WO2001070630A2 - Procede de fabrication de zeolites d'aluminosilicate a teneur en aluminium elevee, de zeolites microcristallines et agregats macroscopiques de celles-ci - Google Patents

Procede de fabrication de zeolites d'aluminosilicate a teneur en aluminium elevee, de zeolites microcristallines et agregats macroscopiques de celles-ci Download PDF

Info

Publication number
WO2001070630A2
WO2001070630A2 PCT/US2001/009070 US0109070W WO0170630A2 WO 2001070630 A2 WO2001070630 A2 WO 2001070630A2 US 0109070 W US0109070 W US 0109070W WO 0170630 A2 WO0170630 A2 WO 0170630A2
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
source
aluminum
composition
silicate
Prior art date
Application number
PCT/US2001/009070
Other languages
English (en)
Other versions
WO2001070630A3 (fr
Inventor
Steven M. Kuznicki
Tadeusz W. Langner
Jacqueline S. Curran
Valerie A. Bell
Original Assignee
Engelhard Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/533,771 external-priority patent/US6451283B1/en
Priority claimed from US09/533,606 external-priority patent/US6413492B1/en
Priority claimed from US09/533,707 external-priority patent/US6416732B1/en
Application filed by Engelhard Corporation filed Critical Engelhard Corporation
Priority to AU2001249319A priority Critical patent/AU2001249319A1/en
Publication of WO2001070630A2 publication Critical patent/WO2001070630A2/fr
Publication of WO2001070630A3 publication Critical patent/WO2001070630A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof

Definitions

  • This invention relates to zeolitic molecular sieve compositions characterized by outstanding capability to complex multivalent cations, especially calcium.
  • the invention relates to zeolitic molecular sieve compositions, especially those based on molecular sieves having a high aluminum content, in which the zeolites are characterized by novel particulate morphology.
  • the invention also relates to novel methods of forming zeolites to increase rates of zeolite crystallization, provide the novel morphology and provide a direct effect on sequestration performance.
  • zeolite molecular sieves have taken a dominant role as the water softening builder component of most detergents.
  • Environmentally "friendly" zeolites have been a poor substitute for phosphates from a performance standpoint, having both lower calcium and magnesium sequestration capacities as well as much lower rates of sequestration.
  • the sequestration properties of zeolites arise from their ability to ion exchange. This ion-exchange ability derives from tetrahedral AI(III) inherent in classical zeolite frameworks. Each aluminum induces one negative charge on the framework which is counterbalanced by an exchangeable cationic charge.
  • exchange capacity is limited by the aluminum content and "detergent" zeolites have been restricted to the relatively short list of "high aluminum” zeolites.
  • the Si/Al ratio of a zeolite may not be lower than 1.0 and concomitantly, the aluminum content may not exceed 7.0 meq per gram for an anhydrous material in the sodium form.
  • This capacity may alternatively be expressed as 197 mg CaO per gram zeolite (anhydrous) when water softening is the desired exchange reaction.
  • Zeolites demonstrating this maximum aluminum content include Zeolite A, high aluminum analogs of Zeolite X and high aluminum analogs of gismondine (often referred to as Zeolite B, P or MAP) .
  • silicates to complex ions such as calcium and magnesium are inversely proportional to silicate chain length and directly proportional to the electronic charge on that chain fragment.
  • Silicates depolymerize with increasing alkalinity. At moderate pH (where wash cycles are conducted) silicates are polymeric. However, at much higher pH's silica not only becomes predominantly monomeric, but that monomer may possess multiple charges. If such small, highly charged silicate fragments could be exposed to solutions bearing multivalent cations, very powerful high capacity sequestration agents would result.
  • U.S. Pat. No. 5,948,383 Korean, et . al .
  • zeolites of this patent have been characterized as hybrid zeolite-silica compositions (HZSC) which demonstrate unusual and beneficial properties in complexing multivalent cations.
  • HZSC hybrid zeolite-silica compositions
  • Such hybrid materials are prepared by crystallizing high aluminum zeolites in highly alkaline/high silica environments. Chemical analysis indicates an excess of silicate in these species beyond that inherent to their crystalline frameworks.
  • Such materials demonstrate sequestration capacities for cations such as calcium which not only exceed the amount of zeolitic aluminum available for ion-exchange, but in fact, may exceed the theoretical limit possible for a zeolite. These materials and their properties must be considered something distinctly different than zeolitic. Such compositions show extreme promise as water softening agents and detergent builders and may find other applications in complexing multivalent cations such as in the removal of calcium from sugars and fatty oils or in removing heavy metal such as lead from various streams .
  • silicate units are introduced during synthesis of said hybrid zeolite-silica compositions by providing an environment wherein silica in the reaction mixture is depolymerized to highly charged predominantly monomeric units before crystallization begins.
  • occluded silicate units are readily visible in 29 Si NMR spectra. Such units are much more powerful in complexing multivalent cations than existing silicate compositions used for that purpose.
  • the zeolite framework and occluded silicate units act in concert, as a new type of hybrid composition, showing properties neither zeolites, silicates nor physical blends of the two demonstrate. In addition to high capacity, these new hybrid compositions demonstrate unusually rapid rates of sequestration, a critical parameter in applications such as detergent building.
  • zeolite A While zeolite A, by definition, contains equimolar aluminum and silicon in its framework structure and thus the maximum possible zeolite ion-exchange capacity, useful ion-exchange capacity in most processes, however, is a dynamic function based on inherent capacity, ion selectively and kinetics of exchange. While zeolite A is a fixed composition with a fixed exchange capacity and fixed ion selectivities, the kinetics of exchange vary widely with the physical and morphological properties of zeolite A crystals and the aggregates into which they are formed. Microcrystalline zeolite A has long been known to improve exchange kinetics, but these submicron particles tend to stick to fabric in a wash cycle rendering such kinetically enhanced builders essentially unusable in real world detergent applications. Submicron microcrystals grown into macroscopic aggregates would solve this problem, yielding the kinetic advantages of microcrystalline exchangers and the handling/non-sticking properties of macroscopic ensembles .
  • Zeolites including zeolite A, zeolite X and high aluminum analogs, as well as high aluminum analogs of gismondine, e.g. zeolite B, P and MAP, among others can be provided with the novel particulate morphology of this invention.
  • the synthesis of zeolite A has been well established owing to its wide employment as an ion-exchange agent, especially useful in water softening applications such as detergent building. With a Si/Al ratio of 1.00, the lowest possible for a zeolite according to the Rule of Lowenstein, high aluminum environments have generally been used in manufacture. The employment of a silica- enriched environment is counter- intuitive for the synthesis of such high aluminum materials.
  • silica-enriched environment instills several properties in a synthesis mixture.
  • Such enhanced alkalinity/electrolyte levels are well known to promote the nucleation of zeolite seed crystals.
  • silica-enhanced environments promote retention of macroscopic particle integrity in the synthesis of aluminosilicates .
  • This elevation in electrolyte concentration may be accomplished by the addition of soluble salts to the synthesis mixture.
  • soluble salts include Na 2 C0 3 , TSPP, Na 2 B 4 0 7 , as well as ordinary table salt (NaCl) .
  • Such salt addition causes the formation of smaller submicron crystals (as manifested by increased exterior surface area) without reduction of aggregate particle size (typically 1-5 microns) .
  • the superior water softening properties are especially observed in the enhanced rate of ion-exchange kinetics. This effect has been demonstrated for both zeolite P and zeolite A HZSC- analogs and is most likely applicable to other HZSC materials.
  • An additional advantage of the intentionally elevated electrolyte level in HZSC synthesis mixtures is in the enhanced rate of reaction during zeolite formation. As a consequence shortened reaction times and/or reduction in reaction temperatures, may favorably impact the economics of HZSC manufacture. While this effect has been demonstrated for HZSC, it is likely that it is directly applicable to classical zeolite synthesis. Thus, it would be expected that crystals of zeolite (for example zeolite A) grown at elevated electrolyte levels would be smaller than those grown under equivalent conditions without salt addition. For the synthesis of in situ zeolite particles, this might well result in an alternative means to prepare macroscopic aggregates of microcrystalline zeolites.
  • Figures 1A-1B micrographs of particles of commercial zeolite A and zeolite A particles of this invention as formed from Example 15, respectively.
  • Figure 2 contrasts 29 Si NMR for "wet” and “dry” samples of a hybrid zeolite-silica composition as presented in Example 3.
  • the curve A is for "dried” zeolite and indicates the unit cell is tetragonal which shifts both peaks downfield.
  • Curve B is for "wet" zeolite and shows the unit cell is pseudocubic which shifts both peaks upfield.
  • the zeolite peak ratios stay constant during the shift. However, there is always extra intensity present at -81 to -85 ppm, indicating a nonzeolitic component at that frequency consisting of 5 -15% of the total 29 Si NMR signal.
  • Figure 3 presents comparative 29 Si NMR tracings of various zeolites and hybrid zeolite/silica compositions (HZSC) .
  • A is the tracing of a gismondine type composition prepared in Example 2 and represents a prior art zeolite P prepared from metakaolin (COH) .
  • B&C are 29 Si NMRs of the HZSC products (Examples 3 and 10, respectively) .
  • D is the 29 Si NMR of zeolite A.
  • Figure 4 is a graph of a calcium sequestration rate test comparing calcium removal between commercial zeolite A and a zeolite A-based composition having been prepared by the process of this invention and having the particle morphology of this invention.
  • Figure 5 is a graph of a calcium sequestration rate test comparing calcium removal between two zeolite-based compositions, both of which have been prepared by the inventive process and have the novel particle morphologies of this invention, but in which one of the zeolite P-based compositions have been prepared with added electrolyte.
  • Figure 6 is a graph of a calcium sequestration rate test comparing calcium removal between two zeolite P- based compositions, both of which have been prepared by the inventive process and have the novel particle morphologies of this invention, in which both zeolite P- based compositions have been prepared with added electrolyte in which one of the compositions was prepared with more added salt then the other.
  • Figure 7 is a graph of a calcium sequestration rate test comparing calcium removal between a commercial zeolite A with zeolite A-based compositions prepared using various operating parameters, including parameters of this invention.
  • compositions of the invention can be prepared by processes disclosed in aforementioned U.S. Pat. No. 5,948,383, the entire contents of which is herein incorporated by reference. Such processes are directed to forming high aluminum zeolites surprisingly from reaction environments containing excess silica.
  • High aluminum zeolites in general, are defined as having a Si/Al ⁇ 1.1.
  • excess silica in the reaction mixture is herein defined as having a Si/Al > 1.1.
  • the zeolites of this invention are provided with the desired novel morphology by reacting a finely divided aluminum source such as a dried aluminosilicate gel or powdered gibbsite and, more preferably, solid clays such as finely divided metakaolin or even raw kaolin with concentrated silicate solutions at pH values above 12 at temperatures ranging from about ambient to about 100° C. and at atmospheric pressure.
  • a finely divided aluminum source such as a dried aluminosilicate gel or powdered gibbsite and, more preferably, solid clays such as finely divided metakaolin or even raw kaolin
  • concentrated silicate solutions at pH values above 12 at temperatures ranging from about ambient to about 100° C. and at atmospheric pressure.
  • the high silica reaction environment also suppresses the formation of iron oxide, probably by the formation of uncolored iron silicate. This allows "white" zeolites to be grown from natural reactants such as clays.
  • the ability to use raw reactants such as uncalcined kaolin may substantively impact the economic
  • zeolites contain occluded silicate and have been characterized as hybrid- zeolite silica compositions in commonly assigned U.S. Pat. Nos. 5,942,207 and 5,948,383. These hybrid zeolite- silica compositions have extraordinary capacity to complex multivalent cations such as calcium.
  • the reaction medium results in nucleation effects which minimize individual crystal sizes without concomitant reduction in overall zeolite particle or aggregate formation.
  • the morphology of the zeolite particles is believed to result in vastly improved rates of cation sequestration without disadvantageously altering particle size.
  • FIG. 1A is a micrograph of a commercial zeolite A in which each zeolite crystal is about 1-5 microns.
  • Figure IB is also a micrograph of zeolite A-based particles which have been formed using the high silica, high alkalinity environments in accordance with this invention (Example 15) .
  • the zeolite shown in Figure IB was formed using metakaolin as the aluminum source.
  • the zeolite particles as shown in Figure IB comprise macroscopic aggregates of zeolite microcrystals.
  • each aggregate is formed in-situ and has a size of about 1-5 microns similar to the size of the individual crystals of the commercial zeolite A.
  • each aggregate as shown in Figure IB is formed of a multiple of submicron zeolite crystals each having a size of from about .05 to 0.5 micron.
  • the submicron crystals grown into macroscopic aggregates yield the kinetic advantages of microcrystalline exchange and the handling and non-sticking properties of the larger size particles.
  • the outstanding cation sequestration rates found with the zeolites and HZSC analogs of this invention are shown below in the examples.
  • the novel zeolite aggregates of microcrystals have a considerably higher surface area then conventional zeolite macrocrystals .
  • Typical surface areas (BET) of at least 10 m 2 /g, and preferably 40 m 2 /g and higher are found with the novel zeolites and HZSC analogs of this invention. This compares with surface areas of less than 5 m 2 /g of conventionally prepared and commercial zeolites such as A.
  • the improvement in sequestration rates found with the aggregates of microcrystalline zeolites and HZSC analogs of this invention is also believed due to the higher level of large pore volume of these materials relative to conventionally prepared zeolites.
  • the zeolites of novel morphology have a pore volume of greater than 0.01 cm 3 /gm, preferably at least 0.04 cm 3 /gm, among pores having greater than a 200 angstrom radius.
  • the zeolite compositions of this invention include zeolitic molecular sieves that have a high Al 2 0 3 /Si0 2 molar ratio, e.g., Si0 2 /Al 2 0 3 molar ratios of 3 or below, preferably in the range of 2 to 3.
  • Zeolitic species which can be produced by the methods of this invention and be formed into macroscopic aggregates of microcrystalline zeolites include type P (also referred to as type B) , zeolite A, faujasite type such as high alumina X types, chabazite analogs and mixtures thereof and their HZSC analogs.
  • the procedure for making the high aluminum zeolites and HZSC analogs of this invention involves the use of the counter-intuitive high silica, i.e. Si/Al ⁇ l.l, reaction medium which also includes an excessive alkalinity content beyond what has traditionally been used to form the desired zeolites.
  • the aluminum source needs to be added last to the reaction mixture.
  • a variety of aluminum sources including solid sources, can be used to form zeolites having the novel morphologies of this invention.
  • Such sources include dried silica-alumina gels, alumina, alumina-containing minerals (gibbsite) and clays such as calcined kaolin and even raw uncalcined kaolin, offering possible significant economic advantages in zeolite production.
  • the zeolite crystals are washed thoroughly with water, preferably deionized water, to remove sodium and spurious silica from the crystal surfaces. In some cases, some replacement of sodium by hydrogen may take place during washing.
  • the crystals can be washed with solutions other than those of pure water. Up to about 40% by weight of the silica content of the washed crystals is due to the occluded silicate species. Usually up to about 20% by weight of the silica content of the zeolite will be occluded silicate.
  • the total Si0 2 analysis as determined by conventional chemical analytic means exceeds that of the Si0 2 that would be expected based on the framework silica content as indicated by x-ray powder patterns and 29 Si NMR analysis of the composition.
  • the occluded silicate portion of this silica is readily ascertained from the 29 Si NMR peaks at about -81 to -85 ppm.
  • 29 Si NMR has become a standard technique in the analysis of zeolites and related materials.
  • the utility of this technique is based on the fact that different frequencies correspond to different electronic environments around the silicon, typically affected in zeolites by the chemistry of neighboring atoms and/or Si--0 bond angles. It detects all silicon species present, not just those associated with long range crystallinity. This makes it sensitive to species that may not be detected by XRD.
  • zeolite compositions which contain up to 40 wt . % of the total silica as occluded non-zeolite framework silicate have been characterized as hybrid zeolite-silica compositions in commonly assigned U.S. Pat. Nos.
  • the morphology of the zeolite and analagous HZSC compositions produced from the high silica, high alkaline reaction medium is highly determinative in providing the zeolite with vastly improved sequestration capabilities, in particular, in the rate of sequestration. Rapid calcium sequestration is most important to effective employment of surfactants in detergent building.
  • the macrocrystalline aggregates of microcrystalline zeolites of this invention can rapidly complex with multivalent cations such as calcium. Accordingly, after crystallization from the high silica, high alkaline reaction medium, the zeolites can be washed to remove sodium and spurious silica from the crystal surfaces to provide a non-zeolite silicate content of up to 40 wt.
  • compositions of the zeolitic molecular sieves and occluded silicate may be represented by the molar formula:
  • x is 2.05 to 2.90 in the case of chabazite; and y is 0-20.
  • compositions contain up to about 40% by weight of the Si0 2 of x as non-zeolitic silicate detectable by 29 Si NMR, the occluded silicate being predominately within the crystals of said molecular sieve.
  • the compositions preferably contain less than 20% by weight, and more preferably, equal to or less than 5% by weight of Si0 2 of x as non-zeolite silicate if faster sequestration rates are desired over complexing capacity.
  • the zeolites formed by the processes of this invention and having the novel morphology and including HZSC materials can be provided with improved sequestration rates by elevating the electrolyte concentration in the synthesis mixtures beyond that inherent to the caustic necessary for synthesis.
  • the high silica, high alkaline environment is further provided with an additional electrolyte concentration.
  • electrolytes can be salts selected from among the group consisting of nitrates, phosphates, bicarbonates, carbonates, borates, nitrites, sulphates, chlorides, etc.
  • zeolite crystals grow around the salt nucleation sites.
  • the level of added salt or electrolyte into the reaction mixture can vary widely. However, it has been found that amounts of electrolyte corresponding to about 10% to about 100% by weight based on the aluminum-containing reactant yields the increased reaction rate and improvement in surface area of the zeolite which corresponds to the reduction in individual zeolite crystal size.
  • An additional advantage of intentionally elevating the electrolyte level in the zeolite synthesis mixtures in accordance with this invention is an enhanced rate of zeolite crystal and aggregate formation. Accordingly, the reaction time can be shortened or the reaction temperature can be reduced, both of which favorably impact on the economics of zeolite manufacture. While this effect has been demonstrated for the high silica, high alkaline environments used to make zeolites in the process of this invention, it is likely that the elevated electrolyte content would be directly applicable to classical zeolite synthesis. Thus, it would be expected that crystals of zeolite grown at elevated electrolyte levels would be smaller than those grown under equivalent conditions without salt addition. For the synthesis of in-situ zeolite particles, this might well result in an alternative means to prepare macroscopic aggregates of microcrystalline zeolites without the need for the high silica, high alkaline environments.
  • Hybrid zeolite-silica compositions were prepared and contrasted to high aluminum zeolite and silica standards. The following examples also illustrate the improved sequestration capacities and rates found with the zeolite and HZSC analog compositions of this invention.
  • High aluminum versions of gismondine are the newest manifestation of high aluminum zeolite detergent builders .
  • Example 2 of U.S. Pat. No. 5,512,266 was replicated by the following procedure:
  • a sodium aluminate solution (containing 20% Al 2 0 3 , 20% Na 2 0 and 60% H 2 0) was prepared by dissolving 32.2 grams of sodium aluminate and 10.1 grams of NaOH in 57.5 grams of deionized water. This solution was then combined with 26.4 grams of NaOH and 264.3 grams of deionized water and placed in a constant temperature bath at 95° C.
  • a sodium silicate solution was prepared by dissolving 109.6 grams of N-Brand® sodium silicate
  • the characteristic XRD powder pattern was as described in U.S. Pat. No. 3,112,176 and was essentially indistinguishable from that described in U.S. Pat. No. 5,512,266. This material will hereafter be referred to as COH (Composition Of Haden) .
  • composition the following procedure was applied:
  • An XRD powder pattern essentially identical to that of Example 1 and 2 (characteristic of gismondine type zeolites) was obtained. This material will hereafter be referred to as an HZSC (Hybrid Zeolite Silica Composition) .
  • the aluminum content of a zeolite is expected to equal its cationic content in that each framework aluminum induces one net negative framework charge which is counterbalanced by cations in order to maintain electronic neutrality.
  • This extra sodium is a characteristic of HZSC and is believed to be the result of sodium in association with the occluded silicate species .
  • the average particle size (50% by weight finer than) of the crystalline product was 5.5 microns as determined by a Sedigraph® 5100.
  • a "calcium binding test" as described by Henkel (GB 1473 201) was conducted using the following procedure : In a Waring® blender mixer containing 1 liter of an aqueous solution of 0.594 g of CaCl 2 (equivalent to 300 mg of CaO per liter) adjusted to pH 10 with dilute NaOH, 1.0 gram of the test sequestrant (air equilibrated) was added. The sample was vigorously stirred by setting the Waring® blender to low speed for 15 minutes. After this period, the aluminosilicate was filtered off and the residual hardness (x) in mg CaO/liter was determined using a calcium ion selective electrode.
  • the theoretical maximum binding capacity for a zeolite in this test is 197 mg CaO/g anhydrous zeolite.
  • the results for the crystalline products of Examples 1, 2 and 3 in this test are listed below as Table 2.
  • the full sequestration capacity of the crystalline product of Example 3 (HZSC) at pH 10 was established by exchanging 3.0 grams of the material twice with 6.0 grams of CaCl 2 .2H 2 0 dissolved in 400 ml deionized water. The exchanges were each conducted for approximately 45 minutes at a temperature of 100° C. The sample was filtered and washed six times with approximately 100 cc deionized water to remove any spurious CaCl 2 . The sample was then dried at 100° C. for approximately 12 hours. The sample was then subjected to conventional X-ray fluorescence chemical analysis techniques.
  • P-type zeolites are well known to reversibly distort from pseudocubic to tetragonal unit cell symmetry upon drying, typically near 100° C.
  • the tetragonal unit cell material now showed its strongest peak downshifted to -79.7 ppm and a second very asymmetric peak at circa -81 to -85 ppm which appeared to be a composite of the secondary MAP zeolite peak downshifting and the unidentified peak previously seen at -81 to -85 ppm as a shoulder to the major zeolitic peak.
  • EXAMPLE 7 In order to assess the relative performance of an HZSC versus zeolite as a water softening agent in mixtures resembling wash water, sequestration tests were conducted in mixed calcium/magnesium solutions at 35° C. and pH 10. 1.5 liter charges of 1.03 molar calcium plus magnesium solutions were buffered with glycine solutions to a pH of 10. The Ca:Mg molar ratio was established at 3:1. The test hardness solutions were heated to 35° C. in a constant temperature bath at which point 0.45 gram charges of air equilibrated test sequestrants were added and the test mixtures agitated by an overhead stirrer at a rate of 200 rpm.
  • Total hardness concentration was monitored by an Orion Model 9332BN total hardness electrode connected to an Orion Model 720A pH meter. Both the "instantaneous" and “equilibrium” hardness removal of a sequestrant can be critical parameters depending upon the particular environment in which they are employed. Hardness removal at 15 seconds was taken as indicative of "instantaneous” hardness removal and readings at 15 minutes were taken as a measurement of "equilibrium” properties.
  • Example 3 behaves qualitatively differently, being both much more rapid than either zeolite sample and equilibrating at a much greater depth of hardness removal .
  • Example 3 Composition of Example 3, a 90%/l0% mixture of the MAP of Example 1 and SKS-6 state-of-the-art silica-based water softener was made and subjected to the test of Example 7. The 15 second and 15 minute hardness removal readings were 17% and 58% respectively, only trivially differing from the MAP sequestration results and not showing anything remotely resembling the superior performance of the hybrid composition.
  • Zeolite A was selected because it is the "standard" of the detergent zeolite industry. Zeolite A was synthesized from metakaolin by the following procedure :
  • An alkaline silicate solution was prepared by dissolving 175.0 grams of NaOH and 99.0 grams of NBrand® sodium silicate in 522.8 grams deionized water. After mixing and preheating the mixture to 80° C, 109.5 grams Metamax® metakaolin was added and the mixture reacted by stirring for one hour at 80° C. in a constant temperature bath. The resultant product was filtered and washed three times with 1000-ml lots of deionized water. The sample was then dried overnight in a forced air oven at 100° C. The product of this example demonstrated a strong, clean XRD powder pattern characteristic of Zeolite A.
  • EXAMPLE 11 Zeolite A and the HZSC of Example 10 were subjected to 29 Si NMR in order to assess the presence of occluded silicate species comparable to those of the HZSC of
  • Example 3 Comparative NMR are presented as Figure 3. Unlike gismondine-type materials, Zeolite A does not possess a peak in the region of -81 to -85 ppm and a comparison of Zeolite A to the HZSC of Example 10 clearly shows the occluded silicate species as is found in the HZSC of Example 3. The clear peak at -81 to -85 ppm. represents approximately 40% of the silica of the base Zeolite A structure and in fact, may be so high that it limited the "equilibrium" sequestration capacity of the material of Example 10 by physically filling many of the cavities .
  • the powder XRD pattern for the product of this example was that of a highly crystalline material of gismondine-type structure, consistent with that of Example 3.
  • the silicon NMR lacked the shoulder on the main -86.5 ppm peak which is indicative of the peak at -81 to -85 ppm associated with the non-crystalline occluded silicate of HZSC.
  • an exhaustive calcium exchange was conducted in accordance with the procedure of Example 5. Analysis of the exhaustively exchanged sample yielded 18.5% CaO, 45.1% Si0 2 and 34.0% A1 2 0 3 on a dry weight basis.
  • the material contained approximately 7.50 meq/g Si, 6.67 meq/g Al and 6. 60 meq/g Ca.
  • the Ca/Al meq/g ratio approaching 1.0 is consistent with a high degree of exchange onto the aluminum sites of classical zeolite without the additional effect of the complexing silica.
  • the calcium capacity of 6.0 meq/g is consistent with a classical zeolite at a Si/Al ratio of 1.10- 1.15, and is not consistent with the above 7.0 meq/g loadings associated with HZSC's.
  • the product of this example was found to be a high aluminum version of Zeolite P and not an HZSC. This was surprising in that the reactants and their ratios, as well as the reaction time and temperature, for this example were identical to that of Example 3, albeit on a larger scale. In a search for differences between the method of preparation of this larger lot with apparently equivalent laboratory scale lots, an inconsistency was noted. In all successful HZSC's preparations water, caustic and silicate had been mixed and brought to crystallization temperature with addition of metakaolin as the last step. The hypothesis was advanced that depolymerization of silicate to form predominantly monomeric silicate units might be a necessary step before overall reaction began and that preparation of the highly alkaline silicate solution before reaction with the aluminum source might be required. With this working hypothesis the following example was conducted.
  • EXAMPLE 13 An identical mixture to that of Example 12 was prepared but in a different order of addition/reaction. 74.97 pounds of deionized water, 42.7 pounds of 50% NaOH solution and 14.12 pounds of N-brand® sodium silicate were combined and heated under agitation to 72° C. in the same 25-gallon stainless steel reactor of the previous example. After an equilibration period of 30 minutes to allow silicate depolymerization, 20.0 pounds of Luminex brand metakaolin was added and the mixture reacted under vigorous agitation for 8 hours at 72° C. After the reaction period, the product was subsequently washed and filtered on several large pan filters including multiple reslurries and rinses with substantial excess of deionized water.
  • the powder XRD pattern for this product was that of a highly crystalline material of a gismondine type structure, consistent with that of Example 12.
  • the silicon NMR showed a clear shoulder to the main peak at -81 to -85 ppm which is characteristic of an HZSC.
  • Example 12 With the NMR indication of occluded silicate, exhaustive calcium exchange was conducted as in Example 12. Analysis of the exhaustively exchanged sample yielded 23.8% CaO, 43.2% Si0 2 and 31.4% Al 2 0 3 on a dry weight basis. Thus, the material contained approximately 7.20 meq/g Si, 6.16 meq/g Al and 8.49 meq/g Ca.
  • the Ca/Al meq/g ratio approaching 1.4 is consistent with that of an HZSC and not consistent with that of a zeolite which is limited to 1.0 as noted in Example 12.
  • the calcium capacity approaching 8.5 meq/g is consistent with an HZSC and inconsistent with the 7.0 meq/g theoretical limit noted for zeolites.
  • the product of this example was found to be an HZSC and not merely a high aluminum version of Zeolite P as prepared in Example 12 in spite of the fact that both were prepared using identical reactants, reaction times and temperatures and crystallization/washing equipment. It is therefore apparent that the order of reactant addition and probably full depolymerization of silicate are needed in the formation of HZSC.
  • EXAMPLE 14 In an attempt to demonstrate that aluminum sources other than metakaolin may be employed in the formation of HZSC, an aluminosilicate gel with gross composition approaching a 1:1 Si/Al was prepared by dissolving 2.95 kg of NaA10 2 in 14.0 kg deionized water. To this was added 7.45 kg N-Brand® sodium silicate. The resultant gel was beaten to a homogeneous appearing consistency utilizing a high shear blade. The homogenized gel was poured into stainless steel pans and dried in an oven overnight at 100° C. A portion of this dried gel was pulverized and employed as an HZSC reactant.
  • Example 15 A zeolite A-based material as formed in Example 15 was formed with the listed substituents and following procedure. In this Example, an added salt is incorporated into the reaction mixture. H 2 0 467 grams
  • the above materials were mixed together in a plastic jar except for the metakaolin.
  • the mixer was set at high speed (2000 rpm) and run at 65° C. to dissolve and homogenize the reactants.
  • the metakaolin was subsequently added and the mixture allowed to react for four hours. The shortened time is possible because the salt (sodium carbonate) accelerates the reaction.
  • the product was filtered and washed four times and dried at 100° C. overnight. The dried product was declumped with a 020 screen/1 pass in the micro pulverizer mill.
  • zeolite A-based material within this invention is formed with an alternative aluminum source and added electrolyte. Part 1
  • Part 1 The materials in Part 1 were mixed together at high speed in a plastic jar. Part 2 was mixed similarly in a separate plastic jar. Both separated mixtures were subsequently allowed to react for four hours at 65° C. Part 2 was added to Part 1 and reacted for an additional two hours. The product was filtered and washed four times and dried at 100° C. overnight. The dried product was declumped with 020 screen/l pass in the micro pulverizer mill.
  • EXAMPLE 18 A zeolite P-based material was formed with the substituents and procedure set forth below. H 2 0 467 grams
  • EXAMPLE 19 A zeolite P was formed as above with the exception that the silicate level was reduced and trisodium polyphosphate (TSPP) was added. The formulation is set forth below. The procedure followed that set forth in Example 18.
  • TSPP trisodium polyphosphate
  • TSPP 67 grams XRD showed a zeolite P-based product. Chemical analysis showed an occluded silicate content of about 10 wt. % based on total silica. No levels of occluded TSPP were found.
  • EXAMPLE 20 The same procedure as Example 19 was followed to form a zeolite P-based material. In this Example, sodium carbonate replaced the trisodium polyphosphate. The formulation is provided below.
  • Example 19 was followed with the following formulation to make zeolite P-based material. In this Example, additional TSPP was added. The formulation is set forth below.
  • the hardness sequestration rate test was conducted as in Example 7 with a solution containing a calcium molar concentration of 1.03 or 6 grains per gallon.
  • Figure 5 graphs the results of calcium hardness removal using the respective materials.
  • the material which was prepared with the salt addition had a faster instantaneous hardness removal relative to the zeolite P- based material which was formed without added salt .
  • the difference in hardness removal remained steady from the instantaneous 15 seconds to the equilibrium hardness removal of 15 minutes.
  • the zeolite P- based material formed with salt addition removed 67% of the calcium hardness whereas the zeolite P-based material which was formed without salt removed approximately 57% of the calcium hardness.
  • the zeolite P-based material formed with added salt removed 92% of the calcium hardness whereas the zeolite P-based material formed without salt removed 88%.
  • Zeolite P-based material as prepared in Example 19 was compared with the zeolite P-based material of Example 21 to determine if additional amounts of added salt would further affect the sequestration performance of zeolite P.
  • a hardness sequestration test was run as in Example 7 and the results are graphed in Figure 6.
  • the added salt effect similar to the previous Example is found.
  • the calcium sequestration removal rate of the zeolite P-based material containing added salt is greater than the calcium sequestration removal rate of the zeolite P-based material which included salt but to a lesser degree.
  • the instantaneous hardness removal at 15 seconds was 51% for the zeolite P-based material with salt addition, but was substantially higher at 65% for the zeolite P-based material which was formed with a higher electrolyte concentration.
  • the difference between the rates was substantially maintained even at the equilibrium hardness removal level of 15 minutes wherein the zeolite P-based material formed with salt of Example 19 removed 75% of the calcium hardness whereas in the zeolite P-based material which was formed with added salt removed 81% of the calcium hardness.
  • the additional salt creates more nucleation sites for the zeolite-based crystals which results in smaller submicron crystals.
  • the zeolite-based particles which are formed are macrocrystalline particles of 1-5 microns size which contain the submicron crystals.
  • the improved kinetics of sequestration with the smaller zeolite crystallites is advantageously achieved along with the ability to handle the zeolite particles which are formed into the larger aggregates .
  • EXAMPLE 24 A hardness removal test was conducted on a solution containing 8 grains per gallon calcium at a temperature of 19° C. which represents a colder temperature than was run with the previous Examples. Comparisons of sequestration performance was made between a commercial zeolite A, a zeolite A-based material as formed in Example 15, a zeolite A-based material as formed in
  • Example 15 except that the reaction or crystallization time was only four hours instead of the eight hours of Example 15, and a zeolite A-based material which was formed as in Example 16 in which the zeolite A-based material was formed with salt addition and only a four hour crystallization time.
  • Figure 7 graphs the calcium hardness removal rate .
  • the zeolite A-based material with salt addition and the zeolite A-based material which did not have salt addition, but which was crystallized a full eight hours showed substantial improvement in the instantaneous hardness removal rate relative to the commercial zeolite A.
  • the zeolite A-based material formed in accordance with the procedure of this invention and which did not include salt addition and which was crystallized for only four hours did not perform nearly as well as even the commercial zeolite A. This is believed to be caused by the fact that the small zeolite crystals did not have a sufficient time to form and that the aggregate particle had a morphology quite different than the effective zeolites. What this Example shows is that the zeolites of this invention with the novel morphologies can be quite effective as builders in cold water laundry detergents relative to commercial zeolite A materials, which have been ineffective in this regard.
  • the Examples demonstrate the preparation of a new class of materials which demonstrate remarkable speed and thoroughness of multivalent cation complexation. This is especially useful in water so tening/detergent building applications. These properties appear to derive from the ability of zeolite cages to entrain and stabilize active, small, highly charged silicate species.
  • the zeolite framework and entrained silicate units act in concert as a new type of hybrid composition showing properties that neither zeolites, silicates nor physical blends of the two demonstrate. This technology is undoubtedly expandable to both other zeolite basestocks and complexation processes beyond water softening.
  • the rate of sequestration for multivalent cations can be improved even if only low levels of occluded silicate remains in the zeolite.
  • the morphology of the zeolites produced appears to have a profound and advantageous effect on hardness removal.
  • the aggregates of submicron particles which are formed have the advantageous complexing kinetics of the small submicron particles and the handling advantages of the 1-5 micron aggregates.
  • the zeolite-based materials of this invention are HZSCs, it is the morphology of the zeolite aggregate which is crucial to hardness removal performance.
  • all of the silica can be removed and sequestration rate enhanced over large crystal zeolites. It is useful to note that the presence of occluded silicate in the zeolite can be detected by 29 Si NMR as a shoulder present in the -81 to -85 ppm.
  • Detergent compositions incorporating the zeolite materials of the present invention typically contain as essential components from about 0.5% to about 98% of a surfactant and from about 2% to about 99.5% of detergency builders including the zeolites having the novel morphologies of the present invention.
  • Typical laundry detergent compositions within the scope of the present invention contain from about 5% to about 30% of a surfactant and from about 5% to about 80% total detergency builder including the zeolites of this invention. Of this builder component from about 20% to 100% by weight of builder component can be the zeolites of the present invention with the balance of the builder component being optional known builders. Detergent compositions herein may also contain from about 5% to 95% by weight of a wide variety of additional optional components.
  • Such optional components can include, for example, additional detergent builders, chelating agents, enzymes, fabric whiteners and brighteners, sudsing control agents, solvents, hydrotropes, bleaching agents, bleach precursors, buffering agents, soil removal/anti-redeposition agents, soil release agents, fabric softening agents, perfumes, colorants and opacifiers .
  • additional detergent builders chelating agents, enzymes, fabric whiteners and brighteners, sudsing control agents, solvents, hydrotropes, bleaching agents, bleach precursors, buffering agents, soil removal/anti-redeposition agents, soil release agents, fabric softening agents, perfumes, colorants and opacifiers .
  • the detergent compositions of this invention can be prepared in various solid physical forms.
  • detergent compositions of this invention are particularly suitable for laundry use.
  • typical laundry wash water solutions comprise from about 0.1% to about 1% by weight of the zeolite builders of this invention.
  • Laundry additive compositions of the present invention contain as essential components from about 2% to about 99.5% of the zeolite and further contains from about 0.5% to 98% by weight of a laundry adjuvant selected from the group consisting of surfactants, alternate builders, enzymes, fabric whiteners and brighteners, sudsing control agents, solvents, hydrotropes, bleaching agents, bleach precursors, buffering agents, soil removal/antideposition agents, soil release agents, fabric softening agents, perfumes, colorants, opacifiers and mixtures of these adjuvants.
  • a laundry adjuvant selected from the group consisting of surfactants, alternate builders, enzymes, fabric whiteners and brighteners, sudsing control agents, solvents, hydrotropes, bleaching agents, bleach precursors, buffering agents, soil removal/antideposition agents, soil release agents, fabric softening agents, perfumes, colorants, opacifiers and mixtures of these adjuvants.
  • Such adjuvants whether used in the detergent or laundry additive composition
  • surfactants Various types of surfactants can be used in the detergent or laundry additive compositions of this invention.
  • Useful surfactants include anionic, nonionic, ampholytic, zwitterionic and cationic surfactants or mixtures of such materials.
  • Detergent compositions for laundry use typically contain from about 5% to about 30% anionic surfactants, mixtures of anionic and non-ionic surfactants or cationic surfactants .
  • the various classes of surfactants useful in the detergent and laundry additive compositions herein are exemplified as follows:
  • This class of surfactants includes alkali metal mono-carboxylates (soaps) such as the sodium, potassium, ammonium and alkylolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms and preferably from about 12 to about 18 carbon atoms.
  • Suitable fatty acids can be obtained from natural sources such as, for instance, from plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease, lard, and mixtures thereof) .
  • the fatty acids also can be synthetically prepared (e.g., by the oxidation of petroleum, or by hydrogenation of carbon monoxide by the Fischer-Tropsch process) .
  • Resin acids are suitable such as rosin and those resin acids in tall oil. Naphthenic acids are also suitable.
  • Sodium and potassium soaps can be made by direct saponification of the fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixtures of fatty acids derived from coconut oil and tallow, i.e., sodium or potassium tallow and coconut soap. Soaps and fatty acids also act as detergency builders in detergent compositions because they remove multivalent ions by precipitation.
  • Anionic surfactants also include water-soluble salts, particularly the alkali metal and ethanolamine salts of organic sulfuric reaction products having in their molecular structure an alkyl radical containing from about 8 to about 22 carbon atoms and a sulfonic acid or sulfuric acid ester radical. (Included in the term alkyl is the alkyl portion of alkylaryl radicals) .
  • alkyl sulfates especially those obtained by sulfating the higher alcohols (C 8 -C ⁇ 8 carbon atoms) ; alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about 15 carbon atoms, in straight chain or branched chain configuration, sodium alkyl glyceryl ether sulfonates; fatty acid monoglyceride sulfonates and sulfates / sulfuric acid esters of the reaction product of one mole of a C12-18 alcohol and about 1 to 6 moles of ethylene oxide and salts of alkyl phenol ethylene oxide ether sulfate with about 1 to about 10 units of ethylene oxide per molecule and in which the alkyl radicals contain about 8 to about 12 carbon atoms .
  • non-soap anionic surfactants are the reaction products of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide where, for example, the fatty acids are derived from coconut oil and sodium or potassium salts of fatty acid amide of methyl lauride in which the fatty acids, for example are derived from coconut oil.
  • Still other anionic surfactants include the class designated as succinamates. This class includes such surface active agents as disodium
  • N-octadecylsulfosuccinamate N-octadecylsulfosuccinamate; tetrasodium N- (1, 2-dicarboxyethyl)N-octadecylsulfo-succinamate; the diamyl ester of sodium sulfosuccinic acid; the dihexyl ester of sodium sulfosuccinic acid and the dioctyl ester of sodium sulfosuccinic acid.
  • Anionic phosphate surfactants are also useful in the detergent or laundry additive compositions of the present invention. These are surface active materials having substantial detergent capability in which the anionic solubilizing group connecting hydrophobic moieties is an oxy acid of phosphorus.
  • the more common solubilizing groups are -S0 4 H,-S0 3 H and -C0 2 H.
  • Alkyl phosphate esters such as (R-0) 2 P0 2 H and R0P0 3 H 2 in which R represents an alkyl chain containing from about 8 to about 20 carbon atoms are useful .
  • esters can be modified by including in the molecule from one to about 40 alkylene oxide units, e.g., ethylene oxide units.
  • alkyl ether sulfates are condensation products of ethylene oxide and monohydric alcohols having about 10 to about 20 carbon atoms. Preferably, R has 12 to 18 carbon atoms.
  • the alcohols can be derived from fats, e.g., coconut oil or tallow, or can be synthetic. Such alcohols are reacted with 0.5 to 30, and especially 1 to 6, molar proportions of ethylene oxide and the resulting mixture of molecular species, having, for example, an average of 3 to 6 moles of ethylene oxide per mole of alcohol, is sulfated and neutralized.
  • anionic surfactants are olefin and paraffin sulfonates having from about 12 to about 24 carbon atoms .
  • Alkoxylated nonionic surfactants may be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound, which may be aliphatic or alkyl aromatic in nature.
  • the length of the hydrophilic or polyoxyalkylene radical which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Alkoxylated nonionic surfactants include:
  • the polyethylene oxide condensates of alkyl phenols e.g., the condensation products of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the ethylene oxide being present in amounts of from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol .
  • the alkyl substituent in such compounds may be derived from polymerized propylene, diisobutylene, octene, or nonene, for example .
  • Non-polar nonionic surfactants include the amine oxides and corresponding phosphine oxides .
  • Useful amine oxide surfactants include those having the formula R x R 2 R 3 N ⁇ 0 wherein R 1 is an alkyl group containing from about 10 to about 28 carbon atoms, from 0 to about 2 hydroxy groups and from 0 to about 5 ether linkages, there being at least one moiety of R 1 which is an alkyl group containing from about 10 to about 18 carbon atoms and R 2 and R 3 are selected from the group consisting of alkyl radicals and hydroxyalkyl radicals containing from 1 to about 3 carbon atoms .
  • amine oxide surfactants include: dimethyldodecylamine oxide, dimethyltetradecylamine oxide, ethylmethyltetradecylamine oxide, cetyldimethylamine oxide, diethyltetradecylamine oxide, dipropyldodecylamine oxide bis- (2-hydroxyethyl) -dodecylamine oxide, bis- (2-hydroxypropyl) methyltetradecylamine oxide, dimethyl- (2-hydroxydodecyl) amine oxide, and the corresponding decyl, hexadecyl and octadecyl homologs of the above compounds .
  • Additional nonionic surfactants include alkyl glucosides and alkylamides.
  • Zwitterionic surfactants include derivatives of aliphatic quaternary ammonium, phosphonium, and sulfonium compounds in which the aliphatic moiety can be straight or branched chain and wherein one of the aliphatic substituents contains from about 8 to 24 carbon atoms and one contains an anionic water-solubilizing group.
  • Particularly preferred zwitterionic materials are the ethoxylated ammonium sulfanates and sulfates. Ammonioamidates are also useful zwitterionic surfactants .
  • Ampholytic surfactants include derivatives of aliphatic-heterocyclic secondary and tertiary amines in which the aliphatic moiety can be straight chain or branched and wherein one of the aliphatic substituents contains from about 8 to about 24 carbon atoms and at least one aliphatic substituent contains an anionic water-solubilizing group.
  • Cationic surfactants comprise a wide variety of compounds characterized by one or more organic hydrophobic groups in the cation and generally by a quaternary nitrogen associated with an acid radical . Pentavalent nitrogen ring compounds are also considered quaternary nitrogen compounds . Suitable anions are halides, methylsulfate and hydroxide. Tertiary amines can have characteristics similar to cationic surfactants at washing solutions pH values less than about 8.5. When cationic surfactants are used in combination with anionic surfactants and certain detergency builders including polycarboxylates , compatibility must be considered.
  • a type of cationic surfactant generally compatible with anionic surfactants and polycarboxylates is a Cg-is alkyl tri C ⁇ - 3 alkyl ammonium chloride or methyl sulfate.
  • the detergent and laundry additive compositions of the present invention optionally can contain detergency builders in addition to HZSC or novel morphological zeolite material.
  • Ether carboxylate compounds or mixtures described in U.S. Pat. No. 4,663,071 are useful.
  • Suitable polycarboxylate detergency builders include the acid form and alkali metal, ammonium and substituted ammonium salts of citric, ascorbic, phytic, mellitic, benzene pentacarboxylic, oxydiacetic, carboxymethyl-oxysuccinic, carboxymethyloxymalonic, cis-cyclohexanehexacarboxylic, ciscyclopentanetetracarboxylic and oxydisuccinic acids. Also suitable are polycarboxylate polymers and copolymers .
  • acrylic acid polymers and salts thereof and copolymers of acrylic and aleic acids and salts thereof which act as dispersants of particulate materials in wash solutions.
  • the polyacetal carboxylates can be incorporated in the detergent and laundry additive compositions of the invention.
  • Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds.
  • Polyphosphonate detergency builders comprise a large range of organic compounds having two or more -C-P0 2 M groups wherein M is hydrogen or a salt-forming radical.
  • Suitable phosphonates include ethane- 1 -hydroxy- 1, 1 -diphosphonates, ethanehydroxy- 1, 1, 2-triphosphonates and their oligo eric ester chain condensates.
  • Suitable polyphosphonates for use in the compositions of the invention also include nitrogen-containing polyphosphonates such as ethylenediaminetetrakis (methylenephosphonic) acid and diethylenetriaminepentakis (methylene-phosphonic) acid and alkali metal, ammonium and substituted ammonium salts thereof. In common with other phosphorus-containing components, the incorporation of phosphonates may be restricted or prohibited by government regulation.
  • C 8 -2 4 alkyl monocarboxylic acid and soluble salts thereof have a detergent builder function in addition to surfactant characteristics.
  • C 8 - 2 alkyl, alkenyl, alkoxy and thio-substituted alkyl dicarboxylic acid compounds such as 4 -pentadecene-1, 2 -dicarboxylic acid, salts thereof and mixtures thereof, are also useful optional detergency builders.
  • Inorganic detergency builders useful in the detergent and laundry additive compositions of this invention at total combined levels of from 0% to about 75% by weight include alkali metal phosphates, sodium aluminosilicates, including HZSC, alkali metal silicates and alkali metal carbonates.
  • Phosphate detergency builders include alkali metal orthophosphates which remove multivalent metal cations from laundry solutions by precipitation and the polyphosphates such as pyrophosphates, tripolyphosphates and water-soluble metaphosphates that sequester multivalent metal cations in the form of soluble complex salts or insoluble precipitating complexes.
  • Sodium pyrophosphate and sodium tripolyphosphate are particularly suitable in granular detergent and laundry additive compositions to the extent that governmental regulations do not restrict or prohibit the use of phosphorus -containing compounds in such compositions.
  • Granular detergent and laundry additive composition embodiments of the invention particularly adapted for use in areas where the incorporation of phoshorus-containing compounds is restricted contains low total phosphorus and, preferably, essentially no phosphorus.
  • aluminosilicate ion exchange materials other than HZSC, e.g., crystalline zeolites, other than HZSC, and amorphous aluminosilicates.
  • alkali metal silicates examples are available under the designation Zeolite A, Zeolite B (also referred to as Zeolite P) , conventional MAP, and Zeolite X.
  • Other optional builders include alkali metal silicates. Suitable alkali metal silicates have a mole ratio of Si0 2 alkali metal oxide in the range of from about 1:1 to about 4:1.
  • the alkali metal silicate suitable herein include commercial preparations of the combination of silicon dioxide and alkali metal oxide or carbonate fused together in varying proportions.
  • alkali metal silicate refers to silicate solids with any ratio of Si0 2 to alkali metal oxide.
  • Silicate solids normally possess a high alkalinity content; in addition water of hydration is frequently present as, for example, in metasilicates which can exist having 5, 6, or 9 molecules of water.
  • Silicate solids are frequently added to granular detergent or laundry additive compositions as corrosion inhibitors to provide protection to the metal parts of the washing machine in which the detergent or laundry additive composition is utilized.
  • Silicates have also been used to provide a degree of crispness and pourability to detergent or laundry additive granules which is very desirable to avoid lumping and caking.
  • Alkali metal carbonates are useful in the granular detergent or laundry additive compositions of the invention as a source of washing solution alkalinity and because of the ability of the carbonate ion to remove calcium and magnesium ions from washing solutions by precipitation.
  • Preferred granular compositions free of inorganic phosphates contain from about 8% to about 40% by weight sodium carbonate, from 0% to about 30% HZSC, from about 0.5% to about 10% sodium silicate solids, from about 5% to about 35% of ether carboxylate compounds and from about 10% to about 25% surfactant.
  • Granular detergent or laundry additive compositions of this invention can contain materials such as sulfates, borates, perborates, organic peroxy acid salts, peroxy bleach precursors and activators and water of hydration.
  • Laundry additive compositions of this invention can contain water and other solvents .
  • Low molecular weight pisopropanol are suitable.
  • Monohydric alcohols are preferred for solubilizing the surfactant but polyols containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups can be used and can provide improved enzyme stability.
  • polyols include propylene glycol, ethylene glycol, glycerine and 1, 2-propanediol. Ethanol is a particularly preferred alcohol .
  • the detergent or laundry additive compositions of the invention can also contain such materials as proteolytic and amylolytic enzymes, fabric whiteners and optical brighteners, sudsing control agents, hydrotropes such as sodium toluene, xylene or cumene sulfonate, perfumes, colorants, opacifiers, anti-redeposition agents and alkalinity control or buffering agents such as monoethanolamine and triethanolamine .
  • materials that provide clay soil removal/anti-redeposition benefits can also be incorporated in the detergent and laundry additive compositions of the invention. These clay soil removal/anti redeposition agents are usually included at levels of from about 0.1% to. about 10% by weight of the composition.
  • clay soil removal/anti-redeposition agents are the ethoxylated amines.
  • Another group of preferred clay soil removal/anti-redeposition agents are cationic compounds.
  • Other clay soil removal/anti-redeposition agents which can be used include the ethoxylated amine polymers . Polyethylene glycol can also be incorporated to provide anti-redeposition and other benefits.
  • Soil release agents such as disclosed in the art to reduce oily staining of polyester fabrics, are also useftil in the detergent and laundry additive compositions of the present invention.
  • Examples are copolymers of ethylene terephthalate and polyethylene oxide terephthalate as soil release agents.
  • Cellulose ether soil release agents and block polyester compounds are also useftil as soil release agents in detergent and laundry additive compositions.
  • the detergent and laundry additive compositions herein may also optionally contain one or more iron and magnesium chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally- substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined.
  • Amino carboxylates useful as optional chelating agents in compositions of the invention include ethylenediamine-tetraacetates , N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetrapropionates, diethylenetriaminepentaacetates, and ethanoldiglycines .
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions.
  • Compounds include ethylenediaminetetrakis (methylenephosphonates) , nitrilotris (methylenephosphonates) and diethylenetriaminepentakis (methylenephosphonates) .
  • these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms .
  • Alkylene groups can be shared by substructures .
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes and 1, 2-dihydroxy-3, 5- disulfobenzene or other disulfonated catechols in particular.
  • Alkaline detergent compositions can contain these materials in the form of alkali metal, ammonium or substituted ammonium (e.g., monoor triethanolamine) salts.
  • optional chelating agents will generally comprise from about 0.1% to 10% by weight of the detergent or laundry additive compositions herein. More preferably chelating agents will comprise from about 0.75% to 3% by weight of such compositions.
  • the detergent and laundry additive compositions of this invention can also include a bleach system comprising an inorganic or organic peroxy bleaching agent and, in preferred compositions, an organic peroxy acid bleach precursor.
  • Suitable inorganic peroxygen bleaches include sodium perborate monoand tetrahydrate, sodium percarbonate, sodium persilicate and urea-hydrogen peroxide addition products and the clathrate 4Na 2 S0 4 : 2H 2 0 : iNaCl .
  • Suitable organic bleaches include peroxylauric acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, diperoxydodecanedioic acid, diperoxyazelaic acid, mono- and diperoxyphthalic acid and mono- and diperoxyisophthalic acid.
  • the bleaching agent is generally present in the detergent and laundry additive compositions of this invention at a level of from about 5% to about 50% preferably from about 10% to about 25% by weight.
  • the detergent and laundry additive compositions of the invention may also contain an organic peroxy acid bleach precursor at a level of from about 0.5% to about 10%, preferably from about 1% to about 6% by weight.
  • Suitable bleach precursors include for example, the peracetic acid bleach precursors such as tetraacetylethylenediamme, tetraacetylmethylenediarnme, tetraacetylhexylenediamine, sodium p-acetoxybenzene sulfonate, tetraacetylglycouril, pentaacetylglucose, octaacetyllactose, and methyl o-acetoxy benzoate.
  • the alkyl group, R can be either linear or branched and, in preferred embodiments, it contains from 7 to 9 carbon atoms .
  • the bleach precursor (activator) herein will non-nally be added in the form of particles comprising finely divided bleach activator and a binder.
  • the binder generally selected from nonionic surfactants such as ethoxylated tallow alcohols, polyethylene glycols, onic surfactants, film forming polymers, fatty acids mixtures thereof .
  • nonionic surfactant binders the bleach activator being admixed with the binder and extruded in the form of elongated particles through a radial extruder.
  • the bleach activator particles can be prepared by spray drying.
  • novel zeolite compositions of the invention may also be utilized in other contexts wherein water hardness sequestration is required.
  • the zeolite compositions herein may be employed in water softener compositions, devices and methods. These materials also useful in boiler descaling compositions and methods .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

L'invention concerne des zéolites d'aluminosilicate fabriquées dans un nouveau milieu de réaction contenant une source de silicate et une source d'aluminium dans une solution aqueuse alcaline. Le rapport Si/Al du mélange de réaction étant d'au moins 1,0 et le milieu de réaction comprenant également un sel électrolytique supplémentaire. L'adjonction du sel électrolytique forme des sites de nucléation qui sont destinés à la zéolite de manière à former des cristaux de très petite taille. Dans des environnements à teneur en silicate élevée, il est possible de créer des zéolites à teneur en aluminium élevée contenant du silicate occlus, et dans lesquels la morphologie des zéolites comprend des agrégats macroscopiques de zéolites microcristallines. L'adjonction de sel électrolyte peut également permettre de réduire le temps de réaction ou la température nécessaire à la cristallisation. Les compositions zéolitiques décrites dans cette invention présentent une capacité exceptionnelle à complexer des cations polyvalents, en particulier le calcium, en raison de la cinétique d'échange élevée du composant de zéolite microcristalline. Toutefois, ces compositions sont d'utilisation facile en raison de l'assemblage d'agrégats macroscopiques.
PCT/US2001/009070 2000-03-23 2001-03-22 Procede de fabrication de zeolites d'aluminosilicate a teneur en aluminium elevee, de zeolites microcristallines et agregats macroscopiques de celles-ci WO2001070630A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001249319A AU2001249319A1 (en) 2000-03-23 2001-03-22 A method of forming high aluminum aluminosilicate zeolites, microcrystalline zeolites and macroscopic aggregates thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US09/533,606 2000-03-23
US09/533,771 2000-03-23
US09/533,771 US6451283B1 (en) 2000-03-23 2000-03-23 Macroscopic aggregates of microcrystalline zeolites
US09/533,707 2000-03-23
US09/533,606 US6413492B1 (en) 2000-03-23 2000-03-23 Method of forming high aluminum aluminosilicate zeolites
US09/533,707 US6416732B1 (en) 2000-03-23 2000-03-23 Method of forming aluminosilicate zeolites

Publications (2)

Publication Number Publication Date
WO2001070630A2 true WO2001070630A2 (fr) 2001-09-27
WO2001070630A3 WO2001070630A3 (fr) 2002-01-24

Family

ID=27415133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/009070 WO2001070630A2 (fr) 2000-03-23 2001-03-22 Procede de fabrication de zeolites d'aluminosilicate a teneur en aluminium elevee, de zeolites microcristallines et agregats macroscopiques de celles-ci

Country Status (2)

Country Link
AU (1) AU2001249319A1 (fr)
WO (1) WO2001070630A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026627A1 (fr) * 2000-09-25 2002-04-04 Engelhard Corporation Nouvelles compositions zeolithes de faujasite hexagonale a forte teneur en aluminium
WO2002048043A2 (fr) * 2000-12-14 2002-06-20 Engelhard Corporation Adoucisseur poreux d'eau statique contenant une composition hybride de zeolite-silicate
WO2002048040A2 (fr) * 2000-12-14 2002-06-20 Engelhard Corporation Agregats macroscopiques de zeolites microcristallines a utiliser pour l'adoucissement de l'eau statique
WO2002066381A2 (fr) * 2000-12-14 2002-08-29 Engelhard Corporation Procede d'adoucissement de l'eau statique utilisant des zeolites d'une nouvelle morphologie
WO2019059594A1 (fr) * 2017-09-22 2019-03-28 주식회사 엘지화학 Méthode de fabrication de nanoparticules d'aluminosilicate ayant une excellente dispersibilité, élément de renfort de caoutchouc contenant les nanoparticules d'aluminosilicate, et composition de caoutchouc comprenant ledit élément pour pneumatique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2376073A1 (fr) * 1976-12-30 1978-07-28 Rhone Poulenc Ind Nouveau silico-aluminate alcalin cristallin de type 4 a ainsi que son procede d'obtention et application
US4443422A (en) * 1978-12-20 1984-04-17 J. M. Huber Corporation Synthesis of zeolites of small and uniform size having a high magnesium exchange capacity
US5512266A (en) * 1988-11-03 1996-04-30 Unilever Patent Holdings Bv Aluminosilicates and detergent composition
US5525323A (en) * 1993-07-15 1996-06-11 Basf Aktiengesellschaft Pentasil zeolites agglomerated in the form of hollow spheres
US5948383A (en) * 1997-03-26 1999-09-07 Engelhard Corporation Hybrid zeolite-silica compositions

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2793375B2 (ja) * 1991-03-19 1998-09-03 株式会社神戸製鋼所 P型ゼオライトの製造方法
JP2793376B2 (ja) * 1991-03-19 1998-09-03 株式会社神戸製鋼所 A型ゼオライトの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2376073A1 (fr) * 1976-12-30 1978-07-28 Rhone Poulenc Ind Nouveau silico-aluminate alcalin cristallin de type 4 a ainsi que son procede d'obtention et application
US4443422A (en) * 1978-12-20 1984-04-17 J. M. Huber Corporation Synthesis of zeolites of small and uniform size having a high magnesium exchange capacity
US5512266A (en) * 1988-11-03 1996-04-30 Unilever Patent Holdings Bv Aluminosilicates and detergent composition
US5525323A (en) * 1993-07-15 1996-06-11 Basf Aktiengesellschaft Pentasil zeolites agglomerated in the form of hollow spheres
US5948383A (en) * 1997-03-26 1999-09-07 Engelhard Corporation Hybrid zeolite-silica compositions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 685 (C-1142), 15 December 1993 (1993-12-15) & JP 05 229814 A (KOBE STEEL LTD), 7 September 1993 (1993-09-07) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 700 (C-1145), 21 December 1993 (1993-12-21) & JP 05 238724 A (KOBE STEEL LTD), 17 September 1993 (1993-09-17) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026627A1 (fr) * 2000-09-25 2002-04-04 Engelhard Corporation Nouvelles compositions zeolithes de faujasite hexagonale a forte teneur en aluminium
WO2002048043A2 (fr) * 2000-12-14 2002-06-20 Engelhard Corporation Adoucisseur poreux d'eau statique contenant une composition hybride de zeolite-silicate
WO2002048040A2 (fr) * 2000-12-14 2002-06-20 Engelhard Corporation Agregats macroscopiques de zeolites microcristallines a utiliser pour l'adoucissement de l'eau statique
WO2002066381A2 (fr) * 2000-12-14 2002-08-29 Engelhard Corporation Procede d'adoucissement de l'eau statique utilisant des zeolites d'une nouvelle morphologie
WO2002048040A3 (fr) * 2000-12-14 2003-01-23 Engelhard Corp Agregats macroscopiques de zeolites microcristallines a utiliser pour l'adoucissement de l'eau statique
WO2002066381A3 (fr) * 2000-12-14 2003-01-23 Engelhard Corp Procede d'adoucissement de l'eau statique utilisant des zeolites d'une nouvelle morphologie
WO2002048043A3 (fr) * 2000-12-14 2003-12-18 Engelhard Corp Adoucisseur poreux d'eau statique contenant une composition hybride de zeolite-silicate
WO2019059594A1 (fr) * 2017-09-22 2019-03-28 주식회사 엘지화학 Méthode de fabrication de nanoparticules d'aluminosilicate ayant une excellente dispersibilité, élément de renfort de caoutchouc contenant les nanoparticules d'aluminosilicate, et composition de caoutchouc comprenant ledit élément pour pneumatique

Also Published As

Publication number Publication date
AU2001249319A1 (en) 2001-10-03
WO2001070630A3 (fr) 2002-01-24

Similar Documents

Publication Publication Date Title
US6451283B1 (en) Macroscopic aggregates of microcrystalline zeolites
EP0970017B1 (fr) Nouvelles compositions hybrides a base de zeolithe-silice
CA1062984A (fr) Suspensions aqueuses stables d'aluminosilicates insolubles dans l'eau, retenant le calcium, et d'agents de suspension organiques
CA1083916A (fr) Produit granulaire
CA1230797A (fr) Composition detergente
NO802171L (no) Fremgangsmaate til fremstilling av et vaske- og rensemiddel
JPS6052192B2 (ja) 洗剤組成物
US4169075A (en) Process for the production of powdery washing agents by spray-drying
US4179393A (en) Stable aqueous suspension of water-insoluble, calcium-binding aluminosilicates and organic suspending agents
US6416732B1 (en) Method of forming aluminosilicate zeolites
CA1052658A (fr) Lavage des textiles; produit comprenant des silicates inorganiques, et des polycarboxylates ou des polyphosphonates
WO1995000622A1 (fr) Compositions detergentes granulaires contenant des adjuvants selectionnes dans des proportions optimales
WO2001070630A2 (fr) Procede de fabrication de zeolites d'aluminosilicate a teneur en aluminium elevee, de zeolites microcristallines et agregats macroscopiques de celles-ci
US6413492B1 (en) Method of forming high aluminum aluminosilicate zeolites
EP0713478B1 (fr) Matieres composites a base de silicate
CA1039607A (fr) Produits de lavage contenant des aluminosilicates et des agents tenseurs specifiques; methode de lavage des textiles
EP0315282B1 (fr) Zéolites dans des compositions détergentes liquides
EP0292193B1 (fr) Composition détergente
EP0717769A1 (fr) Silicate cristallin de sodium et de potassium
US20080261848A1 (en) Multifunctional Material Compositions and Methods
CA1314189C (fr) Compositions detergentes
US5145599A (en) Use of cationic non-silicate layer compounds in detergents
US20150329800A1 (en) Methods for prevention and reduction of scale formation
CA2005931A1 (fr) Compositions a base de zeolite
JPH0129839B2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP