WO2001070231A2 - Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aiguës - Google Patents

Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aiguës Download PDF

Info

Publication number
WO2001070231A2
WO2001070231A2 PCT/FR2001/000850 FR0100850W WO0170231A2 WO 2001070231 A2 WO2001070231 A2 WO 2001070231A2 FR 0100850 W FR0100850 W FR 0100850W WO 0170231 A2 WO0170231 A2 WO 0170231A2
Authority
WO
WIPO (PCT)
Prior art keywords
expression
cyclin
cell cycle
substance
function
Prior art date
Application number
PCT/FR2001/000850
Other languages
English (en)
Other versions
WO2001070231A3 (fr
Inventor
Serge Timsit
Pauline Cavelier
Yehezkel Ben-Ari
Michel Khrestchatisky
Laurent Meijer
Original Assignee
Centre National De La Recherche Scientifique -Cnrs-
Inserm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique -Cnrs-, Inserm filed Critical Centre National De La Recherche Scientifique -Cnrs-
Priority to JP2001568429A priority Critical patent/JP2003527428A/ja
Priority to IL15180001A priority patent/IL151800A0/xx
Priority to AU2001244292A priority patent/AU2001244292B2/en
Priority to AU4429201A priority patent/AU4429201A/xx
Priority to EP01917205A priority patent/EP1265602A2/fr
Priority to CA002403714A priority patent/CA2403714A1/fr
Publication of WO2001070231A2 publication Critical patent/WO2001070231A2/fr
Publication of WO2001070231A3 publication Critical patent/WO2001070231A3/fr
Priority to US10/251,297 priority patent/US20030060397A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/453Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to the field of treatment and prevention of neurodegenerative diseases linked to acute excitotoxic neural lesions.
  • the invention is particularly interested in the treatment and prevention of epilepsy, more particularly in the state of epilepticus.
  • the invention is also particularly interested in the treatment and prevention of cerebral ischemia whether it is focal or global cerebral ischemia, cerebral hypoxia following a cardiac arrest, extra circulation body during cardiovascular surgery, surgery of the vessels of the neck, requiring or not a clamping of the vessels, head trauma and any situation causing hypoxia or cerebral anoxia.
  • the destruction of brain tissue can occur during different morphological phenomena.
  • Apoptosis is a cell death mechanism that developed with the birth of multicellular organisms.
  • apoptosis is a physiological phenomenon that is found throughout phylogeny.
  • the construction of the brain is a striking example. The brain can structure itself during development, thanks to the massive death of neurons (more than 50%).
  • apoptosis comes from the Greek “falling leaves”, described by Kerr (1972). It refers to different morphological criteria for necrosis. In electron microscopy, apoptosis is early characterized by condensation of the cytoplasm and the chromatin, then by the occurrence of convolutions of the cytoplasmic and nuclear membranes which will then form the apoptotic bodies. Physiologically, apoptosis does not cause inflammation. It appeared that apoptosis was associated, in general, but not necessarily, with characteristic biochemical phenomena involving a real death program called consecrated, programmed cell death (MCP). The term MCP actually has two meanings. The first historically refers to an expected death during development. Then the term was changed to mean that it is associated with a genetic program involving the synthesis of specific proteins.
  • necrosis is characterized by swelling of the intracellular organelles and the cytoplasm and then osmotic lysis. The release of its constituents causes an influx of macrophages and tissue damage. An inflammation is therefore present during necrosis which is most often a pathological phenomenon. Thus death by necrosis and that by apoptosis are associated, respectively, conventionally, with passive or active phenomena. Active phenomena involve a cell death program with activation of proteins (caspase family, Bcl-2 family) while passive phenomena do not involve a cell death program.
  • necrosis There are forms of passage between apoptosis and necrosis, so cells in apoptosis for which programmed death has been blocked can have the morphological characteristics of necrosis (Kitanaka et al., 1999; Chautan et al., 1999).
  • the invention is based on the understanding of molecular mechanisms involved in neuronal death and in particular neural death linked to the phenomenon of excitotoxicity.
  • Neuronal death linked to excitotoxicity is due to an excessive release of glutamate which will lead to lesions.
  • Death associated with excitotoxicity can cause programmed type death which may involve activation of gene products.
  • This programmed type death can be associated, from a morphological point of view, during excitotoxicity and cerebral ischemia with various morphological aspects of necrosis, apoptosis, autophagocytosis or even mixed aspects (apoptosis / necrosis). This phenomenon is encountered during ischemia and epilepsy and in many neurodegenerative diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis.
  • the other cells of the central nervous system may also be sensitive to excitotoxicity.
  • oligodendrocytes subjected to glutamatergic agonists such as kainate can also degenerate (Matute et al., 1997; Sanchez-Gomez and Matute; 1999)
  • the inventors were particularly interested in the acute neural lesions characteristic of epilepsy and cerebral ischemia, while neurodegenerative diseases of the Alzheimer or Parkinson type are chronic diseases with essentially neuronal progressive death over several years.
  • neural death is acute and two types of neural damage are observed: - the death of neurons, astrocytes and oligodendrocytes, the proliferation of inflammatory cells and especially astrocytes and microglia which by their inflammatory effects have a deleterious effect on cell death (Zoppo et al., 2000). It can also be cells outside the central nervous system such as endothelial cells, leukocytes.
  • cyclins are key molecules of the cell cycle, involved in the phosphorylation of the Rb molecule so as to allow the continuation of the cell cycle. Their mitotic properties require that they be associated with CDKs (cyclin dependent kinases) to form the complexes responsible for the phosphorylation of the molecule.
  • CDKs cyclin dependent kinases
  • Cyclins D can also act independently of cdk as shown in recent work (Zwijsen et al., 1997).
  • CDK inhibitors are known for their antimitotic property and have already been proposed as anticancer or for preventing and treating tissue degeneration, in particular apoptosis of neuronal cells.
  • PCT international patent applications WO 99 43 676 and WO 99 43 675 propose CDK inhibitors as an inhibitor of cell cycle progression for use in the treatment or prevention of neuronal apoptosis for example for cerebrovascular disease.
  • cyclins more particularly cyclin D1
  • cyclin D1 cyclin D1
  • This in vivo observation was confirmed on an excitotoxicity model of neuronal death in vi tro developed for this study.
  • This teaching seems contradictory with several articles of the prior art where it is considered that cyclin Dl is not involved in apoptosis.
  • the drug comprising a substance that inhibits CDKs is administered chronically with side effects on dividing cells.
  • a drug is administered for a short period, therefore with little side effect on cell division.
  • the subject of the invention is therefore the use of a substance which modulates the expression or the function of a protein involved in the cell cycle for the preparation of a medicament intended for the treatment or prevention of acute neural lesions. non-apoptotic excitotoxics.
  • Neural lesions are understood to mean lesions which can destroy all the cellular types of the nervous system and more particularly the neurons, astrocytes, oligodendrocytes, microglia but also their precursors in the nervous system including the stem cells which can give astrocytes, oligodendrocytes, neurons and microglia.
  • necrosis lesions are those encountered specifically in ischemia or epileptic seizures. They are due, at least in part, to the phenomenon of excitotoxicity. They therefore refer to pathological phenomena well known in human pathology and not to morphological aspects.
  • the morphological aspects can be close to aspects of necrosis, apoptosis, mixed aspects necrosis / apoptosis and death by autophagocytosis.
  • Cellular pallor pale cell change
  • ischemic cellular changes ischemia cell change
  • ghost cells are described among the necrosis lesions.
  • Acute lesions are understood to mean all lesions which occur in less than 30 days which are in this context due to cerebral ischemia or epileptic seizures.
  • the invention therefore relates very particularly to the use of a substance which modulates the expression or the function of a protein involved in the cell cycle for the preparation of a medicament intended for treatment or prevention of non-apoptotic excitotoxic acute neural lesions of neurons, astrocytes, or oligodendrocytes, or their precursors, during cerebral ischemia or epilepsy, more particularly the state of epilepticus.
  • the invention is particularly interested in the treatment or prevention of acute non-apoptotic excitotoxic neural lesions resulting from cerebral ischemia occurring during a situation causing hypoxia or cerebral anoxia.
  • situations causing hypoxia or cerebral anoxia mention may be made of cardiac arrest, extracorporeal circulation during cardiovascular surgery, surgery of the vessels of the neck requiring or not a clamping of the vessels, head trauma.
  • protein involved in the cell cycle is understood to mean any protein which plays a role in the cell cycle on certain cell types.
  • cell cycle is meant the Gl phase, the S phase, the G2 phase, the M phase but also the GO phase.
  • protein involved in the cell cycle a protein which plays a role in the progression of the cell cycle, that is to say in the transition from one phase to another. It is a protein that can be produced by a cell type that no longer divides. For example, a differentiated neuron does not divide, however it can express certain molecules of the cell cycle without, however, these molecules causing cell division.
  • a protein involved in the progression of the cell cycle of one type of cell can be produced by another type of cell.
  • the expression modulating substance is understood to mean any substance capable of modifying the quantity of mRNA produced, the quantity of protein produced or modifying the half-life of an mRNA or a protein, for example by modifying the degradation of the mRNA or the degradation of the protein.
  • This modulation can be positive or negative, that is, it can increase the amount of active protein or decrease it.
  • the term substance modulating the function of a protein is not understood to mean any substance capable of modifying the activity of a protein or a protein complex on a target.
  • the invention more particularly contemplates a substance capable of modulating the phosphorylation of a target, by increasing or inhibiting it.
  • the invention relates to a substance capable of modulating the degree of phosphorylation of Rb by a Cdk.
  • the invention relates more particularly to the use of a substance which modulates the expression or the function of a cyclin, and more particularly of a cyclin D, of a cdk or their complex.
  • modulating substance also means the expression or function of a cyclin, of a cdk or their complex, any modulating substance of the expression or of the function of any complex involving cyclin, cdk, or the of them.
  • complexes are: cyclin / other protein or protein complex; cdk / other protein or protein complex; cyclin / cdk / other protein or protein complex.
  • the invention relates more particularly to a substance which modulates the expression or the function of cyclin Dl and / or of cdk5 and / or of the cyclin complex Dl / Cdk5
  • the invention therefore relates very particularly to the treatment or prevention of cerebral ischemia and epilepsy.
  • the work carried out in the context of the present invention has made it possible to show that a substance which modulates the expression or the function of cyclins, cdks or their complex makes it possible to reduce the extent of the lesions caused by ischemia or epilepsy.
  • the target cells which are targeted in the use according to the invention are, on the one hand the neurons and possibly the other cells which die such as the astrocytes, the oligodendrocytes and the microglia, and on the other hand, the cells which proliferate and which have a deleterious effect on the extent of the lesions.
  • the invention therefore relates to a method of treatment or prevention of cerebral ischemia or epilepsy comprising the administration to a patient of an amount effective on acute neural lesions of one or more of the modulating substances of the expression or function of a protein involved in the cell cycle.
  • the invention envisages, as a substance modulating the expression or the function of a protein involved in the cell cycle, a substance chosen from: inhibitors of cyclin expression, inhibitors of dependent cyclin kinases, such as purine analogs, for example olomoucine and roscovitine derivatives, paullones, indirubins, hymenisaldisine, flavopiridol, etc. inhibitors of the cyclin complex / dependent cyclin kinases.
  • inhibitors of cyclin expression inhibitors of dependent cyclin kinases, such as purine analogs, for example olomoucine and roscovitine derivatives, paullones, indirubins, hymenisaldisine, flavopiridol, etc. inhibitors of the cyclin complex / dependent cyclin kinases.
  • Cyclin expression inhibitors are for example: Rapamycin which acts on the mRNA of cyclin Dl and on the stability of the protein.
  • rapamycin can decrease the size of cerebral infarctions.
  • Statins and in particular lovastatin which modifies the expression of cyclin D1 (Oda et al. 1999; Rao et al., 1999; Muller et al., 1999) via inhibitory proteins such as p21.
  • Hippocampal cell cultures have been exposed to kainate (20 - 75 ⁇ M) for long periods different (2 - 22 hours).
  • the kainate was diluted in water to prepare a 20 mM stock solution.
  • the adequate amount of the stock solution was then added to 200 ⁇ l of conditioned medium from the cell culture.
  • the control experiments were carried out under the same conditions except for the stock of kainate which was replaced by sterile water.
  • the counting was carried out on seahorse cultures exposed to 20 ⁇ M kainate. At least two boxes per condition were assessed. Propidium iodide (7.5 ⁇ M) was added to the culture 1 hour before cell counting. The labeled cells were counted using a fluorescence microscope with low magnification from randomly selected fields. At least 5 fields in two boxes were counted by conditions on three independent crops. The results were expressed as a percentage of the total number of neurons observed under phase contrast microscopy.
  • Hippocampal cells on glass coverslips were fixed in 4% paraformaldehyde for 20 minutes then washed in PBS and permeabilized in PBS - 0.2% gelatin - 0.2% Triton X-100.
  • a monoclonal antibody directed against cyclin Dl (Santa Cruz, California, USA) diluted to 1/400, a polyclonal rabbit antibody (Dako A / S Denmark) directed against GFAP diluted 1/800 were incubated overnight 4 ° C in PBS 0.2% gelatin 0.2% Triton X-100. After washing, an anti-mouse horse antibody diluted to 1/400 (adsorbed in rats) (Vector, Burlingame, USA) was used for 1 hour at room temperature.
  • an anti-cyclin Dl monoclonal antibody diluted 1/100 (Santa Cruz, California, USA) as well as a rabbit anti-cdk5 polyclonal antibody diluted 1/200 were used.
  • a biotinylated anti-rabbit antibody diluted 1/400 (Vector, Burlingame, USA) was used for 1 hour at room temperature.
  • an anti-mouse goat antibody coupled to TRITC (1/400) (Sigma, St Louis, USA) and an avidin-fluorescein complex (1/400) (Vector, Burlingame, USA) were used at room temperature during 30 minutes.
  • control experiments were carried out by omitting the first antibodies, either cyclin D1 or cdk5, or both.
  • Another type of control was carried out by neutralizing the anti-cdk5 antibody by a 10-fold excess (weight / weight) of immunizing peptide for 30 minutes at 30 ° C. 4) Western blot.
  • the cells were washed in PBS and then lysed in Laemli buffer. The samples were sonicated and heated at 100 ° C for 5 minutes. Electrophoresis with a 12% SDS-polyacrylamide gel was then carried out. The proteins were then transferred to a nitrocellulose membrane and incubated either with an anti-cyclin Dl monoclonal antibody or with an anti-cdk5 polyclonal antibody (Santa Cruz, California, USA), or finally a monoclonal anti- ⁇ tubulin class III antibody. (Sigma,
  • the rat brains were ground in RIPAE buffer (PBS containing 1% Triton X-100, 0.1% SDS, 5 mM EDTA, 1% aprotinin and 1% sodium deoxycholate).
  • the clarified lysates were then incubated for 2 hours in ice with an anti-cdk5 antibody in the presence or in the absence of the corresponding blocking peptide.
  • the immune complexes obtained were then recovered by precipitation with the protein Sepharose A (Pharmacia), washed 3 times with the RIPAE buffer.
  • the immunoprecipitated proteins were then eluted by boiling in Laemmli buffer, then fractionated on an SDS-polyacrylamide gel and transferred to a membrane (Immobilon-P, Millipore Corp.)
  • the membranes were then saturated with a blocking solution (5% skim milk in 20 mM Tris-HCl, pH 7.6, 0.9% NaCl, 0.2% Tween-20), then incubated with either 1 anti-cyclin Dl (1/200), i.e. anti-cdk5 (1/2000) overnight at 4 ° C.
  • Immunolabelling was performed with antibodies coupled to horseradish peroxidase using the ECLTM kit (Amersham Corp.).
  • Hippocampal cultures were exposed to kainate (20 ⁇ M) in DMSO for 5 hours in the presence or absence of a cdk inhibitor, an analogue of roscovitine.
  • the cdk inhibitor was used at different concentrations: 2 ⁇ M, 5 ⁇ M and 10 ⁇ M.
  • Cell mortality was determined using propidium iodide as described above.
  • cell death marker propidium iodide and Hoechst staining.
  • the quantitative morphological analysis was made on the surviving neurons at different times between 1 and 27 hours
  • the count of neurons after exposure to 20 ⁇ M has shown a very sharp drop in neuronal viability between 1 hour and 5 hours.
  • FIG. 1 represents the kinetics of dependent kainate neuronal death revealed by propidum iodide. Hippocampal cultures were exposed to different concentrations of kainate (20 ⁇ M, 30 ⁇ M, 75 ⁇ M). The peak of mortality is 5 hours after the start of treatment with kainate. * p ⁇ 0.05 per ANOVA test.
  • the percentage of degenerating neurons increases in a dose-dependent manner with a maximum mortality at 5 hours. Only certain neurons were propidium positive while the astrocytes were always propidium negative.
  • the Hoechst marking confirmed the data obtained with propidium iodide.
  • the cyclin D1 protein is expressed in vulnerable neurons after treatment with kainate.
  • Figure 2 shows that cyclin D1 is expressed in vulnerable neurons. Observation under phase contrast microscope and double or triple fluorescent labeling at 22 hours (AF) and 5 hours (G, H, I) after exposure to 20 ⁇ M of kainate, culture not exposed to kainate (J, K, L). Observation in phase contrast (A, D): Propidium iodide (B) and cyclin Dl (C, F, I, L); Hoechst marking (E, H, K); GFAP marking (G, J).
  • A, B, C Neurons (A, arrows) positive propidium iodide (B) and cyclin Dl positive (C)
  • D, E, F Neurons (D, arrows) are Hoechst positive (E) and cyclin Dl positive (F).
  • G, H, I a neuron is GFAP negative (G) with a condensed nucleus (H) and cyclin Dl positive (I).
  • J, K, L an astrocyte is GFAP positive (J), with an uncondensed nucleus (K) and cyclin Dl positive (L).
  • FIG. 3 reports the increase in the normalized rate of expression of the cyclin Dl protein after treatment with kainate.
  • FIG. 3 represents the analysis by Western Blots obtained from protein extracts from hippocampal cells exposed to kainate using the anti-cyclin Dl monoclonal antibody and the anti- ⁇ -tubulin class III antibody.
  • abscissa exposure time (h, hours) to kainate (75 ⁇ M).
  • B representative blots. A The 35 Kd and 70 Kd bands were the only bands detected with the anti-cyclin Dl antibody and the anti- ⁇ -tubulin class III antibody, respectively.
  • cyclin Dl As treatment with kainate cultures of the hippocampus cause neuronal death and therefore neuronal loss, the level of cyclin Dl was normalized by the level of ⁇ tubulin class III, a specific marker of neurons. Quantitative analysis revealed that the normalized level of expression of cyclin Dl increased significantly from 100% before kainate to more than 150% after exposure of cultures to 75 ⁇ M kainate.
  • Cyclin Dl and Cdk5 are co-expressed in degenerating neurons and interact in the brain.
  • Cdk5 is a specifically neuronal dependent cyclin kinase (cdk). Cyclin Dl / Cdk5 double labeling revealed that cyclin Dl and Cdk5 were present in degenerating neurons.
  • Figure 4 shows the expression of cdk5 in neurons after exposure to kainate. Double or triple labeling of hippocampal neurons before (control at A) and after exposure to 75 mM kainate (B-I).
  • Cdk5 immunoreactivity A, B, D, G
  • Hoechst staining C, F, I
  • Propidium iodide E
  • Cyclin Dl (H) immunoreactivity In A, neurons
  • F a neuron (arrow), positive Cdk5 (D), positive propidium iodide (E) with a condensed nucleus (F).
  • G H, I a neuron (arrow), positive Cdk5 (G), cyclin Dl positive (H) with a condensed nucleus (I)
  • FIG. 5 relates to the culture of seahorses treated for 5 hours with kainate and a Cdk inhibitor at different concentrations (2, 5, 10 ⁇ M). Neuronal mortality was assessed by labeling with
  • the controls were carried out on cultures with or without kainate in combination or not with the Cdk inhibitor.
  • neuronal death was close to 65% with an increase in neuronal death of 150% compared to cultures without kainate.
  • a concentration of cdk inhibitor of 2 or 5 ⁇ M neuronal death was close to 45%.
  • the morphological aspects associated with kainate analyzed in phase contrast, with a Hoechst marker and propidium iodide show both aspects of apoptosis and aspects of necrosis.
  • the aspects of apoptosis are characterized by condensation and fragmentation of the nucleus visualized by Hoechst staining but also aspects of necrosis with rupture of the cytoplasmic membrane visualized by staining with propidium iodide. Cdk inhibitors therefore have a neuroprotective effect against neuronal excitotoxicity which is not typically apoptotic.
  • Lovastatin induces p2lWAFl / Cipl in human vascular smooth muscle cells: influence on protein phophorylation, cell cycle, induction of apoptois and growth inhibition.
  • L-type voltage gated calcium channels modulate kainic acid neurotoxicity in cerebellar granule cells. Brain Res. 828: 27-40.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La présente invention concerne l'utilisation d'une substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire pour la préparation d'un médicament destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques. L'invention concerne plus particulièrement le traitement ou la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques de l'ischémie cérébrale et de l'épilepsie.

Description

UTILISATION DE SUBSTANCES MODULATRICES DE L'EXPRESSION OU DE LA FONCTION D'UNE PROTEINE IMPLIQUEE DANS LE CYCLE CELLULAIRE POUR LE TRAITEMENT OU LA PREVENTION DES LESIONS NEURALES AIGUËS.
La présente invention concerne le domaine du traitement et de la prévention de maladies neurodégénératives liées à des lésions neurales aiguës excitotoxiques. L'invention s'intéresse tout particulièrement au traitement et à la prévention de l'épilepsie, plus particulièrement à l'état de mal épiléptique. L'invention s'intéresse aussi tout particulierment au traitement et à la prévention de l'ischémie cérébrale qu'ils s'agissent d'ischémie cérébrale focale ou globale, de l'hypoxie cérébrale suite à un arrêt cardiaque, de la circulation extra-corporelle lors de la chirugie cardiovasculaire, de la chirurgie des vaisseaux du cou, nécessitant ou non un clampage des vaisseaux, des traumatismes crâniens et de toute situation provoquant une hypoxie ou une anoxie cérébrale.
La destruction du tissu cérébral peut survenir au cours de différents phénomènes morphologiques.
L'apoptose est un mécanisme de mort cellulaire qui s'est développé avec la naissance des organismes multicellulaires. Dans cette description initiale, l'apoptose est un phénomène physiologique que l'on retrouve à travers toute la phylogénie. À cet égard, la construction du cerveau en est un exemple frappant. Le cerveau peut se structurer, au cours du développement, grâce à la mort massive des neurones (plus de 50%) .
Le terme apoptose provient du grec «chute des feuilles », décrit par Kerr (1972). Il fait référence à des critères morphologiques différents de la nécrose. En microscopie électronique, l'apoptose se caractérise précocement par une condensation du cytoplasme et de la chromatine, puis par la survenue de convolutions des membranes cytoplasmique, et nucléaire qui vont ensuite former les corps apoptotiques . Physiologiquement, l'apoptose ne provoque pas d'inflammation. Il est apparu que l'apoptose était associée, en général, mais pas obligatoirement, à des phénomènes biochimiques caractéristiques mettant en jeu un véritable programme de mort appelé de manière consacrée, la mort cellulaire programmée (MCP) . Le terme MCP a en fait deux sens. Le premier historiquement fait référence à une mort prévue au cours du développement. Puis le terme a été modifié pour signifier qu'il est associé à un programme génétique impliquant la synthèse de protéines spécifiques.
La nécrose se caractérise, quant à elle, par un gonflement des organites intracellulaires et du cytoplasme puis une lyse osmotique. La libération de ses constituants provoque un afflux de macrophages et des lésions tissulaires Une inflammation est donc présente au cours de la nécrose qui est le plus souvent un phénomène pathologique . Ainsi la mort par nécrose et celle par apoptose sont associées respectivement, classiquement, à des phénomènes passifs ou actifs. Les phénomènes actifs mettent en jeu un programme de mort cellulaire avec activation de protéines (famille des caspases, famille de Bcl-2) alors que les phénomènes passifs ne mettent pas en jeu un programme de mort cellulaire.
Il y a donc d'un côté des aspects morphologiques et d'un autre côté des phénomènes biologiques jouant un rôle dans la mort cellulaire. On a cru pendant longtemps que les aspects morphologiques impliquaient des mécanismes biologiques particuliers, en fait cette compréhension est actuellement en train d'être modifiée. L'idée apoptose-mort programmée, nécrose-absence de mort programmée, n'est plus exacte. Par exemple on a décrit des apoptoses caspases- dépendantes, mais aussi des apoptoses caspases indépendantes (Borner et al., 1999). Il y a des formes de passages entre apoptose et nécrose, ainsi des cellules en apoptose pour lesquelles la mort programmée a été bloquée peuvent avoir les caractéristiques morphologiques de la nécrose (Kitanaka et al., 1999; Chautan et al., 1999).
Au cours de l'ischémie cérébrale, les aspects morphologiques ont des aspects à la fois reminiscent d' apoptose et des aspects reminiscent de nécrose indépendemment du fait qu'il y ait ou non une mort programmée. Il n'est même pas certain qu'il y ait des neurones qui meurent par apoptose classique au cours de l'ischémie cérébrale (MacManus et al., 1999). Des travaux réalisés par Portera-Cailliau et al. (1997) illustrent le continuum morphologique qui peut exister après excitotoxicité entre nécrose et apoptose. Ces auteurs ont injecté dans le striatum différents agonistes glutamatergiques pour stimuler les récepteurs NMDA et non- NMDA et ont ensuite étudié l'aspect morphologique des neurones. Après lésion excitotoxique tous les aspects intermédiaires entre nécrose et apoptose sont observables . Après injection de NMDA, la morphologie cellulaires est plutôt de type nécrotique alors qu'après injection d'agonistes non-NMDA elle est plutôt de type apoptotique.
L'invention est fondée sur la compréhension de mécanismes moléculaires impliqués dans la mort neuronale et en particulier la mort neurale liée au phénomène d' excitotoxicité . La mort neuronale liée à 1 ' excitotoxicité est due à une libération excessive de glutamate qui va entraîner des lésions. La mort associée à 1 ' excitotoxicité peut provoquer une mort de type programmée pouvant mettre en jeu l'activation de produit de gènes. Cette mort de type programmée peut s'associer, d'un point de vue morphologique, au cours de 1 ' excitotoxicité et de l'ischémie cérébrale à des aspects morphologiques diverses de nécrose, d' apoptose, d' autophagocytose voire d'aspects mixtes (apoptose/nécrose) . On rencontre ce phénomène au cours de l'ischémie et de l'épilepsie et dans de nombreuses maladies neurodégénératives, comme les maladies de Parkinson, d'Huntington, la sclérose latérale amyotrophique .
Les autres cellules du système nerveux central peuvent aussi être sensibles à 1 ' excitotoxicité. Par exemple les oligodendrocytes soumis à des agonistes glutamatergiques tels que le kainate peuvent aussi dégénérer (Matute et al., 1997; Sanchez-Gomez et Matute; 1999)
Les inventeurs se sont intéressés tout particulièrement aux lésions neurales aiguës caractéristiques de l'épilepsie et de l'ischémie cérébrale, alors que les maladies neurodégénératives de type Alzheimer ou Parkinson sont des maladies chroniques avec une mort essentiellement neuronale progressive sur plusieurs années.
Dans le cas de l'épilepsie et de l'ischémie cérébrale, la mort neurale est aiguë et deux types de lésions neurales sont observés : - la mort des neurones, des astrocytes et des oligodendrocytes , la prolifération des cellules de l'inflammation et en particulier les astrocytes et la microglie qui par leurs effets inflammatoires ont un effet délétère sur la mort cellulaire (Zoppo et al., 2000). Il peut s'agir aussi de cellules en dehors du système nerveux central tel que les cellules endothéliales, les leucocytes.
Il est connu dans l'art antérieur que les cyclines sont des molécules clefs du cycle cellulaire, impliquées dans la phosphorylation de la molécule Rb de façon à permettre la poursuite du cycle cellulaire. Leurs propriétés mitotiques nécessitent qu'elles soient associées aux CDKs (kinases cyclines dépendantes) pour former les complexes responsables de la phosphorylation de la molécule Rb. Les cyclines D peuvent aussi agir indépendemment des cdk comm el ' on montré des travaux récents (Zwijsen et al., 1997) .
Or, les inhibiteurs de CDK sont connus pour leur propriété antimitotique et ont déjà été proposés comme anticancéreux ou pour prévenir et traiter la dégénération tissulaire notamment l'apoptose des cellules neuronales . Ainsi, plusieurs demandes de brevet internationales PCT WO 99 43 676 et WO 99 43 675 proposent des inhibiteurs de CDK en tant qu'inhibiteur de la progression du cycle cellulaire pour une utilisation dans le traitement ou la prévention de l'apoptose neuronale par exemple pour les maladies cérébrovasulaires .
On a également déjà proposé dans l'art antérieur l'utilisation d'inhibiteur de la GSK3 pour protéger les neurones (Maggirwar, S. B. et al., 1999, J. Neurochem. 73, 578-586) .
Le rôle des cyclines dans l'ischémie cérébrale et 1 ' excitotoxicité est sujet à débat. Certains auteurs pensent que la cycline Dl est associée à la réparation neuronale, d'autre qu'elle pourrait être impliqué dans la mort neuronale. In vivo, Wiessner et al. (1996) ont mis en évidence la cycline Dl dans la microglie mais pas dans les neurones après ischémie cérébrale globale. Li et al (1997) ont observé que la protéine cycline Dl étaient augmentée dans les neurones et les oligodendrocytes après ischémie focale. Comme ces cellules n'étaient pas en dégénérescence les auteurs ont proposé que la cycline Dl pourrait être impliquée dans la réparation de l'ADN dans des neurones non touchés de manière irrémédiable. In vi tro, Small et al. (1999) ont étudié l'expression de la cycline Dl sur une culture de neurones corticaux exposés au glutamate. Les auteurs observent une perte d'expression de la cycline Dl après expositions de ces neurones au glutamate et concluent que la cycline Dl joue plutôt un rôle dans la résistance neuronale à l'ischémie
Dans un modèle d'ischémie globale, Timsit et al. (1999), ont montré que l'expression de l'ARNm et de la protéine cycline Dl étaient augmentées dans les neurones destinés à mourir mais aussi dans des neurones résistants. Ces auteurs ont proposé alors que la cycline Dl puisse être un modulateur de la mort programmée, mais n'ont pu trancher de manière formelle entre un effet délétère ou bénéfique. Les récents résultats in vi tro obtenus par les Inventeurs suggèrent que la cycline Dl et ses partenaires pourraient avoir un effet délétère sur la mort neuronale.
Les inventeurs ont ainsi montré une augmentation de l'expression de cyclines, plus particulièrement de cycline Dl, dans les neurones lors de l'ischémie ou de l'épilepsie (Timsit, S. et al., 1999, Eur. J. Neurosci. 11:263-278). Cette observation in vivo a été confirmé sur un modèle de mort neuronale in vi tro par excitotoxicité mis au point pour cette étude. Cet enseignement semble toutefois contradictoire avec plusieurs articles de l'art antérieur où il est considéré que la cycline Dl n'est pas impliquée dans l' apoptose .
Les inventeurs ont maintenant montré sur le modèle défini ci-dessus que l'utilisation de substances inhibitrices de CDKs permettait de diminuer la mort neuronale aiguë excitotoxique.
Or, dans le cas des lésions chroniques rencontrées par exemple dans le Parkinson ou l'Alzheimer, le médicament comprenant une substance inhibitrice de CDKs est administré de façon chronique avec des effets secondaires sur les cellules en division. Au contraire, dans le cas de lésions aiguës rencontrées dans l'ischémie cérébrales et l'épilepsie, un médicament est administré pendant une période courte donc avec peu d'effet secondaire sur la division cellulaire. L'invention a donc pour objet l'utilisation d'une substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire pour la préparation d'un médicament destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques .
On entend par lésions neurales, des lésions pouvant détruire tous les types cellulaires du système nerveux et plus particulièrement les neurones, les astrocytes, les oligodendrocytes, la microglie mais aussi leurs précurseurs dans le système nerveux y compris les cellules souches pouvant donner des astrocytes, des oligodendrocytes, des neurones et de la microglie.
Ces lésions sont celles rencontrées spécifiquement dans l'ischémie ou la crise d'épilepsie. Elles sont dues, au moins en partie, au phénomène d' excitotoxicité. Elles font donc référence à des phénomènes pathologiques bien connus en pathologie humaine et non à des aspects morphologiques. Les aspects morphologiques peuvent êtres proches d'aspect de nécrose, d' apoptose, d'aspects mixtes nécrose/apoptose et de mort par autophagocytose. Parmi les lésions de nécrose on décrit les pâleurs cellulaires (pale cell change) , les modifications ischémiques cellulaires (ischémie cell change) et les cellules fantômes (ghost cells) . Enfin de récentes revues évoque la possibilité de passage entre différents formes de mort : nécrose et apoptose (Lipton et al . ;Physiological review 1999; 79:1432-1532.
On entend par lésions aiguës toutes lésions qui se produisent en moins de 30 jours qui sont dans ce contexte dues à l'ischémie cérébrale ou aux crises d'épilepsie.
L'invention concerne donc tout particulièrement l'utilisation d'une substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire pour la préparation d'un médicament destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques des neurones, des astrocytes, ou des oligodendrocytes, ou de leurs précurseurs, au cours de l'ischémie cérébrale ou de l'épilepsie, plus particulièrement l'état de mal épileptique.
L'invention s'intéresse tout spécialement au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques résultant d'une ischémie cérébrale survenant au cours d'une situation provoquant une hypoxie ou une anoxie cérébrale. Parmi les situations provoquant une hypoxie ou une anoxie cérébrale, on peut citer l'arrêt cardiaque, la mise en circulation extracorporelle lors de la chirugie cardiovasculaire, la chirurgie des vaisseaux du cou nécessitant ou non un clampage des vaisseaux, les traumatismes crâniens.
On entend par protéine impliquée dans le cycle cellulaire, toute protéine qui joue un rôle dans le cycle cellulaire sur certains types cellulaires. Par cycle cellulaire, on entend la phase Gl, la phase S, la phase G2 , la phase M mais aussi la phase GO. Ainsi, on entendu plus particulièrement par protéine impliquée dans le cycle cellulaire, une protéine qui joue un rôle dans la progression du cycle cellulaire, c'est à dire dans la passage d'un phase à l'autre. Il s'agit de protéine qui peuvent être produite par un type cellulaire qui ne se divise plus. Par exemple, un neurone différencié ne se divise pas, néanmoins il peut exprimer certaines molécules du cycle cellulaire sans toutefois que ces molécules entraînent une division cellulaire. En outre, une protéine impliquée dans la progression du cycle cellulaire d'un type de cellule peut être produite par un autre type de cellule.
On entend par substance modulatrice de l'expression, toute substance capable de modifier la quantité d'ARNm produite, la quantité de protéine produite ou de modifier la demi-vie d'un ARNm ou d'une protéine par exemple en modifiant la dégradation de l'ARNm ou la dégradation de la protéine. Cette modulation peut être positive ou négative, c'est à dire qu'elle peut augmenter la quantité de protéine active ou la diminuer.
On entend pas substance modulatrice de la fonction d'une protéine toute substance capable de modifier l'activité d'une protéine ou d'un complexe protéique sur une cible. L'invention envisage plus particulièrement, un substance capable de moduler la phosphorylation d'une cible, en l'augmentant ou l'inhibant. A titre d'exemple préféré, 1 ' invention concerne une substance capable de moduler le degré de phosphorylation de Rb par une Cdk. L'invention concerne plus particulièrement l'utilisation d'une substance modulatrice de l'expression ou de la fonction d'une cycline, et plus particulièrement d'une cycline D, d'une cdk ou leur complexe. On entend aussi par substance modulatrice de l'expression ou de la fonction d'une cycline, d'une cdk ou leur complexe, toute substance modulatrice de l'expression ou de la fonction de tout complexe impliquant la cycline, la cdk, ou les deux. Des exemples de complexes sont : cycline/autre protéine ou complexe de protéines; cdk/autre protéine ou complexe de protéines; cycline/cdk/autre protéine ou complexe de protéines .
L'invention concerne plus particulièrement une substance modulatrice de l'expression ou de la fonction de la cycline Dl et/ou de la cdk5 et/ou du complexe cycline Dl/Cdk5
Ces substances présentent un effet sur 1 ' excitotoxicité neuronale et donc sur la mort neuronale, mais aussi sur la mort des astrocytes et des oligodendrocytes et sur l'effet délétère indirect lié à la prolifération des astrocytes et de la microglie impliquée dans le phénomène d' excitotoxicité.
L'invention concerne donc tout particulièrement, le traitement ou la prévention de 1 ' ischémie cérébrale et l'épilepsie. En effet, les travaux réalisés dans le cadre de la présente invention ont permis de montrer qu'une substance modulatrice de l'expression ou de la fonction des cyclines, des cdk ou de leur complexe permet diminuer l'étendue des lésions provoquées par l'ischémie ou l'épilepsie. Les cellules cibles qui sont visées dans l'utilisation selon l'invention sont, d'une part les neurones et éventuellement les autres cellules qui meurent telles que les astrocytes, les oligodendrocytes et la microglie, et d'autres part, les cellules qui prolifèrent et qui ont un effet délétère sur l'étendue des lésions. L'invention se rapporte donc à une méthode de traitement ou de prévention de l'ischémie cérébrale ou de l'épilepsie comprenant l'administration a un patient d'une quantité efficace sur les lésions neurales aiguës d'une ou plusieurs des substances modulatrices de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire.
L'invention envisage à titre de substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire, une substance choisie parmi : les inhibiteurs de l'expression des cyclines, les inhibiteurs de kinases cyclines dépendantes, comme les analogues de purines par exemple les dérivés de l'olomoucine et roscovitine, les paullones, les indirubines, l 'hymenisaldisine, le flavopiridol, etc.. les inhibiteurs du complexe cycline/kinases cyclines dépendantes.
Des inhibiteurs de l'expression des cyclines sont par exemple : La rapamycine qui agit sur l'ARNm de la cycline Dl et sur la stabilité de la protéine.
(Hashemolhosseini et al., 1998). Par ailleurs, il a été montré que la rapamycine pouvait diminuer la taille des infarctus cérébraux.
- La glycogene synthase kinase, comme la GSK3 , qui régule la protéolyse de la cycline Dl . (Diehl et al., 1998)
Les statines, et en particulier la lovastatine qui modifie l'expression de la cycline Dl (Oda et al. 1999; Rao et al., 1999; Muller et al., 1999) via des protéines inhibitrices telles que p21.
D'autres avantages et caractéristiques de l'invention apparaîtront de la description qui suit concernant l'effet du kaïnate sur la mort neuronale, et le rôle d'inhibiteurs des cdk sur cette mort neuronale.
I - Matériel et méthode .
1) Culture primaire de cellules de l'hippocampe. Les cultures cellulaires ont été préparées à partir de rats Wistar âgés de 2 jours. Les hippocampes ont été disséqués dans du PBS sans calcium, ni magnésium. Les tissus ont été coupés en petit morceau et incubés en présence de proteases et de Dnase. L'action des proteases a été stoppée par l'action d'un sérum. Les cellules ont été ensuite dissociées mécaniquement, puis resuspendues dans un milieu de culture. Des cellules cultivées pendant 10-12 jours furent utilisées pour les expériences.
2 ) Exposition au kaïnate et étude de la mortalité cellulaire.
Les cultures cellulaires de l'hippocampe ont été exposées à du kaïnate (20 - 75 μM) pendant des temps différents (2 - 22 heures) . Le kaïnate a été dilué dans de l'eau afin de préparer une solution stock de 20 mM. La quantité adéquate de la solution stock a été ensuite ajoutée à 200 μl de milieu conditionné provenant de la culture cellulaire. Les expériences contrôles ont été conduites dans les mêmes conditions sauf le stock de kaïnate qui été remplacé par de l'eau stérile.
La mort neuronale a été analysée par microscopie en contraste de phase et l'utilisation de deux marqueurs de mort : 1 ' iodure de propidium et la coloration Hoechst (Bisbenzimide) .
Le comptage a été réalisé sur des cultures d'hippocampes exposées à du kaïnate 20μM. Deux boîte par condition ont été au moins évaluées. L' iodure de propidium (7,5 μM) a été ajouté à la culture 1 heure avant le comptage cellulaire. Les cellules marquées ont été comptées à l'aide d'un microscope à fluorescence avec un grossissement faible à partir de champs choisis au hasard. Au moins 5 champs dans deux boîtes ont été comptés par conditions sur trois cultures indépendantes. Les résultats ont été exprimés en pourcentage du nombre total de neurones observés en microscopie avec contraste de phase.
Le marquage par le Hoechst (Bisbenzimide ) a été réalisé après fixation des cellules au paraformaldehyde 4%. Les cellules brillantes à noyau condensées ont ensuite été comptés. Au moins 5 champs dans deux boîtes ont été comptés par conditions sur une ou trois cultures indépendantes. Les résultats ont été exprimés en pourcentage du nombre total de neurones observées en microscopie avec contraste de phase.
3 ) Immunocvtochimie et coloration Hoechst
(Double marquage) .
Les cellules hippocampiques sur des lamelles de verre ont été fixées dans le paraformaldehyde 4% pendant 20 minutes puis lavées en PBS et perméabilisées en PBS - 0,2% gelatin - 0,2 % Triton X-100. Un anticorps monoclonal dirigé contre la cycline Dl (Santa Cruz, California, USA) dilué au 1/400, un anticorps polyclonal de lapin (Dako A/S Danemark) dirigé contre la GFAP dilué au 1/800 ont été incubés toute la nuit à 4°C dans le PBS 0.2% gélatine 0,2% Triton X-100. Après lavage, un anticorps de cheval anti-souris dilué au 1/400 (adsorbé chez le rat) (Vector, Burlingame, USA) a été utilisé pendant 1 heure à température ambiante. Après lavage, un complexe avidine-fluorescéine (1/400) a été utilisé en même temps qu'un anticorps de chèvre anti-lapin couplé à la rhodamine (Chemicon, Temecula, USA) pour une incubation de 1 heure. Après lavage, les cellules ont été colorées par le Hoechst Bisbenzimide 33.258 (Sigma, St Louis, USA) à lmg/ml. Les lamelles de verre sont ensuite montées. Les expériences contrôles ont été réalisées en omettant les premiers anticorps, soit la cycline Dl soit la GFAP, soit les deux.
Pour les doubles marquages cycline Dl/cdk5, un anticorps monoclonal anti-cycline Dl dilué au 1/100 (Santa Cruz, California, USA) ainsi qu'un anticorps polyclonal de lapin anti-cdk5 dilué au 1/200 ont été utilisés. Après lavage, un anticorps biotinylé anti-lapin dilué au 1/400 (Vector, Burlingame, USA) a été utilisé pendant 1 heure à température ambiante. Après lavage, un anticorps de chèvre anti-souris couplé au TRITC (1/400) (Sigma, St Louis, USA) et un complexe avidine-fluorescéine (1/400) (Vector, Burlingame, USA) ont été utilisés à température ambiante pendant 30 minutes. Les expériences contrôles ont été réalisées en omettant les premiers anticorps, soit la cycline Dl soit la cdk5, soit les deux. Un autre type de contrôle a été réalisé en neutralisant l'anticorps anti-cdk5 par un excès de 10 fois (poids/poids) de peptide immunisant pendant 30 minutes à 30°C. 4 ) Western blot .
Après exposition des cellules hippocampiques aukaïnate, les cellules étaient lavées en PBS puis lysées dans un tampon de Laemli. Les échantillons ont été soumis à sonication et chauffés à 100°C pendant 5 minutes. Une électrophorèse avec un gel SDS-polyacrylamide de 12 % était ensuite réalisé. Les protéines ont été ensuite transférées sur une membrane de nitrocellulose et incubées soit avec un anticorps monoclonal anti-cycline Dl soit avec un anticorps polyclonal anti-cdk5 (Santa Cruz, California, USA) , ou enfin un anticorps monoclonal anti-β tubuline classe III (Sigma,
St Louis, USA), un marqueur spécifique neuronal . Le marquage a été réalisé en utilisant l'anticorps anti-lapin ou l'anticorps antisouris couplés à la peroxydase du raifort en utilisant le kit ECLTM (Amersham Corp., England) . Les expériences contrôles ont été réalisées en omettant les premiers anticorps .
5) Immunoprécipitations et analyse en Western- Blot.
Les cerveaux de rat ont été broyés dans un tampon RIPAE (PBS contenant 1 % Triton X-100, 0,1 % SDS, 5 mM EDTA, 1 % aprotinine et 1 % sodium deoxycholate) . Les lysats clarifiés ont été ensuite incubés pendant 2 heures dans la glace avec un anticorps anti-cdk5 en présence ou en absence du peptide bloquant correspondant. Les complexes immuns obtenus furent ensuite récupérés par précipitation avec la protéine sépharose A (Pharmacia) , lavés 3 fois avec le tampon RIPAE. Les protéines immunoprécipitées ont été ensuite éluées en les faisant bouillir dans du tampon de Laemmli, puis fractionnées sur un gel de SDS-polyacrylamide et tranférées sur une membrane (Immobilon-P, Millipore Corp.) Les membranes ont été ensuite saturées par une solution bloquante (5% lait écrémé dans 20 mM Tris-HCl, pH 7,6, 0,9% NaCl, 0.2% Tween-20) , puis incubées avec soit 1' anti-cycline Dl (1/200), soit l'anti-cdk5 (1/2000) pendant toute la nuit à 4°C. L' immuno-marquage a été réalisé avec des anticorps couplés à la peroxydase du raifort en utilisant le kit ECLTM (Amersham Corp.).
6) Traitement par inhibiteur de cdk (ML-1437) .
Les cultures hippocampiques ont été exposées à du kaïnate (20 μM) dans du DMSO pendant 5 heures en présence ou en absence d'un inhibiteur de cdk, un analogue de la roscovitine. L'inhibiteur de cdk a été utilisé à différentes concentrations : 2 μM, 5 μM et 10 μM. La mortalité cellulaire a été déterminée en utilisant 1 ' iodure de propidium comme décrit ci-dessus.
II - Résultats.
1) La mort neuronale après exposition au kaïnate est retardée et dose dépendante.
Pour évaluer la mort neuronale après exposition au kaïnate deux approches ont été utilisées :
- une analyse morphologique;
- l'utilisation de marqueur de mort cellulaire : 1' iodure de propidium et la coloration de Hoechst.
i) L ' analyse morphologique .
L'analyse morphologique quantitative a été faite sur les neurones survivants à différents temps entre 1 heures et 27 heures
Le comptage des neurones après exposition à 20 μM a montré une baisse très forte de la viabilité neuronale entre 1 heure et 5 heures .
ii) Marqueurs de mort cellulaire.
L'utilisation de 1' iodure de propidium (Figure 1) à 2, 5 et 22 heures a confirmé les données d'observation morphologiques. La figure 1 représente la cinétique de la mort neuronal kaïnate dépendante révélée par 1 ' iodure de propidum. Les cultures hippocampiques ont été exposées à différentes concentrations de kaïnate (20μM, 30 μM, 75 μM) . Le pic de mortalité est à 5 heures après le début du traitement par kaïnate. * p<0,05 par test ANOVA.
Après exposition à 20 μM de kaïnate, le pourcentage de neurones en dégénérescence augmente progressivement avec un pic de mort à 5 heures. Après exposition des cellules par le kaïnate aux concentrations de
30 à 75 μM, le pourcentage de neurones en dégénérescence augmente de manière dose dépendante avec une mortalité maximale à 5 heures . Seuls certains neurones étaient propidium positifs alors que les astrocytes étaient toujours propidium négatifs.
Le marquage Hoechst a confirmé les données obtenues avec l' iodure de propidium.
2 ) La protéine cycline Dl est exprimée dans les neurones vulnérables après traitement au kaïnate .
La figure 2 montre que la cycline Dl est exprimée dans des neurones vulnérables . Observation au microscope à contraste de phase et double ou triple marquage fluorescent à 22 heures (A-F) et 5 heures (G, H, I) après expositions à 20 μM de kaïnate, culture non exposée au kaïnate (J, K, L) . Observation en contraste de phase (A, D) : Iodure de propidium (B) et cycline Dl (C, F, I, L) ; marquage Hoechst (E, H, K) ; marquage GFAP (G, J) . En A, B, C : Des neurones (A, flèches) iodure de propidium positifs (B) et cycline Dl positifs (C) En D, E, F : Des neurones (D, flèches) sont Hoechst positifs (E) et cycline Dl positifs (F) . En G, H, I: un neurone est GFAP négatif (G) avec un noyau condensé (H) et cycline Dl positif (I) . En J, K, L, un astrocyte est GFAP positif (J) , avec un noyau non-condensé (K) et cycline Dl positif (L) . Echelle: 1 cm = 3,33 μM La combinaison d'observations en immunofluorescence de la cycline Dl (Fig 2C, F) et de l'observation en contraste de phase (Fig 2A, D) a révélé que la cycline Dl était exprimée dans des neurones. Les doubles marquages cycline Dl (Fig 2C, F) d'une part et iodure de propidium (Fig 2B) ou coloration Hoechst (Fig 2E, H) d'autre part, a révélé que la plupart des neurones exprimant la protéine cycline Dl nucléaire présentait des signes de mort révélée par 1 ' iodure de propidium ou la coloration Hoechst (Fig 2A-F) . Dans les expériences contrôles seuls quelques neurones cycline Dl positifs étaient détectées. Par ailleurs quelques astrocytes exprimaient la cycline Dl . Mais les astrocytes (GFAP +) ne présentaient jamais de marquage iodure de propidium positif ou de fragmentation de chromâtine (Hoechst) . Les expériences contrôles sans premier anticorps ne montraient aucun marquage .
3) L'expression de la protéine cycline Dl est augmentée après traitement au kaïnate.
Des expériences de western blot ont été réalisées sur des extraits proteiques cellulaires exposées ou non au kaïnate. La figure 3 rapporte l'augmentation du taux normalisé de l'expression de la protéine cycline Dl après traitment par le kaïnate. La figure 3 représente l'analyse par Western Blots obtenus à partir d'extraits proteiques de cellules de l'hippocampe exposées au kaïnate en utilisant l'anticorps monoclonal anti-cycline Dl et l'anticorps anti β-tubuline classe III. En A, abscisse : temps d'expositon (h, heures) au kainate (75μM) . En ordonnée : taux moyen d'expession de cycline Dl, normalisé par la quantité de neurones, exprimée en pourcentage du contrôle. Il convient de noter l'augmentation d'expression de la protéine cycline Dl après 5 heures d'exposition au kainate. * p<0,005 par test ANOVA. En B, blots représentatifs. Une bande de 35 Kd et de 70 Kd ont été les seules bandes détectées avec respectivement l'anticorps anti-cycline Dl et l'anticorps anti-β-tubuline classe III.
Comme le traitement par le kaïnate des cultures de l'hippocampe provoquent une mort neuronale et donc une perte neuronale, le taux de cycline Dl a été normalisé par le taux de β tubuline classe III, un marqueur spécifique des neurones. L'analyse quantitative a révélé que le niveau d'expression normalisé de cycline Dl augmentait de manière significative de 100% avant kaïnate à plus de 150% après exposition des cultures par le kaïnate 75 μM.
4) La cycline Dl et Cdk5 sont co-exprimés dans les neurones en dégénérescence et interagissent dans le cerveau .
Cdk5 est une cycline kinase dépendante (cdk) spécifiquement neuronale. Le double marquage cycline Dl/Cdk5 a révélé que la cycline Dl et Cdk5 étaient présentes dans les neurones en dégénérescence. La figure 4 montre l'expression de cdk5 dans les neurones après exposition au kaïnate. Double ou triple marquage de neurones hippocampiques avant (contrôle en A) et après exposition à 75 mM de kainate (B-I) . Immunoréactivité Cdk5 (A, B, D, G) ; coloration Hoechst (C, F, I) ; Iodure de Propidium (E) ; Immunoréactivité cycline Dl (H) . En A, des neurones
(flèches) sont cdk5 positifs. En B, C des neurones (flèches) sont cdk5 positifs (B) avec un noyau condensé (C) . En D, E,
F, un neurone (flèche), Cdk5 positif (D) , iodure de propidium positif (E) avec un noyau condensé (F) . En G, H, I un neurone (flèche) , Cdk5 positif (G) , cycline Dl positif (H) avec un noyau condensé (I)
Les études en western blot après immunoprécipitation de cdk5 révélèrent que la cycline Dl étaient associées à Cdk5. 5) Effet d'inhibiteurs des cdk sur la mort neuronale après exposition au kaïnate.
Afin d'étudier le rôle du complexe cycline
Dl/cdk5 dans la mort neuronale un inhibiteur des cdk très actif sur cdk5 a été utilisé sur des cultures hippocampiques exposées à 20 μM de kaïnate. La figure 5 montre qu'un inhibiteur de Cdk diminue la mort neuronale après exposition au kainate. La figure 5 concerne la culture d'hippocampes traitées 5 heures par du kaïnate et un inhibiteur de Cdk à différentes concentrations (2, 5, 10 μM) . La mortalité neuronale a été évaluée par la marquage à
1 ' iodure de propidium avec observation au microscope à fluorescence. Il convient de noter que la mort neuronale est partiellement inhibée par l'inhibiteur de cdk aux concentration de 2 et 5 μM . * p<0,005 par test ANOVA.
Les contrôles ont été effectuées sur des culture avec ou sans kaïnate en combinaison ou non avec l'inhibiteur de Cdk. Sur les expériences contrôles avec kaïnate, en l'absence d'inhibiteur la mort neuronale était proche de 65 % avec une augmentation de la mort neuronale de 150 % par rapport aux cultures sans kaïnate. Au contraire, sur les cultures avec kaïnate en présence de concentration d'inhibiteur de cdk de 2 ou 5 μM la mort neuronale était proche de 45 %. Même avec des fortes doses d'inhibiteurs (lOμM), la mort neuronale reste élevée.
III - Discussion.
Les premiers travaux (Timsit et al., 1999) ont montré que l'expression de la cycline Dl était augmentée dans les neurones vulnérables in vivo mais aussi, à un niveau moindre dans des neurones résistants. Il n'était donc pas démontré que cette expression avait un effet délétère ou bénéfique. Les présents travaux in vi tro ont confirmé l'augmentation d'expression de la protéine cycline Dl après exposition de cultures de neurones et d' astrocytes au kaïnate, un analogue du glutamate. De plus, l'étude en immunohistochimie a permis de montrer que ce sont les neurones en dégénérescence qui expriment la protéine cycline Dl dans leur noyau. Cette expression survient précocement avant la fragmentation de 1 'ADN comme l'avait déjà montré les travaux in vivo . L'étude par double marquage cycline Dl/ Cdk5 a montré que les neurones en dégénérescence co- expriment ces 2 protéines suggérant qu'elles peuvent s'associer. L'étude en Western blot sur des cerveaux de rat normaux a confirmé la possibilité d'association entre la cycline Dl et la molécule Cdk5. Enfin l'utilisation d'inhibiteur de Cdk, préferentiellement actif sur Cdk5, a montré un effet protecteur de ce produit chimique aux doses situées entre 2 et 5μM. En revanche au dose de 10 μM ce produit ne s'est plus révélé protecteur.
Les aspects morphologiques associés au kainate analysés en contraste de phase, avec un marqueur Hoechst et 1' iodure de propidium montrent à la fois des aspects d' apoptose et des aspects de nécrose. Les aspects d' apoptose sont caractérisés par la condensation et la fragmentation du noyau visualisées par la coloration Hoechst mais aussi des aspects de nécrose avec rupture de la membrane cytoplasmique visualisé par la coloration au iodure de propidium. Les inhibiteurs de Cdk ont donc un effet neuroprotecteur contre 1 ' excitotoxicité neuronale non-typiquement apoptotique. Ces données sont de plus étayées par les travaux de Leski et al. (1999) qui montrent que la mort neuronale excitotoxique induite par le kainate ne peut être prévenue par l'utilisation d'inhibiteurs de la synthèse d'ARN ou de protéine ou d'inhibiteurs de caspases tels que YVAD-CHO and DEVD-CHO et que donc les critères classiques généralement associés à l'apoptose à savoir la mort programmée et l'activation des caspases ne se retrouvent pas dans la mort excitotoxique induite par le kainate. De même, les inhibiteurs de caspases ne sont pas toujours actifs sur les modèles d'ischémie cérébrale, ainsi Li et al (2000) ont montré une absence d'effet des inhibiteurs de caspase dans l'ischémie globale.
REFERENCES BIBLIOGRAPHIQUES
- Khrestchatisky M., Timsit S., Rivera S., Tremblay E. and Ben-Ari Y. (1996) Neuronal death and damage repair: rôles of protoncogenes and cell cycle-related proteins. In J. Krieglstein (Ed.), Pharmacology of Cérébral ischemia . Medpharm Scientific Publishers, Stuttgart, pp 41- 56, .
- Li Y., Chopp M., Powers C, Jiang N. (1997) Immunoreactivity of cyclin Dl/cdk4 in neurons and oligodendrocytes after focal cérébral ischemia in rats. J Cereb Blood Flow Metab. , 17: 846-856.
- Sherr C.J. (1993) Mamalian Gl cyclins. Cell , 73: 1059-1065. - Zwijsen R.M. , Wientjens E., Klompmaker, Van der Sman J. , Bernards R. , Michalides R.J.A.M. (1997) Cdk- independant activation of estrogen receptor by cyclin Dl . Cell , 88: 405-415.
- Portera-Cailliau, Price D.L., Martin L.J. Non- NMDA and NMDA receptor mediated excotoxic neuronal deaths in adult brain are morphologically distinct: further évidence for an apoptotic-necrosis continuum. 1997. J. Comp. Neurol 378: 88-104.
- Wiessner C, Brink I., Lorenz P., Neumann- Haefelin T., Vogel P., Yamashita K. (1996) Cyclin Dl messenger RNA is induced in microglia rather than neurons following transient forebrain ischemia. Neuroscience , 72: 947-958.
SmallD.L. , Monette R. , Comas T. , Fournier M.C., Morley P. (1999) Loss of cyclin Dl in necrotic and apototic models of cortical neuronal degeneneration. Brain Research , 842 :376-383.
- Timsit S, Rivera S., Ouaghi P., Guischard F., Tremblay E. , Ben-Ari Y., M. Khrestchatisky. Increased Cyclin Dl in vulnérable neurons in the hippocampus after ischemia and epilepsy: a modulator of in vivo programmed cell death ? (1999) Eur. J. Neurosci . , 1999. 11, 263-278.
- Oda H., Kasiske B.L., O'Donnell M. P., Keane W.F. (1999) Effects of lovastatine on expression of cell cyle regulatory proteins in vascular smooth muscle cells . Kindney Int Suppl 71, S202-S205.
- Rao S., Porter D.C., Chen X., Herliczek T., lowe M., Keyomarsi K. (1999) Effects of lovastatin on expression of cell cycle regulatory proteins in vascular smooth muscle cells. Proc . Natl . Acad. Sci. ; 96, 7797-7802.
- Muller C, Kiehl M. G. , van de Loo J. , koch O.M. (1999) Lovastatin induces p2lWAFl/Cipl in human vascular smooth muscle cells: influence on protein phophorylation, cell cycle, induction of apoptois and growth inhibition.
- Hashemolhosseini S., Nagamine Y., Morley S.J., Desriviires S., Mercep L., Ferrari S. (1998) Rapamycin inhibition of the Gl to S transition is mediated by effects on cyclin Dl mRNA and protein stability. J. Biol . Chem 273, 14424-14429.
- Diehl J.A. , Cheng M., Roussel M. F., Sherr C.J. Glycogen synthase kinase-3beta régulâtes cyclin Dl prteolysis and subcellular localization. (1998) Gènes Dev. 22, 3499-3511. - Borner C et Monney L. Apoptosis without caspases: an efficient molecular guillotine ? Cell death Differ 6, 508-515 (1999) .
- Kitanaka C, Kuchino Y. Caspases indépendant programmed cell death with necrotic morphology. Cell death Differ, 6, 508-515 (1999) .
- Chautan M., Chazal G., Ceconni F., Gruss P., Golstein P. Interdigital cell death occur through a necrotic and caspase -indépendant pathway. (1999) Curr Biol 9, ,967-970. - MacManus JP, Fliss H., Preston E., Rasquinha I., Tuor U. (1999) Cérébral ischemia produces laddered DNA fragment distinct from cardiac ischemia and archetypal apoptosis. J. Cereb. Blood Flow Metab. 19: 502-510. - Leski M.L., Valentine S.L, Coyle J.T. (1999)
L-type voltage gated calcium channels modulate kainic acid neurotoxicity in cerebellar granule cells. Brain Res . 828: 27-40.
- Li H, Colbourne F, Sun P, Zhao Z, Buchan AM, Iadecola C. (2000) Caspase inhibitors reduce neuronal injury after focal but not global cérébral ischemia in rats. Stroke 31: 176-82.
- del Zoppo G., Ginis I., Hallenbeck J.M. , Iadecola C, Wan X., Feuerstein G.Z. Inflammatioon and stroke: putative rôle for cytokines, adhésion molécules and iNOS in brain response to ischemia. (2000) Brain pathology 10:95-112.
- Sanchez-Gomez M.V. , Matute C. AMPA and kainate receptors each médiate excitotoxicity in oligodendroglial cultures. (1999) Neurobiol Dis. 6:475-485.
- Matute C, Sanchez-Gomez M.V. , Martinez-Millan L. , Mideldi R. (1997) Glutamate receptor -mediated toxicity in optic nerve oligodendrocytes. P.N.A.S, 94: 8830-8835.
- Kerr J.F.R., Willie A.H., Currie A.R. (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetic. Br. J. Cancer 26, 239-257.

Claims

REVENDICATIONS
1) Utilisation d'une substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire pour la préparation d'un médicament destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques.
2) Utilisation d'une substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire pour la préparation d'un médicament destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques des neurones, des astrocytes, ou des oligodendrocytes, ou de leurs précurseurs, au cours de l'épilepsie.
3) Utilisation d'une substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire pour la préparation d'un médicament destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques des neurones, des astrocytes, ou des oligodendrocytes, ou de leurs précurseurs, lors d'une ischémie cérébrale.
4) Utilisation selon la revendication 3, caractérisée en ce que ledit médicament est destiné au traitement ou à la prévention des lésions neurales aiguës excitotoxiques non-apoptotiques lors d'une ischémie cérébrale survenant au cours d'une situation provoquant une hypoxie ou une anoxie cérébrale.
5) Utilisation selon la revendication 4, caractérisée en ce que la situation provoquant une hypoxie ou une anoxie cérébrale est choisie parmi : un arrêt cardiaque, la mise en circulation extra-corporelle lors de la chirugie cardiovasculaire, la chirurgie des vaisseaux du cou nécessitant ou non un clampage des vaisseaux, les traumatismes crâniens.
6) Utilisation selon l'une des revendications 1 ou 5, caractérisée en ce que la protéine impliquée dans le cycle cellulaire est une protéine nécessaire à la progression du cycle cellulaire.
7) Utilisation selon l'une des revendications 1 à 6, caractérisée en ce que la protéine impliquée dans le cycle cellulaire est produite par une cellule apte ou non à se diviser.
8) Utilisation selon l'une quelconque des revendications 1 à 7 , caractérisée en ce que la substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire est une substance capable de moduler la phosphorylation d'une cible, en l'augmentant ou 1 ' inhibant .
9) Utilisation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire est une substance modulatrice de l'expression ou de la fonction d'une cycline et/ou d'une cdk.
10) Utilisation selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire est une substance modulatrice de l'expression ou de la fonction d'une cycline et plus particulièrement d'une cycline D et/ou d'une cdk. 11) Utilisation selon l'une quelconque des revendications 1 à 10, caractérisée en ce que la substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire est une substance modulatrice de l'expression ou de la fonction de la cycline Dl et/ou de la cdk5 et/ou du complexe cycline Dl/Cdk5.
12) Utilisation selon l'une quelconque des revendications 1 à 11, caractérisée en ce que la substance modulatrice de l'expression ou de la fonction d'une protéine impliquée dans le cycle cellulaire est choisie parmi : les inhibiteurs de l'expression des cyclines, les inhibiteurs de kinases cyclines dépendantes, les inhibiteurs du complexe cycline/kinases cyclines dépendantes.
13) Utilisation selon la revendication 12, caractérisé en ce que l'inhibiteur de l'expression des cyclines est choisi parmi la rapamycine, la glycogene synthase kinase, les statines .
14) Utilisation selon la revendication 12, caractérisé en ce que 1 ' inhibiteur de kinases cyclines dépendantes est choisi parmi les analogues de purines par exemple les dérivés de l'olomoucine et roscovitine, les paullones, les indirubines, 1 'hymenisaldisine, le flavopiridol .
PCT/FR2001/000850 2000-03-22 2001-03-21 Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aiguës WO2001070231A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001568429A JP2003527428A (ja) 2000-03-22 2001-03-21 急性神経損傷治療又は予防用の細胞周期に係わるタンパク質の発現又は機能変調物質の使用
IL15180001A IL151800A0 (en) 2000-03-22 2001-03-21 Use of substances modulating the expression of the function of a protein involved in the cell cycle for treating or preventing acute neural injuries
AU2001244292A AU2001244292B2 (en) 2000-03-22 2001-03-21 Use of substances modulating the expression or the function of a protein involved in the cell cycle for treating or preventing acute neural injuries
AU4429201A AU4429201A (en) 2000-03-22 2001-03-21 Use of substances modulating the expression or the function of a protein involved in the cell cycle for treating or preventing acute neural injuries
EP01917205A EP1265602A2 (fr) 2000-03-22 2001-03-21 Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aigu s
CA002403714A CA2403714A1 (fr) 2000-03-22 2001-03-21 Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neuralesaigues
US10/251,297 US20030060397A1 (en) 2000-03-22 2002-09-20 Method of treating and preventing acute neural lesions with substances that modulate the expression or function of a protein involved in the cell cycle and pharmaceutical preparations containing such substances

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/03673 2000-03-22
FR0003673A FR2806626B1 (fr) 2000-03-22 2000-03-22 Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aigues

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/251,297 Continuation US20030060397A1 (en) 2000-03-22 2002-09-20 Method of treating and preventing acute neural lesions with substances that modulate the expression or function of a protein involved in the cell cycle and pharmaceutical preparations containing such substances

Publications (2)

Publication Number Publication Date
WO2001070231A2 true WO2001070231A2 (fr) 2001-09-27
WO2001070231A3 WO2001070231A3 (fr) 2002-06-20

Family

ID=8848391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000850 WO2001070231A2 (fr) 2000-03-22 2001-03-21 Utilisation de substances modulatrices de l'expression ou de la fonction d'une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aiguës

Country Status (9)

Country Link
US (1) US20030060397A1 (fr)
EP (1) EP1265602A2 (fr)
JP (1) JP2003527428A (fr)
AU (2) AU4429201A (fr)
CA (1) CA2403714A1 (fr)
FR (1) FR2806626B1 (fr)
IL (1) IL151800A0 (fr)
WO (1) WO2001070231A2 (fr)
ZA (1) ZA200207448B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899107A1 (fr) * 2006-03-30 2007-10-05 Neurokin Entpr Unipersonnelle Utilisation de la (s)-roscovitine pour la fabrication d'un medicament
WO2014053580A1 (fr) * 2012-10-02 2014-04-10 Katholieke Universiteit Leuven Activité anti-convulsion d'inhibiteurs de gsk-3bêta

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3280425B1 (fr) 2015-04-07 2022-06-01 The J. David Gladstone Institutes, A Testamentary Trust Established under The Will of J. David Gladstone Méthodes pour induire la division cellulaire de cellules post-mitotiques

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016703A1 (fr) * 1992-02-24 1993-09-02 Smithkline Beecham Corporation Inhibiteur de la proteine kinase c
WO1997014439A1 (fr) * 1995-10-17 1997-04-24 Novartis Ag Composition pharmaceutique contenant un stimulateur du transport a travers la barriere hemato-encephalique
EP0778023A1 (fr) * 1995-12-07 1997-06-11 American Home Products Corporation Agents neuroprotecteurs
WO1997020842A1 (fr) * 1995-12-01 1997-06-12 Centre National De La Recherche Scientifique (C.N.R.S.) Nouveaux derives de purine possedant notamment des proprietes anti-proliferatives et leurs applications biologiques
WO1999007705A1 (fr) * 1997-08-07 1999-02-18 The Regents Of The University Of California Purines inhibant des proteine kinases, des proteines g et des polymerases
WO1999018952A1 (fr) * 1997-10-14 1999-04-22 Brigham & Women's Hospital, Inc. REGULATION POSITIVE DE L'OXYDE NITRIQUE SYNTHASE DE CELLULES ENDOTHELIALES DE TYPE III PAR DES INHIBITEURS DE LA HMG-CoA REDUCTASE
US5898029A (en) * 1994-04-12 1999-04-27 The John Hopkins University Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors
EP0911634A1 (fr) * 1997-10-24 1999-04-28 Het Nederlands Kanker Instituut Regulateurs de CDK-2 et leurs utilisations pharamaceutiques
WO1999030710A1 (fr) * 1997-12-13 1999-06-24 Bristol-Myers Squibb Company UTILISATION DE PYRAZOLO[3,4-b]PYRIDINE EN TANT QU'INHIBITEURS DE KINASE DEPENDANT DE LA CYCLINE
WO1999043676A2 (fr) * 1998-02-26 1999-09-02 Aventis Pharmaceuticals Inc. 2-[trans-(4- aminocyclohexyl) amino]purines 6,9-disubstituees
WO1999043675A1 (fr) * 1998-02-26 1999-09-02 Aventis Pharmaceuticals Inc. 2-[trans-(4- aminocyclohexyl) amino]purines 6,9-disubstituees
US6087366A (en) * 1996-03-07 2000-07-11 The Trustees Of Columbia University In The City Of New York Use of flavopiridol or a pharmaceutically acceptable salt thereof for inhibiting cell damage or cell death
WO2001060374A1 (fr) * 2000-02-15 2001-08-23 Centre National De La Recherche Scientifique (C.N.R.S.) Utilisation de derives de paullones pour la fabrication de medicaments

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1003519A4 (fr) * 1997-03-03 2003-08-20 Univ Texas Suppression de l'activite de la cycline kinase 2 pour prevenir et traiter des infections virales a adn
US20040254094A1 (en) * 2000-10-11 2004-12-16 The Trustees Of University Of Pennsylvania And Board Of Regents Suppression of cyclin kinase activity for prevention and treatment of infections
ATE301123T1 (de) * 2001-06-27 2005-08-15 Cyclacel Ltd 2,6,9-substituierte purinderivate und ihre verwendung bei der behandlung proliferativer krankheiten

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016703A1 (fr) * 1992-02-24 1993-09-02 Smithkline Beecham Corporation Inhibiteur de la proteine kinase c
US5898029A (en) * 1994-04-12 1999-04-27 The John Hopkins University Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors
WO1997014439A1 (fr) * 1995-10-17 1997-04-24 Novartis Ag Composition pharmaceutique contenant un stimulateur du transport a travers la barriere hemato-encephalique
WO1997020842A1 (fr) * 1995-12-01 1997-06-12 Centre National De La Recherche Scientifique (C.N.R.S.) Nouveaux derives de purine possedant notamment des proprietes anti-proliferatives et leurs applications biologiques
EP0778023A1 (fr) * 1995-12-07 1997-06-11 American Home Products Corporation Agents neuroprotecteurs
US6087366A (en) * 1996-03-07 2000-07-11 The Trustees Of Columbia University In The City Of New York Use of flavopiridol or a pharmaceutically acceptable salt thereof for inhibiting cell damage or cell death
WO1999007705A1 (fr) * 1997-08-07 1999-02-18 The Regents Of The University Of California Purines inhibant des proteine kinases, des proteines g et des polymerases
WO1999018952A1 (fr) * 1997-10-14 1999-04-22 Brigham & Women's Hospital, Inc. REGULATION POSITIVE DE L'OXYDE NITRIQUE SYNTHASE DE CELLULES ENDOTHELIALES DE TYPE III PAR DES INHIBITEURS DE LA HMG-CoA REDUCTASE
EP0911634A1 (fr) * 1997-10-24 1999-04-28 Het Nederlands Kanker Instituut Regulateurs de CDK-2 et leurs utilisations pharamaceutiques
WO1999030710A1 (fr) * 1997-12-13 1999-06-24 Bristol-Myers Squibb Company UTILISATION DE PYRAZOLO[3,4-b]PYRIDINE EN TANT QU'INHIBITEURS DE KINASE DEPENDANT DE LA CYCLINE
WO1999043676A2 (fr) * 1998-02-26 1999-09-02 Aventis Pharmaceuticals Inc. 2-[trans-(4- aminocyclohexyl) amino]purines 6,9-disubstituees
WO1999043675A1 (fr) * 1998-02-26 1999-09-02 Aventis Pharmaceuticals Inc. 2-[trans-(4- aminocyclohexyl) amino]purines 6,9-disubstituees
WO2001060374A1 (fr) * 2000-02-15 2001-08-23 Centre National De La Recherche Scientifique (C.N.R.S.) Utilisation de derives de paullones pour la fabrication de medicaments

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ENDRES ET AL: "stroke protection by HMG-CoA reductase inhibitors mediated by endothelial nitric oxide synthase" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA,US,NATIONAL ACADEMY OF SCIENCE. WASHINGTON, vol. 95, no. 15, 1 juillet 1998 (1998-07-01), pages 8880-8885, XP002091890 ISSN: 0027-8424 *
GIOCANTI, NICOLE ET AL: "In vitro evaluation of a novel 2,6,9-trisubstituted purine acting as a cyclin-dependent kinase inhibitor" ANN. N. Y. ACAD. SCI. (1999), 886(ANTICANCER MOLECULES), 180-182, XP000974318 *
GUEGAN, CHRISTELLE ET AL: "C-Jun and cyclin D1 proteins as mediators of neuronal death after a focal ischaemic insult." NEUROREPORT, (1997) VOL. 8, NO. 4, PP. 1003-1007., XP000972753 *
HAYASHI, TAKESHI (1) ET AL: "Expression of cyclin-dependent kinase 5 and its activator p35 in rat brain after middle cerebral artery occlusion." NEUROSCIENCE LETTERS, (APRIL 9, 1999) VOL. 265, NO. 1, PP. 37-40., XP000972754 *
MEIJER L ET AL: "INHIBITION OF CYCLIN-DEPENDENT KINASES, GSK-3SS AND CK1 BY HYMENIALDISINE, A MARINE SPONGE CONSTITUENT" CHEMISTRY AND BIOLOGY, CURRENT BIOLOGY, LONDON, GB, vol. 7, no. 1, janvier 2000 (2000-01), pages 51-63, XP000901413 ISSN: 1074-5521 *
TIMSIT, SERGE (1) ET AL: "Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: A modulator of in vivo programmed cell death." EUROPEAN JOURNAL OF NEUROSCIENCE, (JAN., 1999) VOL. 11, NO. 1, PP. 263-278., XP000972730 cité dans la demande *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899107A1 (fr) * 2006-03-30 2007-10-05 Neurokin Entpr Unipersonnelle Utilisation de la (s)-roscovitine pour la fabrication d'un medicament
WO2007118984A1 (fr) * 2006-03-30 2007-10-25 Neurokin Utilisation de la ( s ) -roscovitine pour la prevention et/ou le traitement de maladies neurologiques
US8318707B2 (en) 2006-03-30 2012-11-27 Neurokin Administration of (S)-roscovitine for protection against and/or treatment of neurological diseases
WO2014053580A1 (fr) * 2012-10-02 2014-04-10 Katholieke Universiteit Leuven Activité anti-convulsion d'inhibiteurs de gsk-3bêta

Also Published As

Publication number Publication date
CA2403714A1 (fr) 2001-09-27
FR2806626A1 (fr) 2001-09-28
US20030060397A1 (en) 2003-03-27
JP2003527428A (ja) 2003-09-16
ZA200207448B (en) 2004-03-25
AU4429201A (en) 2001-10-03
IL151800A0 (en) 2003-04-10
FR2806626B1 (fr) 2003-11-28
WO2001070231A3 (fr) 2002-06-20
AU2001244292B2 (en) 2005-09-22
EP1265602A2 (fr) 2002-12-18

Similar Documents

Publication Publication Date Title
Yokota et al. Neuroprotection from retinal ischemia/reperfusion injury by NOX2 NADPH oxidase deletion
Zhang et al. p53 mediates mitochondria dysfunction-triggered autophagy activation and cell death in rat striatum
Chen et al. Early inhibition of HIF-1α with small interfering RNA reduces ischemic–reperfused brain injury in rats
Yang et al. Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1α and VEGF in laser-induced rat choroidal neovascularization
Takeyama et al. Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis
Wu et al. Nuclear factor-kappaB-dependent sestrin2 induction mediates the antioxidant effects of BDNF against mitochondrial inhibition in rat cortical neurons
Guo et al. PGC-1α signaling coordinates susceptibility to metabolic and oxidative injury in the inner retina
Wang et al. Factors contributing to neuronal degeneration in retinas of experimental glaucomatous rats
KR101347100B1 (ko) 단독의 또는 pkc 억제제와 배합된 pkc 활성화제의 장기 기억 향상을 위한 용도
Shao et al. Atorvastatin attenuates ischemia/reperfusion-induced hippocampal neurons injury via Akt-nNOS-JNK signaling pathway
Carreño et al. Brain‐derived neurotrophic factor‐tyrosine kinase B pathway mediates NMDA receptor NR2B subunit phosphorylation in the supraoptic nuclei following progressive dehydration
Al-Gayyar et al. Neurovascular protective effect of FeTPPs in N-methyl-D-aspartate model: similarities to diabetes
Yang et al. Phloroglucinol ameliorates cognitive impairments by reducing the amyloid β peptide burden and pro-inflammatory cytokines in the hippocampus of 5XFAD mice
Rodriguez-Perez et al. Renin angiotensin system and gender differences in dopaminergic degeneration
Liu et al. EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model
US20240082211A1 (en) Soluble epoxide hydrolase as a target for ocular diseases
Cho et al. Dendrimer‐triamcinolone acetonide reduces neuroinflammation, pathological angiogenesis, and neuroretinal dysfunction in ischemic retinopathy
Choi et al. Failure to activate NF-κB promotes apoptosis of retinal ganglion cells following optic nerve transection
Mansour et al. Inhibition of mitochondrial pyruvate carrier 1 by lapatinib ditosylate mitigates Alzheimer's-like disease in D-galactose/ovariectomized rats
Cheng et al. Inhibition of Notch1 signaling alleviates endotoxin-induced inflammation through modulating retinal microglia polarization
Alzahrani et al. Isoliquiritigenin downregulates miR-195 and attenuates oxidative stress and inflammation in STZ-induced retinal injury
Wi et al. Functional crosstalk between CB and TRPV1 receptors protects nigrostriatal dopaminergic neurons in the MPTP model of Parkinson’s disease
Shin et al. Ceruloplasmin is an endogenous protectant against kainate neurotoxicity
Basavarajappa et al. S1PR1 signaling attenuates apoptosis of retinal ganglion cells via modulation of cJun/Bim cascade and Bad phosphorylation in a mouse model of glaucoma
EP1265602A2 (fr) Utilisation de substances modulatrices de l&#39;expression ou de la fonction d&#39;une proteine impliquee dans le cycle cellulaire pour le traitement ou la prevention des lesions neurales aigu s

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2002/07448

Country of ref document: ZA

Ref document number: 200207448

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 151800

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2001 568429

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001917205

Country of ref document: EP

Ref document number: 10251297

Country of ref document: US

Ref document number: 2403714

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001244292

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2001917205

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 2001917205

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001917205

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001244292

Country of ref document: AU