the bucket hydraulic pilot valve 4bk. Have.
走行操作時間は、 走行パイロッ ト圧力センサ 1 3 t r, 1 3 t 1 で検出した圧 力 P t rまたは P t 1 が所定値以上である時間を積算した時間である。 旋回操作 時間は、 旋回パイロッ ト圧力センサ 1 3 sで検出した圧力 P sが所定値以上であ る時間を積算した時間である。 フロン ト操作時間は、 ブーム、 アームおよぴバケ ッ ト用パイロッ ト圧力センサ 1 3 b、 1 3 aおよび 1 3 b kのいずれかで検出し た圧力 P b、 P a , P b kが所定値以上である時間を積算した時間である。  The traveling operation time is the total time during which the pressure Ptr or Pt1 detected by the traveling pilot pressure sensors 13tr and 13t1 is equal to or greater than a predetermined value. The turning operation time is a time obtained by integrating the time during which the pressure Ps detected by the turning pilot pressure sensor 13 s is equal to or more than a predetermined value. The front operation time is determined by the pressures Pb, Pa, and Pbk detected by any of the boom, arm, and bucket pressure sensors 13b, 13a, and 13bk. This is the time obtained by integrating the above times.
センサ群 1 0はまた、 メイン油圧ラインに配設されたフィルタの目詰ま り を検 出する圧力センサ 1 4 f 、 油圧モータや油圧シリ ンダを駆動する作動油の温度を 検出する温度センサ 1 4 t も備えている。 さらにセンサ群 1 0は、 エンジン系銃 の状態を検出する各種のセンサ 1 5を有している。 すなわち、 エンジン 8 5の冷 却水温を検出する冷却水温度センサ 1 5 wと、 エンジンオイルの圧力を検出する エンジンオイル圧力センサ 1 5 0 D と、 エンジンオイルの温度を検出するェンジ ンオイル温度センサ 1 5 0 t と、 エンジンオイルのレベルを検出するエンジンォ ィルレベルセンサ 1 5 o 1 と、 エアフィルタの目詰ま りを検出する目詰ま りセン サ 1 5 a f と、 燃料残量を計測する燃料残量センサ 1 5 f と、 バッテリの充電電 圧を検出するバッテリ電圧センサ 1 5 Vと、 エンジン回転数を検出する回転数セ ンサ 1 5 r とを有している。 The sensor group 10 also includes a pressure sensor 14 f for detecting clogging of a filter provided in the main hydraulic line, and a temperature sensor 14 for detecting the temperature of hydraulic oil for driving a hydraulic motor or a hydraulic cylinder. It also has a t. Further, the sensor group 10 has various sensors 15 for detecting the state of the engine gun. That is, a cooling water temperature sensor 15 w that detects the cooling water temperature of the engine 85, an engine oil pressure sensor 150 D that detects the pressure of the engine oil, and an engine oil temperature sensor 1 that detects the temperature of the engine oil 50 t and the engine level to detect the engine oil level Filter level sensor 15 o1, a clogging sensor 15 af that detects clogging of the air filter, a fuel level sensor 15 f that measures the remaining fuel level, and a battery charging voltage. It has a battery voltage sensor 15 V for detecting and a speed sensor 15 r for detecting the engine speed.
上述したように油圧ショベルの各部の状態を示す信号は通信衛星 C Sおよぴ基 地局 B Cを経由してサービス工場 S Fへ送信されるが、 各部の通常の状態を示す 信号は日報データと して、 一日分をまとめて通信料金の安い深夜の時間帯に送信 される。 また、 警報や故障などを示す信号はそれらが発せられるたびに送信され る。 なお、 燃料残量が所定値以下になったときも、 時間帯に限らず直ちにこれを 示す情報を送信する。  As described above, the signal indicating the state of each part of the hydraulic excavator is transmitted to the service factory SF via the communication satellite CS and the base station BC, but the signal indicating the normal state of each part is daily report data. Then, the whole day's worth is sent at midnight, when communication charges are low. Signals indicating alarms and failures are sent each time they are issued. In addition, even when the remaining fuel amount becomes equal to or less than the predetermined value, information indicating this is transmitted immediately regardless of the time zone.
上述した日報データは次のような情報を含み、 記憶装置 2 1 に所定のフォーマ ッ トで格納される。  The above-described daily report data includes the following information, and is stored in the storage device 21 in a predetermined format.
①キースィ ッチ 2 2のオン時刻  ①Key switch 2 2 ON time
②キースィ ッチ 2 2のオフ時刻  (2) Off time of key switch 22
③エンジン始動時刻  ③ Engine start time
④エンジン停止時刻  ④ Engine stop time
⑤ァヮメータ 2 3の計測値  Measured value of parameter 2 3
⑥走行操作時間 (図 1 8参照)  ⑥Driving operation time (See Fig. 18)
⑦旋回操作時間 (図 1 8参照)  ⑦Swing operation time (See Fig. 18)
⑧フロント操作時間 (図 1 8参照)  ⑧Front operation time (See Fig. 18)
⑨ェンジン稼動時間 (図 1 8参照)  Engine operation time (see Fig. 18)
また、 日報データと して走行負荷頻度分布 (図 2 O A参照) 、 掘削負荷頻度 (図 2 0 B参照) 、 あるいは燃料消費量 (単位時間あたり、 稼働分、 無負荷分など) も含まれる。 The daily report data also includes running load frequency distribution (see Fig. 2 OA), excavation load frequency (see Fig. 20B), or fuel consumption (per unit time, operation, no load, etc.).
警報デ一タと しては次のような情報がある。  The following information is available as alarm data.
①ェンジンオイルレベル  ① Engine oil level
②ェンジン冷却水温度  ② Engine cooling water temperature
③エンジンオイル温度  ③ Engine oil temperature
④エアフィルタ目詰ま り ⑤作動油フィ ルタ ④Air filter clogging ⑤ Hydraulic oil filter
⑥バッテリ電圧  ⑥ Battery voltage
⑦エンジンオイル圧力  ⑦Engine oil pressure
⑧燃料残量  ⑧ Fuel remaining
⑨作動油温度  ⑨ Hydraulic oil temperature
故障データとしては次のような惰報がある。  There is the following coast information as the failure data.
①エンジン回転数異常  ① Engine speed abnormality
②油圧ボンプ吐出圧異常  (2) Abnormal hydraulic pump discharge pressure
図 6は記憶装置 2 1の一例を示す図である。 記憶装置 2 1 には、 エンジン 8 5 のァヮメータ 2 3 の計測値を格納する第 1領域 R 1 と、 走行操作時間 (走行稼働 時間) を格納する第 2の領域 R 2 と、 旋回操作時間 (旋回稼働時間) を格納する 第 3の領域 R 3 と、 フロン ト操作時間 (フロン ト稼働時間) を格納する第 4の領 域 R 4 と、 その他の状態信号や警報信号あるいは故障信号を格納する領域 R 5… 領域 R nが複数設けられている。  FIG. 6 is a diagram showing an example of the storage device 21. The storage device 21 has a first area R 1 for storing the measured values of the parameters 23 of the engine 85, a second area R 2 for storing the traveling operation time (running operation time), and a turning operation time ( A third area R3 for storing the turning operation time), a fourth area R4 for storing the front operation time (front operating time), and other state signals, alarm signals or failure signals. Region R5 A plurality of regions Rn are provided.
図 7は、 各油圧ショベルのコン トローラ 2 0で実行される走行、 旋回、 フロン ト操作時間を積算する処理手順を示すフローチャー トである。 たとえば、 走行パ イロッ ト圧力 P t r または P t 1、 旋回パイ口ッ ト圧力 P s、 ブームパイロッ ト 圧力 P b、 アームパイロッ ト圧力 P a、 ノ ケッ トパイロッ ト圧力 P b kのいずれ かが所定値以上になると、 コン トローラ 2 0は、 図 7に示すプログラムを起動す る。 そして、 ステップ S 1 において、 走行用、 旋回用、 フロン ト用タイマ機能 2 0 aのうち該当する操作時間計測用タイマを起動する。 また、 負荷頻度分布計測 用タイマを起動する。 走行パイロッ ト圧力 P t r または P t 1が所定値以上の場 合には走行操作時間用タイマを、 旋回パイロッ ト圧力 P sが所定値以上の場合に は旋回操作時間用タイマを、 ブームパイロッ ト圧力 P b、 アームパイロッ ト圧力 P a、 バケッ トパイロッ ト圧力 F b kのいずれか所定値以上の場合にはフロン ト 用タイマをそれぞれ起動する。 ステップ S 2において、 パイロッ ト圧力が所定値 未満になったことを判定すると、 ステップ S 3 に進み、 該当するタイマを停止す る。  FIG. 7 is a flowchart showing a processing procedure for integrating running, turning, and front operation times performed by the controller 20 of each excavator. For example, one of travel pilot pressure Ptr or Pt1, swivel pilot pressure Ps, boom pilot pressure Pb, arm pilot pressure Pa, and socket pilot pressure Pbk At this point, the controller 20 starts the program shown in FIG. Then, in step S1, the corresponding operation time measurement timer of the traveling, turning, and front timer functions 20a is started. Also starts the load frequency distribution measurement timer. If the traveling pilot pressure Ptr or Pt1 is equal to or greater than a predetermined value, a timer for the traveling operation time is used.If the swing pilot pressure Ps is equal to or greater than a predetermined value, a timer for the turning operation time is used. If the pressure Pb, the arm pilot pressure Pa, or the bucket pilot pressure Fbk is higher than a predetermined value, the front timer is started. If it is determined in step S2 that the pilot pressure has become less than the predetermined value, the process proceeds to step S3, and the corresponding timer is stopped.
走行操作時間を T t、 旋回操作時間を T s、 フロン ト操作時間を Τ ί、 走行用 タィマの計測時間を T M t、 旋回用タイマの計測時間を T M s、 フロン ト用タイ マの計測時間を T M f とすると、 ステツプ S 4 において、 次式を算出する。 Travel operation time is T t, turning operation time is T s, front operation time is Τ 用, for traveling Assuming that the measurement time of the timer is TM t, the measurement time of the turning timer is TM s, and the measurement time of the front timer is TM f, the following equation is calculated in step S 4.
T t = T t + T M t  T t = T t + T M t
T s = T s + T M s  T s = T s + T M s
T f = T f + T M f  T f = T f + T M f
すなわち、 タイマで計時した時間をそれぞれの操作時間格納領域の現在値に加算 し、 その加算結果で操作時間領域を更新する。 That is, the time measured by the timer is added to the current value of each operation time storage area, and the operation time area is updated with the addition result.
なおここでは、 走行、 旋回、 フロン トについて操作時間を計測したが、 油圧シ ョベルに他のァタツチメン ト、 たとえばブレー力などが備わつている場合、 その ■Ύタツチメン トの操作時間を検出し、 同様にァタツチメ ン ト操作時間を計測して もよい。  In this case, the operation time was measured for traveling, turning, and front.However, if the hydraulic shovel is equipped with other attachments, such as braking force, the operation time of that attachment is detected. Similarly, the attachment operation time may be measured.
パィロッ ト圧力が所定値以上の場合にはステップ S 2が否定されてステップ S 2 Aへ進む。 ステップ S 2 Aで負荷頻度分布計測用タイマが Δ t f を計測すると ステップ S 2 Bに進む。 ステップ S 2 Bにおいて、 そのと きの走行圧力、 旋回圧 力、 ポンプ圧力を読み込み、 ステップ S 2 Cにおいて、 該当する圧力値のヒス ト グラムに 1 を加算する。 たとえば、 走行圧力が 1 0 M p aであれば、 1 0 M p a の頻度に 1 を加算する。 ステップ S 2 Dでは負荷頻度用タイマをリセッ ト、 再起 動してステップ S 2に戻る。 走行負荷頻度分布は図 2 O Aに、 掘削負荷頻度分布 は図 2 0 Bに示される。  If the pilot pressure is equal to or higher than the predetermined value, step S2 is denied and the routine proceeds to step S2A. When the load frequency distribution measuring timer measures Δtf in step S2A, the process proceeds to step S2B. In step S2B, the running pressure, swing pressure, and pump pressure at that time are read, and in step S2C, 1 is added to the histogram of the corresponding pressure value. For example, if the traveling pressure is 10 Mpa, 1 is added to the frequency of 10 Mpa. In step S2D, the load frequency timer is reset and restarted, and the process returns to step S2. The running load frequency distribution is shown in Figure 2OA and the excavation load frequency distribution is shown in Figure 20B.
図 8は一定時刻に日報データを送信するための処理手順を示すフローチヤ一ト である。 あらかじめ設定されている送信時刻になると、 コン トローラ 2 0は図 8 のプログラムを起動する。 ステップ S 1 1で記憶装置 2 1から送信すベき日報デ 一タを読み出す。 読み出した日報データはステップ S 1 2で所定の送信データに 加工され、 ステップ S 1 3で送信機 3 0へ送られる。 これによ り、 送信機 3 0は、 油圧ショベルの 1 日の稼働状態を示す日報データを通信衛星 C Sおよび基地局 B Cを経由してサービス工場 S Fへ送信する (ステップ S 1 4 ) 。  FIG. 8 is a flowchart showing a processing procedure for transmitting daily report data at a certain time. When the preset transmission time comes, the controller 20 starts the program shown in FIG. In step S11, the daily report data to be transmitted is read from the storage device 21. The read daily report data is processed into predetermined transmission data in step S12, and is sent to the transmitter 30 in step S13. As a result, the transmitter 30 transmits daily report data indicating the operating state of the excavator for one day to the service factory SF via the communication satellite CS and the base station BC (step S14).
図 9は警報信号や故障信号を送信するための処理手順を示すフローチヤ一トで ある。 コン トローラ 2 0は、 上述した警報信号や故障信号の出力を判定すると、 図 9のプログラムを起動する。 ステップ S 2 1 では、 検出した警報信号や故障信 号を記憶装置 2 1へ格納する。 ステップ S 2 2 において、 これらの警報信号や故 障信号がサービス工場へ送信する必要があるものと判定されるとステップ S 2 3 に進む。 ステップ S 2 3において、 運転席のモニタ 2 5に故障内容を表示すると ともに、 サービス工場へ送信した旨を表示する。 ステップ S 2 4において、 記憶 装置 2 1から警報信号あるいは故障信号を読み出し、 ステップ S 2 5でそれらを 送信データに加工する。 加工された送信データはステップ S 2 6で送信機 3 0へ 送出され、 ステップ S 2 7において、 送信機 3 0から警報信号あるいは故障信号 が送信される。 FIG. 9 is a flowchart showing a processing procedure for transmitting an alarm signal and a failure signal. When determining the output of the alarm signal or the failure signal described above, the controller 20 starts the program of FIG. In step S21, the detected alarm signal or fault signal Is stored in the storage device 21. If it is determined in step S22 that these alarm signals or fault signals need to be transmitted to the service factory, the process proceeds to step S23. In step S23, the details of the failure are displayed on the monitor 25 of the driver's seat, and the fact that the failure has been transmitted to the service factory is displayed. In step S24, an alarm signal or a failure signal is read from the storage device 21, and in step S25 they are processed into transmission data. The processed transmission data is transmitted to the transmitter 30 in step S26, and an alarm signal or a failure signal is transmitted from the transmitter 30 in step S27.
ステップ S 2 8において、 コン トローラ 2 0は、 サービス工場から故障に対す る対処法を表す信号を受信したと判定すると、 ステップ S 2 9において、 運転席 のモニタ 2 5に故障の対処法を表示する。 サービス工場からの指示が受信されな い場合には、 ステップ S 3 0において、 警報信号や故障信号を送信してから所定 時間以上経過したかを判定する。 所定時間以上が経過するとステップ S 3 1 にお いて、 「サービス工場へ連絡して下さい」 とメ ッセージを表示する。 ステップ S 3 0が否定されるとステップ S 2 8を繰り返す。 すなわち、 所定時間が経過して もサービス工場から対処法の指示が送信されてこない場合には、 何らかの原因に よ り通信が失敗した可能性が高いので、 オペレータに対して電話でサービス工場 へ連絡することを報知する。  In step S28, when the controller 20 determines that a signal indicating a countermeasure for the failure has been received from the service factory, the controller 20 displays the countermeasure for the failure on the driver's monitor 25 in step S29. I do. If the instruction from the service factory has not been received, in step S30, it is determined whether or not a predetermined time has elapsed after transmitting the alarm signal or the failure signal. If the predetermined time has elapsed, a message "Please contact the service factory" is displayed in step S31. If step S30 is negative, step S28 is repeated. In other words, if the service factory does not send a remedy instruction even after the predetermined time has elapsed, it is highly likely that communication has failed for some reason. Notify you what you will do.
ステップ S 2 2 において、 検出された警報信号がサービス工場へ送信不要であ ると判定された場合には、 ステップ S 3 2 において、 警報信号に応じた警報内容 を運転席のモニタ 2 5へ表示し、 ステップ S 3 3 において、 その対処法を算出す る。 たとえば、 警報信号に対する対処法をあらかじめ記憶装置 2 1 にデータべ一 ス化しておき、 警報信号によ りデータベースをアクセスして対処法を算出する。 そして、 ステップ S 3 4において、 運転席のモニタ 2 5へ対処法を表示する。 図 1 0は日報データや警報データあるいは故障データを送信するために作成さ れるデータ列の一例である。 データ列のへッダには油圧ショベルを識別する識別 子 H Dが設けられる。 ヘッダに続いてデータ部が設けられ、 現在地情報 D l、 ァ ヮメータの計測時間 D 2, 走行稼働時間 D 3、 旋回稼働時間 D 4、 フロン ト稼働 時間 D 5……が順番に組み合わされる。 図 1 1は基地局 B Cの構成を示すプロック図である。 基地局 B Cは、 受信した 各種の信号を各地のサービス工場へ送信する。 基地局 B Cには、 通信衛星 C Sか ら送信されてく る信号を受信する受信機 3 1 と、 受信機 3 1で受信した信号を格 納する記憶装置 3 2 と、 サービス工場へ送信すべきデータを一般公衆回線網 P C を介して送信するためのモデム 3 3 と、 これらの各種機器を制御する制御装置 3 4 とを備えている。 If it is determined in step S22 that the detected alarm signal does not need to be transmitted to the service factory, in step S32, the content of the alarm corresponding to the alarm signal is displayed on the driver's seat monitor 25. Then, in step S33, the countermeasure is calculated. For example, a method of coping with an alarm signal is stored in a database in the storage device 21 in advance, and a database is accessed by the alarm signal to calculate a coping method. Then, in step S34, a countermeasure is displayed on the monitor 25 of the driver's seat. FIG. 10 shows an example of a data string created for transmitting daily report data, alarm data, or failure data. The header of the data string is provided with an identifier HD that identifies the excavator. A data section is provided following the header, and the current location information Dl, the measurement time D2 of the parameter, the running time D3, the turning time D4, and the front time D5 are combined in this order. FIG. 11 is a block diagram showing the configuration of the base station BC. The base station BC transmits the received various signals to service factories in various places. The base station BC has a receiver 31 for receiving the signal transmitted from the communication satellite CS, a storage device 32 for storing the signal received by the receiver 31, and data to be transmitted to the service factory. And a control device 34 for controlling these various devices.
図 1 2は、 基地局 B Cで状態信号などを受信してサービス工場へ送信するため の処理手順を示すフローチヤ一トである。 通信衛星 C Sからの信号を受信すると、 基地局 B Cの制御装置 3 4は図 1 2のプログラムを起動する。 ステップ S 3 0 1 では、 受信した信号を記憶装置 3 2にいつたん格納する。 ステップ S 3 0 2では、 受信した状態信号のヘッダに記録されている識別子 H Dから油圧ショベルを識別 し、 図 1 3 に示すように、 油圧ショベルごとに受信信号を分類する。 ステップ S 3 0 3では、 識別された油圧ショベルに基づいて (識別子に基づいて) 、 担当す るサービス工場を識別し、 図 1 4に示すよう に、 サービス工場ごとに油圧ショべ ルの受信信号としてまとめる。 ステップ S 3 0 4では、 あらかじめ記憶装置 3 2 に作成されているデータベースから、 識別したサービス工場の電話番号をそれぞ れ読み出し、 ステップ S 3 0 5において、 ステップ S 3 0 3でまとめた信号をモ デム 3 3を介して各サービス工場へ送信する。  FIG. 12 is a flowchart showing a processing procedure for receiving a status signal and the like at the base station BC and transmitting it to the service factory. When receiving the signal from the communication satellite CS, the control device 34 of the base station BC starts the program shown in FIG. In step S301, the received signal is temporarily stored in the storage device 32. In step S302, the excavator is identified from the identifier HD recorded in the header of the received status signal, and the received signals are classified for each excavator as shown in FIG. In step S303, the service factory in charge is identified based on the identified excavator (based on the identifier), and as shown in FIG. 14, the received signal of the excavator is determined for each service factory. Put together. In step S304, the telephone numbers of the identified service factories are read from the database created in advance in the storage device 32, and in step S305, the signals compiled in step S303 are read. Send to each service factory via modem 33.
油圧ショベルの現在地にもっとも近いサービス工場へ受信信号を送信してもよ い。 また、 基地局 B Cから各サービス工場 S Fへの各種情報の送信は、 専用回線 や L A N回線などであってもよい。 たとえば、 基地局 B Cとサービス工場 S Fが 油圧ショベルのメーカの施設であれば、 いわゆる社内 L A N (イン トラネッ ト) によ り各種情報を授受してもよい。  The reception signal may be sent to the service factory closest to the current location of the excavator. Further, transmission of various information from the base station BC to each service factory SF may be performed by a dedicated line, a LAN line, or the like. For example, if the base station B C and the service factory SF are facilities of a hydraulic excavator maker, various kinds of information may be exchanged via a so-called in-house LAN (intranet).
図 1 5はサービス工場 S Fにおける情報管理のためのブロック図である。 サー ビス工場 S Fには、 基地局 B Cから一般公衆回線網 P Cを経由して送られてく る 信号を受信するモデム 4 1 と、 モデム 4 1で受信した信号を格納する記憶装置 4 2 と、 種々の演算処理を実行する処理装置 4 3 と、 処理装置 4 3 に接続された表 示装置 4 4やプリ ンタ 4 5 と、 キーボード 4 6 とを備えている。 処理装置 4 3は, 記憶装置 4 2 に格納された状態信号 (日報データ) に基づいて、 日報を作成し、 油圧ショベルのコン ト ローラ 2 0で演算されている負荷頻度分布をグラフ形式で 表示するための演算処理を行い、 油圧ショベルごとにメンテナンス時期を演算し- 故障や異常の有無を判定し、 巡回サービスの予定を作成する。 Figure 15 is a block diagram for information management in service factory SF. The service factory SF includes a modem 41 for receiving signals transmitted from the base station BC via the general public network PC, a storage device 42 for storing the signals received by the modem 41, and various other components. And a display device 44 and a printer 45 connected to the processing device 43, and a keyboard 46. The processor 43 creates a daily report based on the status signal (daily report data) stored in the storage device 42, Performs calculation processing to display the load frequency distribution calculated by the controller 20 of the excavator in a graph format, calculates the maintenance time for each excavator-determines whether there is a failure or abnormality, and provides patrol services. Create an event for.
処理装置 4 3 にはデータべ一ス 4 7 も接続されている。 このデータべ一ス 4 7 には、 油圧ショベルごとのメ ンテナンスの履歴、 過去の故障や異常の履歴、 サー ビスの履歴などが格納されている。 データベース 4 7に蓄積されるデータは、 巡 回サービスに出向いたサービスマンが携帯用情報端末装置 5 1 を用いて油圧ショ ベルの記憶装置 2 1から収集したデータが含まれる。  A database 47 is also connected to the processor 43. This database 47 stores the maintenance history of each excavator, the history of past failures and abnormalities, and the history of services. The data stored in the database 47 includes data collected from the storage device 21 of the hydraulic shovel by the service technician who has visited the patrol service using the portable information terminal device 51.
携帯情報端末装置 5 1 に通信機能を設けてもよい。 この場合、 サービスマンが 携帯情報端末装置 5 1 のキー入力によ り各種情報を入力し、 通信によ り各種情報 をデータベース 4 7へ入力してもよい。  The portable information terminal device 51 may be provided with a communication function. In this case, the service person may input various information by key input of the portable information terminal device 51 and input various information to the database 47 by communication.
図 1 6は、 サービス工場で受信した状態信号、 警報信号、 故障信号に基づいて, 処理装置 4 3が実行する各種の処理手順を示すフローチャー トである。 状態信号- 警報信号あるいは故障信号を受信すると、 サービス工場の処理装置 4 3は図 1 6 のプログラムを起動する。 ステップ S 4 1 では、 受信した状態信号、 警報信号あ るいは故障信号を記憶装置 4 2に格納する。 ステップ S 4 2では、 受信した信号 の識別子 H Dから油圧ショベルを識別する。 受信信号が複数の油圧ショベルに対 する場合には、 それぞれの油圧ショベルを識別して受信信号を適宜の順番に並べ る  FIG. 16 is a flowchart showing various processing procedures executed by the processing device 43 based on the status signal, the alarm signal, and the failure signal received at the service factory. Upon receiving the status signal-alarm signal or failure signal, the processing unit 43 of the service factory starts the program shown in FIG. In step S41, the received state signal, alarm signal or failure signal is stored in the storage device 42. In step S42, the excavator is identified from the identifier HD of the received signal. If the received signal is for multiple excavators, identify each excavator and arrange the received signals in an appropriate order
ステップ S 4 3では、 第 1番目の油圧ショベルについて受信した信号が日報デ ータか、 警報信号あるいは故障信号かを判定する。 日報データの場合には、 ステ ップ S 4 4 において、 識別された油圧ショベルの識別子によ りデータベース 4 7 をアクセス して、 該当油圧ショベルの過去の履歴を読み出す。 ステップ S 4 5で は、 記憶装置 4 2から日報データを読み出し、 ステップ S 4 6において、 図 1 8 に示すような日報を作成する。 日報の具体例については後述する。 ステップ S 4 7では、 日報データとデータベース 4 7から読み出された過去のメ ンテナンス情 報とに基づいて、 次回のメ ンテンス時期を算出する。 その後、 ステップ S 4 8に おいて、 すべての油圧ショベルの受信信号について処理が終了していないと判定 されると、 ステップ S 4 3 に戻って、 次の油圧ショベルの受信信号について同様 の処理を行う。 ステップ S 4 8ですベての受信信号に対する処理が終了したと判 定されると、 ステップ S 4 9に進み、 巡回サービスの予定を作成する。 この予定 作成方法については後述する In step S43, it is determined whether the signal received from the first hydraulic excavator is daily report data, an alarm signal, or a failure signal. In the case of daily report data, in step S44, the database 47 is accessed using the identified excavator identifier and the past history of the excavator is read. In step S45, the daily report data is read from the storage device 42, and in step S46, a daily report as shown in FIG. 18 is created. A specific example of the daily report will be described later. In step S47, the next maintenance time is calculated based on the daily report data and the past maintenance information read from the database 47. Thereafter, in step S48, if it is determined that the processing has not been completed for all the excavator reception signals, the process returns to step S43, and the same applies to the next excavator reception signal. Is performed. If it is determined in step S48 that the processing for all the received signals has been completed, the flow advances to step S49 to create a schedule for the traveling service. The schedule creation method will be described later.
ステップ S 4 3 において、 受信した信号が警報信号あるいは故障信号と判定さ れると、 ステップ S 5 0に進み、 記憶装置 4 2から警報信号あるいは故障信号を 読み出す。 ステップ S 5 1では、 読み出された警報信号あるいは故障信号に対す る对処法をデー夕ベース 4 7から読み出す。 ステップ S 5 2では、 読み出された 対処法を基地局 B Cを経由、 も しく は移動体通信システムを経由して、 該当する 油圧ショベルへ送信する。 油圧ショベルの電話番号はサービス工場の記憶装置 4 2にあらかじめ格納されている。 油圧ショベルへ送信するデータのへッダには油 圧ショベルの識別子が設けられ、 それに引き続いて対処法を表示するためのデー タが設けられる。 データ送信後、 ステップ S 5 3において、 サービスマンを作業 地区へ派遣するための処理を実行する。 そして、 ステップ S 5 4において、 すべ ての油圧ショベルの受信信号に対して処理が終了していないと判定されると、 ス テツプ S 4 3 に戻って同様な処理を繰り返し実行する。 すべての油圧ショベルの 受信信号に対する処理が終了すると、 この処理を終了する。  If it is determined in step S43 that the received signal is an alarm signal or a failure signal, the flow advances to step S50 to read the alarm signal or the failure signal from the storage device 42. In step S51, the processing method for the read alarm signal or failure signal is read from the database 47. In step S52, the read countermeasure is transmitted to the corresponding excavator via the base station BC or the mobile communication system. The telephone number of the excavator is stored in the storage device 42 of the service factory in advance. The header of the data to be sent to the excavator is provided with the identifier of the excavator, followed by data for indicating the remedy. After transmitting the data, in step S53, processing for dispatching the serviceman to the work area is performed. Then, in step S54, if it is determined that the processing has not been completed for the received signals of all the excavators, the process returns to step S43 to repeat the same processing. When the processing for the received signals of all the excavators is completed, the processing is completed.
図 1 7は、 図 1 6のステップ S 5 3で実行するサービスマン派遣のための処理 手順を示すフローチャー トである。 たとえば、 すべてのサービスマンに G P S受 信機を携帯させ、 所定時間間隔でサービス工場に送信されてくる現在地信号をサ 一ビス工場の記憶装置 4 2 に格納しておく。 そして、 図 1 7のステップ S 6 1 に おいて、 記憶装置 4 2からすべてのサービスマンの現在位置を読み込み、 ステツ プ S 6 2において、 該当する油圧ショベルの作業地区にもっとも近いサービスマ ンを検索する。 そして、 ステップ S 6 3に進み、 そのサービスマンの携帯情報端 末装置 5 1 に対して、 該当する油圧ショベル、 作業地区、 警報や故障の内容、 故 障の対処法、 持参する部品を基地局 B Cを経由、 もしくは移動体通信システムを 経由して送信する。  FIG. 17 is a flowchart showing a processing procedure for dispatching a serviceman executed in step S53 of FIG. For example, a GPS receiver is carried by all service personnel, and a current location signal transmitted to the service factory at predetermined time intervals is stored in the storage device 42 of the service factory. Then, in step S61 of FIG. 17, the current positions of all servicemen are read from the storage device 42, and in step S62, the serviceman closest to the work area of the corresponding excavator is identified. Search for. Then, the process proceeds to step S63, and the corresponding hydraulic excavator, the work area, the details of the alarm or the failure, the method of handling the failure, the parts to be brought, and the parts to be brought into the base station are transmitted to the portable information terminal device 51 of the serviceman. Transmit via BC or mobile communication system.
なお、 サービスマンの作業予定をデータベース化しておき (図 2 2参照) 、 空 き時間のあるサービスマンを検索してもよい。 また、 そのときに部品発注を自動 的に部品管理部門へ連絡するようにしてもよい。 図 1 8は、 サービス工場が受信する状態信号 (日報データ) に基づいて作成さ れる日報データの一例を示す。 日報は、 各油圧ショベルについて毎日作成され、 図 1 8は、 たとえば A社の所有する 2 5 3号機の 2 0 0 0年 3月 1 6 日付けの日 報である。 第 1頁には、 エンジン稼働時間、 走行操作時間、 旋回操作時間、 フロ ン ト操作時間の累積時間と、 3月 1 6 日に行われた作業に関する時間が表示され る 第 2頁にはメ ンテナンス情報が表示され、 たとえば、 ェンジンオイルフィル タ交換まで 1 0 0時間、 エンジンオイル交換まで 6 0時間のように、 メ ンテナン ス対象部品、 対象部位ごとの時間が表示される。 The work schedule of the service technician may be stored in a database (see Figure 22), and the service technician who has free time may be searched. At that time, the order of parts may be automatically notified to the parts management department. Figure 18 shows an example of daily report data created based on the status signal (daily report data) received by the service factory. The daily report is prepared daily for each excavator. Fig. 18 shows the daily report of Unit A's Unit 253, dated March 16, 2000, for example. The first page shows the engine running time, the running operation time, the turning operation time, the accumulated time of the front operation time, and the time related to the work performed on March 16 on the second page. Maintenance information is displayed. For example, 100 hours until engine oil filter replacement, 60 hours before engine oil replacement, etc., the time for each maintenance target part and target part is displayed.
この日報は、 サービス工場でプリ ン トアウ トされて各サービスマンに配布され る。 電子メ一ルでサ一ビスマンに配布してもよい。 図 1 8で示す日報を油圧ショ ベル 2 5 3号機へ送信して運転席のモニタ 2 5に表示したり、 ユーザである A社 の管理部門へ送信するよう にしても よい。  This daily report is printed out at the service factory and distributed to each service person. It may be distributed to the serviceman by e-mail. The daily report shown in FIG. 18 may be transmitted to the hydraulic excavator No. 25 and No. 3 and displayed on the monitor 25 of the driver's seat, or may be transmitted to the user A's management department.
ここで、 図 1 6に示したステップ S 4 9の巡回サービスの予定作成について説 明する。 図 1 9 A〜1 9 Cは、 メ ンテナンス予定表の一例を示す図である。 図 1 9 Aは走行ローラに関するメ ンテナンス予定を、 図 1 9 Bはブッシュに関するメ ンテナンス予定を、 図 1 9 Cはピンに関するメ ンテナンス予定を表している。 各 油圧ショベルのエンジン稼働時間、 走行操作時間、 旋回操作時間、 フロン ト操作 時間の累積時間は状態信号 (日報データ) と してサービス工場で受信されるので- エンジン稼働時間と各操作時間とに基づいて、 各部品が交換時期に達しているか を判定する。  Here, the schedule creation of the traveling service in step S49 shown in FIG. 16 will be described. FIGS. 19A to 19C are diagrams illustrating an example of the maintenance schedule. Fig. 19A shows the maintenance schedule for the traveling rollers, Fig. 19B shows the maintenance schedule for the bush, and Fig. 19C shows the maintenance schedule for the pins. The cumulative operating time of each hydraulic excavator's engine operating time, running operation time, turning operation time, and front operating time is received as a status signal (daily report data) at the service factory. Based on this, it is determined whether each part has reached its replacement time.
たとえば、 走行ローラの推奨交換時間が 2 0 0 0時間の場合、 油圧ショベル a 1の現在までの走行操作時間が 1 8 5 0時間を越えると、 交換時期まで 1 5 0時 間以内となり、 メンテナンス時期であると判定し、 油圧ショベル a 1の巡回サ一 ビスを 1 5 0時間以内に予定する。 図 1 9 Aでは今月のメ ンテナンス予定に油圧 ショベル a 1が表示されている。 その他の号機も同様である。  For example, if the recommended replacement time of the traveling roller is 2000 hours, if the running operation time of the hydraulic excavator a1 to the present exceeds 180 hours, the replacement time will be within 150 hours until the replacement time. It is determined that it is time to go and schedule the patrol service for the excavator a1 within 150 hours. In Fig. 19A, the excavator a1 is displayed in the maintenance schedule for this month. The same applies to other units.
ブームの回動軸に設けられるブッシュの推奨交換時間が 3 0 0 0時間の場合、 同じ A地区の油圧ショベル a 2 の現在までのフロン ト稼働時間が 2 9 5 0時間を 越えると、 交換時期まで 5 0時間以内となり、 メ ンテナンス時期であると判定し. 油圧ショベル a 2の巡回サービスを 5 0時間以内に予定する。 図 1 9 Bでは今月 のメ ンテナンス予定に油圧ショベル a 2が表示されている。 その他の号機も同様 である。 If the recommended replacement time of the bush provided on the boom rotation axis is 30000 hours, if the hydraulic excavator a2 in the same area A has been operating for more than 295 hours, the replacement time is required. It is determined that it is time for maintenance within 50 hours. The hydraulic shovel a2 patrol service will be scheduled within 50 hours. This month in Figure 19B The excavator a2 is displayed in the maintenance schedule of. The same applies to other units.
さらに、 バケツ トの回動軸に設けられるピンの推奨交換時間が 4 0 0 0時間の 場合、 同じ A地区の油圧ショベル a 6の現在までのフロント稼働時間が 3 9 2 0 時間を越えると、 交換時期まで 8 0時間以内となり、 メ ンテナンス時期であると 判定し、 油圧ショベル a 3の巡回サービスを 8 0時間内に予定する。 図 1 9 Cで は今月のメ ンテナンス予定に油圧ショベル a 6が表示されている。 その他の号機 も同様である。  Furthermore, if the recommended replacement time of the pins provided on the pivot axis of the bucket is 400 hours, if the front operating time of the excavator a6 in the same district A to date exceeds 3920 hours, It is within 80 hours until the replacement time, and it is determined that it is the maintenance time, and the patrol service of the excavator a3 will be scheduled within 80 hours. In Fig. 19C, the excavator a6 is displayed in the maintenance schedule for this month. The same applies to other units.
このよう なメ ンテナンス時期を、 地区 Aで稼働している油圧ショベル a 1 〜 a n、 地区 Bで稼働している油圧ショベル b 1 〜 b n、 地区 Cで稼働している油圧 ショベル c 1 〜 c nに対して算出すると、 図 1 9に示すようなメ ンテナンス予定 のチャートが作成される。 なお、 地区 A〜 Cは同一サービス工場の管轄とする。 図 1 9に示したメ ンテナンス予定表に基づいて、 メ ンテナンスに必要な部品が 事前にわかる。 したがって、 この予定表に基づいて部品の手配を行う よう にして もよい。 ここで、 部品の手配は、 たとえば、 サービス工場に付設する部品センタ —に対して、 部品の発注書を社内のィントラネッ トを経由して自動送付すること によ り完了する。 また、 予定表および部品手配にしたがって、 メ ンテナンス費用 を算出し、 それをユーザに送付してもよい。  These maintenance periods are applied to the excavators a1 to an operating in the district A, the excavators b1 to bn operating in the district B, and the excavators c1 to cn operating in the district C. When calculated, a maintenance schedule chart as shown in Fig. 19 is created. Areas A to C are under the jurisdiction of the same service factory. Based on the maintenance schedule shown in Fig. 19, the parts required for maintenance can be known in advance. Therefore, parts may be arranged based on this schedule. Here, the parts arrangement is completed, for example, by automatically sending a parts purchase order to a parts center attached to a service factory via an intranet in the company. In addition, the maintenance cost may be calculated according to the schedule and the parts arrangement, and may be sent to the user.
図 1 9に示したメ ンテナンス予定を作成する場合、 対象部品の現在までの使用 時間と、 あらかじめ設定した標準的なメ ンテナンス時間とを比較してメンテナン ス時期を算出した。 しかしながら、 油圧ショベルでは、 作業現場、 作業内容によ り使用負荷の状態が大き く異なる。 そのため、 負荷状態に応じてメ ンテナンス時 期を可変とするのが好ましい。  When creating the maintenance schedule shown in Fig. 19, the maintenance time was calculated by comparing the usage time of the target component up to the present with the standard maintenance time set in advance. However, the working load of hydraulic excavators varies greatly depending on the work site and the type of work. Therefore, it is preferable to make the maintenance time variable according to the load condition.
負荷状態を算出するため、 油圧ショベルから毎日定期的に送信されてく る日報 データに基づいて、 図 2 0 A、 2 0 Bに示すように走行負荷頻度分布、 フロン ト (掘削) 負荷頻度分布を棒グラフ表示する。 また、 標準的な走行負荷頻度分布と 掘削負荷頻度分布をあらかじめ設定しておく。 そして、 演算された負荷頻度分布 が標準的な負荷頻度分布に比べて軽負荷側で運転されているか、 重負荷側で運転 されているかを判定し、 この判定結果に応じて次式にしたがってメ ンテナンス時 間を算出する。 In order to calculate the load condition, the running load frequency distribution and the front (digging) load frequency distribution are calculated based on the daily report data sent from the excavator on a daily basis as shown in Figs. 20A and 20B. Display a bar graph. In addition, a standard running load frequency distribution and excavation load frequency distribution are set in advance. Then, it is determined whether the calculated load frequency distribution is operated on the light load side or the heavy load side as compared with the standard load frequency distribution. During maintenance Calculate the interval.
重負荷運転のメ ンテナンス時間 =標準メンテナンス時間 X «  Maintenance time for heavy load operation = Standard maintenance time X «
軽負荷運転のメ ンテナンス時間 =標準メンテナンス時間 X /3  Maintenance time for light load operation = Standard maintenance time X / 3
ただし、 αは 1未満の値、 /3は 1 を越えた値であり、 あらかじめ実験などによ り決定しておく。  However, α is a value less than 1, and / 3 is a value exceeding 1, and is determined in advance by experiments or the like.
以上のメ ンテナンス時間の算出に当たっては、 たとえば対象部品が走行ローラ であれば走行負荷頻度分布が重負荷か軽負荷かによ り メ ンテナンス時間を算出す る。 あるいは、 対象部品がブッシュであれば掘削負荷頻度分布が重負荷か軽負荷 かによ り メ ンテナンス時間を算出する。 すなわち、 対象部品と関連する負荷頻度 分布を考慮してメ ンテナンス時間を可変とする。  In calculating the maintenance time, for example, if the target component is a traveling roller, the maintenance time is calculated based on whether the traveling load frequency distribution is a heavy load or a light load. Alternatively, if the target part is a bush, the maintenance time is calculated based on whether the digging load frequency distribution is heavy or light. That is, the maintenance time is made variable in consideration of the load frequency distribution related to the target component.
なお、 以上の計算式によ り負荷に応じてメ ンテナンス時間を算出する代わり に、 あらかじめ重負荷メ ンテナンス時間、 標準負荷メ ンテナンス時間、 および軽負荷 メンテナンス時間をテーブルと して設け、 負荷に応じて使用テーブルを選択する ようにしてもよい。  In addition, instead of calculating the maintenance time according to the load using the above formula, the heavy load maintenance time, the standard load maintenance time, and the light load maintenance time are provided in advance as a table, and are set according to the load. May be used to select the table to be used.
あるいは、 サービス工場 S Fのデータベース 4 7から前回のメ ンテナンス状況 の履歴を読み出し、 その履歴に応じてメ ンテナンス時間を可変と してもよい。 す なわち、 前回のメ ンテナンス時間が標準的なメンテナンス時間よ り も短いとき、 あるいは長いときは、 今回のメ ンテナンス時間を前回までのメ ンテナンス時間に 変更して、 メ ンテナンスの時期を算出する。  Alternatively, the history of the previous maintenance situation may be read from the database 47 of the service factory SF, and the maintenance time may be made variable according to the history. That is, if the previous maintenance time is shorter or longer than the standard maintenance time, the current maintenance time is changed to the previous maintenance time, and the maintenance time is calculated. .
次に、 1人のサービスマンがもつとも効率よ く複数の作業地区へ巡回する方式 について説明する。 図 2 1 は、 作業地区 Αで稼働している油圧ショベル a 1 〜 a 5のメ ンテナンス予定表を示す。 このメ ンテナンス予定表はサービス工場の処理 装置 4 3で演算される。 油圧ショベル a 1 は 3月 6 日〜 3月 1 7 日の間にメ ンテ ナンス予定が設定され、 油圧ショベル a 2は 3月 9 日〜 3月 1 7 日の間にメンテ ナンス予定が設定され、 油圧ショベル a 3は 3月 1 6 日〜 3月 2 4 日の間にメ ン テナンス予定が設定され、 油圧ショベル a 4は 3月 1 5 日〜 3月 2 3 日の間にメ ンテナンス予定が設定され、 油圧ショベル a 5は 3月 1 7 日〜 3月 2 2 日の間に メンテナンス予定が設定されている。 メ ンテナンス予定の設定は、 たとえば、 メ ンテナンスまでの残り時間と当該油圧ショベルの 1 日の平均稼動時間などから交 換時期を予想して求める。 Next, we will explain a method in which a single service person travels to multiple work areas efficiently. Figure 21 shows the maintenance schedule of the excavators a1 to a5 operating in work area Α. This maintenance schedule is calculated by the processing device 43 of the service factory. The excavator a1 is scheduled for maintenance between March 6 and March 17, and the excavator a2 is scheduled for maintenance between March 9 and March 17 The excavator a3 is scheduled for maintenance between March 16 and March 24, and the excavator a4 is scheduled for maintenance between March 15 and March 23. The maintenance schedule is set for the excavator a5 between March 17 and March 22. The maintenance schedule is set based on, for example, the remaining time until maintenance and the average daily operating time of the excavator. Replacement time is expected and calculated.
図 2 1からわかるように、 3月 1 0 日に作業地区 Aを巡回すると油圧ショベル a l と a 2の 2台のメンテナンスが同時に行える。 3月 1 7 日に巡回すれば油圧 ショベル a 1〜 a 5の 5台のメンテナンスが同時に行える。 3月 2 1 日に巡回す れば油圧ショベル a 3〜 a 5の 3台のメンテナンスが同時に行える。 したがって、 3月 1 7 日に巡回するのがもつとも少ない巡回回数でメ ンテナンス作業が完了し、 効率がよい。  As can be seen from Fig. 21, when patrol around work area A on March 10, maintenance of two excavators a l and a 2 can be performed simultaneously. If it patrols on March 17, maintenance of five excavators a1 to a5 can be performed simultaneously. If it patrols on March 21, maintenance of three excavators a3 to a5 can be performed simultaneously. Therefore, the maintenance work can be completed with a small number of patrols on March 17 and the efficiency is high.
なお、 図 2 1の各号機のメ ンテナンス予定表に加えて、 図 2 2に示すサービスマ ンの日程表も考慮して最終的なメ ンテナンス予定を作成すれば、 サービスマンの 巡回の可不可を反映した、 精度の高いメンテナンス予定を作成することができる c このよう に、 処理装置 4 3 によ り もつとも効率よ く巡回する方式が演算される c 図 2 1では、 作業地区 Aの油圧ショベル a 1〜 a 5について説明した。 しかしな がら、 異なる 2以上の作業地区の油圧ショベルをもっと も効率よ く巡回するよう に演算することも簡単にできる。 たとえば、 同じ作業地区へ巡回する回数をもつ とも少なくする、 複数の作業地区へ最短経路で巡回するなどである。 In addition to the maintenance schedule of each unit shown in Fig. 21, if the final maintenance schedule is created considering the schedule of the service man shown in Fig. 22, it is not possible for the service person to patrol reflecting, as the c capable of creating a high maintenance schedule accuracy, the c Figure 2 1 system to cycle rather by HOWEVER efficiency Ri by the processing unit 4 3 is calculated, the hydraulic excavator work area a a1 to a5 have been described. However, it can easily be calculated to make the most efficient excavator trips in two or more different work areas. For example, the number of visits to the same work area should be reduced, if at all, or the shortest route to multiple work areas can be made.
図 1 6のフローチヤ一トでは、 サービス工場が受信した信号に警報信号や故障 信号が含まれているとき、 そのステップ S 5 0〜S 5 4 において、 データベース 4 7から対処法を読み出して油圧ショベルへ送信する.ものと した。 しかしながら, 警報内容や故障内容によつてはオペレータに知らせる必要のないものもある。 た とえば、 油圧ショベルのコン トローラ 2 0内の E E P R O Mや R A Mの異常など は、 オペレータに報知しても意味がなく、 かえって混乱するもととなる。 したが つて、 警報や故障の内容に応じて油圧ショべルへ対処法を送信する必要性を決定 するのが好ましい。 油圧ショベルへ送信する必要がない警報内容や故障内容はサ 一ビスマンにだけ通知する。  In the flow chart in Fig. 16, when the signal received by the service factory includes an alarm signal or a failure signal, in steps S50 to S54, the remedy is read from the database 47 and the hydraulic excavator is read. Sent to. However, there are cases where it is not necessary to notify the operator depending on the contents of alarms and failures. For example, an abnormality in EPPROM or RAM in the controller 20 of a hydraulic excavator has no meaning even if it is reported to the operator, and rather causes confusion. Therefore, it is preferable to determine the necessity of sending a remedy to the hydraulic excavator according to the content of the alarm or the failure. Alerts and faults that do not need to be sent to the excavator are notified only to the serviceman.
図 1 6のフローチャートでは、 サービス工場が受信した信号に警報信号や故障 信号が含まれているとき、 そのステップ S 5 0〜 S 5 4 において、 データベース 4 7から対処法を読み出して油圧ショベルへ送信するものとした。 しかしながら、 直ちに機械を停止する必要がある故障内容の場合には、 対処法を送信する代わり に、 エンジンを停止する信号を油圧ショベルに送信するのが好ましい。 この場合、 「ェンジンを自動停止します。 サービスマンが到着するまでェンジンを再起動し ないで下さい」 などのメ ッセージを、 運転席のモニタ 2 5に表示する。 したがつ て、 エンジン停止信号とともにメ ッセージを示す信号も同時に送信する。 あるい は、 ブームシリ ンダ C 1 を降ろす方向に操作する信号を送信し、 安全性の高い姿 勢に自動的に駆動してもよい。 In the flowchart in Fig. 16, when the signal received by the service factory includes an alarm signal or a failure signal, in steps S50 to S54, the countermeasure is read from the database 47 and transmitted to the excavator. To do. However, in the case of a failure that requires the machine to be stopped immediately, it is preferable to send a signal to stop the engine to the excavator instead of sending a remedy. in this case, A message such as "Stop the engine automatically. Do not restart the engine until a service person arrives" is displayed on the driver's monitor 25. Therefore, a signal indicating a message is transmitted together with the engine stop signal. Alternatively, a signal for operating the boom cylinder C 1 in the lowering direction may be transmitted to automatically drive the vehicle in a highly safe position.
以上の説明では、 警報信号や故障信号に基づいてサービス工場のデータベース 4 7から対処法を読み出すよう にした。 しかしながら、 複数種類の故障信号が同 時に送信されてく る場合、 故障信号の組み合わせによつて対処法を演算できない ことも予想される。 そこで、 サービス工場の処理装置 4 3に A I (人工知能) 装 置を接続し、 警報信号や故障信号に基づいて、 対処内容などを推論して対処法を 求めてもよい。  In the above description, the remedy is read from the service factory database 47 based on the alarm signal and the failure signal. However, when multiple types of fault signals are transmitted at the same time, it is expected that a countermeasure cannot be calculated based on the combination of the fault signals. Therefore, an AI (Artificial Intelligence) device may be connected to the processing device 43 of the service factory, and a countermeasure may be determined by inferring the content of the countermeasure based on the alarm signal or the failure signal.
また以上では、 状態信号 (日報データ) は夜間に定時送信するものとした。 し かしながら、 日報データ送信用スィッチを運転席に設け、 この送信用スィ ッチォ ンで日報データを送信するようにしてもよい。 あるいは、 ェンジン停止時も しく は起動時に日報データを送信するようにしてもよい。  In the above, the status signal (daily report data) is transmitted on a regular basis at night. However, a switch for transmitting the daily report data may be provided in the driver's seat, and the daily report data may be transmitted by the switch for transmitting the daily report. Alternatively, the daily report data may be transmitted when the engine is stopped or started.
以上では日報デ一タに基づいて図 1 8に示す日報を作成するものとした。 しか しながら、 図 2 3 A、 2 3 Bに示すように、 エンジン稼働時間分布を含んだ日報 を作成してもよい。 図 2 3 Aは、 総稼働時間、 掘削時間、 旋回時間、 走行時間、 ブレーカ時間、 ブレーカ以外のアタッチメ ン トの駆動時間、 無負荷の累積時間を それぞれバーグラフ表示したものである。 これらの累積時間は油圧ショベルのコ ントローラ 2 0から送られてく る 1 日ごとの稼働時間に基づいて、 サービス工場 で作成され、 バーグラフ表示される。 また、 図 2 3 Bは月別のエンジン稼働時間 とアイ ドル時間を棒グラフ表示したものである。 月別のエンジン稼働時間とアイ ドル時間も油圧ショベルのコン トローラ 2 0から送られてく る 1 日ごとの稼働時 間に基づいて、 サービス工場で作成され、 棒グラフ表示される。  In the above, the daily report shown in Fig. 18 was created based on the daily report data. However, as shown in Figures 23A and 23B, a daily report containing the engine operating time distribution may be created. Figure 23A shows the total operating time, excavating time, turning time, running time, breaker time, drive time of attachments other than breaker, and cumulative time of no load, respectively. These accumulated times are created at the service factory based on the daily operating hours sent from the excavator controller 20, and are displayed as bar graphs. Figure 23B shows a bar graph of engine operation time and idle time for each month. Monthly engine operating hours and idle hours are also created at service plants based on the daily operating hours sent from the excavator controller 20, and are displayed as bar graphs.
上述したように、 油圧ショベルには燃料残量センサ 1 5 f が搭載されている。 したがって、 燃料残量センサ 1 5 f からの信号を使用して、 コン トローラ 2 0に よ り、 単位時間あたりの燃料消費量や燃料消費率を演算すること もできる。 これ らの燃料消費量や燃料消費率を日報データと して油圧ショベルから送信すれば、 サービス工場において燃料消費量や燃料消費率をビジュアル表示することができ る。 As described above, the hydraulic excavator is equipped with the fuel remaining amount sensor 15f. Therefore, the controller 20 can also calculate the fuel consumption per unit time and the fuel consumption rate by using the signal from the fuel remaining amount sensor 15f. By transmitting these fuel consumption and fuel consumption rate as daily report data from a hydraulic excavator, The fuel consumption and fuel consumption rate can be displayed visually at the service factory.
たとえば、 1時間あたりの燃料消費量、 稼働分消費量、 待機分消費量、 および 6ヶ月合計消費量を算出して、 日報と して出力することができる。 1時間あたり の燃料消費量は、 1 日の燃料消費量を 1 日のエンジン稼働時間で割って算出され る。 稼働分消費量は実施に作業を行っている間に消費された燃料消費量であり、 待機分消費量は無負荷でェンジンが駆動されている間に消費された燃料消費量で ある。 6 ヶ月合計消費量は文字通り 6 ヶ月間の燃料消費量の積算値である。 また, 待機分消費量があらかじめ定めた基準量よ り も多いときは、 「待機分消費量を減 らして省エネルギ運転を心がけて下さい」 のようなメ ッセージを出力する。  For example, it can calculate fuel consumption per hour, operating consumption, standby consumption, and total consumption for 6 months, and output them as a daily report. The fuel consumption per hour is calculated by dividing the daily fuel consumption by the daily engine operating time. The operating consumption is the amount of fuel consumed while working on the implementation, and the standby consumption is the amount of fuel consumed while the engine is running with no load. The 6 month total consumption is literally the integrated value of the fuel consumption for 6 months. If the standby consumption is higher than the predetermined reference amount, a message such as "Please reduce the standby consumption and try to save energy" is output.
稼働分消費量を算出するためには、 稼働状況と燃料消費量とを対応づける必要 がある。 たとえば、 図 2 4に示すよう に、 走行操作時間、 旋回操作時間およびフ ロン ト操作時間を演算する図 7の処理の中で燃料消費量を算出する。 走行、 旋回、 あるいは掘削のパイロッ ト圧力が所定値以上となると、 すなわち、 それらの操作 が開始されると、 ステップ S 5において稼働分燃料消費量 F I を読み込み、 ステ ップ S 6において燃料残量センサ 1 5 ίの計測値を読み込んで変数 F Sに代入す る。 パイロッ ト圧力が所定値未満になると、 すなわち、 上記の各操作が終了する とステップ S 7へ進み、 燃料残量センサ 1 5 f の計測値を読み込んで変数 F Fに 代入する。 ステップ S 8 において、 F S— F F + F I を演算して稼働分燃料消費 量 F I を更新する。 これ以外にも燃料に関する情報を様々な観点から加工して日 報とすることもできる。  In order to calculate the operating consumption, it is necessary to associate the operating status with the fuel consumption. For example, as shown in FIG. 24, the fuel consumption is calculated in the process of FIG. 7 for calculating the traveling operation time, the turning operation time, and the front operation time. When the pilot pressure for traveling, turning, or excavation becomes equal to or higher than a predetermined value, that is, when those operations are started, the operating fuel consumption FI is read in step S5, and the remaining fuel amount is read in step S6. Read the measured value of sensor 15 ί and substitute it for variable FS. When the pilot pressure is less than the predetermined value, that is, when the above operations are completed, the process proceeds to step S7, where the measured value of the fuel remaining amount sensor 15f is read and substituted into the variable FF. In step S8, FS—FF + FI is calculated to update the operating fuel consumption FI. In addition, information on fuel can be processed from various viewpoints and used as a daily report.
なお、 以上では、 油圧ショベル a 1 〜 c nからの信号を通信衛星 C Sを利用し て基地局 B Cへ送信し、 基地局 B Cからサービス工場 S Fへ一般公衆回線網 P C を介して信号を送信するものと した。 しかしながら、 通信衛星を使用せず、 P H S電話、 携帯電話などの移動体通信システムを利用して油圧ショベルからの信号 を送信してもよい。 また、 油圧ショベルからの信号をサービス工場で種々の形態 に加工出力するようにしたが、 油圧ショベル管理者の施設 (メーカのサービスェ 場、 ユーザの管理部門) に信号を送信して、 同様な情報の加工出力を行ってもよ い。 この場合、 油圧ショベルに I Dカード読取装置を搭載しておく とオペレータ の勤務時間の管理にも使用できる。 すなわち、 作業開始時に、 オペレータが自分 の I Dカー ドを I Dカード読取装置で読みとらせる。 この情報を日報データのェ ンジン始動時刻と停止時刻とともに油圧ショベル所有者の施設、 たとえば人事部 門に送信する。 人事部門では、 送信されてきた I D情報とエンジン始動時刻およ ぴ停止時刻に基づいて、 オペレータの勤務時間を管理し、 給与計算に使用するこ ともできる。 あるいは、 日報データに基づいて、 油圧ショベルの作業量、 たとえ ば掘削土砂量などを演算することもできる。 In the above, the signals from the hydraulic excavators a1 to cn are transmitted to the base station BC using the communication satellite CS, and the signals are transmitted from the base station BC to the service factory SF via the general public network PC. And However, the signal from the hydraulic shovel may be transmitted using a mobile communication system such as a PHS phone or a mobile phone without using a communication satellite. Also, the signal from the excavator was processed and output in various forms at the service factory. However, the signal was transmitted to the facility of the excavator administrator (manufacturer's service shop, user's management department), and the same The information may be processed and output. In this case, if the excavator is equipped with an ID card reader, Can also be used to manage working hours. That is, at the start of work, the operator causes his ID card to be read by the ID card reader. This information is transmitted to the excavator owner's facility, for example, the human resources department, together with the engine start and stop times in the daily report data. The HR department can manage the working hours of operators based on the transmitted ID information and the engine start and stop times and use them for payroll calculations. Alternatively, based on the daily report data, the work amount of the hydraulic excavator, for example, the amount of excavated sediment can be calculated.
油圧ショベル管理者をレンタル業者としてもよい。  The excavator manager may be a rental agent.
なお、 故障対処法をサービスマンへ送信する際、 油圧ショベルの号機、 稼働現場、 故障内容、 対処法、 持参する部品なども併せて送信するものとしたが、 サービス 工場において、 サービスマンがいる地点から油圧ショベルの稼働現場までの道路 地図を検索し、 道路地図を併せて送信してもよい。 さらに、 サービスマンの車両 にナビゲーシヨン装置を搭載しておき、 サービス工場において、 サービスマンが いる地点から油圧ショベルの稼働現場までの最適経路を探索し、 その探索結果に したがってナビゲーション装置のモニタ上で経路誘導してもよい。 経路探索はナ ピゲーショ ン装置で行ってもよい。  When sending the troubleshooting method to the service technician, the hydraulic excavator unit, the operation site, the details of the failure, the troubleshooting method, the parts to be brought, etc. were also transmitted. A search may be made of a road map from to a hydraulic excavator operation site and the road map may be transmitted together. In addition, a navigation device is installed in the serviceman's vehicle, and at a service factory, the optimum route from the point where the serviceman is located to the operation site of the excavator is searched. Based on the search result, the navigation device is displayed on the monitor of the navigation device. The route may be guided. The route search may be performed by a navigation device.
以上では、 油圧ショベルのセンサ群 1 0で検出した警報信号と故障信号をサ一 ビス工場で受信し、 サービス工場で故障内容を判定し、 その対処法を演算するよ うにした。 しかしながら、 油圧ショベルのコン トローラ 2 0において、 替報信号 と故障信号に基づいて故障内容を判定し、 故障内容を表すコード、 たとえば、 異 常フラグゃ異常コ一 ドをサービス工場へ送信し、 サービス工場でその異常フラグ や異常コードによ りデータベースを検索して対処法を求めてもよい。  In the above, the alarm signal and the failure signal detected by the hydraulic excavator sensor group 10 are received by the service factory, the details of the failure are determined by the service factory, and the countermeasures are calculated. However, the controller 20 of the hydraulic excavator determines the content of the failure based on the replacement signal and the failure signal, and transmits a code representing the content of the failure, for example, a failure flag / abnormal code to the service factory, and provides a service. The factory may search the database based on the error flag or error code for a solution.
さらに以上では、 油圧ショベルの状態信号を通信衛星 S Cおよび基地局 B Cを 経由してサービス工場 S Fへ送信するよう にしたが、 通信衛星 C Sからの信号を サービス工場で直接受信するようにしてもよい。  In the above description, the state signal of the excavator is transmitted to the service factory SF via the communication satellite SC and the base station BC, but the signal from the communication satellite CS may be directly received at the service factory. .
あるいは、 図 2 5に示すように、 一般公衆回線網 P Cを経由して無線基地局 B C Aと油圧ショベル製造工場 O Wとを結び、 油圧ショベル製造工場 O Wと複数の サービス工場 S F 1 〜 S F nとを専用回線を使用して接続 (イン ト ラネッ ト) し てもよい。 この場合、 図 2 5の基地局 B C Aは例えば衛星を利用した衛星通信サ 一ビスを提供する業者の基地局である。 従って、 図 2 6に示すよう に、 図 1 1 に 示した無線基地局 B C内のシステムと同様なシステムを油圧ショベル製造工場 0 Wに設ける。 Alternatively, as shown in Fig. 25, the wireless base station BCA is connected to the excavator manufacturing plant OW via a general public network PC, and the excavator manufacturing plant OW and a plurality of service plants SF1 to SFn are connected. Connection (intranet) may be made using a dedicated line. In this case, the base station BCA shown in Fig. 25 is a satellite communication service using satellites, for example. It is a base station of a provider that provides one service. Therefore, as shown in FIG. 26, a system similar to the system in the radio base station BC shown in FIG.
図 2 6において、 製造工場 O Wには、 通信衛星 C Sから送信されてく る信号を 無線基地局 B C Aおよぴ一般公衆回線網 P Cを介して受信するモデム 3 1 Aと、 モデム 3 1 Aで受信した信号を格納する記憶装置 3 2 Aと、 サービス工場へ送信 すべきデータを専用回線を介して送信するためのモデム 3 3 Aと、 これらの各種 機器を制御する制御装置 3 4 Aとを備えている。 そして、 制御装置 3 4 Aによ り 図 1 2 と同様な処理を実行する。 油圧ショベル製造工場 O Wの機能を油圧ショベ ル製造メ一力一の本社機構あるいは上述したレンタル業者内に設けてもよい。 また、 衛星通信サービスを利用する代わりに、 携帯電話や P H S電話などの移 動体通信システムを利用するよう にしてもよい。 図 2 7は、 その様子を示す図で ある。 基地局 B C Bは、 携帯電話事業者の基地局である。 各油圧ショベルには携 带電話 1 0 0が搭載される。 この場合、 携帯電話システムが提供する位置情報を 利用して各油圧ショベルの位置を特定する よう にしても よい。  In Fig. 26, the manufacturing plant OW receives the signal transmitted from the communication satellite CS via the wireless base station BCA and the general public line network PC via the modem 31A and the modem 31A. Storage device 32A for storing the transmitted signals, a modem 33A for transmitting data to be transmitted to the service factory via a dedicated line, and a control device 34A for controlling these various devices. ing. Then, the same processing as in FIG. 12 is executed by the control device 34A. The function of the hydraulic excavator manufacturing plant O W may be provided in the headquarters of the hydraulic excavator manufacturing company or in the rental company described above. Also, instead of using the satellite communication service, a mobile communication system such as a mobile phone or a PHS phone may be used. Fig. 27 is a diagram showing this situation. Base station B CB is the base station of the mobile phone operator. A mobile phone 100 is mounted on each excavator. In this case, the position of each excavator may be specified using the position information provided by the mobile phone system.
また、 油圧ショベルを例にして説明したが、 本発明は油圧ショベル以外の建設 機械やその他の作業車両を含む作業機に広く適用できる。  In addition, the hydraulic shovel has been described as an example, but the present invention can be widely applied to construction machines other than the hydraulic shovel and working machines including other working vehicles.
上記実施の形態では、 サービス工場 S Fが、 各油圧ショベルがどの作業地区 A, B , Cで稼働しているかを、 各油圧ショベルから送信されてく る現在地情報に基 づき認識する例を説明した。 この現在地情報は、 油圧ショベルが G P S信号を G P S受信機 2 4によ り受信して演算する。 しかし、 特に作業地区 A, B, Cを予 め設定せず、 各油圧ショベルから送信されてく る現在地情報に基づき、 一定の距 離あるいは位置関係にあるものをグループ化するよう にしてもよい。  In the above-described embodiment, an example has been described in which the service factory SF recognizes in which work area A, B, or C each excavator is operating based on the current location information transmitted from each excavator. The current location information is calculated by the hydraulic shovel receiving the GPS signal by the GPS receiver 24. However, the work areas A, B, and C may not be set in advance, and those having a certain distance or positional relationship may be grouped based on the current location information transmitted from each excavator.
例えば、 油圧ショベルを 1台特定してその特定された油圧ショベルに近い順に 所定台雜の油圧ショベルを 1つのグループにする。 この処理を繰り返して複数の 油圧ショベル全体をグループ化する。 グループ化の方法はその他にも各種考えら れ、 あらゆる方法を本発明に採用することが可能である。 そして、 グループ化さ れたグループに基づき効率のよい巡回サービスの予定を作成するようにすればよ い。 また、 グループ化をせず個々の油圧ショベルの現在地情報に基づき、 全体と して最適な巡回サービスの予定を作成するようにしてもよい。 For example, one hydraulic shovel is specified, and hydraulic shovels of a predetermined size are grouped in order from the one closest to the specified hydraulic shovel. This process is repeated to group the entire plurality of excavators. Various other grouping methods are conceivable, and any method can be employed in the present invention. Then, the schedule of the efficient patrol service should be created based on the grouped groups. In addition, based on the current location information of each excavator without grouping, Then, an optimal schedule for the patrol service may be created.
上記実施の形態では、 巡回サービスに出向いたサービスマンが携帯情報端末装 置 5 1 を用いて故障に関する情報を取得する例を説明した。 この携帯情報端末装 置 5 1の代わりに携帯電話を利用するよう にしてもよい。 この場合、 例えば、 処 理装置 4 3 は、 携帯電話システム (移動体通信システム) を利用して、 携帯電話 の表示部に故障チェックリス トなどを表示するようにデータを送信する。 故障チ エックリス トは、 作業機が故障したときにサービスマンがチヱックすべき項目が リス トアツプされたものである。 サービスマンは、 携帯電話に表示されたチエツ クリス トを確認しながらチヱックを行い、 携帯電話のキーを操作して、 チヱック リス トに対応した入力を行う。 各部の状態や故障情報や交換部品情報なども入力 する。 入力された情報は携帯電話システムを介して処理装置 4 3 に送信される。 処理装置 4 3は、 携帯電話システムを介して送信されてきた情報を受信し、 故障 に関する情報と して記憶装置 4 2およぴデータベース 4 7に格納する。 処理装置 4 3は、 前述した図 2 7 と同様の構成で携帯電話システムに.接続すればよい。 こ のように携帯電話を利用すると、 簡易な手段で、 センサのみでは得られない高度 な故障情報などを容易にデータベース化できる。  In the above-described embodiment, an example has been described in which a service technician who has traveled to the patrol service obtains information regarding a failure using the portable information terminal device 51. A mobile phone may be used instead of the mobile information terminal device 51. In this case, for example, the processing device 43 uses a mobile phone system (mobile communication system) to transmit data such that a failure check list or the like is displayed on the display unit of the mobile phone. The failure check list is a list of items that should be checked by a serviceman when a work machine fails. The service technician checks while checking the checklist displayed on the mobile phone, operates the keys on the mobile phone, and performs input corresponding to the checklist. Also input the status of each part, failure information, and replacement part information. The input information is transmitted to the processing device 43 via the mobile phone system. The processing device 43 receives the information transmitted via the mobile phone system and stores the information in the storage device 42 and the database 47 as information relating to the failure. The processing device 43 may be connected to the mobile phone system in the same configuration as in FIG. 27 described above. Using a mobile phone in this way makes it possible to easily create a database of advanced failure information that cannot be obtained with sensors alone, using simple means.
以上説明した実施の形態の巡回サ一ビスの予定を作成する方法に関する主な利 点は次の通りである。  The main advantages of the above-described embodiment regarding the method of creating the schedule of the traveling service are as follows.
複数の作業機の各部の状態を表す信号を受信し、 それらの状態信号に基づいて 複数の作業機の巡回サービスの予定を作成するようにしたので、 各建設機械ごと の台帳を管理することなく、 巡回サービスを効率よ く行う ことができる。  Signals indicating the status of each part of multiple work machines are received, and a schedule for patrol services for multiple work machines is created based on those status signals, so there is no need to manage a ledger for each construction machine. In addition, the patrol service can be performed efficiently.
複数の作業機からそれぞれ送られてきた複数の状態信号に基づいて、 複数の作 業機に対する巡回サービスがもつとも少ない回数となるよう にその予定を作成す るよう にしたので、 サービスマンの人員を最小限にすることができる。  Based on the multiple status signals sent from each of the multiple work machines, the schedule was created so that the number of patrol services for multiple work machines would be as small as possible. Can be minimized.
複数の作業機のそれぞれの作業状態の履歴を蓄積し、 状態信号と作業状態の履 歴とに基づいて、 複数の作業機の各々に対する巡回サービスの時期を演算し、 こ の演算結果に基づいて、 複数の作業機に対する巡回サービスがもつとも少ない回 数となるようにその予定を作成するようにしたので、 サービスマンの人員を最小 限にすることができる。  The history of the working state of each of the plurality of working machines is accumulated, and the timing of the patrol service for each of the plurality of working machines is calculated based on the state signal and the history of the working state, and based on the calculation result. However, since the schedule is created so that the number of patrol services for a plurality of work machines will be small, the number of service personnel can be minimized.

Claims

請求の範囲 The scope of the claims
1 . 複数の作業機のそれぞれでは、 1. In each of multiple working machines,
①各作業機の各部の状態をそれぞれ検出し、  ① Detect the state of each part of each work machine,
②検出された状態を表す状態信号をそれぞれ送信し、  (2) Send a state signal indicating the detected state,
作業機監視施設では、  In the work equipment monitoring facility,
①前記複数の作業機から送信されてくる前記状態信号をそれぞれ受信し、 ① Receive the status signals transmitted from the plurality of working machines,
②受信した前記複数の作業機の状態信号に基づいて、 前記複数の作業機に対す る巡回サービスの予定を作成する巡回サービス予定作成方法。 (2) A traveling service schedule creation method for creating a traveling service schedule for the plurality of working machines based on the received status signals of the plurality of working machines.
2 . クレーム 1 に記載の巡回サービス予定作成方法はさらに、 2. The method of creating a patrol service schedule described in claim 1 further includes:
前記複数の作業機からそれぞれ送られてきた前記状態信号に基づいて、 前記複 数の作業機に対する巡回サービスがもつとも少ない回数となるよう にその予定を 作成する。  Based on the status signals sent from the plurality of working machines, the schedule is created so that the number of traveling services for the plurality of working machines is reduced at all.
3 . クレーム 2 に記載の巡回サービス予定作成方法はさらに、 3. The method for creating a patrol service schedule described in claim 2 further includes:
前記複数の作業機のそれぞれの作業状態の履歴を蓄積し、  Accumulate the history of the working state of each of the plurality of working machines,
前記状態信号と前記作業状態の履歴とに基づいて、 前記複数の作業機の各々に 対する巡回サービスの時期を演算し、  Based on the state signal and the history of the work state, calculate the timing of the patrol service for each of the plurality of work machines,
この演算結果に基づいて、 前記複数の作業機に対する巡回サービスがもつとも 少ない回数となるようにその予定を作成する。  Based on the calculation result, the schedule is created so that the number of traveling services for the plurality of working machines is reduced at least.
4 . 複数の作業機のそれぞれに設けられ、 各作業機の各部の状態を検出する状 態検出装置と、 4. A state detection device provided in each of the plurality of working machines to detect a state of each part of each working machine;
前記複数の作業機のそれぞれに設けられ、 前記状態検出装置でそれぞれ検出さ れた状態を表す状態信号をそれぞれ送信する送信装置と、  A transmitting device that is provided in each of the plurality of working machines and that transmits a state signal indicating a state detected by the state detecting device,
前記作業機を監視する作業機監視施設に設けられ、 前記送信装置から送信され た前記状態信号を受信する受信装置と、  A receiving device that is provided in a working machine monitoring facility that monitors the working machine, and that receives the status signal transmitted from the transmitting device;
前記受信装置で受信した前記複数の作業機の状態信号に基づいて、 前記複数の 作業機に対する巡回サービスの予定を作成する予定作成装置とを備える巡回サー ビス予定作成システム。 Based on the status signals of the plurality of working machines received by the receiving device, A patrol service schedule creation system including a schedule creation device that creates a schedule for a tour service for work equipment.
5 . クレーム 4の巡回サービス予定作成システムにおいて、  5. In the patrol service schedule creation system of claim 4,
前記予定作成装置は、 前記複数の作業機からそれぞれ送られてきた前記状態信 号に基づいて、 前記複数の作業機に対する巡回サービスがもつとも少ない回数と なるようにその予定を作成する。  The schedule creation device creates a schedule based on the status signals sent from the plurality of working machines so that the number of traveling services for the plurality of working machines is reduced at all.
6 . クレーム 5の巡回サービス予定作成システムにおいて、 6. In the patrol service schedule creation system of claim 5,
前記作業機監視施設に設けられ、 前記複数の作業機のそれぞれの作業状態の履 歴を蓄積する蓄積装置をさらに備え、  A storage device that is provided in the work equipment monitoring facility, and that stores a history of work states of the plurality of work equipments,
前記予定作成装置は、  The schedule creation device,
前記状態信号と前記作業状態の履歴とに基づいて、 前記複数の作業機の各々に 対する巡回サービスの時期を演算し、 その演算結果に基づいて、 前記複数の作業 機に対する巡回サービスがもつとも少ない回数となるようにその予定を作成する ( Based on the status signal and the history of the work state, the timing of the patrol service for each of the plurality of working machines is calculated. and so as to create the schedule (
7 . 複数の作業機から送信される、 各作業機の各部の状態を表す状態信号を受 信する受信装置と、 7. A receiving device for receiving a status signal transmitted from a plurality of working machines and indicating a state of each part of each working machine;
受信した前記状態信号に基づいて、 前記複数の作業機の巡回サービスの予定を 作成する予定作成装置とを備える巡回サービス予定作成装置。  A schedule creation device that creates a schedule for the tour service of the plurality of work machines based on the received state signal.
8 . 複数の作業機から送信される、 各作業機の各部の状態を表す状態信号を受 信し、 8. Receiving status signals transmitted from multiple work implements and indicating the status of each part of each work implement,
受信した前記状態信号に基づいて、 前記複数の作業機の巡回サービスの予定を 作成する巡回サービス予定作成方法。  A traveling service schedule creation method for creating a traveling service schedule for the plurality of work machines based on the received status signal.
9 . 複数の作業機から送信される、 各作業機の各部の状態を表す状態信号を受 信し、 9. Receiving status signals transmitted from multiple implements and indicating the status of each part of each implement,
受信した前記状態信号に基づいて、 前記複数の作業機の巡回サービスの予定を 作成する巡回サービス予定作成装置。 Based on the received status signal, the schedule of the patrol service of the plurality of working machines Touring service schedule creation device to be created.
1 0 . ク レーム 1の巡回サービス予定作成方法において、 10 0. In the method for creating a traveling service schedule for claim 1,
前記複数の作業機のそれぞれではさらに、  In each of the plurality of working machines,
各作業機の位置を表す位置信号を送信し、  Transmit a position signal indicating the position of each work machine,
前記作業監視施設ではさらに、  The work monitoring facility further comprises:
前記各作業機から送信されてく る前記位置信号を受信し、  Receiving the position signal transmitted from each of the working machines,
前記複数の作業機の状態信号に加え、 前記位置信号に基づき、 前記複数の作業 機の巡回サービスの予定を作成する。  Based on the position signal in addition to the status signals of the plurality of working machines, a schedule for a traveling service of the plurality of working machines is created.
1 1 . ク レーム 8の巡回サービス予定作成方法は、 1 1. The method for creating a traveling service schedule for claim 8 is as follows.
複数の作業機から送信される各作業機の位置を表す位置信号を受信し、 前記複数の作業機の状態信号に加え、 前記位置信号に基づき、 前記複数の作業 機の巡回サービスの予定を作成する。  A position signal indicating the position of each work machine transmitted from the plurality of work machines is received, and in addition to the status signals of the plurality of work machines, a schedule for the traveling service of the plurality of work machines is created based on the position signal. I do.
1 2 . クレーム 1 1の巡回サービス予定作成方法は、 1 2. The method for creating the patrol service schedule for claim 1 1 is as follows.
受信した前記位置信号に基づく各作業機の位置に基づき前記複数の作業機をグ ループ化する。  The plurality of work machines are grouped based on the position of each work machine based on the received position signal.
PCT/JP2001/002812 2000-03-31 2001-03-30 Patrol service schedule preparation method, preparation system and preparation device WO2001073632A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001571275A JP3735068B2 (en) 2000-03-31 2001-03-30 Travel service schedule creation method, creation system, and creation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000099138 2000-03-31
JP2000-99138 2000-03-31

Publications (1)

Publication Number Publication Date
WO2001073632A1 true WO2001073632A1 (en) 2001-10-04

Family

ID=18613528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002812 WO2001073632A1 (en) 2000-03-31 2001-03-30 Patrol service schedule preparation method, preparation system and preparation device

Country Status (2)

Country Link
JP (1) JP3735068B2 (en)
WO (1) WO2001073632A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034954A (en) * 2001-07-25 2003-02-07 Komatsu Ltd Management device for working machine
JP2003281365A (en) * 2002-03-20 2003-10-03 Omron Corp Remote maintenance server, transaction processor, and remote maintenance system
JP2004211884A (en) * 2002-12-26 2004-07-29 Volvo Construction Equipment Holding Sweden Ab Heavy equipment having oil contamination degree diagnosing function, oil contamination degree measuring system on network using the heavy equipment, and operation method
WO2006025913A1 (en) * 2004-08-25 2006-03-09 Caterpillar Inc. Systems and methods for self-service dispatch
JP2007114999A (en) * 2005-10-20 2007-05-10 Fujitsu Support & Service Kk Component exchange method and component exchange system
JP2010273344A (en) * 2010-05-24 2010-12-02 Komatsu Ltd Management apparatus for working machine
WO2013080709A1 (en) * 2011-12-02 2013-06-06 ヤンマー株式会社 Management server for remote monitoring system
JP2014105505A (en) * 2012-11-28 2014-06-09 Nichijo Manufacturing Co Ltd Work support system for operator of work vehicle
JP2015190114A (en) * 2014-03-27 2015-11-02 住友重機械工業株式会社 shovel support device and shovel
JP2016008416A (en) * 2014-06-24 2016-01-18 古河ロックドリル株式会社 Attachment operation monitoring device, and program for monitoring attachment operation
JP2018112065A (en) * 2018-04-25 2018-07-19 住友重機械工業株式会社 Shovel support device
JP2019133334A (en) * 2018-01-30 2019-08-08 トヨタ自動車株式会社 Information system, information processing method, and program
WO2020003629A1 (en) * 2018-06-27 2020-01-02 株式会社小松製作所 Maintenance assistance device, work machine, maintenance assistance system, and maintenance assistance method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535741A (en) * 1991-07-30 1993-02-12 Nec Corp Schedule table production system for maintenance work in equipment maintenance control
JPH05120291A (en) * 1991-10-24 1993-05-18 Hitachi Building Syst Eng & Service Co Ltd Maintenance patrol operation table generation device
JPH07294365A (en) * 1994-03-31 1995-11-10 Caterpillar Inc Method and apparatus for display of pump efficiency
JPH11153434A (en) * 1997-11-21 1999-06-08 Takahashi Works:Kk Vehicle monitoring monitor terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535741A (en) * 1991-07-30 1993-02-12 Nec Corp Schedule table production system for maintenance work in equipment maintenance control
JPH05120291A (en) * 1991-10-24 1993-05-18 Hitachi Building Syst Eng & Service Co Ltd Maintenance patrol operation table generation device
JPH07294365A (en) * 1994-03-31 1995-11-10 Caterpillar Inc Method and apparatus for display of pump efficiency
JPH11153434A (en) * 1997-11-21 1999-06-08 Takahashi Works:Kk Vehicle monitoring monitor terminal

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034954A (en) * 2001-07-25 2003-02-07 Komatsu Ltd Management device for working machine
JP4532789B2 (en) * 2001-07-25 2010-08-25 株式会社小松製作所 Work machine management device
JP2003281365A (en) * 2002-03-20 2003-10-03 Omron Corp Remote maintenance server, transaction processor, and remote maintenance system
JP2004211884A (en) * 2002-12-26 2004-07-29 Volvo Construction Equipment Holding Sweden Ab Heavy equipment having oil contamination degree diagnosing function, oil contamination degree measuring system on network using the heavy equipment, and operation method
WO2006025913A1 (en) * 2004-08-25 2006-03-09 Caterpillar Inc. Systems and methods for self-service dispatch
US7278567B2 (en) 2004-08-25 2007-10-09 Caterpillar Inc. Systems and methods for self-service dispatch
JP2007114999A (en) * 2005-10-20 2007-05-10 Fujitsu Support & Service Kk Component exchange method and component exchange system
JP2010273344A (en) * 2010-05-24 2010-12-02 Komatsu Ltd Management apparatus for working machine
WO2013080709A1 (en) * 2011-12-02 2013-06-06 ヤンマー株式会社 Management server for remote monitoring system
JP2014105505A (en) * 2012-11-28 2014-06-09 Nichijo Manufacturing Co Ltd Work support system for operator of work vehicle
JP2015190114A (en) * 2014-03-27 2015-11-02 住友重機械工業株式会社 shovel support device and shovel
JP2016008416A (en) * 2014-06-24 2016-01-18 古河ロックドリル株式会社 Attachment operation monitoring device, and program for monitoring attachment operation
JP2019133334A (en) * 2018-01-30 2019-08-08 トヨタ自動車株式会社 Information system, information processing method, and program
JP2018112065A (en) * 2018-04-25 2018-07-19 住友重機械工業株式会社 Shovel support device
WO2020003629A1 (en) * 2018-06-27 2020-01-02 株式会社小松製作所 Maintenance assistance device, work machine, maintenance assistance system, and maintenance assistance method
JP2020002593A (en) * 2018-06-27 2020-01-09 株式会社小松製作所 Maintenance supporting device, working machine, maintenance supporting system, and maintenance supporting method
CN112135946A (en) * 2018-06-27 2020-12-25 株式会社小松制作所 Maintenance support device, work machine, maintenance support system, and maintenance support method
CN112135946B (en) * 2018-06-27 2022-09-02 株式会社小松制作所 Maintenance support device, work machine, maintenance support system, and maintenance support method
JP7281875B2 (en) 2018-06-27 2023-05-26 株式会社小松製作所 MAINTENANCE SUPPORT DEVICE, WORKING MACHINE, MAINTENANCE SUPPORT SYSTEM AND MAINTENANCE SUPPORT METHOD

Also Published As

Publication number Publication date
JP3735068B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
KR100487598B1 (en) Failure measure outputting method
KR100523228B1 (en) Working machine, trouble diagnosis system of working machine, and maintenance system of working machine
US9637891B2 (en) Management server for working machine and management method for working machine
US10319347B2 (en) Industrial vehicle management system
KR101114724B1 (en) Operation information control device for construction machine and construction machine operation information control system provided with it
KR100658817B1 (en) Method for locating construction machine, position plotting system, and construction machine
WO2001073632A1 (en) Patrol service schedule preparation method, preparation system and preparation device
JP3834511B2 (en) Work machine operating data transmission method and apparatus
EP1273723B1 (en) Method for measuring actual operation hours of work machine placed in work field, data collecting/managing system, and base station
CN104749982B (en) Engineering machinery electronic controller and control method based on GPS/GIS
KR20060134163A (en) Display device for construction machine
CN111424756A (en) Multifunctional portable information terminal for excavator
JP2002180502A (en) Controller for working machine and communication device for working machine
JP2999658B2 (en) Mobile work machine management system
CN201671130U (en) Vehicle-mounted intelligent information terminal system
JP4897152B2 (en) Construction machine failure diagnosis method and construction machine failure diagnosis system
WO2002006592A1 (en) Electronic control system of construction machinery
JPH06330539A (en) Controlling system for mobile working machine
JPH08144312A (en) Control system for mobile working machine
JP3836726B2 (en) Work machine report creation method, creation system, and creation device
JPH08273015A (en) Managing system for rental working machine
JPH1046631A (en) Maintenance and control system for mobile working machine
JP2000099143A (en) Managing system for mobile working machine
JP4711321B2 (en) Work machine maintenance system using two-way communication
EP1273722A1 (en) Construction machine managing system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase