WO2001069311A1 - Liquid crystal display and method for manufacturing the same, and method for driving liquid crystal display - Google Patents

Liquid crystal display and method for manufacturing the same, and method for driving liquid crystal display Download PDF

Info

Publication number
WO2001069311A1
WO2001069311A1 PCT/JP2001/001748 JP0101748W WO0169311A1 WO 2001069311 A1 WO2001069311 A1 WO 2001069311A1 JP 0101748 W JP0101748 W JP 0101748W WO 0169311 A1 WO0169311 A1 WO 0169311A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
orientation
voltage
Prior art date
Application number
PCT/JP2001/001748
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Nakao
Katsuji Hattori
Shoichi Ishihara
Hirofumi Kubota
Shin-Ichiro Hatta
Katsumi Adachi
Yoshinori Tanaka
Mika Nakamura
Tsuyoshi Uemura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000069501A external-priority patent/JP2001083552A/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2001069311A1 publication Critical patent/WO2001069311A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13373Disclination line; Reverse tilt
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133761Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different pretilt angles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Definitions

  • the present invention provides a high-speed, wide-view, 0 CB mode liquid crystal display device for displaying a television image, a personal computer, and a multi-media image. And a method of manufacturing the same, and a method of driving a liquid crystal display device. Background technology
  • a liquid crystal display device for example, a nematic liquid crystal having a positive dielectric anisotropy is used as a liquid crystal display mode.
  • TN Dick
  • display modes such as ferroelectric liquid crystal (FLC) and antiferroelectric liquid crystal, which have a quick response and a wide viewing angle, but they are subject to burn-in, shock resistance, and characteristics.
  • FLC ferroelectric liquid crystal
  • antiferroelectric liquid crystal which have a quick response and a wide viewing angle, but they are subject to burn-in, shock resistance, and characteristics.
  • There are major drawbacks such as temperature dependence.
  • IPS in-plane switching
  • the above TN mode liquid crystal area is divided into two parts and the viewing angle is expanded vertically.
  • Yes SID92 DIGESTP 798-801. That is, a nematic liquid crystal having a positive dielectric anisotropy is used in each display pixel of the liquid crystal display device, and two liquid crystal regions in the TN mode and having different orientations of liquid crystal molecules are used.
  • the viewing angle is expanded by the formation of the TN mode in which the orientation is divided into two.
  • Fig. 68 shows a conceptual diagram of the configuration of the conventional liquid crystal display device.
  • 701, 702 are glass substrates
  • 703, 704 are electrodes
  • 705, 705 ', 706 , 706, are alignment films.
  • a re-tilt angle is formed, and in the other orientation region B, the magnitude of the pre-tilt angle is set opposite to the orientation region A with respect to the upper and lower substrate interfaces facing each other.
  • You Each of the large and small pre-tilt angles is set to make a difference by several degrees.
  • a photoresist is applied to an alignment film, and a photo resist is applied.
  • There are methods such as repeating the operation of masking with the so-graph technology and rubbing the desired alignment film surface in a predetermined direction.
  • this method as shown in Fig. 68, the orientations of the liquid crystal molecules in the central part of the liquid crystal layer in the alignment regions A and B are opposite to each other, and both the voltage and the voltage are applied. Since the liquid crystal molecules in each orientation region rise up conversely, the refractive index anisotropy is averaged with respect to the incident light for each pixel, and the viewing angle can be expanded. This will be.
  • the viewing angle is larger than in the normal TN mode, and the vertical viewing angle is about ⁇ 35 degrees at contrast 10 .
  • the response speed is about 50 ms, essentially unchanged from the TN mode. As described above, the viewing angle and the response are not sufficient in the above-mentioned conventional two-split TN mode.
  • a phase difference plate is used in a liquid crystal display mode using a so-called homeotropic alignment mode in which liquid crystal molecules are aligned almost vertically at the interface of the alignment film.
  • the response speed between the black and white binary values is about 25 ms.
  • the response speed of the key interval is 50 to 8 Oms, which is slower than that of the human eye, which is called the visual perception speed of about 0.1 to 30 s. The moving image appears to flow.
  • liquid crystal molecules of the above-described bend alignment type liquid crystal display are entirely aligned between the upper and lower substrates, self-compensation can be performed in an optical phase difference manner. Since the retardation is compensated by a film retarder, it has the potential to be a low-voltage, wide-field liquid crystal display.
  • the above-mentioned liquid crystal display device is usually manufactured by applying liquid crystal molecules in a spray orientation state between substrates under no voltage.
  • the entire display section In order to change the refractive index using the bend alignment, the entire display section must be uniformly changed from the above-mentioned spray alignment state to the bend alignment state before the use of the liquid crystal display device. It needs to be transferred.
  • the transition nuclei from the spray orientation to the bend orientation are not uniform, but are distributed around the dispersed spacers. Or, there are alignment unevenness and flaws at the alignment film interface.
  • transition nucleus does not always occur from the above-mentioned fixed place, the transition occurs or the transition nucleus does not occur, so that a display defect easily occurs. Therefore, before starting to use, at least the entire display area It is extremely important to make the transition from the spray orientation to the bend orientation uniform.
  • the present invention proposes an appropriate and wide-field, bend-aligned liquid crystal display device, a method of manufacturing the same, and a method of driving the liquid crystal display device.
  • the present invention provides a liquid crystal display device having a plurality of liquid crystal regions having different alignment states during an initialization period for alignment transition (especially at a central portion between a pair of upper and lower substrates). It is characterized in that two liquid crystal regions in which the tilt angle of liquid crystal molecules is opposite to the positive / negative state) can be expressed. As a result, a discrimination line can be formed at the boundary of the liquid crystal region, and the transition to the bend alignment can be achieved quickly and reliably. This is what you can do.
  • the invention according to claim 1 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display.
  • the liquid crystal display device performs an initialization process for transferring the initial alignment of the liquid crystal display to the bend alignment, and drives the liquid crystal display in the initialized pen alignment state. It is characterized in that it is provided with a means for causing a plurality of liquid crystal regions having different alignment states to appear in the liquid crystal layer during the initialization process for transitioning to the bend alignment state.
  • the initial state is not limited to the spray orientation, and for example, a vertical orientation may be expressed in a part of the spray orientation region.
  • a plurality of liquid crystal regions having different alignment states are not expressed in the initial alignment state, but may be generated during the initialization process.
  • a plurality of liquid crystal regions having different alignment states have already been expressed in the initial alignment state, and may be expressed even during the initialization process. In short, it is only necessary that a plurality of liquid crystal regions having different alignment states are developed during the initialization process.
  • the invention according to claim 2 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, wherein when no voltage is applied, the liquid crystal layer has a spray orientation.
  • an initialization process is performed to transfer the orientation state of the liquid crystal layer from the spray orientation to the bend orientation by applying a voltage between the substrates.
  • a liquid crystal display device that drives a liquid crystal display in this initialized bend alignment state, during the initialization process of transitioning to the bend alignment state, two types of operations are performed. It is characterized in that it is provided with a means for expressing a liquid crystal region having a spray alignment state in the liquid crystal layer.
  • the invention according to claim 3 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, wherein when no voltage is applied, the liquid crystal layer has a spray orientation.
  • the orientation of the liquid crystal layer Prior to the crystal display driving, the orientation of the liquid crystal layer is changed from the spray orientation to the bend orientation by applying a voltage between the substrates.
  • the voltage is not applied. It is characterized in that at least two liquid crystal regions in an alignment state in which the tilt angles of liquid crystal molecules at the center between a pair of upper and lower substrates are opposite to each other are formed.
  • the invention according to claim 4 includes a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • the liquid crystal display device which performs an initialization process for transferring the alignment state of the liquid crystal molecules to the bend alignment state and drives the liquid crystal display in the initialized bend alignment state.
  • the invention is characterized in that a bend transition nucleus is not generated or expanded from the above-mentioned discrimination line.
  • the discrimination line is formed by the discrimination line forming means, it is possible to quickly and surely shift to the bend orientation. Transfer can be achieved.
  • the invention according to claim 5 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • the liquid crystal display device that performs an initialization process to transfer the orientation state of the liquid crystal display to the bend orientation, and drives the liquid crystal display in the initialized bend orientation state.
  • a voltage lower than the voltage at which the liquid crystal layer in the spray orientation state transitions to the bend orientation state is impressed!
  • a b-spray alignment region and a t-spray alignment region are developed in the liquid crystal layer. It is characterized by
  • a voltage higher than the transition voltage may be applied. If this is the case, a b-spray orientation region and a t-spray orientation region are always exhibited. Therefore, in the liquid crystal display device having such a configuration, it is possible to quickly and surely achieve the transition to the bend alignment by applying a voltage higher than the transition voltage. .
  • a voltage higher than the transition voltage is applied, the time required for the transition is extremely short, and the b-spray orientation region and the t-spray orientation region are observed. This is difficult.
  • the invention according to claim 6 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display.
  • the liquid crystal display device which performs an initialization process for transferring the orientation state of the liquid crystal molecules to the bend orientation, and drives the liquid crystal display in the initialized bend orientation state
  • a voltage lower than the voltage at which the liquid crystal layer transitions to the bend alignment state is applied to the liquid crystal layer in the play alignment state, at least two types of alignment regions are developed, and the alignment direction is reduced.
  • the voltage applied to the transition voltage or higher can cause a loss of t-source.
  • the play orientation region and the b-spray orientation region are more likely to be developed. As a result, the transition to the bend orientation becomes easy.
  • the invention according to claim 7, comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • the liquid crystal display device which performs an initialization process for transferring the orientation state of the liquid crystal molecules to the bend orientation and drives the liquid crystal display in the initialized bend orientation state
  • a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the play alignment state
  • at least two types of alignment regions are developed, and the transmittance of the alignment region is large or small.
  • the characteristic is that the relationship is opposite when observed from the orientation direction and when observed from a direction 180 degrees from the orientation direction.
  • the invention according to claim 8, comprising a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • the liquid crystal display device which performs an initialization process to transfer the orientation state of the liquid crystal molecules to the bend orientation, and drives the liquid crystal display in the initialized orientation of the bend, the voltage is increased.
  • the first liquid crystal layer has an angle formed by the long axis of liquid crystal molecules near one of the pair of substrates and the substrate normal, and the other substrate has a near angle.
  • the first angle and the second angle are compared with each other in absolute value. Where the second angle is greater than the second angle and the second angle is greater than the first angle. Also said a call that has been formed in the even that the realm has come large.
  • Item 9 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form a liquid crystal layer on the liquid crystal layer.
  • the liquid crystal display device which performs an initialization process to transfer the alignment state to the bend alignment, and drives the liquid crystal display in the initialized bend alignment state.
  • the liquid crystal layer is formed with a plurality of regions having different inclination angles of liquid crystal molecules in a central portion in a cell thickness direction.
  • the discrimination line from the boundary of the different region when voltage is applied Can be formed.
  • the invention according to claim 10 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • the liquid crystal display device which performs an initialization process for transferring the orientation state of the liquid crystal display to the bend orientation and drives the liquid crystal display in the initialized bend orientation state, When a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the spray alignment state, there are multiple regions where the tilt angle of the liquid crystal molecules at the center in the cell thickness direction is different. It is characterized by being formed.
  • the region where the tilt angle of the liquid crystal molecules is different is not formed when no voltage is applied, but even when a voltage equal to or lower than the transition voltage is applied, the region where the voltage is equal to or higher than the transition voltage is applied. The transition to the do orientation is possible.
  • the invention according to claim 11 is a liquid crystal display device according to claim 1, wherein: It is characterized in that a plurality of liquid crystal regions having different alignment states are formed in each pixel.
  • a plurality of liquid crystal regions having different alignment states may be formed in each pixel, or may be formed in a plurality of pixel units as in the invention described in claim 12 described later. No. However, in order to ensure the transition of the bend orientation and to shorten the transit time, it is desirable to form them in each pixel. .
  • the invention according to claim 12 is characterized in that, in the liquid crystal display device according to claim 1, a plurality of liquid crystal regions having different alignment states are formed in a plurality of pixel units.
  • the invention according to claim 13 is characterized in that, in the liquid crystal display device according to claim 4, the discrimination line forming means is formed in each pixel.
  • the disk line forming means may be formed in each pixel, or may be formed in units of a plurality of pixels as in the invention described in claim 14 described later. You can do it. However, in order to ensure the transition of the bend orientation and to shorten the transition time, it is desirable to form them in each pixel.
  • the invention according to claim 14 is characterized in that, in the liquid crystal display device according to claim 4, the discrimination line forming means is formed in a plurality of pixel units. .
  • a transition voltage having a predetermined waveform that causes a bend transition is applied.
  • the invention according to claim 16 is the liquid crystal display device according to claim 1, wherein at least one of a pair of substrates has a plurality of types of liquid crystal pretilt angles. It is characterized by
  • regions with different orientations can be obtained, and data can be obtained from the boundary.
  • Screen lines can be formed.
  • the invention according to claim 17 is characterized in that in the liquid crystal display device according to claim 16, the difference between the maximum value and the minimum value of the pretilt angle is 1 degree or more. .
  • the difference between the maximum value and the minimum value of the pretilt angle is 1 degree or more, it is possible to surely generate the discretion line. .
  • the invention according to claim 18 is the liquid crystal display device according to claim 16, wherein a difference between a maximum value and a minimum value of the pretilt angle is 2 degrees or more. .
  • the disk line is more reliably provided than the invention according to claim 17. Can generate short lines.
  • the invention according to claim 19 is characterized in that, in the liquid crystal display device according to claim 16, the minimum value of the pretilt angle is 1 degree or more.
  • the invention according to claim 20 is characterized in that, in the liquid crystal display device according to claim 16, the minimum value of the pretilt angle is 3 degrees or more.
  • the invention according to claim 21 is characterized in that, in the liquid crystal display device according to claim 16, a plurality of pretilt angles are obtained by irradiation with ultraviolet rays.
  • the invention according to claim 22 is the liquid crystal display device according to claim 16, wherein a plurality of types of pre-tilt angles are obtained by the light directing process. It is characterized by
  • the other of the pair of substrates has a pre-tilt angle of not less than the minimum value and not more than the maximum value of the pre-tilt angle of the one substrate. It is characterized by the presence of a corner.
  • a pair of substrates each have a plurality of types of pretilt angles.
  • the invention according to claim 25 is the liquid crystal display device according to claim 16, wherein each of the inner surfaces of the pair of substrates has an alignment treatment such that the alignment strength is distributed in the substrate plane. It is characterized in that
  • the alignment treatment is performed so that the alignment intensity has a distribution in the substrate plane, so that a plurality of types of alignments having different pre-tilt angles are provided.
  • the orientation region is obtained.
  • the invention according to claim 26 is the liquid crystal display device according to claim 25, wherein the alignment treatment is a rubbing treatment.
  • the rubbing treatment is performed by using a rubbing cloth in which hairs of different stiffness are planted. It is characterized by:
  • the orientation treatment is performed using a rubbing cloth having a different stiffness and a flocking.
  • the orientation treatment may be performed using a rubbing cloth having a distribution of the length of the bristle feet as described in claim 26 described later. .
  • the invention according to claim 28 is the liquid crystal display device according to claim 26, wherein the rubbing treatment uses a rubbing cloth having a distribution of hair length. It is characterized by performing.
  • the invention according to claim 29 is the liquid crystal display device according to claim 26.
  • the rubbing process the rubbing is performed between the area on the downstream side in the rubbing direction of the peripheral area of the three-dimensional object provided on the substrate and the other area. It is characterized in that it is distributed in such a way that its strength differs.
  • the invention according to claim 30 is characterized in that, in the liquid crystal display device according to claim 29, the three-dimensional object is an electrode wire.
  • the invention according to claim 31 is characterized in that, in the liquid crystal display device according to claim 30, the rubbing direction is inclined more than the extending direction of the electrode wire.
  • the shadowed area of the rubbing becomes larger as compared with the case where the rubbing is performed in parallel with the electrode wire. As a result, it is possible to increase the area where the orientation is different.
  • the invention according to claim 32 is the liquid crystal display device according to claim 31, wherein the rubbing direction is inclined at least 10 degrees with respect to the extending direction of the electrode wire.
  • the invention according to claim 33 is characterized in that, in the liquid crystal display device according to claim 29, the three-dimensional object is a columnar spacer.
  • the invention according to claim 34 is the liquid crystal display device according to claim 33, characterized in that a columnar laser is formed in each pixel.
  • the invention according to claim 35 is the liquid crystal display device according to claim 1, wherein a lateral electric field for transition excitation is provided near a disk line generated at a boundary between the plurality of regions. It is characterized in that forming means is provided.
  • the transition is promoted by the action of the transverse electric field by the transverse electric field forming means.
  • the invention according to claim 36 is the liquid crystal display device according to claim 4, A horizontal electric field forming means for transfer excitation is provided in the vicinity of the discrimination line formed by the discrimination formation means. This is the feature.
  • the transition is promoted by the action of the transverse electric field by the transverse electric field forming means.
  • the invention according to claim 37 is the liquid crystal display device according to claim 35, wherein the direction of the electric field of the horizontal electric field generated by the horizontal electric field forming means is substantially orthogonal to the orientation direction. And are characterized.
  • the ease of transition depends on the electric field direction and the orientation direction of the lateral electric field, and good transition is achieved when the electric field direction and the orientation direction are substantially orthogonal. According to the invention described in claim 35, the transfer is further promoted.
  • the invention according to claim 38 is the liquid crystal display device according to claim 35, wherein one of the pair of substrates is an active matrix substrate, and By the electric field forming means, a horizontal electric field is generated between the pixel electrode and the source electrode line wired on the active matrix substrate, and the wiring direction and orientation of the source electrode line are generated. It is characterized in that the directions are substantially parallel.
  • the discretion line is generated almost perpendicular to the source electrode line. At this time, the lateral electric field effect generated between the source electrode line and the pixel electrode is favorable for the transition.
  • the invention according to claim 39 is the liquid crystal display device according to claim 35, wherein one of the pair of substrates is an active matrix substrate, and By the electric field forming means, a horizontal electric field is generated between the gate electrode line wired to the active matrix substrate and the pixel electrode, and the wiring direction and the direction of the gate electrode line are generated. Are substantially parallel to each other.
  • the disk The lineation line is generated almost perpendicular to the gate electrode line.
  • the lateral electric field effect generated between the gate electrode line and the pixel electrode is favorable for the transition.
  • the invention according to claim 40 is the liquid crystal display device according to claim 35, wherein one of the pair of substrates is an active matrix substrate, and By the electric field forming means, between the gate electrode lines wired to the active matrix substrate and the pixel electrodes, and in addition to the active matrix substrate, the wires are wired to the active matrix substrate.
  • a horizontal electric field is generated between the source electrode line and the pixel electrode, and the alignment direction is between the wiring direction of the gate electrode line and the wiring direction of the source electrode line. And are characterized.
  • the orientation direction is oblique to the source electrode line (similarly to the gate electrode line)
  • the alignment between the source electrode line and the pixel electrode In addition, both lateral electric fields between the gate electrode line and the pixel electrode are effective for the transition.
  • the invention according to claim 41 comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • a method for manufacturing a liquid crystal display device which performs an initialization process for changing the liquid crystal display from the spray orientation to the bend orientation and drives the liquid crystal display in the initialized bend orientation state. Therefore, in order to promote the transition to the bend orientation in the initialization process, at least one of the orientation films formed on the pair of substrates is formed. It is characterized in that it includes a pretilt change processing step of performing a process of changing the pretilt of a partial region of the film.
  • pretilt change processing step a liquid crystal display device having regions having different alignment states can be manufactured.
  • the invention according to claim 42 is for manufacturing the liquid crystal display device according to claim 41.
  • the pretilt change processing step includes spraying an alignment film material having a pretilt different from the orientation film formed on the substrate onto the partial region.
  • the pretilt change step includes leaving the substrate on which the alignment film is formed under high humidity conditions. It is characterized by
  • high humidity means a humidity of 90% or more.
  • the invention according to claim 44 is the method of manufacturing a liquid crystal display device according to claim 41, wherein the pretilt change processing step includes a step of pretilting the alignment film formed on the substrate. It is characterized by spraying a processing solution that changes the pressure.
  • the invention according to claim 45 is the method for manufacturing a liquid crystal display device according to claim 41, wherein the pretilt changing step is performed by subjecting the substrate on which the orientation film is formed to a solvent vapor atmosphere. It is characterized by being left alone.
  • the invention according to claim 46 is the liquid crystal display device according to claim 16, wherein an alignment film is formed on each of the pair of substrates, and at least one of the alignment films is formed.
  • the feature is that there is a distribution in the thickness of one orientation film. As described above, if there is a distribution in the film thickness of the alignment film, it becomes possible to have a plurality of types of pretilt angles.
  • the invention according to claim 47 comprising a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal.
  • Liquid crystal display device that performs an initialization process to shift the liquid crystal display from the spray orientation to the pen orientation, and drives the liquid crystal display in this initialized bend orientation state.
  • the pair of printing plates are formed by using a printing plate having a printing surface formed in an uneven shape.
  • the invention according to claim 48 which comprises a printing step of printing at least one alignment film, is a method for manufacturing a liquid crystal display device according to claim 47, wherein the method includes the steps of: It is characterized by including a printing step of printing an alignment film using a printing plate having a size of 100 / m or more.
  • the invention according to claim 49 is the method for manufacturing a liquid crystal display device according to claim 47, wherein the printing step is performed a plurality of times.
  • the invention according to claim 50 is characterized in that, in the liquid crystal display device according to claim 1, at least one surface of at least one of the pair of substrates is formed with unevenness. .
  • the substrate surface concave and convex, it is possible to form regions having different orientation states.
  • the invention according to claim 51 comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, wherein the liquid crystal is applied by applying a voltage between the substrates prior to driving a liquid crystal display.
  • a method of manufacturing a liquid crystal display device which performs an initialization process for changing a layer from a spray orientation to a bend orientation and drives a liquid crystal display in the initialized bend orientation state. Therefore, in order to promote the transition to the bend orientation in the initialization process, at least one of the pair of substrates has a concave-convex surface.
  • the method is characterized by including a concave-convex shape forming step.
  • the invention according to claim 52 is characterized in that, in the liquid crystal display device according to claim 50, the concave and convex shapes are formed of a photo resist. .
  • the invention according to claim 53 is the method for manufacturing a liquid crystal display device according to claim 51, further comprising a heat treatment step for smoothing the concave-convex shape formed in the concave-convex shape forming step. It is characterized by
  • the concave / convex shape is smooth, the area with different pretilt angles will be better. Many can be formed.
  • the invention according to claim 54 is the method of manufacturing a liquid crystal display device according to claim 51, wherein the step of forming the concave and convex shape is a step of forming a concave and convex shape using a printing method. It is characterized by
  • the invention according to claim 55 is characterized in that, in the liquid crystal display device according to claim 50, the uneven shape is made of a silicon nitride film.
  • the invention according to claim 56 is the method of manufacturing a liquid crystal display device according to claim 51, wherein the step of forming the concave and convex shapes forms a concave and convex shape by roughening the surface of the substrate. It is characterized by the fact that
  • the invention according to claim 57 is the method for manufacturing a liquid crystal display device according to claim 56, wherein the concave-convex shape forming step forms an uneven shape by performing an oxygen plasma treatment. It is characterized by the fact that it is a process.
  • the invention according to claim 58 is the liquid crystal display device according to claim 50, wherein a transparent electrode is formed on at least an inner surface of at least one of the pair of substrates. It is characterized in that the crystal diameter of this transparent electrode is 50 nm or more.
  • the invention according to claim 59 is characterized in that, in the liquid crystal display device according to claim 50, the uneven shape is formed by dispersing small particles on a substrate.
  • the invention according to claim 60 is the liquid crystal display device according to claim 50, characterized in that the uneven shape is formed by press molding. .
  • the invention according to claim 61 is the liquid crystal display device according to claim 50, wherein the uneven shape is a concave shape in which the shape of the pixel electrode is raised around. It is characterized by
  • the invention according to claim 62 is a method for manufacturing a liquid crystal display device according to claim 51.
  • the step of forming an uneven shape includes a step of forming a resin layer on at least one of the pair of substrates, and a step of forming an uneven shape by processing the resin layer. It is characterized by having
  • the invention according to claim 63 is obtained by the liquid crystal display device according to claim 50, wherein the concave and convex shape is such that a convex portion is formed at a central portion of a pixel electrode. It is characterized by being something.
  • the invention according to claim 64 is the liquid crystal display device according to claim 50, wherein the uneven shape forms a convex portion extending in a diagonal direction of the pixel electrode. It is characterized by what has been obtained.
  • a sixth aspect of the present invention in the liquid crystal display device according to the first aspect, by applying an electric field in a predetermined direction, a plurality of regions having different alignments according to the electric field are applied. Is formed.
  • the invention according to claim 66 is the liquid crystal display device according to claim 1, wherein at least one of the electrodes formed on the pair of substrates is missing an electrode. It is characterized by the presence of a part.
  • the electric lines of force on both sides of the electrode missing portion are inclined in a direction in which the inclination angle is opposite to the positive or negative.
  • a t-spray orientation is formed on one side of the electrode missing portion
  • a b-spray orientation is formed on the other side of the electrode missing portion. Therefore, a bend transition occurs from the disk line at the boundary.
  • the electrodes on the counter substrate side are missing electrodes. It is characterized by the presence of a missing electrode part.
  • the invention according to claim 83 is the liquid crystal display device according to claim 1, wherein, of the electrodes formed on the pair of substrates, the electrodes on the array substrate side have electrodes. It is characterized by the presence of missing electrode missing parts.
  • An invention according to claim 69 is the liquid crystal display device according to claim 66, wherein the direction in which the electrode missing portion extends is generated at a boundary between the plurality of regions. It is characterized by the fact that it coincides with the short line.
  • a discretion line is generated in the extending direction of the electrode missing portion. Therefore, the discretion line generated only by the presence of a plurality of regions having different orientations in the absence of the electrode missing portion, and the electrode missing portion If the direction of generation is the same as the direction of the discrimination line caused by the existence of the disc, a more stable discrimination line will be generated. As a result, stable bend orientation transition is achieved. For this reason, the extending direction of the electrode missing portion is made to coincide with the disk line generated at the boundary between the regions having different orientations. It is a thing.
  • the invention according to claim 70 is, in the liquid crystal display device according to claim 67, characterized in that the alignment direction and the extending direction of the electrode missing portion intersect.
  • the direction of the discon- sion line generated depending on the orientation may be different. For example, in the case of rubbing orientation, rubbing up and down with respect to a pixel will cause the discretion line to move left and right with respect to the pixel. If it is rubbed left and right, the discretion line is formed upward and downward with respect to the pixel. Therefore, if the extending direction of the electrode missing portion matches the orientation direction, it becomes inappropriate for the generation of a discretion line. Therefore, it is desirable to make the extending direction of the electrode missing portion intersect with the orientation direction from the viewpoint of stably generating the discretion line. Of course, it is most desirable that the extending direction of the electrode missing portion is orthogonal to the orientation direction.
  • the invention according to claim 71 is the liquid crystal display device according to claim 1, wherein the liquid crystal display device is arranged between a pixel electrode formed on one of the pair of substrates. It is characterized by having a transverse electric field forming means for forming an electric field.
  • the invention according to claim 72 is that, in the liquid crystal display device according to claim 71, a lateral electric field is generated at both ends of the pixel electrode, and the directions of the lateral electric field are opposite to each other.
  • the invention according to claim 73 is the liquid crystal display device according to claim 72, wherein one of the pair of substrates is an active matrix substrate, and
  • the active matrix substrate has a source electrode line and a pixel electrode, and is characterized in that a lateral electric field is applied between the source electrode line and the pixel electrode.
  • the invention according to claim 74 is the liquid crystal display device according to claim 73, wherein a distance between the pixel electrode and a source electrode line is as follows.
  • the invention according to Item 75 includes a liquid crystal layer sandwiched between a pixel electrode and a counter electrode, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display. Performs an initialization process to transition from the play orientation to the bend orientation, and drives the liquid crystal display in this initialized bend orientation state.
  • the invention according to claim 76 is the liquid crystal display device according to claim 72, wherein one of the substrates is an active matrix substrate, and the active matrix substrate is provided.
  • the trix substrate has a gate electrode line and a pixel electrode, and is characterized in that a lateral electric field is applied between the gate electrode line and the pixel electrode.
  • the invention according to claim 77 is the liquid crystal display device according to claim 76, wherein the distance between the pixel electrode and the gate electrode line is 5 m or less.
  • the invention described in Item 78 is a method for driving a liquid crystal display device according to Item 72, wherein the gate voltage is set to a low level during a period in which the pixel potential is held, and the pixel electrode and the gate are connected to each other. It is characterized in that a horizontal electric field is applied between the electrode lines.
  • the invention according to claim 79 includes a liquid crystal layer sandwiched between a pixel electrode and a counter electrode, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display. Performs an initialization process to transition from the spray orientation to the bend orientation, and drives the liquid crystal display in this initialized bend orientation state.
  • the gate potential is set to a potential higher than the pixel potential. It is characterized in that a horizontal electric field is applied between the pixel electrode and the gate electrode line by setting.
  • the invention according to claim 80 is the liquid crystal display device according to claim 76, wherein the active matrix substrate has an auxiliary capacitance electrode, and the auxiliary capacitance electrode has It is characterized in that it does not exist on the gate electrode wire.
  • the auxiliary capacitance electrode acts to block the lateral electric field generated between the gate electrode line and the pixel electrode. So, the supplement By forming the auxiliary capacitance electrode other than on the gate electrode line, it is possible to effectively generate a lateral electric field between the gate electrode line and the pixel electrode.
  • the invention according to claim 81 is characterized in that, in the liquid crystal display device according to claim 72, the horizontal electric field forming means has a shape of a protrusion formed on an electrode side portion.
  • the invention according to claim 82 is characterized in that, in the liquid crystal display device according to claim 81, the protrusion shape is formed on a pixel electrode.
  • the invention according to claim 83 is characterized in that, in the liquid crystal display device according to claim 81, the protrusion shape is formed on a gate electrode line.
  • the invention according to claim 84 is characterized in that, in the liquid crystal display device according to claim 81, the protrusion shape is formed on a source electrode line.
  • the invention according to claim 85 is characterized in that, in the liquid crystal display device according to claim 72, the direction in which the lateral electric field is generated substantially matches the orientation.
  • the invention according to claim 86 comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer.
  • the liquid crystal display device which performs an initialization process for transferring the initial alignment of the liquid crystal molecules to the bend alignment and drives the liquid crystal display in the initialized bend alignment state, It is characterized in that the display area in the plane has no spacer.
  • the presence of a spacer in the display area is an obstacle to metastasis. Therefore, if the spacer does not exist in the display area as in the present invention, the transition can be smoothly achieved.
  • the invention according to claim 87 is the liquid crystal display device according to claim 86, wherein a spacer is formed in a non-display area other than the display area. .
  • the invention according to claim 88 is the liquid crystal display device according to claim 87.
  • the spacer is a columnar spacer.
  • the pretilt angle of the liquid crystal at the upper and lower interfaces of the liquid crystal layer disposed between the array substrate having the pixel electrode and the opposite substrate having the common electrode is positive or negative. Conversely, it is a liquid crystal cell in a spray orientation that is aligned in parallel with each other, and when no voltage is applied, it is in a spray orientation, which is prior to driving the liquid crystal display. Then, the voltage is applied to perform an initialization process of transitioning from the spray orientation to the bend orientation, and the liquid crystal display is driven in the initialized bend orientation state.
  • the pretilt angle of the liquid crystal in the alignment film formed on the inner surface side of the array substrate is a first angle.
  • the liquid crystal in the alignment film formed on the inner surface side of the opposing substrate A first liquid crystal cell region having a second pretilt angle having a larger pretilt angle than the first pretilt angle, and the first liquid crystal cell region And the liquid crystal pre-tilt angle in the alignment film formed on the inner surface side of the array substrate indicates the third pre-tilt angle.
  • the fourth pretilt angle in which the liquid crystal pretilt angle in the alignment film formed on the inner surface side of the opposing opposing substrate is smaller than the third pretilt angle, And at least a second liquid crystal cell region shown in the same pixel, wherein the upper and lower alignment films extend from the first liquid crystal cell region to the second liquid crystal cell region.
  • a liquid crystal cell that has been subjected to an alignment treatment, and a discretion line between the pixel electrode and the common electrode.
  • a first voltage for forming a liquid crystal is applied, and a disk screen is formed near a boundary between the first liquid crystal cell region and the second liquid crystal cell region.
  • a second voltage applying means for generating a transition nucleus in the clean line and causing a transition from the spray orientation to the bend orientation. This is the feature.
  • the first liquid crystal cell region and the second liquid crystal cell are applied by applying a first voltage between the pixel electrode and the common electrode. Between the region and the region, it is possible to form a disk line having a higher distortion energy than the surrounding area, and further, it is possible to form the pixel electrode and the common electrode with the pixel electrode and the common electrode.
  • a second voltage that is higher than the first voltage during this time energy is further imparted to the discretion line. As a result, the liquid crystal transitions from the spray orientation to the bend orientation in the discrimination line.
  • the spray-to-bend alignment transition can be surely performed at a certain position (displacement) within each pixel region where a large number of liquid crystal cells are formed. Clinic line), and can surely cause the orientation transition to occur quickly, resulting in display defects.
  • the invention according to claim 90 is the liquid crystal display device according to claim 89, wherein the first and fourth pretilt angles are 3 degrees or less and the second and fourth pre-tilt angles are 3 degrees or less.
  • the third pre-tilt angle is not less than 4 degrees.
  • the direction in which the upper and lower alignment films are subjected to the alignment treatment is along the pixel electrode. It is characterized by being perpendicular to the signal electrode line or the gate electrode line.
  • a horizontal electric field is applied in the direction of the alignment state of the liquid crystal molecules in the liquid crystal layer.
  • the liquid crystal molecules are subjected to the twisting force, and thus the transition nuclei are generated in the disk-shaped line, and the liquid crystal molecules are quickly shifted from the bend orientation to the bend.
  • the transfer of the direction to the direction can be performed.
  • the invention according to claim 92 is the liquid crystal display device according to claim 89, wherein the direction of the alignment treatment of the alignment film is a signal electrode line or a gate electrode line along the pixel electrode. It is characterized in that it is slightly deviated from the right angle direction.
  • the orientation processing direction of the orientation film is slightly deviated from a direction perpendicular to the signal electrode line or the gate electrode line, so that the disc is formed. Since the horizontal electric field from the signal electrode line or the gate electrode line is applied obliquely to the crys- nation line, the display is oriented in the spray orientation. Since a twisting force is applied to the liquid crystal molecules, the transition to the bend configuration is facilitated.
  • the invention according to claim 93 is the liquid crystal display device according to claim 89, wherein the second voltage has a frequency in a range of 0.1 Hz to 100 Hz. And a duty ratio of the second voltage is in the range of 1: 1 to 10 ° 0: 1, and is characterized in that the voltage is a noisy voltage.
  • the pulse-like second voltage as described above and repeating the voltage application period and the period in which no voltage is applied alternately, the liquid crystal molecules are oscillated and transferred.
  • the liquid crystal molecules in the splay alignment are transferred to the bend alignment.
  • the frequency and duty ratio are controlled within the above ranges because the transition from the spray orientation to the bend orientation is performed. This is to expand the area.
  • the invention according to claim 94 is the liquid crystal display device according to claim 89, wherein the gate electrode line formed on the array substrate has a small number of electrodes during the initialization process. It is characterized by a high state, most of the time.
  • the energy of the distortion is higher in the disk line area than in the surrounding area, and in this state, the gate is arranged beside the pixel electrode. Since a lateral electric field is also applied to the above-mentioned discretion line from the electrode wire, further energy is given and the spray orientation is changed. Rapid transition to bend orientation.
  • the invention according to claim 95 is the liquid crystal display device according to claim 89, wherein at least one of the alignment films formed on the inner surface side of the pixel electrode and the common electrode is provided.
  • the surface of the alignment film in the region irradiated with the ultraviolet light is modified, and the modified alignment film is formed.
  • the pre-tilt angle of the liquid crystal can be set to a small value. It is not clear at present that the pretilt angle of the liquid crystal in the alignment film is reduced by the irradiation of ultraviolet light, but it is not clear yet. It is thought that the side chain present in the nucleoside is cleaved by ultraviolet light. In this way, it is possible to easily form a directionally divided liquid crystal cell by irradiating ultraviolet rays.
  • the invention according to claim 96 is the liquid crystal display device according to claim 89, wherein the pixel electrode and a part of the common electrode are irradiated with ultraviolet rays in an ozone atmosphere! ? Therefore, at least one of the pixel electrode and the common electrode is used. After partially planarizing one of the electrodes, an alignment film is applied and baked on the pixel electrode and the common electrode, and the liquid crystal pre-tilt angle in the alignment film is obtained. It is characterized by having a liquid crystal cell whose orientation is divided by changing the liquid crystal cell.
  • the surface of the pixel electrode and the common electrode can be flattened. Accordingly, by applying an alignment film on the pixel electrode and the common electrode, the tilt angle of the liquid crystal in the alignment film is changed to perform alignment division. It is easy to form a liquid crystal cell having a good shape.
  • the invention according to claim 97 is a liquid crystal layer having an upper and lower interface between a liquid crystal layer disposed between an array substrate having a pixel electrode and a counter substrate having a common electrode.
  • the liquid crystal cell has a display orientation in which the liquid crystal cells are aligned in the opposite directions and are aligned in parallel with each other, and the liquid crystal cell is the first liquid crystal adjacent to each other in the same pixel.
  • the second liquid crystal cell is subjected to an alignment treatment so that an angle is smaller than a second pretilt angle of a liquid crystal at an interface on the liquid crystal layer side of the counter substrate.
  • the fourth pre-tilt angle of the liquid crystal at the interface on the liquid crystal layer side of the counter substrate is the second pre-tilt angle.
  • Orientation treatment so as to be smaller than the tilt angle and smaller than the third pretilt angle of the liquid crystal at the interface on the liquid crystal layer side of the array substrate.
  • the liquid crystal display device performs an initializing process for transitioning to a liquid crystal display orientation and performs liquid crystal display driving in the initialized bend alignment state.
  • a driving method for causing an alignment transition wherein a first voltage is applied between the pixel electrode and the common electrode, whereby a liquid crystal is formed in the first liquid crystal cell region.
  • the molecules are aligned in the b-spray orientation, and the liquid crystal molecules are aligned in the second liquid crystal cell region in the t-spray orientation, so that the first liquid crystal cell region and the second liquid crystal cell region are aligned.
  • a disk line is formed near the boundary with the second liquid crystal cell region, and a second line higher than the first voltage is provided between the pixel electrode and the common electrode.
  • the spray-pending alignment transition can be surely performed at a certain position (in each pixel region where a large number of liquid crystal cells are formed). (In the vicinity of the disk line), and in the vicinity of the disk line, the distortion is higher than in the surrounding area. Because of the high energy, metastasis nuclei are reliably generated. Therefore, it is possible to surely cause the orientation transition to occur quickly, to prevent a display defect from occurring, and to realize a liquid crystal display with excellent image quality.
  • the invention according to claim 98 is characterized in that the tilt angle of the liquid crystal at the upper and lower interfaces of the liquid crystal layer disposed between the array substrate having the pixel electrode and the opposing substrate having the common electrode is reduced.
  • the liquid crystal cell has a liquid crystal cell of a display orientation which is oriented in a direction opposite to that of the liquid crystal and is aligned in parallel with each other.
  • the liquid crystal layer has a display orientation of a liquid crystal display.
  • an initialization process is performed to change from the spray orientation to the bend orientation by applying voltage, and the liquid crystal display is driven in this initialized bend orientation state.
  • the method of manufacturing the active matrix type liquid crystal display device includes the steps of: Liquid crystal at the interface on the liquid crystal layer side
  • the orientation treatment is performed so that the first pre-tilt angle of the liquid crystal becomes smaller than the second pre-tilt angle of the liquid crystal at the interface on the liquid crystal layer side of the counter substrate.
  • a first liquid crystal cell region is formed, and a fourth pretilt angle of the liquid crystal at an interface on the liquid crystal layer side of the counter substrate is formed in another region within the one pixel.
  • the second pretilt angle is smaller than the second pretilt angle, and is smaller than the third pretilt angle of the liquid crystal at the liquid crystal layer side interface of the array substrate.
  • a second liquid crystal cell region formed by performing an alignment process so as to form a second liquid crystal cell region.
  • a b-spray alignment region and a t-spray alignment region are formed in a pixel, and a disk region is formed at the boundary.
  • the lines are clearly formed.
  • the alignment treatment step comprises: forming a pixel electrode formed on the array substrate and the counter substrate.
  • the step is a step of forming a first liquid crystal cell region and the second liquid crystal cell region.
  • the surface of the alignment film in the area irradiated with ultraviolet light is modified, and the liquid crystal in the modified alignment film is modified.
  • the pre-tilt angle can be set to a small value.
  • the invention according to claim 100 is the manufacturing method of a liquid crystal display device according to claim 98, wherein the alignment treatment step includes a step of forming a pixel electrode and a pixel electrode formed on the array substrate. A portion of the common electrode formed on the counter electrode; UV light is applied to a partial area of the element under an ozone atmosphere to planarize the pixel electrode and a partial area of the common electrode, and the pixel electrode and the common electrode are planarized. An alignment film is applied and baked on the alignment film to change the pre-tilt angle of the liquid crystal in the alignment film, so that the first liquid crystal cell region and the second liquid crystal cell region are separated from each other. It is characterized in that it is a forming process.
  • the liquid crystal cell in which the alignment angle is changed by changing the pre-tilt angle of the liquid crystal in the alignment film is provided. It is possible to obtain the following liquid crystal display device.
  • FIG. 1 is a perspective view showing a part of a liquid crystal display device provided with a bend-oriented 0CB cell.
  • Figure 2 is a cross-sectional view of a liquid crystal cell illustrating the transition from the spray orientation to the bend orientation.
  • FIG. 3 is a conceptual diagram of a pixel unit by a driving method of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 4 is a voltage waveform diagram for orientation transition used in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the relationship between the bias voltage and the transition time according to the first embodiment of the present invention.
  • FIG. 6 shows a driving method of the liquid crystal display device according to the second embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of a configuration in a pixel unit.
  • FIG. 7 is a voltage waveform diagram for the orientation transition used in the second embodiment of the present invention.
  • FIG. 8 is a diagram showing the relationship between the bias voltage and the transition time according to the second embodiment of the present invention.
  • FIG. 9 is a conceptual diagram of a pixel unit based on a driving method of a liquid crystal display device according to Embodiment 3 of the present invention.
  • FIG. 10 is a voltage waveform diagram for orientation transition used in Embodiment 3 of the present invention.
  • FIG. 11 is a diagram showing the relationship between the bias voltage and the transition time according to the third embodiment of the present invention.
  • FIG. 12 is a conceptual diagram of a configuration in a pixel unit by a driving method of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 13 is a normal drive voltage waveform diagram of the liquid crystal display device according to Embodiment 4 of the present invention.
  • FIG. 14 is a voltage waveform diagram for orientation transition used in Embodiment 4 of the present invention.
  • FIG. 15 is a voltage waveform diagram for orientation transition used in the fifth embodiment of the present invention.
  • FIG. 16 is a schematic sectional view of a liquid crystal display device according to Embodiment 7 of the present invention.
  • FIG. 17 is a schematic plan view of a liquid crystal display device according to Embodiment 7 of the present invention.
  • FIG. 18 is a diagram illustrating a method of manufacturing a liquid crystal display device according to Embodiment 7 of the present invention.
  • FIG. 19 is a diagram showing a liquid crystal display device according to Embodiment 8 of the present invention.
  • FIG. 19 (a) is a schematic sectional view of the liquid crystal display device
  • FIG. 19 (b) is a schematic plan view of the liquid crystal display device.
  • FIG. 20 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 9 of the present invention.
  • FIG. 20 (a) is a schematic plan view of the liquid crystal display device.
  • (b) is a schematic sectional view of the liquid crystal display device.
  • FIG. 21 is a diagram conceptually showing the configuration of a liquid crystal display device according to Embodiment 9 of the present invention.
  • FIG. 22 shows another example of the liquid crystal display device according to Embodiment 9 of the present invention. '
  • FIG. 23 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 10 of the present invention
  • FIG. 23 (a) is a schematic plan view of the liquid crystal display device
  • 23 (b) is a schematic sectional view of the liquid crystal display device
  • FIG. 23 (c) is a schematic sectional view of another example of the liquid crystal display device
  • FIG. 23 (d) is a schematic view of another example of the liquid crystal display device. It is a cross-sectional view.
  • FIG. 24 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 11 of the present invention.
  • FIG. 24 (a) is a schematic plan view of the liquid crystal display device.
  • 4 (b) is a schematic diagram showing the electric field distortion.
  • FIG. 25 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 12 of the present invention.
  • FIG. 25 (a) is a schematic sectional view of the liquid crystal display device.
  • 5 (b) is a schematic plan view.
  • FIG. 26 is a diagram conceptually showing a cross-sectional configuration of the liquid crystal display device according to Embodiment 13 of the present invention.
  • FIG. 27 is a view for explaining a process of manufacturing a convex-shaped object formed on a glass substrate according to the embodiments 13 and 14 of the liquid crystal display device according to the present invention. It is a figure.
  • Figure 28 shows the process of manufacturing a convex object following Figure 27, which is related to the present invention. This is a diagram for explanation.
  • FIG. 29 is a diagram showing the rubbing direction of the substrate used in Embodiment 13 of the present invention.
  • FIG. 30 is a configuration external view of Embodiment 14 according to the present invention.
  • FIG. 31 is a plan view of an embodiment 14 according to the present invention.
  • FIG. 32 is a configuration external view of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 15 of the present invention.
  • FIG. 33 is a view illustrating a process for manufacturing a convex-shaped liquid crystal cell according to Embodiment 15 of the present invention.
  • FIG. 34 conceptually shows a sectional configuration of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 16 of the present invention.
  • FIG. 35 is a diagram conceptually showing the concept of a transparent electrode used for a liquid crystal cell according to Embodiment 16 of the present invention.
  • FIG. 36 is a cross-sectional view of a main part of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 17 of the present invention.
  • FIG. 37 is an enlarged view of a part of FIG.
  • FIG. 38 is a cross-sectional view of a principal part of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 18 of the present invention.
  • FIG. 39 is a diagram for explaining the arrangement of optical elements in a liquid crystal cell provided in the liquid crystal display device according to Embodiment 18 of the present invention.
  • FIG. 40 is a diagram illustrating a voltage-transmittance characteristic of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 18 of the present invention.
  • FIG. 41 is a schematic diagram (a) showing the Modianian orientation in FIG. 41 (a), and FIG. 41 (b) is a schematic diagram (b) showing the bend orientation in FIG.
  • FIG. 42 is a diagram showing the director of the liquid crystal layer.
  • Fig. 43 shows a CR equivalent circuit.
  • Figure 44 shows the temporal change of the orientation angle j) of the liquid crystal under an external electric field that increases with time.
  • Figure 45 shows the relationship between the Spray elastic constant (kll) and the critical electric field (Ec).
  • Figure 46 shows the relationship between the absolute value of the pretilt angle and the critical electric field (Ec).
  • Figure 47 shows the relationship between the electric field inhomogeneity (E1 / E0) and the critical electric field (Ec).
  • FIG. 48 is a conceptual diagram showing an alignment state of the liquid crystal display device according to the present embodiment 201-11.
  • FIG. 49 is a perspective view of a substrate 511 having a step 510.
  • FIG. 50 is an enlarged view of the rubbing cloth 511a having distribution in the length of the rubbing fiber.
  • FIG. 51 is a conceptual diagram showing shadows of rubbing due to the array wiring in the present embodiment 20-3.
  • FIG. 52 is a diagram showing a coating device for the alignment film.
  • FIG. 53 is a partially enlarged plan view of the surface of the printing plate 530.
  • FIG. 54 is a partially enlarged cross-sectional view of the surface of the printing plate 530.
  • FIG. 55 is a conceptual diagram showing the distribution of electric force lines and the orientation of the liquid crystal of the liquid crystal display device according to Embodiment 21-2.
  • FIG. 55 (a) is a distribution diagram of electric force lines.
  • FIG. 55 (b) shows the orientation of the liquid crystal.
  • FIG. 56 is a driving waveform diagram of the liquid crystal display device according to the present embodiment 21-1.
  • FIG. 57 is a conceptual diagram showing the structure of the liquid crystal display device according to the present embodiment 211
  • FIG. 57 (a) is a diagram showing the pixel structure of the conventional example.
  • 7 (a) is a diagram showing the concave and convex structure of the pixel
  • FIG. 57 (b) is an image.
  • FIG. 57 (c) is a diagram showing a modified example of the pixel concave-convex structure
  • FIG. 57 (c) is a diagram showing a modified example of the pixel concave-convex structure.
  • FIG. 57 (e) is a diagram showing another modification
  • FIG. 57 (e) is a diagram showing another modification of the pixel concavo-convex structure
  • FIG. 57 (f) is another diagram of the pixel concavo-convex structure. It is a figure which shows a modification.
  • FIG. 58 is a cross-sectional view of a principal part of the liquid crystal display device according to Embodiment 22.
  • FIG. 59 is a plan view of the vicinity of the pixel electrode of the liquid crystal display device according to Embodiment 22.
  • FIG. 60 is a conceptual diagram showing the operation of the liquid crystal display device according to Embodiment 23.
  • FIG. 61 is a conceptual diagram showing a transition voltage waveform of the liquid crystal display device according to the present embodiment 23-1.
  • FIG. 62 is a plan view showing the shape of the auxiliary electrode layer 571.
  • FIG. 63 is a plan view showing another shape of the auxiliary electrode layer 571.
  • FIG. 64 is a conceptual diagram showing a transition voltage waveform of the liquid crystal display device according to Embodiment 23-2.
  • FIG. 65 is a conceptual diagram showing a transition voltage waveform of the liquid crystal display device according to Embodiment 23-3.
  • FIG. 66 is a plan view of a board for explaining a spacer according to the embodiment 24, and FIG. 66 (a) is a view showing a conventional spacer. FIG. 66 (b) shows a spacer of the present invention.
  • FIG. 67 is a cross-sectional view of a substrate for describing a spacer according to Embodiment 24.
  • FIG. 68 is a cross-sectional view of the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention focuses on a mechanism for transition from spray alignment to bend alignment described below in a liquid crystal display device having a bend alignment type 0 CB cell. It is the result of the above. Therefore, first, the transfer mechanism will be described in detail, and then the specific contents of the present invention will be described by using embodiments.
  • FIG. 1 is a perspective view showing a part of a liquid crystal display device provided with a bend alignment type 0 CB cell.
  • the configuration of a liquid crystal display device having a bend-aligned OCB cell can be briefly described as follows: substrates 10 and 11 arranged in parallel with each other A liquid crystal layer 13 containing liquid crystal molecules 12 is inserted. Although not shown in the figure, the display electrodes for applying an electric field to the liquid crystal layer 13 and the alignment of the liquid crystal molecules are respectively provided on the opposing surfaces of the substrates 10 and 11. An alignment film has been formed to regulate the temperature.
  • the orientation film pre-tilts the liquid crystal molecules 12 near the substrate interface by about 5 to 7 degrees, and the orientation directions in the substrate surface are the same as each other. That is, the alignment treatment is performed so as to be a parallel alignment.
  • the liquid crystal molecules 12 gradually rise as they move away from the surfaces of the substrates 10 and 11, and the tilt angle of the liquid crystal molecules is almost at the center of the liquid crystal layer 13 in the thickness direction.
  • the bend orientation becomes 90 degrees.
  • Polarizing plates 15 and 16 and optical compensating plates 17 and 18 are arranged outside the substrates 10 and 11, respectively.
  • the polarization axis and the orientation of the liquid crystal molecules are arranged at an angle of 45 degrees, and a high voltage is applied.
  • the polarization state is changed through the polarizing plate and the optical compensator.
  • the light transmittance is controlled and displayed.
  • the voltage is set prior to driving the liquid crystal display. It is necessary to change the liquid crystal layer from the spray orientation state to the bend orientation state by the application.
  • FIG. 2 is a cross-sectional view of a liquid crystal cell schematically illustrating liquid crystal molecules and conceptually illustrating a liquid crystal molecule arrangement when two substrates are arranged in parallel alignment.
  • Figure 2 (a) shows the initial state of the spray arrangement.
  • the long axis of the liquid crystal molecules 12 in the center of the liquid crystal layer 13 assumes a low energy-oriented spray alignment state in which the liquid crystal molecules 12 are almost parallel to the substrate surface.
  • liquid crystal molecules parallel to the substrate are denoted by reference numeral 12a.
  • FIG. 2 (b) shows a liquid crystal molecule alignment state when a high voltage is started to be applied between electrodes (not shown) formed on the substrates 10 and 11.
  • the liquid crystal molecules 12 in the center of the liquid crystal layer 13 begin to slightly tilt due to the electric field, and as a result, the liquid crystal molecules 12a oriented parallel to the substrate surface are on one substrate surface (in the figure, the substrate 1 Go to the 1) side.
  • FIG. 2 (c) shows the state of the liquid crystal molecular arrangement when a further time has elapsed after the voltage was applied.
  • the liquid crystal molecules 12 in the center of the liquid crystal layer 13 are further inclined with respect to the substrate surface, and the liquid crystal molecules 12 a which are oriented substantially parallel to the substrate surface are near the substrate interface. And receive strong regulatory power from the alignment film.
  • Fig. 2 (d) shows the energy state after the transition to the bend orientation.
  • Liquid crystal molecule alignment state is high.
  • the liquid crystal molecules 12 at the center of the liquid crystal layer 13 are perpendicular to the substrate surface, and the liquid crystal molecules in contact with the alignment film (not shown) on the substrate 10 are stronger than the alignment film.
  • the liquid crystal molecules 12a are maintained in the inclined orientation state, and the liquid crystal molecules 12a oriented parallel to the substrate surface as shown in FIGS. 2 (a) to 2 (c) are almost eliminated. .
  • transition nuclei are generated in the peripheral portion of the spacer dispersed in the gap and in the orientation uneven portion, and the bend orientation region is expanded from there. Therefore, in order to perform the orientation transition in the OCB cell, it is necessary to generate transition nuclei in at least a part of the liquid crystal layer in the substrate plane and to make the transition from the outside. It is necessary to maintain the energy by giving energy to transition from the splay alignment state to the high energy bend alignment state.
  • FIG. 3 shows a conceptual diagram of a pixel unit by a driving method of the liquid crystal display device according to the first embodiment of the present invention.
  • the liquid crystal display device according to the first embodiment has a configuration excluding a driving circuit portion.
  • it has the same configuration as a liquid crystal display device having a general 0 CB cell. That is, it has a pair of glass substrates 20 and 21 and a liquid crystal layer 26 sandwiched between the glass substrates 20 and 21.
  • the glass substrates 20 and 21 are arranged facing each other at a fixed interval.
  • a common electrode 22 composed of a transparent electrode of IT0 is formed on the inner surface of the glass substrate 20, and a transparent electrode of IT0 is formed on the inner surface of the glass substrate 21.
  • a pixel electrode 23 is formed.
  • alignment films 24 and 25 made of a polyimide film are formed, and the alignment films 24 and 25 are The orientation treatment is performed so that the orientation directions are parallel to each other.
  • a liquid crystal layer 26 made of a P-type nematic liquid crystal is inserted between the alignment films 24 and 25. Also, the alignment film 24,
  • the pretilt angle of the liquid crystal molecules on 25 is set to about 5 degrees, and the critical voltage for transition from the spray configuration to the bend configuration is set to 2.5 V. It has been.
  • the retardation of the optical compensator 29 is selected so as to display white or black when turned on. Note that, in FIG. 3, 27 and 28 are polarizing plates.
  • reference numeral 30 denotes a drive circuit for alignment transition
  • reference numeral 31 denotes a drive circuit for liquid crystal display
  • 32a and 32b are switch circuits
  • Reference numeral 33 denotes a switch control circuit for controlling switching of the switching modes of the switch circuits 32a and 32b.
  • the switch circuit 32a is provided with two individual contacts PI, P2, and one common contact Q1, and the switch circuit 32b is provided with two switches. It has individual contacts P 3, P 4 and one common contact Q 2.
  • the common contact Q1 is connected to any of the individual contacts PI and P2 in response to the switch switching signal S1 from the switch control circuit 33.
  • the common contact Q 2 is connected to the individual contacts P 3, P It will be in the state of being connected to any of 4.
  • an initialization process is performed for transition to bend alignment.
  • the switch control circuit 33 outputs switch switching signals S l and S 2 to the switch circuits 32 a and 32 b, and the common contact Q 1 Is connected to the individual contact P 1 and the common contact Q 2 is connected to the individual contact P 3.
  • the drive voltage shown in FIG. 4 is applied between the electrodes 22 and 23 from the orientation transition drive circuit 30.
  • This drive voltage is an AC voltage in which the AC rectangular wave voltage A is superimposed on the bias voltage B as shown in Fig. 4, and the drive voltage value is still the spray orientation.
  • the transition time can be significantly shortened as compared with the conventional example in which a simple AC voltage is applied. The reason why the transfer time is shortened will be described later. In this way, the initialization process regarding the transition to the bend orientation is completed.
  • the switch control circuit 33 switches the common contact Q 1 to the individual contact P 2.
  • the switching signal S 2 is output to the switch circuit 32 a and the common contact Q 2 is switched to the individual contact P 4, and the switching signal S 2 is switched. Output to switch circuit 32b.
  • the common contact Q1 and the individual contact P2 are connected, and the common contact Q2 and the individual contact P4 are connected.
  • These drive signal voltages are applied between the electrodes 22 and 23, and a desired image is displayed.
  • the liquid crystal display drive circuit 31 maintains a bend-oriented state with a rectangular wave voltage of 2.7 V of 30 Hz, turns it off, and turns it off.
  • the square wave voltage 7 V of z was turned on, and OCB No and Nell were displayed.
  • the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results are described below.
  • the experimental conditions are as follows.
  • the electrode area was 2 cm 2 , the cell gap was about ⁇ , the frequency of the AC square wave voltage ⁇ was 30 Hz, and the amplitude was ⁇ 4 V.
  • the transition time means the time required for the orientation transition to be completed in the entire area of the electrode area.
  • the transition time required was 140 seconds.
  • the bias voltage B was 0 V
  • the bias voltage was zero.
  • the transition time could be shortened to 8 seconds, because of the superposition of the bias voltage and the liquid crystal molecules in the liquid crystal layer due to the bias voltage.
  • the orientation is fluctuated and the substrates are shifted as shown in Fig. 2 (d), so that more transition nuclei are generated and the transition time is further increased by increasing the effective voltage. It is thought that it was gone.
  • the transition time can be reduced as compared with the case of applying the simple AC voltage.
  • the AC square wave voltage signal was at a frequency of 30 Hz, ⁇ 4
  • the present invention is not limited to this, and any value such as 10 kHz may be used as long as it is a frequency at which the liquid crystal operates.
  • the transition time becomes faster if the amplitude of the AC voltage A is increased.
  • the higher the bias voltage B is superimposed the higher the speed.
  • a square wave is used as the waveform, an AC waveform with a different duty ratio may be used.
  • a driving method for applying an AC voltage is disclosed in Japanese Patent Application Laid-Open No. Heisei 9-185032.
  • an ordinary positive / negative symmetric AC voltage cannot be applied.
  • the bias voltage is superimposed on the AC voltage to break the positive / negative symmetry of the AC voltage, an asymmetric waveform is applied to the liquid crystal layer, and the orientation of the liquid crystal molecules is disturbed. It is characterized by promoting development and facilitating metastasis.
  • an AC voltage having positive and negative symmetry is applied, the alignment of the liquid crystal molecules cannot be disturbed, and the change of the alignment state is stopped halfway. There is a possibility that nuclear does not occur.
  • transposition nuclei are generated quickly and surely. Therefore, the present invention is essentially different from the prior art.
  • FIG. 6 is a conceptual diagram of a pixel unit of the liquid crystal display device according to the second embodiment.
  • a step of applying an AC voltage on which a bias voltage is superimposed is applied between the substrates, and a step of electrically opening (opening) the substrates. Is alternately repeated to change the liquid crystal layer from the spray orientation to the bend orientation.
  • the first embodiment The same components as those of the liquid crystal display device according to the above are designated by the same reference numerals, and description thereof will be omitted.
  • an orientation transition drive circuit 40 instead of the orientation transition drive circuit 30, the switch circuit 32 a, and the switch control circuit 32 of the first embodiment, an orientation transition drive circuit 40, A switch circuit 42a and a switch control circuit 43 are used.
  • the switch circuit 42a is a three-terminal switching circuit having an individual contact P5 in addition to the individual contacts P1 and P2. The switching of the switch circuit 42 a is controlled by a switch control circuit 43.
  • the alignment transition drive circuit 40 applies the drive voltage shown in FIG. 7 between the substrates 22 and 23. As shown in FIG.
  • this drive voltage is an AC voltage in which an AC square wave 'voltage C is superimposed on a bias voltage D, and the drive voltage value is different from the spray orientation.
  • the voltage is set to be higher than the critical voltage, which is the minimum voltage required to cause the transition to the bend orientation.
  • the common contact Q1 of the switch circuit 42a is connected to the individual contacts Pl, P2, P2 by the switch switching signal S3 from the switch control circuit 42. It will be in the state of being connected to any of 5.
  • the electrodes 22 and 23 are in an open state in which they are separated from the orientation transition drive circuit 40.
  • the common contact Q 1 is connected to the individual contact P 1 and the common contact Q 2 is connected to the individual contact P 3
  • the drive voltage from the orientation transition drive circuit 40 is applied to the electrodes 22, 2. 3 will be applied.
  • the common contact Q1 is connected to the individual contact P2 and the common contact Q2 is connected to the individual contact P4
  • the drive voltage from the liquid crystal display drive circuit 31 is applied to the electrodes. It will be applied to 22 and 23.
  • the individual contact P5 is connected to.
  • the electrodes 22 and 23 are separated from the alignment transition drive circuit 40 to be in an open state. Such an open state is maintained for a period W2, and during this open state period W2, the electrodes 22, 23 are in a charge holding state.
  • the switch control circuit 43 When the open state period W2 has elapsed, the switch control circuit 43 outputs a switch switching signal S3 to the switch circuit 42a, and the switch control circuit 43 outputs an individual switch signal S3 to the common contact Q1.
  • the contacts P1 and are reconnected. Then, such a drive for the orientation transition and the open state are alternately repeated, and after a certain period of time from when the power is turned on, the entire surface of the electrode is completely oriented. Transfer to.
  • the switch control circuit 43 outputs the switch switching signal S 3 to the switch circuit 42 a and simultaneously operates the switch circuit 42.
  • a switch switching signal S2 is output to 32b, the common contact Q1 and the individual contact P2 are connected, and the common contact Q2 and the individual contact P are connected.
  • the drive signal voltage from the liquid crystal display drive circuit 31 is applied between the electrodes 20 and 21 and a desired image is displayed.
  • the liquid crystal display drive circuit 31 maintains the bend orientation state with a rectangular wave voltage of 2.7 V of 30 Hz, as in the first embodiment. In the off state, a 30 V square wave voltage of 7 V is turned on.
  • the OCB cell is displayed as the status.
  • the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results will be described.
  • the experimental conditions are as follows.
  • the open state time W2 is changed to 0 seconds, 0.2 seconds, 2 seconds, and 3 seconds, and the voltage applied state and the open state are alternately repeated.
  • the transition time at the time of return was measured, and the result is shown in FIG.
  • the transition time means the time required for the orientation transition to be completed in the entire area of the electrode area.
  • the transition time W2 is 80 seconds.
  • the open state time W2 is set to 0.2 second and the switching is repeated alternately with the AC voltage superimposed on the bias, the transfer is performed.
  • the time was reduced to 40 seconds, but if the open state time W 2 was set to 2 seconds, on the contrary, the transit time was increased to 42 0 seconds, and W 2 was further reduced. The transition could not be completed in three seconds.
  • the transition time was measured under the same conditions as in the above experimental example except that the application time T 2 was set to 0.3 seconds and the open state period W 2 was set to 0.3 seconds, the transition time was 28%. It was seconds.
  • the bias voltage, the voltage value of the AC voltage, the application time and the time for maintaining the open state can be selected according to the required transition time.
  • the frequency of the AC voltage may be a frequency at which the liquid crystal operates, and may be a value such as 10 kHz, for example. Although a square wave is used as the waveform, an AC waveform having a different duty ratio may be used.
  • FIG. 9 is a conceptual diagram of a pixel unit of the liquid crystal display device according to the third embodiment.
  • a step of applying an AC voltage with a bias voltage superimposed between the substrates and a step of applying a zero voltage or a low voltage between the substrates are alternately repeated.
  • the liquid crystal layer is characterized in that the liquid crystal layer is changed from the spray orientation to the bend orientation.
  • the same components as those of the liquid crystal display device according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • a switch circuit 42 b and a switch circuit are used instead of the switch circuit 32 b and the switch control circuit 43 of the second embodiment.
  • the switch control circuit 53 is used.
  • an orientation transition drive circuit 50 for applying a low voltage between the electrodes 22 and 23 is provided.
  • the switch circuit 42b is a three-terminal switching circuit having an individual contact point # 6 in addition to the individual contacts P3 and # 4.
  • the switch switching of the switch circuit 42 b is controlled by a switch control circuit 53.
  • the common contact Q2 of the switch circuit 4 2b is connected to the individual contacts P3, P4, P4 by the switch switching signal S4 from the switch control circuit 53. It will be in the state of being connected to any of 6.
  • the driving voltage from the orientation transition driving circuit 40 is applied to the electrodes 22 2 , 23 will be applied.
  • the common contact Q 1 is connected to the individual contact P 5 and the common contact Q 2 is connected to the individual contact P 6
  • the drive voltage from the orientation transition drive circuit 50 is applied to the electrodes. It will be applied to 22 and 23.
  • the driving voltage from the liquid crystal display driving circuit 31 is applied to the electrode 2. 2 and 23 will be applied.
  • an initialization process is performed for transition to the bend alignment.
  • the switch control circuit 53 outputs the switch switching signal S 3 to the switch circuit 42 a and the switch circuit 42 b.
  • the switch signal S 4 is output to connect the common contact Q 1 and the individual contact P 1, and the common contact Q 2 and the individual contact P 3 are connected.
  • the drive voltage shown in FIG. 10 is applied between the electrodes 22 and 23 from the direction transition drive circuit 40.
  • the switch control circuit 53 outputs the switch switching signal S 3 to the switch circuit 42 a and simultaneously outputs the switch switching signal S 3 to the switch circuit 42 a.
  • the switch switching signal S4 is output to the switch circuit 42b, and both switches are output.
  • the communication contact Q1 and the individual contact P5 are connected, and the common contact Q2 and the individual contact P6 are connected.
  • the low voltage shown in FIG. 10 is applied between the electrodes 22 and 23 from the driving circuit 50 for direction transition. Such a low voltage application is maintained for the period W3.
  • the switch control circuit 53 outputs the switch switching signal S3 to the switch circuit 42a, and switches the switch.
  • a switch switching signal S4 is output to the circuit 42b, and the common contact Q1 and the individual contact P1 are again connected, and the common contact Q2 and the individual contact P3 are connected again.
  • the switch control circuit 53 outputs the switch switching signal S3 to the switch circuit 42a, and switches the switch circuit 42.
  • the switch switching signal S 4 is output to the circuit 4 2 b, the common contact Q 1 and the individual contact P 2 are connected, and the common contact Q 2 and the individual contact P 4 are connected.
  • the drive signal voltage from the liquid crystal display drive circuit 31 is applied between the electrodes 20 and 21, and a desired image is displayed.
  • the liquid crystal display drive circuit 31 sets the rectangular wave voltage of 30 Hz to 2.7 V in the same manner as in the first embodiment, while maintaining the bend orientation state. Turns off, 30V square wave voltage 7 V is turned on, and OCB channel is displayed.
  • the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results are described below.
  • the experimental conditions are as follows.
  • the electrode area is 2 cm 2 , the cell gap is about 6 m, the nodal voltage D is 2 V, and the frequency and amplitude of the AC square wave voltage C are 3 At 0 Hz, ⁇ 4 V, the applied time T 3 was fixed at 1 second. In addition, the applied voltage during the low voltage application period W3 was a DC voltage of 12 V.
  • the transition time was about 80 seconds when the low voltage application time was 0 seconds, that is, when the AC voltage with the bias voltage was applied continuously.
  • the low voltage application time W3 is set to 0.1 second and the voltage is alternately switched with the bias voltage, the transition time is 60 seconds.
  • the low-voltage application time W 3 is set to 1 second, the transition time becomes longer at 360 seconds, and if W 3 is set to 3 seconds, the transition time becomes longer. The transfer could not be completed.
  • the transition was completed within 50 seconds at the minimum by repeatedly switching between AC voltage ⁇ 4 V with the bias voltage superimposed by 2 V and DC voltage 0 V. .
  • the switching time between the AC voltage ⁇ 4 V and the AC low voltage ⁇ 2 V superimposed on the noise of 2 V was repeated, and a transition time of 50 seconds or less was obtained. .
  • the application of the AC voltage and the application of the low voltage are repeated and switched as compared to the case where the AC voltage with the bias is simply applied continuously.
  • the transition time from the spray orientation to the bend orientation is shortened. This is because when the AC voltage is superimposed on the noise, the alignment of the liquid crystal molecules in the liquid crystal layer is fluctuated, causing a bias between the substrates as shown in FIG. It is considered that the transition nucleus was generated by switching to the next short low-voltage application state, and the transition time was shortened.
  • bias voltage and AC voltage, application time and low voltage, The application time and the like are not the above values and can be selected and changed according to the desired transition time.
  • the frequency of the AC voltage may be a frequency at which the liquid crystal operates, for example, a value such as 10 kHz may be used. Although a square wave is used as the waveform, an AC waveform having a different duty ratio may be used.
  • the low voltage of 12 V is applied during the low voltage application period W 3, but 0 V is applied even if the low voltage is applied.
  • the ratio of the AC voltage application period T 3 to the low voltage application period W 3 and the number of repetitions of the AC voltage application and the low voltage application per second will be described.
  • the voltage during the low voltage application period W 3 is set to 0 V
  • the alternating repetition of the AC voltage application and the 0 V application is indicated by a broken line L in FIG. 10.
  • the frequency of the transition voltage L should be in the range of 0.1 Hz to 100 Hz and the duty of the transition voltage L
  • the ratio must be set in the range of 1: 1 to 1000: 1.
  • the frequency of the transition voltage L is in the range of 0.1 Hz to 10 Hz
  • the duty ratio of the transition voltage L is 2: 1 to 100: 1.
  • the desired range is the range. The reason is described in detail below.
  • a duty ratio range in which the duty ratio of the repetitive applied voltage is larger in the voltage application pause period than in the voltage application period (for example, in the case of the duty ratio).
  • the duty ratio In the case of a ratio of 1: 1 to 1:10, the transition nucleus is generated by pulse width application, but it is relaxed by the pause of voltage application at the pulse interval after that. It is thought that the orientation returned to the spray orientation and the transition was not completed. Therefore, the duty ratio must be set so that the voltage application period is larger than the voltage application suspension period. In order to enlarge the transition region, the duty ratio must be such that the pulse width is wider than the pulse interval.
  • the range is from 1: 1 to 1000: 1, preferably from 2: 1 to 100: 1. From 100: 0: 1 in DC continuation, pulse repetition is almost eliminated, so that the chance of generating transition nuclei decreases and the transition lengthens slightly. Conceivable .
  • the repetition frequency of the transition voltage application is from 100 to 100
  • the duty ratio should be 100 Hz or more for the expansion of the transition. 1 in
  • a pulse interval of about 10 ms or more can be obtained.
  • the inventor applied a voltage to the liquid crystal cell by changing the repetition frequency and the duty ratio under alternating repetition conditions of DC 15 V and 0 V. The transition time was measured, and the results are shown in Table 1.
  • the frequency is in the range of 0.1 Hz to 10 Hz and the duty ratio is in the range of 2: 1 to 100: 1.
  • the transfer time is extremely small
  • the frequency is in the range of 0.1 Hz to 100 Hz
  • the duty ratio is 1: 1 to 100: 1. Even in the case of the range, it is recognized that the transit time is sufficiently small. (Embodiment 4)
  • FIG. 12 is a conceptual diagram of a pixel unit of the liquid crystal display device according to the fourth embodiment.
  • the fourth embodiment shows an example in which the present invention is applied to a driving method of an active matrix type liquid crystal display device.
  • the liquid crystal display device according to the fourth embodiment has an active matrix type liquid crystal display having a general OCB cell with respect to the configuration excluding the drive circuit section. It has the same configuration as the device. That is, it has a pair of glass substrates 60 and 61 and a liquid crystal layer 66 sandwiched between the glass substrates 60 and 61. The glass substrates 60 and 61 are opposed to each other with a certain interval. On the inner surface of the glass substrate 60, a common electrode 62 made of a transparent electrode of IT0 is formed, and on the inner surface of the glass substrate 61, pixel switching is performed.
  • a thin film transistor (TFT) 70 as an element and a pixel electrode 63 made of an ITO transparent electrode connected to the TFT 70 are formed.
  • orientation films 64 and 65 made of a polyimide film are formed, and these orientation films 64 and 65 are formed. Are oriented so that the orientation directions are parallel to each other.
  • a liquid crystal layer 66 made of a P-type nematic liquid crystal is inserted between the alignment films 64 and 65.
  • the tilt angle of the liquid crystal molecules on the alignment films 64 and 65 is set to about 5 degrees, and the critical voltage at which the liquid crystal molecules transition from the spray alignment to the bend alignment is set.
  • the pressure is set at 2.6 V.
  • the retardation of the optical compensator 67 is selected so as to display white or black when turned on.
  • 68 and 69 are polarizing plates.
  • reference numerals 71 and 72 denote alignment transition drive circuits.
  • the orientation transition drive circuit 71 has a common electrode 62 shown in FIG. A drive voltage is applied as a reference, and an operation of applying 0 V to the pixel electrode 63 is performed.
  • the alignment transition drive circuit 72 functions to apply 0 V to the common electrode 62 and the pixel electrode 63.
  • Reference numeral 73 denotes a liquid crystal display drive circuit.
  • the liquid crystal display drive circuit 73 applies a drive voltage having the voltage waveform shown in FIG. 13 to the common electrode 62 and the pixel electrode 63. Work. That is, the liquid crystal display driving circuit 73 applies the voltage indicated by reference numeral Ml in FIG.
  • the pixel electrode voltage may be applied from the liquid crystal display drive circuit 73.
  • Reference numerals 74a and 74b denote switching circuits, and reference numeral 75 controls switching of the switching modes of the switching circuits 74a and 74b. It is a switch control circuit.
  • the switch circuit 74a is provided with three individual contacts P7, P8, P9, and one common contact Q1.
  • the switch circuit 74b Has three individual contacts P 10, 11, 12 and one common contact Q 2.
  • the common contact Q1 is connected to the individual contact P7 and the common contact Q2 is connected to the individual contact P10
  • the drive voltage from the orientation transition drive circuit 71 is applied to the electrodes 62. , 63.
  • the common contact Q 1 is connected to the individual contact P 11 and the common contact Q 2 is connected to the individual contact P 4
  • the driving voltage from the liquid crystal display driving circuit 73 is reduced. That is, the voltage is applied to the electrodes 62 and 63.
  • an initialization process is performed for transition to bend alignment.
  • the switch control circuit 75 outputs the switch switching signal to the switch circuit 74a, and also outputs the switch switching signal to the switch circuit 74b.
  • the common contact Q1 and the individual contact P7 are connected, and the common contact Q2 and the individual contact P10 are connected.
  • the drive voltage shown in FIG. 14 is applied to the common electrode 62 from the orientation transition drive circuit 71. That is, the AC voltage synchronized with the vertical synchronizing signal, on which the noise voltage of 1 GV is superimposed with respect to the center of the common electrode, is applied to the common electrode 62. Note that 0 V is applied to the pixel electrode. Then, the application of the AC voltage is maintained for a period T4.
  • the switch control circuit 75 outputs a switch switching signal to the switch circuit 74a, and switches the switch control circuit 75a.
  • a switch switching signal is output to the switch circuit 74b, the common contact Q1 and the individual contact P9 are connected, and the common contact Q2 and the individual contact P12 are connected.
  • the switch control circuit 75 outputs a switch switching signal to the switch circuit 74 a and switches the switch.
  • a switch switching signal is output to the switch circuit 74b, and the common contact Q1 and the individual contact P7 are again connected, and the common contact Q2 and the individual contact P10 are connected again. .
  • the alternating voltage application process and the 0 V voltage application process are alternately repeated, and after a certain period of time from power-on, the entire electrode completely transitions to the bend orientation.
  • the switch control circuit 75 outputs a switch switching signal to the switch circuit 74a, and switches the switch circuit 74a.
  • the switch switching signal is output to the path 74b, and the common contact Q1 and the individual contact P 8 and are connected, and the common contact Q2 and the individual contact P11 are connected.
  • the drive signal voltage from the liquid crystal display drive circuit 73 is applied to the electrodes 62 and 63, and a desired image is displayed.
  • the liquid crystal display drive circuit 73 sets the drive voltage 2.7 V, which maintains the state of the bend orientation between both electrodes, to a minimum and turns it off, and sets the upper limit voltage Is set to 7 V, this is turned on, and the 0 CB 1- cell is displayed.
  • a 0 CB active matrix type liquid crystal display device having a wide field of view and a high-speed response and a bend alignment type has no alignment defects. High quality driving display was achieved.
  • the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results are described below.
  • the experimental conditions are as follows.
  • the cell gap is about, the nodal voltage G is 16 V, the frequency and amplitude of the alternating rectangular wave voltage are 7.92 kHz, ⁇ 10 V,
  • the application time T 3 was set to 0.5 seconds. Further, the 0 V voltage application period W 4 was set to 0.5 seconds.
  • the directional transition in all the pixels of the liquid crystal display device could be completed within approximately 2 seconds.
  • the drive method for the orientation transition of the active matrix type liquid crystal display device in the OCB mode includes the drive voltage waveform shown in Fig. 14 above.
  • the driving may be performed using the driving voltage waveform shown in FIG. That is, in the AC voltage application period T4, a DC voltage of ⁇ 15 V is applied to the common electrode 62 with respect to the center of the common electrode for 0.5 seconds. Next, in the 0 V voltage application period W4, 0 V is applied for 0.2 seconds. Then, the application of DC voltage—15 V and 0 V is alternately repeated. Even in such a driving method, the transfer can be completed reliably and in an extremely short time.
  • the driving method according to Embodiments 4 and 5 is applied to a liquid crystal display device having a so-called flattened film structure in which a passivation film is arranged and a pixel electrode is formed thereon. It is something. Specifically, the driving method is as follows. The voltage for orientation transition in which the noise is superimposed in Embodiment 4 described above is applied for 0.5 seconds, and then the open state is obtained. Was set to 0.5 seconds, and this was repeated alternately. According to this driving method, the transition time was less than 1 second, and the transition was smoother. This is because the pixel electrode spacing can be reduced by the planarization film configuration, and as a result, the smooth transition from the spray orientation to the bend orientation occurs. Conceivable .
  • the AC voltage with the bias voltage superimposed is applied, but the DC voltage may be applied.
  • the driving circuit can be simplified because a unipolar voltage is sufficient.
  • the AC voltage signal on which the bias voltage is superimposed is Although the bias voltage has been described as DC, an AC signal with a low frequency may be used to improve reliability.
  • the method of driving the liquid crystal display device of the invention has been described with reference to the transmission type liquid crystal display device, but a reflection type liquid crystal display device may be used.
  • these may be a full-color type liquid crystal display device using a color filter or a liquid crystal display device of a color filter.
  • FIG. 16 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 7 of the present invention.
  • FIG. 17 is a schematic plan view similarly.
  • the liquid crystal display device shown in FIG. 16 includes a polarizing plate 101, a polarizing plate 101, a phase compensating plate 103 for optical compensation arranged inside the polarizing plate 101, and the polarizing plate 1.
  • an active matrix liquid crystal cell 104 disposed between the electrodes 101 and 102.
  • the liquid crystal cell 104 has an array substrate 106 made of glass or the like, and an opposing substrate 105 opposing the array substrate 106.
  • a pixel electrode 108 as a transparent electrode is formed on the inner surface of the laser substrate 106, and a common electrode 107 is formed on the inner surface of the counter substrate 105. Further, an alignment film 110 is formed on the pixel electrode 108, and an alignment film 109 is formed on the common electrode 107.
  • a switching element 111 composed of, for example, an a-Si type TFT element is disposed, and the switch is provided.
  • the finger element 111 is connected to the pixel electrode 108.
  • a spacer (not shown) having a diameter of 5 micron and a nematic having a positive dielectric anisotropy are provided between the alignment films 109 and 110.
  • a liquid crystal layer 112 made of a liquid crystal material is arranged.
  • the alignment film 1 0 9- 110 is parallel-oriented in one direction so that the pretilt angles of the liquid crystal molecules on the surface have opposite values and are almost parallel to each other.
  • the liquid crystal layer 112 forms a so-called spray alignment in which no liquid crystal molecules are obliquely spread in a state where no voltage is applied.
  • the film 110 has an orientation film 110a having a large pretilt angle B2 (third pretilt angle) and a small value pretilt angle A2 ( It is made of an orientation film 11 Ob having a first (pretilt angle).
  • the alignment film 109 has an alignment film 109 a having a small pre-tilt angle D 2 (fourth pre-tilt angle) and a large-value pre-tilt angle.
  • the orientation film 109 b having a tilt angle C 2 (second pretilt angle), and the pretilt angle C 2 is disposed so as to face the pretilt angle A 2;
  • the pretilt angle D2 is arranged to face the pretilt angle B2.
  • the alignment films 109 and 110 are almost parallel to the signal electrode lines 113 in the rubbing cross direction and in the same direction at right angles to the upper and lower substrates (from left to right in FIG. 16). In addition, parallel orientation treatment is performed.
  • the liquid crystal display device is provided with a driving circuit for orientation transition including first voltage applying means and second voltage applying means in addition to the liquid crystal display driving circuit. Yes. Then, a first voltage is applied between the pixel electrode 108 and the common electrode 107 by the first voltage applying means.A first liquid crystal cell region and the second liquid crystal are applied. A disk line is formed in the vicinity of the boundary with the cell region, and the second voltage applying means forms a gap between the pixel electrode 108 and the counter electrode 107 by the second voltage applying means. A second voltage, which is higher than the first voltage, is applied to generate a transition nucleus in the disk-shaped line, and the vane shifts from the spray orientation. The transition to the do-orientation is made.
  • signal scanning lines 113 and switches are placed on the inner surface of the array substrate 106.
  • a pixel element 111 and a pixel electrode 108 were formed.
  • a third pretilt having a large value of about 5 degrees of a polyamic acid type manufactured by Nissan Chemical Industries, Ltd. is provided on the pixel electrode 108.
  • a polyimide alignment film material having a pretilt angle B 2 as a corner was applied, dried, and baked to form an alignment film 110 a on the pixel electrode 108.
  • ultraviolet light is irradiated on the left side of the orientation film 110a on the paper surface to reduce the pretilt angle A2 as the first pretilt angle by about 2 degrees.
  • the orientation value was changed to the above value, and an orientation film 110b was formed.
  • a common electrode 107 was formed on the inner surface of the counter substrate 105.
  • a polyimide alignment film material for imparting a pretilt angle C 2 as an angle to interfacial liquid crystal molecules is applied, dried and fired, and the alignment film is formed on the common electrode 107. b formed.
  • ultraviolet light is applied to a region on one side of the alignment film 109b on the right side on the paper surface (a region facing the pretilt angle B2 having a large pretilt angle).
  • the pretilt angle D 2 as a pretilt angle of 4 to a small value of about 2 degrees, an alignment film 109 a was formed.
  • a large pre-tilt angle is opposed to a small pre-tilt angle A 2 (first pre-tilt angle) as shown in FIG.
  • the pre-tilt angle D 2 (the fourth pre-tilt angle) could be set.
  • a—S is placed on the array substrate 106.
  • An active matrix type switching element (not shown) consisting of an i-type TFT element and the like, and a pixel electrode 108 are formed by being connected to the active matrix type switching element (not shown). did .
  • the left area of the pixel electrode 108 is irradiated with ultraviolet light in an ozone atmosphere, and compared with the right area of the pixel electrode 108. Then, a flattened region 108 a was formed.
  • a polyimide type polyimid alignment material of JSR Co. is applied onto the pixel electrode 108 and dried or fired.
  • an alignment film 110 was formed.
  • the liquid crystal molecules 140 located on the flattened region 108 a of the pixel electrode 108 have a pretilt angle of the unflattened region 108 b.
  • the value can be smaller than the pre-tilt angle of the liquid crystal molecule 140 located at.
  • the first liquid crystal cell region and the second liquid crystal cell region are similarly formed as in FIG. A liquid crystal display device within the same pixel can be obtained.
  • the alignment film 109 and the surface of the alignment film 110 formed so as to give a large or small pretilt angle to each other are rubbed.
  • the upper and lower substrates are parallel-oriented in a direction perpendicular to the signal electrode wires 113 (from left to right in Fig. 16), and the positive nematic material is used.
  • a liquid crystal layer 112 made of a liquid crystal material is disposed.
  • the orientation source of the pixel electrode 108 (upstream side in the rubbing direction) is small.
  • the angle A 2 has a large pretilt angle C 2 on the opposite side, and is located in the (I) area (first liquid crystal cell area) of the pixel in FIG. Is 2.5 V as a first voltage between the common electrode 10 ⁇ and the pixel electrode 108.
  • the liquid crystal molecules are oriented in a spray direction on the array substrate 106 side, and the b-spray orientation 120 is positioned in the (II) region of the pixel (the second liquid crystal).
  • a t-spray orientation 122 in which liquid crystal molecules are oriented in a spray orientation on the counter substrate 105 side is easily formed.
  • the switching element 111 of the liquid crystal cell 104 passes between the common electrode 107 and the pixel electrode 108 through the switching element 111.
  • a first voltage of 2.5 V is applied to the pixel
  • the b-spray alignment region (first liquid crystal cell region) and the t-spray alignment region (first Liquid crystal cell region 2) is formed, and a disc line line 123 is formed at the boundary along the signal electrode line 113 and the gate electrode line 114.
  • the pixel electrode is formed clearly between the common electrode 107 and the pixel electrode 108 (the step of forming a disk line line).
  • the discretion line 1 2 as shown in Fig. 17 is used. Metastasis nuclei from 3
  • the transfer orientation expanded to the bend orientation 124, and the entire TFT panel pixel was quickly transferred in about 3 seconds (direction transfer process).
  • FIG. 19 is a schematic diagram of a liquid crystal display device according to Embodiment 8 of the present invention.
  • the gate electrode lines are turned on and scanned line-sequentially, but before normal display, the gate electrode lines are turned on sequentially and the common electrode 10 is turned on.
  • the pixel electrode 108 and the gate electrode line are applied.
  • a transverse electric field due to the potential difference is generated at 1 of 114 and 114 ′.
  • a transition nucleus is generated from the vicinity of the disk line 123 and the gate electrode lines 114, 114. Then, it was transferred and expanded to bend alignment, and the entire TFT panel pixel was further quickly expanded to bend alignment in about 1 second (alignment transfer process).
  • the discrimination line region which is the boundary between the b-spray orientation state and the t-spray orientation region, is more distorted than the surrounding area.
  • a horizontal electric field is also applied to the above-mentioned discrimination line from the gate electrode line arranged horizontally. It is considered that more energy was given by this and the metastasis was quicker.
  • the gate electrode lines 114, 114 return to the normal scanning state.
  • the second voltage applied between the pixel electrode and the common electrode may be applied continuously.
  • the frequency is in the range of 0.1 Hz to 100 Hz, and the duty of the second voltage is applied.
  • the effect of accelerating the transition can be obtained at least in the range of 1: 1 to 10000: 1.
  • the pretilt angle D 2 of the orientation destination region of the common electrode is set to a small value, but may be set to a large value.
  • the pretilt angle B2 in the region where the pixel electrode is oriented is set to a large value, but the value is small because the horizontal field causes the t-spray orientation. The effect can also be obtained.
  • pretilt angle C2 of the opposite side is set to 5 degrees with respect to the pretilt angle A2 of one substrate side of 2 degrees, but if the ratio is large, the transition occurs. time This has the effect of shortening and can further increase the transit time.
  • the value of the smaller pretilt angle A 2 was set to 2 degrees, but the b-spray orientation was performed and the transition to the bend orientation was facilitated.
  • the small values of the pre-tilt angles A 2 and D 2 are 3 degrees or less, and the pre-tilt angles B 2 and C 2 of the large teeth are It should be at least 4 degrees.
  • the orientation processing was performed in the same direction as the upper and lower substrates in a direction perpendicular to the signal electrode wires 113, the orientation was perpendicular to the gate electrode wires 114 (immediately). That is, the upper and lower substrates may be parallel-aligned in the same direction (perpendicular to the paper surface in FIG. 16). At that time, the location where the disk line is formed is different.
  • the direction of the parallel alignment processing is shifted from the direction perpendicular to the electrode line along the pixel electrode by, for example, about 2 degrees, a direction is formed in the pixel. Since a transverse electric field is applied obliquely from the electrodes to the displaced screen lines, a twisting force is applied to the liquid crystal molecules that are aligned in the display, and the bend alignment is applied. The transition to the liquid crystal display device is facilitated, and the liquid crystal display device is surely fast in the transition.
  • the first voltage may be any voltage that is higher than the voltage that can form a disk line.
  • the second voltage is applied between the pixel electrode and the common electrode, the second voltage may be applied to the common electrode.
  • polyimide material was used as the alignment film material, other materials such as a single molecular film material may be used.
  • the substrate can be formed from a plastic substrate.
  • one of the substrates may be formed from a reflective substrate, for example, made of silicon.
  • the signal electrode lines and the pixel electrodes, and the gate electrode lines and the pixel electrodes are formed with concave and convex shapes that are fitted to each other.
  • FIGS. 20 and 21 conceptually show the main parts of the liquid crystal display device of the present embodiment.
  • This figure shows the pixels of an active matrix type OCB mode liquid crystal display device viewed from above the display surface (user side).
  • reference numeral 206 denotes a signal electrode line (nosline).
  • Reference numeral 07 denotes a gate electrode line
  • reference numeral 208 denotes a switching transistor (element).
  • the signal electrode line 206 and the gate electrode line 207 cross each other, but both electrode lines are three-dimensionally arranged via an insulating film (not shown). It goes without saying.
  • a switching transistor 208 formed of TFT is connected to a pixel electrode 202a having a substantially square shape in the figure.
  • the functions, operations, and functions of the signal electrode line 206, the gate electrode line 207, the switching transistor 208, and the pixel electrode 202a are the OBC mode. There is no difference from conventional liquid crystal display devices as well as the LCD.
  • the upper and lower alignment films 203a and 203b are formed by using a rubbing cross or the like. The same goes for the processing.
  • the recesses 22 1a and the protrusions are provided at the approximate center of each side of the substantially square pixel electrode 202a. 2 2 a has been formed.
  • the signal electrode wire 206 and the gate electrode wire 206 which are routed in close proximity to the above are formed by the concave portions 22 1 a and the convex portions.
  • the wiring is deformed into a convex portion 26 1 ⁇ 27 1 and a concave portion 26 22. 72 2 so as to fit into 22 2 a.
  • a deformed lateral electric field application part for exciting the transition should be formed above and below the pixel electrode 202a and in the left and right positions (on the paper surface in Fig. 20 (a)). This is different from the conventional liquid crystal display device.
  • a liquid crystal layer 210 was formed by vacuum-injecting a positive nematic liquid crystal material between the upper and lower substrates.
  • the liquid crystal molecules 211 have opposite pretilt angles of the positive and negative angles. However, the molecules are oriented so that the directions of the axes are almost parallel to each other, and the liquid crystal layer 210 spreads obliquely with no voltage applied. It becomes a spray orientation.
  • the gate electrode line 207 is set to a normal scanning state or a state in which almost all the gate electrodes are turned on.
  • the horizontal electric field thus, a stronger horizontal electric field than the surrounding normal electric field is applied between the gate electrode line 207, the signal electrode line 206 and the pixel electrode 202a.
  • the gate electrode line 207 and the pixel electrode 2 A transition nucleus to bend alignment is generated in the liquid crystal layer 29 9 from the horizontal electric field application portion between 0 2 a as a base point.
  • the signal electrode line 206 and the pixel electrode 202 are mainly A transition nucleus to bend alignment is generated in the liquid crystal layer 298 based on the horizontal electric field application portion between a.
  • the bend alignment region was expanded based on this transition nucleus, and as a result, the entire pixel region was able to complete the bend alignment in about 0.5 seconds. .
  • the entire TFT cell rapidly translocated in about 2 seconds.
  • the horizontal electric field applying portion is formed such that the pixel electrode portion deformed into a concave and concave portion and the concave and convex portions of both signal electrode wires are fitted to each other.
  • the pixel electrode 202 a, the signal electrode wire 206, and the gate electrode wire 207 only. It is.
  • the projections 2 63 of the signal electrode wire 206, the projections 2 73 of the gate electrode wire 2 07, and the projections 2 2 3 of the pixel electrode 202 a are shown.
  • a. 2 24a is different from the one shown in Fig. 20 in that only one of them is provided and it is not a fitting type.
  • planar shape of the concave and convex portions is a shape other than the triangular shape and the square shape shown in FIGS. 20 to 22, for example, a trapezoidal shape, a semicircular shape, a circular shape, an elliptical shape, and the like. Of course, it is good.
  • the horizontal electric field application section is provided at a total of four powers at the top, bottom, left, and right of one pixel, but depending on the size of the pixel, etc.
  • only one or only one electrode may be provided, and it goes without saying that concaves and convexes may be continuously formed along the electrode edge.
  • the rubbing direction has been assumed to be almost orthogonal to the signal electrode wire or the gate electrode wire, but even if the rubbing direction is oblique. Good. In this case, a transition occurs from the liquid crystal layer in the horizontal electric field applying portion between the signal and the gate electrode line and the pixel electrode to the bend alignment.
  • at least one horizontal electric field application unit capable of applying a horizontal electric field in a direction substantially orthogonal to the rubbing direction is provided for each pixel. And are desirable.
  • FIGS. 20 to 22 are plan views, both electrode lines (signal electrode line 206 and gate electrode line 207) and pixel electrode 202a are the same. Although it appears to be on one plane, at least one of the electrode lines may be arranged at a different height from the pixel electrode on the array substrate.
  • the horizontal electric field applying portion consisting of the electrode deformed portion in which a part of the periphery of the pixel electrode is deformed concave and convex in a plane parallel to the substrate surface is 0.5 to 1 in plan view.
  • the projections of the signal electrode lines or the gate electrode lines present on the side of the horizontal electric field application part are separated by about 0.5 to about 1 ⁇ ⁇ , so that the concave parts are recessed by about ⁇ . Generates a transverse electric field.
  • an electrode wire for applying a horizontal electric field is provided.
  • the present embodiment will be described with reference to FIGS.
  • (A) of this figure is a plan view seen from the upper surface of the substrate.
  • (B) is a cross-sectional view of the liquid crystal display device in a plane parallel to the gate electrode line 2007.
  • reference numeral 209 denotes an electric wire laid almost exclusively under the signal electrode wire 206 on the array substrate 20 la for exclusive application of a lateral electric field.
  • Reference numeral 212 denotes a transparent insulating film for insulating the horizontal electric field application line 209 from the signal electrode line 206, the gate electrode line 207, and the like. Therefore, when this pixel is viewed from above (in the direction of the user perpendicular to the display surface), as shown in Fig. 23 (a), the horizontal electric field is located at the left and right central parts of the pixel.
  • the triangular projection 291 of the application wire 209 in a plan view protrudes to the side of the signal electrode wire 206.
  • the signal electrode lines 206 and the pixel electrodes 202a are not different from those of the prior art.
  • the horizontal electric field applying line 209 is connected to a drive circuit to which the signal electrode line 206 or the gate electrode line 207 is connected.
  • the line 209 is configured so as to be cut off from the drive circuit during normal liquid crystal display after the alignment transition.
  • the horizontal electric field applying line 209 is used as an upper signal electrode line with respect to the signal electrode line 206, and is provided close to the pixel electrode via a transparent insulating film, and the horizontal electric field applying line 209 is provided.
  • the effect may be increased and, at the same time, the connection may be made electrically by a contact hole (not shown) in the transparent insulating film. In this case, since there are two signal electrode wires, there is also an effect that the redundancy is increased and the electric resistance is reduced.
  • FIG. 23 (c) the horizontal electric field applying wire 209a is provided directly above the signal electrode wire 206 via the transparent insulating film 213. . It is the same that there is a triangular convex portion 291a at the center of the pixel in plan view.
  • FIG. 23D shows another example of the present embodiment. As shown in the figure, the horizontal electric field application wire 209b is covered with the flattened transparent insulating film 221b, and the signal electrode is placed under the dedicated line 209b. The line 206 is covered with the flattening transparent insulating film 211c, and the pixel electrode 202a is provided on the flattening transparent insulating film 211b. It is the same that there is a triangular convex portion 2991b at the center of the pixel.
  • the protruding part of this dedicated line for applying a horizontal electric field is triangular, but this is done by continuously providing protruding parts on all parts facing the pixel electrode. Needless to say, it may have a three-dimensional structure, such as having a convex portion projecting upward.
  • the dedicated line for applying the horizontal electric field may be provided directly below or directly above the gate electrode line instead of the signal electrode line. Further, it may be provided immediately below both electrode wires.
  • At least one notch is formed in the pixel electrode to form a defective portion.
  • FIG. 24 conceptually shows a plane and features of a pixel unit of the liquid crystal display device of the present embodiment.
  • the pixel electrode 202a made of an ITO film is, for example, a few m wide and is removed by etching to form a planar-shaped electrode in a crank shape.
  • Defective part 225 is formed.
  • the pixel electrode 202a including the electrode defective portion 225 and the common electrode surface (not shown).
  • a polymixer manufactured by Nissan Chemical Industries, Ltd. is provided on the pixel electrode 202a including the electrode defective portion 225 and the common electrode surface (not shown).
  • a polyimide alignment film material having a pretilt angle of about 5 degrees of the citrate type is applied, dried and baked to form an alignment film (not shown), and further formed.
  • These surfaces are aligned in a direction perpendicular to the gate electrode line 207 by rubbing cross, so that the pretilt angle of the liquid crystal molecules is positive.
  • the liquid crystal layer forms a so-called spray-aligned liquid crystal cell consisting of a so-called alignment region in which liquid crystal molecules spread obliquely under no voltage application. Is the same.
  • the splay alignment in the pixel region causes a transition nucleus to the bend alignment in the liquid crystal layer 299 of the electrode defect part 22 25, and further this bend alignment occurs.
  • the alignment region expands and completes the entire pixel region to bend alignment in about 0.5 seconds.
  • the entire TFT cell rapidly transitions in about 2 seconds.
  • one electrode defect portion 225 having a crank shape in a plan view is formed.
  • two or more electrode defect portions may be formed.
  • the shape may be a straight line, a square, a circle, an ellipse, or even a square, as a matter of course.
  • the electrode defective portion 225 may be formed on the common electrode side. Further, it goes without saying that it may be formed on both the pixel electrode and the common electrode.
  • a region having a different tilt angle is previously formed in the pixel plane in addition to the generation of the lateral electric field.
  • FIG. 25 conceptually shows the configuration and features of the pixel unit of the liquid crystal display device of the present embodiment.
  • (A) of this figure is a cross-sectional view of a pixel in a direction parallel to the gate electrode line, and it is the same pixel. However, the left (I) and the right (II) show a tilt. The angle is different.
  • FIG. 25 (b) is a plan view of the pixel as viewed from above (user side), and has concave and convex portions 22 1a ⁇ 22 2a on the top, bottom, left and right of the pixel electrode 202a Are provided, and furthermore, at the corresponding positions of the signal electrode wire 206 and the gate electrode wire 207, the concave and convex portions 22 1 a and 22 2 a are fitted together.
  • ⁇ 27 1 ⁇ 27 2 are provided and, like Embodiment 7 described above, the first voltage of 2.5 V is applied. By applying the voltage, a discretion line 226 is formed at the boundary between (I) and (II) in FIG. 25 (a).
  • an alignment film 203 am '203 bm is formed, respectively.
  • 0 3 am ⁇ 203 bm is due to the fact that the liquid crystal layer 210 is treated to form a spray alignment in the absence of a voltage, and the pixel electrode 202 a and the like.
  • the formation of a transverse electric field application part for transfer excitation on the gate electrode line 207 and the like wired close to each other is the same as in the first embodiment.
  • the treatment of the alignment film is different.
  • the polyamic acid type manufactured by Nissan Chemical Industries, Ltd. is placed on the pixel electrode 202a including the horizontal electric field application section.
  • a pretilt angle having a large value of about 5 degrees; a polyimide alignment film material of B 2 is applied, dried and fired to form an alignment film 203 am.
  • the pretilt angle E 2 is about 2.degree. It changes to an alignment film with a small value.
  • a large pre-tilt angle of about 5 degrees of a polyamic acid type manufactured by Nissan Chemical Industries, Ltd. was used on the opposite substrate 20 lb.
  • a polyimide alignment film material for imparting F 2 to interfacial liquid crystal molecules is applied and dried and baked to form an alignment film 203 bh on the common electrode 202 b.
  • the surface of the orientation film thus formed which gives a large and small pretilt angle to each other, is shown by a rubbing cross in Fig. 25 (b).
  • the upper and lower substrates were processed in parallel in the same direction in a direction substantially orthogonal to the signal electrode 6. It is then filled with a positive nematic liquid crystal material and The liquid crystal layer 210 was arranged.
  • a small pre-tilt angle E 2 is opposed to the pre-tilt angle E 2 in the orientation source of the pixel electrode 202 a (toward the root of the rubbing).
  • a large pre-tilt angle F2 is arranged on the side of the substrate, and the liquid crystal molecules are sprayed on the lower substrate side in the area indicated by (I) of the pixel in FIG. 25 (a).
  • Oriented b-spray orientation 2 227 In the region indicated by (II) in the pixel, the t-spray orientation 2 in which the liquid crystal molecules are oriented in a spray orientation on the upper substrate side 27 t becomes easier to form.
  • a pulse of 15 V was repeatedly applied between the common electrode and the pixel electrode of this pixel.
  • the transition nuclei are formed from the discretion line 22 and the liquid crystal layer 299 near the horizontal electric field application part. Then, the transition to the bend alignment region spread, and the entire TFT panel pixel rapidly transitioned in about 1 second.
  • the energy is high, and in addition to this condition, twisting occurs in the spray orientation due to the transverse electric field generated in the transverse electric field application part, and the transition is likely to occur. Therefore, it is considered that a high voltage was applied between the upper and lower electrodes, and energy was further applied to cause a band transition.
  • the present invention has been described based on some embodiments.
  • the present invention is not limited to these. That is, for example, you can do the following.
  • the voltage applied between the pixel electrode and the common electrode is continuous or intermittent.
  • the transition is in the range of 1 Hz to 100 Hz and the duty ratio of the second voltage is at least in the range of 1: 1 to 100: 1. Select a value that speeds up.
  • the substrate to be used is made of plastic, and an organic conductive film is used as the electrode.
  • One of the substrates is formed of a reflective substrate, for example, silicon, or a reflective substrate made of a reflective electrode such as aluminum. To form a reflection type liquid crystal display device.
  • a means such as providing a projection for generating a horizontal electric field on the pixel electrode and the common electrode is also used.
  • a projection is formed for that purpose, and the projection has a function of aligning liquid crystal molecules. And other means are also used.
  • the protrusion of 6) is also used as the protrusion for generating a lateral electric field.
  • the shape of the pixel electrode is not square but rectangular or triangular.
  • the pixels are divided into regions with different liquid crystal orientations, not two, but three or four.
  • FIG. 26 is an external view of a configuration of a liquid crystal cell used for the liquid crystal display device according to Embodiment 13;
  • FIGS. 27 and 28 illustrate production of a convex-shaped object. Part of the manufacturing process to do so.
  • a PC-based resist material manufactured by JSR Corporation is applied on the glass substrate 308 to form a resist thin film having a thickness of 1 // m.
  • the resist thin film 320 is passed through a photomask 321, which is provided with an opening 322 of a rectangular pattern, and is irradiated with collimated ultraviolet light 323. Irradiation exposure.
  • the resist thin film 320 exposed to parallel light was developed, rinsed, and prebaked at 90 ° C, and the cross section was convex as shown in Figure 28.
  • the object 310 is formed.
  • an ITO electrode 7 was formed into a film of 200 OA on the substrate according to a standard method, to obtain a glass substrate with electrodes 308. Then, a glass substrate 301 having a transparent electrode 302 and a glass substrate on which the above-mentioned convex object is formed are formed on an alignment film made by Nissan Chemical Industries. Paint SE-74942 is applied by the spin coating method, and cured in a thermostat at 180 ° C for 1 hour to form orientation films 303 and 306. After that, rubbing treatment is performed in the direction shown in Fig. 29 using a laying cloth made of Rayon, and the water is made by Sekisui Fine Chemical Co., Ltd.
  • liquid crystal cell A (referred to as liquid crystal cell A) was created.
  • the rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
  • test cell A is changed to the direction of the rubbing treatment of the orientation film. And a polarizer so that their polarization axes are perpendicular to each other, and print a 7 V square wave!
  • the entire electrode region transitioned from the spray orientation to the bend region in about 5 seconds. .
  • the liquid crystal layer thickness is smaller and the electric field strength is effectively larger in the region where the convex-shaped object 310 is formed than in the surrounding liquid crystal layer region. Is surely generated. The generated bend orientation quickly spreads to other regions.
  • the convex shape may have a trapezoidal shape, a triangular shape, or a semi-circular shape in addition to the rectangular shape as in the present embodiment.
  • a spray-aligned liquid crystal cell was formed in a similar process except that a glass substrate with a transparent electrode having no convex portion 310 was used.
  • Test cell R was prepared by enclosing liquid crystal MJ964335. When a 7 V square wave was applied to this test cell R, the time required for all electrode regions to transition from the spray orientation to the pendent region was 42 seconds. Thus, the effect of the present invention is clear.
  • FIG. 30 is a configuration external view of a liquid crystal cell used for the liquid crystal display device according to Embodiment 14, and FIG. 31 is a plan view thereof.
  • FIG. 30 is a cross-sectional view taken along line X 1 —X 1 of FIG. 31.
  • Embodiment 14 is characterized in that the convex-shaped object 310 is provided on the transparent electrode 307a formed outside the display pixel region.
  • the manufacturing procedure will be described.
  • a glass substrate 301 having a transparent electrode 302 and a glass substrate 300 formed with a convex shape are coated with an alignment film paint SE—7 manufactured by Nissan Chemical Industries, Ltd. 492 is applied by a spin coating method, and is cured in an oven at 180 ° C. for 1 hour to form alignment films 303, 306, and 306 a. Then, using a Rayon rubbing cloth, rubbing treatment is performed in the direction shown in Fig. 29, and Sekisui Fine Chemical Co., Ltd. The distance between the substrates is 6.5 m by using the SA 5 and the Struct Pond 3 52 A (trade name of seal resin manufactured by Mitsui Toatsu Chemicals, Inc.). Then, a liquid crystal cell (referred to as liquid crystal cell B) was created.
  • an alignment film paint SE—7 manufactured by Nissan Chemical Industries, Ltd. 492 is applied by a spin coating method, and is cured in an oven at 180 ° C. for 1 hour to form alignment films 303, 306, and 306 a. Then, using
  • the rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
  • the liquid crystal cell is polarized so that its polarization axis forms an angle of 45 degrees with the rubbing direction of the alignment film, and the polarization axes of the liquid crystal cell and the liquid crystal cell are perpendicular to each other.
  • the entire electrode area was spray-arranged in about 7 seconds. It moved to the bend region from the opposite direction.
  • a convex portion is provided outside the display pixel area to cause generation of a bend transition nucleus outside the display pixel area.
  • the generated bend orientation is different from that of the display pixel area. It was confirmed that it spread quickly into the display pixel area from the outside.
  • FIG. 32 is a structural external view of a liquid crystal cell used for the liquid crystal display device according to Embodiment 15, and FIGS. 27, 28, and 33 show convex shapes. It is part of the manufacturing process to explain the fabrication.
  • a PC-based resist material manufactured by JSR Corporation is applied to form a resist thin film having a thickness of l m.
  • the resist thin film 320 is passed through a photomask 321, which is provided with an opening 322 of a rectangular pattern, and is irradiated with collimated ultraviolet rays 323. Irradiation exposure.
  • the resist thin film 20 exposed to parallel light is developed and rinsed, pre-baked at 90 ° C, and has a convex cross section as shown in Fig. 28.
  • the object 310 is formed. Then, a postbaking is performed at 150 ° C.
  • an ITO electrode was formed to a thickness of 2000 A on the substrate according to a conventional method to form a glass substrate with electrodes 308.
  • the glass substrate 301 having the transparent electrode 302 and the glass substrate 300 formed with the above-mentioned convex-shaped object are formed on the Nissan Chemical Industries distribution film.
  • Paint SE — 7492 is applied by the spin coating method, and it is cured at 180 ° C for 1 hour in a thermostatic oven to form orientation films 303 and 306.
  • rubbing treatment is performed in the direction shown in Fig. 29 using a laying cloth made of Rayon to make a product made by Sekisui Fine Chemical Co., Ltd.
  • the distance between the substrates is 6.5 mm by using the spacer 305 and the Stroke Bond 352 A (trade name of seal resin manufactured by Mitsui Toatsu Chemicals, Inc.).
  • the liquid crystal cell 309 let's call it liquid crystal cell C was created.
  • the polarization axis forms an angle of 45 degrees with the rubbing direction of the alignment film, and the polarization axes of the test cells c are orthogonal to each other.
  • the entire electrode area was sprayed in about 7 seconds. The orientation shifted to the bend region. .
  • the electric field is concentrated at the above-mentioned triangular tip, and the bend orientation is generated from this portion.
  • the upper part of the triangular object 60 has a rubbing part and a rubbing part by the rubbing treatment.
  • the sign of the liquid crystal pretilt angle is as a result.
  • the opposite area is created.
  • the liquid crystal director is horizontal to the substrate surface, and this also contributes to the high-speed spray-to-bend transition. It seems to be.
  • the electric field concentration portion is provided in the pixel region.
  • the same effect was observed when the electric field concentration portion was provided outside the pixel region.
  • the central portion of the electric field concentrator is provided only on one side of the substrate, but it is needless to say that it may be provided on both sides of the substrate.
  • FIG. 34 is an external view of the configuration of a liquid crystal cell used in the liquid crystal display device according to Embodiment 16, and FIG. 35 is a glass substrate 30 used in this embodiment. Electrode No. 2 indicates "turn.”
  • the rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
  • the polarizing plates are bonded so that the polarization axis forms an angle of 45 degrees with the rubbing direction of the alignment film, and the polarization axes of the polarizing plates are orthogonal to each other.
  • the transition from the spray orientation to the bend orientation was observed while applying a voltage.
  • the shape of the opening is rectangular, but it goes without saying that other shapes such as a circle and a triangle may be used.
  • FIG. 36 shows a liquid crystal cell used for the liquid crystal display device according to Embodiment 17.
  • FIG. 37 is an enlarged view of a part of the main part of the tool.
  • a pixel switching element 380, a signal electrode line 381, and a gate signal line (not shown) are formed on a glass substrate 308.
  • a flattening film 382 is formed to cover the switching element 380, the signal electrode line 381, and the gate signal line.
  • a display electrode 307 is formed on the flattening film 382, and the display electrode 307 and the switching element 380 are connected to the flattening film 380. It is electrically connected via a relay electrode 384 that passes through a contact hole 380 that opens to 822. As shown in FIG.
  • the relay electrode 384 has a concave portion 384 a at the upper opening side of the contact hole 383 as shown in FIG.
  • An opening is formed in the display electrode 307 by such a concave portion 384 a, and electric field concentration occurs near the concave portion 384 a. It is possible to make it. Thus, the transit time can be shortened.
  • FIG. 38 is an external view of the configuration of the liquid crystal display device according to the embodiment 18.
  • the main axis of the test cell D created in the embodiment 16 is arranged in a hybrid array.
  • retarders 312 and 315 made of an optical medium having negative refractive index anisotropy, negative uniaxial retarders 311 and 314, positive uniaxial retarders 3 19, polarizing plates 313 and 316 were bonded together in the arrangement shown in FIG. 39 to complete a liquid crystal display device.
  • Figure 40 shows the voltage-transmittance characteristics at the front of the liquid crystal display device at 25 ° C. A 10 V square wave voltage was applied for 10 seconds to confirm the bend orientation. After that, the measurement was performed while the voltage was lowered. In this liquid crystal display device, the transition from the bend orientation to the spray orientation occurs at 2.2 IV, so it is necessary to display at a voltage of 2.2 V or more effectively. .
  • a contrast ratio of 10: 1 or more has been achieved in the range of 26 degrees and the left and right directions of 160 degrees, and the direction of the liquid crystal director on the substrate-oriented film surface is defined as the circumference. It was confirmed that sufficient wide viewing angle characteristics were maintained even when some different parts were provided. In addition, no defective orientation and no poor display quality were observed by visual observation.
  • the liquid crystal display device of the present invention has a high speed display without sacrificing the wide viewing angle characteristics and response characteristics of the conventional OCB mode.
  • the orientational transition can be achieved, and its practical value is extremely large.
  • FIG. 41 is a cross-sectional view of a principal part of the liquid crystal display device according to Embodiment 19, in which a liquid crystal cell operated as a bend alignment type cell is composed of two parallel substrates. It is a so-called Sandwich cell in which a liquid crystal layer 402 is sealed between 00 and 401. Normally, a transparent electrode is formed on one substrate, and a pixel electrode provided with a thin film transistor is formed on the other substrate.
  • Figure 41 (a) is a schematic diagram showing the orientation in the initial state without applying an electric field.
  • the liquid crystal molecules are aligned substantially in parallel and substantially uniformly, although the molecular axes of the liquid crystal molecules are slightly inclined with respect to the plane of the substrate 400 and 401. In other words, it is a holistic orientation.
  • the liquid crystal molecules existing at the interface are inclined in the opposite directions to each other on the upper and lower substrates 400 and 401. That is, the orientation angles 0 1 and 2 (that is, the pre-tilt angles) of the liquid crystal molecules existing at the interface with the substrate are mutually different signs. It has been adjusted.
  • orientation angle and the pretilt angle refer to the tilt of the molecular axis of the liquid crystal molecules with respect to a plane parallel to the substrate and the counterclockwise direction with respect to the plane parallel to the substrate. It is the angle expressed as positive around.
  • the orientation shown in Fig. 41 (b) is called bend orientation, and near the surface of both substrates, the tilt of the molecular axis of the liquid crystal molecules with respect to the substrate plane, i.e., That is, the absolute value of the orientation angle is small, and the absolute value of the orientation angle of the liquid crystal molecules is large in the center of the liquid crystal layer 402. Further, it does not have a substantially twisted structure throughout the entire liquid crystal layer.
  • n6c (n x (x , y, z), n y (x, y, z), n z (x, y, z))
  • k11, k22, and k33 are the elastic constants of Frank, and represent the elasticity of the spray, twist, and bend, respectively.
  • represents the difference between the dielectric constant of the liquid crystal in the direction of the molecular axis and the dielectric constant in the direction perpendicular thereto, that is, the dielectric anisotropy.
  • E is an external electric field.
  • the first, second, and third terms respectively represent the elastic energy due to the spreading, twisting, and bending of the liquid crystal.
  • the fourth term represents the electric energy due to the electric interaction between the external electric field and the liquid crystal.
  • the electric energy is minimum when n is parallel to E if ⁇ £> (), and minimum when n is orthogonal to E if ⁇ ⁇ s ⁇ 0. Become .
  • the liquid crystal molecules are oriented such that if ⁇ £> 0, the long axis of the molecule is parallel to the direction of the electric field.
  • the molecule is oriented so that the long axis of the molecule is orthogonal to the direction of the electric field.
  • the total free energy F is a function defined by using an unknown function n (x) representing a director as a variable (ie, a general function). Function).
  • n (x) that minimizes the total free energy F under appropriate boundary conditions. That is, if n (X) that minimizes F is determined, the orientation state of the liquid crystal can be predicted.
  • n (X, t) that takes into account the time variation such that F is minimized under appropriate boundary conditions. It can predict any behavior of devices such as optical constants. This is the principle of the minimum action that is typical in the physical sense, and is the mathematically small polarization problem with the boundary value in the mathematical sense.
  • the approximation of ⁇ (X) in this partial integration space ⁇ V is coarse, but it is covered by making the division of the integration space finer, and the approximation is made. Can be enhanced.
  • the total free energy F is a function of unknowns nx, j, ny, j, nz, j from a functional defined with unknowns n (x) as variables.
  • Is converted to The unknowns nx, j, ny, j, nz, j are values that minimize the function F in a multidimensional parameter space.
  • the bend alignment of the liquid crystal has a structure having substantially no twist.
  • the director n is originally a function of x, y, and z as described above, it can be expressed as a function of the directional angle.
  • 0 is the tilt of the liquid crystal molecules with respect to a plane parallel to the substrate, that is, the orientation angle.
  • depends only on the distance z of the liquid crystal molecules from the substrate.
  • Fig. 42 is a schematic diagram showing this directory.
  • the circuit corresponding to [Equation 10] is composed of np CR circuits.
  • the second term in [Equation 10] represents the current flowing through the CR circuit.
  • V j can be automatically obtained by obtaining the voltage at which the current flowing through the CR circuit becomes zero by using a circuit simulator. .
  • FIG. 44 shows an example of a calculation result based on the above method, and shows a change with time of S j when an external electric field E is added with time.
  • the orientation angles ⁇ j are all relatively small, and it can be seen that the orientation state of the liquid crystal is homogenous. .
  • Figure 45 shows the result of determining the relationship between the Spray elastic constant k ll and the critical electric field E c.
  • the larger the spray property constant k11 the larger the critical electric field Ec.
  • the 7 range dyn, with increasing k ll, E c is you increase sharply.
  • the spray elasticity The number k 11, 1 0 x 1 0 - 7 less than dyn, is favored by rather, 8 x 1 0 - 7 and is Ru Oh effective this shall be the dyn below.
  • the lower limit of the Spray elastic constant k il is not particularly limited, but is preferably 6 x 10 — dyn or more. It is usually difficult to synthesize or prepare a liquid crystal material with k 11 ⁇ 6 X 10 — 7 dyn.
  • liquid crystal material having the above-mentioned Spray elastic constant k ll is not particularly limited, for example, a pyrimidine liquid crystal, Oxan-based liquid crystals, biphenyl-based liquid crystals and the like can be mentioned.
  • FIG. 46 shows the result of determining the relationship between the difference ( ⁇ 0) of the absolute value of the pretilt angle between the upper and lower substrates and the critical electric field E c.
  • k 11 '6 xl 0 - 7 dyn
  • k 33 1 2 x 1 0 one dyn
  • the larger the difference ⁇ 0 between the pretilt angles the lower the critical electric field Ec.
  • E c sharply decreases as ⁇ ⁇ ⁇ increases.
  • the difference in the pretilt angle should be 0.02 rad or more, preferably 0.035 rad or more. Is effective.
  • the upper limit of the difference in the pretilt angles is not particularly limited, but is usually less than 1.57 rad, preferably 0.78 rad. 5 rad or less.
  • the absolute values of the pretilt angles 0 0 and 0 np-1 are usually It is adjusted so as to be greater than Orad and less than 1.57 Rad, and preferably not less than 0.17 rad and not more than 0.785 rad. Adjustment of the pre-tilt angle is achieved by forming an appropriate liquid crystal alignment film on the substrate surface by a method such as the oblique evaporation method or the Langmuir-Blodgett (LB) method. Can be controlled by The liquid crystal alignment film is not particularly limited, but examples thereof include a polyimide resin, a polyvinyl alcohol, a polystyrene resin, and a polystyrene resin.
  • the resin examples include cinnamate resin, polycarbonate resin, polypeptide resin, and high-molecular liquid crystal.
  • the LB method is adopted by adjusting the inclination of the film to the substrate surface in the direction of deposition.
  • the pre-tilt angle can be controlled by adjusting conditions such as the substrate pull-up speed.
  • the critical electric field E c is affected by the non-uniformity of the electric field in the liquid crystal layer. This is because the electric field distortion generated in the liquid crystal layer affects the stability of the orientation state of the liquid crystal molecules.
  • the non-uniformity of the electric field is determined by the ratio (E 1 / E 0) between the main electric field E 0 applied substantially uniformly to the liquid crystal layer and the auxiliary electric field E 1 applied non-uniformly.
  • E 1 is the maximum value of the applied sub-field.
  • the relationship between the inhomogeneity E 1 / E 0 of the electric field and the critical electric field E c can be examined as follows based on the above-mentioned method.
  • the sub electric field E 1, which is a non-uniform electric field are applied to the liquid crystal layer in a superimposed manner.
  • the change in the orientation angle with the increase in the main electric field E 0 is calculated.
  • the auxiliary electric field E 1 is increased so that E 1 / E 0 becomes constant at a predetermined value as the main electric field E 0 increases.
  • the critical electric field of the liquid crystal transition is defined as the main electric field E 0 when the orientation angle 0;) ′ suddenly changes.
  • a field E c is required.
  • FIG. 47 is an example of a calculation result obtained by calculating the critical electric field E c under various conditions by varying the value of E 1 / E 0 based on the above method.
  • FIG. 47 is an example of a calculation result obtained by calculating the critical electric field E c under various conditions by varying the value of E 1 / E 0 based on the above method.
  • a spatially non-uniform electric field E 1 is applied to the liquid crystal layer together with a substantially uniform main electric field ⁇ 0.
  • E 1 is applied to the liquid crystal layer together with a substantially uniform main electric field ⁇ 0.
  • it is effective to set 0.01 to E1 / E0 to 1.
  • E lZ EO ⁇ O .01 it is difficult to sufficiently obtain the effect of promoting the liquid crystal transition by applying a non-uniform electric field, and in the range of E 1 / E 0 ⁇ 1. This is because there is a problem that the applied voltage becomes too large to be suitable for actual use.
  • the non-uniform electric field E 1 is obtained by using the voltage applied between the source electrode (or gate electrode) of the thin-film transistor and the transparent electrode, and the liquid crystal layer is formed. Can be applied in a direction perpendicular to the substrate.
  • the non-uniform electric field E 1 is an AC electric field having a frequency of 100 kHz or lower, and more preferably, the amplitude is attenuated over time. Yes.
  • the conditions that lower the critical electric field E c are the spray elastic constant (k ll), the asymmetry of the tilt angle (( ⁇ ), and the non-uniformity of the electric field (E 1 / E 0) Of the three conditions, it is preferable to satisfy by combining two or three conditions. By combining these conditions, the critical electric field E c can be further reduced more reliably than when only one of the conditions is satisfied. This is because it is possible.
  • FIG. 47 shows the results calculated under the same conditions as in FIG. 46 except that a non-uniform electric field E 1 is applied together with a substantially uniform external electric field E 0. It is a fruit.
  • FIG. 47 shows the result obtained when E 1 / E O ⁇ 0.03.
  • the critical electric field Ec can be further reduced, and a more rapid liquid crystal transition can be realized.
  • a first liquid crystal cell region and a second liquid crystal cell region are formed in the same manner as in the seventh embodiment, and a discretion region at the boundary is formed.
  • the feature is that the bend transition is easily generated with the line as the nucleus.
  • a method is used in which a pair of upper and lower substrates are irradiated with ultraviolet rays to locally change the pretilt angle.
  • the present invention is not limited to this. Whether the substrate to be processed is both substrates or one substrate, it is possible to form the first and second liquid crystal cell regions, and the The method of changing the angle is not limited to UV irradiation.
  • specific contents will be described with reference to Embodiment 20-1 to Embodiment 20-5.
  • FIG. 48 is a conceptual diagram showing an alignment state of the liquid crystal display device according to Embodiment 20-1.
  • the present embodiment 20 — 1 is one of a pair of upper and lower substrates. Only one of them is an example of V irradiation. Specifically, ⁇ V irradiation was performed only on array substrate 500 in the same manner as in the seventh embodiment. As a result, the fifth and second degree tilt regions were formed on the array substrate 500 as in the seventh embodiment. A pretilt angle of 5 degrees corresponds to ⁇ 2 in Fig. 16, and a pretilt angle of 2 degrees corresponds to ⁇ 2 in Fig. 16. On the inner surface of the counter substrate 501 and the inner surface of the array-side substrate 500, an alignment film made of the same material is formed, respectively.
  • the opposing substrate 501 has two types of pretilt angles of the array substrate 500. With a neutral pre-tilt angle. In this embodiment, it was three times. As described above, in the present embodiment, the opposite substrate 501 has a pleated angle between the two types of array substrate 509. -It is a feature of 1. When no electric field is applied, two regions HI and H 2 appear in the liquid crystal layer 502 as shown in FIG. 48 (a). Here, the pretilt of the array side substrate 500 is 2 degrees in the right region H2 and 5 degrees in the left region H1, and the pretilt of the opposing substrate 500 is the right side. The region H2 and the left region H.1 both have a third degree.
  • the direction of the liquid crystal molecules near the center of the liquid crystal panel in the thickness direction is the average value of the upper and lower pre-tilt angles. become .
  • the liquid crystal molecules are indicated by reference numeral 503. Therefore, as shown in FIG. 48 (a), in the left region H1 where the pretilt of the array side substrate 500 is higher than the pretilt of the counter substrate 501, as shown in FIG.
  • the liquid crystal 503 near the center is in an upper right corner in the figure.
  • the liquid crystal 503 near the center is shown in the figure. The state will be lower right.
  • the array substrate 500 By providing a distribution of tilt, the counter substrate 501 side has an intermediate pre-tilt, so that there are two types of liquid crystal at the center in the thickness direction of the liquid crystal panel. Can be realized. It should be noted that even if the counter substrate 501 has a distribution of the pretilt, the array substrate 500 side may have an intermediate pretilt. Good. ,
  • the alignment state when a voltage is applied is affected by the alignment state of the liquid crystal at the center in the thickness direction of the liquid crystal panel when no voltage is applied. That is, in the left region HI where the liquid crystal molecules in the center are in the upper right state when no voltage is applied, there is a spray deformation portion near the counter substrate 501. When no voltage is applied, the liquid crystal molecules in the central portion of the liquid crystal molecules in the right upper region H2 near the array substrate 500 near the array substrate 500 when no voltage is applied. B—Spray orientation with a spray deformed part is formed.
  • the left side area H1 is observed when observation is made from the rafting side (from the right side of FIG. 48 (b)). Is relatively dark, the right side area H 2 looks whitish, and When observed from the opposite direction (observed from the left side of Fig. 48 (b)), the left area H1 appeared relatively whitish and the right area H2 appeared relatively black. From this, it was determined that the left region H1 was in the t-spray state, and the right region H2 was in the b-spray state.
  • the orientation of the liquid crystal molecules in the central part of the liquid crystal layer in the cell thickness direction is asymmetric in the left region H1 and the right region H2, for example, when observed from the left side, In the right region H 2, the liquid crystal molecules are observed from the long axis direction, so the liquid crystal has little birefringence and seems to be relatively dark.
  • the UV irradiation is performed for each pixel.
  • the transition speed can be increased.
  • the array substrate side was irradiated with ultraviolet rays to form a region having a different pretilt, but the present invention is not limited to this.
  • the opposite substrate may be irradiated with ultraviolet rays to form regions having different pre-tilts.
  • the present embodiment is divided into two regions having different pre-tilts, the present invention is not limited to this, and at least the pre-tilt is formed by the upper and lower substrates. It suffices if there is an area in which the magnitude relation of g is reversed. Further, in the present invention, a region having a different plot is formed for each pixel, but the region may be formed for a plurality of pixels. Also, there may be many areas in the pixel. However, in regions where pixel electrodes are not connected, such as gate lines, it is desirable that a transition nucleus be formed for each pixel. Further, in the present embodiment, the pretilt of 5, 5, and 2 degrees is used, but the present invention is not limited to this.
  • the minimum value of the plot is ideally 1 degree or more, and more preferably 2 degrees or more.
  • the pre-tilt angle has a distribution by giving the in-plane distribution to the rubbing intensity.
  • a rubbing process is performed for the alignment process of the liquid crystal.
  • the orientation of the liquid crystal is controlled by rubbing the substrate surface with a fiber of uniform length. It is generally known that the higher the rubbing strength, the lower the pretilt.
  • the length of the fiber used for rubbing is made non-uniform, so that the distribution of the rubbing strength is distributed, and the pleiling is intended. The target was made uneven.
  • a substrate 511 having a small step 510 having a width of 50 m and a height of 100 m shown in FIG. 49 is used.
  • rubbing was performed 100 times or more on the substrate 511 with a rubbing cloth 511 having fibers of a uniform length.
  • the rubbing cloth 5 12 is heavily worn in the high part of the step 5 10, and as a result, as shown in Fig. 50, the distribution of the rubbing fiber length is distributed.
  • the loving cloth 511 a held was obtained.
  • the distribution of the fiber length is formed in order to form the distribution of the rubbing strength, but the present invention is not limited to this.
  • the distribution of the rubbing strength could be formed by mixing the fibers of the rubbing cloth with cotton and rayon. In this case, we have realized a loving cloth that braids flexible cotton and rigid rayon fibers independently. (Embodiment 20-3)
  • Figure 51 is a conceptual diagram showing the shadow of the rubbing due to the array wiring.
  • the metal wiring source electrode line 520, gate electrode line 521 formed on the array substrate 500 is used. Using the shadow of the rubbing, a region with a weak rubbing intensity was formed locally. On the counter substrate 501 side, a normal rubbing process having a uniform rubbing strength was performed. The rubbing direction on the array substrate 500 was inclined by 20 degrees from the direction in which the source electrode wire 52 0 extended.
  • the gate electrode line 52 1 and the source electrode line 52 0 are higher than the pixel electrode portion, the gate electrode line 5 21 and the source electrode line 5 20 Electrode wire 5 2 1 and source
  • the edge portion 52 of the electrode wire 52 has a weaker rubbing intensity at the edge portion 522, and the pretilt has become higher than the other portions 523 of the pixel region.
  • the rubbing direction was tilted 20 degrees from the direction in which the source electrode wire 52 0 extends. It was enough to form a region with low rubbing intensity.
  • the pre-tilt angle of the counter substrate 501 was set to a neutral value between the above-mentioned two pre-tilts.
  • the liquid crystal molecules in the central part in the cell thickness direction are directed obliquely upward in the region 522 when no voltage is applied.
  • An alignment similar to the spray alignment is formed, and in the region 523, the liquid crystal molecules at the central part in the cell thickness direction are similar to the t-spray alignment in which the liquid crystal molecules face obliquely downward.
  • An orientation was formed.
  • a voltage is applied in the same manner as in the above embodiment, a b-spray orientation is formed in the region 522 and a t-spray orientation is formed in the region 522. It was formed, and a discrimination line was generated at the boundary between these two types of orientation regions. Using this as a nucleus, a bend transition was confirmed.
  • the pixel electrodes in Embodiments 20 to 3 have a vertically long shape.
  • the area of the region with a high pitch is small in each pixel.
  • the area of the region with high pretilt was widened.
  • the area of the region with high pretilt was obtained to the maximum when rubbing diagonally. From this result, it was found that the method of performing rubbing at an angle with respect to the source electrode wire 520 is sufficient for the region where the pellets are different from each other. Thus, the bend transition can be efficiently realized.
  • the disk line will run from the upper left to the lower right of the pixel in the figure, and in this case the source Both the horizontal electric field between the gate electrode line and the pixel electrode and the horizontal electric field between the gate electrode line and the pixel electrode were effective.
  • the horizontal electric field between the source electrode line and the pixel electrode has an effect in the vertical rubbing, and the gate electrode line and the pixel in the horizontal rubbing.
  • the horizontal electric field between the electrodes is effective, and in oblique rubbing, the horizontal electric field between the source and the pixel is effective. Therefore, if it is desired to be effective by the transverse electric field, it is necessary to determine the rubbing direction in consideration of the direction of the transverse electric field.
  • Embodiments 20-3 the shadow of the metal electrode wiring is used, but the present invention is not limited to this.
  • a columnar spacer as described in an embodiment 24 described later may be a projection as described in the embodiments 13 and 14.
  • the distribution is given to the film by giving the distribution to the film thickness of the alignment film.
  • printing of an alignment film is performed using a printing plate 530 shown in FIG.
  • a general method for printing an alignment film will be briefly described with reference to FIG. 52.
  • the coating liquid for the alignment film is rotated from the dispenser 531.
  • Doctor roll 5 3 2 It is supplied dropwise between the two ports ⁇ X-roll 533.
  • This coating solution is kneaded between the two rolls 532, 533, and is held as a liquid thin film on the surface of the anilox roll 533. It is transferred from the anirock roll 533 to the printing plate 5330 on the plate cylinder 534.
  • the coating liquid is transferred from the printing plate 5300 to the substrate 536. It is transferred and applied to At this point, the printing plate 530 used in such a coating process of the orientation film generally has a uniform fineness due to a demand for keeping the thickness of the orientation film constant. New mesh is formed.
  • it is required to have a distribution in the thickness of the alignment film, and therefore, as shown in FIG. 53 and FIG. A printing plate 530 with a larger size L was used. As a result, non-uniform printing was produced, and a directionally oriented film having a distribution in film thickness was formed.
  • the orientation film formed in this manner has a low pre-tilt value in a region where the film thickness is small, and tends to develop b-distal orientation in this region. there were .
  • the value of the tilt was high, and there was a tendency that the t-dist orientation was easily developed.
  • a thin region and a thick region of the alignment film are formed relatively randomly, so that the embodiment 20-2 is different from the embodiment 20-2.
  • two regions could be formed, and a bend transition nucleus could be effectively formed.
  • the mesh size L was set to 100 m or more, it was possible to provide the oriented film with a sufficient film thickness distribution.
  • the normal mesh size L is about 50 m.
  • a printing plate having a large mesh size L was used in order to provide the alignment film with a film thickness distribution. It is possible to use a printing plate with a non-uniform size L. Also, make sure that the surface has You can also use a printed version of the printer.
  • the distribution of the tilt angle is provided by the surface treatment of the substrate or the like. Specifically, after the orientation film is uniformly printed on the substrate and cured, the substrate on which the orientation film is formed is placed in a high humidity atmosphere at 45 ° C and 90%. Left inside. At this time, the inherently imparted pretilt angle of the orientation film was locally reduced by the surface treatment with humidity. Next, by performing the rubbing treatment on the surface of the alignment film in the same manner as before, it was possible to realize a distribution of the pretilt angle of 3 to 5 degrees on the substrate.
  • the substrate on which the alignment film was formed was left in a high-humidity atmosphere to have a distribution of the pretilt angle, but the substrate was passed through the solvent spray vapor and the solvent was removed. This can also be achieved by spraying the alignment film.
  • the present embodiment 21 is characterized in that the substrate surface is formed in a concave-convex shape, so that the bend transition is efficiently realized. That is, by forming a concave-convex surface on the substrate and applying a strong electric field locally, the effect of the formation of the t-spray orientation and b-spray orientation regions is improved.
  • the feature is that the bend transfer nuclei are favorably generated due to both the effect of the application of a strong electric field at the projections.
  • Embodiment 21-1 to Embodiment 21-4 will be described in the following Embodiment 21-1 to Embodiment 21-4.
  • Embodiment 13 described above is a method in which a convex portion is formed and a region with a strong electric field is formed on the convex portion, and the region with a strong electric field is used as a nucleus of the transition. It was. Even when this method is used, the t-spray orientation and the b-spray orientation are formed as in the case of Embodiment 20, and are generated at the boundary between these different orientations. Metastasis takes place in the nucleus of the discretion. Hereinafter, the details will be described with reference to FIGS. In FIG.
  • reference numeral 535 denotes a line of electric force
  • 536 denotes a projection
  • 537 denotes a pixel electrode
  • 538 denotes a counter electrode.
  • the electric lines of force 5 35 in the case of Embodiment 13 are as shown in FIG. 55 (a).
  • the electric field at the convex portion 536 is strong, and this electric field further spreads at the counter electrode side 538.
  • a lateral electric field component is generated on both sides of the convex portion 536.
  • the electric field is directed to the upper left, and the liquid crystal molecules are directed to this direction. Therefore, as shown in the figure, b-spray An orientation is formed.
  • the t-spray configuration is formed because the lines of electric force are directed upward and to the right. Therefore, the bend transition occurs at the nucleus of the disk displacement generated at the boundary between the b-spray orientation and the t-spray orientation.
  • 56 is a driving waveform diagram of the liquid crystal display device according to the present embodiment 21-1. This drive waveform is characterized in that a low voltage (0 V) and a high voltage (125 V) are alternately applied during the initialization process to bend transition. It is. By applying the driving voltage having such a voltage waveform, the transition can be surely realized.
  • the voltage application causes two spray orientation states, t-spray orientation and b-spray orientation, and these two orientations occur in most pixel regions. Bend orientation occurs from the boundary of orientation. However, before aligning the bend for any reason, one spray alignment is required. If the pixel is in the orientation state, the transition is unlikely to occur, and no transition occurs in this pixel.
  • this waveform is that by applying a low voltage, the orientation of the liquid crystal is returned to the initial state once, and by applying a transition waveform again, the next transition is ensured. It is. Therefore, the minimum requirement is that this low voltage be the voltage returning to the spray configuration, preferably 1 V or less in absolute value, and more preferably 0. V is good.
  • FIG. 57 is a diagram conceptually illustrating the formation of the uneven shape
  • FIG. 57 (a) shows a conventional pixel structure.
  • each pixel has a metal wiring 540 ( Gate electrode wire or source electrode wire).
  • a metal wiring 540 Gate electrode wire or source electrode wire.
  • an insulating film 541 made of silicon nitride or the like is formed.
  • the insulating film 51 is not generally formed on the pixel electrode 542.
  • FIG. 57 (b) is a cross-sectional view showing the present embodiment 21-2, in which an island-shaped photo resist is formed on the pixel electrode 542 at the center of the pixel electrode 542.
  • Convex portions 543 made of resin are formed.
  • the convex portions 543 are to leave the photoresist resin film applied on the pixel electrodes 542 partially by the photolithography. It was formed by The height of the convex portion 543 was l ⁇ m, and the width was 20 m. At this time, the width of the pixel was 50 m.
  • b- ⁇ and t ⁇ - ⁇ areas are formed on both the left and right sides of the convex portion (or concave portion). Good bend transition was realized.
  • the convex portion 543 is formed above the pixel electrode 542 in FIG. 572 (b), but is formed below the pixel electrode 542. You may do it. Further, as another modified example of the convex portion 543, it may be a longitudinally formed convex portion extending diagonally of the pixel electrode 542.
  • the shape of the convex portion 543 is not limited to the shape shown in FIG. 57 (b), and may be a mountain shape shown in FIG. 57 (c).
  • the convex portion 543 of the mountain shape shown in FIG. 57 (c) is formed by, for example, melting the resin portion partially left by photolithography by heat treatment. Then, it can be made with any shape.
  • the convex portion 543 having the shape shown in FIG. 57 (c) was able to realize good bend transition. Since this is inclined due to the lack of its cross-sectional shape, this inclination angle is added to the liquid crystal pretilt. Therefore, it is considered that the same effect as in the case where the pretilt has a distribution as in Embodiment 20 is obtained. Even with a steep shape as shown in Fig. 57 (b), the orientation of the liquid crystal changes continuously and gently, and the same effect as in Fig. 57 (c) was obtained. I think.
  • the convex portion 5 made of silicon nitride is provided on the array substrate 545. 4 3 has been formed.
  • the projections 543 were obtained by partially leaving the produced silicon film formed on the metal wiring 540 to form the uneven shape. It is a thing. In this method, there is a merit that the production process does not increase. In addition, the step of the convex portion 543 can be realized at about lm.
  • a transparent resin layer 546 is formed on the surface of the array substrate 500, and an ITO electrode is formed on the transparent resin layer 546.
  • Fig. 57 (f) shows the configuration in this case.
  • the transparent resin layer 546 on the metal wiring 540 is raised, the pixel electrode 542 formed on the transparent resin layer 546 is not formed. It has a concave structure. The two paste regions were formed by the inclination of the concave structure. Further, the transparent resin layer 546 may be turned, and an uneven structure may be formed in this layer.
  • Embodiments 21 to 13 concaves and convexes are densely formed on the substrate.
  • an uneven shape is formed on a substrate, thereby forming a b-spray and a pea-spray region.
  • the uneven shape may be scattered in each pixel as in Embodiment Mode 13, may be formed in plural in the pixel, or may be formed densely in the pixel.
  • a process of roughening the surface of the substrate is performed in order to form the substrate densely on the substrate.
  • the surface of the transparent electrode (aluminum layer) of the substrate was treated with a 0.22 atm to make the concave / convex shape a maximum of 0.2 m deep.
  • the depth of the concavities and convexities of the substrate was 0.1 m or more, it was effective in improving the transition.
  • the present invention is not limited to this method, and it is preferable that a concave-convex shape can be formed.
  • a concave-convex shape can be formed.
  • the crystal grain boundary of ITO is 5 O nm, and a sufficient unevenness is obtained as compared with the case where the crystal grain boundary of normal ITO is 10 nm or less. Is understood.
  • the concave-convex pattern may be formed by using a printing plate having a gradation by halftone dots, or by press-forming the substrate. You can do it O
  • Another simple method is to disperse small particles with a size less than the cell thickness in or on a normal alignment film to form an uneven structure on the substrate surface. You may.
  • FIG. 58 is a cross-sectional view of a principal part of the liquid crystal display device according to Embodiment 22.
  • FIG. 59 is a plan view of the vicinity of the pixel electrode of the liquid crystal display device according to Embodiment 22.
  • This embodiment is characterized in that at least one of the pixel electrode and the counter electrode is provided with an electrode missing portion as in the case of Embodiment 11 described above. .
  • the present embodiment is characterized in that the direction of forming the electrode missing portion is determined in consideration of the rubbing direction.
  • 550 indicates a pixel electrode
  • 551 indicates a counter electrode
  • 552 indicates an array substrate
  • 553 indicates a counter electrode.
  • the substrate is shown, 55 4 indicates an electrode missing portion, 55 5 indicates electric lines of force, and 55 6 indicates liquid crystal molecules.
  • the operation and effect of the electrode missing portion 55 2 in the present embodiment 22 are the same as those in the above-described embodiment 11; however, they will be described again here.
  • To The distribution of electric lines of force at the location with the electrode missing part 5 5 4 is as shown in Fig. 58 (a), and the liquid crystal array at this time is t-as shown in Fig. 58 (b).
  • a spray orientation and a b-spray orientation t are formed, and a bend transition occurs from the discrimination line at the boundary. Therefore, by forming the electrode missing portion 554 in each pixel, the bend transition can be facilitated.
  • the missing portion 554 may be formed not only in the pixel electrode but also in the counter electrode, or may be formed in both the pixel electrode and the counter electrode.
  • the state of formation of the transverse electric field can be similarly obtained.
  • the relationship between the forming direction of the electrode missing portion 5554 and the rubbing direction will be considered.
  • the direction in which the electrode missing portions 5 5 4 are formed matches the direction in which the desk line lines are generated. Therefore, it is necessary to form a notch at the location of the discretion line that occurs when there is no notch. Was important.
  • the direction of the discretion line generated by the rubbing direction may be different.
  • the discretion line When rubbing upwards and downwards, the discretion line is formed in the left and right direction, so the missing portion 554 is formed in the left and right direction of the pixel. This is what you want. In the left-right rubbing, the discretion line is formed upward and downward, so it is desirable to form the missing portion 554 in the vertical direction of the pixel. It is better. In the case of rubbing in an oblique direction, it was desired that the missing portion 554 be formed in an oblique direction of the pixel.
  • the number of missing portions is one, but a plurality of missing portions may be formed.
  • the missing part is made by opening a rectangular slit as shown in Fig. 59 (a).
  • a notch may be formed around the pixel as shown in Fig. 59 (b).
  • reference numeral 558 denotes a gate electrode line
  • reference numeral 559 denotes a source electrode line.
  • the pixel electrode 560 is sandwiched between metal electrode wires 561 (source electrode wire or gate electrode wire). .
  • metal electrode wires 561 source electrode wire or gate electrode wire.
  • a horizontal electric field is generated as shown by an arrow 562. Due to this effect, anisotropy occurs in the orientation of the liquid crystal 5'63, and b-spray orientation and t-spray orientation occur as shown in FIG.
  • the characteristic is that this lateral electric field is applied from both sides of the pixel electrode 560, and since the direction is reversed, an asymmetric spray orientation is generated. . It is desirable that the direction of the rubbing and the direction of the transverse electric field are substantially the same from the viewpoint of promoting the transfer. In addition, it is desirable that the distance between the pixel electrode and the metal electrode wire 561 (source electrode wire or gate electrode wire) be 5 m or less. If it is larger than 5 ⁇ m, a transverse electric field large enough to affect the orientation of the liquid crystal is not generated.
  • the rubbing direction is set to be upward and downward (the left-right direction in FIG. 60), and the horizontal electric field is applied between the gate electrode line and one pixel electrode. did .
  • Figure 61 shows a conceptual diagram of the driving waveform.
  • the potential level includes a high gate level (GH) and a low gate level (G L), a high source level (SH) and a low source level (SL).
  • the gate level can be selected from two types from the above-mentioned levels, and the source level can be a potential between the SH level and the SL level.
  • There is another counter potential for applying the transition waveform A voltage lower than the source level is applied to the opposing electrode, thereby applying a transition waveform between the pixel electrode and the opposing electrode. This transition waveform is the same as that described in Embodiments 1 to 6.
  • the voltage of the source electrode line is set to a low level (SL), and the voltage of the gate electrode line is set to a high level G H. Since the gate electrode line is at the level GH, the pixel transistor becomes conductive. As a result, the pixel electrode has the same potential as the source electrode line. At this time, since the voltage of the gate electrode line is higher than that of the pixel electrode, a lateral electric field corresponding to the voltage V1 is applied between the pixel electrode and the gate electrode line. The direction of the electric field between the gate electrode line above the pixel (the right metal electrode line in FIG. 60) and the lower gate electrode line (the right metal electrode line in FIG. 60) is mutually different.
  • a horizontal electric field is generated in the opposite direction, so that in the present embodiment, the b-spray direction is in the upper part (the right part in FIG. 60) and the t-spray is in the lower part. Ray orientation was formed. As a result, the bend transfer was successfully performed.
  • FIG. 62 In the case of a structure having an auxiliary electrode layer, the structure shown in FIG. 62 or FIG. 63 is better to improve the effect of the lateral electric field.
  • an auxiliary electrode layer 571 is provided on the gate electrode line 570, and this auxiliary electrode layer 571 forms an auxiliary capacitance.
  • the auxiliary electrode layer 571 since the auxiliary electrode layer 571 has an effect of shielding the gate electric field, a horizontal electric field is effectively generated between the gate electrode line 570 and the pixel electrode 580.
  • the size of the conventional example in which the auxiliary electrode layer 571 is shown by a virtual line is Therefore, the effect of the transverse electric field was higher when the size was reduced as shown by the broken line, or when it was formed in the center of the pixel as shown in Fig. 63. .
  • FIG. 23-2 a horizontal electric field is applied between one pixel of the gate similarly to the above-mentioned Embodiment 23-1, but realized by lowering the gate level.
  • Figure 64 shows a conceptual diagram of the drive waveform.
  • the potential level is basically the same as that of the embodiment 23-1.
  • the gate electrode line is kept. The voltage was set to a high level GH during the pixel charging period, and set to a low level GL during periods other than the pixel charging period (period during which the pixel potential was held).
  • the source electrode line is set to the level SH during a period in which the voltage is applied to the counter electrode and charging is sufficient, but after the charging period, the source electrode line is set to the level SL. And.
  • a lateral electric field corresponding to the voltage V 2 (> V 1) could be applied between the pixel electrode and the gate electrode.
  • the alignment state is opposite to that of Embodiment 23-1, ie, the upper part (see FIG. 60). The t-spray was formed at the lower part (left part in Fig. 60), and the b-spray was formed at the lower part (left part in Fig. 60).
  • Embodiment 23-3 is characterized in that a horizontal electric field is applied between one source and one pixel.
  • Figure 65 shows a conceptual diagram of the drive waveform.
  • the gate electrode wire is connected to the pixel transistor during the charging period of the pixel until the potential of the counter electrode changes and the charging is completed.
  • the high level GH is set, and the gate electrode line is set to the low level GL during the other periods (period during which the pixel potential is held).
  • the gate electrode line was at level GL, the source electrode line and the pixel electrode were not conducting. Therefore, the source electrode line and the pixel electrode can be maintained at different potentials.
  • the source electrode line is set to level SL when the gate electrode line reaches level GL, so that the A lateral electric field corresponding to the voltage V 3 was applied between the source electrode line and the pixel electrode.
  • a lateral electric field was applied between the pixel and the source to form two spray alignment states, and the bend transition was successfully performed.
  • the source electrode line is set to the level SL during the entire period in which the pixel potential is held, but the period in which the pixel potential is held
  • the source electrode line may be set to level SL only during a part of the period.
  • the essence of the present invention is to form two spray orientation states. In order to achieve this, (1) forming a region with different pretilt, (2) forming a concave-convex shape, (3) generating a transverse electric field, One method was exemplified. The present invention is not limited to this.
  • the mechanisms (1) to (3) may be formed in a thin film transistor (TFT) portion.
  • TFT thin film transistor
  • a step may be provided in the TFT section, a mechanism for generating a transverse electric field in the TFT section may be provided, and a drive method suitable for the mechanism may be used.
  • the concave-convex shape is effective even if there is only a step. Even if there is a step-like step, the slope will form a t-spray or b-spray. In the present invention, it is described as a concave-convex shape including a step structure.
  • the twenty-fourth embodiment is characterized in that good bend transition is achieved by forming no spacer in the pixel region.
  • a spherical bead 590 is divided into a pixel area 591, as shown in FIG. The distance between the substrates was maintained by scattering.
  • a non-display area 592 other than the display section is formed to a thickness of 5 m using a photolithography process.
  • a spacer pillar 593 was formed and used in place of the spacer bead. With such a configuration, the metastasis was successfully performed without inhibiting the metastasis of the bend.
  • reference numeral 594 denotes a gate electrode wire
  • reference numeral 595 denotes a source electrode wire.
  • the arrangement of the spacer pillars 593 is not limited to that shown in FIG. 66 (b), but may be formed in a non-display area.
  • a plurality of liquid crystal regions having different alignment states are developed during the initialization period.
  • a screen line can be formed.
  • the transition to the bend orientation can be achieved quickly and reliably.
  • the display quality of the 0 CB display mode with high speed response and wide field of view and high image quality can be improved even if there are no display defects. It is possible to provide a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

A liquid crystal display of OCB made has means for creating liquid crystal regions in two spray alignment states in the liquid crystal layer during the initialization for changing the spray alignment to the bend alignment. The liquid crystal regions are created when a voltage for initialization is applied between the substrates. A disclination line is formed at the boundary between the liquid crystal regions, and transition nuclei are propagated along the disclination line. Thus transition to bend alignment is quickly and reliably effected.

Description

明 細 書 液晶表示装置及びそ の製造方法、 並び に液晶表示装置の駆動方法 技 術 分 野  Description Liquid crystal display device, method of manufacturing the same, and driving method of the liquid crystal display device
本発明は , テ レ ビ ジ ョ ン画像やパー ソ ナル コ ン ピ ュ ー タ ー、 マ ル チ メ デ ィ ァ画像を 表示す る 高速応答で広視野の 0 C B モ ー ド の液晶 表示装置及びそ の製造方法、 並びに液晶表示装置 の駆動方法 に 関す る 。 背 景 技 術  The present invention provides a high-speed, wide-view, 0 CB mode liquid crystal display device for displaying a television image, a personal computer, and a multi-media image. And a method of manufacturing the same, and a method of driving a liquid crystal display device. Background technology
従来、 液晶表示装置 と して、 例 え ばそ の液晶表示モ ー ド と し て 、 誘電率異方性が正の ネ マ テ ィ ッ ク 液晶 を 用 い た ヅ イ ス テ ツ ド ネ マ テ ィ ヅ ク ( T N ) モ ー ド の液晶表示素子が実用化 さ れて い る が、 応答 が遅い、 視野角 が狭い な どの欠点があ る 。 ま た 、 応答が速 く 、 視野 角 が広い強誘電性液晶 ( F L C ) や反強誘電性液晶 な どの表示モ — ド も あ る が、 焼 き付 き 、 耐シ ョ ッ ク性、 特性の 温度依存性な ど に大 き な欠点があ る 。 ま た 、 視角 が極めて広い、 面 内で液晶分子 を横電 界駆動す る 面内ス イ ッ チ ン グ ( I P S ) モ ー ド が あ る が、 応答が遅 く かつ 開 口 率が低 く 輝度が低い。 フ ル カ ラ 一動画 を 大画面で表示 し よ う と す る と 、 広視野、 高輝度、 高速の表示性能 を持つ液晶モ ー ド が必要で あ る が、 こ れ を 同時に完璧に満足 す る 実用 的 な液晶表示モ ー ド は現在の と こ ろ 、 存在 し な い。  Conventionally, as a liquid crystal display device, for example, a nematic liquid crystal having a positive dielectric anisotropy is used as a liquid crystal display mode. Although a liquid crystal display device in the Dick (TN) mode has been put to practical use, it has disadvantages such as a slow response and a narrow viewing angle. In addition, there are display modes such as ferroelectric liquid crystal (FLC) and antiferroelectric liquid crystal, which have a quick response and a wide viewing angle, but they are subject to burn-in, shock resistance, and characteristics. There are major drawbacks such as temperature dependence. In addition, there is an in-plane switching (IPS) mode in which the viewing angle is extremely wide and the liquid crystal molecules are driven in a horizontal electric field in the plane, but the response is slow and the opening ratio is low. Brightness is low. To display a full-color movie on a large screen, a liquid crystal mode with a wide field of view, high brightness, and high-speed display performance is required. There is no practical liquid crystal display mode at present.
従来、少な く と も 広視野で 高輝度を め ざ し た液晶表示装置 と して、 上記の T Nモ ー ド 液晶領域を配 向 2 分割 に し て 視野角 を上下 に拡大 し た も の があ る( S I D 9 2 D I G E S T P 7 9 8 〜 8 0 1 )。 即 ち 、 液晶表示装置の各表示画素 内 に誘電率異方性が正 の ネ マ チ ッ ク 液晶 を 用 い、 T Nモ ー ド で かつ液晶分子の配向 方位が異な る 2 つ の液晶領域を形成 し、 すな わ ち 配向 2 分割 T Nモ ー ド に よ っ て視野 角 を拡大 す る も の で あ る 。 Conventionally, as a liquid crystal display device aiming at high brightness with at least a wide field of view, the above TN mode liquid crystal area is divided into two parts and the viewing angle is expanded vertically. Yes (SID92 DIGESTP 798-801). That is, a nematic liquid crystal having a positive dielectric anisotropy is used in each display pixel of the liquid crystal display device, and two liquid crystal regions in the TN mode and having different orientations of liquid crystal molecules are used. In other words, the viewing angle is expanded by the formation of the TN mode in which the orientation is divided into two.
図 6 8 に そ の従来の液晶表示装置の構成概念図 を 示 す。 図 6 8 に お い て 、 7 0 1 , 7 0 2 は ガ ラ ス基板で あ り 、 7 0 3 , 7 0 4 は電 極で あ り 、 7 0 5 , 7 0 5 ' , 7 0 6 , 7 0 6 , は配向膜で あ る 。 一 方 の配向領域 Aに おい て 対向 す る 上下基板界面か ら 若干傾い た誘電 率異方性が正 の ネ マ チ ッ ク の液晶分子 7 0 7, 7 0 7 ' の大 , 小 の プ レ チ ル ト 角 を形成 し、 他方 の配向領域 B におい て は対 向 す る 上下基 板界面 に対 し て プ レ チル ト 角 の大 き さ を前記配向領域 A と は逆の 設 定 に す る 。 そ の大小 の プ レ チル ト 角 は い ずれ も 数度で差がつ く よ う に設定 し て い る 。 上記互 い に上下基板 に プ レ チル ト 角 が異 な る 配向 領域 を形成す る 従来の作製法の例 と して 、 配向膜 に フ ォ ト レ ジ ス ト を塗布 し、 フ ォ ト リ ソ グ ラ フ 技術でマ ス キ ン グを し所定 の 方 向 に所 望の配向膜面 を ラ ビ ン グ を す る 作業を繰 り 返すな どの 方法があ る 。 こ の よ う な 方法 に よ り 、 図 6 8 の如 く 、 配向領域 A, B で液晶層 中 央部の液晶分子群の 向 き が互い に逆向 き と な り 、 電圧印加 と と も に 各配 向領域の液晶分子が逆 に 立 ち 上が つ て い く た め に、 画素単位で 入射光線 に対 して屈折率異方性が平均化 さ れて視野角 の拡大が図 れ る こ と に な る 。 上記の従来の配向 2 分割 T Nモ ー ド で は、 通常 の T Nモ ー ド よ り 視野角 は拡大 さ れ、 上下視野角 は コ ン ト ラ ス ト 1 0 で ± 3 5 度程度 と な る 。  Fig. 68 shows a conceptual diagram of the configuration of the conventional liquid crystal display device. In FIG. 68, 701, 702 are glass substrates, 703, 704 are electrodes, 705, 705 ', 706 , 706, are alignment films. The large and small size of the nematic liquid crystal molecules 707 and 707 'with a positive dielectric anisotropy slightly inclined from the upper and lower substrate interfaces opposite to each other in the alignment region A. A re-tilt angle is formed, and in the other orientation region B, the magnitude of the pre-tilt angle is set opposite to the orientation region A with respect to the upper and lower substrate interfaces facing each other. You Each of the large and small pre-tilt angles is set to make a difference by several degrees. As an example of a conventional manufacturing method for forming alignment regions having different pretilt angles on the upper and lower substrates as described above, a photoresist is applied to an alignment film, and a photo resist is applied. There are methods such as repeating the operation of masking with the so-graph technology and rubbing the desired alignment film surface in a predetermined direction. According to this method, as shown in Fig. 68, the orientations of the liquid crystal molecules in the central part of the liquid crystal layer in the alignment regions A and B are opposite to each other, and both the voltage and the voltage are applied. Since the liquid crystal molecules in each orientation region rise up conversely, the refractive index anisotropy is averaged with respect to the incident light for each pixel, and the viewing angle can be expanded. This will be. In the conventional orientation two-split TN mode described above, the viewing angle is larger than in the normal TN mode, and the vertical viewing angle is about ± 35 degrees at contrast 10 .
し か し、 応答速度は T Nモ ー ド と 本質的 に 変化 な く 約 5 0 m S 程 度で あ る 。こ の よ う に上記従来の配向 2 分割 T Nモ ー ド で は視野角 , 応答 と も 不十分で あ る 。 ま た、 配向膜界面で液晶分子を ほぼ垂直 に配向 さ せ る い わ ゆ る ホ メ ォ ト ロ ピ ヅ ク 配向モ ー ド を利用 した液晶表示モ ー ド で、 フ イ ノレ ム 位相差板 , 配 向分割技術 を付加 して広視野 , 高速応答の液晶表示装 置があ る が、 そ れで も 白 黒の 2 値間応答速度は約 2 5 m s かか り 、 特に グ レ ー階調間 の応答速度 は 5 0 ~ 8 O m s で遅 く 、 人間 の 目 の 視認速度 と 言 わ れ る 約. 1 ノ 3 0 s よ り 長 く 、動画像は流れて 見え る 。 However, the response speed is about 50 ms, essentially unchanged from the TN mode. As described above, the viewing angle and the response are not sufficient in the above-mentioned conventional two-split TN mode. In addition, in a liquid crystal display mode using a so-called homeotropic alignment mode in which liquid crystal molecules are aligned almost vertically at the interface of the alignment film, a phase difference plate is used. There is a liquid crystal display device with a wide field of view and high-speed response by adding the orientation division technology. However, the response speed between the black and white binary values is about 25 ms. The response speed of the key interval is 50 to 8 Oms, which is slower than that of the human eye, which is called the visual perception speed of about 0.1 to 30 s. The moving image appears to flow.
こ れ ら に対 し て、 基板間の液晶分子がベ ン ド 配向 し た状態 に お け る 各液晶分子 の立 ち 上 が り 角 の変化 に よ る 屈折率変化 を利用 す る べ ン ド 配 向型の液晶表示装置 ( O C B モ ー ド の液晶表示装置) が提案 さ れて い る 。 ベ ン ド 配 向 し た各液晶分子の オ ン状態 と オ フ 状態で の 配列変化速度 は、 T N型液晶表示装置の オ ン , オ フ 状態 と の 間 の配 列変化速度 に 比べ て は る か に 高速で あ り 、 応答速度が速い液晶表示 装置 と す る こ と がで き る 。 さ ら に、 上記ベ ン ド 配向型 の液晶表示装 置は全体に液 晶分子が上下基板間でベ ン ド 配向 し て い る た め、 光学 位相差的 に 自 己補償で き 、 かつ フ ィ ル ム位相差板で位相差補償 を す る た め低電圧で広視野の液晶表示装置 と な る 可能性 を 持つ 。  In contrast, a bend that uses the refractive index change due to the change in the rising angle of each liquid crystal molecule in a state where the liquid crystal molecules between the substrates are aligned in a bend orientation. Directional liquid crystal display devices (OCB mode liquid crystal display devices) have been proposed. The alignment change speed between the on-state and off-state of each bend-oriented liquid crystal molecule is compared to the alignment change speed between the on-state and the off-state of the TN-type liquid crystal display device. Thus, a liquid crystal display device having a very high speed and a high response speed can be obtained. In addition, since the liquid crystal molecules of the above-described bend alignment type liquid crystal display are entirely aligned between the upper and lower substrates, self-compensation can be performed in an optical phase difference manner. Since the retardation is compensated by a film retarder, it has the potential to be a low-voltage, wide-field liquid crystal display.
と こ ろ で、 上記液晶表示装置は通常無電圧下で液晶分子 を基板間 で ス プ レ イ 配 向状態 に して 作製す る 。 ベ ン ド 配向 を利用 して屈折率 を 変化 さ せ る た め に は、 液晶表示装置の使用 開始前 に、 表示部全体 を上記ス プ レ イ 配向状態か ら ベ ン ド 配向状態に均一 に転移 さ せ て お く 必要が あ る 。 対向 す る 表示電極間 に電圧 を 印加 す る と 、 ス プ レ イ 配向 か ら ベ ン ド 配向へ の転移核 が発生す る 場所 は一様で な く 、 分散 さ れた ス ぺー サ周囲や、 あ る い は配向膜界面の配向 ム ラ , キズ部 な どで あ る 。 ま た、 常 に 一定の上記場所か ら そ の転移核が発生す る 訳 で も な い の で 転移が起 き た り 、 起 き な か っ た り で表示欠陥 を生 じ易 い 。 従っ て 、 使用 開始前 に、 表示部全体を 少な く と も 全画素部全体 を均一 に ス プ レ イ 配向 か ら ベ ン ド 配向へ転移 を さ せて お く の は極め て 重要で あ る 。 At this point, the above-mentioned liquid crystal display device is usually manufactured by applying liquid crystal molecules in a spray orientation state between substrates under no voltage. In order to change the refractive index using the bend alignment, the entire display section must be uniformly changed from the above-mentioned spray alignment state to the bend alignment state before the use of the liquid crystal display device. It needs to be transferred. When a voltage is applied between the opposing display electrodes, the transition nuclei from the spray orientation to the bend orientation are not uniform, but are distributed around the dispersed spacers. Or, there are alignment unevenness and flaws at the alignment film interface. In addition, since the transition nucleus does not always occur from the above-mentioned fixed place, the transition occurs or the transition nucleus does not occur, so that a display defect easily occurs. Therefore, before starting to use, at least the entire display area It is extremely important to make the transition from the spray orientation to the bend orientation uniform.
し か し、 従来、 単純な交流電圧を 印加 して も 、 転移が起 き な か つ た り 、 起 き て も極め て 転移時間が長 く かか っ た 。 発 明 の 開 示  However, in the past, even when a simple AC voltage was applied, the transition did not occur, or even when it occurred, the transition time was extremely long. Disclosure of the invention
本発明 の 目 的は、 ベ ン ド 配向転移がほぼ確実 に 発生 し、 かつ極め て短時間 に転移が完 了 す る こ と に よ り 表示欠陥が無い、 応答速度 が 速 く 動画像表示 に適 し かつ広視野のベ ン ド 配向型 の液晶表示装置及 びそ の製造方法、 並び に液晶表示装置の駆動方法 を提案す る も の で あ る 。  It is an object of the present invention to provide a moving image display with no display defects due to the almost complete occurrence of the bend alignment transition and the completion of the transition in an extremely short time. The present invention proposes an appropriate and wide-field, bend-aligned liquid crystal display device, a method of manufacturing the same, and a method of driving the liquid crystal display device.
上記課題を解決す る た め、 本発明は、 配向転移 の た めの初期化期 間 中 に おいて 、 配向状態が異な る 複数の液晶領域、 (特 に上下一対の 基板間 中央部で の液晶分子の傾斜角度が正負逆 と な る 配向状態の 2 つ の液晶領域) を 発現 さ せ得 る こ と を 特徴 と す る も の で あ る 。 こ れ に よ り 、 そ の液晶領域の境界部でデ ィ ス ク リ ネ ー シ ョ ン線 を形成 す る こ と がで き 、 迅速旦っ確実 に ベ ン ド 配向への 転移が達成で き る こ と に な る 。  In order to solve the above-mentioned problems, the present invention provides a liquid crystal display device having a plurality of liquid crystal regions having different alignment states during an initialization period for alignment transition (especially at a central portion between a pair of upper and lower substrates). It is characterized in that two liquid crystal regions in which the tilt angle of liquid crystal molecules is opposite to the positive / negative state) can be expressed. As a result, a discrimination line can be formed at the boundary of the liquid crystal region, and the transition to the bend alignment can be achieved quickly and reliably. This is what you can do.
以下 に、 本発明の具体的 な構成を述べ る 。  Hereinafter, a specific configuration of the present invention will be described.
請求項 1 記載の発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間へ の電圧 印 加 に よ り 前記液晶層の初期配向 を ベ ン ド 配向 に 転移 さ せ る 初期化処 理を 行な い、 こ の初期化 さ れた ペ ン ド 配向状態で液晶表示駆動を 行 う 液晶表示装置 に お い て、 前記ベ ン ド 配向状態 に 転移 さ せ る 初期化 処理過程 中 に、 配向状態が異 な る 複数の液晶領域 を 液晶層 内 に 発現 さ せ る 手段 を備え た こ と を 特徴 と す る 。 上記の 如 く 、 配向状態が異な る 複数の液晶領域が発現さ れる と 、 そ の液晶領域の境界部で デ ィ ス ク リ ネ ー シ ョ ン線 を形成す る こ と が で き 、 迅速且つ確実 に ベ ン ド 配向への転移が達成で き る 。 な お、 初 期状態は、 ス プ レ イ 配向 に限 ら ず、 ス プ レ イ 配 向領域の一部領域 に 例 え ば垂直配 向が発現 さ れて い て も よ い 。 The invention according to claim 1 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display. The liquid crystal display device performs an initialization process for transferring the initial alignment of the liquid crystal display to the bend alignment, and drives the liquid crystal display in the initialized pen alignment state. It is characterized in that it is provided with a means for causing a plurality of liquid crystal regions having different alignment states to appear in the liquid crystal layer during the initialization process for transitioning to the bend alignment state. As described above, when a plurality of liquid crystal regions having different alignment states are developed, a discrimination line can be formed at the boundary between the liquid crystal regions, and the liquid crystal region can be formed quickly. In addition, the transition to the bend orientation can be reliably achieved. Note that the initial state is not limited to the spray orientation, and for example, a vertical orientation may be expressed in a part of the spray orientation region.
ま た、 配向状態が異 な る 複数の液晶領域は、 初期配向状態 にお い て は発現 さ れて い な い が、 初期化処理過程 中 に 発現す る 場合で あ つ て も よ く 、 初期配向状態 におい て既に配向状態が異な る 複数の液晶 領域が発現さ れて お り 、 初期化処理過程中 にお いて も 発現 さ れて い る 場合で あ っ て も よ い 。 要は、 初期化処理過程 中 に おい て 、 配向状 態が異な る 複数の液晶領域が発現 さ れて いれば よ い 。  In addition, a plurality of liquid crystal regions having different alignment states are not expressed in the initial alignment state, but may be generated during the initialization process. A plurality of liquid crystal regions having different alignment states have already been expressed in the initial alignment state, and may be expressed even during the initialization process. In short, it is only necessary that a plurality of liquid crystal regions having different alignment states are developed during the initialization process.
請求項 2 記載の 発明は、 上下一対の基板 と 、 基板間 に 挟持 さ れ る 液晶層 と を含み、 電圧無印加時 に は前記液晶層 はス プ レ イ 配向 と な つ て お り 、 液晶表示駆動に先立 っ て、 前記基板間への 電圧 印加 に よ り 前記液晶層 の配 向状態 を ス プ レ イ 配向 か ら ベ ン ド 配 向 に 転移 さ せ る 初期化処理 を行な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表 示駆動 を 行 う 液晶表示装置 に お いて 、 前記ベ ン ド 配 向状態 に転移 さ せ る 初期化処理過程中 に、 2 種類の ス プ レ イ 配向状態 を 有 す る 液晶 領域 を液晶層 内 に 発現 さ せ る 手段を備 え た こ と を 特徴 と す る 。  The invention according to claim 2 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, wherein when no voltage is applied, the liquid crystal layer has a spray orientation. Prior to display driving, an initialization process is performed to transfer the orientation state of the liquid crystal layer from the spray orientation to the bend orientation by applying a voltage between the substrates. In a liquid crystal display device that drives a liquid crystal display in this initialized bend alignment state, during the initialization process of transitioning to the bend alignment state, two types of operations are performed. It is characterized in that it is provided with a means for expressing a liquid crystal region having a spray alignment state in the liquid crystal layer.
上記の 如 く 、 2 種類の ス プ レ イ 配向状態 を有 す る 液晶領域が発現 さ れ る と 、 そ の液晶領域の境界部でデ ィ ス ク リ ネ ー シ ョ ン線を形成 す る こ と がで き 、迅速且つ確実 にベ ン ド 配向への転移が達成で き る 。 請求項 3 記載の 発明は、 上下一対の基板 と 、 基板間 に挟持さ れ る 液晶層 と を含み、 電圧無印加時 に は前記液晶層 は ス プ レ イ 配向 と な つ て お り 、 液 晶表示駆動に先立 っ て、 前記基板間へ の 電圧印加 に よ り 前記液晶層 の配 向状態を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行な い、 こ の初期化 さ れた ベ ン ド 配 向状態で液晶表 示駆動 を 行 う 液晶表示装置 にお い て、 電圧 を 印加 し な い状態 にお い て、 上下一対の基板間 中央部で の液晶分子の傾斜角 度が正負逆 と な る 配向状態の 2 つ の液晶領域が少 な く と も 形成 さ れて い る こ と を 特 徴 と す る 。 As described above, when a liquid crystal region having two types of spray alignment is developed, a discrimination line is formed at the boundary between the liquid crystal regions. As a result, the transition to the bend orientation can be achieved quickly and reliably. The invention according to claim 3 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, wherein when no voltage is applied, the liquid crystal layer has a spray orientation. Prior to the crystal display driving, the orientation of the liquid crystal layer is changed from the spray orientation to the bend orientation by applying a voltage between the substrates. In the liquid crystal display device that performs the liquid crystal display drive in this initialized orientation of the bend, the voltage is not applied. It is characterized in that at least two liquid crystal regions in an alignment state in which the tilt angles of liquid crystal molecules at the center between a pair of upper and lower substrates are opposite to each other are formed.
こ の よ う な配向状態で あ る と 、 t ー ス プ レ イ 配向 と b — ス プ レ イ 配向 が発現 し や す く な る 。  In such an orientation state, the t-spray orientation and the b-spray orientation are likely to be developed.
請求項 4 記載の発明は、 上下一対の基板 と、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間への電圧 印 加 に よ り 前記液晶層 の配向状態 を ベ ン ド 配向 に 転移 さ せ る 初期化処 理 を 行 な い、 こ の初期化 さ れ た ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 にお い て 、 前記ベ ン ド 配向状態 に転移 さ せ る 初期化 処理過程中 に 、 前記液晶層 に デ ィ ス ク リ ネ ー シ ヨ ン線を形成 さ せ る デ ィ ス ク リ ネ ー シ ヨ ン線形成手段を備 え、 前記デ ィ ス ク リ ネ ー シ ョ ン線か ら ベ ン ド の転移核が発生 な い し拡大す る よ う に し た こ と を 特 徴 と す る 。  The invention according to claim 4 includes a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. The liquid crystal display device, which performs an initialization process for transferring the alignment state of the liquid crystal molecules to the bend alignment state and drives the liquid crystal display in the initialized bend alignment state. A discretion line forming means for forming a discretion line in the liquid crystal layer during an initialization process for transitioning to a bend alignment state; The invention is characterized in that a bend transition nucleus is not generated or expanded from the above-mentioned discrimination line.
上記の如 く 、 デ ィ ス ク リ ネ ー シ ヨ ン線形成手段に よ り 、 デ ィ ス ク リ ネ ー シ ョ ン 線が形成 さ れ る と 、 迅速且つ確実に ベ ン ド 配 向 への 転 移が達成で き る 。  As described above, when the discrimination line is formed by the discrimination line forming means, it is possible to quickly and surely shift to the bend orientation. Transfer can be achieved.
請求項 5 記載の 発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に 先立 っ て 、 前記基板間への電圧 印 加 に よ り 前記液晶層 の配 向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処 理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に お い て 、 前記ス プ レ イ 配 向状態の液晶層 に ベ ン ド 配向状態 に転移す る 電圧 よ り 低い電圧 を 印力!] し た場合、 液晶層 内 に b — ス プ レ イ 配 向領域 と t — ス プ レ イ 配向領域 と が発現 さ れ る こ と を特徴 と す る 。 The invention according to claim 5 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. In the liquid crystal display device that performs an initialization process to transfer the orientation state of the liquid crystal display to the bend orientation, and drives the liquid crystal display in the initialized bend orientation state, A voltage lower than the voltage at which the liquid crystal layer in the spray orientation state transitions to the bend orientation state is impressed! In this case, a b-spray alignment region and a t-spray alignment region are developed in the liquid crystal layer. It is characterized by
上記の 如 く 、 転移電圧 よ り 低い電圧印加 に よ り b — ス プ レ イ 配向 領域 と t ー ス プ レ イ 配向領域 と が発現 さ れる 場合に は、 転移電圧以 上の電圧 を 印加 すれば、 必ず b — ス プ レ イ 配向領域 と t ー ス プ レ イ 配向領域 と が発現 さ れ る 。 よ っ て 、 こ の よ う な構成の液晶表示装置 に おいて 、 転移電圧以上の電圧印加 に よ り 、 迅速且つ確実 に ベ ン ド 配向への 転移 を達成す る こ と が可能で あ る 。 なお、 転移電圧以上の 電圧 を 印加す る 場合に は、 転移 に要す る 時間が極め て短 く 、 b — ス プ レ イ 配向領域 と t — ス プ レ イ 配向領域の発現を観察す る こ と が困 難で あ る 。 一方、 本発明の よ う に、 転移電圧 よ り 低い電圧 を 印加 し た場合に 、 b — ス プ レ イ 配向領域及び t ー ス プ レ イ 配向領域が発現 さ れ る 場合 に は、 ベ ン ド に転移は し な い が、 配向状態 を観察す る こ と がで き る メ リ ッ ト があ る 。  As described above, if a b-spray alignment region and a t-spray alignment region are developed by applying a voltage lower than the transition voltage, a voltage higher than the transition voltage may be applied. If this is the case, a b-spray orientation region and a t-spray orientation region are always exhibited. Therefore, in the liquid crystal display device having such a configuration, it is possible to quickly and surely achieve the transition to the bend alignment by applying a voltage higher than the transition voltage. . When a voltage higher than the transition voltage is applied, the time required for the transition is extremely short, and the b-spray orientation region and the t-spray orientation region are observed. This is difficult. On the other hand, when a voltage lower than the transition voltage is applied as in the present invention, the b-spray alignment region and the t-spray alignment region are developed, and There is a merit that the orientation state can be observed although the transition does not occur in the metal.
請求項 6 記載の発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間へ の電圧印 加 に よ り 前記液晶層の配向状態を ベ ン ド 配向 に転移 さ せ る 初期化処 理を 行な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に おい て 、 前記ス プ レ イ 配向状態の液晶層 に ベ ン ド 配向状態 に転移 す る 電圧 よ り 低い電圧 を 印加 し た場合、 少 な く と も 2 種の配 向領域が発現 し、 配向 方 向 に対 し て異な る 方位か ら 観察 し た場合、 前記配 向領域の透過率の大小関係 が異な る 方位が存在 す る こ と を 特徴 と す る 。  The invention according to claim 6 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display. In the liquid crystal display device which performs an initialization process for transferring the orientation state of the liquid crystal molecules to the bend orientation, and drives the liquid crystal display in the initialized bend orientation state, When a voltage lower than the voltage at which the liquid crystal layer transitions to the bend alignment state is applied to the liquid crystal layer in the play alignment state, at least two types of alignment regions are developed, and the alignment direction is reduced. When observed from different directions, there is a characteristic in which there is a direction in which the magnitude relationship of the transmittance in the orientation region is different.
上記の 如 く 、 転移電圧 よ り 低い電圧 を 印加 し た場合にお い て 、 少 な く と も 2 種 の配向領域が発現 さ れれば、 転移電圧以上の 電圧印加 に よ り 、 t ー ス プ レ イ 配 向領域 と b — ス プ レ イ 配向領域が発現 しや す く な る 。 そ の結果、 ベ ン ド 配 向への転移 が容易 と な る 。 なお、 配 向領域の透過率 の大小関係 が異 な る 方位が存在す る こ と に よ り 、 配 向領域の異な る 領域が存在す る こ と を観察 に よ り 確認で き る と い う メ リ ッ ト があ る 。 As described above, when a voltage lower than the transition voltage is applied, and at least two types of orientation regions are developed, the voltage applied to the transition voltage or higher can cause a loss of t-source. The play orientation region and the b-spray orientation region are more likely to be developed. As a result, the transition to the bend orientation becomes easy. In addition, It can be confirmed by observation that the presence of the azimuth where the magnitude relationship of the transmissivity of the directional areas is different and the existence of the area where the directional areas are different exist. There is a kit.
請求項 7 記載の 発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動に先立 っ て、 前記基板間への電圧 印 加 に よ り 前記液晶層 の配向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処 理を 行 な い、 こ の初期化 さ れたベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に おい て、 前記ス プ レ イ 配向状態の液晶層 に ベ ン ド 配向状態 に転移す る 電圧 よ り 低い電圧 を 印加 し た場合、 少な く と も 2 種の 配向領域が発現 し、 前記配向領域の透過率の 大小関係 が、 配 向方 向 か ら 観察 し た場合 と 配向方 向 か ら 1 8 0 度な す方 向 か ら 観察 し た場合で反対で あ る こ と を特徴 と す る 。  The invention according to claim 7, comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. In the liquid crystal display device which performs an initialization process for transferring the orientation state of the liquid crystal molecules to the bend orientation and drives the liquid crystal display in the initialized bend orientation state, When a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the play alignment state, at least two types of alignment regions are developed, and the transmittance of the alignment region is large or small. The characteristic is that the relationship is opposite when observed from the orientation direction and when observed from a direction 180 degrees from the orientation direction.
上記構成に よ り 、 配向状態の異な る 2 種類 の領域、 例 え ば b — ス プ レ イ 配向領域及び t ー ス プ レ イ 配向領域が発現さ れて い る こ と を 確認す る こ と がで き る 。  According to the above configuration, it is confirmed that two types of regions having different alignment states, for example, b-spray alignment region and t-spray alignment region are expressed. And can be done.
請求項 8 記載の 発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動に先立 っ て 、 前記基板間への電圧 印 加 に よ り 前記液晶層 の配向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処 理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配 向状態で液晶表示駆動 を 行 う 液晶表示装置 に おい て 、 電圧未印加時に お いて 、 前記液晶層 に は、 前記一対の基板の う ち 一方の基板付近の液晶分子の長軸 と 基板法線 と の な す角度 を 第 1 の角度 と し、 他方 の基板付近の液晶分子の長軸 と基板法線 と の な す角度 を第 2 の角度 と し た場合、 前記第 1 の角度 と 前記第 2 の 角 度 と を 絶対値で 比較 し た と き に第 1 の角 度が第 2 の 角度 よ り も 大 き い領域 と 、 第 2 の角度 が第 1 の角度 よ り も 大 き い 領 域が と も に形成 さ れて い る こ と を特徴 と す る 。 上記構成 に よ り 、 配向 の異 な る 領域が得 ら れ、 電圧印加 に よ り 異 な る 配向領域の境界部か ら デ ィ ス ク リ ネ 一 シ ヨ ン線が形成 さ れ得 る 請求項 9 記載の発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て、 前記基板間への電圧 印 加 に よ り 前記液晶層 の配向状態 を ベ ン ド配向 に転移 さ せ る 初期化処 理を 行な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動を 行 う 液晶表示装置 に おい て 、 電圧未印加時において 、 前記液晶層 に は、 セ ル厚方向 中央部の液晶分子の傾斜角 が異な る 領域が複数形成 さ れ て い る こ と を特徴 と す る 。 The invention according to claim 8, comprising a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. In the liquid crystal display device, which performs an initialization process to transfer the orientation state of the liquid crystal molecules to the bend orientation, and drives the liquid crystal display in the initialized orientation of the bend, the voltage is increased. When no voltage is applied, the first liquid crystal layer has an angle formed by the long axis of liquid crystal molecules near one of the pair of substrates and the substrate normal, and the other substrate has a near angle. When the angle between the long axis of the liquid crystal molecules of the liquid crystal and the substrate normal is defined as the second angle, the first angle and the second angle are compared with each other in absolute value. Where the second angle is greater than the second angle and the second angle is greater than the first angle. Also said a call that has been formed in the even that the realm has come large. According to the above configuration, regions having different orientations can be obtained, and a discrimination line can be formed from a boundary portion of the different orientation regions by applying a voltage. Item 9 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form a liquid crystal layer on the liquid crystal layer. No voltage is applied to the liquid crystal display device, which performs an initialization process to transfer the alignment state to the bend alignment, and drives the liquid crystal display in the initialized bend alignment state. In some cases, the liquid crystal layer is formed with a plurality of regions having different inclination angles of liquid crystal molecules in a central portion in a cell thickness direction.
セ ル厚方 向 中央部の液晶分子の傾斜角が異 な る 領域が形成 さ れて いれば、 電圧印加時に そ の異な る 領域の境界部か ら デ ィ ス ク リ ネ ー シ ョ ン線が形成 さ れ得 る 。  If a region where the tilt angle of the liquid crystal molecules is different at the center in the cell thickness direction is formed, the discrimination line from the boundary of the different region when voltage is applied Can be formed.
請求項 1 0 記載の発明 は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を 含み、 液晶表示駆動 に先立 っ て 、 前記基板間への電圧 印加 に よ り 前記液晶層 の配 向状態 を ベ ン ド 配向 に転移 さ せ る 初期化 処理 を 行な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 にお い て 、 前記ス プ レ イ 配向状態の液晶層 に ベ ン ド 配向状態 に転移す る 電圧以下 の 電圧 を 印加 し た 場合、 セ ル厚方 向 中央部の液 晶分子の傾斜角 が異 な る 領域が複数形成 さ れ る こ と を 特 徴 と す る 。  The invention according to claim 10 includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. The liquid crystal display device, which performs an initialization process for transferring the orientation state of the liquid crystal display to the bend orientation and drives the liquid crystal display in the initialized bend orientation state, When a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the spray alignment state, there are multiple regions where the tilt angle of the liquid crystal molecules at the center in the cell thickness direction is different. It is characterized by being formed.
上記の 請求項 9 記載の 発 明で は、 電圧未印加時 に お い て 、 既 に液 晶分子の傾斜角 が異 な る 領域が形成 さ れて い た が、 本請求項 1 0 記 載の 発明 の よ う に液晶分子の傾斜角が異な る 領域の形成時期が電圧 未印加時で な く 、 転移電圧以下 の 電圧印加時で あ っ て も 、 転移電圧 以上 の 印加 に よ り ベ ン ド 配向へ の転移が可能 と な る 。  In the invention according to claim 9 described above, when no voltage is applied, a region in which the tilt angles of the liquid crystal molecules are different has already been formed. However, according to claim 10 of the present invention, As in the invention of the present invention, the region where the tilt angle of the liquid crystal molecules is different is not formed when no voltage is applied, but even when a voltage equal to or lower than the transition voltage is applied, the region where the voltage is equal to or higher than the transition voltage is applied. The transition to the do orientation is possible.
請求項 1 1 記載の発明 は 、請求項 1 記載の液晶表示装置 に お い て 、 配向状態が異 な る 複数の液晶領域が各画素 内 に形成 さ れ る こ と を 特 徴 と す る 。 The invention according to claim 11 is a liquid crystal display device according to claim 1, wherein: It is characterized in that a plurality of liquid crystal regions having different alignment states are formed in each pixel.
配向状態が異な る 複数の液晶領域は、各画素内 に形成 し て も よ く 、 ま た、 後述す る 請求項 1 2 記載の発明 の よ う に複数の 画素単位で形 成 し て も よ い。 但 し、 ベ ン ド 配向の転移の確実性及び ¾移時間の短 縮化の た め に は、 各画素 内 に形成す る の が望 ま し い 。 .  A plurality of liquid crystal regions having different alignment states may be formed in each pixel, or may be formed in a plurality of pixel units as in the invention described in claim 12 described later. No. However, in order to ensure the transition of the bend orientation and to shorten the transit time, it is desirable to form them in each pixel. .
請求項 1 2 記載の発明は、請求項 1 記載の液晶表示装置 に お いて 、 配向状態が異な る 複数の液晶領域が複数の 画素単位で形成 さ れ る こ と を 特徴 と す る 。  The invention according to claim 12 is characterized in that, in the liquid crystal display device according to claim 1, a plurality of liquid crystal regions having different alignment states are formed in a plurality of pixel units.
請求項 1 3 記載の発明は、請求項 4 記載の液晶表示装置 に お い て 、 デ ィ ス ク リ ネ 一 シ ョ ン 線形成手段が各画素 内 に形成 さ れ る こ と を 特 徴 と す る 。  The invention according to claim 13 is characterized in that, in the liquid crystal display device according to claim 4, the discrimination line forming means is formed in each pixel. You
デ ィ ス ク リ ネ 一 シ ョ ン線形成手段は、各画素内 に形成 し て も よ く 、 ま た 、 後述す る 請求項 1 4 記載の発明の よ う に複数の画素単位で形 成 して よ い 。 但 し、 ベ ン ド 配向 の転移の確実性及び転移時間 の短縮 化 の た め に は、 各画素 内 に形成す る の が望 ま し い。  The disk line forming means may be formed in each pixel, or may be formed in units of a plurality of pixels as in the invention described in claim 14 described later. You can do it. However, in order to ensure the transition of the bend orientation and to shorten the transition time, it is desirable to form them in each pixel.
請求項 1 4 記載の 発明は、 請求項 4 記載の液晶表示装置お い て 、 デ ィ ス ク リ ネ ー シ ョ ン線形成手段が複数の画素単位で形成 さ れ る こ と を 特徴 と す る 。  The invention according to claim 14 is characterized in that, in the liquid crystal display device according to claim 4, the discrimination line forming means is formed in a plurality of pixel units. .
請求項 1 5 記載の発明は、請求項 1 記載の液晶表示装置 に お い て 、 ベ ン ド 転移 を 生 じ さ せ る 所定波形の転移電圧 を 印加 す る こ と を 特徴 と す る 。  According to a fifteenth aspect of the present invention, in the liquid crystal display device of the first aspect, a transition voltage having a predetermined waveform that causes a bend transition is applied.
請求項 1 6 記載の発明は、請求項 1 記載の液晶表示装置 に おい て、 一対の基板の う ち 少 な く と も 一方 の基板 に お け る 液晶の プ レ チル ト 角 が複数種存在 す る こ と を特徴 と する 。  The invention according to claim 16 is the liquid crystal display device according to claim 1, wherein at least one of a pair of substrates has a plurality of types of liquid crystal pretilt angles. It is characterized by
上記構成 に よ り 、 配向 の異な る 領域が得 ら れ、 そ の境界部か ら デ ィ ス ク リ ネ ー シ ョ ン線が形成 さ れ得 る 。 According to the above configuration, regions with different orientations can be obtained, and data can be obtained from the boundary. Screen lines can be formed.
請求項 1 7 記載の発明は、 請求項 1 6 記載の液晶表示装置 に お い て、 プ レ チル ト 角 の最大値 と 最小値の差が 1 度以上で あ る こ と を 特 徴 と す る 。  The invention according to claim 17 is characterized in that in the liquid crystal display device according to claim 16, the difference between the maximum value and the minimum value of the pretilt angle is 1 degree or more. .
上記の如 く 、 プ レ チル ト 角 の最大値 と 最小値の差が 1 度以上で あ れば、 確実 に デ ィ ス ク リ ネ ー シ ヨ ン線 を 発生 さ せ る こ と がで き る 。  As described above, if the difference between the maximum value and the minimum value of the pretilt angle is 1 degree or more, it is possible to surely generate the discretion line. .
請求項 1 8 記載の発明は、 請求項 1 6 記載の液晶表示装置 にお い て、 前記 プ レ チル ト 角 の最大値 と 最小値の差が 2 度以上で あ る こ と を 特徴 と す る 。  The invention according to claim 18 is the liquid crystal display device according to claim 16, wherein a difference between a maximum value and a minimum value of the pretilt angle is 2 degrees or more. .
上記の如 く 、 プ レ チル ト 角 の最大値 と 最小値の差が 2 度以上で あ れば、 請求項 1 7 記載の発 明 よ り も 、 更 に確実に デ ィ ス ク リ ネ ー シ ヨ ン線 を 発生 さ せ る こ と がで き る 。  As described above, if the difference between the maximum value and the minimum value of the pre-tilt angle is 2 degrees or more, the disk line is more reliably provided than the invention according to claim 17. Can generate short lines.
請求項 1 9 記載の発明は、 請求項 1 6 記載の液晶表示装置 に お い て、 プ レ チル ト 角 の最小値が 1 度以上で あ る こ と を 特徴 と す る 。 請求項 2 0 記載の 発明 は、 請求項 1 6 記載の液晶表示装置 に お い て、 プ レ チル ト 角 の最小値が 3 度以上で あ る こ と を特徴 と す る 。 請求項 2 1 記載の発明は、 請求項 1 6 記載の液晶表示装置 にお い て 、 複数種の プ レ チル ト 角 が紫外線照射 に よ り 得 ら れた も の で あ る こ と を 特徴 と す る 。  The invention according to claim 19 is characterized in that, in the liquid crystal display device according to claim 16, the minimum value of the pretilt angle is 1 degree or more. The invention according to claim 20 is characterized in that, in the liquid crystal display device according to claim 16, the minimum value of the pretilt angle is 3 degrees or more. The invention according to claim 21 is characterized in that, in the liquid crystal display device according to claim 16, a plurality of pretilt angles are obtained by irradiation with ultraviolet rays. And
請求項 2 2 記載の 発明は、 請求項 1 6 記載の液晶表示装置 に お い て、 複数種の プ レ チル ト 角 が光配 向処理 に よ り 得 ら れた も の で あ る こ と を 特徴 と す る 。  The invention according to claim 22 is the liquid crystal display device according to claim 16, wherein a plurality of types of pre-tilt angles are obtained by the light directing process. It is characterized by
請求項 2 3 記載の 発明は、 請求項 1 6 記載の液晶表示装置 に お い て 、 前記一対の基板の う ち 一方 の基板にお け る 液晶 の プ レ チル ト 角 が複数種存在 し、 前記一対の基板の う ち他方 の基板 に は、 前記一方 の基板 に お け る プ レ チル ト 角 の最小値以上、 最大値以下の プ レ チ ル ト 角 が存在 す る こ と を特徴 と す る 。 The invention according to claim 23, in the liquid crystal display device according to claim 16, wherein a plurality of types of liquid crystal pre-tilt angles exist on one of the pair of substrates, The other of the pair of substrates has a pre-tilt angle of not less than the minimum value and not more than the maximum value of the pre-tilt angle of the one substrate. It is characterized by the presence of a corner.
請求項 2 4 記載の 発明は、 請求項 1 6 記載の液晶表示装置 にお い て、 一対の基板 に は それぞれ プ レ チル ト 角 が複数種存在す る こ と を 特徴 と す る 。  According to a twenty-fourth aspect of the invention, in the liquid crystal display device according to the sixteenth aspect, a pair of substrates each have a plurality of types of pretilt angles.
一対の基板そ れ それ に プ レ チル ト 角 が複数種存在 す る よ う に すれ ぱ、 配向 が異な る 領域を よ り 多数形成す る こ と がで き 、 ベ ン ド 配向 への転移が一層容易 と な る 。  If a plurality of types of pre-tilt angles exist in each of a pair of substrates, more regions having different orientations can be formed, and the transition to the bend orientation can be achieved. It will be even easier.
請求項 2 5 記載の発明は、 請求項 1 6 記載の液晶表示装置 に お い て 、 一対の基板の 各内側面 に は、 配向強度が基板面 内 に分布 を 有 す る よ う に 配向処理が行わ れて い る こ と を 特徴 と す る 。  The invention according to claim 25 is the liquid crystal display device according to claim 16, wherein each of the inner surfaces of the pair of substrates has an alignment treatment such that the alignment strength is distributed in the substrate plane. It is characterized in that
上記の如 く 、 配向強度が基板面内 に分布 を有 す る よ う に配向処理 がな さ れ る こ と に よ り 、 プ レ チル ト 角 がそ れぞれ異 な る 複数種 の 配 向領域が得 ら れ る 。  As described above, the alignment treatment is performed so that the alignment intensity has a distribution in the substrate plane, so that a plurality of types of alignments having different pre-tilt angles are provided. The orientation region is obtained.
請求項 2 6 記載の発明は、 請求項 2 5 記載の液晶表示装置 に お い て 、 配向処理が ラ ビ ン グ処理で あ る こ と を特徴 と す る 。  The invention according to claim 26 is the liquid crystal display device according to claim 25, wherein the alignment treatment is a rubbing treatment.
請求項 2 7 記載の発明は、 請求項 2 6 記載の液晶表示装置 に お い て 、 ラ ビ ン グ処理が、 剛性の異な る 植毛がな さ れた ラ ビ ン グ布 を 用 い て 行 う こ と を 特徴 と す る 。  According to the invention described in claim 27, in the liquid crystal display device according to claim 26, the rubbing treatment is performed by using a rubbing cloth in which hairs of different stiffness are planted. It is characterized by:
配向強度 が基板面内 に分布 を 有す る よ う に ラ ビ ン グ処理す る た め に は、 剛性の異 な る 植毛がな さ れた ラ ビ ン グ布 を 用 いて配向処理 を 行 っ て も よ く 、 後述 す る 請求項 2 6 記載の発 明の よ う に 毛足の 長 さ に分布 を 有 す る ラ ビ ン グ布 を 用 い て 配向処理 を 行 っ て も よ い 。  In order to perform the rubbing treatment so that the orientation strength has a distribution in the substrate surface, the orientation treatment is performed using a rubbing cloth having a different stiffness and a flocking. Alternatively, the orientation treatment may be performed using a rubbing cloth having a distribution of the length of the bristle feet as described in claim 26 described later. .
請求項 2 8 記載の発明は、 請求項 2 6 記載の液晶表示装置 に お い て 、 ラ ビ ン グ処理が、 毛足の長さ に分布 を 有 す る ラ ビ ン グ布 を 用 い て行 う こ と を 特徴 と す る 。  The invention according to claim 28 is the liquid crystal display device according to claim 26, wherein the rubbing treatment uses a rubbing cloth having a distribution of hair length. It is characterized by performing.
請求項 2 9 記載の 発明 は、 請求項 2 6 記載の液晶表示装置 に お い て、 ラ ビ ン グ処理 に よ り 、 基板上 に設 け ら れた立体物の周辺領域の う ち の ラ ビ ン グ方 向下流側の領域 と、 そ れ以外の領域 と で ラ ビ ン グ 強度 が異 な る よ う な分布状態 と な っ て い る こ と を 特徴 と す る 。 The invention according to claim 29 is the liquid crystal display device according to claim 26. By the rubbing process, the rubbing is performed between the area on the downstream side in the rubbing direction of the peripheral area of the three-dimensional object provided on the substrate and the other area. It is characterized in that it is distributed in such a way that its strength differs.
立体物の 影 に な る 領域 と 、 そ れ以外の領域 と で は、 ラ ビ ン グ強度 に差がで る 。 従 っ て、 こ の よ う な立体物 を 設けて ラ ビ ン グす る こ と に よ り 、 プ レ チル ト 角 の異 な る 複数種の領域が得 ら れる 。  There is a difference in the rubbing intensity between the area that becomes the shadow of the three-dimensional object and the other area. Therefore, by providing such a three-dimensional object and performing rubbing, a plurality of types of regions having different pre-tilt angles can be obtained.
請求項 3 0 記載の発明は、 請求項 2 9 記載の液晶表示装置 に お い て、 立体物 が電極線で あ る こ と を特徴 と す る 。  The invention according to claim 30 is characterized in that, in the liquid crystal display device according to claim 29, the three-dimensional object is an electrode wire.
請求項 3 1 記載の 発明は、 請求項 3 0 記載の液晶表示装置 に お い て、 ラ ビ ン グ方 向 が電極線の延在方向 よ り 傾い て い る こ と を 特徴 と す る 。  The invention according to claim 31 is characterized in that, in the liquid crystal display device according to claim 30, the rubbing direction is inclined more than the extending direction of the electrode wire.
上記構成 に よ り 、 電極線 と 平行 に ラ ビ ン グす る 場合に 比べて 、 ラ ビ ン グの影 と な る 領域が大 き く な る 。 こ の結果、 配 向状態の異 な る 領域を 大 と す る こ と がで き る 。  According to the configuration described above, the shadowed area of the rubbing becomes larger as compared with the case where the rubbing is performed in parallel with the electrode wire. As a result, it is possible to increase the area where the orientation is different.
請求項 3 2 記載の発明は、 請求項 3 1 記載の液晶表示装置 に お い て 、 ラ ビ ン グ方 向 が電極線の延在方 向 よ り 1 0 度以上傾い て い る こ と を特徴 と す る 。  The invention according to claim 32 is the liquid crystal display device according to claim 31, wherein the rubbing direction is inclined at least 10 degrees with respect to the extending direction of the electrode wire. Features.
請求項 3 3 記載の発明は、 請求項 2 9 記載の液晶表示装置 に お い て 、 立体物が柱状ス ぺ一サで あ る こ と を 特徴 と す る 。  The invention according to claim 33 is characterized in that, in the liquid crystal display device according to claim 29, the three-dimensional object is a columnar spacer.
請求項 3 4 記載の発明は、 請求項 3 3 記載の液晶表示装置 に お い て 、 柱状ス ぺーザが各画素 に形成さ れて い る こ と を 特徴 と す る 。  The invention according to claim 34 is the liquid crystal display device according to claim 33, characterized in that a columnar laser is formed in each pixel.
請求項 3 5 記載の発明は、請求項 1 記載の液晶表示装置 において 、 複数の領域の 境界 に発生 す る デ ィ ス ク リ ネ ー シ ョ ン線 に近接 し て 、 転移励起用 の横電界形成手段が設け ら れて い る こ と を 特徴 と す る 。  The invention according to claim 35 is the liquid crystal display device according to claim 1, wherein a lateral electric field for transition excitation is provided near a disk line generated at a boundary between the plurality of regions. It is characterized in that forming means is provided.
横電界形成手段 に よ る 横電界の作用 に よ り 、 転移が促進 さ れ る 。 請求項 3 6 記載の発明は、請求項 4 記載の液晶表示装置 に お い て、 デ ィ ス ク リ ネ ー シ ヨ ン形成手段に よ り 形成 さ れたデ ィ ス ク リ ネ ー シ ョ ン線に近接 し て 、 転移励起用 の横電界形成手段が設け ら れて い る こ と を特徴 と す る 。 The transition is promoted by the action of the transverse electric field by the transverse electric field forming means. The invention according to claim 36 is the liquid crystal display device according to claim 4, A horizontal electric field forming means for transfer excitation is provided in the vicinity of the discrimination line formed by the discrimination formation means. This is the feature.
横電界形成手段に よ る 横電界の作用 に よ り 、 転移が促進 さ れ る 。 請求項 3 7 記載の 発明 は、 請求項 3 5 記載の液晶表示装置 にお い て 、 横電界形成手段に よ り 発生す る 横電界の電界方 向が、 配向方 向 と 略直交す る こ と を 特徴 と す る 。  The transition is promoted by the action of the transverse electric field by the transverse electric field forming means. The invention according to claim 37 is the liquid crystal display device according to claim 35, wherein the direction of the electric field of the horizontal electric field generated by the horizontal electric field forming means is substantially orthogonal to the orientation direction. And are characterized.
横電界の電界方 向 と 配向方 向 と に転移容易性が依存 して お り 、 電 界方 向 と 配向 方 向 が略直交 して い る 場合 に 良好な転移が達成さ れ る こ の ため、 請求項 3 5 記載の発明 よ り 、 さ ら に転移 が促進 さ れ る こ と に な る 。  The ease of transition depends on the electric field direction and the orientation direction of the lateral electric field, and good transition is achieved when the electric field direction and the orientation direction are substantially orthogonal. According to the invention described in claim 35, the transfer is further promoted.
請求項 3 8 記載の発明は、 請求項 3 5 記載の液晶表示装置 に お い て 、 一対の基板の う ち 一方 の基板がァ ク テ ィ ブマ ト リ ク ス基板で あ り 、 前記横電界形成手段に よ り 、 ア ク テ ィ ブマ ト リ ク ス 基板 に 配線 さ れた ソ ース 電極線 と 画素電極間 に横電界が発生 し、 ソ ース 電極線 の配線方 向 と 配向 方 向 が略平行で あ る こ と を 特徴 と す る 。  The invention according to claim 38 is the liquid crystal display device according to claim 35, wherein one of the pair of substrates is an active matrix substrate, and By the electric field forming means, a horizontal electric field is generated between the pixel electrode and the source electrode line wired on the active matrix substrate, and the wiring direction and orientation of the source electrode line are generated. It is characterized in that the directions are substantially parallel.
ソ ース 電極線の 配線方向 と 配向方向 が略平行で あ る と 、 デ ィ ス ク リ ネ ー シ ョ ン 線は ソ ース 電極線 に ほぽ垂直 に発生 す る 。 こ の と き 、 ソ ース 電極線 と 画素電極間 に 発生す る 横電界効果が転移 に良好で あ る 。  If the wiring direction and the orientation direction of the source electrode line are substantially parallel, the discretion line is generated almost perpendicular to the source electrode line. At this time, the lateral electric field effect generated between the source electrode line and the pixel electrode is favorable for the transition.
請求項 3 9 記載の発明は、 請求項 3 5 記載の液晶表示装置 に お い て 、 一対の基板の う ち 一方 の基板がァ ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記横電界形成手段に よ り 、 ア ク テ ィ ブマ ト リ ク ス基板に配線 さ れた ゲー ト 電極線 と 画素電極間 に横電界が発生 し、 ゲー ト 電極線 の 配線方 向 と 配 向方向 が略平行で あ る こ と を 特徴 と す る 。  The invention according to claim 39 is the liquid crystal display device according to claim 35, wherein one of the pair of substrates is an active matrix substrate, and By the electric field forming means, a horizontal electric field is generated between the gate electrode line wired to the active matrix substrate and the pixel electrode, and the wiring direction and the direction of the gate electrode line are generated. Are substantially parallel to each other.
ゲー ト 電極線の配線方 向 と 配向方 向 が略平行で あ る と 、 デ ィ ス ク リ ネ ー シ ョ ン 線は ゲー ト 電極線 に ほぼ垂直 に 発生す る 。 こ の と き 、 ゲー ト 電極線 と 画素電極間 に発生す る 横電界効果が転移 に良好で あ る 。 If the wiring direction and the orientation direction of the gate electrode wire are substantially parallel, the disk The lineation line is generated almost perpendicular to the gate electrode line. In this case, the lateral electric field effect generated between the gate electrode line and the pixel electrode is favorable for the transition.
請求項 4 0 記載の発明は、 請求項 3 5 記載の液晶表示装置 に お い て 、 一対の基板の う ち 一方 の基板がア ク テ ィ ブマ ト リ ク ス基板で あ り 、 前記横電界形成手段に よ り 、 ア ク テ ィ ブマ ト リ ク ス 基板 に配線 さ れた ゲー ト 電極線 と 画素電極間、 並び に、 ア ク テ ィ ブマ ト リ ク ス 基板に配線 さ れた ソ ース 電極線 と画素電極間 に そ れぞれ横電界が発 生 し、 配向 方 向 がゲー ト 電極線の配線方 向 と ソ ース 電極線の配線方 向 の 間 に あ る こ と を特徴 と す る 。  The invention according to claim 40 is the liquid crystal display device according to claim 35, wherein one of the pair of substrates is an active matrix substrate, and By the electric field forming means, between the gate electrode lines wired to the active matrix substrate and the pixel electrodes, and in addition to the active matrix substrate, the wires are wired to the active matrix substrate. A horizontal electric field is generated between the source electrode line and the pixel electrode, and the alignment direction is between the wiring direction of the gate electrode line and the wiring direction of the source electrode line. And are characterized.
配向方 向 が ソ ース 電極線 に対 して斜め方 向 ( ゲー ト 電極線 に た い して も 同様 に の斜め方 向 ) の場合 には、 ソ ース 電極線 と画素電極間、 並び に、 ゲー ト 電極線 と 画素電極間の 双方 の横電界が転移 に効果 的 で あ る 。  If the orientation direction is oblique to the source electrode line (similarly to the gate electrode line), the alignment between the source electrode line and the pixel electrode, In addition, both lateral electric fields between the gate electrode line and the pixel electrode are effective for the transition.
請求項 4 1 記載の 発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を 含み、 液晶表示駆動に先立 っ て 、 前記基板間への電圧 印加 に よ り 前記液晶層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示 駆動を 行 う 液晶表示装置の製造方法で あ っ て 、 前記初期化処理 に お いて ベ ン ド 配 向への 転移 の促進 を 図 る べ く 、 前記一対の基板 に そ れ それ形成さ れた配向膜の 少な く と も 一方 の配向膜の一部領域の プ レ チル ト を 変化 さ せ る 処理 を 行 う プ レ チ ル ト 変化処理工程を含む こ と を 特徴 と す る 。  The invention according to claim 41, comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. A method for manufacturing a liquid crystal display device, which performs an initialization process for changing the liquid crystal display from the spray orientation to the bend orientation and drives the liquid crystal display in the initialized bend orientation state. Therefore, in order to promote the transition to the bend orientation in the initialization process, at least one of the orientation films formed on the pair of substrates is formed. It is characterized in that it includes a pretilt change processing step of performing a process of changing the pretilt of a partial region of the film.
前記 プ レ チル ト 変化処理工程 に よ り 、 配向状態の異な る 領域 を 有 す る 液晶表示装置 を製造で き る 。  By the pretilt change processing step, a liquid crystal display device having regions having different alignment states can be manufactured.
請求項 4 2 記載の 発明は、 請求項 4 1 記載の液晶表示装置の製造 方法 に お い て、 プ レ チル ト 変化処理工程が、 基板に形成 さ れた 配 向 膜 と 異な る プ レ チル ト を 有 す る 配向膜材料を前記一部領域に 噴霧 す る こ と を 特徴 と す る 。 The invention according to claim 42 is for manufacturing the liquid crystal display device according to claim 41. In the method, the pretilt change processing step includes spraying an alignment film material having a pretilt different from the orientation film formed on the substrate onto the partial region. Features.
請求項 4 3 記載の発明は、 請求項 4 1 記載の液晶表示装置の製造 方法 に お いて 、 プ レ チル ト 変化処理工程が、 配向膜が形成さ れた基 板を高湿度条件下で放置す る こ と を特徴す る 。  In the invention according to claim 43, in the method for manufacturing a liquid crystal display device according to claim 41, the pretilt change step includes leaving the substrate on which the alignment film is formed under high humidity conditions. It is characterized by
こ こ で、 「高湿度」 と は、 湿度 9 0 %以上 を意味す る も の と す る 。 請求項 4 4 記載の発明は、 請求項 4 1 記載の液晶表示装置 の製造 方法 に お いて 、 前記 プ レ チル ト 変化処理工程が、 前記基板に形成 さ れた配向膜に 、 プ レ チル ト を 変化 さ せ る 処理液 を 噴霧す る こ と を 特 徴 と す る 。  Here, “high humidity” means a humidity of 90% or more. The invention according to claim 44 is the method of manufacturing a liquid crystal display device according to claim 41, wherein the pretilt change processing step includes a step of pretilting the alignment film formed on the substrate. It is characterized by spraying a processing solution that changes the pressure.
請求項 4 5 記載の発明は、 請求項 4 1 記載の液晶表示装置 の製造 方法 にお いて 、 前記 プ レ チル ト 変化処理工程が、 配 向膜が形成 さ れ た基板 を 溶媒蒸気雰囲気下で放置す る こ と を特徴 と す る 。  The invention according to claim 45 is the method for manufacturing a liquid crystal display device according to claim 41, wherein the pretilt changing step is performed by subjecting the substrate on which the orientation film is formed to a solvent vapor atmosphere. It is characterized by being left alone.
請求項 4 6 記載の発明は、 請求項 1 6 記載の液晶表示装置 に お い て 、 前記一対の基板 に は そ れぞれ配向膜が形成 さ れ、 前記配向膜の う ち 少 な く も 一方 の配 向膜の膜厚 に分布があ る こ と を特徴 と す る 。 上記の如 く 、 配向膜の膜厚 に 分布があれば、 プ レ チル ト 角 が複数 種存在 さ せ る こ と が可能 と な る 。  The invention according to claim 46 is the liquid crystal display device according to claim 16, wherein an alignment film is formed on each of the pair of substrates, and at least one of the alignment films is formed. The feature is that there is a distribution in the thickness of one orientation film. As described above, if there is a distribution in the film thickness of the alignment film, it becomes possible to have a plurality of types of pretilt angles.
請求項 4 7 記載の発 明 は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を 含み、 液晶表示駆動 に先立 っ て 、 前記基板間へ の 電圧 印加 に よ り 前記液晶 を ス プ レ イ 配向か ら ペ ン ド 配 向 に転移 さ せ る 初 期化処理 を行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆 動 を 行 う 液晶表示装置 の製造方法で あ っ て 、 前記初期化処理 に お い て ベ ン ド 配向 へ の転移 の促進 を 図 る べ く 、 印刷面が 凹凸状に形成 さ れた 印刷版を 用 い て前記一対の基板に形成 さ れて い る 配向膜の う ち 少な く も 一方 の 配向膜を 印刷す る 印刷工程を含む こ と を特徴 と す る 請求項 4 8 記載の発明は、 請求項 4 7 記載の液晶表示装置の製造 方法で あ っ て 、 メ ッ シ ュ サイ ズが 1 0 0 / m以上で あ る 印刷版を 用 い て 配向膜を 印刷 す る 印刷工程 を含む こ と を特徴 と す る 。 47. The invention according to claim 47, comprising a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal. Liquid crystal display device that performs an initialization process to shift the liquid crystal display from the spray orientation to the pen orientation, and drives the liquid crystal display in this initialized bend orientation state. In order to promote the transition to the bend orientation in the initialization, the pair of printing plates are formed by using a printing plate having a printing surface formed in an uneven shape. Of the alignment films formed on the substrate The invention according to claim 48, which comprises a printing step of printing at least one alignment film, is a method for manufacturing a liquid crystal display device according to claim 47, wherein the method includes the steps of: It is characterized by including a printing step of printing an alignment film using a printing plate having a size of 100 / m or more.
請求項 4 9 記載の 発 明 は、 請求項 4 7 記載の液晶表示装置の製造 方法で あ っ て、 前記印刷工程が複数回行わ れ る こ と を特徴 と す る 。  The invention according to claim 49 is the method for manufacturing a liquid crystal display device according to claim 47, wherein the printing step is performed a plurality of times.
請求項 5 0 記載の発明 は、請求項 1 記載の液晶表示装置 において、 一対の基板の 少 な く と も 一方の基板表面が凹凸状 に が形成 さ れて い る こ と を特徴 と す る 。  The invention according to claim 50 is characterized in that, in the liquid crystal display device according to claim 1, at least one surface of at least one of the pair of substrates is formed with unevenness. .
基板表面 を 凹 凸状に す る こ と に よ っ て 、 配向状態の異な る 領域 を 形成す .る こ と がで き る 。  By making the substrate surface concave and convex, it is possible to form regions having different orientation states.
請求項 5 1 記載の 発 明 は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動に先立 っ て、 前記基板間への電圧 印加 に よ り 前記液晶層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行 な い、 こ の初期化 された ベ ン ド 配向状態で液晶表示 駆動 を 行 う 液晶表示装置の製造方法で あ っ て 、 前記初期化処理 に お い て ベ ン ド 配向への転移 の促進 を 図 る べ く 、 前記一対の基板の 少 な く と も 一方 の基板表面 を 、 凹 凸状 に形成す る 凹 凸形状形成工程 を 含 む こ と を特徴 と す る 。  51. The invention according to claim 51, comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, wherein the liquid crystal is applied by applying a voltage between the substrates prior to driving a liquid crystal display. A method of manufacturing a liquid crystal display device, which performs an initialization process for changing a layer from a spray orientation to a bend orientation and drives a liquid crystal display in the initialized bend orientation state. Therefore, in order to promote the transition to the bend orientation in the initialization process, at least one of the pair of substrates has a concave-convex surface. The method is characterized by including a concave-convex shape forming step.
請求項 5 2 記載の発 明 は、 請求項 5 0 記載の液晶表示装置 に お い て、 前記凹 凸形状が フ ォ ト レ ジ ス ト で形成 さ れて い る こ と を 特徴 と す る 。  The invention according to claim 52 is characterized in that, in the liquid crystal display device according to claim 50, the concave and convex shapes are formed of a photo resist. .
請求項 5 3 記載の発 明 は、 請求項 5 1 記載の液晶表示装置 の製造 方法 に おい て 、 凹凸形状形成工程で形成 さ れた 凹 凸形状 を な だ ら か に す る 熱処理工程を 有 す る こ と を 特徴 と す る 。  The invention according to claim 53 is the method for manufacturing a liquid crystal display device according to claim 51, further comprising a heat treatment step for smoothing the concave-convex shape formed in the concave-convex shape forming step. It is characterized by
凹 凸形状がな だ ら かで あ れば、 プ レ チル ト 角 の異 な る 領域を よ り 多数形成す る こ と が可能 と な る 。 If the concave / convex shape is smooth, the area with different pretilt angles will be better. Many can be formed.
請求項 5 4 記載 の発明は、 請求項 5 1 記載の液晶表示装置の製造 方法 にお いて 、 前記凹 凸形状形成工程が印刷方法 を用 いて 凹 凸形状 を形成す る 工程で あ る こ と を特徴 と す る 。  The invention according to claim 54 is the method of manufacturing a liquid crystal display device according to claim 51, wherein the step of forming the concave and convex shape is a step of forming a concave and convex shape using a printing method. It is characterized by
請求項 5 5 記載の発明 は、 請求項 5 0 記載の液晶表示装置 に お い て、 前記凹凸形状が窒化 シ リ コ ン膜よ り な る こ と を特徴 と す る 。  The invention according to claim 55 is characterized in that, in the liquid crystal display device according to claim 50, the uneven shape is made of a silicon nitride film.
請求項 5 6 記載 の発 明は、 請求項 5 1 記載の液晶表示装置の製造 方法 に お いて 、 前記凹 凸形状形成工程が基板の 表面 を荒 ら す こ と で 凹凸形状 を形成す る 工程で あ る こ と を 特徴 と す る 。  The invention according to claim 56 is the method of manufacturing a liquid crystal display device according to claim 51, wherein the step of forming the concave and convex shapes forms a concave and convex shape by roughening the surface of the substrate. It is characterized by the fact that
請求項 5 7 記載の発明は、 請求項 5 6 記載の液晶表示装置の製造 方法 に お いて 、 前記凹 凸形状形成工程が酸素 プ ラ ズマ処理 を 行 う こ と に よ り 凹凸形状 を形成す る 工程で あ る こ と を 特徴 と す る 。  The invention according to claim 57 is the method for manufacturing a liquid crystal display device according to claim 56, wherein the concave-convex shape forming step forms an uneven shape by performing an oxygen plasma treatment. It is characterized by the fact that it is a process.
請求項 5 8 記載の発明 は、 請求項 5 0 記載の液晶表示装置 に お い て 、 前記一対 の基板の 少な く と も 一方の基板の 内側 面 に、 透明電極 が形成 さ れて お り 、 こ の透明電極の結晶径が 5 0 n m以上であ る こ と を 特徴 と す る 。  The invention according to claim 58 is the liquid crystal display device according to claim 50, wherein a transparent electrode is formed on at least an inner surface of at least one of the pair of substrates. It is characterized in that the crystal diameter of this transparent electrode is 50 nm or more.
請求項 5 9 記載の発明は、 請求項 5 0 記載の 液晶表示装置 に お い て 、 前記凹凸形状が、 基板上 に 小粒子 を分散 し て 形成さ れた も の で あ る こ と を特徴 と す る 。  The invention according to claim 59 is characterized in that, in the liquid crystal display device according to claim 50, the uneven shape is formed by dispersing small particles on a substrate. And
請求項 6 0 記載の 発明 は、 請求項 5 0 記載の液晶表示装置 に お い て、 前記凹凸形状が、 プ レ ス 成形 に よ り 形成 さ れた も の で あ る こ と を特徴 と す る 。  The invention according to claim 60 is the liquid crystal display device according to claim 50, characterized in that the uneven shape is formed by press molding. .
請求項 6 1 記載の発 明 は、 請求項 5 0 記載の液晶表示装置 に お い て 、 前記凹凸形状が、 画素電極 の形状が周 囲で持ち上が っ た 凹面形 状で あ る こ と を 特徴 と す る 。  The invention according to claim 61 is the liquid crystal display device according to claim 50, wherein the uneven shape is a concave shape in which the shape of the pixel electrode is raised around. It is characterized by
請求項 6 2 記載の発明は、 請求項 5 1 記載の液晶表示装置の製造 方法 におい て 、 前記凹凸形状形成工程が、 前記一対の基板の少 な く と も 一方の基板に樹脂層 を形成す る 工程 と 、 こ の樹脂層 を処理 し て 凹凸形状を形成す る 工程 と を有す る こ と を 特徴 と す る 。 The invention according to claim 62 is a method for manufacturing a liquid crystal display device according to claim 51. In the method, the step of forming an uneven shape includes a step of forming a resin layer on at least one of the pair of substrates, and a step of forming an uneven shape by processing the resin layer. It is characterized by having
請求項 6 3 記載の'発明は、 請求項 5 0 記載の液晶表示装置 に お い て 、 前記凹 凸形状が、 画素電極の 中央部 に 凸部 を形成す る こ と に よ り 得 ら れた も の で あ る こ と を 特徴 と す る 。  The invention according to claim 63 is obtained by the liquid crystal display device according to claim 50, wherein the concave and convex shape is such that a convex portion is formed at a central portion of a pixel electrode. It is characterized by being something.
請求項 6 4 記載の発明は、 請求項 5 0 記載の液晶表示装置 に お い て 、 前記凹凸形状が、 画素電極の対角線方 向 に延在 す る 凸部 を形成 す る こ と に よ り 得 ら れた も の で あ る こ と を特徴 と す る 。  The invention according to claim 64 is the liquid crystal display device according to claim 50, wherein the uneven shape forms a convex portion extending in a diagonal direction of the pixel electrode. It is characterized by what has been obtained.
請求項 6 5 記載の発明は、請求項 1 記載の液晶表示装置 に お い て 、 所定方向 に電界 を 印加す る こ と に よ り 、 そ れに応 じ た配向 の 異 な る 複数の領域が形成さ れ る こ と を 特徴 と す る 。  According to a sixth aspect of the present invention, in the liquid crystal display device according to the first aspect, by applying an electric field in a predetermined direction, a plurality of regions having different alignments according to the electric field are applied. Is formed.
請求項 6 6 記載の発明は、請求項 1 記載の液晶表示装置 に おいて 、 前記一対の基板 に形成 さ れて い る 電極の 少な く と も 一方 の電極 に は 電極が欠落 し た電極欠落部が存在 す る こ と を特徴 と す る 。  The invention according to claim 66 is the liquid crystal display device according to claim 1, wherein at least one of the electrodes formed on the pair of substrates is missing an electrode. It is characterized by the presence of a part.
上記構成に よ り 、 電極欠落部 を挟んだ両側 の電気力線が、 傾斜角 度が正負逆 と な る 方 向 に傾斜す る 。 こ れ に よ り 、 電極欠落部 の一方 側で は t — ス プ レ イ 配 向 が、 電極欠落部の他方側で は b — ス プ レ イ 配向 が形成 さ れ る 。 よ っ て 、 そ の境界部の デ ィ ス ク リ ネ 一 シ ヨ ン 線 か ら ベ ン ド 転移が発生す る 。  According to the above configuration, the electric lines of force on both sides of the electrode missing portion are inclined in a direction in which the inclination angle is opposite to the positive or negative. As a result, a t-spray orientation is formed on one side of the electrode missing portion, and a b-spray orientation is formed on the other side of the electrode missing portion. Therefore, a bend transition occurs from the disk line at the boundary.
請求項 6 7 記載の 発明は、請求項 1 記載の液晶表示装置 に お い て 、 前記一対の基板 に形成 さ れて い る 電極の う ち 、 対向基板側 の電極 に は、 電極が欠落 し た電極欠落部が存在す る こ と を特徴 と す る 。  In the invention according to claim 67, in the liquid crystal display device according to claim 1, among the electrodes formed on the pair of substrates, the electrodes on the counter substrate side are missing electrodes. It is characterized by the presence of a missing electrode part.
請求項 8 3 記載の 発明は、請求項 1 記載の液晶表示装置 に お い て 、 前記一対の基板 に形成 さ れて い る 電極の う ち 、 ア レ イ 基板側の電極 に は、 電極が欠落 し た電極欠落部が存在 す る こ と を特徴 と す る 。 請求項 6 9 記載の 発明は、 請求項 6 6 記載の液晶表示装置 に お い て 、 前記電極欠落部 の延在方 向 が前記複数の領域の境界 に 発生す る デ ィ ス ク リ ネ 一 シ ヨ ン線 と 一致す る こ と を特徴 と す る 。 The invention according to claim 83 is the liquid crystal display device according to claim 1, wherein, of the electrodes formed on the pair of substrates, the electrodes on the array substrate side have electrodes. It is characterized by the presence of missing electrode missing parts. An invention according to claim 69 is the liquid crystal display device according to claim 66, wherein the direction in which the electrode missing portion extends is generated at a boundary between the plurality of regions. It is characterized by the fact that it coincides with the short line.
電極欠落部が存在す る と 、 電極欠落部の延在方 向 にデ ィ ス ク リ ネ ー シ ヨ ン線が発生す る 。 そ こ で、 電極欠落部が存在 し な い場合で の 複数の配向 の異 な る 領域の存在 に よ っ て の み発生 す る デ ィ ス ク リ ネ ー シ ヨ ン線 と 、 電極欠落部の存在 に起因 し たデ ィ ス ク リ ネ ー シ ヨ ン 線 と の 発生方 向 を 一致 さ せれば、 よ り 安定 し たデ ィ ス ク リ ネ ー シ ョ ン線が発生す る こ と に な り 、安定 したベ ン ド 配向転移が達成 さ れ る 。 そ の た め、 電極欠落部の延在方 向 を、 複数の配向 の異な る 領域の境 界 に発生 す る デ ィ ス ク リ ネ 一 シ ヨ ン線 と 一致 さ せ る こ と に し た も の で あ る 。  If there is an electrode missing portion, a discretion line is generated in the extending direction of the electrode missing portion. Therefore, the discretion line generated only by the presence of a plurality of regions having different orientations in the absence of the electrode missing portion, and the electrode missing portion If the direction of generation is the same as the direction of the discrimination line caused by the existence of the disc, a more stable discrimination line will be generated. As a result, stable bend orientation transition is achieved. For this reason, the extending direction of the electrode missing portion is made to coincide with the disk line generated at the boundary between the regions having different orientations. It is a thing.
請求項 7 0 記載の 発明 は、 請求項 6 7 記載の液晶表示装置 に お い て 、配向 方 向 と 電極欠落部の延在方向が交差す る こ と を 特徴 と す る 。 配向 方 向 に よ っ て 発生す る デ ィ ス ク リ ネ 一 シ ヨ ン線の 方 向 が異 な る 場合が あ る 。 例 え ば、 ラ ビ ン グ に よ る 配向 の場合、 画素 に対 し て 上下方 向 に ラ ビ ン グすれば、 デ ィ ス ク リ ネ ー シ ョ ン線は画素 に対 し て左右方 向 に形成 さ れ、 左右方 向 に ラ ビ ン グすれば、 デ ィ ス ク リ ネ ー シ ヨ ン線は画素 に対 し て 上下方 向 に形成さ れ る 。 従 っ て 、 電極欠 落部の延在方 向 を配向 方 向 と 一致 させ る と 、 デ ィ ス ク リ ネ ー シ ヨ ン 線の発生 に不適当 と な る 。 従 っ て 、 電極欠落部の延在方 向 を 配向 方 向 に交差 さ せ る の が、 デ ィ ス ク リ ネ ー シ ヨ ン線 を 安定 に発生 さ せ る 観点か ら 望 ま し い 。 勿論、 電極欠落部の延在方 向 が配向方 向 に 直交 し て い る の が最 も 望 ま し い 。  The invention according to claim 70 is, in the liquid crystal display device according to claim 67, characterized in that the alignment direction and the extending direction of the electrode missing portion intersect. The direction of the discon- sion line generated depending on the orientation may be different. For example, in the case of rubbing orientation, rubbing up and down with respect to a pixel will cause the discretion line to move left and right with respect to the pixel. If it is rubbed left and right, the discretion line is formed upward and downward with respect to the pixel. Therefore, if the extending direction of the electrode missing portion matches the orientation direction, it becomes inappropriate for the generation of a discretion line. Therefore, it is desirable to make the extending direction of the electrode missing portion intersect with the orientation direction from the viewpoint of stably generating the discretion line. Of course, it is most desirable that the extending direction of the electrode missing portion is orthogonal to the orientation direction.
請求項 7 1 記載の 発明 は、請求項 1 記載の液晶表示装置 に お いて 、 前記一対の基板の う ち 一方 の基板に形成さ れた 画素電極 と の 間 に 横 電界 を形成す る 横電界形成手段を 有す る こ と を特徴 と す る 。 The invention according to claim 71 is the liquid crystal display device according to claim 1, wherein the liquid crystal display device is arranged between a pixel electrode formed on one of the pair of substrates. It is characterized by having a transverse electric field forming means for forming an electric field.
請求項 7 2 記載の発明は、 請求項 7 1 記載の液晶表示装置 に お い て、 画素電極の 両端で横電界 を発生 し、 そ の横電界の 方 向 が対向 し て い る こ と を 特徴 と す る 。  The invention according to claim 72 is that, in the liquid crystal display device according to claim 71, a lateral electric field is generated at both ends of the pixel electrode, and the directions of the lateral electric field are opposite to each other. Features.
上記の如 く 、 横電界の 方 向が対向 す る こ と に よ り 、 画素電極上 の 液晶 の配向 に異方性が生 じ、 b — ス プ レ イ 配向 と t — ス プ レ イ 配 向 が発生 しや す く な る 。  As described above, since the directions of the horizontal electric fields are opposite to each other, anisotropy is generated in the alignment of the liquid crystal on the pixel electrode, and the b-spray alignment and the t-spray alignment are performed. Direction is likely to occur.
請求項 7 3 記載の発明は、 請求項 7 2 記載の液晶表示装置 に お い て 、 前記一対の基板 う ち 一方 の基板がァ ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記ア ク テ ィ ブマ ト リ ク ス 基板は ソ ース 電極線及び画素電極 を 有 し、 ソ ース 電極線 と 画素電極間 に横電界 を 印加す る こ と を 特徴 と す る 。  The invention according to claim 73 is the liquid crystal display device according to claim 72, wherein one of the pair of substrates is an active matrix substrate, and The active matrix substrate has a source electrode line and a pixel electrode, and is characterized in that a lateral electric field is applied between the source electrode line and the pixel electrode.
請求項 7 4 記載の 発明は、 請求項 7 3 記載の液晶表示装置 に お い て 、 前記画素電極 と ソ ース 電極線 と の距離が 以下で あ る こ と を 特徴 と す る 。  The invention according to claim 74 is the liquid crystal display device according to claim 73, wherein a distance between the pixel electrode and a source electrode line is as follows.
画素電極 と ソ ース 電極線 と の 距離が 5 z m を超え る と 、 液晶 の 配 向 に影響 を 与 え る に 十分な大 き さ の横電界が発生 し な い か ら で あ る , 請求項 7 5 記載の 発明は、 画素電極 と 対向電極間 に挟持 さ れ る 液 晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間への 電圧印加 に よ り 前記液晶層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期 化処理 を 行な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う ァ ク テ ィ ブマ ト リ ク ス 型の液晶表示装置 に お け る 前記ス プ レ ィ 配 向 か ら ベ ン ド 配 向 に転移 さ せ る た め の駆動方法 にお い て 、 画素 電位を保持 し て い る 期間 あ る い は そ の 一部の期 間 に、 ソ ース 電圧 を 変化 さ せ、 画素電極 と ソ ース 電極線間 に横電界 を 印加す る こ と を 特 徴 と す る 。 請求項 7 6 記載の発明は、 請求項 7 2 記載の液晶表示装置 にお い て 、 前記基板の一方がア ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記ァ ク テ ィ ブマ ト リ ク ス基板は ゲー ト 電極線 と 画素電極 を 有 し、 ゲー ト 電 極線 と 画素電極間に横電界を 印加す る こ と を特徴 と す る 。 This is because if the distance between the pixel electrode and the source electrode line exceeds 5 zm, a transverse electric field large enough to affect the orientation of the liquid crystal is not generated. The invention according to Item 75 includes a liquid crystal layer sandwiched between a pixel electrode and a counter electrode, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display. Performs an initialization process to transition from the play orientation to the bend orientation, and drives the liquid crystal display in this initialized bend orientation state. In the driving method for shifting from the spray orientation to the bend orientation in a liquid crystal display device of the liquid crystal type, a period during which the pixel potential is maintained. During a certain period, the source voltage is changed so that the pixel electrode and the source voltage are changed. It is characterized by applying a transverse electric field between the poles. The invention according to claim 76 is the liquid crystal display device according to claim 72, wherein one of the substrates is an active matrix substrate, and the active matrix substrate is provided. The trix substrate has a gate electrode line and a pixel electrode, and is characterized in that a lateral electric field is applied between the gate electrode line and the pixel electrode.
請求項 7 7 記載の発明は、 請求項 7 6 記載の液晶表示装置 に お い て 、 前記画素電極 と ゲー ト 電極線 と の距離が 5 m以下で あ る こ と を 特徴 と す る 。  The invention according to claim 77 is the liquid crystal display device according to claim 76, wherein the distance between the pixel electrode and the gate electrode line is 5 m or less.
画素電極 と ゲ一 ト 電極線 と の距離が 5 m を超 え る と 、 液晶の配 向 に 影響 を与 え る に十分な大 き さ の横電界が発生 し な い か ら で あ る 請求項 7 8 記載の発明は、 請求項 7 2 記載の液晶表示装置の駆動 方法で あ っ て 、 画素電位 を保持 して い る 期間 に、 ゲー ト 電圧 を低い レ ベル に し、 画素電極 と ゲ一 ト 電極線間 に横電界 を 印加 す る こ と を 特徴 と す る 。  If the distance between the pixel electrode and the gate electrode line exceeds 5 m, a lateral electric field large enough to affect the orientation of the liquid crystal will not be generated. The invention described in Item 78 is a method for driving a liquid crystal display device according to Item 72, wherein the gate voltage is set to a low level during a period in which the pixel potential is held, and the pixel electrode and the gate are connected to each other. It is characterized in that a horizontal electric field is applied between the electrode lines.
請求項 7 9 記載の発明は、 画素電極 と 対向電極間 に挟持 さ れ る 液 晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間への 電圧印加 に よ り 前記液晶層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期 化処理 を 行 な い、 こ の初期化 さ れたベ ン ド 配向状態で液晶表示駆動 を 行 う ァ ク テ ィ ブマ ト リ ク ス 型の液晶表示装置 に お け る 前記ス プ レ ィ 配向 か ら ベ ン ド 配向 に転移 さ せ る た め の駆動方法 に おい て 、 画素 電位 よ り も 高い電位 に ゲー ト 電位 を設定 して 、 画素電極 と ゲー ト 電 極線間 に横電界 を 印加す る こ と を特徴 と す る 。  The invention according to claim 79 includes a liquid crystal layer sandwiched between a pixel electrode and a counter electrode, and the liquid crystal layer is formed by applying a voltage between the substrates prior to driving a liquid crystal display. Performs an initialization process to transition from the spray orientation to the bend orientation, and drives the liquid crystal display in this initialized bend orientation state. In a driving method for changing from the spray orientation to the bend orientation in a liquid crystal display device of the type, the gate potential is set to a potential higher than the pixel potential. It is characterized in that a horizontal electric field is applied between the pixel electrode and the gate electrode line by setting.
請求項 8 0 記載の発 明は、 請求項 7 6 記載の液晶表示装置 に お い て 、 前記ア ク テ ィ ブマ ト リ ク ス基板は補助容量電極 を 有 し、 前記補 助容量電極はゲー ト 電極線上 に存在 し な い こ と を 特徴 と す る 。  The invention according to claim 80 is the liquid crystal display device according to claim 76, wherein the active matrix substrate has an auxiliary capacitance electrode, and the auxiliary capacitance electrode has It is characterized in that it does not exist on the gate electrode wire.
補助容量電極がゲー ト 電極線上 に存在 して い る と 、 ゲー ト 電極線 と 画素電極間 に 発生す る 横電界を 遮蔽す る 働 き を な す 。 そ こ で 、 補 助容量電極を ゲー ト 電極線上以外に形成す る こ と に よ り 、 ゲー ト 電 極線 と 画素電極間 に横電界を 有効 に発生 さ せ る こ と が可能 と な る 。 If the auxiliary capacitance electrode is present on the gate electrode line, it acts to block the lateral electric field generated between the gate electrode line and the pixel electrode. So, the supplement By forming the auxiliary capacitance electrode other than on the gate electrode line, it is possible to effectively generate a lateral electric field between the gate electrode line and the pixel electrode.
請求項 8 1 記載の発明は、 請求項 7 2 記載の液晶表示装置に お い て 、 横電界形成手段が、 電極側部 に形成さ れた突起形状で あ る こ と を 特徴 と す る 。  The invention according to claim 81 is characterized in that, in the liquid crystal display device according to claim 72, the horizontal electric field forming means has a shape of a protrusion formed on an electrode side portion.
請求項 8 2 記載の発明は、 請求項 8 1 記載の液晶表示装置 に お い て 、 前記突起形状が画素電極に形成さ れた こ と を 特徴 と す る 。  The invention according to claim 82 is characterized in that, in the liquid crystal display device according to claim 81, the protrusion shape is formed on a pixel electrode.
請求項 8 3 記載の発明は、 請求項 8 1 記載の液晶表示装置 に お い て、 前記突起形状がゲー ト 電極線 に形成さ れた こ と を 特徴 と す る 。 請求項 8 4 記載の発明は、 請求項 8 1 記載の液晶表示装置 に お い て、 前記突起形状が ソ ース電極線に形成さ れ た こ と を 特徴 と す る 。  The invention according to claim 83 is characterized in that, in the liquid crystal display device according to claim 81, the protrusion shape is formed on a gate electrode line. The invention according to claim 84 is characterized in that, in the liquid crystal display device according to claim 81, the protrusion shape is formed on a source electrode line.
請求項 8 5 記載の発明は、 請求項 7 2 記載の液晶表示装置 に お い て 、横電界発生方向 と 配向方 と が略一致 して い る こ と を 特徴 と す る 。 請求項 8 6 記載の発明は、 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を 含み、 液晶表示駆動 に先立 っ て、 前記基板間への電圧 印加 に よ り 前記液晶層 の初期配向 を ベ ン ド 配向 に転移 さ せ る 初期化 処理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に お い て、 前記基板面内 におけ る 表示領域に は、 ス ぺーザが存在 し な い こ と を 特徴 と す る 。  The invention according to claim 85 is characterized in that, in the liquid crystal display device according to claim 72, the direction in which the lateral electric field is generated substantially matches the orientation. The invention according to claim 86, comprising: a pair of upper and lower substrates; and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates to form the liquid crystal layer. In the liquid crystal display device which performs an initialization process for transferring the initial alignment of the liquid crystal molecules to the bend alignment and drives the liquid crystal display in the initialized bend alignment state, It is characterized in that the display area in the plane has no spacer.
表示領域 に ス ぺ一ザが存在 す る と 、 転移の 障害 と な る 。 従 っ て 、 本発明の よ う に ス ぺ一サが表示領域に存在 し な ければ、 転移が 円 滑 に達成 さ れ る 。  The presence of a spacer in the display area is an obstacle to metastasis. Therefore, if the spacer does not exist in the display area as in the present invention, the transition can be smoothly achieved.
請求項 8 7 記載の 発明は、 請求項 8 6 記載の液晶表示装置 に お い て、 前記表示領域以外の非表示領域に、 ス ぺーザが形成 さ れて い る こ と を 特徴 と す る 。  The invention according to claim 87 is the liquid crystal display device according to claim 86, wherein a spacer is formed in a non-display area other than the display area. .
請求項 8 8 記載の 発 明は、 請求項 8 7 記載の液晶表示装置 にお い て、 前記ス ぺー ザが柱状ス ぺー サであ る こ と を 特徴 と す る 。 The invention according to claim 88 is the liquid crystal display device according to claim 87. Wherein the spacer is a columnar spacer.
請求項 8 9 記載の発明は、 画素電極 を 有す る ア レ ー基板 と共通電 極 を有す る 対向基板の間 に配置 さ れた 液晶層上下界面の液晶 の プ レ チル ト 角 が正負逆で、 互い に平行 に配向処理さ れた ス プ レ イ 配 向 の 液晶セ ルで、 電圧無印加時 に はス プ レ イ 配向 と な っ て お り 、 液晶表 示駆動 に先立 っ て 、 電圧印加 に よ り ス プ レ イ 配向か ら ベ ン ド 配 向 に 転移 さ せ る 初期化処理が行わ れ、 こ の初期化 さ れた ベ ン ド 配向状態 で液晶表示駆動 を 行 う ァ ク テ ィ ブマ ト リ ッ ク ス 型の液晶表示装置 に おい て 、 前記ア レ ー基板の 内面側 に形成さ れた配向膜に お け る 液晶 の プ レ チル ト 角 が第 1 の プ レ チル ト 角 を 示す と 共に、 対向基板の 内 面側 に形成 さ れた配向膜に お け る 液晶 の プ レ チ ル ト 角 が第 1 の プ レ チル ト 角 よ り も 大 き い第 2 の プ レ チル ト 角 を 示 す第 1 の液晶セ ル領 域 と 、 前記第 1 の液晶セ ル領域 に 隣接 し て配置 さ れ、 ア レ ー基板の 内面側 に形成 さ れた配向膜 に お け る液晶の プ レ チル ト 角 が第 3 の プ レ チ ル ト 角 を 示 す と 共 に、 対向 す る 対向基板の 内面側 に形成 さ れ た 配向膜 にお け る 液晶の プ レ チル ト 角 が第 3 の プ レ チル ト 角 よ り も 小 さ い第 4 の プ レ チル ト 角 を 示す第 2 の液晶セ ル領域 と 、 を 同 一画素 内 に 少な く と も 有 して お り 、 前記上下配向膜が、 第 1 の液晶セ ル領 域か ら 第 2 の液晶セ ル領域 に 向 けて配向処理さ れて い る 液晶セ ル と . 前記画素電極 と 前記共通電極 と の 間 に、 デ ィ ス ク リ ネ ー シ ヨ ン線 を 形成す る た め の第 1 の電圧 を 印加 し、 前記第 1 の液晶セ ル領域 と 前 記第 2 の液晶セ ル領域 と の境界付近に お い て デ ィ ス ク リ ネ 一 シ ョ ン 線 を形成する 第 1 の電圧印加手段 と、 前記画素電極 と 前記共通電極 と の 間 に前記第 1 の電圧 よ り も 高い第 2 の 電圧 を 印加す る こ と に よ り 、 デ ィ ス ク リ ネ ー シ ヨ ン線 にお いて 転移核 を 発生 さ せ、 ス プ レ イ 配向 か ら ベ ン ド 配向へ転移 さ せ る 第 2 の電圧印加手段 と 、 を備 え る こ と を特徴 と す る 。 In the invention according to claim 89, the pretilt angle of the liquid crystal at the upper and lower interfaces of the liquid crystal layer disposed between the array substrate having the pixel electrode and the opposite substrate having the common electrode is positive or negative. Conversely, it is a liquid crystal cell in a spray orientation that is aligned in parallel with each other, and when no voltage is applied, it is in a spray orientation, which is prior to driving the liquid crystal display. Then, the voltage is applied to perform an initialization process of transitioning from the spray orientation to the bend orientation, and the liquid crystal display is driven in the initialized bend orientation state. In an active matrix type liquid crystal display device, the pretilt angle of the liquid crystal in the alignment film formed on the inner surface side of the array substrate is a first angle. In addition to showing the pretilt angle, the liquid crystal in the alignment film formed on the inner surface side of the opposing substrate A first liquid crystal cell region having a second pretilt angle having a larger pretilt angle than the first pretilt angle, and the first liquid crystal cell region And the liquid crystal pre-tilt angle in the alignment film formed on the inner surface side of the array substrate indicates the third pre-tilt angle. The fourth pretilt angle, in which the liquid crystal pretilt angle in the alignment film formed on the inner surface side of the opposing opposing substrate is smaller than the third pretilt angle, And at least a second liquid crystal cell region shown in the same pixel, wherein the upper and lower alignment films extend from the first liquid crystal cell region to the second liquid crystal cell region. A liquid crystal cell that has been subjected to an alignment treatment, and a discretion line between the pixel electrode and the common electrode. A first voltage for forming a liquid crystal is applied, and a disk screen is formed near a boundary between the first liquid crystal cell region and the second liquid crystal cell region. A first voltage applying means for forming a scanning line; and a second voltage higher than the first voltage applied between the pixel electrode and the common electrode. And a second voltage applying means for generating a transition nucleus in the clean line and causing a transition from the spray orientation to the bend orientation. This is the feature.
前記構成 と す る こ と に よ り 、 前記画素電極 と共通電極の 間 に 第 1 の電圧 を 印加 す る こ と に よ り 、 前記第 1 の液晶セ ル領域 と 第 2 の 液 晶セ ル領域 と の 間 におい て、 周 囲 よ り 歪みのエネ ルギーが高い デ ィ ス ク リ ネ ー シ ヨ ン 線を形成す る こ と がで き、 さ ら に、 前記画素電極 と 前記共通電極 と の間 に第 1 の電圧 よ り も 高い の第 2 の電圧 を 印加 す る こ と に よ り 、 更 に前記デ ィ ス ク リ ネ ー シ ヨ ン線 にエネ ル ギ ー が 与 え ら れて該デ ィ ス ク リ ネ ー シ ヨ ン線 にお いて ス プ レ イ 配向 か ら ベ ン ド 配向 に転移す る 。  With the above configuration, the first liquid crystal cell region and the second liquid crystal cell are applied by applying a first voltage between the pixel electrode and the common electrode. Between the region and the region, it is possible to form a disk line having a higher distortion energy than the surrounding area, and further, it is possible to form the pixel electrode and the common electrode with the pixel electrode and the common electrode. By applying a second voltage that is higher than the first voltage during this time, energy is further imparted to the discretion line. As a result, the liquid crystal transitions from the spray orientation to the bend orientation in the discrimination line.
従 っ て 、 前記構成 と し た液晶表示装置 に おいて は、 ス プ レ イ — ベ ン ド 配向転移 を液晶セ ルの多数形成 し た各画素領域内で確実に 一定 の場所 ( デ ィ ス ク リ ネ 一 シ ヨ ン線) で起 こ す こ と がで き、 ま た 、 配 向転移 を 確実 に速 く 起 こ さ せ る こ と がで き 、 表示欠陥が生 ず る こ と な く 、 高画質で価格的 に優れ た液晶表示装置を実現す る こ と がで き る 。  Therefore, in the liquid crystal display device having the above-described structure, the spray-to-bend alignment transition can be surely performed at a certain position (displacement) within each pixel region where a large number of liquid crystal cells are formed. Clinic line), and can surely cause the orientation transition to occur quickly, resulting in display defects. In addition, it is possible to realize a liquid crystal display device with high image quality and excellent price.
請求項 9 0 記載の発 明は、 請求項 8 9 記載の液晶表示装置 に お い て 、 前記第 1 お よ び第 4 の プ レ チル ト 角 は 3 度以下で あ り 、 前記第 2 お よ び第 3 の プ レ チ ル ト 角 は 4 度以上で あ る こ と を特徴 と す る 。 前記構成 と す る こ と に よ り 、 前記第 2 お よ び第 4 の プ レ チル ト 角 と 前記第 1 お よ び第 4 の プ レ チル ト 角 と の 比 を 大 き く す る こ と が で き 、 前記比 を 大 き く す る こ と に よ っ て 、 周 囲 よ り 歪みの エ ネ ル ギ ー が更 に高いデ ィ ス ク リ ネ ー シ ヨ ン 線を形成す る こ と がで き 、 ス プ レ ィ 配向 か ら ベ ン ド 配 向への転移時間 を さ ら に短縮す る こ と が可能 と な る 。  The invention according to claim 90 is the liquid crystal display device according to claim 89, wherein the first and fourth pretilt angles are 3 degrees or less and the second and fourth pre-tilt angles are 3 degrees or less. The third pre-tilt angle is not less than 4 degrees. With this configuration, the ratio between the second and fourth pretilt angles and the first and fourth pretilt angles can be increased. By increasing the ratio, the energy of distortion is higher than the surroundings, thereby forming a higher discrimination line. This makes it possible to further reduce the transition time from the spray orientation to the bend orientation.
請求項 9 1 記載の発明は、 請求項 8 9 記載の液晶表示装置 に お い て 、 前記上下配向膜の配向処理 さ れ る 方 向 は、 前記画素電極 に 沿 う 信号電極線 ま た は ゲー ト 電極線 に対 して 直角で あ る こ と を 特徴 と す る 。 In the invention according to claim 91, in the liquid crystal display device according to claim 89, the direction in which the upper and lower alignment films are subjected to the alignment treatment is along the pixel electrode. It is characterized by being perpendicular to the signal electrode line or the gate electrode line.
前記構成 と す る こ と に よ り 、 液晶層 内 の液晶分子の配向状態方 向 に横電界.印加部か ら 略直交方 向 に横電界が印加 さ れ る た め、 該横電 界 に よ り 液晶分子がね じ れ る 力 を 受け、 従 っ て、 デ ィ ス ク リ ネ ー シ ヨ ン線 に お い て 転移核が発生 し、 迅速 に ス プ レ イ 配向か ら ベ ン ド 配 向への配 向 の転移 を行 う こ と がで き る 。  According to the above configuration, a horizontal electric field is applied in the direction of the alignment state of the liquid crystal molecules in the liquid crystal layer. The liquid crystal molecules are subjected to the twisting force, and thus the transition nuclei are generated in the disk-shaped line, and the liquid crystal molecules are quickly shifted from the bend orientation to the bend. The transfer of the direction to the direction can be performed.
請求項 9 2 記載の発明は、請求項 8 9 記載の液晶表示装置お いて 、 前記配向膜の配向処理 さ れ る 方 向は、 前記画素電極 に沿 う 信号電極 線 ま た は ゲー ト 電極線 に対 して 直角方 向 か ら 若干ずれて い る こ と を 特徴 と す る 。  The invention according to claim 92 is the liquid crystal display device according to claim 89, wherein the direction of the alignment treatment of the alignment film is a signal electrode line or a gate electrode line along the pixel electrode. It is characterized in that it is slightly deviated from the right angle direction.
前記配 向膜の配向処理方 向 を 、 前記信号電極線 ま た は ゲー ト 電極 線 に対 して 直角 方 向 か ら 若干ずれ る よ う に す る こ と に よ っ て 、 前記 デ ィ ス ク リ ネ ー シ ョ ン線 に対 して信号電極線 ま た は ゲ一 ト 電極線か ら の横電界が斜め に 印加 さ れ る こ と と な る の で、 ス プ レ イ 配向 し た 液晶分子 に ね じれ る 力 が加わ る こ と と な る の で、 ベ ン ド 配 向へ の 転 移が し易 く な る 。  The orientation processing direction of the orientation film is slightly deviated from a direction perpendicular to the signal electrode line or the gate electrode line, so that the disc is formed. Since the horizontal electric field from the signal electrode line or the gate electrode line is applied obliquely to the crys- nation line, the display is oriented in the spray orientation. Since a twisting force is applied to the liquid crystal molecules, the transition to the bend configuration is facilitated.
請求項 9 3 記載の発明は、 請求項 8 9 記載の液晶表示装置 に お い て 、 前記第 2 の 電圧は 、 そ の周波数が 0 . 1 H z か ら 1 0 0 H z の 範囲で あ り 、 且つ第 2 の電圧 の デュ ーテ ィ 一比は 1 : 1 か ら 1 0 ◦ 0 : 1 の範囲で あ る 、 ノ ルス 状の電圧で あ る こ と を 特徴 と す る 。 前記の よ う なパ ルス 状の第 2 の電圧 を 印加 し、 電圧印加期間 と 電 圧 を 印加 し な い期間 を 交互 に繰 り 返す こ と に よ り 、 液晶分子が揺動 さ れて転移 し易い状態 と な り 、 従 っ て 、 ス プ レ イ 配向 し た液晶分子 がベ ン ド 配 向へ転移す る 。 な お、 前記周波数お よ びデュ ーテ ィ ー比 を上記範囲 に規制 す る の は、 ス プ レ イ 配向 か ら ベ ン ド 配向へ の 転移 領域を拡大す る た めで あ る 。 The invention according to claim 93 is the liquid crystal display device according to claim 89, wherein the second voltage has a frequency in a range of 0.1 Hz to 100 Hz. And a duty ratio of the second voltage is in the range of 1: 1 to 10 ° 0: 1, and is characterized in that the voltage is a noisy voltage. By applying the pulse-like second voltage as described above and repeating the voltage application period and the period in which no voltage is applied alternately, the liquid crystal molecules are oscillated and transferred. Thus, the liquid crystal molecules in the splay alignment are transferred to the bend alignment. The frequency and duty ratio are controlled within the above ranges because the transition from the spray orientation to the bend orientation is performed. This is to expand the area.
請求項 9 4 記載の発明は、 請求項 8 9 記載の液晶表示装置 に お い て 、 前記ア レ ー基板に形成さ れて い る ゲー ト 電極線は、 前記初期化 処理の期間 中 の 少な く と も 大部分 にお い て ハ イ 状態で あ る こ と を 特 徴 と す る 。  The invention according to claim 94 is the liquid crystal display device according to claim 89, wherein the gate electrode line formed on the array substrate has a small number of electrodes during the initialization process. It is characterized by a high state, most of the time.
前記デ ィ ス ク リ ネ 一 シ ョ ン線領域は周 囲 よ り 歪み のエネ ル ギー が 高 く な つ て お り 、 こ の状態 に、 画素電極の横 に 配置 さ れて い る ゲー ト 電極線か ら も 前記デ ィ ス ク リ ネ ー シ ヨ ン線 に横電界が印加 さ れ る こ と と な る の で、 更 に エ ネ ルギーが与え ら れて ス プ レ イ 配向 か ら ベ ン ド 配向へ速 く 転移す る 。  The energy of the distortion is higher in the disk line area than in the surrounding area, and in this state, the gate is arranged beside the pixel electrode. Since a lateral electric field is also applied to the above-mentioned discretion line from the electrode wire, further energy is given and the spray orientation is changed. Rapid transition to bend orientation.
請求項 9 5 記載の発明は 、 請求項 8 9 記載の液晶表示装置 に お い て 、 前記画素電極お よ び前記共通電極の 内面側 に形成さ れた配向膜 の う ち 、少な く と も 一方 の配向膜の一部の領域に紫外線を 照射 し て 、 該配向膜にお け る 液晶 の プ レ チル ト 角 を 変化 さ せて 配向分割 さ れ た 液晶セ ル を 有 す る こ と を 特徴 と す る 。  The invention according to claim 95 is the liquid crystal display device according to claim 89, wherein at least one of the alignment films formed on the inner surface side of the pixel electrode and the common electrode is provided. By irradiating a partial area of one of the alignment films with ultraviolet light to change the pre-tilt angle of the liquid crystal in the alignment film, it is possible to have a liquid crystal cell which is divided by alignment. Features.
前記配向膜の 一部の領域 に 紫外線 を 照射す る こ と に よ り 、 紫外線 が照射 さ れた領域の 配 向膜の表面が改質 さ れ、 改質 さ れた配向膜 に お け る 液晶 の プ レ チル ト 角 を 小 さ い値 と す る こ と がで き る 。 な お 、 紫外線の照射 に よ っ て、 配 向膜に おけ る 液晶 の プ レ チル ト 角 が小 さ く な る の は、 現在明 ら か と な っ て い な い が、 配 向膜表面に存在 す る 側鎖が紫外線 に よ っ て 切断 さ れ る た め と 考 え ら れて い る 。 こ の よ う に し て 、 紫外線照射に よ り 、 配 向分割 さ れ た液晶セ ルを容易 に形成 す る こ と がで き る 。  By irradiating the partial region of the alignment film with ultraviolet light, the surface of the alignment film in the region irradiated with the ultraviolet light is modified, and the modified alignment film is formed. The pre-tilt angle of the liquid crystal can be set to a small value. It is not clear at present that the pretilt angle of the liquid crystal in the alignment film is reduced by the irradiation of ultraviolet light, but it is not clear yet. It is thought that the side chain present in the nucleoside is cleaved by ultraviolet light. In this way, it is possible to easily form a directionally divided liquid crystal cell by irradiating ultraviolet rays.
請求項 9 6 記載の発明は、 請求項 8 9 記載の液晶表示装置 にお い て 、 前記画素電極お よ び前記共通電極の一部 の領域 に オ ゾ ン雰囲気 下で紫外線 を 照!? して 、 該画素電極お よ び共通電極の う ち 、 少 な く と も 一方の電極の 一部の領域を平坦化処理 し た後、 前記画素電極お よ び共通電極上 に配向膜を塗布焼成 して 、 前記配向膜にお け る 液晶 の プ レ チル ト 角 を 変化 さ せて配向分割 さ れた 液晶セ ル を有 す る こ と を 特徴 と す る 。 The invention according to claim 96 is the liquid crystal display device according to claim 89, wherein the pixel electrode and a part of the common electrode are irradiated with ultraviolet rays in an ozone atmosphere! ? Therefore, at least one of the pixel electrode and the common electrode is used. After partially planarizing one of the electrodes, an alignment film is applied and baked on the pixel electrode and the common electrode, and the liquid crystal pre-tilt angle in the alignment film is obtained. It is characterized by having a liquid crystal cell whose orientation is divided by changing the liquid crystal cell.
前記画素電極お よ び前記共通電極の 一部の領域に オ ゾ ン雰囲気下 で紫外線 を 照射す る こ と に よ っ て 、 画素電極お よ び共通電極の表面 を 平坦化す る こ と がで き 、 従 っ て 、 画素電極お よ び共通電極上 に 、 配向膜を 塗布す る こ と に よ り 、 該配向膜にお け る 液晶の プ レ チ ル ト 角 を 変化 さ せ配向分割 さ れた液晶セ ル を形成す る こ と が容易 に で き る 。  By irradiating the pixel electrode and a part of the common electrode with ultraviolet light in an ozone atmosphere, the surface of the pixel electrode and the common electrode can be flattened. Accordingly, by applying an alignment film on the pixel electrode and the common electrode, the tilt angle of the liquid crystal in the alignment film is changed to perform alignment division. It is easy to form a liquid crystal cell having a good shape.
請求項 9 7 記載の 発明 は、 画素電極 を 有 す る ア レ ー基板 と 共通電 極 を 有 す る 対向基板 と の 間 に配置 さ れた液晶層上下界面の液晶 の プ レ チ ル ト 角 が正負 逆で、 互い に 平行 に配向処理さ れた ス プ レ イ 配 向 の液晶セ ル を 有 し て お り 、 前記液晶セ ルは 同一画素 内 に互 い に 隣接 す る 第 1 の液晶セ ル領域 と 第 2 の液晶セ ル領域 と を 有 し、 前記第 1 の液晶セ ル領域は、 前記ア レ ー基板の液晶層側 の界面 にお け る 液 晶 の第 1 プ レ チル ト 角 が、 前記対向基板の液晶層側の界面に お け る 液 晶の 第 2 プ レ チ ル ト 角 よ り も 小 さ く な る よ う に配向処理 さ れ、 前記 第 2 の液晶セ ル領域は、 前記対向基板の液晶層側の界面に お け る 液 晶の第 4 の プ レ チル ト 角 が、前記第 2 の プ レ チル ト 角 よ り も 小 さ く 、 かつ 前記 ア レ ー基板の 液晶層側の界面 に お け る 液晶 の第 3 の プ レ チ ル ト 角 よ り も 小 さ く な る よ う に配向処理 さ れて お り 、 電圧無印加 時 に は前記液晶層 はス プ レ イ 配向 と な っ てお り 、 液晶表示駆動に先立 つ て 、 電圧印加 に よ り ス プ レ イ 配向か ら ベ ン ド 配向 に転移 さ せ る 初 期化処理が行わ れ、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆 動を 行 う 液晶表示装置 に お け る 前記ス プ レ イ 配向 か ら ベ ン ド 配向 に 配向 転移 さ せ る た め の駆動方法であ っ て 、 前記画素電極 と 前記共通 電極 と の 間に第 1 の 電圧 を 印加する こ と に よ り 、 第 1 の液晶セ ル領 域で は液晶分子 を b —ス プ レ イ 配向 さ せ る と と も に、 第 2 の液晶セ ル領域で は液晶分子 を t ース プ レ イ 配向 さ せて 、 前記第 1 の液晶セ ル領域 と 前記第 2 の液晶セ ル領域 と の境界付近に おい て デ ィ ス ク リ ネ ー シ ヨ ン線 を形成 し、 前記画素電極 と前記共通電極 と の 間 に第 1 の電圧 よ り も 高い第 2 の電圧 を 印加 し、 前記第 1 の液晶セ ル領域 と 前記第 2 の液晶セ ル領域 と の境界付近のデ ィ ス ク リ ネ ー シ ョ ン 線 に おい て 転移核 を 発生 さ せ、 ス プ レ イ 配向か ら ベ ン ド 配向へ転移 さ せ る こ と を特徴 と す る 。 The invention according to claim 97 is a liquid crystal layer having an upper and lower interface between a liquid crystal layer disposed between an array substrate having a pixel electrode and a counter substrate having a common electrode. The liquid crystal cell has a display orientation in which the liquid crystal cells are aligned in the opposite directions and are aligned in parallel with each other, and the liquid crystal cell is the first liquid crystal adjacent to each other in the same pixel. A cell region and a second liquid crystal cell region, wherein the first liquid crystal cell region is a first pretilt of a liquid crystal at an interface on the liquid crystal layer side of the array substrate. The second liquid crystal cell is subjected to an alignment treatment so that an angle is smaller than a second pretilt angle of a liquid crystal at an interface on the liquid crystal layer side of the counter substrate. In the region, the fourth pre-tilt angle of the liquid crystal at the interface on the liquid crystal layer side of the counter substrate is the second pre-tilt angle. Orientation treatment so as to be smaller than the tilt angle and smaller than the third pretilt angle of the liquid crystal at the interface on the liquid crystal layer side of the array substrate. When no voltage is applied, the liquid crystal layer is in a spray orientation, and prior to driving the liquid crystal display, the liquid crystal layer is shifted from the spray orientation by applying a voltage. The liquid crystal display device performs an initializing process for transitioning to a liquid crystal display orientation and performs liquid crystal display driving in the initialized bend alignment state. To bend orientation A driving method for causing an alignment transition, wherein a first voltage is applied between the pixel electrode and the common electrode, whereby a liquid crystal is formed in the first liquid crystal cell region. The molecules are aligned in the b-spray orientation, and the liquid crystal molecules are aligned in the second liquid crystal cell region in the t-spray orientation, so that the first liquid crystal cell region and the second liquid crystal cell region are aligned. A disk line is formed near the boundary with the second liquid crystal cell region, and a second line higher than the first voltage is provided between the pixel electrode and the common electrode. And generating a transition nucleus at a disk line near a boundary between the first liquid crystal cell region and the second liquid crystal cell region. It is characterized by a transition from play orientation to bend orientation.
前記方法 と す る こ と に よ り 、 前記液晶表示装置 に お いて は、 ス プ レ イ — ペ ン ド 配向転移 を液晶セ ルの多数形成 し た各画素領域内で確 実に 一定の場所 (デ ィ ス ク リ ネ ー シ ヨ ン線付近) で起 こ さ せ る こ と がで き 、 ま た 、 デ ィ ス ク リ ネ ー シ ヨ ン線付近は、 周 囲 よ り 歪み の ェ ネ ル ギ一が高い の で 、 転移核が確実に発生 す る 。 従 っ て 、 配向転移 を確実に速 く 起 こ さ せ る こ と がで き、 表示欠陥が生 ずる こ と な く 、 画質の優れた液晶表示が可能 と な る 。  According to the above-mentioned method, in the liquid crystal display device, the spray-pending alignment transition can be surely performed at a certain position (in each pixel region where a large number of liquid crystal cells are formed). (In the vicinity of the disk line), and in the vicinity of the disk line, the distortion is higher than in the surrounding area. Because of the high energy, metastasis nuclei are reliably generated. Therefore, it is possible to surely cause the orientation transition to occur quickly, to prevent a display defect from occurring, and to realize a liquid crystal display with excellent image quality.
請求項 9 8 記載の発明 は、 画素電極を 有 す る ア レ ー基板 と 共逋電 極 を 有 す る 対向基板の 間 に配置 さ れた液晶層上下界面の液晶の プ レ チル ト 角 が正負逆で、 互い に平行 に配向処理 さ れた ス プ レ イ 配向 の 液晶セ ル を有 し、 電圧無印加時には前記液晶層はス プ レ イ 配向 と な つ て お り 、 液晶表示駆動 に先立 っ て、 電圧 印加 に よ り ス プ レ イ 配 向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理が行わ れ、 こ の初期化 さ れ た ベ ン ド 配向状態で液晶表示駆動を行 う ァ ク テ ィ ブマ ト リ ッ ク ス 型 の液晶表示装置の製造方法 に お いて 、 前記液晶セ ル の 一画素内 の一 部の領域 に お い て 、 前記ア レ ー基板の液晶層側 の界面 に お け る 液晶 の第 1 の プ レ チル ト 角 が、 前記対向基板の液晶層側の界面 にお け る 液晶 の第 2 の プ レ チ ル ト 角 よ り も 小 さ く な る よ う に配向処理 を 行 つ て第 1 の液晶セル領域を形成 し、前記一画素内 の他 の領域にお い て、 前記対向基板の液晶層側 の界面 にお け る 液晶 の第 4 の プ レ チル ト 角 が、 前記第 2 の プ レ チル ト 角 よ り も 小 さ く 、 かつ前記ァ レ -基板の液 晶層側の界面 に お け る 液晶 の第 3 の プ レ チル ト 角 よ り も 小 さ く な る よ う に配向処理 を 行 っ て第 2 の液晶セ ル領域を形成す る 、 配向処理 工程 を含む こ と を 特徴 と す る 。 The invention according to claim 98 is characterized in that the tilt angle of the liquid crystal at the upper and lower interfaces of the liquid crystal layer disposed between the array substrate having the pixel electrode and the opposing substrate having the common electrode is reduced. The liquid crystal cell has a liquid crystal cell of a display orientation which is oriented in a direction opposite to that of the liquid crystal and is aligned in parallel with each other. When no voltage is applied, the liquid crystal layer has a display orientation of a liquid crystal display. Prior to this, an initialization process is performed to change from the spray orientation to the bend orientation by applying voltage, and the liquid crystal display is driven in this initialized bend orientation state. In a method of manufacturing an active matrix type liquid crystal display device, the method of manufacturing the active matrix type liquid crystal display device includes the steps of: Liquid crystal at the interface on the liquid crystal layer side The orientation treatment is performed so that the first pre-tilt angle of the liquid crystal becomes smaller than the second pre-tilt angle of the liquid crystal at the interface on the liquid crystal layer side of the counter substrate. A first liquid crystal cell region is formed, and a fourth pretilt angle of the liquid crystal at an interface on the liquid crystal layer side of the counter substrate is formed in another region within the one pixel. The second pretilt angle is smaller than the second pretilt angle, and is smaller than the third pretilt angle of the liquid crystal at the liquid crystal layer side interface of the array substrate. And a second liquid crystal cell region formed by performing an alignment process so as to form a second liquid crystal cell region.
前記方法 と す る こ と に よ り 、 画素内 に b — ス プ レ イ 配向領域 と t ー ス プ レ イ 配 向領域が形成さ れ、 そ の境界 に デ ィ ス ク リ ネ ー シ ヨ ン 線が明瞭 に形成さ れ る 。 こ のデ ィ ス ク リ ネ ー シ ヨ ン線付近は、 前述 し た よ う に、 周 囲 よ り 歪みのエネ ルギー が高い の で、 転移核が確実 に発生す る 。 従 っ て 、 配向転移 を確実 に速 く 起 こ さ せ る こ と がで き る 液晶表示装置 を実現で き る 。  According to the above-described method, a b-spray alignment region and a t-spray alignment region are formed in a pixel, and a disk region is formed at the boundary. The lines are clearly formed. As described above, since the distortion energy is higher in the vicinity of the disk-line as described above, a transition nucleus is surely generated. Therefore, it is possible to realize a liquid crystal display device capable of surely causing the alignment transition quickly.
請求項 9 9 記載の 発明は、 請求項 9 8 記載の液晶表示装置の製造 方法 にお いて 、 前記配向処理工程は、 前記ア レ ー基板上 に形成 さ れ た画素電極お よ び前記対向基板上 に形成さ れた共通電極の 内面側 に 形成 さ れ た配向膜の、 一画素 内 の 一部 の領域 に紫外線を照射 して 、 液晶 の プ レ チ ル ト 角 を 変化 さ せて、 前記第 1 の液晶セ ル領域 と 前記 第 2 の液晶セ ル領域 と を形成す る 工程で あ る こ と を 特徴 と す る 。  The invention according to claim 99, according to the method for manufacturing a liquid crystal display device according to claim 98, wherein the alignment treatment step comprises: forming a pixel electrode formed on the array substrate and the counter substrate. By irradiating a part of the region within one pixel of the alignment film formed on the inner surface side of the common electrode formed thereon with ultraviolet light to change the tilt angle of the liquid crystal, The method is characterized in that the step is a step of forming a first liquid crystal cell region and the second liquid crystal cell region.
前記配 向膜の 一部の領域に紫外線を 照射す る こ と に よ り 、 紫外線 が照射 さ れた領域の配向膜の表面が改質 さ れ、 改質 さ れた配向膜 に おけ る 液晶 の プ レ チル ト 角 を小 さ い値 と す る こ と がで き る 。  By irradiating a part of the alignment film with ultraviolet light, the surface of the alignment film in the area irradiated with ultraviolet light is modified, and the liquid crystal in the modified alignment film is modified. The pre-tilt angle can be set to a small value.
請求項 1 0 0 記載の発明は、 請求項 9 8 記載の 液晶表示装置の製 造方法 に お い て 、 前記配向処理工程は、 前記 ア レ ー基板上 に形成 さ れた画素電極お よ び前記対向電極上に形成 さ れた 共通電極の 、 一画 素 内 の一部の領域 に オ ゾ ン雰囲気下で紫外線 を照射 して、 前記画素 電極お よ び前記共通電極の 一部の領域を 平坦化処理 し、 前記画素電 極お よ び前記共通電極上 に配向膜を塗布焼成 して 、 該配向膜に お け る 液晶の プ レ チル ト 角 を 変化 さ せて、 前記第 1 の液晶セ ル領域 と 前 記第 2 の液晶セ ル領域 と を形成す る工程で あ る こ と を特徴 と す る 。 前記方法 と す る こ と に よ り 、 画素電極お よ び共通電極の う ち 、 少 な く と も 一方 の電極の一部の領域を 平坦化 す る こ と がで き 、従っ て 、 画素電極お よ び共通電極上 に、 配向膜を 塗布 す る こ と に よ り 、 該配 向膜 に お け る 液晶 の プ レ チル ト 角 を 変化 さ せ配向 分割 さ れた液晶 セ ル を有す る 液晶表示装置 を得 る こ と がで き る 。 The invention according to claim 100 is the manufacturing method of a liquid crystal display device according to claim 98, wherein the alignment treatment step includes a step of forming a pixel electrode and a pixel electrode formed on the array substrate. A portion of the common electrode formed on the counter electrode; UV light is applied to a partial area of the element under an ozone atmosphere to planarize the pixel electrode and a partial area of the common electrode, and the pixel electrode and the common electrode are planarized. An alignment film is applied and baked on the alignment film to change the pre-tilt angle of the liquid crystal in the alignment film, so that the first liquid crystal cell region and the second liquid crystal cell region are separated from each other. It is characterized in that it is a forming process. According to the above method, at least a part of one of the pixel electrode and the common electrode can be flattened. By coating an alignment film on the electrode and the common electrode, the liquid crystal cell in which the alignment angle is changed by changing the pre-tilt angle of the liquid crystal in the alignment film is provided. It is possible to obtain the following liquid crystal display device.
請求項 1 0 1 記載の発明は、 請求項 1 記載の液晶表示装置 に お い て、 前記複数の液晶領域 を液晶層内 に発現 さ せ る 手段が薄膜 ト ラ ン ジ ス 夕 部 に形成さ れ る こ と を 特徴 と す る 。 図 面 の 簡 単 な 説 明 図 1 はベ ン ド 配 向型の 0 C B セ ル を備 え た液晶表示装置の一部分 を 示 す斜視図 で あ る 。  The invention according to claim 101 is the liquid crystal display device according to claim 1, wherein the means for causing the plurality of liquid crystal regions to be expressed in a liquid crystal layer is formed in a thin film transistor region. It is characterized by the fact that BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a part of a liquid crystal display device provided with a bend-oriented 0CB cell.
図 2 はス プ レ イ 配向 か ら ベ ン ド 配向へ転移す る 様子 を説明す る 液 晶セ ルの 断面図で あ る 。  Figure 2 is a cross-sectional view of a liquid crystal cell illustrating the transition from the spray orientation to the bend orientation.
図 3 は本発明の実施の形態 1 に係 る 液晶表示装置の駆動法 に よ る 画素単位の構成概念図 で あ る 。  FIG. 3 is a conceptual diagram of a pixel unit by a driving method of the liquid crystal display device according to the first embodiment of the present invention.
図 4 は本発 明の 実施の形態 1 で使用 し た 配向転移用電圧波形図 で あ る 。  FIG. 4 is a voltage waveform diagram for orientation transition used in Embodiment 1 of the present invention.
図 5 は本発 明 の 実施の形態 1 に お け る バ イ ァ ス 電圧 と 転移時間 の 関係 図 で あ る 。  FIG. 5 is a diagram showing the relationship between the bias voltage and the transition time according to the first embodiment of the present invention.
図 6 は本発 明の実施の形態 2 に係 る 液晶表示装置 の駆動法 に よ る 画素単位の構成概念図 で あ る 。 FIG. 6 shows a driving method of the liquid crystal display device according to the second embodiment of the present invention. FIG. 2 is a conceptual diagram of a configuration in a pixel unit.
図 7 は本発明の実施の形態 2 で使用 し た配 向転移用電圧波形図 で あ る 。  FIG. 7 is a voltage waveform diagram for the orientation transition used in the second embodiment of the present invention.
図 8 は本発 明の実施の形態 2 に お け る バ イ ァス 電圧 と 転移時間 の 関係 図で あ る 。  FIG. 8 is a diagram showing the relationship between the bias voltage and the transition time according to the second embodiment of the present invention.
図 9 は本発明の実施の形態 3 に係 る 液晶表示装置 の駆動法 に よ る 画素単位の構成概念図で あ る 。  FIG. 9 is a conceptual diagram of a pixel unit based on a driving method of a liquid crystal display device according to Embodiment 3 of the present invention.
図 1 0 は 本発明の実施の形態 3 で使用 し た配向転移用電圧波形図 で あ る 。  FIG. 10 is a voltage waveform diagram for orientation transition used in Embodiment 3 of the present invention.
図 1 1 は本発明の実施の形態 3 にお け る バ イ ア ス 電圧 と 転移時間 の 関係 図 で あ る 。  FIG. 11 is a diagram showing the relationship between the bias voltage and the transition time according to the third embodiment of the present invention.
図 1 2 は本発明の実施の形態 4 に係 る 液晶表示装置の駆動法 に よ る 画素単位 の構成概念図で あ る 。  FIG. 12 is a conceptual diagram of a configuration in a pixel unit by a driving method of a liquid crystal display device according to a fourth embodiment of the present invention.
図 1 3 は 本発明の実施の形態 4 に係 る 液晶表示装置の通常駆動電 圧波形図で あ る 。  FIG. 13 is a normal drive voltage waveform diagram of the liquid crystal display device according to Embodiment 4 of the present invention.
図 1 4 は 本発明の実施の形態 4 で使用 し た 配向転移用 電圧波形図 で あ る 。  FIG. 14 is a voltage waveform diagram for orientation transition used in Embodiment 4 of the present invention.
図 1 5 は 本発明の実施の形態 5 で使用 し た配向転移用 電圧波形図 で あ る 。  FIG. 15 is a voltage waveform diagram for orientation transition used in the fifth embodiment of the present invention.
図 1 6 は 本発明の実施の形態 7 に係 る 液晶表示装置の概略断面図 で あ る 。  FIG. 16 is a schematic sectional view of a liquid crystal display device according to Embodiment 7 of the present invention.
図 1 7 は 本発明の実施の形態 7 に係 る 液晶表示装置の概略平面 図 で あ る 。  FIG. 17 is a schematic plan view of a liquid crystal display device according to Embodiment 7 of the present invention.
図 1 8 は本発明 の実施の形態 7 に係 る 液晶表示装置の製造方法 を 示す図で あ る 。  FIG. 18 is a diagram illustrating a method of manufacturing a liquid crystal display device according to Embodiment 7 of the present invention.
図 1 9 は本発明の実施の形態 8 に係 る 液晶表示装置 を示 す図で あ り 、 図 1 9 ( a ) は液晶表示装置の概略断面図、 図 1 9 ( b ) は液 晶表示装置の概略平面図で あ る 。 FIG. 19 is a diagram showing a liquid crystal display device according to Embodiment 8 of the present invention. FIG. 19 (a) is a schematic sectional view of the liquid crystal display device, and FIG. 19 (b) is a schematic plan view of the liquid crystal display device.
図 2 0 は本発 明の実施の形態 9 に係 る 液晶表示装置の構成 を 概念 的 に示 し た 図 で あ り 、 図 2 0 ( a ) は液晶表示装置の概略平面図 、 図 2 0 ( b ) は液晶表示装置の概略断面図で あ る 。  FIG. 20 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 9 of the present invention. FIG. 20 (a) is a schematic plan view of the liquid crystal display device. (b) is a schematic sectional view of the liquid crystal display device.
図 2 1 は本発明の実施の形態 9 に係 る 液晶表示装置の構成 を概念 的 に示 し た 図 で あ る 。  FIG. 21 is a diagram conceptually showing the configuration of a liquid crystal display device according to Embodiment 9 of the present invention.
図 2 2 は本発明の実施の形態 9 に係 る 液晶表示装置の他の例 を 示 す図で あ る 。 '  FIG. 22 shows another example of the liquid crystal display device according to Embodiment 9 of the present invention. '
図 2 3 は 本発 明の実施の形態 1 0 に係 る 液 晶 表示装置の構成 を 概念的 に示 し た 図で あ り 、 図 2 3 ( a ) は液晶表示装置 の概略平面 図、 図 2 3 ( b ) は液晶表示装置の概略断面図、 図 2 3 ( c ) は他 の例 の液晶表示装置の概略断面図、 図 2 3 ( d ) は他の例 の液晶表 示装置の概略断面図 で あ る 。  FIG. 23 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 10 of the present invention, and FIG. 23 (a) is a schematic plan view of the liquid crystal display device. 23 (b) is a schematic sectional view of the liquid crystal display device, FIG. 23 (c) is a schematic sectional view of another example of the liquid crystal display device, and FIG. 23 (d) is a schematic view of another example of the liquid crystal display device. It is a cross-sectional view.
図 2 4 は本発明の実施の形態 1 1 に係 る 液晶表示装置 の構成 を 概 念的 に 示 し た 図で あ り 、 図 2 4 ( a ) は液晶表示装置の概略平面図、 図 2 4 ( b ) は電界の歪み を 示す概略図で あ る 。  FIG. 24 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 11 of the present invention. FIG. 24 (a) is a schematic plan view of the liquid crystal display device. 4 (b) is a schematic diagram showing the electric field distortion.
図 2 5 は本発明の実施の形態 1 2 に係 る 液晶表示装置の構成 を概 念的 に示 し た 図で あ り 、 図 2 5 ( a ) は液晶表示装置の概略断面図、 図 2 5 ( b ) は概略平面図 で あ る 。  FIG. 25 is a diagram conceptually showing the configuration of the liquid crystal display device according to Embodiment 12 of the present invention. FIG. 25 (a) is a schematic sectional view of the liquid crystal display device. 5 (b) is a schematic plan view.
図 2 6 は本発明の実施の形態 1 3 に係 る 液晶表示装置 の 断面構成 を概念的 に 示す図で あ る 。  FIG. 26 is a diagram conceptually showing a cross-sectional configuration of the liquid crystal display device according to Embodiment 13 of the present invention.
図 2 7 は本発 明 に係わ る 液晶表示装置の実施の形態 1 3 , 1 4 の ガ ラ ス基板上 に形成 さ れた 凸形状物の製造 プ ロ セ ス を 説明す る た め の 図で あ る 。  FIG. 27 is a view for explaining a process of manufacturing a convex-shaped object formed on a glass substrate according to the embodiments 13 and 14 of the liquid crystal display device according to the present invention. It is a figure.
図 2 8 は本発 明 に係わ る 図 2 7 に続 く 凸形状物の製造 プロ セ ス を 説明 す る た め の図で あ る 。 Figure 28 shows the process of manufacturing a convex object following Figure 27, which is related to the present invention. This is a diagram for explanation.
図 2 9 は本発明の実施の形態 1 3 に用 い た基板の ラ ビ ン グ方 向 を 示す図で あ る 。  FIG. 29 is a diagram showing the rubbing direction of the substrate used in Embodiment 13 of the present invention.
図 3 0 は本発明 に係 わ る 実施の形態 1 4 の構成外観図で あ る 。 図 3 1 は本発明 に係わ る 実施の形態 1 4 の平面図 で あ る 。  FIG. 30 is a configuration external view of Embodiment 14 according to the present invention. FIG. 31 is a plan view of an embodiment 14 according to the present invention.
図 3 2 は本発明の実施の形態 1 5 に係 る 液晶表示装置 に備 え ら れ る 液晶セ ルの構成外観図 で あ る 。  FIG. 32 is a configuration external view of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 15 of the present invention.
図 3 3 は本発明の実施の形態 1 5 に係 る 液晶セ ル の 凸形状物の製 造 プ ロ セ ス を説明す る た め の 図で あ る 。  FIG. 33 is a view illustrating a process for manufacturing a convex-shaped liquid crystal cell according to Embodiment 15 of the present invention.
図 3 4 は発明の実施の形態 1 6 に係 る 液晶表示装置 に備 え ら れ る 液晶セ ルの 断面構成 を 概念的 に示す図 で あ る 。  FIG. 34 conceptually shows a sectional configuration of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 16 of the present invention.
図 3 5 は本発明の実施の形態 1 6 に係 る 液晶セ ル に用 い た透明電 極のノ 夕 一 ン を 概念的 に 示 す図で あ る 。  FIG. 35 is a diagram conceptually showing the concept of a transparent electrode used for a liquid crystal cell according to Embodiment 16 of the present invention.
図 3 6 は発明 の実施の形態 1 7 に係 る 液晶表示装置 に備え ら れ る 液晶セ ルの要部断面図 で あ る 。  FIG. 36 is a cross-sectional view of a main part of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 17 of the present invention.
図 3 7 は図 3 6 の一部 の拡大図 で あ る 。  FIG. 37 is an enlarged view of a part of FIG.
図 3 8 は本発明の実施の形態 1 8 に係 る 液晶表示装置 に備え ら れ る 液晶セ ルの要部断面図 で あ る 。  FIG. 38 is a cross-sectional view of a principal part of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 18 of the present invention.
図 3 9 は本発 明の 実施の形態 1 8 に係 る 液晶表示装置 に備え ら れ る 液晶セ ルで の 光学素子の配置 を 説明す る た め の 図 で あ る 。  FIG. 39 is a diagram for explaining the arrangement of optical elements in a liquid crystal cell provided in the liquid crystal display device according to Embodiment 18 of the present invention.
図 4 0 は本発明の 実施の形態 1 8 に係 る 液晶表示装置 に備 え ら れ る 液晶セ ルの 電圧 一 透過率特性 を 示す図で あ る 。  FIG. 40 is a diagram illustrating a voltage-transmittance characteristic of a liquid crystal cell provided in the liquid crystal display device according to Embodiment 18 of the present invention.
図 4 1 は図 4 1 ( a ) は モ ジ ニ アヌ 配向 を示す模式図 ( a ) で あ り 、 図 4 1 ( b ) は ベ ン ド 配 向 を 示す模式図 ( b ) で あ る 。  FIG. 41 is a schematic diagram (a) showing the Modianian orientation in FIG. 41 (a), and FIG. 41 (b) is a schematic diagram (b) showing the bend orientation in FIG.
図 4 2 は液晶層の デ ィ レ ク タ ー を示す図で あ る 。  FIG. 42 is a diagram showing the director of the liquid crystal layer.
図 4 3 は C R 等価 回路 を 示 す図 で あ る 。 図 4 4 は時間 と と も に増加す る 外部電場下で の液晶の配向角 j) の時間変化 を 示す図で あ る 。 Fig. 43 shows a CR equivalent circuit. Figure 44 shows the temporal change of the orientation angle j) of the liquid crystal under an external electric field that increases with time.
図 4 5 はス プ レ イ 弾性定数 ( k ll) と 臨界電場 ( E c ) と の 関係 を 示 す図で あ る 。  Figure 45 shows the relationship between the Spray elastic constant (kll) and the critical electric field (Ec).
図 4 6 は プ レ チル ト 角 の絶対値の差 と 臨界電場 ( E c ) と の 関係 を示す図で あ る 。  Figure 46 shows the relationship between the absolute value of the pretilt angle and the critical electric field (Ec).
図 4 7 は電場の不均一性 ( E 1/ E 0) と 臨界電場 ( E c ) と の 関 係 を 示す図で あ る 。  Figure 47 shows the relationship between the electric field inhomogeneity (E1 / E0) and the critical electric field (Ec).
図 4 8 は本実施の形態 2 0 一 1 の係 る 液晶表示装置の配向状態 を 示す概念図で あ る 。  FIG. 48 is a conceptual diagram showing an alignment state of the liquid crystal display device according to the present embodiment 201-11.
図 4 9 は段差 5 1 0 を 有 す る 基板 5 1 1 の斜視図で あ る 。  FIG. 49 is a perspective view of a substrate 511 having a step 510.
図 5 0 は ラ ビ ン グ繊維の長 さ に分布 を持 っ た ラ ビ ン グ布 5 1 1 a の拡大図で あ る 。  FIG. 50 is an enlarged view of the rubbing cloth 511a having distribution in the length of the rubbing fiber.
図 5 1 は本実施の形態 2 0 — 3 にお け る ア レ イ 配線 に よ る ラ ビ ン グの影 を 示 し た 概念図で あ る 。  FIG. 51 is a conceptual diagram showing shadows of rubbing due to the array wiring in the present embodiment 20-3.
図 5 2 は配向膜の塗布装置 を 示 す図で あ る 。  FIG. 52 is a diagram showing a coating device for the alignment film.
図 5 3 は印刷版 5 3 0 の表面の部分拡大平面図で あ る 。  FIG. 53 is a partially enlarged plan view of the surface of the printing plate 530.
図 5 4 は 印刷版 5 3 0 の表面 の部分拡大断面図 で あ る 。  FIG. 54 is a partially enlarged cross-sectional view of the surface of the printing plate 530.
図 5 5 は本実施の形態 2 1 — 2 の係 る 液晶表示装置の電気力線分 布 と 液晶の配向状態を 示 す概念図で あ り 、 図 5 5 ( a ) は 電気力線 分布図で あ り 、 図 5 5 ( b ) は液晶の配向状態 を 示 す図で あ る 。  FIG. 55 is a conceptual diagram showing the distribution of electric force lines and the orientation of the liquid crystal of the liquid crystal display device according to Embodiment 21-2. FIG. 55 (a) is a distribution diagram of electric force lines. FIG. 55 (b) shows the orientation of the liquid crystal.
図 5 6 は本実施の形態 2 1 ― 1 に係 る 液晶表示装置 の駆動波形図 で あ る 。  FIG. 56 is a driving waveform diagram of the liquid crystal display device according to the present embodiment 21-1.
図 5 7 は本実施の形態 2 1 一 2 に係 る 液晶表示装置の構造 を 示 す 概念図で お り 、 図 5 7 ( a ) は従来例の 画素構造 を 示す図で あ り 、 図 5 7 ( a ) は 画素 の 凹 凸構造 を 示す 図で あ り 、 図 5 7 ( b ) は画 素の 凹 凸構造の 変形例 を 示す図で あ り 、 図 5 7 ( c ) は画素の 凹 凸 構造の 変形例 を 示す図 で あ り 、 図 5 7 ( d ) は画素の凹 凸構造の他 の変形例 を 示す図で あ り 、 図 5 7 ( e ) は画素の 凹凸構造の他の 変 形例 を 示す図で あ り 、 図 5 7 ( f ) は画素の 凹 凸構造の他の 変形例 を示 す図で あ る 。 FIG. 57 is a conceptual diagram showing the structure of the liquid crystal display device according to the present embodiment 211, and FIG. 57 (a) is a diagram showing the pixel structure of the conventional example. 7 (a) is a diagram showing the concave and convex structure of the pixel, and FIG. 57 (b) is an image. FIG. 57 (c) is a diagram showing a modified example of the pixel concave-convex structure, and FIG. 57 (c) is a diagram showing a modified example of the pixel concave-convex structure. FIG. 57 (e) is a diagram showing another modification, and FIG. 57 (e) is a diagram showing another modification of the pixel concavo-convex structure, and FIG. 57 (f) is another diagram of the pixel concavo-convex structure. It is a figure which shows a modification.
図 5 8 は本実施の形態 2 2 に 係 る 液晶表示装置の要部断面図 で あ る 。  FIG. 58 is a cross-sectional view of a principal part of the liquid crystal display device according to Embodiment 22.
図 5 9 は本実施の形態 2 2 に係 る 液晶表示装置の 画素電極付近 の 平面図 で あ る 。  FIG. 59 is a plan view of the vicinity of the pixel electrode of the liquid crystal display device according to Embodiment 22.
図 6 0 は本実施の形態 2 3 に係 る 液晶表示装置の 動作 を 示す概念 図で あ る 。  FIG. 60 is a conceptual diagram showing the operation of the liquid crystal display device according to Embodiment 23.
図 6 1 は本実施の形態 2 3 - 1 に係 る 液晶表示装置の転移電圧波 形を 示す概念図で あ る 。  FIG. 61 is a conceptual diagram showing a transition voltage waveform of the liquid crystal display device according to the present embodiment 23-1.
図 6 2 は補助電極層 5 7 1 の形状を 示す平面図で あ る 。  FIG. 62 is a plan view showing the shape of the auxiliary electrode layer 571.
図 6 3 は補助電極層 5 7 1 の他の形状 を 示 す平面図 であ る 。  FIG. 63 is a plan view showing another shape of the auxiliary electrode layer 571.
図 6 4 は実施の形態 2 3 - 2 に係 る 液晶表示装置の.転移電圧波形 を 示す概念図 で あ る 。  FIG. 64 is a conceptual diagram showing a transition voltage waveform of the liquid crystal display device according to Embodiment 23-2.
図 6 5 は実施の形態 2 3 - 3 に係 る 液晶表示装置の転移電圧波形 を 示 す概念図 で あ る 。  FIG. 65 is a conceptual diagram showing a transition voltage waveform of the liquid crystal display device according to Embodiment 23-3.
図 6 6 は実施の形態 2 4 に係 る ス ぺーサ を 説明 す る た め の基板平 面図 で あ り 、 図 6 6 ( a ) は従来例の ス ぺーサ を 示 す図で あ り 、 図 6 6 ( b ) は本発明 の ス ぺーサ を 示す図 で あ る 。  FIG. 66 is a plan view of a board for explaining a spacer according to the embodiment 24, and FIG. 66 (a) is a view showing a conventional spacer. FIG. 66 (b) shows a spacer of the present invention.
図 6 7 は実施の形態 2 4 に係 る ス ぺーサ を 説明す る た め の基板断 面図 で あ る 。  FIG. 67 is a cross-sectional view of a substrate for describing a spacer according to Embodiment 24.
図 6 8 は従来例 の 断面図 で あ る 。 発明を 実施す る た めの最良 の形態 FIG. 68 is a cross-sectional view of the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
本発明 は、 ベ ン ド 配向型の 0 C B セ ル を備え た液晶表示装置 にお いて 、 以下 に 述べ る ス プ レ イ 配向か ら ベ ン ド 配向へ の転移 メ カ ニズ ム に着 目 した 結果得 ら れた も の で あ る 。 従 っ て、 先 ず、 該転移メ カ ニズム に つ い て詳細 に説明 し た後、 本発明の具体的 内容を 実施の形 態を用 い て説明す る こ と に す る 。  The present invention focuses on a mechanism for transition from spray alignment to bend alignment described below in a liquid crystal display device having a bend alignment type 0 CB cell. It is the result of the above. Therefore, first, the transfer mechanism will be described in detail, and then the specific contents of the present invention will be described by using embodiments.
図 1 はベ ン ド 配向型の 0 C B セ ル を備 え た液晶表示装置の 一部分 を示 す斜視図 で あ る 。 図 1 を参照 して 、 ベ ン ド 配向型の O C B セ ル を備 え た液晶表示装置の構成を簡単 に説明す る と 、 相互 に 平行配置 し た基板 1 0 と 1 1 と の 間 に、 液晶分子 1 2 を含む液晶層 1 3 が揷 入 さ れて い る 。 図 に は示 さ な い が、 基板 1 0, 1 1 の相互 に 対向 す る 表面 に は、そ れぞれ液晶層 1 3 に電界 を 印加す る た めの表示電極、 及び液晶分子 の配向 を規制す る た めの配向膜が形成 さ れて い る 。 上 記配 向膜は図 に示 す よ う に基板界面付近の液晶分子 1 2 を 約 5 ~ 7 度 プ レ チル ト し、 基板面 内 に お け る 配向方位が相互 に 同 じ 方 向 に、 すな わ ち 平行配向 に な る よ う に配向処理 さ れて い る 。 基板 1 0 , 1 1 表面か ら 離れ る に従 っ て液晶分子 1 2 は徐々 に 立 ち 上が り 、 液晶 層 1 3 の厚 さ 方 向 の ほぼ中央 に お いて液晶分子の チル ト 角 が 9 0 度 に な る ベ ン ド 配向 と な る 。 基板 1 0 , 1 1 の外側 に は、 偏光板 1 5, 1 6 と 光学補償板 1 7, 1 8 が配置 さ れ、 .上記 2 枚の偏光板 1 5 , 1 6 は、 偏光軸が相互 に 直交あ る い は平行 に配置 さ れ、 そ の偏光軸 と液晶分子の 配向 方位 と は 4 5 度の角 度 に な る よ う 配置 さ れて い る そ して 、 高電圧 を 印加 し た オ ン状態 と 低電圧 を 印加 し た オ フ 状態 と の液晶層 の屈折率異方性の差 を 利用 して 、 上記偏光板、 光学補償板 を 通 し て そ の偏光状態 を 変化 さ せ光の透過率 を 制御 し て表示 さ せ る こ と に な る 。 上記のベ ン ド 配向型 の 0 C B セ ルを備え た液晶表示装置は、 使用 前に は液晶層 がス プ レ イ 配向 と な っ て い る た め、 液晶表示駆動 に 先 立 っ て 電圧印加 に よ り 液晶層 を ス プ レ イ 配 向状態か ら ベ ン ド 配向状 態に転移 さ せて お く 必要があ る 。 FIG. 1 is a perspective view showing a part of a liquid crystal display device provided with a bend alignment type 0 CB cell. Referring briefly to FIG. 1, the configuration of a liquid crystal display device having a bend-aligned OCB cell can be briefly described as follows: substrates 10 and 11 arranged in parallel with each other A liquid crystal layer 13 containing liquid crystal molecules 12 is inserted. Although not shown in the figure, the display electrodes for applying an electric field to the liquid crystal layer 13 and the alignment of the liquid crystal molecules are respectively provided on the opposing surfaces of the substrates 10 and 11. An alignment film has been formed to regulate the temperature. As shown in the figure, the orientation film pre-tilts the liquid crystal molecules 12 near the substrate interface by about 5 to 7 degrees, and the orientation directions in the substrate surface are the same as each other. That is, the alignment treatment is performed so as to be a parallel alignment. The liquid crystal molecules 12 gradually rise as they move away from the surfaces of the substrates 10 and 11, and the tilt angle of the liquid crystal molecules is almost at the center of the liquid crystal layer 13 in the thickness direction. The bend orientation becomes 90 degrees. Polarizing plates 15 and 16 and optical compensating plates 17 and 18 are arranged outside the substrates 10 and 11, respectively. The polarization axis and the orientation of the liquid crystal molecules are arranged at an angle of 45 degrees, and a high voltage is applied. By utilizing the difference in the refractive index anisotropy of the liquid crystal layer between the on state and the off state to which a low voltage is applied, the polarization state is changed through the polarizing plate and the optical compensator. The light transmittance is controlled and displayed. In the liquid crystal display device having the above-described bend alignment type 0 CB cell, since the liquid crystal layer is in a spray alignment before use, the voltage is set prior to driving the liquid crystal display. It is necessary to change the liquid crystal layer from the spray orientation state to the bend orientation state by the application.
か か る 配向転移の た め転移臨界電圧以上 の高電圧 を 印加 し た 場合 に お け る 液晶層 の ス プ レ イ 配向 か ら ベ ン ド 配向へ転移す る 配 向転移 の メ カ ニ ズム を 図 2 に模式的 に示す。  The mechanism of the orientation transition from the splay orientation to the bend orientation of the liquid crystal layer when a high voltage higher than the transition critical voltage is applied due to the orientation transition. Figure 2 schematically shows this.
図 2 は、 2 枚の基板を平行配向配置 し た場合の、 液晶分子 を模式 的 に 図示 して液晶分子配列 を概念的 に 示 し た液晶セ ルの 断面図 で あ る 。  FIG. 2 is a cross-sectional view of a liquid crystal cell schematically illustrating liquid crystal molecules and conceptually illustrating a liquid crystal molecule arrangement when two substrates are arranged in parallel alignment.
図 2 ( a ) は初期 の ス プ レ イ 配列状態を 示す。 基板間 が無電界時 に は、 液晶層 1 3 の 中央の液晶分子 1 2 の長軸は基板面 に ほぼ平行 に な る エネ ル ギ ー状態の低い ス プ レ イ 配向状態 を と つ て い る 。 こ こ で、 説明の便宜上、 基板 に平行な液晶分子 を参照符号 1 2 a で 示 す こ と に す る 。  Figure 2 (a) shows the initial state of the spray arrangement. When no electric field is applied between the substrates, the long axis of the liquid crystal molecules 12 in the center of the liquid crystal layer 13 assumes a low energy-oriented spray alignment state in which the liquid crystal molecules 12 are almost parallel to the substrate surface. . Here, for convenience of explanation, liquid crystal molecules parallel to the substrate are denoted by reference numeral 12a.
次 に 図 2 ( b ) は、 基板 1 0 , 1 1 に形成 さ れた電極 ( 図示せ ず ) 間 に高い 電圧 を 印加開始 し た 時の液晶分子配列状態 を 示 す。 液晶層 1 3 中 の 中央の液晶分子 1 2 は電界に よ り 若干傾斜 し始め、 そ の 結 果、 基板面 に平行 に 向 い た液晶分子 1 2 a は一方 の基板面 ( 図 で は 基板 1 1 側へ) 側 に 向 か っ て 移動 して 行 く 。  Next, FIG. 2 (b) shows a liquid crystal molecule alignment state when a high voltage is started to be applied between electrodes (not shown) formed on the substrates 10 and 11. The liquid crystal molecules 12 in the center of the liquid crystal layer 13 begin to slightly tilt due to the electric field, and as a result, the liquid crystal molecules 12a oriented parallel to the substrate surface are on one substrate surface (in the figure, the substrate 1 Go to the 1) side.
次 に 図 2 ( c ) は、 電圧 を 印加後、 更 に時間が経過 し た と き の液 晶分子配列状態 を 示す。 液晶層 1 3 の 中央の液晶分子 1 2 が基板面 に 対 し て 更 に傾斜 して 、 こ れ に 対 して 、 基板面 に ほぼ平行 に 向 い た 液晶分子 1 2 a は基板界面近傍に来て 、 配向膜か ら の強い規制 力 を 受け る 。  Next, FIG. 2 (c) shows the state of the liquid crystal molecular arrangement when a further time has elapsed after the voltage was applied. The liquid crystal molecules 12 in the center of the liquid crystal layer 13 are further inclined with respect to the substrate surface, and the liquid crystal molecules 12 a which are oriented substantially parallel to the substrate surface are near the substrate interface. And receive strong regulatory power from the alignment film.
次 に 図 2 ( d ) は、 ベ ン ド 配向へ転移 し た 一段 と エネ ル ギー状態 の高い液晶分子配列状態を示す。 液晶層 1 3 の 中央の液晶分子 1 2 は基板面 に対 して 垂直 に な り 、 基板 1 0 上の配向膜 ( 図示せず) 界 面 に接 し た液晶分子は、 配向膜か ら 強い規制力 を 受けて、 傾斜配 向 状態 を 維持 し、 こ の と き 図 2 ( a ) 〜 ( c ) に存在 し た基板面 に 平 行 に 向 い た液晶分子 1 2 a は ほぼ無 く な る 。 Next, Fig. 2 (d) shows the energy state after the transition to the bend orientation. Liquid crystal molecule alignment state is high. The liquid crystal molecules 12 at the center of the liquid crystal layer 13 are perpendicular to the substrate surface, and the liquid crystal molecules in contact with the alignment film (not shown) on the substrate 10 are stronger than the alignment film. In response to the regulation force, the liquid crystal molecules 12a are maintained in the inclined orientation state, and the liquid crystal molecules 12a oriented parallel to the substrate surface as shown in FIGS. 2 (a) to 2 (c) are almost eliminated. .
図 2 ( d ) よ り 更に 時間が経過す る と 、 上記配向状態は基板間で 図 1 に示すベ ン ド 配向状態へ移行 して 転移は完了 す る 。  When the time further elapses than in FIG. 2 (d), the above-mentioned alignment state shifts between the substrates to the bend alignment state shown in FIG. 1 and the transfer is completed.
こ の よ う に 、 電圧を 印加 し た時に起 き る ス プ レ イ 配向か ら ベ ン ド 配向へ転移 す る 状況が上述の様 に 考え ら れ る 。  As described above, the situation where the transition from the spray orientation to the bend orientation occurs when a voltage is applied is considered as described above.
し か し、 こ れが起 き る 場所は通常、 基板面内 の液晶層全体で 一度 に起 き る こ と はな く 、 配向領域の一部 の部分で エネ ル ギ ー の移動が し易い 部分で あ り 、 通常、 間隙 に分散 さ れた ス ぺ一サ周 囲部分や、 配向 ム ラ 部な どで 転移核は発生 し、 そ こ か ら ベ ン ド 配向領域が広が る 。 従 っ て、 O C B セ ル におい て 配向転移 さ せ る た め に は、 基板面 内 の液晶層 の 少 な く と も 一部 の領域に転移核 を 発生 さ せ る こ と と 、 外部か ら エネ ル ギ ー を与え て ス プ レ イ 配向状態 よ り エ ネ ル ギーの高 いベ ン ド 配向状態へ遷移 さ せて こ れ を 維持 さ せて お く 必要があ る 。  However, this does not usually occur all at once in the entire liquid crystal layer in the substrate plane, and the energy can easily move in a part of the alignment region. Generally, transition nuclei are generated in the peripheral portion of the spacer dispersed in the gap and in the orientation uneven portion, and the bend orientation region is expanded from there. Therefore, in order to perform the orientation transition in the OCB cell, it is necessary to generate transition nuclei in at least a part of the liquid crystal layer in the substrate plane and to make the transition from the outside. It is necessary to maintain the energy by giving energy to transition from the splay alignment state to the high energy bend alignment state.
こ の よ う な 配向転移の メ カ ニ ズ ム を 考慮 し た 結果、 本発明者等 は 転移核 を 確実 に 発生 さ せ、 かつ極めて 短時間で転移 を完 了 さ せ る 液 晶表示装置及 びそ の製造方法、 並びに液晶表示装置の駆動方法 を 完 成す る に至 っ た 。 具体的 な 内容 を 、 実施の形態 に基づ いて 説明 す る 。  As a result of considering such a mechanism of the orientation transition, the present inventors have found that a liquid crystal display device capable of reliably generating a transition nucleus and completing the transition in an extremely short time. A method for manufacturing the same and a method for driving a liquid crystal display device have been completed. Specific contents will be described based on the embodiments.
( 実施の形態 1 )  (Embodiment 1)
図 3 は本発明の実施の形態 1 に 係 る 液晶表示装置の駆動法 に よ る 画素単位の構成概念図 を 示 す。 先 ず、 図 3 を参照 し て、 本実施の形 態 1 に係 る 駆動方法 に関連す る 液晶表示装置 の構成を説明す る 。 本 実施の形態 1 に 係 る 液晶表示装置は、 駆動回路部 を 除い た構成 に 関 して 、 一般的 な 0 C B セ ル を備 え た液晶表示装置 と 同一の構成 を 有 して い る 。 即 ち 、 一対の ガ ラ ス 基板 2 0 , 2 1 と 、 ガ ラ ス 基板 2 0 , 2 1 間 に挟持 さ れた液晶層 2 6 と を有す る 。 ガ ラ ス基板 2 0 , 2 1 は、 一定の 間隔 を 隔て て 対 向配置 さ れて い る 。 ガ ラ ス基板 2 0 の 内 側面 に は、 I T 0 の透明電極か ら な る 共通電極 2 2 が形成 さ れ、、 ガ ラ ス基板 2 1 の 内側面 に は、 I T 0 の透明電極か ら な る 画素電極 2 3 が形成 さ れて い る 。 上記共通電極 2 2 及び画素電極 2 3 上 に は、 ポ リ イ ミ ド 膜か ら な る 配向膜 2 4 , 2 5 が形成 さ れて お り 、 こ の 配 向膜 2 4 , 2 5 は配向方 向 が互い に平行方 向 に な る よ う に配向処理 さ れて い る 。 そ して 、 配向膜 2 4 , 2 5 間 に は、 P型の ネ マ テ イ ツ ク 液晶か ら な る 液晶層 2 6 が挿入さ れて い る 。 ま た、 配向膜 2 4 ,FIG. 3 shows a conceptual diagram of a pixel unit by a driving method of the liquid crystal display device according to the first embodiment of the present invention. First, the configuration of the liquid crystal display device related to the driving method according to the first embodiment will be described with reference to FIG. The liquid crystal display device according to the first embodiment has a configuration excluding a driving circuit portion. Thus, it has the same configuration as a liquid crystal display device having a general 0 CB cell. That is, it has a pair of glass substrates 20 and 21 and a liquid crystal layer 26 sandwiched between the glass substrates 20 and 21. The glass substrates 20 and 21 are arranged facing each other at a fixed interval. A common electrode 22 composed of a transparent electrode of IT0 is formed on the inner surface of the glass substrate 20, and a transparent electrode of IT0 is formed on the inner surface of the glass substrate 21. A pixel electrode 23 is formed. On the common electrode 22 and the pixel electrode 23, alignment films 24 and 25 made of a polyimide film are formed, and the alignment films 24 and 25 are The orientation treatment is performed so that the orientation directions are parallel to each other. A liquid crystal layer 26 made of a P-type nematic liquid crystal is inserted between the alignment films 24 and 25. Also, the alignment film 24,
2 5 上の液晶分子の プ レ チル ト 角 は約 5 度 に設定 さ れて お り 、 ス プ レ イ 配 向 か ら ベ ン ド 配 向へ転移す る 臨界電圧 は 2 . 5 V に 設定 さ れ て い る 。 光学補償板 2 9 の リ タ一デ一 シ ヨ ン はオ ン状態時 に 白 あ る い は黒表示 と な る よ う に選択 さ れて い る 。 な お、 図 3 にお い て 、 2 7 , 2 8 は偏光板で あ る 。 The pretilt angle of the liquid crystal molecules on 25 is set to about 5 degrees, and the critical voltage for transition from the spray configuration to the bend configuration is set to 2.5 V. It has been. The retardation of the optical compensator 29 is selected so as to display white or black when turned on. Note that, in FIG. 3, 27 and 28 are polarizing plates.
ま た、 図 中 、 3 0 は配向転移用駆動回路で あ り 、 3 1 は液晶表示 用駆動回路で あ る 。 ま た、 3 2 a , 3 2 b はス イ ッ チ 回路で あ り 、 In the figure, reference numeral 30 denotes a drive circuit for alignment transition, and reference numeral 31 denotes a drive circuit for liquid crystal display. Also, 32a and 32b are switch circuits, and
3 3 は ス ィ ヅ チ 回路 3 2 a , 3 2 b の ス ィ ヅ チ ン グ態様の切換え を 制御す る ス ィ ッ チ制御回路で あ る 。 前記ス ィ ッ チ 回路 3 2 a は、 2 つ の個別接点 P I , P 2 , と 、 1 つ の共通接点 Q 1 を備 え て お り 、 前記ス イ ッ チ 回路 3 2 b は、 2 つ の個別接点 P 3 , P 4 と 、 1 つ の 共通接点 Q 2 を備 え て い る 。 共通接点 Q 1 は、 ス ィ ッ チ制御 回路 3 3 か ら の ス イ ッ チ切換信号 S 1 に応 じ て 、 個別接点 P I , P 2 の 何 れか に接続 し た状態 と な る 。 同様 に共通接点 Q 2 は、 ス ィ ッ チ制御 回路 3 3 か ら の ス イ ッ チ切換信号 S 2 に応 じて 、 個別接点 P 3 , P 4 の何れか に接続 し た状態 と な る 。 共通接点 Q 1 が個別接点 P 1 に 接続 さ れ且つ共通接点 Q 2 が個別接点 P 3 に接続さ れた状態で は、 配向転移用駆動回路 3 0 か ら の駆動電圧が電極 2 2, 2 3 に 印加 さ れ る こ と にな る 。 ま た、 共通接点 Q 1 が個別接点 P 2 に接続 さ れ且 つ共通接点 Q 2 が個別接点 P 4 に接続 さ れた状態で は、 液晶表示用 駆動回路 3 3 か ら の駆動電圧が電極 2 2 , 2 3 に 印加 さ れ る こ と に な る 。 Reference numeral 33 denotes a switch control circuit for controlling switching of the switching modes of the switch circuits 32a and 32b. The switch circuit 32a is provided with two individual contacts PI, P2, and one common contact Q1, and the switch circuit 32b is provided with two switches. It has individual contacts P 3, P 4 and one common contact Q 2. The common contact Q1 is connected to any of the individual contacts PI and P2 in response to the switch switching signal S1 from the switch control circuit 33. Similarly, in response to the switch switching signal S 2 from the switch control circuit 33, the common contact Q 2 is connected to the individual contacts P 3, P It will be in the state of being connected to any of 4. When the common contact Q 1 is connected to the individual contact P 1 and the common contact Q 2 is connected to the individual contact P 3, the drive voltage from the orientation transition drive circuit 30 is applied to the electrodes 22, 2. 3 will be applied. When the common contact Q1 is connected to the individual contact P2 and the common contact Q2 is connected to the individual contact P4, the driving voltage from the liquid crystal display driving circuit 33 is applied to the electrodes. It will be applied to 22 and 23.
次い で、 本実施の形態 1 に係 る 駆動方法 に つ いて説明す る 。  Next, a driving method according to the first embodiment will be described.
先ず、 本来の画像信号 に基づ く 液晶表示駆動に先立 っ て、 ベ ン ド 配向への転移 の た め に、 初期化処理を 行 う 。 先ず、 電源投入 に よ り 、 ス イ ッ チ制御 回路 3 3 は、 ス イ ッ チ回路 3 2 a , 3 2 b に ス イ ッ チ 切換え信号 S l , S 2 を 出力 し、 共通接点 Q 1 を個別接点 P 1 に接 続 し且つ共通接点 Q 2 を個別接点 P 3 に接続 し た状態 と す る 。 こ れ に よ り 、 配向転移用駆動回路 3 0 か ら 図 4 に示す駆動電圧が電極 2 2 , 2 3 間 に 印加 さ れ る 。 こ の駆動電圧は、 図 4 に 示す よ う に交流 矩形波電圧 A がバ イ ア ス 電圧 B と 重畳 さ れた交流電圧で あ り 、 し か も 駆動電圧 の値は、 ス プ レ イ 配向 か ら ベ ン ド 配向への転移を 発生 さ せ る た め に 必要な最小 の電圧で あ る 臨界電圧 よ り も 大 き い電圧値 に 設定 さ れて い る 。 こ の よ う な駆動電圧の 印加 に よ り 、 単純な 交流電 圧 を 印加 す る 従来例 よ り も 格段 に転移時間 を短 く す る こ と が可能 と な る 。 な お、 転移時間が短 く な る 理 由 につ い て は後述す る 。 こ う し て 、 ベ ン ド 配向 への転移 に 関す る 初期化処理が完了 す る 。  First, prior to driving a liquid crystal display based on an original image signal, an initialization process is performed for transition to bend alignment. First, when the power is turned on, the switch control circuit 33 outputs switch switching signals S l and S 2 to the switch circuits 32 a and 32 b, and the common contact Q 1 Is connected to the individual contact P 1 and the common contact Q 2 is connected to the individual contact P 3. As a result, the drive voltage shown in FIG. 4 is applied between the electrodes 22 and 23 from the orientation transition drive circuit 30. This drive voltage is an AC voltage in which the AC rectangular wave voltage A is superimposed on the bias voltage B as shown in Fig. 4, and the drive voltage value is still the spray orientation. It is set to a voltage value higher than the critical voltage, which is the minimum voltage required to generate a transition from bend orientation to bend orientation. By applying such a drive voltage, the transition time can be significantly shortened as compared with the conventional example in which a simple AC voltage is applied. The reason why the transfer time is shortened will be described later. In this way, the initialization process regarding the transition to the bend orientation is completed.
次い で、 電極全面が完全に ベ ン ド配向 に転移 す る 転移時間が絰過 す る と 、 ス ィ ツ チ制御 回路 3 3 は共通接点 Q 1 を個別接点 P 2 側 に 切 り 換え る 切換信号 S 1 を ス ィ ツ チ回路 3 2 a に 出力 す る と 共 に 、 共通接点 Q 2 を 個別接点 P 4 側 に切 り 換え る 切換信号 S 2 を ス ィ ッ チ 回路 3 2 b に 出 力 す る 。 こ れに よ り 、 共通接点 Q 1 と個別接点 P 2 と が接続 さ れ、 且つ共通接点 Q 2 と 個別接点 P 4 と が接続 さ れ た 状態 と な り 、 液晶表示用駆動回路 3 1 か ら の駆動信号電圧が電極 2 2 , 2 3 間 に 印加 さ れ、 希望す る 画像が表示 さ れ る こ と に な る 。 こ こ で 、 液晶表示用駆動回路 3 1 は、 3 0 H z の矩形波電圧 2 . 7 V に して ベ ン ド 配 向状態 を 維持 して こ れを オ フ 状態 と し、 3 0 H z の 矩 形波電圧 7 V を オ ン状態 と して、 O C B ノ、' ネ ル を表示 し た 。 Next, when the transition time required for the entire surface of the electrode to completely transition to the bend orientation elapses, the switch control circuit 33 switches the common contact Q 1 to the individual contact P 2. The switching signal S 2 is output to the switch circuit 32 a and the common contact Q 2 is switched to the individual contact P 4, and the switching signal S 2 is switched. Output to switch circuit 32b. As a result, the common contact Q1 and the individual contact P2 are connected, and the common contact Q2 and the individual contact P4 are connected. These drive signal voltages are applied between the electrodes 22 and 23, and a desired image is displayed. At this time, the liquid crystal display drive circuit 31 maintains a bend-oriented state with a rectangular wave voltage of 2.7 V of 30 Hz, turns it off, and turns it off. The square wave voltage 7 V of z was turned on, and OCB No and Nell were displayed.
次い で、 本発明者が、 上記構成の液晶表示装置 を作製 し、 上記駆 動方法で初期化処理 の実験 を 行 っ た の で、 そ の結果 を述べ る 。 な お、 実験条件は 以下 の と お り で あ る 。  Next, the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results are described below. The experimental conditions are as follows.
電極面積 を 2 cm 2 と し、 セ ルギ ヤ ヅ プを 約 δ Λί πι と し、 交流矩形 波電圧 Α の 周波数 を 3 0 H z 、 振幅 を ± 4 V と し た 。 The electrode area was 2 cm 2 , the cell gap was about δΛίπι, the frequency of the AC square wave voltage Α was 30 Hz, and the amplitude was ± 4 V.
上記条件下 に お い て 、 ノ イ ァ ス 電圧 B を 0 V、 2 V、 4 V、 5 V の 4 種類の 電圧 に 設定 し た場合の そ れそれの転移時間 を測定 し た の で、 そ の結果 を 図 5 に示す。 こ こ で 、 転移時間 と は、 電極面積の 全 領域で配向 の転移が完了 す る に要 し た 時間 を意味す る 。  Under the above conditions, when the noise voltage B was set to four types of voltages of 0 V, 2 V, 4 V, and 5 V, the transition time of each was measured. Figure 5 shows the results. Here, the transition time means the time required for the orientation transition to be completed in the entire area of the electrode area.
図 5 よ り 明 ら かな よ う 、 ノ、"ィ ァス 電圧 B が 0 V の と き 、 転移時間 は 1 4 0 秒要 し た 。 こ れに対 して 、 ノ、'ィ ァ ス 電圧 B を 4 V に す る と 、 転移時間は 8 秒 と な っ て短縮で き た。 こ れは、 ノ ィ ァ ス 電圧 の重畳 に よ り 、 バイ アス 電圧 に よ っ て液晶層 の液晶分子配向が揺 さ ぶ ら れ て基板間で 図 2 ( d ) の如 く 片寄 り が生 じ て よ り 多 く の転移核が発 生 し、 更 に 実効電圧の ア ッ プで転移時間が速 く な っ た と も の と 考 え ら れ る 。  As is clear from FIG. 5, when the bias voltage B was 0 V, the transition time required was 140 seconds. On the other hand, when the bias voltage B was 0 V, the bias voltage was zero. When B was set to 4 V, the transition time could be shortened to 8 seconds, because of the superposition of the bias voltage and the liquid crystal molecules in the liquid crystal layer due to the bias voltage. As shown in Fig. 2 (d), the orientation is fluctuated and the substrates are shifted as shown in Fig. 2 (d), so that more transition nuclei are generated and the transition time is further increased by increasing the effective voltage. It is thought that it was gone.
以上の よ う に 、 バイ ア ス 重畳 さ れた交流電圧 を連続印加 す る こ と に よ り 、 単純な 交流電圧印加の場合よ り 、 転移時間 を短縮で き る.。 上記実験例 で は、 交流矩形波電圧信号 は周波数 3 0 H z で , ± 4 V の値で あ つ た が本発明は こ れに 限定 さ れ る も ので はな く 、 液晶 が 動作す る 周波数で あれば よ く 例 え ば 1 0 k H z な どの値で も 良 く , ま た 交流電圧 A の振幅 を増大すれば転移時間は速 く な る こ と は も ち ろ んで あ る 。 こ の と き、 バイ アス 電圧 B を高 く 重畳すればす る ほ ど 速 く な る 。 但 し、 駆動電圧の低電圧化 を考慮すれば、 バイ ア ス 電圧 は希望す る 転移時間 に応 じ た最適な電圧 レ ベル に設定 して こ と が望 ま しい。 ま た , 波形 と して矩形波 を用 い た が, デュ ーテ ィ 比 の異 な る 交流波形 を 用 い て も 良 い。 As described above, by continuously applying the AC voltage with the bias superimposed thereon, the transition time can be reduced as compared with the case of applying the simple AC voltage. In the above experimental example, the AC square wave voltage signal was at a frequency of 30 Hz, ± 4 Although the value of V was used, the present invention is not limited to this, and any value such as 10 kHz may be used as long as it is a frequency at which the liquid crystal operates. Also, it is obvious that the transition time becomes faster if the amplitude of the AC voltage A is increased. At this time, the higher the bias voltage B is superimposed, the higher the speed. However, considering the reduction of the drive voltage, it is desirable to set the bias voltage to an optimal voltage level according to the desired transition time. Although a square wave is used as the waveform, an AC waveform with a different duty ratio may be used.
なお、 参考 ま で に述べ る と 、 交流電圧 を 印加 す る 駆動方法は、 特 開平 9 一 1 8 5 0 3 2 号公報 に 開示 さ れて い る 。 し か し な が ら 、 こ の先行技術で は通常 の正負対称の交流電圧 を 印加 し て い る に す き な い 。 一方、 本発明 は、 バ イ ア ス 電圧 を 交流電圧 に重畳 して 交流電圧 の正負 の対称 を崩 し、 非対称の波形を液晶層 に 印加 して、 液晶分子 の配向 を 乱 して 転移核の 発生 を促 し転移 を促進 しや す く す る こ と を 特徴 と す る も の で あ る 。 当 該先行技術で は、 正負対称の交流電圧 を 印加す る た め、 液晶分子の配向 を 乱す こ と がで き ず、 配向状態の 変 化が途 中 で止 ま っ て し ま い、 転移核が生 じな いお そ れがあ る 。 こ れ に対 し て、 本発明で は、 迅速且つ確実に転移核が発生 す る 。 従 っ て 、 本発明は、 本質的 に 当 該先行技術 と は異な る も の で あ る 。  For reference, a driving method for applying an AC voltage is disclosed in Japanese Patent Application Laid-Open No. Heisei 9-185032. However, in this prior art, an ordinary positive / negative symmetric AC voltage cannot be applied. On the other hand, in the present invention, the bias voltage is superimposed on the AC voltage to break the positive / negative symmetry of the AC voltage, an asymmetric waveform is applied to the liquid crystal layer, and the orientation of the liquid crystal molecules is disturbed. It is characterized by promoting development and facilitating metastasis. In this prior art, since an AC voltage having positive and negative symmetry is applied, the alignment of the liquid crystal molecules cannot be disturbed, and the change of the alignment state is stopped halfway. There is a possibility that nuclear does not occur. On the other hand, in the present invention, transposition nuclei are generated quickly and surely. Therefore, the present invention is essentially different from the prior art.
(実施の形態 2 )  (Embodiment 2)
図 6 は実施の形態 2 に係 る 液晶表示装置の 画素単位の構成概念図 で あ る 。 本実施の形態 2 で は、 バイ ア ス 電圧 を 重畳 し た 交流電圧 を 前記基板間 に 印加 す る 工程 と 、 前記基板間 を 電気的 に 開放状態 ( ォ ー プ ン状態) に す る 工程 と を 交互 に繰 り 返 して 、 液晶層 を ス プ レ イ 配向か ら ベ ン ド 配向 に転移 さ せ る こ と を 特徴 と す る も の で あ る 。  FIG. 6 is a conceptual diagram of a pixel unit of the liquid crystal display device according to the second embodiment. In the second embodiment, a step of applying an AC voltage on which a bias voltage is superimposed is applied between the substrates, and a step of electrically opening (opening) the substrates. Is alternately repeated to change the liquid crystal layer from the spray orientation to the bend orientation.
本実施の形態 2 に係 る 液晶表示装置 に おい て 、 上記実施の形態 1 に係 る 液晶衾示装置 と 同一構成部分に は、 同一の参照符号 を付 し て 説明は省略す る 。 本実施の形態 2 では、 実施の形態 1 の 配向転移用 駆動回路 3 0 、 ス ィ ッ チ 回路 3 2 a 、 及びス ィ ッ チ制御回路 3 2 に 代え て 、 配向転移用 駆動回路 4 0 、 ス ィ ッ チ 回路 4 2 a 、 及びス ィ ツ チ制御回路 4 3 が用 い ら れ る 。 ス ィ ツ チ回路 4 2 a は、 個別接点 P 1 , P 2 に加 え て 個別接点 P 5 を備 え た 3 端子切換ス ィ ツ チ 回路 で あ る 。 こ の ス イ ッ チ 回路 4 2 a の ス イ ッ チ切 り 換え は、 ス イ ッ チ 制御 回路 4 3 に よ り 制御 さ れて い る 。 ま た 、 前記配向転移用駆動回 路 4 0 は、 図 7 に 示 す駆動電圧を基板 2 2 , 2 3 間 に 印加す る 。 こ の駆動電圧は、 図 7 に 示す よ う に 交流矩形波'電圧 C がバイ アス 電圧 D と 重畳 さ れた 交流電圧で あ り 、 しか も 駆動電圧の値は、 ス プ レ イ 配向 か ら ベ ン ド 配向 への転移 を 発生 さ せ る た め に 必要な最小の電圧 で あ る 臨界電圧 よ り も 大 き い 電圧値 に設定 さ れて い る 。 In the liquid crystal display device according to the second embodiment, the first embodiment The same components as those of the liquid crystal display device according to the above are designated by the same reference numerals, and description thereof will be omitted. In the second embodiment, instead of the orientation transition drive circuit 30, the switch circuit 32 a, and the switch control circuit 32 of the first embodiment, an orientation transition drive circuit 40, A switch circuit 42a and a switch control circuit 43 are used. The switch circuit 42a is a three-terminal switching circuit having an individual contact P5 in addition to the individual contacts P1 and P2. The switching of the switch circuit 42 a is controlled by a switch control circuit 43. In addition, the alignment transition drive circuit 40 applies the drive voltage shown in FIG. 7 between the substrates 22 and 23. As shown in FIG. 7, this drive voltage is an AC voltage in which an AC square wave 'voltage C is superimposed on a bias voltage D, and the drive voltage value is different from the spray orientation. The voltage is set to be higher than the critical voltage, which is the minimum voltage required to cause the transition to the bend orientation.
な お、 ス ィ ツ チ 回路 4 2 a の共通接点 Q 1 は、 ス ィ ツ チ制御 回路 4 2 か ら の ス ィ ッ チ切換信号 S 3 に よ り 、 個別接点 P l , P 2 , P 5 の何れか に接続 し た状態 と な る 。 共通接点 Q 1 が個別接点 P 5 に 接続 し た状態で は、 電極 2 2 , 2 3 が配向転移用駆動回路 4 0 か ら 切 り 離 さ れた オ ー プ ン状態 と な る 。 共通接点 Q 1 が個別接点 P 1 に 接続さ れ且つ共通接点 Q 2 が個別接点 P 3 に接続 さ れた状態で は 、 配向転移用駆動回路 4 0 か ら の駆動電圧が電極 2 2 , 2 3 に 印加 さ れ る こ と に な る 。 ま た、 共通接点 Q 1 が個別接点 P 2 に接続 さ れ且 共通接点 Q 2 が個別接点 P 4 に接続さ れた状態で は、 液晶表示用 駆 動回路 3 1 か ら の駆動電圧が電極 2 2 , 2 3 に 印加 さ れ る こ と に な る 。  Note that the common contact Q1 of the switch circuit 42a is connected to the individual contacts Pl, P2, P2 by the switch switching signal S3 from the switch control circuit 42. It will be in the state of being connected to any of 5. When the common contact Q1 is connected to the individual contact P5, the electrodes 22 and 23 are in an open state in which they are separated from the orientation transition drive circuit 40. When the common contact Q 1 is connected to the individual contact P 1 and the common contact Q 2 is connected to the individual contact P 3, the drive voltage from the orientation transition drive circuit 40 is applied to the electrodes 22, 2. 3 will be applied. When the common contact Q1 is connected to the individual contact P2 and the common contact Q2 is connected to the individual contact P4, the drive voltage from the liquid crystal display drive circuit 31 is applied to the electrodes. It will be applied to 22 and 23.
次い で、 本実施の形態 2 に係 る 駆動方法 に つ い て説明す る 。  Next, a driving method according to the second embodiment will be described.
先ず、 本来の 画像信号 に基づ く 液晶表示駆動 に先立 っ て 、 ベ ン ド 配向への転移 の た め に、 初期化処理を 行 う 。 先 ず、 電源投入に よ り 、 ス ィ ヅ チ制御 回路 4 3 は、 ス ィ ツ チ回路 4 2 a に ス ィ ツ チ切換信号 S 3 を 出力 す る と 共 に、 ス ィ ッ チ 回路 3 2 b に ス イ ッ チ切換信号 S 2 を 出力 し、 共通接点 Q 1 と 個別接点 P 1 と を接続状態 と し、 且つ 共通接点 Q 2 と個別接点 P 3 と を接続状態す る 。 こ れに よ り 、 配向 転移用駆動回路 3 0 か ら 図 7 に示す駆動電圧 が電極 2 2 , 2 3 間 に 印加 さ れ る 。 そ し て 、 一定期間 T 2 経過す る と 、 ス ィ ヅ チ制御 回路 4 3 は、 ス イ ッ チ 回路 4 2 a に ス ィ ッ チ切換信号 S 3 を 出力 し、 共 通接点 Q 1 と個別接点 P 5 と を接続状態 と す る 。 こ れに よ り 、 電極 2 2 , 2 3 は、 配向転移用駆動回路 4 0 か ら 切 り 離 さ れて オー プ ン 状態 と な る 。 こ の よ う な オー プ ン状態が期間 W 2 維持さ れ、 こ の ォ — プ ン状態期間 W 2 中、 電極 2 2, 2 3 間は充電保持状態 と な る 。 First, prior to driving the liquid crystal display based on the original image signal, An initialization process is performed to transfer to the orientation. First, when the power is turned on, the switch control circuit 43 outputs the switch switching signal S 3 to the switch circuit 42 a and outputs the switch circuit 3 2. The switch switching signal S2 is output to 2b, the common contact Q1 and the individual contact P1 are connected, and the common contact Q2 and the individual contact P3 are connected. As a result, the drive voltage shown in FIG. 7 is applied between the electrodes 22 and 23 from the orientation transfer drive circuit 30. Then, when a certain period of time T2 has elapsed, the switch control circuit 43 outputs a switch switching signal S3 to the switch circuit 42a to connect the common contact Q1 with the switch Q1. The individual contact P5 is connected to. As a result, the electrodes 22 and 23 are separated from the alignment transition drive circuit 40 to be in an open state. Such an open state is maintained for a period W2, and during this open state period W2, the electrodes 22, 23 are in a charge holding state.
オ ー プ ン状態期間 W 2 経過す る と 、 ス ィ ッ チ制御 回路 4 3 は、 ス ィ ツ チ 回路 4 2 a に ス ィ ツ チ切換信号 S 3 を 出力 し、 共通接点 Q 1 と個別接点 P 1 と を再び接続状態 と す る 。 そ して 、 こ の よ う な配 向 転移用駆動 と オー プ ン状態 と を 交互に繰 り 返 し、 電源投入時か ら一 定期間経過す る と 、 電極全面が完全に ベ ン ド 配向 に 転移す る 。  When the open state period W2 has elapsed, the switch control circuit 43 outputs a switch switching signal S3 to the switch circuit 42a, and the switch control circuit 43 outputs an individual switch signal S3 to the common contact Q1. The contacts P1 and are reconnected. Then, such a drive for the orientation transition and the open state are alternately repeated, and after a certain period of time from when the power is turned on, the entire surface of the electrode is completely oriented. Transfer to.
そ して 、 こ の一定期間経過時に、 ス イ ッ チ制御 回路 4 3 は、 ス ィ ツ チ 回路 4 2 a に ス ィ ツ チ切換信号 S 3 を 出力 す る と 共に 、 ス ィ ヅ チ 回路 3 2 b に ス ィ ッ チ切換信号 S 2 を 出力 し、 共通接点 Q 1 と 個 別接点 P 2 と を接続状態 と し、 且つ共通接点 Q 2 と 個別接点 P と を接続状態す る 。 こ れに よ り 、 液晶表示用駆動回路 3 1 か ら の駆動 信号電圧が電極 2 0 , 2 1 間 に 印加 さ れ、 希望す る 画像が表示 さ れ る こ と に な る 。 こ こ で、 液晶表示用駆動回路 3 1 は、 上記実施の形 態 1 と 同様 に 3 0 H z の 矩形波電圧 2 . 7 V に し て ベ ン ド 配 向状態 を維持 し て こ れ を オ フ 状態 と し、 3 0 H z の矩形波電圧 7 V を オ ン 状態 と して 、 O C B ネ ル を 表示す る 。 Then, after the elapse of this fixed period, the switch control circuit 43 outputs the switch switching signal S 3 to the switch circuit 42 a and simultaneously operates the switch circuit 42. A switch switching signal S2 is output to 32b, the common contact Q1 and the individual contact P2 are connected, and the common contact Q2 and the individual contact P are connected. As a result, the drive signal voltage from the liquid crystal display drive circuit 31 is applied between the electrodes 20 and 21 and a desired image is displayed. In this case, the liquid crystal display drive circuit 31 maintains the bend orientation state with a rectangular wave voltage of 2.7 V of 30 Hz, as in the first embodiment. In the off state, a 30 V square wave voltage of 7 V is turned on. The OCB cell is displayed as the status.
次い で、 本発明者が、 上記構成の液晶表示装置 を作製 し、 上記駆 動方法で初期化処理の実験を 行 っ た ので、 そ の結果 を 述べ る 。 なお、 実験条件は以下 の と お り で あ る 。  Next, the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results will be described. The experimental conditions are as follows.
電極面積 を 2 c m 2 と し、 セ ル ギ ャ ッ プを約 6 〃 m と し、 ノ、-ィ ァ ス 電圧 B を 2 V と し、 交流矩形波電圧 D の周波数及び振幅 を 周波数 3 0 H z 、 ± 4 V と し、 印加時間 T 2 を 2 秒に 固定 し た 。 The electrode area and 2 cm 2, the cell Le formic turbocharger-up to about 6 〃 m, Bruno, - a I § scan voltage B and 2 V, frequency 3 0 the frequency and amplitude of the AC rectangular wave voltage D H z was ± 4 V, and the application time T 2 was fixed at 2 seconds.
上記条件下 に お い て 、 オ ー プ ン状態時間 W 2 を 0 秒、 0 . 2 秒、 2 秒、 3 秒 と 変化 さ せ、 電圧印加状態 と オ ー プ ン状態 と を 交互 に繰 り 返す した と き の転移時間 を 測定 した ので 、そ の結果を 図 8 に示す 。 こ こ で、 転移時間 と は、 電極面積の全領域で配向 の転移が完了 す る に要 し た時間 を 意味す る 。  Under the above conditions, the open state time W2 is changed to 0 seconds, 0.2 seconds, 2 seconds, and 3 seconds, and the voltage applied state and the open state are alternately repeated. The transition time at the time of return was measured, and the result is shown in FIG. Here, the transition time means the time required for the orientation transition to be completed in the entire area of the electrode area.
図 8 よ り 明 ら かな よ う 、 オー プン状態時間 W 2 が 0 秒すな わ ち ノ ィ ァ ス 電圧 を 重畳 し た 交流電圧 を連続 に 印カ卩 し た時 , 転移時間 は 8 0 秒要 し た . こ れ に対 して , オー プン状態時間 W 2 を 0 . 2 秒 と して, 上記バイ ア ス 重畳 さ れた交流電圧 と 交互 に切 り 替 え繰 り 返す と , 転 移時間 は 4 0 秒 と 時間短縮 し た . しか し , オ ー プ ン状態時間 W 2 を 2 秒 と す る と 逆 に転移時間は 4 2 0 秒 と 長 く な り , さ ら に W 2 を 3 秒 と す る と 転移 を 完 了 す る こ と は 出来な か っ た 。  As is clear from Fig. 8, when the open state time W2 is 0 seconds, that is, when the AC voltage on which the noise voltage is superimposed is continuously applied, the transition time is 80 seconds. On the other hand, when the open state time W2 is set to 0.2 second and the switching is repeated alternately with the AC voltage superimposed on the bias, the transfer is performed. However, the time was reduced to 40 seconds, but if the open state time W 2 was set to 2 seconds, on the contrary, the transit time was increased to 42 0 seconds, and W 2 was further reduced. The transition could not be completed in three seconds.
ま た 、 印加時間 T 2 を 0 . 3 秒, オー プ ン状態期間 W 2 を 0 . 3 秒 と し た 以外は上記実験例 と 同一条件で転移時間 を 測定す る と 、 転移 時間は 2 8 秒で あ っ た 。  When the transition time was measured under the same conditions as in the above experimental example except that the application time T 2 was set to 0.3 seconds and the open state period W 2 was set to 0.3 seconds, the transition time was 28%. It was seconds.
ち な み に、 T 2 を 2 秒 に 固定 し、 W 2 を 0 . 1 秒以上、 0 . 5 秒 以下 に 設定 し た 場合、 良好な結果が得 ら れた 。  By the way, good results were obtained when T2 was fixed at 2 seconds and W2 was set between 0.1 and 0.5 seconds.
以上 の よ う にバ イ ァ ス さ れた交流電圧 と オ ー プ ン状態 と を切 り 替 え 繰 り 返え す こ と に よ っ て 、 ス プ レ イ 配向 か ら ベ ン ド 配向への状態 遷移時間が極め て短 く な っ た の は、以下の理 由 に よ る と考え ら れ る 。 即 ち 、 バイ ア ス 重畳 さ れた交流電圧印加で , 液晶層 の液晶分子配向 が揺 さ ぶ ら れて基板間で 図 2 ( d ) の 如 く 片寄 り が生 じ て乱れ、 次 に短い ォ一 プ ン状態への切 り 替 え で転移核が発生 し、 転移時間が速 く な つ た も の と 考 え ら れ る 。 As described above, by switching between the biased AC voltage and the open state, the orientation is changed from the spray orientation to the bend orientation. State It is considered that the transition time became extremely short for the following reasons. Immediately, when the AC voltage with the bias is applied, the alignment of the liquid crystal molecules in the liquid crystal layer fluctuates, causing a bias between the substrates as shown in Fig. 2 (d), which is disturbed. It is considered that transposition nuclei were generated by switching to the open state, and transposition time was shortened.
上記でバイ アス 重畳 さ れた交流電圧 を 印加す る 工程の前か後 に 、 更 に他の電圧信号 を 加 え 、 次 に オープ ン状態 を 入れて も そ の効果 を 得 る こ と がで き る 。  Before or after the step of applying the AC voltage with the bias superimposed above, it is possible to obtain the same effect even if another voltage signal is further applied, and the next open state is entered. Wear .
ま た , バイ ア ス 電圧や交流電圧の電圧値 , 印加時間や オー プン 状 態の維持時間 な どは要望 さ れ る 転移時間 に よ り 選択す る こ と がで き る 。 交流電圧 の 周 波数は液晶が動作す る 周波数で あ れば よ く 、 例 え ば 1 0 k H z な ど ©値で も 良 い。 波形 と して矩形波 を 用 い た が, デ ュ一テ ィ 比の 異な る 交流波形 を 用 いて も 良い 。  In addition, the bias voltage, the voltage value of the AC voltage, the application time and the time for maintaining the open state can be selected according to the required transition time. The frequency of the AC voltage may be a frequency at which the liquid crystal operates, and may be a value such as 10 kHz, for example. Although a square wave is used as the waveform, an AC waveform having a different duty ratio may be used.
(実施の形態 3 )  (Embodiment 3)
図 9 は実施の形態 3 に係 る 液晶表示装置の 画素単位の構成概念図 で あ る 。 本実施の形態 3 で は、 バイ アス 電圧 を重畳 し た 交流電圧 を 前記基板間 に 印加 す る 工程 と 、 前記基板間 に 0 電圧 あ る い は低電圧 を 印加 す る 工程 と を 交互 に繰 り 返 して 、 液晶層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る こ と を特徴 と す る も の で あ る 。  FIG. 9 is a conceptual diagram of a pixel unit of the liquid crystal display device according to the third embodiment. In the third embodiment, a step of applying an AC voltage with a bias voltage superimposed between the substrates and a step of applying a zero voltage or a low voltage between the substrates are alternately repeated. On the other hand, the liquid crystal layer is characterized in that the liquid crystal layer is changed from the spray orientation to the bend orientation.
本実施の形態 3 に 係 る 液晶表示装置 にお い て 、 上記実施の形態 2 に係 る 液晶表示装置 と 同一構成部分に は、 同 一 の参照符号 を付 し て 説明 は省略す る 。 本実施の形態 3 で は、 実施の形態 2 の ス ィ ッ チ 回 路 3 2 b 、 及びス ィ ッ チ制御 回路 4 3 に代 え て 、 ス イ ッ チ 回路 4 2 b 、 及びス ィ ッ チ制御 回路 5 3 が用 い ら れ る 。 ま た 、 本実施の形態 3 で は、 配向 転移用 駆動回路 4 0 に加 え て 、 電極 2 2, 2 3 間 に低 電圧 を 印加す る 配向転移用駆動回路 5 0 が設け ら れて い る 。 前記ス ィ ッ チ 回路 4 2 b は、 個別接点 P 3 , Ρ 4 に加 え て個別接 点 Ρ 6 を備え た 3 端子切換ス ィ ヅ チ回路であ る 。 こ の ス ィ ツ チ 回路 4 2 b の ス ィ ッ チ切 り 換え は、 ス イ ッ チ制御 回路 5 3 に よ り 制御 さ れて い る 。 な お、 ス イ ッ チ 回路 4 2 b の共通接点 Q 2 は、 ス ィ ヅ チ 制御回路 5 3 か ら のス ィ ッ チ切換信号 S 4 に よ り 、 個別接点 P 3 , P 4 , P 6 の何れかに接続 し た状態 と な る 。 In the liquid crystal display device according to the third embodiment, the same components as those of the liquid crystal display device according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted. In the third embodiment, instead of the switch circuit 32 b and the switch control circuit 43 of the second embodiment, a switch circuit 42 b and a switch circuit are used. The switch control circuit 53 is used. Further, in the third embodiment, in addition to the orientation transition drive circuit 40, an orientation transition drive circuit 50 for applying a low voltage between the electrodes 22 and 23 is provided. . The switch circuit 42b is a three-terminal switching circuit having an individual contact point # 6 in addition to the individual contacts P3 and # 4. The switch switching of the switch circuit 42 b is controlled by a switch control circuit 53. The common contact Q2 of the switch circuit 4 2b is connected to the individual contacts P3, P4, P4 by the switch switching signal S4 from the switch control circuit 53. It will be in the state of being connected to any of 6.
共通接点 Q 1 が個別接点 P 1 に接続 さ れ、 且つ共通接点 Q 2 が個 別接点 P 3 に接続さ れた状態で は、 配向転移用駆動回路 4 0 か ら の 駆動電圧 が電極 2 2 , 2 3 に 印加 さ れ る こ と に な る 。 ま た、 共通接 点 Q 1 が個別接点 P 5 に接続 さ れ、 且つ共通接点 Q 2 が個別接点 P 6 に接続 さ れた状態で は、 配向転移用駆動回路 5 0 ら の駆動電圧 が電極 2 2 , 2 3 に 印加 さ れ る こ と に な る 。 更 に、 共通接点 Q 1 が 個別接点 P 2 に接続さ れ且共通接点 Q 2 が個別接点 P 4 に接続 さ れ た状態で は、 液晶表示用駆動回路 3 1 か ら の駆動電圧が電極 2 2 , 2 3 に 印加 さ れ る こ と に な る 。  When the common contact Q 1 is connected to the individual contact P 1 and the common contact Q 2 is connected to the individual contact P 3, the driving voltage from the orientation transition driving circuit 40 is applied to the electrodes 22 2 , 23 will be applied. When the common contact Q 1 is connected to the individual contact P 5 and the common contact Q 2 is connected to the individual contact P 6, the drive voltage from the orientation transition drive circuit 50 is applied to the electrodes. It will be applied to 22 and 23. Further, when the common contact Q 1 is connected to the individual contact P 2 and the common contact Q 2 is connected to the individual contact P 4, the driving voltage from the liquid crystal display driving circuit 31 is applied to the electrode 2. 2 and 23 will be applied.
次いで、 本実施の形態 3 に係 る 駆動方法 につ い て 説明す る 。  Next, a driving method according to the third embodiment will be described.
先 ず、 本来の 画像信号 に基づ く 液晶表示駆動 に先立 っ て 、 ベ ン ド 配向への転移 の た め に 、 初期化処理 を行 う 。 先ず、 電源投入 に よ り 、 ス ィ ツ チ制御 回路 5 3 は、 ス ィ ヅ チ回路 4 2 a に ス ィ ツ チ切換信号 S 3 を 出力 す る と 共に 、 ス ィ ヅ チ 回路 4 2 b に ス ィ ヅ チ切換信号 S 4 を 出 力 し、 共通接点 Q 1 と 個別接点 P 1 と を接続状態 と し、 旦っ 共通接点 Q 2 と 個別接点 P 3 と を接続状態す る 。 こ れ に よ り 、 配 向 転移用駆動回路 4 0 か ら 図 1 0 に 示す駆動電圧 が電極 2 2 , 2 3 間 に 印加 さ れ る 。 そ して 、 一定期間 T 3 経過す る と 、 ス ィ ヅ チ制御 回 路 5 3 は、 ス ィ ヅ チ 回路 4 2 a に ス ィ ッ チ切換信号 S 3 を 出 力 す る と 共 に 、 ス ィ ッ チ回路 4 2 b に ス イ ッ チ切換信号 S 4 を 出力 し、 共 通接点 Q 1 と 個別接点 P 5 と を接続状態 と し、 且つ共通接点 Q 2 と 個別接点 P 6 と を接続状態す る 。 こ れ に よ り 、 配 向転移用駆動 回路 5 0 か ら 図 1 0 に示 す低電圧が電極 2 2 , 2 3 間 に 印加 さ れ る 。 こ の よ う な低電圧印加が、 期間 W 3 維持さ れ る 。 First, prior to driving the liquid crystal display based on the original image signal, an initialization process is performed for transition to the bend alignment. First, when the power is turned on, the switch control circuit 53 outputs the switch switching signal S 3 to the switch circuit 42 a and the switch circuit 42 b. Then, the switch signal S 4 is output to connect the common contact Q 1 and the individual contact P 1, and the common contact Q 2 and the individual contact P 3 are connected. As a result, the drive voltage shown in FIG. 10 is applied between the electrodes 22 and 23 from the direction transition drive circuit 40. Then, when a certain period of time T 3 has elapsed, the switch control circuit 53 outputs the switch switching signal S 3 to the switch circuit 42 a and simultaneously outputs the switch switching signal S 3 to the switch circuit 42 a. The switch switching signal S4 is output to the switch circuit 42b, and both switches are output. The communication contact Q1 and the individual contact P5 are connected, and the common contact Q2 and the individual contact P6 are connected. As a result, the low voltage shown in FIG. 10 is applied between the electrodes 22 and 23 from the driving circuit 50 for direction transition. Such a low voltage application is maintained for the period W3.
次いで、 低電圧印加期間 W 3 経過す る と 、 ス ィ ッ チ制御 回路 5 3 はス ィ ツ チ回路 4 2 a にス ィ ツ チ切換信号 S 3 を 出力 す る と 共 に ス ィ ヅ チ 回路 4 2 b に ス イ ッ チ切換信号 S 4 を 出力 し、 再び、 共通接 点 Q 1 と 個別接点 P 1 と を接続状態 と し且つ共通接点 Q 2 と 個別接 点 P 3 と を接続状態す る 。 そ して 、 こ の よ う な交流電圧印加工程 と 低電圧印加工程を 交互 に繰 り 返 し、 電源投入時か ら 一定期 間経過 す る と 、 電極全面が完全に ベ ン ド 配 向 に転移 す る 。  Next, when the low voltage application period W3 has elapsed, the switch control circuit 53 outputs the switch switching signal S3 to the switch circuit 42a, and switches the switch. A switch switching signal S4 is output to the circuit 42b, and the common contact Q1 and the individual contact P1 are again connected, and the common contact Q2 and the individual contact P3 are connected again. You Such an alternating voltage application process and a low voltage application process are alternately repeated, and after a certain period from power-on, the entire surface of the electrode is completely bent. Transfer.
そ して 、 こ の 一定期間経過時に、 ス ィ ッ チ制御 回路 5 3 は、 ス ィ ツ チ 回路 4 2 a に ス ィ ツ チ切換信号 S 3 を 出力 す る と 共 に 、 ス ィ ッ チ 回路 4 2 b に ス イ ッ チ切換信号 S 4 を 出力 し、 共通接点 Q 1 と 個 別接点 P 2 と を接続状態 と し、 且つ共通接点 Q 2 と 個別接点 P 4 と を接続状態す る 。 こ れ に よ り 、 液晶表示用駆動回路 3 1 か ら の駆動 信号電圧が電極 2 0 , 2 1 間 に 印加 さ れ、 希望す る 画像が表示 さ れ る こ と に な る 。 こ こ で 、 液晶表示用駆動 回路 3 1 は、 上記実施の形 態 1 と 同様 に 3 0 H z の 矩形波電圧 2 . 7 V に し て ベ ン ド 配 向 状態 を維持 して こ れ を オ フ 状態 と し、 3 0 H z の矩形波電圧 7 V を オ ン 状態 と して 、 O C B ノ ネ ル を 表示 す る 。  Then, when this fixed period has elapsed, the switch control circuit 53 outputs the switch switching signal S3 to the switch circuit 42a, and switches the switch circuit 42. The switch switching signal S 4 is output to the circuit 4 2 b, the common contact Q 1 and the individual contact P 2 are connected, and the common contact Q 2 and the individual contact P 4 are connected. . As a result, the drive signal voltage from the liquid crystal display drive circuit 31 is applied between the electrodes 20 and 21, and a desired image is displayed. Here, the liquid crystal display drive circuit 31 sets the rectangular wave voltage of 30 Hz to 2.7 V in the same manner as in the first embodiment, while maintaining the bend orientation state. Turns off, 30V square wave voltage 7 V is turned on, and OCB channel is displayed.
次いで、 本発 明者が、 上記構成の液晶表示装置 を作製 し、 上記駆 動方法で初期化処理の実験 を 行 っ た の で 、 そ の結果 を述べ る 。 な お、 実験条件は以下の と お り で あ る 。  Next, the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results are described below. The experimental conditions are as follows.
電極面積を 2 cm 2 と し、 セ ルギ ャ ッ プを約 6 m と し、 ノヽ"ィ ァ ス 電圧 D を 2 V と し、 交流矩形波電圧 C の周波数及び振幅 を 周波数 3 0 H z 、 ± 4 V と し、 印加時間 T 3 を 1 秒 に 固定 し た。 ま た 、 低電 圧印加期間 W 3 中 の 印加電圧 を 一 2 V の直流電圧 し た。 The electrode area is 2 cm 2 , the cell gap is about 6 m, the nodal voltage D is 2 V, and the frequency and amplitude of the AC square wave voltage C are 3 At 0 Hz, ± 4 V, the applied time T 3 was fixed at 1 second. In addition, the applied voltage during the low voltage application period W3 was a DC voltage of 12 V.
上記条件下 におい て、 低電圧印加期間 W 3 を 変化 させ、 交流電圧 印加状態 と 印加電圧印加状態 と を交互 に繰 り 返す し た と き の 転移時 間 を 測定 し た の で、 そ の結果 を 図 1 1 に示す。  Under the above conditions, the transition time was measured when the low voltage application period W 3 was changed and the alternating voltage application state and the applied voltage application state were alternately repeated.The results were as follows. Is shown in Fig. 11.
図 1 1 よ り 明 ら かな よ う 、 低電圧印加時間が 0 秒すな わ ち バイ ァ ス 電圧 を重畳 し た交流電圧 を 連続に 印加 し た時, 転移時間は約 8 0 秒要 し た . こ れ に対 し て , 低電圧印加時間 W 3 を 0 . 1 秒 と して上記 バイ ァ ス 重畳さ れた交流電圧 と 交互に切 り 替え繰 り 返す と , 転移時 間 は 6 0 秒 と 時間短縮 し た . し か し , 低電圧印加時間 W 3 を 1 秒 と す る と 逆 に転移時間は 3 6 0 秒 と 長 く な り , さ ら に W 3 を 3 秒 と す る と転移 を完了 す る こ と は 出来な か っ た 。  As is clear from Fig. 11, the transition time was about 80 seconds when the low voltage application time was 0 seconds, that is, when the AC voltage with the bias voltage was applied continuously. On the other hand, if the low voltage application time W3 is set to 0.1 second and the voltage is alternately switched with the bias voltage, the transition time is 60 seconds. However, if the low-voltage application time W 3 is set to 1 second, the transition time becomes longer at 360 seconds, and if W 3 is set to 3 seconds, the transition time becomes longer. The transfer could not be completed.
ま た、 ノ、'ィ ァ ス 電圧 を 2 V 重畳 し た交流電圧 ± 4 V と 直流電圧 0 V と の切 り 替え繰 り 返 しで は最短で 5 0 秒内で 転移 が完 了 し た 。 ま た 、 ノ イ ァ ス 2 V重畳 し た 交流電圧 ± 4 V と 交流低電圧 ± 2 V と の 切 り 替 え繰 り 返 しで は最短で 5 0 秒以内 の転移時間 が得 ら れた 。  In addition, the transition was completed within 50 seconds at the minimum by repeatedly switching between AC voltage ± 4 V with the bias voltage superimposed by 2 V and DC voltage 0 V. . In addition, the switching time between the AC voltage ± 4 V and the AC low voltage ± 2 V superimposed on the noise of 2 V was repeated, and a transition time of 50 seconds or less was obtained. .
ち な み に、 T 3 を 1 秒 に 固定 し、 W 2 を 0 . 1 秒以上、 0 . 5 秒 以下 に 設定 し た場合、 良好 な 結果が得 ら れ た 。  By the way, good results were obtained when T3 was fixed at 1 second and W2 was set at 0.1 seconds or more and 0.5 seconds or less.
以上の よ う にバイ ア ス 重畳 し た交流電圧 を 単 に連続印力 Π し た場合 よ り も 、 バイ ア ス 重畳 さ れ た 交流電圧印加 と 低電圧印加 と を切 り 替 え繰 り 返え す こ と に よ っ て 、 ス プ レ イ 配向 か ら ベ ン ド 配向への転移 時間が短 く な る 。 こ れは , ノ ィ ァ ス 重畳 さ れた 交流電圧印加で , 液 晶層 の液晶分子配向 が揺 さ ぶ ら れて基板間で 図 2 ( d ) の如 く 片寄 り が生 じて乱れ、 次 に短い低電圧印加状態への切 り 替え で転移核が 発生 し 、 転移時間が速 く な つ た も の と 考 え ら れ る 。  As described above, the application of the AC voltage and the application of the low voltage are repeated and switched as compared to the case where the AC voltage with the bias is simply applied continuously. As a result, the transition time from the spray orientation to the bend orientation is shortened. This is because when the AC voltage is superimposed on the noise, the alignment of the liquid crystal molecules in the liquid crystal layer is fluctuated, causing a bias between the substrates as shown in FIG. It is considered that the transition nucleus was generated by switching to the next short low-voltage application state, and the transition time was shortened.
ま た , バイ アス 電圧や交流電圧 の電圧値 , 印加時間や低電圧値、 印加時間な どは上記値で な く 、 要望さ れ る 転移時間 に よ り 選択 し て 変 え る こ と がで き る 。 交流電圧の周波数は液晶が動作す る 周波数で あ れば よ く 、 例 え ば 1 0 k H z な どの値で も 良い 。 波形 と して矩形 波を 用 い た が , デ ュ ーテ ィ 比の異な る 交流波形を 用 いて も 良い 。 In addition, bias voltage and AC voltage, application time and low voltage, The application time and the like are not the above values and can be selected and changed according to the desired transition time. The frequency of the AC voltage may be a frequency at which the liquid crystal operates, for example, a value such as 10 kHz may be used. Although a square wave is used as the waveform, an AC waveform having a different duty ratio may be used.
ま た、 上記例で は、 低電圧印加期間 W 3 中 に お い て一 2 V の低電 圧 を 印加 す る よ う に し た けれ ど も 、 0 V を 印加する よ う に して も よ い o  In the above example, the low voltage of 12 V is applied during the low voltage application period W 3, but 0 V is applied even if the low voltage is applied. O
次いで、 交流電圧印加期間 T 3 と低電圧印加期間 W 3 の 比、 及び 1 秒間当 た り の交流電圧印加 と 低電圧印加の繰 り 返 し回数に つ い て 説明す る 。 こ こ で、 説明の便宜上、 低電圧印加期間 W 3 で の電圧 を 0 V と し、 交流電圧印加 と 0 V 印加の 交互の繰 り 返 し を、 図 1 0 の 破線 L で示す よ う に 1 つ の転移'電圧 と 考 え る 。 かか る場合 に、 転移 時間の短 く す る た め に は、 転移電圧 L の周波数は、 0 . 1 H z か ら 1 0 0 H z の範囲で、 且つ転移電圧 L の デ ュ ーテ ィ 比は 1 : 1 か ら 1 0 0 0 : 1 の範囲 に設定す る 必要があ る 。 更 に、 転移電圧 L の 周 波数は、 0 . 1 H z か ら 1 0 H z の範囲で、 且つ転移電圧 L のデ ュ —テ ィ 比は 2 : 1 か ら 1 0 0 0 : 1 の範囲 に す る の が、 望 ま し レヽ 。 以下 に そ の理 由 に つ い て 詳述す る 。  Next, the ratio of the AC voltage application period T 3 to the low voltage application period W 3 and the number of repetitions of the AC voltage application and the low voltage application per second will be described. Here, for convenience of explanation, the voltage during the low voltage application period W 3 is set to 0 V, and the alternating repetition of the AC voltage application and the 0 V application is indicated by a broken line L in FIG. 10. Think of it as one transition 'voltage. In this case, in order to shorten the transition time, the frequency of the transition voltage L should be in the range of 0.1 Hz to 100 Hz and the duty of the transition voltage L The ratio must be set in the range of 1: 1 to 1000: 1. Further, the frequency of the transition voltage L is in the range of 0.1 Hz to 10 Hz, and the duty ratio of the transition voltage L is 2: 1 to 100: 1. The desired range is the range. The reason is described in detail below.
繰 り 返 し印加電圧 の デ ュ ーテ ィ 比が電圧印加期間 よ り も 電圧印加 休止期閬の方が大 き く な る よ う な デュ ーテ ィ 比の範囲 (例 え ばデ ュ 一テ ィ 比 1 : 1 か ら 1 : 1 0 等の範囲) で は、 パ ル ス 幅印加で 転移 核が発生 して も 、' そ の後のパ ル ス 間隔 の電圧印加休止状態で緩和 さ れス プ レ イ 配向へ戻 り 、 転移 が完 了 し な い も の と 考え ら れ る 。 従 つ て 、 電圧印加期間の 方が電圧印加休止期間 よ り も 大 き く な る よ う な デ ュ ーテ ィ 比 の 範囲 に設定す る 必要があ る 。 そ して 、 転移領域が拡 大す る た め に は、 デ ュ ーテ ィ 比 はパルス 幅がパルス 間隔 よ り 広 く な る 1 : 1 か ら 1 0 0 0 : 1 の範囲、 望ま し く は 2 : 1 か ら 1 0 0 : 1 が よ い。 1 0 0 0 : 1 か ら 直流連続で は、 パルス 繰 り 返 し印加が 殆 ど無 く な る た め、 転移核発生の機会が減少 して い き転移が若干長 く な る も の と 考 え ら れ る 。 A duty ratio range in which the duty ratio of the repetitive applied voltage is larger in the voltage application pause period than in the voltage application period (for example, in the case of the duty ratio). In the case of a ratio of 1: 1 to 1:10, the transition nucleus is generated by pulse width application, but it is relaxed by the pause of voltage application at the pulse interval after that. It is thought that the orientation returned to the spray orientation and the transition was not completed. Therefore, the duty ratio must be set so that the voltage application period is larger than the voltage application suspension period. In order to enlarge the transition region, the duty ratio must be such that the pulse width is wider than the pulse interval. The range is from 1: 1 to 1000: 1, preferably from 2: 1 to 100: 1. From 100: 0: 1 in DC continuation, pulse repetition is almost eliminated, so that the chance of generating transition nuclei decreases and the transition lengthens slightly. Conceivable .
ま た、 転移用電圧印加の上記繰 り 返 し周波数は、 連続か ら 1 0 0 The repetition frequency of the transition voltage application is from 100 to 100
H z 程度 ま で よ い が、 望 ま し く は転移拡大 に は 1 0 0 m s 程度以上 のパルス 幅が得 ら れ る 1 0 H z か ら 、 デ ュ ーテ ィ 比 1 0 0 0 : 1 でAlthough it may be up to about Hz, it is desirable that the duty ratio should be 100 Hz or more for the expansion of the transition. 1 in
1 0 m s 程度以上のパ ルス 間隔が得 ら れ る 0 . 1 H z ま で が よ い 。 な お、 本発明者は、 直流一 1 5 V と 0 Vの交互の繰 り 返 し条件で、 繰 り 返 し周波数及びデュ ーテ ィ 比 を 変化 さ せて液晶 セ ル に 電圧印加 し た場合の転移時間 を 測定 し た の で、 そ の結果 を 表 1 に示す。 A pulse interval of about 10 ms or more can be obtained. The inventor applied a voltage to the liquid crystal cell by changing the repetition frequency and the duty ratio under alternating repetition conditions of DC 15 V and 0 V. The transition time was measured, and the results are shown in Table 1.
Figure imgf000054_0001
Figure imgf000054_0001
(単位:秒)  (Unit: seconds)
表 1 よ り 明 ら か な よ う に、 周波数が 0 . 1 H z か ら 1 0 H z の 範 囲で且つ デ ュ ーテ ィ 比が 2 : 1 か ら 1 0 0 0 : 1 の範囲 の場合に転 移時間 が極め て 小 さ く 、 周波数が 0 . 1 H z か ら 1 0 0 H z の範 囲 で且つ デュ ーテ ィ 比が 1 : 1 か ら 1 0 0 0 : 1 の範 囲の場合で あ つ て も 、 十分 に 小 さ い転移時間 と な っ て い る こ と が認め ら れ る 。 (実施の形態 4 ) As can be seen from Table 1, the frequency is in the range of 0.1 Hz to 10 Hz and the duty ratio is in the range of 2: 1 to 100: 1. In this case, the transfer time is extremely small, the frequency is in the range of 0.1 Hz to 100 Hz, and the duty ratio is 1: 1 to 100: 1. Even in the case of the range, it is recognized that the transit time is sufficiently small. (Embodiment 4)
図 1 2 は実施の形態 4 に係 る 液晶表示装置の 画素単位の構成概念 図で あ る 。 本実施の形態 4 で は、 本発明 を ア ク テ ィ ブマ ト リ ッ ク ス 型液晶表示装置 の駆動方法 に適用 した例 が示 さ れて い る 。  FIG. 12 is a conceptual diagram of a pixel unit of the liquid crystal display device according to the fourth embodiment. The fourth embodiment shows an example in which the present invention is applied to a driving method of an active matrix type liquid crystal display device.
先 ず、 図 1 2 を参照 し て、 本実施の形態 4 に係 る 駆動方法 に 関連 す る 液晶表示装置の構成 を説明す る 。 本実施の形態 4 に係 る 液晶表 示装置は、 駆動回路部 を除い た構成に 関 し て、 一般的な O C B セ ル を備 え た ァ ク テ ィ ブマ ト リ ッ ク ス型液晶表示装置 と 同一の構成を 有 して い る 。 即 ち 、 一対の ガ ラ ス基板 6 0, 6 1 と 、 ガ ラ ス 基板 6 0 , 6 1 間 に 挟持 さ れた液晶層 6 6 と を有す る 。 ガ ラ ス 基板 6 0 , 6 1 は、 一定の 間隔 を 隔て て 対向配置 さ れて い る 。 ガ ラ ス基板 6 0 の 内 側面 に は、 I T 0 の透明電極か ら な る 共通電極 6 2 が形成 さ れ、、 ガ ラ ス基板 6 1 の 内側面に は、 画素ス イ ッ チ ン グ素子 と して の 薄膜 ト ラ ン ジ ス タ ( T F T ) 7 0 と 、 T F T 7 0 に接続 し た I T O の透明 電極か ら な る 画素電極 6 3 が形成さ れて い る 。 上記共通電極 6 2 及 び画素電極 6 3 上 に は、 ポ リ イ ミ ド膜か ら な る 配 向膜 6 4 , 6 5 が 形成 さ れて お り 、 こ の配向膜 6 4 , 6 5 は配向 方 向 が互い に 平行方 向 に な る よ う に配向処理 さ れて い る 。 そ し て 、 配向膜 6 4 , 6 5 間 に は、 P型 の ネ マ テ ィ ッ ク 液晶か ら な る 液晶層 6 6 が揷入 さ れて い る 。 ま た、 配向膜 6 4 , 6 5 上の液晶分子の プ レ チ ル ト 角 は約 5 度 に設定 さ れて お り 、 ス プ レ イ 配向 か ら ベ ン ド 配向へ転移す る 臨界電 圧は 2 . 6 V に 設定 さ れて い る 。光学補償板 6 7 の リ タ一デー シ ヨ ン はオ ン状態時 に 白 あ る い は黒表示 と な る よ う に選択 さ れて い る 。 な お、 図 中、 6 8, 6 9 は偏光板で あ る 。  First, the configuration of the liquid crystal display device related to the driving method according to the fourth embodiment will be described with reference to FIGS. The liquid crystal display device according to the fourth embodiment has an active matrix type liquid crystal display having a general OCB cell with respect to the configuration excluding the drive circuit section. It has the same configuration as the device. That is, it has a pair of glass substrates 60 and 61 and a liquid crystal layer 66 sandwiched between the glass substrates 60 and 61. The glass substrates 60 and 61 are opposed to each other with a certain interval. On the inner surface of the glass substrate 60, a common electrode 62 made of a transparent electrode of IT0 is formed, and on the inner surface of the glass substrate 61, pixel switching is performed. A thin film transistor (TFT) 70 as an element and a pixel electrode 63 made of an ITO transparent electrode connected to the TFT 70 are formed. On the common electrode 62 and the pixel electrode 63, orientation films 64 and 65 made of a polyimide film are formed, and these orientation films 64 and 65 are formed. Are oriented so that the orientation directions are parallel to each other. Then, a liquid crystal layer 66 made of a P-type nematic liquid crystal is inserted between the alignment films 64 and 65. In addition, the tilt angle of the liquid crystal molecules on the alignment films 64 and 65 is set to about 5 degrees, and the critical voltage at which the liquid crystal molecules transition from the spray alignment to the bend alignment is set. The pressure is set at 2.6 V. The retardation of the optical compensator 67 is selected so as to display white or black when turned on. In the figure, 68 and 69 are polarizing plates.
ま た、 図 中、 7 1 , 7 2 は配向転移用駆動回路で あ り 、 こ の配向 転移用駆動 回路 7 1 は共通電極 6 2 に 図 1 4 に 示す共通電極 中 心 を 基準 と して駆動電圧を 印加 し、 且つ画素電極 6 3 に 0 V を 印加す る 働 き を な す。 なお、 他の構成 と して、 配向転移用駆動回路 7 2 は、 共通電極 6 2 及び画素電極 6 3 に 0 V を 印加す る 働 き を な す。ま た、 7 3 は液晶表示用駆動回路で あ り 、 液晶表示用駆動回路 7 3 は図 1 3 に示す電圧波形 を 有 す る 駆動電圧 を共通電極 6 2 及び画素電極 6 3 に 印加す る 働 き を な す。 即 ち 、 液晶表示用駆動回路 7 3 は、 図 1 3 の参照符号 M l に示 す電圧 を 画素電極 6 3 に 印加 し、 且つ 図 1 3 の参照符号 M 2 に 示す電圧 を共通電極 6 2 に 印加す る 。 なお、 上記 構成で は、 配 向転移期間 中 におい て、 画素電極 6 3 に 0 V を印加す る よ う に し た け れ ど も 、 こ れ に代え て、 配向転移期 間 中 に お いて も 液晶表示用駆動回路 7 3 か ら 画素電極電圧 を 印加 す る よ う に して も よ い。 In the figure, reference numerals 71 and 72 denote alignment transition drive circuits. The orientation transition drive circuit 71 has a common electrode 62 shown in FIG. A drive voltage is applied as a reference, and an operation of applying 0 V to the pixel electrode 63 is performed. As another configuration, the alignment transition drive circuit 72 functions to apply 0 V to the common electrode 62 and the pixel electrode 63. Reference numeral 73 denotes a liquid crystal display drive circuit. The liquid crystal display drive circuit 73 applies a drive voltage having the voltage waveform shown in FIG. 13 to the common electrode 62 and the pixel electrode 63. Work. That is, the liquid crystal display driving circuit 73 applies the voltage indicated by reference numeral Ml in FIG. 13 to the pixel electrode 63, and applies the voltage indicated by reference numeral M2 in FIG. Apply to In the above configuration, 0 V is applied to the pixel electrode 63 during the orientation transition period, but instead, the pixel electrode 63 is applied during the orientation transition period. Alternatively, the pixel electrode voltage may be applied from the liquid crystal display drive circuit 73.
ま た、 7 4 a , 7 4 b は ス イ ッ チ 回路で あ り 、 7 5 は ス ィ ッ チ 回 路 7 4 a , 7 4 b の ス ィ ヅ チ ン グ態様の切換え を 制御す る ス ィ ヅ チ 制御回路で あ る 。 前記ス ィ ッ チ 回路 7 4 a は、 3 つ の個別接点 P 7 , P 8 , P 9 , と 、 1 つ の共通接点 Q 1 を備 え て お り 、 前記ス イ ッ チ 回路 7 4 b は、 3 つ の個別接点 P 1 0 , 1 1 , 1 2 と、 1 つ の共通 接点 Q 2 を備 え て い る 。 共通接点 Q 1 が個別接点 P 7 に接続さ れ且 つ共通接点 Q 2 が個別接点 P 1 0 に接続さ れた状態で は、 配向転移 用駆動回路 7 1 か ら の駆動電圧 が電極 6 2 , 6 3 に 印加 さ れ る こ と に な る 。 ま た 、 共通接点 Q 1 が個別接点 P 1 1 に接続 さ れ且つ共通 接点 Q 2 が個別接点 P 4 に接続 さ れた状態で は 、 液晶表示用駆動回 路 7 3 か ら の駆動電圧が電極 6 2 , 6 3 に 印加 さ れ る こ と に な る 。  Reference numerals 74a and 74b denote switching circuits, and reference numeral 75 controls switching of the switching modes of the switching circuits 74a and 74b. It is a switch control circuit. The switch circuit 74a is provided with three individual contacts P7, P8, P9, and one common contact Q1. The switch circuit 74b Has three individual contacts P 10, 11, 12 and one common contact Q 2. When the common contact Q1 is connected to the individual contact P7 and the common contact Q2 is connected to the individual contact P10, the drive voltage from the orientation transition drive circuit 71 is applied to the electrodes 62. , 63. When the common contact Q 1 is connected to the individual contact P 11 and the common contact Q 2 is connected to the individual contact P 4, the driving voltage from the liquid crystal display driving circuit 73 is reduced. That is, the voltage is applied to the electrodes 62 and 63.
次い で、 本実施の形態 4 に係 る 駆動方法 に つ い て 説明 す る 。  Next, a driving method according to the fourth embodiment will be described.
先ず、 本来の 画像信号 に基づ く 液晶表示駆動 に先立 っ て、 ベ ン ド 配向への転移 の た め に、 初期化処理を 行 う 。 先ず、 電源投入 に よ り 、 ス ィ ヅ チ制御 回路 7 5 は、 ス ィ ツ チ回路 7 4 a にス ィ ツ チ切換信号 を 出 力 す る と 共 に、 ス ィ ツ チ 回路 7 4 b に ス ィ ツ チ切換信号 を 出 力 し、 共通接点 Q 1 と 個別接点 P 7 と を接続状態 と し、 且つ共通接点 Q 2 と 個別接点 P 1 0 と を接続状態す る 。 こ れ に よ り 、 配向転移用 駆動 回路 7 1 か ら 図 1 4 に 示す駆動電圧が共通電極 6 2 に 印加 さ れ る 。 即 ち 、 共通電極 6 2 に は、 共通電極中心 を基準 と して、 ノ イ ァ ス 電圧一 G V が重畳 さ れた、 垂直 同期信号 に 同期 し た 交流電圧が印 力 Π さ れる 。 な お、 画素電極に は 0 V が印加 さ れる 。 そ して 、 こ の交 流電圧の印加 を 期間 T 4 維持す る 。 First, prior to driving a liquid crystal display based on an original image signal, an initialization process is performed for transition to bend alignment. First, by turning on the power, The switch control circuit 75 outputs the switch switching signal to the switch circuit 74a, and also outputs the switch switching signal to the switch circuit 74b. Then, the common contact Q1 and the individual contact P7 are connected, and the common contact Q2 and the individual contact P10 are connected. As a result, the drive voltage shown in FIG. 14 is applied to the common electrode 62 from the orientation transition drive circuit 71. That is, the AC voltage synchronized with the vertical synchronizing signal, on which the noise voltage of 1 GV is superimposed with respect to the center of the common electrode, is applied to the common electrode 62. Note that 0 V is applied to the pixel electrode. Then, the application of the AC voltage is maintained for a period T4.
次い で、 交流電圧印加期間 T 4 経過す る と 、 ス ィ ッ チ制御 回路 7 5 は、 ス ィ ツ チ 回路 7 4 a に ス ィ ツ チ切換信号 を 出 力す る と 共 に、 ス ィ ツ チ 回路 7 4 b に ス ィ ツ チ切換信号 を 出 力 し、 共通接点 Q 1 と 個別接点 P 9 と を接続状態 と し、 且つ共通接点 Q 2 と 個別接点 P 1 2 と を接続状態す る 。 こ れ に よ り 、 配向転移用駆動回路 7 2 か ら 、 図 1 4 に示す よ う に共通電極 6 2 及び画素電極 6 3 に 0 V が印加 さ れ る 。 そ し て、 こ の 0 V電圧印加 を期間 W 4 維持す る 。  Next, when the AC voltage application period T4 elapses, the switch control circuit 75 outputs a switch switching signal to the switch circuit 74a, and switches the switch control circuit 75a. A switch switching signal is output to the switch circuit 74b, the common contact Q1 and the individual contact P9 are connected, and the common contact Q2 and the individual contact P12 are connected. You As a result, 0 V is applied to the common electrode 62 and the pixel electrode 63 from the alignment transition drive circuit 72 as shown in FIG. Then, the application of the 0 V voltage is maintained for the period W4.
次い で、 0 V 電圧印加期間 W 4 経過す る と 、 ス ィ ツ チ制御 回路 7 5 はス ィ ツ チ回路 7 4 a に ス ィ ツ チ切換信号 を 出力 す る と 共 に ス ィ ヅ チ 回路 7 4 b に ス ィ ツ チ切換信号を 出力 し、 再び、 共通接点 Q 1 と 個別接点 P 7 と を接続状態 と し且つ共通接点 Q 2 と個別接点 P 1 0 と を接続状態す る 。 そ して 、 こ の よ う な 交流電圧印加工程 と 0 V 電圧印加工程 を 交互 に繰 り 返 し、 電源投入時か ら 一定期間経過す る と 、 電極全面が完全 に ベ ン ド 配向 に転移す る 。  Next, when the 0 V voltage application period W 4 has elapsed, the switch control circuit 75 outputs a switch switching signal to the switch circuit 74 a and switches the switch. A switch switching signal is output to the switch circuit 74b, and the common contact Q1 and the individual contact P7 are again connected, and the common contact Q2 and the individual contact P10 are connected again. . The alternating voltage application process and the 0 V voltage application process are alternately repeated, and after a certain period of time from power-on, the entire electrode completely transitions to the bend orientation. You
そ し て 、 こ の一定期間経過時 に、 ス イ ッ チ制御 回路 7 5 は、 ス ィ ツ チ 回路 7 4 a に ス ィ ッ チ切換信号 を 出力 す る と 共 に、 ス ィ ッ チ 回 路 7 4 b に ス ィ ツ チ切換信号 を 出 力 し、 共通接点 Q 1 と個別接点 P 8 と を接続状態 と し、 旦っ共通接点 Q 2 と 個別接点 P 1 1 と を接続 状態す る 。 こ れ に よ り 、 液晶表示用駆動回路 7 3 か ら の駆動信号電 圧が電極 6 2 , 6 3 に 印加 さ れ、 希望す る 画像が表示 さ れ る こ と に な る 。 こ こ で 、 液晶表示用駆動回路 7 3 は、 両電極間 に ベ ン ド 配 向 状態 を 維持す る 駆動電圧 2 . 7 Vを最低に して こ れを オ フ 状態 と し、 上限の 電圧 を 7 V に して こ れ を オ ン状態 と し て、 0 C B ノ1? ネ ルを 表 示す る 。 Then, after the elapse of this predetermined period, the switch control circuit 75 outputs a switch switching signal to the switch circuit 74a, and switches the switch circuit 74a. The switch switching signal is output to the path 74b, and the common contact Q1 and the individual contact P 8 and are connected, and the common contact Q2 and the individual contact P11 are connected. As a result, the drive signal voltage from the liquid crystal display drive circuit 73 is applied to the electrodes 62 and 63, and a desired image is displayed. Here, the liquid crystal display drive circuit 73 sets the drive voltage 2.7 V, which maintains the state of the bend orientation between both electrodes, to a minimum and turns it off, and sets the upper limit voltage Is set to 7 V, this is turned on, and the 0 CB 1- cell is displayed.
上記駆動方法 に よ っ て 、 広視野で高速応答のベ ン ド 配向型で あ る 0 C B の ァ ク テ ィ ブマ ト リ ヅ ク ス 型の液晶表示装置が配 向欠陥が全 く な く 高品質駆動表示で き た 。  According to the above driving method, a 0 CB active matrix type liquid crystal display device having a wide field of view and a high-speed response and a bend alignment type has no alignment defects. High quality driving display was achieved.
次い で 、 本発 明者が、 上記構成の液晶表示装置 を作製 し、 上記駆 動方法で初期化処理の実験 を 行 っ た の で、 そ の結果 を 述べ る 。 な お、 実験条件は 以下の と お り で あ る 。  Next, the present inventor manufactured a liquid crystal display device having the above configuration, and performed an experiment of an initialization process using the above driving method. The results are described below. The experimental conditions are as follows.
セ ル ギ ャ ッ プを 約 と し、 ノ、 ィ ァ ス 電圧 G を 一 6 V と し、 交 流矩形波電圧 の周波数及び振幅 を 7 . 9 2 k H z 、 ± 1 0 V と し、 印加時間 T 3 を 0 . 5 秒 と し た 。 ま た、 0 V電圧印加期間 W 4 を 0 . 5 秒 と し た 。  The cell gap is about, the nodal voltage G is 16 V, the frequency and amplitude of the alternating rectangular wave voltage are 7.92 kHz, ± 10 V, The application time T 3 was set to 0.5 seconds. Further, the 0 V voltage application period W 4 was set to 0.5 seconds.
上記実験結果 に よ れば、 上記液晶表示装置のパ ネ ル全画素内の 配 向転移がほぼ 2 秒以内で 完了 す る こ と がで き た。  According to the above experimental results, the directional transition in all the pixels of the liquid crystal display device could be completed within approximately 2 seconds.
な お、 ノ、' ィ ァ ス 電圧 を重畳 し な い と き に は , 表示面全体の配向状 態 を 転移 さ せ る の に約 2 0 秒必要で あ っ た 。 よ っ て 、 本実施の形態 4 に お い て も 、 ノ ィ ァ ス 電圧 を 重畳 し て駆動す る の が、 転移時間 の 短縮化 を 達成で き る こ と が認め ら れる 。  Note that when no bias voltage was superimposed, it took about 20 seconds to transfer the orientation of the entire display surface. Therefore, it is recognized that, in the fourth embodiment as well, driving by superimposing the noisy voltage can shorten the transition time.
(実施の形態 5 )  (Embodiment 5)
O C B モ ー ド の ア ク テ ィ ブマ ト リ ッ ク ス 型液晶表示装置の配向転 移 に 関 す る 駆動方法 と して は、 上記の 図 1 4 に示す駆動電圧波形 に 代え て 、図 1 5 の駆動電圧波形を 用 い て駆動す る よ う に して も よ い 。 即 ち 、 交流電圧印加期間 T 4 において は、 共通電極 6 2 に共通電極 中 心 を基準 と して 、 直流電圧 — 1 5 V を 0 . 5 秒間印加す る 。 次い で、 0 V 電圧印加期間 W 4 にお い て は、 0 V を 0 . 2 秒間 印加す る 。 そ し て 、 直流電圧 — 1 5 V 印加 と 0 V 電圧印加 を 交互 に繰 り 返 す。 こ の よ う 駆動方法 に お いて も 、 転移 を 確実に且つ極めて短時間 に 完 了 す る こ と がで き る 。 The drive method for the orientation transition of the active matrix type liquid crystal display device in the OCB mode includes the drive voltage waveform shown in Fig. 14 above. Alternatively, the driving may be performed using the driving voltage waveform shown in FIG. That is, in the AC voltage application period T4, a DC voltage of −15 V is applied to the common electrode 62 with respect to the center of the common electrode for 0.5 seconds. Next, in the 0 V voltage application period W4, 0 V is applied for 0.2 seconds. Then, the application of DC voltage—15 V and 0 V is alternately repeated. Even in such a driving method, the transfer can be completed reliably and in an extremely short time.
な お、 本発明者が上記駆動方法 を用 い て実験 し た と こ ろ 、 2 秒以 内 の転移時間 が得 ら れた 。  Incidentally, when the present inventor conducted an experiment using the above driving method, a transition time of 2 seconds or less was obtained.
(実施の形態 6 )  (Embodiment 6)
本実施の形態 6 は、 上記実施の形態 4 , 5 に用 い た ア ク テ ィ ブマ ト リ ッ ク ス 型 の液晶表示装置 に代え て 、 ス ィ ツ チ ン グ素子 の上 に 平 坦化膜を 配置 し、 そ の 上 に 画素電極を構成す る い わ ゆ る 平坦化膜構 成の液晶表示装置 に上記 に実施の形態 4 , 5 の駆動方法 を 適用 し た こ と を特徴 と す る も の で あ る 。 駆動方法 を 具体的 に説明す る と 、 上 記実施の 態 4 に お け る ノ 'ィ ァ ス 重畳 し た配向転移用 電圧 を 0 . 5 秒印加 し、 次い で、 オ ー プ ン状態 を 0 . 5 秒 と し、 こ れ を 交互 に 繰 り 返 し た 。 こ の駆動方法 に よ る と 、 転移時間は 1 秒以内 で 更 に転移 がス ム ーズ に行 え た 。 こ れは、 平坦化膜構成 に よ り 、 画素電極間 隔 を 小 さ く で き 、 こ の結果、 ス プ レ イ 配向 か ら ベ ン ド 配向へス ム ーズ に転移 し た も の と 考 え ら れ る 。  In the sixth embodiment, instead of the active matrix type liquid crystal display device used in the fourth and fifth embodiments, a flat surface is provided on the switching element. The driving method according to Embodiments 4 and 5 is applied to a liquid crystal display device having a so-called flattened film structure in which a passivation film is arranged and a pixel electrode is formed thereon. It is something. Specifically, the driving method is as follows. The voltage for orientation transition in which the noise is superimposed in Embodiment 4 described above is applied for 0.5 seconds, and then the open state is obtained. Was set to 0.5 seconds, and this was repeated alternately. According to this driving method, the transition time was less than 1 second, and the transition was smoother. This is because the pixel electrode spacing can be reduced by the planarization film configuration, and as a result, the smooth transition from the spray orientation to the bend orientation occurs. Conceivable .
( そ の他の 事項)  (Other matters)
①上記実施の形態で は、 バ イ ァ ス 電圧 を 重畳 し た 交流電圧 を 印加 す る よ う に し た けれ ども 、 直流電圧 を 印加 す る よ う に し て も よ く 、 こ の よ う に すれば、 片極性電圧で よ い た め、 駆動回路が簡略化で き る 。 ① In the above embodiment, the AC voltage with the bias voltage superimposed is applied, but the DC voltage may be applied. In this case, the driving circuit can be simplified because a unipolar voltage is sufficient.
②上記実施の形態で は、 バ イ ァ ス 電圧 を重畳さ れた交流電圧信号 は バイ アス 電圧 を 直流 と し て 説明 し た が、 信頼性向上の た め に、 低周 波の交流信号で も よ い 。 (2) In the above embodiment, the AC voltage signal on which the bias voltage is superimposed is Although the bias voltage has been described as DC, an AC signal with a low frequency may be used to improve reliability.
③繰返 し電圧 の周波数及びデ ュ ーテ ィ 比の最適範囲は、 実施の形態 (3) The optimum range of the repetition voltage frequency and the duty ratio is determined according to the embodiment.
3 以外の他の実施の形態 に も 適用 で き る 。 It can be applied to other embodiments other than 3.
④上記実施の形態で は、 発明 の液晶表示装置の駆動法 は透過型液晶 表示装置で説明 し た が、 反射型の液晶表示装置で も よ い 。 ま た、 こ れ ら は カ ラ ー フ ィ ル タ ー を使用 し た フ ルカ ラ 一型 の液晶表示装置や カ ラ フ ィ ル タ ー レ ス の液晶表示装置で も よ い。 In the above embodiment, the method of driving the liquid crystal display device of the invention has been described with reference to the transmission type liquid crystal display device, but a reflection type liquid crystal display device may be used. In addition, these may be a full-color type liquid crystal display device using a color filter or a liquid crystal display device of a color filter.
(実施の形態 7 )  (Embodiment 7)
図 1 6 は本発明の実施の形態 7 に係 る 液晶表示装置の概略断面図 図 1 7 は 同 じ く 概略平面図 を 示す。 図 1 6 に示す液晶表示装置は、 偏光板 1 0 1 · 1 0 2 と 、 該偏光板 1 0 1 の 内側 に 配置 さ れた光学 補償用 の位相補償板 1 0 3 と 、 前記偏光板 1 0 1 · 1 0 2 の 間 に 配 置 さ れた ァ ク テ ィ プマ ト リ ヅ ク ス 型の液晶セ ル 1 0 4 と を 有 す る 。 前記液晶セ ル 1 0 4 は、 ガ ラ ス 等か ら な る ア レ ー基板 1 0 6 と 、 該 ア レ ー基板 1 0 6 に対向 す る 対向基板 1 0 5 と を 有 し、 前記ア レ ー 基板 1 0 6 の 内面上 に は透明電極で あ る 画素電極 1 0 8 が形成 さ れ, 前記対向基板 1 0 5 の 内面上 に は共通電極 1 0 7 が形成 さ れて い る < さ ら に、 該画素電極 1 0 8 上 に配向膜 1 1 0 が形成 さ れ、 共通電極 1 0 7 上 に は配向膜 1 0 9 が形成 さ れて い る 。  FIG. 16 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 7 of the present invention. FIG. 17 is a schematic plan view similarly. The liquid crystal display device shown in FIG. 16 includes a polarizing plate 101, a polarizing plate 101, a phase compensating plate 103 for optical compensation arranged inside the polarizing plate 101, and the polarizing plate 1. And an active matrix liquid crystal cell 104 disposed between the electrodes 101 and 102. The liquid crystal cell 104 has an array substrate 106 made of glass or the like, and an opposing substrate 105 opposing the array substrate 106. A pixel electrode 108 as a transparent electrode is formed on the inner surface of the laser substrate 106, and a common electrode 107 is formed on the inner surface of the counter substrate 105. Further, an alignment film 110 is formed on the pixel electrode 108, and an alignment film 109 is formed on the common electrode 107.
ま た、 前記ア レ ー基板 1 0 6 上 に は、 例 え ば a — S i 系 の T F T 素子な どか ら な る ス イ ッ チ ン グ素子 1 1 1 が配置 さ れ、 該 ス ィ ッ チ ン グ素子 1 1 1 は前記画素電極 1 0 8 に接続さ れて い る 。  Further, on the array substrate 106, a switching element 111 composed of, for example, an a-Si type TFT element is disposed, and the switch is provided. The finger element 111 is connected to the pixel electrode 108.
ま た、 前記配向膜 1 0 9 · 1 1 0 の 間 に は、 図示せ ぬ直径 5 ミ ク ロ ン の ス ぺ ー サ、 お よ び正 の誘電率異方性の ネ マ テ ィ ッ ク 液晶材料 か ら な る 液晶層 1 1 2 が配置 さ れて い る 。ま た、前記配向膜 1 0 9 - 1 1 0 は そ の 表面上 の液晶分子の プ レ チル ト 角 が正負逆の値 を 持 ち 互い に ほぼ平行方 向 に な る よ う 同一方 向 に平行配向処理さ れて い る 従っ て、 前記液晶層 1 1 2 は、 無電圧印加状態で は液晶分子が斜め に広 が っ た配 向領域か ら な る いわ ゆ る ス プ レ イ 配向 を形成 して い る ま た、 前記配向膜 1 1 0 は、 大 き い値の プ レ チル ト 角 B 2 (第 3 の プ レ チル ト 角 ) の 配向膜 1 1 0 a と 、 小 さ い値の プ レ チル ト 角 A 2 (第 1 の プ レ チ ル ト 角 ) の配向膜 1 1 O b よ り な る 。 ま た、 前記 配向膜 1 0 9 は 、 小 さ い値 の プ レ チル ト 角 D 2 (第 4 の プ レ チル ト 角 ) の配向膜 1 0 9 a と 、 大 き い値の プ レ チル ト 角 C 2 (第 2 の プ レ チ ル ト 角 ) の 配向膜 1 0 9 b よ り な り 、 プ レ チル ト 角 A 2 に対向 して プ レ チル ト 角 C 2 が配置 さ れ、 プ レ チル ト 角 B 2 に対向 して プ レ チ ル ト 角 D 2 が配置 さ れて い る 。 A spacer (not shown) having a diameter of 5 micron and a nematic having a positive dielectric anisotropy are provided between the alignment films 109 and 110. A liquid crystal layer 112 made of a liquid crystal material is arranged. In addition, the alignment film 1 0 9- 110 is parallel-oriented in one direction so that the pretilt angles of the liquid crystal molecules on the surface have opposite values and are almost parallel to each other. The liquid crystal layer 112 forms a so-called spray alignment in which no liquid crystal molecules are obliquely spread in a state where no voltage is applied. The film 110 has an orientation film 110a having a large pretilt angle B2 (third pretilt angle) and a small value pretilt angle A2 ( It is made of an orientation film 11 Ob having a first (pretilt angle). Further, the alignment film 109 has an alignment film 109 a having a small pre-tilt angle D 2 (fourth pre-tilt angle) and a large-value pre-tilt angle. The orientation film 109 b having a tilt angle C 2 (second pretilt angle), and the pretilt angle C 2 is disposed so as to face the pretilt angle A 2; The pretilt angle D2 is arranged to face the pretilt angle B2.
ま た、 前記配向膜 1 0 9 · 1 1 0 は、 ラ ビ ン グク ロ ス で信号電極 線 1 1 3 と ほぼ.直角 方 向 に、 上下基板同一方向 (図 1 6 中 の左側か ら 右側 に ) に 平行配向処理 さ れて い る 。  The alignment films 109 and 110 are almost parallel to the signal electrode lines 113 in the rubbing cross direction and in the same direction at right angles to the upper and lower substrates (from left to right in FIG. 16). In addition, parallel orientation treatment is performed.
ま た、 図示せぬが、 液晶表示装置に は、 液晶表示用駆動回路以外 に、 第 1 の電圧印加手段 と 第 2 の電圧印加手段 と よ り な る 配向転移 用駆動回路が設け ら れて い る 。 そ して、 前記第 1 の電圧印加手段 に よ り 画素電極 1 0 8 と 共通電極 1 0 7 の 間 に第 1 の電圧 を 印加 して . 第 1 の液晶セ ル領域 と 前記第 2 の液晶セ ル領域 と の境界付近 にお い て デ ィ ス ク リ ネ ー シ ヨ ン 線 を形成 し、 第 2 の電圧印加手段 に よ り 画 素電極 1 0 8 と 対向電極 1 0 7 の 間 に前記第 1 の電圧 よ り も 高い第 2 に 電圧 を 印加 し て、 デ ィ ス ク リ ネ 一 シ ョ ン線にお い て転移核 を 発 生 さ せ、 ス プ レ イ 配向 か ら ベ ン ド 配向へ転移 さ せ よ う に し て い る 。  Although not shown, the liquid crystal display device is provided with a driving circuit for orientation transition including first voltage applying means and second voltage applying means in addition to the liquid crystal display driving circuit. Yes. Then, a first voltage is applied between the pixel electrode 108 and the common electrode 107 by the first voltage applying means.A first liquid crystal cell region and the second liquid crystal are applied. A disk line is formed in the vicinity of the boundary with the cell region, and the second voltage applying means forms a gap between the pixel electrode 108 and the counter electrode 107 by the second voltage applying means. A second voltage, which is higher than the first voltage, is applied to generate a transition nucleus in the disk-shaped line, and the vane shifts from the spray orientation. The transition to the do-orientation is made.
次 に 、 こ の液晶表示装置の製造方法 に つ い て 説明 する 。  Next, a method for manufacturing the liquid crystal display device will be described.
ま ず、 ア レ ー基板 1 0 6 の 内面上 に信号走査線 1 1 3 、 ス イ ッ チ ン グ素子 1 1 1 お よ び画素電極 1 0 8 を形成 し た 。 First, signal scanning lines 113 and switches are placed on the inner surface of the array substrate 106. A pixel element 111 and a pixel electrode 108 were formed.
次 に、 前記画素電極 1 0 8 上に、 日 産化学工業 (株) 社製の ポ リ ァ ミ ッ ク 酸タ イ プの約 5 度の大 き い値 を持つ第 3 の プ レ チル ト 角 と して の プ レ チル ト 角 B 2 の ポ リ イ ミ ド配向膜材料 を塗布 し、 乾燥後 焼成 し、 画素電極 1 0 8 上 に配向膜 1 1 0 a を形成 し た。  Next, a third pretilt having a large value of about 5 degrees of a polyamic acid type manufactured by Nissan Chemical Industries, Ltd. is provided on the pixel electrode 108. A polyimide alignment film material having a pretilt angle B 2 as a corner was applied, dried, and baked to form an alignment film 110 a on the pixel electrode 108.
次 に、 前記配 向膜 1 1 0 a の紙面上左側片側領域 に紫外線 を 照射 して 、 第 1 の プ レ チ ル ト 角 と して の プ レ チル ト 角 A 2 の約 2 度 の 小 さ い値に 変化 さ せ、 配向膜 1 1 0 b を形成 し た 。  Next, ultraviolet light is irradiated on the left side of the orientation film 110a on the paper surface to reduce the pretilt angle A2 as the first pretilt angle by about 2 degrees. The orientation value was changed to the above value, and an orientation film 110b was formed.
対向基板 1 0 5 の 内面上 に は、 共通電極 1 0 7 を 形成 し た。  A common electrode 107 was formed on the inner surface of the counter substrate 105.
次 に、 前記共通電極 1 0 7 上 に は、 日 産化学工業 (株) 社製の ポ リ ア ミ ヅ ク 酸 タ イ プの約 5 度 の大 き い値の第 2 の プ レ チル ト 角 と し て の プ レ チ ル ト 角 C 2 を界面液晶分子 に付与す る ポ リ イ ミ ド 配向膜 材料 を塗布 し、 乾燥後焼成 し、 共通電極 1 0 7 上 に 配向膜 1 0 9 b を形成 し た 。  Next, on the common electrode 107, a second pretilt having a large value of about 5 degrees of a polyamic acid type manufactured by Nissan Chemical Industries, Ltd. A polyimide alignment film material for imparting a pretilt angle C 2 as an angle to interfacial liquid crystal molecules is applied, dried and fired, and the alignment film is formed on the common electrode 107. b formed.
次 に、 前記配向膜 1 0 9 b の紙面上右側片側領域 ( プ レ チル ト 角 の大 き い値 を持つ プ レ チル ト 角 B 2 に対向 す る 領域) に、 紫外線 を 照射 し て 第 4 の プ レ チル ト 角 と し て の プ レ チル ト 角 D 2 の約 2 度 の 小 さ い値 に 変化 さ せ、 配向膜 1 0 9 a を形成 し た 。  Next, ultraviolet light is applied to a region on one side of the alignment film 109b on the right side on the paper surface (a region facing the pretilt angle B2 having a large pretilt angle). By changing the pretilt angle D 2 as a pretilt angle of 4 to a small value of about 2 degrees, an alignment film 109 a was formed.
以上の よ う に し て、図 1 6 の如 く 小 さ い値の プ レ チル ト 角 A 2 (第 1 の プ レ チ ル ト 角 ) に 対向 して 大 き い値の プ レ チル ト 角 C 2 ( 第 2 の プ レ チ ル ト 角 ) を 配置 さ せ、 大 き い値の プ レ チル ト 角 B 2 (第 3 の プ レ チル ト 角 ) に 対向 し て 小 さ い値の プ レ チ ル ト 角 D 2 (第 4 の プ レ チル ト 角 ) を配置 さ せ る こ と がで き た 。  As described above, a large pre-tilt angle is opposed to a small pre-tilt angle A 2 (first pre-tilt angle) as shown in FIG. Arrange the angle C 2 (second pre-tilt angle) and set the small value opposite the pre-tilt angle B 2 (third pre-tilt angle). The pre-tilt angle D 2 (the fourth pre-tilt angle) could be set.
ま た 、 以下の よ う に し て プ レ チル ト 角 を 制御 す る こ と も 可能で あ る 。  It is also possible to control the pre-tilt angle as follows.
即 ち 、 図 1 8 ( a ) に示す よ う に 、 ア レ ー基板 1 0 6 上 に a — S i 系 の T F T 素子 な どか ら な る ァ ク テ ィ ブマ ト リ ヅ ク ス 型 の ス ィ ッ チ ン グ素子 ( 図示せぬ) と 、 そ れ に接続 して 画素電極 1 0 8 を形成 し た 。 That is, as shown in FIG. 18 (a), a—S is placed on the array substrate 106. An active matrix type switching element (not shown) consisting of an i-type TFT element and the like, and a pixel electrode 108 are formed by being connected to the active matrix type switching element (not shown). did .
次 に、 図 1 8 ( b ) に示す よ う に、 前記画素電極 1 0 8 の左側領 域に オ ゾ ン雰囲気下で紫外線を 照射 し て 、 画素電極 1 0 8 の右側領 域に比較 し て 平坦化 し、 平坦化領域 1 0 8 a を形成 し た 。  Next, as shown in FIG. 18 (b), the left area of the pixel electrode 108 is irradiated with ultraviolet light in an ozone atmosphere, and compared with the right area of the pixel electrode 108. Then, a flattened region 108 a was formed.
次 に 、 図 1 8 ( c ) に示す よ う に、 前記画素電極 1 0 8 上 に J S R 社製の プ レ イ ミ ド 型 のポ リ ィ ミ ド 配向材料を塗布乾燥あ る い は焼 成 して 、 配向膜 1 1 0 を形成 し た。  Next, as shown in FIG. 18 (c), a polyimide type polyimid alignment material of JSR Co. is applied onto the pixel electrode 108 and dried or fired. Thus, an alignment film 110 was formed.
こ の よ う に形成 した場合、 画素電極 1 0 8 の 平坦化領域 1 0 8 a 上に位置す る 液晶分子 1 4 0 の プ レ チ ル ト 角 は、 未平坦化領域 1 0 8 b 上 に位置 す る 液晶分子 1 4 0 の プ レ チル ト 角 よ り も 小 さ い値 と す る こ と がで き る 。 さ ら に、 共通電極 に つ いて も 同様の処理を行 う こ と に よ っ て 、 図 1 6 と 同様 に、 第 1 の液晶セ ル領域 と 、 第 2 の液 晶セ ル領域 と 、 を 同一画素内 に有 す る 液晶表示装置 と す る こ と がで き る 。  When formed in this way, the liquid crystal molecules 140 located on the flattened region 108 a of the pixel electrode 108 have a pretilt angle of the unflattened region 108 b. The value can be smaller than the pre-tilt angle of the liquid crystal molecule 140 located at. Further, by performing the same processing for the common electrode, the first liquid crystal cell region and the second liquid crystal cell region are similarly formed as in FIG. A liquid crystal display device within the same pixel can be obtained.
次 に 、 図 1 6 に 示す よ う に、 前記の よ う に形成 し た互い に大小 の プ レ チル ト 角 を付与す る 配向膜 1 0 9 お よ び配向膜 1 1 0 の表面 を ラ ビ ン グ ク ロ ス で信号電極線 1 1 3 に 対 して 直角 方 向 に上下基板 同 一方 向 ( 図 1 6 中 の左側か ら 右側) に 平行配向処理 し、 正の ネ マ テ イ ツ ク 液晶材料か ら な る 液晶層 1 1 2 を 配置 し た 。  Next, as shown in FIG. 16, the alignment film 109 and the surface of the alignment film 110 formed so as to give a large or small pretilt angle to each other are rubbed. By using a crossing technique, the upper and lower substrates are parallel-oriented in a direction perpendicular to the signal electrode wires 113 (from left to right in Fig. 16), and the positive nematic material is used. A liquid crystal layer 112 made of a liquid crystal material is disposed.
こ の よ う に し て作成 さ れた液晶表示装置 に おい て 、 前記画素電極 1 0 8 の配向 元 ( ラ ビ ン グの処理方 向 の上流側) に は 小 さ い プ レ チ ル ト 角 A 2 が、 そ の対向す る 側 に は大 き い値の プ レ チル ト 角 C 2 が 配置 さ れ、 図 1 6 の 画素の ( I ) 領域 (第 1 の液晶セ ル領域) に は、 共通電極 1 0 Ί と 画素電極 1 0 8 の 間 に第 1 の電圧 と し て 2 . 5 V を 印加 す る と 、 液晶分子 を ア レ ー基板 1 0 6 側 に ス プ レ イ 配 向 さ せ た b — ス プ レ イ 配向 1 2 0 が、 画素の ( II ) 領域 (第 2 の液晶セ ル 領域) に は液晶分子を対向基板 1 0 5 側 に ス プ レ イ 配向 さ せた t - ス プ レ イ 配向 1 2 1 が形成 さ れや す く な る 。 In the liquid crystal display device thus prepared, the orientation source of the pixel electrode 108 (upstream side in the rubbing direction) is small. The angle A 2 has a large pretilt angle C 2 on the opposite side, and is located in the (I) area (first liquid crystal cell area) of the pixel in FIG. Is 2.5 V as a first voltage between the common electrode 10 Ί and the pixel electrode 108. Is applied, the liquid crystal molecules are oriented in a spray direction on the array substrate 106 side, and the b-spray orientation 120 is positioned in the (II) region of the pixel (the second liquid crystal). In the cell region), a t-spray orientation 122 in which liquid crystal molecules are oriented in a spray orientation on the counter substrate 105 side is easily formed.
即 ち 、 図 1 6 、 図 1 7 に 示す よ う に、 前記液晶セ ル 1 0 4 の ス ィ ツ チ ン グ素子 1 1 1 を通 し て共通電極 1 0 7 と 画素電極 1 0 8 間 に 第 1 の 電圧 と し て の 2 . 5 V を 印加す る と 、 画素内 に b — ス プ レ イ 配向領域 (第 1 の液晶セ ル領域) と t ー ス プ レ イ 配向領域 (第 2 の 液晶セ ル領域) が形成 さ れ、 そ の境界 に デ ィ ス ク リ ネ 一 シ ヨ ン線 1 2 3 が信号電極線 1 1 3 に沿っ て、 かつ ゲー ト 電極線 1 1 4 · 1 1 4 , に渡 っ て 明瞭 に形成さ れた (デ ィ ス ク リ ネ ー シ ヨ ン線形成工程) さ ら に、 前記共通電極 1 0 7 と 前記画素電極 1 0 8 と の 間 に 、 第 2 の電圧 と し て 電圧 一 1 5 Vパルス を繰 り 返 し印加 す る こ と に よ り . 図 1 7 に示 す よ う に デ ィ ス ク リ ネ ー シ ヨ ン線 1 2 3 か ら 転移核が発 生 して ベ ン ド 配向 1 2 4 へ転移拡大 し、 T F T パ ネ ル画素全体は約 3 秒で速か に転移 し た (配 向転移工程)。  That is, as shown in FIGS. 16 and 17, the switching element 111 of the liquid crystal cell 104 passes between the common electrode 107 and the pixel electrode 108 through the switching element 111. When a first voltage of 2.5 V is applied to the pixel, the b-spray alignment region (first liquid crystal cell region) and the t-spray alignment region (first Liquid crystal cell region 2) is formed, and a disc line line 123 is formed at the boundary along the signal electrode line 113 and the gate electrode line 114. And the pixel electrode is formed clearly between the common electrode 107 and the pixel electrode 108 (the step of forming a disk line line). By repeatedly applying a pulse of 15 V as the second voltage, the discretion line 1 2 as shown in Fig. 17 is used. Metastasis nuclei from 3 As a result, the transfer orientation expanded to the bend orientation 124, and the entire TFT panel pixel was quickly transferred in about 3 seconds (direction transfer process).
こ れは、 b — ス プ レ イ 配向状態 と t — ス プ レ イ 配 向領域の境界 で あ る デ ィ ス ク ネ ー シ ヨ ン線領域は周 囲 よ り 歪みの エ ネ ル ギーが高 く な っ て お り 、 こ の状態 に、 上下電極間 に高電圧が印加 さ れ る こ と に よ っ て更 に エ ネ ルギー が与 え ら れス プ レ イ 配向 がベ ン ド 配向 に転移 し た も の と 考 え ら れ る 。  This means that the energy of distortion is higher in the region of the disk line, which is the boundary between the b-spray alignment state and the t-spray alignment region, than in the surrounding area. In this state, a high voltage is applied between the upper and lower electrodes, so that more energy is given and the spray orientation is the bend orientation. It is considered that the metastasis has occurred.
(実施の形態 8 )  (Embodiment 8)
図 1 9 は本発明の実施の形態 8 に係 る 液晶表示装置の概略図 を 示 す。  FIG. 19 is a schematic diagram of a liquid crystal display device according to Embodiment 8 of the present invention.
通常表示時 に は、ゲー ト 電極線は線順次 に オ ン さ れ走査 さ れ る が、 通常の表示 の前 に、 ゲー ト 電極線 を順次オ ン し、 前記共通電極 1 0 7 と 前記画素電極 1 0 8 と の 間 に 第 2 の電圧 と し て 電圧一 1 5 Vパ ルス を繰 り 返 し印加す る こ と に よ り 、 画素電極 1 0 8 と ゲー ト 電極 線 1 1 4 、 1 1 4 ' の閬で電位差 に起因 す る 横電界が発生 す る 。 そ して 、 前記横電界に よ り 、 図 1 9 の如 く デ ィ ス ク リ ネ ー シ ヨ ン線 1 2 3 と ゲー ト 電極線 1 1 4 、 1 1 4 , 付近か ら 転移核が発生 し て ベ ン ド 配向へ転移拡大 し、 T F T パ ネ ル画素全体は約 1 秒で 更 に速か にベ ン ド 配向へ拡大転移 し た (配向転移工程)。 During normal display, the gate electrode lines are turned on and scanned line-sequentially, but before normal display, the gate electrode lines are turned on sequentially and the common electrode 10 is turned on. By repeatedly applying a voltage of 15 V as a second voltage between the pixel electrode 108 and the pixel electrode 108, the pixel electrode 108 and the gate electrode line are applied. A transverse electric field due to the potential difference is generated at 1 of 114 and 114 ′. Then, due to the transverse electric field, as shown in FIG. 19, a transition nucleus is generated from the vicinity of the disk line 123 and the gate electrode lines 114, 114. Then, it was transferred and expanded to bend alignment, and the entire TFT panel pixel was further quickly expanded to bend alignment in about 1 second (alignment transfer process).
こ れは、 b — ス プ レ イ 配向状態 と t ー ス プ レ イ 配 向領域の境界で あ る デ ィ ス ク リ ネ ー ジ ョ ン線領域が周 囲 よ り 歪みの エネ ル ギ一が高 く な つ て お り 、 こ の状態に、 横 に 配置 さ れて い る ゲー ト 電極線か ら も 前記デ ィ ス ク リ ネー シ ョ ン線に横電界が印加 さ れ る こ と に よ っ て 更 に エ ネ ルギ ーが与 え ら れ、 速 く 転移 し た も の と 考 え ら れる 。 な お、 転移が完 了 し た後、 ゲー ト 電極線 1 1 4 · 1 1 4 , は通常の走査状 態 に も ど る 。  This is because the discrimination line region, which is the boundary between the b-spray orientation state and the t-spray orientation region, is more distorted than the surrounding area. In this state, a horizontal electric field is also applied to the above-mentioned discrimination line from the gate electrode line arranged horizontally. It is considered that more energy was given by this and the metastasis was quicker. After the transfer is completed, the gate electrode lines 114, 114 return to the normal scanning state.
なお、 前記画素電極 と共通電極の間 に 印加す る 第 2 の電圧 は連続 的 に 印加 さ れて も よ い。 ま た 、 パルス 状の電圧が繰 り 返 し 印加 す る 場合は、 そ の 周波数が 0 . 1 H z か ら 1 0 0 H z の範囲で あ り 、 且 つ第 2 の電圧 の デ ュ ーテ ィ 一比は少な く と も 1 : 1 か ら 1 0 0 0 : 1 の範 囲で転移 を速め る 効果が得 ら れ る 。  Note that the second voltage applied between the pixel electrode and the common electrode may be applied continuously. When a pulsed voltage is applied repeatedly, the frequency is in the range of 0.1 Hz to 100 Hz, and the duty of the second voltage is applied. The effect of accelerating the transition can be obtained at least in the range of 1: 1 to 10000: 1.
(そ の他 の 事項)  (Other matters)
実施の形態 7 、 8 で は、 共通電極の 配向先領域の プ レ チ ル ト 角 D 2 を 小 さ い値 と し た が、 大 き い値で も 良い 。 ま た、 画素電極の配向 先領域の プ レ チル ト 角 B 2 を大 き い値 と し た が、 横電界の影響で t ー ス プ レ イ 配 向 と な る た め 小 さ い値で も 効果は得 ら れ る 。  In the seventh and eighth embodiments, the pretilt angle D 2 of the orientation destination region of the common electrode is set to a small value, but may be set to a large value. In addition, the pretilt angle B2 in the region where the pixel electrode is oriented is set to a large value, but the value is small because the horizontal field causes the t-spray orientation. The effect can also be obtained.
ま た、 一方 の基板側の プ レ チル ト 角 A 2 の 2 度 に対 し て対向 の プ レ チル ト 角 C 2 を 5 度 と して い る が、 そ の 比が大 き ければ転移時間 短縮の効果があ り 更 に転移時間 を速 く す る こ と がで き る 。 In addition, the pretilt angle C2 of the opposite side is set to 5 degrees with respect to the pretilt angle A2 of one substrate side of 2 degrees, but if the ratio is large, the transition occurs. time This has the effect of shortening and can further increase the transit time.
ま た、 前記で は、 小 さ い 方 の プ レ チル ト 角 A 2 の値 を 2 度 と し た が、 b — ス プ レ イ 配向 さ せベ ン ド 配向へ容易 に転移さ せ る た め に、 小 さ い値の プ レ チ ル ト 角 A 2 、 D 2 の値 と して 3 度以下で あ れば 良 く 、 大 き い齒 の プ レ チル ト 角 B 2 、 C 2 は 4 度以上で あれば良 い。 ま た、 配向処理方 向 を信号電極線 1 1 3 に対 して 直角方 向 に上下 基板 同一方向 に 平行配向処理 し た が、 ゲー ト 電極線 1 1 4 に対 し て 直角 方 向 (即 ち 、 図 1 6 の お け る 紙面 に 対 して 垂直方 向) に上下基 板同一方 向 に 平行配向処理 して も 良い 。 そ の際、 デ ィ ス ク リ ネ ー シ ヨ ン線の形成場所が異な る 。  Further, in the above, the value of the smaller pretilt angle A 2 was set to 2 degrees, but the b-spray orientation was performed and the transition to the bend orientation was facilitated. For example, it is sufficient that the small values of the pre-tilt angles A 2 and D 2 are 3 degrees or less, and the pre-tilt angles B 2 and C 2 of the large teeth are It should be at least 4 degrees. In addition, although the orientation processing was performed in the same direction as the upper and lower substrates in a direction perpendicular to the signal electrode wires 113, the orientation was perpendicular to the gate electrode wires 114 (immediately). That is, the upper and lower substrates may be parallel-aligned in the same direction (perpendicular to the paper surface in FIG. 16). At that time, the location where the disk line is formed is different.
ま た、 前記平行 に配向処理 さ れ る 方 向 が、 該画素電極に沿 う 電極 線の 直角 方 向 か ら 例 え ば約 2 度 ずれて 配 向処理す る と 、 画素内 に形 成さ れたデ ィ ス ク リ ネ ー シ ョ ン線 に電極か ら 横電界が斜め に 印加 さ れ る た め、 ス プ レ イ 配向 し た液晶分子 に ね じれ る 力が加わ り ベ ン ド 配向へ転移 しや す く な り 、 転移 が確実 に 速い液晶表示装置 と な る 。  Further, if the direction of the parallel alignment processing is shifted from the direction perpendicular to the electrode line along the pixel electrode by, for example, about 2 degrees, a direction is formed in the pixel. Since a transverse electric field is applied obliquely from the electrodes to the displaced screen lines, a twisting force is applied to the liquid crystal molecules that are aligned in the display, and the bend alignment is applied. The transition to the liquid crystal display device is facilitated, and the liquid crystal display device is surely fast in the transition.
な お、 第 1 の電圧 と し て は、 デ ィ ス ク リ ネ ー シ ヨ ン線 を形成す る こ と が可能な電圧以上で あ れば 良い。 ま た、 画素電極 と共通電極の 間 に 第 2 の電圧 を 印加す る と し た が、 共通電極 に 印加 して も よ い。  Note that the first voltage may be any voltage that is higher than the voltage that can form a disk line. Further, although the second voltage is applied between the pixel electrode and the common electrode, the second voltage may be applied to the common electrode.
ま た、 前記配向膜材料 と し て ポ リ イ ミ ド 材料 を使用 し た が、 単分 子膜材料な どの他 の材料で も よ い 。  In addition, although a polyimide material was used as the alignment film material, other materials such as a single molecular film material may be used.
他の液晶表示装置 に お い て は、 例 え ば、 基板は プラ ス チ ッ ク 基板 か ら 形成す る こ と も で き る 。 ま た、 基板の 一方 を反射性基板か ら 形 成 し、 例 え ば、 シ リ コ ン で形成 して も よ い 。  In other liquid crystal display devices, for example, the substrate can be formed from a plastic substrate. Alternatively, one of the substrates may be formed from a reflective substrate, for example, made of silicon.
(実施の形態 9 )  (Embodiment 9)
本実施の形態は、 信号電極線 と 画素電極、 お よ びゲー ト 電極線 と 画素電極 に、 そ れぞれ嵌合す る 形状の 凹 凸 を形成 し た も の で あ る 。 図 2 0 、 図 2 1 に、 本実施の形態の液晶表示装置の要部 を概念的 に示す。 In the present embodiment, the signal electrode lines and the pixel electrodes, and the gate electrode lines and the pixel electrodes are formed with concave and convex shapes that are fitted to each other. FIGS. 20 and 21 conceptually show the main parts of the liquid crystal display device of the present embodiment.
本図は、 ア ク テ ィ ブマ ト リ ッ ク ス型の O C B モ ー ド の液晶表示装 置の 画素 を表示面上方 (使用者側) か ら 見た も の で あ る 。  This figure shows the pixels of an active matrix type OCB mode liquid crystal display device viewed from above the display surface (user side).
図 2 0 にお いて 、 2 0 6 は信号電極線 ( ノ ス ラ イ ン ) で あ り 、 2 In FIG. 20, reference numeral 206 denotes a signal electrode line (nosline).
0 7 は ゲー ト 電極線で あ り 、 2 0 8 はス イ ッ チ ン グ 卜 ラ ン ジス 夕(素 子) で あ る 。 Reference numeral 07 denotes a gate electrode line, and reference numeral 208 denotes a switching transistor (element).
な お、 図で は信号電極線 2 0 6 と ゲー ト 電極線 2 0 7 は交差 し て い る が、 両方 の電極線は絶縁膜 (図示せぬ) を 介 し て立体配置 さ れ て い る の は勿論で あ る 。  In the figure, the signal electrode line 206 and the gate electrode line 207 cross each other, but both electrode lines are three-dimensionally arranged via an insulating film (not shown). It goes without saying.
ま た、 T F T か ら な る ス イ ッ チ ン グ ト ラ ン ジ ス タ 2 0 8 は、 図 で は略正方形状の画素電極 2 0 2 a に接続 さ れて い る 。 そ して 、 信号 電極線 2 0 6 、 ゲー ト 電極線 2 0 7 、 ス イ ッ チ ン グ ト ラ ン ジス タ 2 0 8 、 画素電極 2 0 2 a の機能、 動作、 作用 は O B C モ ー ド の み な ら ず従来の液晶表示装置 と 何等異 な ら な い 。  A switching transistor 208 formed of TFT is connected to a pixel electrode 202a having a substantially square shape in the figure. The functions, operations, and functions of the signal electrode line 206, the gate electrode line 207, the switching transistor 208, and the pixel electrode 202a are the OBC mode. There is no difference from conventional liquid crystal display devices as well as the LCD.
ま た、 最初 に液晶分子 2 1 1 を ス プ レ イ 配向 さ せ る た め、 上下 の 配向膜 2 0 3 a · 2 0 3 b に ラ ビ ン グ ク ロ ス 等 を使用 し て の配向処 理がな さ れて い る の も 同 じ で あ る 。  In addition, since the liquid crystal molecules 211 are first aligned in a splay manner, the upper and lower alignment films 203a and 203b are formed by using a rubbing cross or the like. The same goes for the processing.
更 に、 偏光板 2 0 4 a · 2 0 4 b 等の作用 と 共に 、 画素内 の ス プ レ イ 配向状態か ら 、 液晶分子 を対向基板間で ベ ン ド 配向状態 と し た ベ ン ド 配向領域に 画素 内 の液晶分子全体を 転移 さ せ る 作用 に よ っ て 明暗の表示が な さ れ る の も 同 じ で あ る 。  In addition to the action of the polarizing plates 204a and 204b, etc., a bend in which the liquid crystal molecules are brought into a bend alignment state between the opposing substrates from the spray alignment state in the pixel. The same is true for displaying light and dark by the action of transferring the entire liquid crystal molecules in the pixel to the alignment region.
し か し な が ら 、 図 2 0 ( a ) に示す よ う に、 略正方形状の画素電 極 2 0 2 a の 各辺の略 中 央部 に 、 凹部 2 2 1 a お よ び凸部 2 2 2 a が形成 さ れて い る 。 一方、 こ れ に 近接 し て配線 さ れて い る 信号電極 線 2 0 6 及びゲー ト 電極線 2 0 7 は、 前記凹部 2 2 1 a お よ び凸部 2 2 2 a に嵌合す る よ う に 凸部 2 6 1 · 2 7 1 と 凹部 2 6 2 . 2 7 2 に変形 し た配線 と さ れて い る 。 こ の た め、 画素電極 2 0 2 a の 上 下、 左右位置 ( 図 2 0 ( a ) にお け る 紙面上) に、 変形 し た転移励 起用 の横電界印加部 を形成す る こ と と な る の が、 従来の液晶表示装 置 と 相違す る 。 However, as shown in FIG. 20 (a), the recesses 22 1a and the protrusions are provided at the approximate center of each side of the substantially square pixel electrode 202a. 2 2 a has been formed. On the other hand, the signal electrode wire 206 and the gate electrode wire 206 which are routed in close proximity to the above are formed by the concave portions 22 1 a and the convex portions. The wiring is deformed into a convex portion 26 1 · 27 1 and a concave portion 26 22. 72 2 so as to fit into 22 2 a. For this reason, a deformed lateral electric field application part for exciting the transition should be formed above and below the pixel electrode 202a and in the left and right positions (on the paper surface in Fig. 20 (a)). This is different from the conventional liquid crystal display device.
次 に、 こ の液晶表示装置の製造方法 に つ い て 説明 す る 。  Next, a method for manufacturing the liquid crystal display device will be described.
横電界印加部 を 含め た 画素電極 2 0 2 a 面上 と 共通電極 2 0 2 b 面上 に、 日 産化学工業 (株) 社製のポ リ ア ミ ッ ク 酸タ イ プの約 5 度 の大 き さ の プ レ チル ト 角 の ポ リ ィ ミ ド 配向膜材料を 塗布乾燥焼成 し て、 それそれの電極面の液晶層 2 1 0 側 に配向膜 2 0 3 a · 2 0 3 b を形成 し た 。  On the pixel electrode 202a surface including the horizontal electric field application part and the common electrode 202b surface, about 5 degrees of Nissan Chemical Industries, Ltd. polyamic acid type Polyimide with a pre-tilt angle of large size is coated and dried and baked, and the alignment film is placed on the liquid crystal layer 210 side of each electrode surface. Formed.
次 に、 前記配向膜 2 0 3 a · 2 0 3 b の表面 を 、 共 に ラ ビ ン グ ク ロ ス で図 2 0 ( a ) に示す よ う に信号電極線 2 0 6 と ほぼ直交す る 方向 に配向処理 し た 。  Next, as shown in FIG. 20 (a), the surfaces of the alignment films 203 a and 203 b are almost perpendicular to the signal electrode lines 206 as shown in FIG. 20 (a). Orientation treatment.
以上の も と で、 上下の基板間 に正の ネ マ テ ィ ッ ク 液晶材料 を真空 注入 して液晶層 2 1 0 を形成 し た 。  Based on the above, a liquid crystal layer 210 was formed by vacuum-injecting a positive nematic liquid crystal material between the upper and lower substrates.
こ の た め、 図示せ ぬが、 上下の配向膜 2 0 3 a · 2 0 3 b の表面 で は、 液晶分子 2 1 1 が、 そ の プ レ チル ト 角 が正負逆の値 を 持 ち 、 し か も 分子の 直軸方 向 は互い に ほぼ平行 に な る よ う 配向 し、 液晶層 2 1 0 はい わ ゆ る 無電圧印加状態で液晶分子が斜め に広 が っ た い わ ゆ る ス プ レ イ 配向 と な る 。  For this reason, although not shown, on the surfaces of the upper and lower alignment films 203 a and 203 b, the liquid crystal molecules 211 have opposite pretilt angles of the positive and negative angles. However, the molecules are oriented so that the directions of the axes are almost parallel to each other, and the liquid crystal layer 210 spreads obliquely with no voltage applied. It becomes a spray orientation.
次 に、 液晶表示装置の表示の た めの動作 に つ いて 説明す る 。  Next, the operation of the liquid crystal display device for displaying will be described.
以上の も と で、 共通電極 2 0 2 b と 画素電極 2 0 2 a 間 に — 1 5 V と い う 液晶分野で は比較的電圧の高いパルス状の電圧 を繰 り 返 し 印加す る と 共 に、 ゲー ト 電極線 2 0 7 を通常 の走査状態か、 あ る い は殆 ど全て オ ン さ せ た状態 に す.る 。 こ れ に よ り 、 横電界印加部 に よ つ て 、 ゲー ト 電極線 2 0 7 、 信号電極線 2 0 6 と 画素電極 2 0 2 a 間 に周 囲の通常の横電界 よ り 強い横電界が印加 さ れ る 。 そ の結果、 画素領域内 の ス プ レ イ 配向領域において、 信号電極線 2 0 6 と ほぼ 直交 す る 方向 に ラ ビ ン グ し た場合、 主 に ゲー ト 電極線 2 0 7 と 画素 電極 2 0 2 a 間 の横電界印加部 を基点 と し た液晶層 2 9 9 に ベ ン ド 配向への転移核が発生 す る 。 ま た、 図 2 1 に 示 す よ う に、 ゲー ト 電 極線 2 0 7 と 直交す る 方 向 に ラ ビ ン グ し た場合、 主に信号電極線 2 0 6 と 画素電極 2 0 2 a 間の横電界印加部 を基点 と し た液晶層 2 9 8 に ベ ン ド 配向への転移核が発生す る 。 Based on the above, it is possible to repeatedly apply a relatively high pulse voltage of −15 V in the liquid crystal field between the common electrode 202 b and the pixel electrode 202 a. At the same time, the gate electrode line 207 is set to a normal scanning state or a state in which almost all the gate electrodes are turned on. As a result, the horizontal electric field Thus, a stronger horizontal electric field than the surrounding normal electric field is applied between the gate electrode line 207, the signal electrode line 206 and the pixel electrode 202a. As a result, when rubbing is performed in a direction substantially perpendicular to the signal electrode line 206 in the spray alignment region in the pixel region, the gate electrode line 207 and the pixel electrode 2 A transition nucleus to bend alignment is generated in the liquid crystal layer 29 9 from the horizontal electric field application portion between 0 2 a as a base point. In addition, as shown in FIG. 21, when rubbing is performed in a direction orthogonal to the gate electrode line 207, the signal electrode line 206 and the pixel electrode 202 are mainly A transition nucleus to bend alignment is generated in the liquid crystal layer 298 based on the horizontal electric field application portion between a.
更 に、 こ の転移核 を も と に ベ ン ド 配向領域が拡大 し、 そ の結果画 素領域全体を約 0 . 5 秒で ベ ン ド 配向へ完 了 さ せ る こ と がで き た 。  Furthermore, the bend alignment region was expanded based on this transition nucleus, and as a result, the entire pixel region was able to complete the bend alignment in about 0.5 seconds. .
な お、 T F T ノ ネ ル全体で は、 約 2 秒で速か に転移 し た 。  In addition, the entire TFT cell rapidly translocated in about 2 seconds.
こ の機構で あ る が、上下電極間 に高電圧が印加 さ れて、図 2 0 ( b ) に 示す よ う に、 液晶層 2 1 0 が b —ス プ レ イ 配 向状態 と な り 、 周 囲 よ り 歪み のエネ ルギーが高 く な り 、 こ の液晶分子配向状態方向 に横 電界印加部か ら ほぼ直角 ( 図 2 0 ( b ) 面垂直方 向 ) に横電界が 印 加 さ れる た め、 図 2 0 ( b ) の b—ス プ レ イ 配 向 に おけ る 下基板側 の液晶分子がね じ れ る 力 を 受 け、 転移核の発生 が起 き る も の と 考 え ら れ る 。  In this mechanism, when a high voltage is applied between the upper and lower electrodes, the liquid crystal layer 210 enters the b-spray orientation state as shown in FIG. 20 (b). Then, the energy of the strain becomes higher than that of the surroundings, and a transverse electric field is applied almost perpendicularly (in the direction perpendicular to the plane of Fig. 20 (b)) from the transverse electric field application part to the liquid crystal molecule alignment state direction. Therefore, it is considered that the liquid crystal molecules on the lower substrate side in the b-spray orientation in FIG. 20 (b) receive the twisting force and the generation of transition nuclei occurs. available .
以上の説明で は、 横電界印加部は、 凹凹 に 変形 し た画素電極部 と 両方 の信号電極線の 凹 凸部は、 相互に嵌合す る よ う に形成さ れ る も の と し た が、 図 2 2 に 示す よ う に、 画素電極 2 0 2 a の み、 信号電 極線 2 0 6 の み、 ゲー ト 電極線 2 0 7 の み に形成 さ れて も よ い の は 勿論であ る 。  In the above description, the horizontal electric field applying portion is formed such that the pixel electrode portion deformed into a concave and concave portion and the concave and convex portions of both signal electrode wires are fitted to each other. However, as shown in FIG. 22, it is of course possible to form only the pixel electrode 202 a, the signal electrode wire 206, and the gate electrode wire 207 only. It is.
即 ち 、 本図 に お い て は、 信号電極線 2 0 6 の 凸部 2 6 3 、 ゲー ト 電極線 2 0 7 の 凸部 2 7 3 、 画素電極 2 0 2 a の 凸部 2 2 3 a . 2 2 4 a はい ずれか一方の み に あ り 、 嵌合型 と な っ て い な い の が図 2 0 に 示す も の と 相違す る 。 In other words, in this figure, the projections 2 63 of the signal electrode wire 206, the projections 2 73 of the gate electrode wire 2 07, and the projections 2 2 3 of the pixel electrode 202 a are shown. a. 2 24a is different from the one shown in Fig. 20 in that only one of them is provided and it is not a fitting type.
ま た、 凹 凸部の平面形状は、 図 2 0 乃至図 2 2 に 示す三角形状、 四角形状以外の形状、 例 え ば台形形状、 半円形状、 円形状、 楕 円形 状等で あ っ て も よ い の は勿論で あ る 。  Further, the planar shape of the concave and convex portions is a shape other than the triangular shape and the square shape shown in FIGS. 20 to 22, for example, a trapezoidal shape, a semicircular shape, a circular shape, an elliptical shape, and the like. Of course, it is good.
更 に、 図 2 0 乃至図 2 2 で は、 横電界印加部は 1 画素 の上下左右 に合計 4 力 所設 けて い る が、 画素の大 き さ 等 に よ っ て は上下 の 2 個 の み、 あ る い は 1 個だ け設けて も 良 く 、 更 に ま た電極縁 に そ っ て 凹 凸が連続的 に形成 さ れて い て も よ い の は勿論で あ る 。 ま た、 こ れ ま で、 ラ ビ ン グ方 向 を 信号電極線 あ る い は ゲー ト 電極線の ほぼ直交す る と し た が、 ラ ビ ン グ方 向 を斜め方 向 に して も 良い 。 こ の 場合、 信 号お よ びゲー ト 電極線 と 画素電極間の横電界印加部の液晶層か ら ベ ン ド 配向へ転移が発生 す る 。 ま た、 少 な く と も 、 ラ ビ ン グ方 向 と ほ ぼ直交す る 方 向 に横電界 を 印加で き る 横電界印加部 を 画素単位 に 少 な く と も 1 個配置す る こ と が望 ま しい 。  Further, in FIGS. 20 to 22, the horizontal electric field application section is provided at a total of four powers at the top, bottom, left, and right of one pixel, but depending on the size of the pixel, etc. In addition, only one or only one electrode may be provided, and it goes without saying that concaves and convexes may be continuously formed along the electrode edge. Up to now, the rubbing direction has been assumed to be almost orthogonal to the signal electrode wire or the gate electrode wire, but even if the rubbing direction is oblique. Good. In this case, a transition occurs from the liquid crystal layer in the horizontal electric field applying portion between the signal and the gate electrode line and the pixel electrode to the bend alignment. In addition, at least one horizontal electric field application unit capable of applying a horizontal electric field in a direction substantially orthogonal to the rubbing direction is provided for each pixel. And are desirable.
ま た、 図 2 0 乃至図 2 2 は平面図で あ る た め、 両電極線 (信号電 極線 2 0 6 お よ びゲー ト 電極線 2 0 7 ) と 画素電極 2 0 2 a は 同 一 平面 に あ る よ う に見え る が、 こ れは少 な く と も 一方 の 電極線が画素 電極 と ア レ ー基板上異な る 高 さ に配置 さ れて いて も 良い 。  Since FIGS. 20 to 22 are plan views, both electrode lines (signal electrode line 206 and gate electrode line 207) and pixel electrode 202a are the same. Although it appears to be on one plane, at least one of the electrode lines may be arranged at a different height from the pixel electrode on the array substrate.
こ の よ う に 、 画素電極の周辺の一部 を基板面 に平行 な 面 内で 凹 凸 に 変形 し た 電極変形部か ら な る 横電界印加部は、 平面視で は 0 . 5 ~ 1 程度離れて 、 該横電界印加部の側方 に 存在 す る 信号電極 線若 し く は ゲー ト 電極線の 凸部ゃ 0 . 5 〜 1 Ο ζ πι程度 凹 んだ 凹部 の 存在 に よ り 、 横電界 を 発生 さ せ る 。  As described above, the horizontal electric field applying portion consisting of the electrode deformed portion in which a part of the periphery of the pixel electrode is deformed concave and convex in a plane parallel to the substrate surface is 0.5 to 1 in plan view. The projections of the signal electrode lines or the gate electrode lines present on the side of the horizontal electric field application part are separated by about 0.5 to about 1 Ο ππ, so that the concave parts are recessed by about πι. Generates a transverse electric field.
(実施の形態 1 0 )  (Embodiment 10)
本実施の形態は、 横電界印加用 の電極線 を 設け る も の で あ る 。 以下、 図 2 3 を参照 しつ つ本実施の形態 を 説明す る 。 In the present embodiment, an electrode wire for applying a horizontal electric field is provided. Hereinafter, the present embodiment will be described with reference to FIGS.
本図の ( a ) は、 基板上面 よ り 見た平面図で あ る 。 ( b ) は、 液晶 表示装置の ゲー ト 電極線 2 0 7 に平行な面で の 断面図であ る 。  (A) of this figure is a plan view seen from the upper surface of the substrate. (B) is a cross-sectional view of the liquid crystal display device in a plane parallel to the gate electrode line 2007.
本図の ( a ) と ( b ) において 、 2 0 9 は、 ア レ ー基板 2 0 l a 上 の信号電極線 2 0 6 の ほぼ直下部分 に横電界印加専用 に 布設さ れ た電線で あ る 。 2 1 2 は、 前記横電界印加用 線 2 0 9 と 信号電極線 2 0 6 、ゲー ト 電極線 2 0 7 等を 絶縁す る た め の透明絶縁膜で あ る 。 従 っ て 、 こ の 画素 を 上部 (表示面 に直交す る 使用者側方向 ) か ら 見 た場合に は、 図 2 3 ( a ) に 示す ご と く 、 画素 の左右 中央部 に て 横 電界印加用線 2 0 9 の平面視三角形状の 凸部 2 9 1 が信号電極線 2 0 6 の側方 に 突 出 して い る 。 なお、 前記信号電極線 2 0 6 お よ び画 素電極 2 0 2 a は従来技術の も の と何等かわ り がな い 。  In (a) and (b) of this figure, reference numeral 209 denotes an electric wire laid almost exclusively under the signal electrode wire 206 on the array substrate 20 la for exclusive application of a lateral electric field. . Reference numeral 212 denotes a transparent insulating film for insulating the horizontal electric field application line 209 from the signal electrode line 206, the gate electrode line 207, and the like. Therefore, when this pixel is viewed from above (in the direction of the user perpendicular to the display surface), as shown in Fig. 23 (a), the horizontal electric field is located at the left and right central parts of the pixel. The triangular projection 291 of the application wire 209 in a plan view protrudes to the side of the signal electrode wire 206. The signal electrode lines 206 and the pixel electrodes 202a are not different from those of the prior art.
前記横電界印加用線 2 0 9 は、 前記信号電極線 2 0 6 若 し く は ゲ ー ト 電極線 2 0 7 が接続さ れた駆動回路 に接続 さ れ、 さ ら に、 前記 横電界印加用 線 2 0 9 は、 配向転移後の通常の液晶表示時 に は、 駆 動回路 と 遮断 さ れ る よ う 構成 さ れて い る 。  The horizontal electric field applying line 209 is connected to a drive circuit to which the signal electrode line 206 or the gate electrode line 207 is connected. The line 209 is configured so as to be cut off from the drive circuit during normal liquid crystal display after the alignment transition.
ま た、 前記横電界印加用 線 2 0 9 を 、 信号電極線 2 0 6 に対す る 上部の信号電極線 と し、 透明絶縁膜を 介 して 画素電極 に近接 して 設 け、 横電界印加 の効果 を増 し、 併せて 透明絶縁膜中 の 図示 して い な い コ ン タ ク ト ホールで 電気的 に接続さ れて い て も よ い 。 こ の場合、 信号電極線が 2 本 と な る た め冗長度が増 し電気抵抗が低下す る と い う 効果 も あ る 。  Further, the horizontal electric field applying line 209 is used as an upper signal electrode line with respect to the signal electrode line 206, and is provided close to the pixel electrode via a transparent insulating film, and the horizontal electric field applying line 209 is provided. The effect may be increased and, at the same time, the connection may be made electrically by a contact hole (not shown) in the transparent insulating film. In this case, since there are two signal electrode wires, there is also an effect that the redundancy is increased and the electric resistance is reduced.
即 ち 、 図 2 3 ( c ) に示す よ う に、 横電界印加用線 2 0 9 a は、 信号電極線 2 0 6 の 直上 に透明絶縁膜 2 1 3 を 介 し て 設け ら れて い る 。 な お、 画素 中央部への 平面視三角形状の 凸部 2 9 1 a があ る の は 同 じで あ る 。 ま た、 図 2 3 ( d ) は、 本実施の形態の他の例 で あ る 。 図 に 示 す よ う に、 横電界印加用線 2 0 9 b が平坦化透明絶縁膜 2 1 2 b に よ つ て被覆さ れ、 さ ら に、 専用線 2 0 9 b の下 に信号電極線 2 0 6 が 平坦化透明絶縁膜 2 1 2 c に よ っ て被覆 さ れ、 画素電極 2 0 2 a が 前記平坦化透明絶縁膜 2 1 2 b の上に設け ら れて い る 。 な お、 画素 中央部への三角形状の 凸部 2 9 1 b があ る の は 同 じで あ る 。 That is, as shown in FIG. 23 (c), the horizontal electric field applying wire 209a is provided directly above the signal electrode wire 206 via the transparent insulating film 213. . It is the same that there is a triangular convex portion 291a at the center of the pixel in plan view. FIG. 23D shows another example of the present embodiment. As shown in the figure, the horizontal electric field application wire 209b is covered with the flattened transparent insulating film 221b, and the signal electrode is placed under the dedicated line 209b. The line 206 is covered with the flattening transparent insulating film 211c, and the pixel electrode 202a is provided on the flattening transparent insulating film 211b. It is the same that there is a triangular convex portion 2991b at the center of the pixel.
ま た、 図 で は こ の横電界印加用 の専用線の 凸部 を 三角形状 と し て い る が、 こ れは画素電極 に対向 す る 部分全て に連続的 に 凸部 を設 け た り 、 更 に は上方へ突出 し た 凸部 を有 す る 等、 立体的な構造 を 有 し て い て も よ い の は勿論で あ る 。  Also, in the figure, the protruding part of this dedicated line for applying a horizontal electric field is triangular, but this is done by continuously providing protruding parts on all parts facing the pixel electrode. Needless to say, it may have a three-dimensional structure, such as having a convex portion projecting upward.
ま た 、 横電界印加用 の専用線は信号電極線で な く 、 ゲー ト 電極線 の直下、 直上 に 設けて も 良い 。 更 に は、 両電極線の 直下等 に設けて 良 い。  In addition, the dedicated line for applying the horizontal electric field may be provided directly below or directly above the gate electrode line instead of the signal electrode line. Further, it may be provided immediately below both electrode wires.
(実施の形態 1 1 )  (Embodiment 11)
本実施の形態は、 画素電極 内 に 少な く と も 1 力所 の切欠 き を設 け て 欠陥部 を形成す る も ので あ る 。  In the present embodiment, at least one notch is formed in the pixel electrode to form a defective portion.
図 2 4 に、 本実施の形態の液晶表示装置 の画素単位の平面 と 特徴 を概念的 に 示す。 本図 に示す よ う に、 I T O 膜か ら な る 画素電極 2 0 2 a は、 例 え ば数 m幅で エ ッ チ ン グ に よ り 除去 さ れて 平面視 ク ラ ン ク 形状 の電極欠陥部 2 2 5 が形成 さ れて い る 。  FIG. 24 conceptually shows a plane and features of a pixel unit of the liquid crystal display device of the present embodiment. As shown in this figure, the pixel electrode 202a made of an ITO film is, for example, a few m wide and is removed by etching to form a planar-shaped electrode in a crank shape. Defective part 225 is formed.
な お、 こ の電極欠陥部 2 2 5 を含め た画素電極 2 0 2 a 面上お よ び図示せ ぬ共通電極面上 に は、 日 産化学工業 (株) 社製のポ リ ア ミ ッ ク 酸タ イ プの約 5 度 の大 き さ の プ レ チル ト 角 の ポ リ ィ ミ ド 配向膜 材料 を塗布乾燥焼成 して 、 それぞれ配向膜 (図示せず) を形成 し、 更 に そ れ ら の表面 を ラ ビ ン グク ロ ス で ゲー ト 電極線 2 0 7 と 直交す る 方 向 に配向処理がな さ れ、 こ の た め液晶分子 の プ レ チル ト 角 が正 負逆の値 を持 ち 、 互い に ほぼ平行方 向 に な る よ う 同一方 向 に 平行配 向 さ れて い る の は、 第 9 お よ び第 1 0 の実施の形態 と 同 じで あ る 。 従 っ て、 液晶層 は い わ ゆ る 無電圧印加状態で液晶分子が斜め に広 がっ た配向領域か ら な る いわ ゆ る ス プ レ イ 配向 の液晶セ ル を形成 し て い る の も 同 じ で あ る 。 In addition, on the pixel electrode 202a including the electrode defective portion 225 and the common electrode surface (not shown), a polymixer manufactured by Nissan Chemical Industries, Ltd. is provided. A polyimide alignment film material having a pretilt angle of about 5 degrees of the citrate type is applied, dried and baked to form an alignment film (not shown), and further formed. These surfaces are aligned in a direction perpendicular to the gate electrode line 207 by rubbing cross, so that the pretilt angle of the liquid crystal molecules is positive. The same as in the ninth and tenth embodiments, they have negative values and are oriented in parallel in the same direction so that they are almost parallel to each other. is there . Therefore, the liquid crystal layer forms a so-called spray-aligned liquid crystal cell consisting of a so-called alignment region in which liquid crystal molecules spread obliquely under no voltage application. Is the same.
し か し な が ら 、 表示前の画素の共通電極 と 画素電極間 に 1 5 V、 あ る い は共通電極 に一 1 5 V の電圧のノ ル ス を繰 り 返 し 印加す る と 共に、 ゲー ト 電極を通常の走査状態か、 あ る い は殆 ど全て オ ン さ せ た状態に す る と 、 画素単位に は電極欠陥部 2 2 5 が存在 する た め、 図 2 4 ( b ) に 示 す よ う に、 該電極欠陥部 2 2 5 の縁で 強い歪み の 斜め横電界 2 8 0 が発生す る 。  However, when a voltage of 15 V or a voltage of 15 V is repeatedly applied between the common electrode and the pixel electrode of the pixel before the display and the common electrode, a voltage of 15 V is applied repeatedly. When the gate electrode is in a normal scanning state or in a state in which almost all of the gate electrodes are turned on, an electrode defect part 22 25 exists in each pixel. ), An oblique horizontal electric field 280 with strong distortion is generated at the edge of the electrode defect portion 225.
こ の た め、 画素領域内 のス プ レ イ 配向 は、 こ の電極欠陥部 2 2 5 の液晶層 2 9 9 に ベ ン ド 配向への 転移核が発生 し、 更 に こ の ベ ン ド 配向領域が拡大 して 画素領域全体を約 0 . 5 秒でベ ン ド 配向へ完了 さ せ る 。 ま た、 T F T ノ ネ ル全体で は、 約 2 秒で速か に 転移す る 。  For this reason, the splay alignment in the pixel region causes a transition nucleus to the bend alignment in the liquid crystal layer 299 of the electrode defect part 22 25, and further this bend alignment occurs. The alignment region expands and completes the entire pixel region to bend alignment in about 0.5 seconds. In addition, the entire TFT cell rapidly transitions in about 2 seconds.
こ れは、 電極欠陥部 2 2 5 か ら な る 横電界印加部 で強い横電界 を 受け、 こ の付近の液晶分子は基板面 に水平状態 に配 向 さ れ、 い わ ゆ る b — ス プ レ イ 配向状態 と な り 、 周 囲 よ り 歪み のエ ネ ル ギーが高 く な っ て お り 、 こ の状態の も と で上下電極間 に高電圧 が印加 さ れ る た め更 に エネ ル ギーが与 え ら れ、 そ の結果、 電極欠陥部 2 2 5 に お い て 転移核が発生 し、 ベ ン ド 配向領域が拡大す る も の と考 え ら れ る 。  This is because a strong horizontal electric field is applied to the horizontal electric field application part consisting of the electrode defect part 225, and the liquid crystal molecules in the vicinity of this are oriented horizontally on the substrate surface, so-called b-s. In the plane orientation state, the energy of the strain is higher than the surrounding area, and a high voltage is applied between the upper and lower electrodes in this state. It is considered that energy is given, and as a result, a transition nucleus is generated in the electrode defect portion 225, and the bend orientation region is expanded.
な お、 図 2 4 で は、 平面視 ク ラ ン ク 形状の電極欠陥部 2 2 5 を 1 本形成 し て い る が、 2 本以上 と し て も 良 い の は勿論で あ る 。  In FIG. 24, one electrode defect portion 225 having a crank shape in a plan view is formed. However, it is needless to say that two or more electrode defect portions may be formed.
ま た 、 そ の形状は直線、 角型や 円形、 楕 円、 更 に は 角形状等で あ っ て も 良い の は勿論で あ る 。  The shape may be a straight line, a square, a circle, an ellipse, or even a square, as a matter of course.
更 に、 電極欠陥部 2 2 5 は、 共通電極側 に形成 して も 良 い 。 更 に ま た、 画素電極お よ び共通電極の 両方 に形成 し て も 良 い の も 勿論で あ る 。 Further, the electrode defective portion 225 may be formed on the common electrode side. Further, it goes without saying that it may be formed on both the pixel electrode and the common electrode.
(実施の形態 1 2 )  (Embodiment 12)
本実施の形態は、 横電界 を 発生 さ せ る と共 に、 こ れに併せて あ ら か じ め画素平面内 に チ ル ト 角 の相違す る 領域を形成 して お く も の で あ る 。  In the present embodiment, a region having a different tilt angle is previously formed in the pixel plane in addition to the generation of the lateral electric field. .
図 2 5 に、 本実施の形態の液晶表示装置の画素単位の構成 と 特徴 を概念的 に示 す。 本図 の ( a ) は、 ゲー ト 電極線 に 平行な 方 向 の 画 素の 断面図で あ り 、 同一画素で あ る が、 左側 の ( I ) と 右側 の ( II ) と で、 チル ト 角 が相違 して い る 様子を 示す。  FIG. 25 conceptually shows the configuration and features of the pixel unit of the liquid crystal display device of the present embodiment. (A) of this figure is a cross-sectional view of a pixel in a direction parallel to the gate electrode line, and it is the same pixel. However, the left (I) and the right (II) show a tilt. The angle is different.
図 2 5 ( b ) は、 上 (使用 者側) 方 向 よ り 見た画素の 平面図 で あ り 、 画素電極 2 0 2 a の上下左右 に 凹 凸部 2 2 1 a · 2 2 2 a が設 け ら れ、 更 に信号電極線 2 0 6 お よびゲー ト 電極線 2 0 7 の対応 す る 位置 に前記凹凸部 2 2 1 a · 2 2 2 a に相嵌合す る よ う に 凹 凸部 2 6 1 · 2 6 2. · 2 7 1 · 2 7 2 が設け ら れて お り 、 前述 し た 実施 の形態 7 と 同様 に、 第 1 の電圧で あ る 2 . 5 V を 印加 して 、 図 2 5 ( a ) の ( I ) と ( II ) の境界に デ ィ ス ク リ ネ ー シ ヨ ン線 2 2 6 が 形成 さ れて い る 。  FIG. 25 (b) is a plan view of the pixel as viewed from above (user side), and has concave and convex portions 22 1a · 22 2a on the top, bottom, left and right of the pixel electrode 202a Are provided, and furthermore, at the corresponding positions of the signal electrode wire 206 and the gate electrode wire 207, the concave and convex portions 22 1 a and 22 2 a are fitted together. Concave and convex portions 26 1 · 2 6 2. · 27 1 · 27 2 are provided and, like Embodiment 7 described above, the first voltage of 2.5 V is applied. By applying the voltage, a discretion line 226 is formed at the boundary between (I) and (II) in FIG. 25 (a).
以下、本実施の形態の液晶表示装置の製造方法 に つ いて 説明す る 。 ァ ク テ ィ ブマ ト リ ッ ク ス 型 の液晶セ ルの対向 す る 基板内面上 に は そ れぞれ配向膜 2 0 3 a m ' 2 0 3 b mが形成 さ れ、 こ の配向膜 2 0 3 a m · 2 0 3 b mは、 液晶層 2 1 0 が無電圧印加状態で ス プ レ ィ 配向 を形成す る 処理が さ れて い る こ と 、 画素電極 2 0 2 aや こ れ に近接 し て 配線 さ れて い る ゲー ト 電極線 2 0 7 等 に転移励起用 の横 電界印加部 を形成す る こ と 等 は、 先の第 1 の実施の形態 と 同 じ で あ る 。 し か し なが ら 、 配向膜の処理が異な る 。 即ち、 図 2 5 ( a ) に お いて 、 横電界 印加部 を含め た 画素電極 2 0 2 a面上 に、 日 産化学ェ 業 (株) 社製 の ポ リ ア ミ ッ ク 酸タ イ プの約 5 度の大 き い値 を 持つ プ レ チル ト 角 ; B 2 の ポ リ イ ミ ド 配向膜材料を塗布乾燥焼成 し、 配向膜 2 0 3 a mを 形成す る 。 Hereinafter, a method for manufacturing the liquid crystal display device of the present embodiment will be described. On the opposing inner surface of the substrate of the active matrix type liquid crystal cell, an alignment film 203 am '203 bm is formed, respectively. 0 3 am · 203 bm is due to the fact that the liquid crystal layer 210 is treated to form a spray alignment in the absence of a voltage, and the pixel electrode 202 a and the like. The formation of a transverse electric field application part for transfer excitation on the gate electrode line 207 and the like wired close to each other is the same as in the first embodiment. However, the treatment of the alignment film is different. In other words, in FIG. 25 (a), the polyamic acid type manufactured by Nissan Chemical Industries, Ltd. is placed on the pixel electrode 202a including the horizontal electric field application section. A pretilt angle having a large value of about 5 degrees; a polyimide alignment film material of B 2 is applied, dried and fired to form an alignment film 203 am.
次 に 、 こ の 配向膜 2 0 3 a mの左側片側領域 2 0 3 a h のみ、 即 ち 、 ( I )に示 す方のみ に紫外線を照射 して プ レ チル ト 角 E 2 が約 2. 度の 小 さ い値の 配向膜に変化 さ せ る 。  Next, only the left side region 203 ah of the alignment film 203 am, that is, only the one shown in (I) is irradiated with ultraviolet rays, and the pretilt angle E 2 is about 2.degree. It changes to an alignment film with a small value.
こ れ に対 し て 、 対向基板 2 0 l b上 に は 日 産化学工業 (株) 社製 の ポ リ ア ミ ヅ ク 酸タ イ プの約 5 度の大 き い値の プ レ チル ト 角 F 2 を 界面液晶分子 に付与す る ポ リ イ ミ ド配向膜材料を塗布乾燥焼成 し、 共通電極 2 0 2 b上に配向膜 2 0 3 b h を形成す る 。  On the other hand, on the opposite substrate 20 lb, a large pre-tilt angle of about 5 degrees of a polyamic acid type manufactured by Nissan Chemical Industries, Ltd. was used. A polyimide alignment film material for imparting F 2 to interfacial liquid crystal molecules is applied and dried and baked to form an alignment film 203 bh on the common electrode 202 b.
次 に、 前記配向膜 2 0 3 b h の 右側片側領域 2. 0 3 b mの み、 即 ち 、 ( II )に示 す方のみ に紫外線 を照射 して プ レ チル ト 角 D 2 の約 2 度 の 小 さ い値 の配向膜に変化 さ せ る 。  Next, only the side of the right side of the orientation film 203 bh of 2.03 bm, that is, only the side shown in (II) was irradiated with ultraviolet rays to obtain a pretilt angle D 2 of about 2 degrees. It changes to an alignment film with a small value.
こ の よ う に して 、 図 2 5 ( a ) の ( I ) に示す如 く ア レ ー基板 2 0 1 a側左半分の配向膜 2 0 3 a hの 小 さ い値の プ レ チル ト 角 E 2 に対向 して 対 向基板 2 0 1 b側左半分の配向膜 2 0 3 b h の大 き い 値の プ レ チル ト 角 F 2 を配置 さ せ、 ( II )に 示す ご と く ア レ ー基板側 2 0 1 a 右半分の配向膜 2 0 3 a mの 大 き い値の プ レ チル ト 角 B 2 に対向 し て 対向基板 2 0 1 b 側右半分 の配向膜 2 0 3 b mの 小 さ い 値の プ レ チ ル ト 角 D 2 を配置 さ せ る 。  In this way, as shown in (I) of FIG. 25 (a), the pretilt of the small value of the alignment film 203 ah on the left half of the array substrate 201a is performed. A pretilt angle F2 having a large value of the alignment film 203bh on the left half of the opposite substrate 201b on the opposite side of the angle E2 is arranged, as shown in (II). Array substrate side 21 1a Right-half alignment film 203 Opposite to large value of pretilt angle B2 of 203 am Counter substrate 201 1b Right-half alignment film 203b side Pletole angle D2 with small value of bm is arranged.
更 に、 こ の よ う に して形成 し た互い に大小の プ レ チル ト 角 を付与 す る 配 向膜の 表面 を ラ ビ ン グ ク ロ ス で 図 2 5 ( b ) に示す よ う に 信 号電極 6 と ほぼ直交す る 方 向 に上下基板 同一方向 に 平行配 向処理 し た 。 そ の後、 正 の ネ マ テ ィ ッ ク 液晶材料を充填 して 、 こ れ か ら な る 液晶層 2 1 0 を配置 した 。 Furthermore, the surface of the orientation film thus formed, which gives a large and small pretilt angle to each other, is shown by a rubbing cross in Fig. 25 (b). Then, the upper and lower substrates were processed in parallel in the same direction in a direction substantially orthogonal to the signal electrode 6. It is then filled with a positive nematic liquid crystal material and The liquid crystal layer 210 was arranged.
以上の 下で 、 画素電極 2 0 2 a の配向元 ( ラ ビ ン グの根本方 向 ) に は 小 さ い プ レ チル ト 角 E 2 が、 該 プ レ チル ト 角 E 2 に対 向 す る 側 に は大 き い値の プ レ チル ト 角 F 2 が配置 さ れ、 図 2 5 ( a ) の画素 の ( I ) で 示す領域に は液晶分子 を下基板側 に ス プ レ イ 配 向 さ せた b —ス プ レ イ 配向 2 2 7 わ が、 画素の ( II ) で示す領域に は液晶分 子 を 上基板側 に ス プ レ イ 配向 させ た t — ス プ レ イ 配向 2 2 7 t が形 成さ れや す く な る 。  Under the above, a small pre-tilt angle E 2 is opposed to the pre-tilt angle E 2 in the orientation source of the pixel electrode 202 a (toward the root of the rubbing). A large pre-tilt angle F2 is arranged on the side of the substrate, and the liquid crystal molecules are sprayed on the lower substrate side in the area indicated by (I) of the pixel in FIG. 25 (a). Oriented b-spray orientation 2 227 In the region indicated by (II) in the pixel, the t-spray orientation 2 in which the liquid crystal molecules are oriented in a spray orientation on the upper substrate side 27 t becomes easier to form.
次に、 液晶セ ル の ス イ ッ チ ン グ ト ラ ン ジ ス タ 2 0 8 を通 して 対 向 す る 電極間 に転移臨界電圧付近の 2 . 5 V を 印加す る と 、 上述の 理 由 で 同一 の画素 内 に b —ス プ レ イ 配向領域 と t ー ス プ レ イ 配向領域 が形成 さ れ、 そ の境界 に デ ィ ス ク リ ネ ー シ ヨ ン線 2 2 6 が信号電極 線 2 0 6 に沿 っ て 、 かつ ゲー ト 電極線 2 0 7 に渡 っ て 明瞭 に形成 さ れた 。  Next, when a voltage of 2.5 V near the critical transition voltage is applied between the opposing electrodes through the switching transistor 208 of the liquid crystal cell, For this reason, a b-spray alignment region and a t-spray alignment region are formed in the same pixel, and a discretion line 22 6 is formed at the boundary between these regions. It was formed clearly along the electrode line 206 and over the gate electrode line 207.
こ の画素 の共通電極 と 画素電極間 に一 1 5 V のパルス を繰 り 返 し 印加 し た 。 そ う す る と 、 図 2 5 ( b ) に 示 す よ う に、 デ ィ ス ク リ ネ ー シ ヨ ン 線 2 2 6 と 横電界印加部付近の液晶層 2 9 9 か ら 転移核 が 発生 して ベ ン ド 配向領域へ転移が拡大 し、 T F T パ ネ ル画素全体で は約 1 秒で速か に転移 し た 。  A pulse of 15 V was repeatedly applied between the common electrode and the pixel electrode of this pixel. As a result, as shown in FIG. 25 (b), the transition nuclei are formed from the discretion line 22 and the liquid crystal layer 299 near the horizontal electric field application part. Then, the transition to the bend alignment region spread, and the entire TFT panel pixel rapidly transitioned in about 1 second.
こ れは、 b —ス プ レ イ 配 向状態 と t —ス プ レ イ 配 向領域の境界で あ る デ ィ ク リ ネ ー シ ヨ ン 線 2 2 6 領域は周 囲 よ り 歪みの エネ ル ギ ー が高 く な っ て い て 、 こ の状態 に加え て横電界印加部で発生 す る 横電 界 に よ っ て ス プ レ イ 配向 に ね じ れが発生 し て 転移 し易 く な り 、 こ れ に上下電極間 に 高電圧が印加 さ れて更 に エ ネ ル ギーが与え ら れベ ン ド 転移 し た も の と 考 え ら れ る 。  This is because the delineation line 226, which is the boundary between the b-spray orientation state and the t-spray orientation area, has a more distorted energy than the surrounding area. The energy is high, and in addition to this condition, twisting occurs in the spray orientation due to the transverse electric field generated in the transverse electric field application part, and the transition is likely to occur. Therefore, it is considered that a high voltage was applied between the upper and lower electrodes, and energy was further applied to cause a band transition.
以上、 本発明 を 幾つ かの 実施の形態 に基づ い て 説明 して き た が、 本発明は何 も こ れ ら に限定 さ れな いの は勿論で あ る 。 即 ち 、 例 え ば 以下 の よ う に し て も よ い 。 As described above, the present invention has been described based on some embodiments. Of course, the present invention is not limited to these. That is, for example, you can do the following.
1 ) 画素電極 と 共通電極間 に 印加す る 電圧 を連続的、 あ る い は間 欠的 と す る 。  1) The voltage applied between the pixel electrode and the common electrode is continuous or intermittent.
2 ) 高電圧パルス が繰 り 返 し印加 さ れ る 場合、 そ の周波数は 0 . 2) When high voltage pulses are applied repeatedly, the frequency is 0.
1 H z か ら 1 0 0 H z の範囲で あ り 、 且つ第 2 の電圧の デ ュ ーテ ィ 一比 は少な く と も 1 : 1 か ら 1 0 0 0 : 1 の範囲で 、 転移 を速め る 値 を 選択す る 。 The transition is in the range of 1 Hz to 100 Hz and the duty ratio of the second voltage is at least in the range of 1: 1 to 100: 1. Select a value that speeds up.
3 ) 使用 す る 基板 を プラ ス チ ッ ク 製 と し、 電極 と して 有機導電膜 を採用す る 。  3) The substrate to be used is made of plastic, and an organic conductive film is used as the electrode.
4 ) 基板の 一方 を 反射性基板に よ り 形成 し、 例 え ば シ リ コ ン と し た り 、 あ る い は、 アル ミ ニ ウ ム 等の反射電極 よ り な る 反射性基板 に よ り 形成 し、 反射型液晶表示装置 と す る 。  4) One of the substrates is formed of a reflective substrate, for example, silicon, or a reflective substrate made of a reflective electrode such as aluminum. To form a reflection type liquid crystal display device.
5 ) 画素電極、 共通電極 に横電界発生用 突起 を 設 け る 等 の手段 を も 併用 す る 。  5) A means such as providing a projection for generating a horizontal electric field on the pixel electrode and the common electrode is also used.
6 ) 両基板間 を 一定 に保持す る 球状 ガ ラ ス や シ リ カ に換え て 、 そ の た め の 突起物 を形成 し、 該突起物に液晶分子 を 配列 さ せ る 機能 を 持た せ る 等 の 手段を も 併用 す る 。  6) In place of spherical glass or silica that keeps both substrates constant, a projection is formed for that purpose, and the projection has a function of aligning liquid crystal molecules. And other means are also used.
7 ) 前記 6 ) の突起物 を前記横電界発生用突起 に 兼用 す る 。  7) The protrusion of 6) is also used as the protrusion for generating a lateral electric field.
8 ) 画素電極の形状は、 正方形状で な く 、 長方形状や 3 角形状 と する 。  8) The shape of the pixel electrode is not square but rectangular or triangular.
9 )画素 を 液晶 の配向 の 異な る 領域に分割 す る の は 2 つ で は な く 、 3 つ や 4 つ と し た り す る 。  9) The pixels are divided into regions with different liquid crystal orientations, not two, but three or four.
1 0 ) プ レ チ ル ト 角 に大小 を付 け る の に、 透明電極を 0 2 ア ツ シ ヤ ー等で 表面状態 を 変 え 、 該透明電極 に配向膜を形成す る 等の手段 を採用 して い る 。 (実施の形態 1 3 ) 10) In order to make the pretilt angle larger or smaller, a means such as changing the surface state of the transparent electrode with a 0.22 asher or the like and forming an alignment film on the transparent electrode is used. We have adopted it. (Embodiment 13)
図 2 6 は実施の形態 1 3 に係 る 液晶表示装置 に用 い ら れ る 液晶 セ ルの構成外観図で あ り 、 図 2 7 、 お よ び図 2 8 は 凸形状物作製を 説 明す る た め の製造 プ ロ セ ス の一部であ る 。  FIG. 26 is an external view of a configuration of a liquid crystal cell used for the liquid crystal display device according to Embodiment 13; FIGS. 27 and 28 illustrate production of a convex-shaped object. Part of the manufacturing process to do so.
ガ ラ ス 基板 3 0 8 上に J S R株式会社製 P C 系 レ ジ ス ト 材料 を 塗 布形成 し厚 さ 1 // mの レ ジ ス ト 薄膜を形成す る 。 次 に レ ジ ス ト 薄膜 3 2 0 に 、 矩形状のパ タ ー ン の 開 口部 3 2 2 を設け た フ ォ ト マ ス ク 3 2 1 を 通 し て 、 平行光紫外線 3 2 3 で照射露光す る 。 平行光で露 光 さ れた 上記 レ ジ ス ト 薄膜 3 2 0 を現像、 リ ン ス し、 9 0 °C で プ リ ベー ク し て 図 2 8 に 示す よ う に 断面が 凸状の形状物 3 1 0 を形成す る 。  A PC-based resist material manufactured by JSR Corporation is applied on the glass substrate 308 to form a resist thin film having a thickness of 1 // m. Next, the resist thin film 320 is passed through a photomask 321, which is provided with an opening 322 of a rectangular pattern, and is irradiated with collimated ultraviolet light 323. Irradiation exposure. The resist thin film 320 exposed to parallel light was developed, rinsed, and prebaked at 90 ° C, and the cross section was convex as shown in Figure 28. The object 310 is formed.
次 に、 前記基板上 に、 定法 に従い I T O電極 7 を 2 0 0 O A製膜 し、 電極付 ガ ラ ス 基板 3 0 8 と し た。 そ の後、 透明電極 3 0 2 を 有 す る ガ ラ ス 基板 3 0 1 、 お よ び上記凸形状物の形成 さ れた ガ ラ ス 基 板 3 0 8 上 に 日 産化学工業製配向膜塗料 S E — 7 4 9 2 を ス ピ ン コ — ト 法 に て塗布 し、 恒温槽 中 1 8 0 °C、 1 時間硬化 さ せ配 向膜 3 0 3 、 3 0 6 を 形成す る 。 そ の後、 レ ー ヨ ン製 ラ ビ ン グ布 を 用 い て 図 2 9 に示 す方 向 に ラ ビ ン グ処理を施 し、 積水 フ ァ イ ン ケ ミ カ ル (株) 製ス ぺーサ 5 、お よ びス ト ラ ク ト ポ ン ド 3 5 2 A (三井東圧化学(株) 製 シ ール樹脂 の商 品名 ) を用 い て基板間 隔が 6 . 5 m と な る よ う に貼 り 合わせ、 液晶 セ ル 3 0 9 (液晶セ ル A と す る ) を作成 し た 。  Next, an ITO electrode 7 was formed into a film of 200 OA on the substrate according to a standard method, to obtain a glass substrate with electrodes 308. Then, a glass substrate 301 having a transparent electrode 302 and a glass substrate on which the above-mentioned convex object is formed are formed on an alignment film made by Nissan Chemical Industries. Paint SE-74942 is applied by the spin coating method, and cured in a thermostat at 180 ° C for 1 hour to form orientation films 303 and 306. After that, rubbing treatment is performed in the direction shown in Fig. 29 using a laying cloth made of Rayon, and the water is made by Sekisui Fine Chemical Co., Ltd. Using spacer 5 and Structo-Pond 352A (trade name of seal resin manufactured by Mitsui Toatsu Chemicals Co., Ltd.), the distance between substrates was 6.5 m. The liquid crystal cell 309 (referred to as liquid crystal cell A) was created.
こ の時、 配 向膜界面で の液晶 プ レ チル ト 角 が約 5 度 と な る よ う に ラ ビ ン グ処理 を 行 っ た 。  At this time, the rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
次 に、 液晶 M J 9 6 4 3 5 (屈折率異方性 Δ η= 0 · 1 3 8 ) を 真 空注入法 に て 液晶 セ ル Α に注入 し、 テ ス ト セ ル A と し た 。  Next, the liquid crystal MJ964335 (refractive index anisotropy Δη = 0.138) was injected into the liquid crystal cell by the vacuum injection method to obtain a test cell A.
次 に、 テ ス ト セ ル A に、 そ の偏光軸が配 向膜の ラ ビ ン グ処理方 向 と 4 5 度の角 度 を な し、 かつ、 お互い の偏光軸方 向 が直交する よ う に偏光板を貼合 し、 7 V矩形波を 印力!] して ス プ レ イ 配向か ら ベ ン ド 配向への転移 を観察 し た と こ ろ 、 約 5 秒で全電極領域がス プ レ イ 配 向か ら ベ ン ド 領域へ と 転移 し た 。 Next, the polarization axis of test cell A is changed to the direction of the rubbing treatment of the orientation film. And a polarizer so that their polarization axes are perpendicular to each other, and print a 7 V square wave! When the transition from the spray orientation to the bend orientation was observed, the entire electrode region transitioned from the spray orientation to the bend region in about 5 seconds. .
凸形状物 3 1 0 の形成さ れた領域で は、 液晶層厚が周 囲の液晶層 領域に 比べて 小 さ く 実効的 に電界強度が大 き く 、 こ の部分 よ り ベ ン ド 転移が確実 に発生す る 。 発生 し たベ ン ド 配向 は速やか に他の領域 に広が っ て い く 。  The liquid crystal layer thickness is smaller and the electric field strength is effectively larger in the region where the convex-shaped object 310 is formed than in the surrounding liquid crystal layer region. Is surely generated. The generated bend orientation quickly spreads to other regions.
即 ち 、 確実かつ高速な ス プ レ イ ペ ン ド 転移が達成出来る 。  In short, a reliable and fast spray-pend transition can be achieved.
凸形状物 と し て は、そ の 断面形状が本実施例 の如 く 矩形状の ほか、 台形状、 三角状、 半円状で も 良い こ と は言 う ま で も な い 。  It goes without saying that the convex shape may have a trapezoidal shape, a triangular shape, or a semi-circular shape in addition to the rectangular shape as in the present embodiment.
比較例 と し て 、 凸形状部 3 1 0 を有 し な い透明電極付 き ガ ラ ス 基 板を用 い る こ と 以外、 同様の プ ロ セ ス で、 ス プ レ イ 配向液晶セ ル R を作製 し、 液晶 M J 9 6 4 3 5 を封入 して テ ス ト セ ル R と し た 。 こ の テ ス ト セ ル R に 7 V矩形波 を 印加 し た 時の、 全電極領域がス プ レ ィ 配向 か ら ペ ン ド 領域へ と 転移す る に 要す る 時間は 4 2 秒で あ り 、 本発明 の効果は 明 ら かで あ る 。  As a comparative example, a spray-aligned liquid crystal cell was formed in a similar process except that a glass substrate with a transparent electrode having no convex portion 310 was used. Test cell R was prepared by enclosing liquid crystal MJ964335. When a 7 V square wave was applied to this test cell R, the time required for all electrode regions to transition from the spray orientation to the pendent region was 42 seconds. Thus, the effect of the present invention is clear.
(実施の形態 1 4 )  (Embodiment 14)
図 3 0 は実施の形態 1 4 に係 る 液晶表示装置 に用 い ら れ る 液晶 セ ルの構成外観図 で あ り 、 図 3 1 は その 平面 図 で あ る 。 図 3 0 は図 3 1 の矢視 X 1 — X 1 か ら 見た 断面図で あ る 。 実施の形態 1 4 は、 凸 形状物 3 1 0 を 、 表示画素領域外 に形成 さ れた透明電極 3 0 7 a 上 に設け た こ と を 特徴 と す る も の で あ る 。 以下 に 、. そ の作製手順 を 説 明す る 。  FIG. 30 is a configuration external view of a liquid crystal cell used for the liquid crystal display device according to Embodiment 14, and FIG. 31 is a plan view thereof. FIG. 30 is a cross-sectional view taken along line X 1 —X 1 of FIG. 31. Embodiment 14 is characterized in that the convex-shaped object 310 is provided on the transparent electrode 307a formed outside the display pixel region. Hereinafter, the manufacturing procedure will be described.
透明電極 3 0 2 を 有 す る ガ ラ ス 基板 3 0 1 、 お よ び凸形状物の形 成さ れた ガ ラ ス 基板 3 0 8 上 に 日 産化学工業製配向膜塗料 S E — 7 4 9 2 を ス ピ ン コ ー ト 法 に て塗布 し、 恒温槽 中 1 8 0 °C、 1 時間硬 化 さ せ配向膜 3 0 3 , 3 0 6 , 3 0 6 a を形成す る 。 そ の後、 レ ー ヨ ン製ラ ビ ン グ布 を 用 い て 図 2 9 に示す方 向 に ラ ビ ン グ処理 を施 し 積水 フ ァ イ ン ケ ミ カ ル (株) 製ス ぺ一サ 5 、 お よ びス ト ラ ク ト ポ ン ド 3 5 2 A (三井東圧化学 (株) 製シ ール樹脂の商品名 ) を用 い て 基板間隔が 6 . 5 m と な る よ う に貼 り 合わせ、 液晶セ ル (液晶セ ル B と す る ) を作成 し た 。 A glass substrate 301 having a transparent electrode 302 and a glass substrate 300 formed with a convex shape are coated with an alignment film paint SE—7 manufactured by Nissan Chemical Industries, Ltd. 492 is applied by a spin coating method, and is cured in an oven at 180 ° C. for 1 hour to form alignment films 303, 306, and 306 a. Then, using a Rayon rubbing cloth, rubbing treatment is performed in the direction shown in Fig. 29, and Sekisui Fine Chemical Co., Ltd. The distance between the substrates is 6.5 m by using the SA 5 and the Struct Pond 3 52 A (trade name of seal resin manufactured by Mitsui Toatsu Chemicals, Inc.). Then, a liquid crystal cell (referred to as liquid crystal cell B) was created.
こ の時、 配 向膜界面で の液晶 プ レ チル ト 角 が約 5 度 と な る よ う に ラ ビ ン グ処理 を行 っ た 。  At this time, the rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
次 に、 液晶 M J 9 6 4 3 5 (屈折率異方性 Δ η = 0 . 1 3 8 ) を真 空注入法 にて 液晶セ ル Β に注入 し た。  Next, a liquid crystal MJ964335 (refractive index anisotropy Δη = 0.138) was injected into the liquid crystal cell by a vacuum injection method.
次 に、 液晶セ ル Β に、 そ の偏光軸が配向膜の ラ ビ ン グ処理方 向 と 4 5 度の 角度 を な し、 かつ、 お互いの偏光軸方 向が直交す る よ う に 偏光板 を貼合 し、 7 V矩形波 を 印加 して ス プ レ イ 配向か ら ベ ン ド 配 向へ の転移 を 観察 し た と こ ろ 、 約 7 秒で全電極領域がス プ レ イ 配 向 か ら ベ ン ド 領域へ と 転移 し た 。  Next, the liquid crystal cell is polarized so that its polarization axis forms an angle of 45 degrees with the rubbing direction of the alignment film, and the polarization axes of the liquid crystal cell and the liquid crystal cell are perpendicular to each other. When the plates were bonded together and a 7 V rectangular wave was applied to observe the transition from the spray orientation to the bend orientation, the entire electrode area was spray-arranged in about 7 seconds. It moved to the bend region from the opposite direction.
本実施の形態で は、 表示画素領域外 に 凸形状部 を 設け、 表示画素 領域外で ベ ン ド 転移核発生 を さ せ た も ので あ る が、 発生 し た ベ ン ド 配向 は表示画素領域外か ら 表示画素領域内 に速や か に広が っ て い く こ と が確認 さ れた 。  In the present embodiment, a convex portion is provided outside the display pixel area to cause generation of a bend transition nucleus outside the display pixel area. However, the generated bend orientation is different from that of the display pixel area. It was confirmed that it spread quickly into the display pixel area from the outside.
表示画素領域 と ベ ン ド 核発生用 電極領域 と の 間 に は、 電界の 印加 さ れな い (電極部 を有 し な い ) 領域が存在 す る が、 微小領域で あ り さ え すれば こ の領域を越 え て ベ ン ド 配向 は展開す る 。  Between the display pixel area and the electrode area for bend nucleation, there is an area to which no electric field is applied (no electrode section), but if it is a small area, The bend orientation evolves beyond this region.
(実施の形態 1 5 )  (Embodiment 15)
図 3 2 は実施の形態 1 5 に係 る 液晶表示装置 に用 い ら れ る 液晶セ ル の構成外観図 で あ り 、 図 2 7 、 図 2 8 、 お よ び図 3 3 は 凸形状物 作製 を 説明 す る た め の製造プ ロ セ ス の 一部で あ る 。 FIG. 32 is a structural external view of a liquid crystal cell used for the liquid crystal display device according to Embodiment 15, and FIGS. 27, 28, and 33 show convex shapes. It is part of the manufacturing process to explain the fabrication.
ガ ラ ス 基板 3 0 8 上 に J S R株式会社製 P C 系 レ ジ ス ト 材料を 塗 布形成 し厚 さ l 〃 mの レ ジ ス ト 薄膜を形成す る 。 次 に レ ジ ス ト 薄膜 3 2 0 に、 矩形状のパ タ ー ン の 開 口部 3 2 2 を設け た フ ォ ト マ ス ク 3 2 1 を 通 し て 、 平行光紫外線 3 2 3 で照射露光す る 。 平行光で露 光 さ れ た上記 レ ジ ス ト 薄膜 2 0 を 現像、 リ ン ス し、 9 0 °Cで プ リ べ ー ク し て 図 2 8 に 示す よ う に 断面が凸状の形状物 3 1 0 を形成す る 次 に、 上記 レ ジ ス ト 薄膜材料の ガ ラ ス 転移点以上の 1 5 0 °Cで ポ ス ト べー ク して 凸形状物 3 1 0 の肩 を な だ ら か に順方 向 に傾斜さ せ て、 図 3 2 に 示す よ う に そ の 断面形状 を 山形様 に形成す る 工程で製 造す る 。  On a glass substrate 308, a PC-based resist material manufactured by JSR Corporation is applied to form a resist thin film having a thickness of l m. Next, the resist thin film 320 is passed through a photomask 321, which is provided with an opening 322 of a rectangular pattern, and is irradiated with collimated ultraviolet rays 323. Irradiation exposure. The resist thin film 20 exposed to parallel light is developed and rinsed, pre-baked at 90 ° C, and has a convex cross section as shown in Fig. 28. Next, the object 310 is formed. Then, a postbaking is performed at 150 ° C. or higher, which is equal to or higher than the glass transition point of the resist thin film material, so that the shoulder of the convex object 310 is formed. It is manufactured by a process of inclining it in the forward direction and forming its cross-sectional shape in a mountain shape as shown in FIG.
次 に、 前記基板上 に、 定法 に従い I T 0電極を 2 0 0 0 Aの厚み で製膜 し、 電極付ガ ラ ス 基板 3 0 8 と し た 。 そ の後、 透明電極 3 0 2 を 有 す る ガ ラ ス基板 3 0 1 、 お よ び上記凸形状物の形成 さ れた ガ ラ ス 基板 3 0 8 上 に 日 産化学工業製配 向膜塗料 S E — 7 4 9 2 を ス ピ ン コ ー ト 法 に て塗布 し、 恒温槽中 1 8 0 °C、 1 時間硬化 さ せ配 向 膜 3 0 3 、 3 0 6 を形成す る 。 そ の後、 レ ー ヨ ン製 ラ ビ ン グ布 を 用 い て 図 2 9 に 示 す方 向 に ラ ビ ン グ処理 を施 し、 積水 フ ァ イ ン ケ ミ カ ル (株) 製ス ぺ一サ 3 0 5 、 お よ びス ト ラ ク ト ボ ン ド 3 5 2 A (三 井東圧化学 (株) 製 シ ール樹脂の商品名 ) を 用 い て基板間隔が 6 . 5 〃 m と な る よ う に貼 り 合わせ、 液晶セ ル 3 0 9 (液晶セ ル C と す る ) を 作成 し た 。  Next, an ITO electrode was formed to a thickness of 2000 A on the substrate according to a conventional method to form a glass substrate with electrodes 308. After that, the glass substrate 301 having the transparent electrode 302 and the glass substrate 300 formed with the above-mentioned convex-shaped object are formed on the Nissan Chemical Industries distribution film. Paint SE — 7492 is applied by the spin coating method, and it is cured at 180 ° C for 1 hour in a thermostatic oven to form orientation films 303 and 306. After that, rubbing treatment is performed in the direction shown in Fig. 29 using a laying cloth made of Rayon to make a product made by Sekisui Fine Chemical Co., Ltd. The distance between the substrates is 6.5 mm by using the spacer 305 and the Stroke Bond 352 A (trade name of seal resin manufactured by Mitsui Toatsu Chemicals, Inc.). The liquid crystal cell 309 (let's call it liquid crystal cell C) was created.
こ の 時、 配向膜界面で の液晶 プ レ チル ト 角 が約 5 度 と な る よ う に ラ ビ ン グ処理 を 行 っ た 。  At this time, a rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
次 に 、 液晶 M J 9 6 4 3 5 (屈折率異方性 Δ η= 0 . 1 3 8 ) を 真 空注入法 に て 液晶 セ ル C に注入 し、 テ ス ト セ ル C と し た 。 次 に、 テ ス ト セ ル c に、 そ の偏光軸が配向膜の ラ ビ ン グ処理方 向 と 4 5 度 の角度 を な し、 かつ、 お互い の偏光軸方 向 が直交す る よ う に偏光板を貼合 し、 7 V矩形波を 印加 して ス プ レ イ 配向 か ら ベ ン ド 配向への転移 を観察 し た と こ ろ 、 約 7 秒で全電極領域がス プ レ イ 配 向 か ら ベ ン ド 領域へ と 転移 し た 。 . Next, the liquid crystal MJ 964 335 (refractive index anisotropy Δη = 0.138) was injected into the liquid crystal cell C by a vacuum injection method to obtain a test cell C. Next, in the test cell c, the polarization axis forms an angle of 45 degrees with the rubbing direction of the alignment film, and the polarization axes of the test cells c are orthogonal to each other. When a 7 V square wave was applied and the transition from the spray orientation to the bend orientation was observed, the entire electrode area was sprayed in about 7 seconds. The orientation shifted to the bend region. .
本テ ス ト セ ル C は、 上記三角形状先端部 に電界の集中 が起 こ り 、 こ の部分 よ り ベ ン ド 配向 が発生 す る 。 ま た、 三角形状物 6 0 上部で は、 ラ ビ ン グ処理に よ る 擦 り 上 げ部 と擦 り 下げ部が存在 す る た め、 結果 と し て 液晶 プ レ チル ト 角 の符号が反対の領域が出来 る 。 即 ち 前 記凸形状部の近傍で は液晶 ダイ レ ク 夕 が基板面 に水平 に な っ て お り こ の こ と も 高速な ス プ レ イ 一 ベ ン ド 転移 に寄与 して い る も の と 思わ れ る 。  In this test cell C, the electric field is concentrated at the above-mentioned triangular tip, and the bend orientation is generated from this portion. In addition, the upper part of the triangular object 60 has a rubbing part and a rubbing part by the rubbing treatment. As a result, the sign of the liquid crystal pretilt angle is as a result. The opposite area is created. Immediately in the vicinity of the above-mentioned convex portion, the liquid crystal director is horizontal to the substrate surface, and this also contributes to the high-speed spray-to-bend transition. It seems to be.
本実施例 で は画素領域内 に電界集中部 を設け た が、 画素領域外 に 設 けて も 同様な効果が認め ら れた。 ま た、 本実施例 で は 電界集 中部 位は基板片側 に配設 し た の みで あ る が、 基板両側 に配設 して も 良い こ と は言 う ま で も な い。  In the present embodiment, the electric field concentration portion is provided in the pixel region. However, the same effect was observed when the electric field concentration portion was provided outside the pixel region. Further, in this embodiment, the central portion of the electric field concentrator is provided only on one side of the substrate, but it is needless to say that it may be provided on both sides of the substrate.
(実施の形態 1 6 )  (Embodiment 16)
図 3 4 は実施の形態 1 6 に係 る 液晶表示装置 に 用 い ら れ る 液晶セ ル の構成外観図で あ り 、 図 3 5 は本実施の形態で用 い た ガ ラ ス 基板 3 0 2 の電極ノ、" タ ー ン を表 し て い る 。  FIG. 34 is an external view of the configuration of a liquid crystal cell used in the liquid crystal display device according to Embodiment 16, and FIG. 35 is a glass substrate 30 used in this embodiment. Electrode No. 2 indicates "turn."
開 口 部 3 8 0 を有 す る 透明電極 3 0 2 、 及び開 口 部 を有 し な い透 明電極 3 0 7 を 有 す る 2 枚の ガ ラ ス基板 3 0 1 、 3 0 8 上 に 日 産化 学工業製配 向膜塗料 S E — 7 4 9 2 を ス ピ ン コ ー ト 法 に て塗布 し、 恒温槽 中 1 8 0 °C、 1 時間硬化 さ せ配向膜 3 0 3 、 3 0 6 を形成す る 。 そ の後、 レ ー ヨ ン製 ラ ビ ン グ布 を 用 い て 図 2 9 に示す方 向 に ラ ビ ン グ処理 を施 し、 積水 フ ァ イ ン ケ ミ カル (株) 製ス ぺーサ 3 0 5 、 お よ びス ト ラ ク ト ボ ン ド 3 5 2 A (三井東圧化学 (株) 製 シ 一ル樹 脂の 商品名 ) を 用 いて基板間隔が 6 . 5 〃 m と な る よ う に貼 り 合わ せ、 液晶セ ル 3 0 9 (液晶セ ル D と す る ) を作成 し た。 On two glass substrates 301, 308 having a transparent electrode 302 having an opening 380 and a transparent electrode 307 having no opening. Was coated with Nissan Kagaku Kogyo coating film SE-74492 by the spin coating method, and cured in a thermostat at 180 ° C for 1 hour. To form 106. After that, using a Rayon rubbing cloth, rubbing treatment was performed in the direction shown in Fig. 29, and a spacer made by Sekisui Fine Chemical Co., Ltd. was used. 3 0 5, The substrate spacing was set to 6.5 mm using Strand Bond 352A (trade name of a sealing resin manufactured by Mitsui Toatsu Chemicals, Inc.). By pasting together, a liquid crystal cell 309 (liquid crystal cell D) was created.
こ の 時、 配向膜界面で の液晶 プ レ チル ト 角 が約 5 度 と な る よ う に ラ ビ ン グ処理 を 行 っ た。  At this time, the rubbing treatment was performed so that the liquid crystal pretilt angle at the interface of the alignment film was about 5 degrees.
次 に、 液晶 M J 9 6 4 3 5 (屈折率異方性 Δ η = 0 . 1 3 8 ) を真 空注入法 に て 液晶セ ル D に注入 し、 テ ス ト セ ル D と し た 。  Next, the liquid crystal MJ964335 (refractive index anisotropy Δη = 0.138) was injected into the liquid crystal cell D by the vacuum injection method to obtain a test cell D.
次 に、 そ の偏光軸が配 向膜の ラ ビ ン グ処理方向 と 4 5 度 の角度 を な し、 かつ、 お互い の偏光軸方 向 が直交す る よ う に偏光板 を貼合 し、 電圧 を 印加 し な が ら ス プ レ イ 配向 か ら ベ ン ド 配向へ の転移 を観察 し た。  Next, the polarizing plates are bonded so that the polarization axis forms an angle of 45 degrees with the rubbing direction of the alignment film, and the polarization axes of the polarizing plates are orthogonal to each other. The transition from the spray orientation to the bend orientation was observed while applying a voltage.
こ の テ ス ト セ ル D に、 ガ ラ ス 基板 8 側電極 に 2 V、 3 0 Η ζ 、 矩 形波 を 、 ガ ラ ス 基板 1 側電極 に 7 V、 3 0 Η ζ 、 矩形波 を 印加 し た 時の、 全電極領域がス プ レ イ 配向 か ら ペ ン ド 領域へ と転移す る に 要 す る 時間 は 5 秒で あ り 、 極めて 高速な ベ ン ド 転移が実現さ れた 。 本実施の形態 に お いて は、 二枚の電極間 に挟持 さ れた液晶層 に 5 V ( = 7 V - 2 V ) の電圧が印加 さ れ る が、 電極開 口部の液晶層 に は 7 V ( = 7 V - 0 V ) の実効電圧が印加 さ れ る こ と に な り 、 そ の た め、 電極開 口 部の液晶層 に お け る 電界強度が周 囲の液晶層の 電界 強度 に 比べ て大 き く な る 。 こ れ に起因 し て、 電極開 口部の液晶層領 域で ベ ン ド 配向 が発生 し、 こ れ を転移核 と し て ベ ン ド転移領域が全 電極領域 に伝播す る 。  In this test cell D, 2 V, 30Η, square wave is applied to the glass substrate 8 side electrode, and 7 V, 30Η, square wave is applied to the glass substrate 1 side electrode. When applied, the time required for all electrode regions to transition from the spray orientation to the pendent region was 5 seconds, and extremely fast bend transition was realized. . In this embodiment, a voltage of 5 V (= 7 V-2 V) is applied to the liquid crystal layer sandwiched between the two electrodes, but the liquid crystal layer at the electrode opening is not applied. An effective voltage of 7 V (= 7 V-0 V) is applied, and therefore, the electric field strength in the liquid crystal layer at the electrode opening is reduced by the electric field strength of the surrounding liquid crystal layer. It is larger than the strength. As a result, bend alignment occurs in the liquid crystal layer area at the electrode opening, and this is used as a transition nucleus to propagate the bend transition area to all the electrode areas.
本実施の形態で は 開 口 部形状 を 矩形 と し た が、 円形、 三角形状 な ど他の形状で も 良い こ と は言 う ま で も な い 。  In the present embodiment, the shape of the opening is rectangular, but it goes without saying that other shapes such as a circle and a triangle may be used.
(実施の形態 1 7 ) '  (Embodiment 17) ''
図 3 6 は実施の形態 1 7 に係 る 液晶表示装置 に用 い ら れ る 液晶 セ ルの 要部断面図 で あ り 、 図 3 7 はそ の一部の拡大図で あ る 。 こ の 液 晶セ ルは、 ガ ラ ス 基板 3 0 8 上 に画素ス イ ッ チ ン グ素子 3 8 0 、 信 号電極線 3 8 1 、 ゲー ト 信号線 (図示せず) が形成 さ れて お り 、 こ れ ら ス イ ッ チ ン グ素子 3 8 0 、 信号電極線 3 8 1 及びゲー ト 信号線 を覆 っ て 平坦化膜 3 8 2 が形成 さ れて い る 。 そ して、 平坦化膜 3 8 2 上 に表示電極 3 0 7 が形成 さ れてお り 、 こ の表示電極 3 0 7 と ス ィ ツ チ ン グ素子 3 8 0 と は、 平坦化膜 3 8 2 に 開 口 し た コ ン タ ク ト ホール 3 8 3 内 を揷通 す る 中継電極 3 8 4 を介 して 電気的 に接続 さ れて い る 。 中継電極 3 8 4 は、 コ ン タ ク ト ホール 3 8 3 の 上開 .口 側 の部分が、 図 3 7 に 示 す よ う に 凹部 3 8 4 a と な っ て い る 。 こ の よ う な 凹部 3 8 4 a に よ り 、 表示電極 3 0 7 に 開 口 が形成 さ れ る こ と に な り 、 こ の 凹部 3 8 4 a 付近で電界の集 中 を生 じ さ せ る こ と が可 能 と な る 。 よ っ て 、 転移時間 の短縮化 を達成す る こ と がで き る 。 FIG. 36 shows a liquid crystal cell used for the liquid crystal display device according to Embodiment 17. FIG. 37 is an enlarged view of a part of the main part of the tool. In this liquid crystal cell, a pixel switching element 380, a signal electrode line 381, and a gate signal line (not shown) are formed on a glass substrate 308. A flattening film 382 is formed to cover the switching element 380, the signal electrode line 381, and the gate signal line. A display electrode 307 is formed on the flattening film 382, and the display electrode 307 and the switching element 380 are connected to the flattening film 380. It is electrically connected via a relay electrode 384 that passes through a contact hole 380 that opens to 822. As shown in FIG. 37, the relay electrode 384 has a concave portion 384 a at the upper opening side of the contact hole 383 as shown in FIG. An opening is formed in the display electrode 307 by such a concave portion 384 a, and electric field concentration occurs near the concave portion 384 a. It is possible to make it. Thus, the transit time can be shortened.
(実施の形態 1 8 )  (Embodiment 18)
図 3 8 は実施の形態 1 8 に 係 る 液晶表示装置の構成外観図で あ る , 実施の形態 1 6 で作成 し た テ ス ト セ ル D に、 主軸がハ イ ブ リ ヅ ト 配列 し た 負 の屈折率異方性 も つ光学媒体 よ り な る 位相差板 3 1 2 、 3 1 5 、 負 の一軸性位相差板 3 1 1 、 3 1 4 、 正の一軸性位相差板 3 1 9 、 偏光板 3 1 3 、 3 1 6 を 図 3 9 に 示 さ れ る 配置で貼合 し、 液晶表示装置 を 作成 し た 。  FIG. 38 is an external view of the configuration of the liquid crystal display device according to the embodiment 18. The main axis of the test cell D created in the embodiment 16 is arranged in a hybrid array. Also, retarders 312 and 315 made of an optical medium having negative refractive index anisotropy, negative uniaxial retarders 311 and 314, positive uniaxial retarders 3 19, polarizing plates 313 and 316 were bonded together in the arrangement shown in FIG. 39 to complete a liquid crystal display device.
こ の 時の位相差板 3 1 2 、 3 1 5 、 3 1 1 、 3 1 4 、 3 1 9 の リ タ ーデー シ ヨ ン値は波長 5 5 0 n mの光 に 対 し て 、 そ れぞれ 2 6 n m、 2 6 n m、 3 5 0 n m、 3 5 0 n m、 お よ び 1 5 0 n mで あ つ た。 Retarder 3 1 2 At this time, 3 1 5 3 1 1 3 1 4 3 1 9 Li data De Shi Yo emission values are against the wavelength 5 5 0 nm light, its Resolution They were 26 nm, 26 nm, 350 nm, 350 nm, and 150 nm.
図 4 0 は 2 5 °C に お け る 液晶表示装置の正面で の電圧 一 透過率特 性で あ る 。 1 0 V の矩形波電圧 を 1 0 秒印加 し ベ ン ド 配向 を 確認 し た後、 電圧 を 降下 さ せな が ら 測定 した 。 本液晶表示素子で は ベ ン ド 配向 か ら ス プ レ イ 配向への転移が 2 . I V で起 こ る た め、 実効的 に は 2 . 2 V 以上の電圧で 表示 を 行 う 必要が あ る 。 Figure 40 shows the voltage-transmittance characteristics at the front of the liquid crystal display device at 25 ° C. A 10 V square wave voltage was applied for 10 seconds to confirm the bend orientation. After that, the measurement was performed while the voltage was lowered. In this liquid crystal display device, the transition from the bend orientation to the spray orientation occurs at 2.2 IV, so it is necessary to display at a voltage of 2.2 V or more effectively. .
次 に 、 白 レ ベ ル電圧 を 2 . 2 V , 黒 レ ベ ル電圧 を 7 . 2 V と し た 時の コ ン ト ラ ス ト 比 の視角依存性 を測定 し た と こ ろ 、上下 1 2 6 度、 左右 1 6 0 度 の範囲で コ ン ト ラ ス ト 比 1 0 : 1 以上が達成 さ れて お り 、 基板配 向膜面上 に液晶ダイ レ ク タ 方位が周 囲 と は異な る 部位 を 一部設 けて も 、充分な広視野角特性が維持 さ れ る こ と が確認 さ れた 。 ま た、 目 視観察に お いて も 、 配向不良お よ び表示品位不良は認め ら れな か っ た 。  Next, the visual angle dependence of the contrast ratio when the white level voltage was 2.2 V and the black level voltage was 7.2 V was measured. A contrast ratio of 10: 1 or more has been achieved in the range of 26 degrees and the left and right directions of 160 degrees, and the direction of the liquid crystal director on the substrate-oriented film surface is defined as the circumference. It was confirmed that sufficient wide viewing angle characteristics were maintained even when some different parts were provided. In addition, no defective orientation and no poor display quality were observed by visual observation.
ま た、 3 V 〜 5 V 間の応答時間 を測定 し た と こ ろ 、 立ち 上が り 時 間は 5 ミ リ 秒、 立ち 下が り 時間は 6 ミ リ 秒で あ っ た 。  When the response time between 3 V and 5 V was measured, the rise time was 5 milliseconds and the fall time was 6 milliseconds.
以上 よ り 明 ら かな よ う に、 本発明液晶表示装置は、 従来の O C B モ 一 ド の広視野角特性や応答特性を犠牲 に す る こ と な く 、 高速な ス . プ レ イ 一ベ ン ド 配向転移 を達成す る こ と が 出来、 そ の実用 的 な価値 は極め て大 き い 。  As is clear from the above, the liquid crystal display device of the present invention has a high speed display without sacrificing the wide viewing angle characteristics and response characteristics of the conventional OCB mode. The orientational transition can be achieved, and its practical value is extremely large.
(実施の形態 1 9 )  (Embodiment 19)
図 4 1 は実施の形態 1 9 に係 る 液晶表示装置の要部断面図 で あ る , ベ ン ド 配向型セ ル と して 動作 さ せ る 液晶セ ルは、 2 枚の平行 な基板 4 0 0 , 4 0 1 間 に液晶層 4 0 2 を封入 し た、 い わ ゆ る サ ン ド イ ツ チセ ルで あ る 。 通常、 一方 の基板 に は透明電極が、 他方の基板に は 簿膜 ト ラ ン ジ ス タ を 備 え た画素電極が、 各々 形成 さ れて い る 。  FIG. 41 is a cross-sectional view of a principal part of the liquid crystal display device according to Embodiment 19, in which a liquid crystal cell operated as a bend alignment type cell is composed of two parallel substrates. It is a so-called Sandwich cell in which a liquid crystal layer 402 is sealed between 00 and 401. Normally, a transparent electrode is formed on one substrate, and a pixel electrode provided with a thin film transistor is formed on the other substrate.
図 4 1 ( a ) は、 電場 を 印加 し な い初期状態の 配向 を 示 す模式 図 で あ る 。 初期状態の配向 は、 液晶分子 の分子軸が基板 4 0 0 , 4 0 1 平面 に対 し て若干の傾 き を有 し な が ら も ほぼ平行に且つ実質的 に 一様 に配向 し た状態、 す な わ ち ホ モ ジ ニ ァ ス 配 向 で あ る 。 基板 と の 界面 に存在す る 液晶分子は、 上下両基板 4 0 0 , 4 0 1 に おい て、 互い に逆方 向 に傾斜 し て い る 。 すな わ ち 、 基板 と の界面 に存在 す る 液晶分子の配 向角 0 1 お よ び 2 ( すな わ ち 、 プ レ チル ト 角 ) は、 互 い に異符号 と な る よ う に調整 さ れて い る 。 なお、 以下の説明 に お い て、 配向 角 お よ び プ レ チル ト 角 は、 基板に 平行な平面 に対す る 液晶 分子の分子軸 の傾 き を 、 基板 に平行な 平面 を基準 に反時計回 り に正 と し て表 し た 角度 で あ る 。 Figure 41 (a) is a schematic diagram showing the orientation in the initial state without applying an electric field. In the initial state, the liquid crystal molecules are aligned substantially in parallel and substantially uniformly, although the molecular axes of the liquid crystal molecules are slightly inclined with respect to the plane of the substrate 400 and 401. In other words, it is a holistic orientation. With board The liquid crystal molecules existing at the interface are inclined in the opposite directions to each other on the upper and lower substrates 400 and 401. That is, the orientation angles 0 1 and 2 (that is, the pre-tilt angles) of the liquid crystal molecules existing at the interface with the substrate are mutually different signs. It has been adjusted. In the following description, the orientation angle and the pretilt angle refer to the tilt of the molecular axis of the liquid crystal molecules with respect to a plane parallel to the substrate and the counterclockwise direction with respect to the plane parallel to the substrate. It is the angle expressed as positive around.
図 4 1 ( a ) の状態の液晶層 4 0 2 に、 基板平面 に対 して 垂直方 向 に あ る 値 を 超 え る 強さ の電場を 印加す る と 、 液晶 の配向状態が変 ィヒ し、 図 4 1 ( b ) に示す よ う な配向へ と 転移す る 。  When an electric field with a strength exceeding a certain value in the direction perpendicular to the substrate plane is applied to the liquid crystal layer 402 in the state shown in FIG. 41 (a), the alignment state of the liquid crystal changes. As shown in FIG. 41 (b), the crystal transitions to the orientation shown in FIG.
図 4 1 ( b ) に 示す配向は、 ベ ン ド 配向 と 呼ばれ る も の で あ り 、 両基板表面付近 に おい て は基板平面に対す る 液晶分子の分子軸の傾 き 、 すな わ ち 配向角 の絶対値が小 さ く 、 液晶層 4 0 2 の 中 心部分 に おい て は液晶分子 の配向角 の絶対値が大 き く な つ て い る 。 ま た 、 液 晶層全体 に渡 っ て 、 実質的 に ね じれ構造を 有 し て な い。  The orientation shown in Fig. 41 (b) is called bend orientation, and near the surface of both substrates, the tilt of the molecular axis of the liquid crystal molecules with respect to the substrate plane, i.e., That is, the absolute value of the orientation angle is small, and the absolute value of the orientation angle of the liquid crystal molecules is large in the center of the liquid crystal layer 402. Further, it does not have a substantially twisted structure throughout the entire liquid crystal layer.
こ の よ う な 、 ホ モ ジ ニ ァ ス 配向 か ら ベ ン ド 配向への転移 を詳細 に 観察す る と 、 ま ず、 液晶層 4 0 2 の一部 に おい て ベ ン ド 配向 の核 が 発生 して お り 、 こ の核が、 ホモ ジ ニァ ス 配向で あ る 他の領域 を 蚕食 し な が ら 次第 に成長 し、最終的 に は液晶層全体がベ ン ド 配向 と な る 。 換言すれば、 液晶層 の ベ ン ド 配向への転移 に は、 核の発生、 すな わ ち 微小領域で の ホ モ ジ ニァス 配向 か ら ベ ン ド 配向への転移が必要で あ る 。  When such a transition from the homogenous orientation to the bend orientation is observed in detail, first, it is found that the core of the bend orientation is present in a part of the liquid crystal layer 402. This nucleus grows gradually while eating other regions of homogenous orientation, and eventually the entire liquid crystal layer becomes bend oriented. In other words, the transition of the liquid crystal layer to the bend orientation requires the generation of nuclei, that is, the transition from the homogenous orientation to the bend orientation in a minute region.
そ こ で、 発 明者 ら は、 液晶分子配向 の単位べ ク ト ル (以下、 「デ ィ レ ク タ 一」 と す る 。) の運動方程式 を 解 く こ と に よ り 、 微小領域で の ベ ン ド 配向 へ の 転移 に つ い て解析 し、 核が容易 に 発生 し得 る 条件を 見出 し た 。 以下 に 、 そ の手法 に つ い て 説明 す る 。 液晶 の配向状態は、 デ ィ レ ク タ ーに よ っ て 記述 さ れ る 。 なお、 デ ィ レ ク タ 一 n は、 [数 1 ] で表 さ れる 関数で あ る 。 n6c)=(nx(x,y,z), ny(x,y,z), nz(x,y,z)) Thus, the inventors can solve the equation of motion of the unit vector of the liquid crystal molecular alignment (hereinafter, referred to as “director 1”) to obtain a small area. We analyzed the transition to bend orientation and found the conditions under which nuclei could easily be generated. The method is described below. The alignment state of the liquid crystal is described by a director. Note that the director n is a function represented by [Equation 1]. n6c) = (n x (x , y, z), n y (x, y, z), n z (x, y, z))
… [数 l ] … [Number l]
液晶の 自 由 エネ ル ギー密度 : は、 [数 2 ] に 示す よ う に 、 デ ィ レ ク 夕一 n の 関数 と し て 表わ す こ と がで き る 。 f= -J-{k22 (divn)2+k22(n X rotn)2+ The free energy density of a liquid crystal can be expressed as a function of the directivity as shown in [Equation 2]. f = -J- {k22 (divn) 2 + k 22 (n X rotn) 2 +
k33(nXrotn)^™-A ε (E * n)2 k 33 (nXrotn) ^ ™ -A ε (E * n) 2
… [数 2 ] … [Number 2]
こ こ で、 k 1 1、 k 22、 k 3 3 は F r an k の弾性定数で あ り 、 各々 、 ス プ レ イ 、 ツ イ ス ト 、 ベ ン ド の弾性定数 を表す。 Δ ε は、 液晶の 分子 軸方 向 の 誘電率 と そ れ に 直交す る 方 向 の誘電率 と の差、 すな わ ち 誘 電率異方性 を 表す。 ま た、 E は、 外部電場で あ る 。  Here, k11, k22, and k33 are the elastic constants of Frank, and represent the elasticity of the spray, twist, and bend, respectively. Δε represents the difference between the dielectric constant of the liquid crystal in the direction of the molecular axis and the dielectric constant in the direction perpendicular thereto, that is, the dielectric anisotropy. E is an external electric field.
[数 2 ] に お い て 、 第 1 項、 第 2 項、 第 3 項は、 各々 、 液晶 の 広 が り 、 埝 じれ、 曲 が り に よ る 弾性エネ ルギー を表わ す。 ま た、 第 4 項は、 外部電場 と 液晶 と の電気的相互作用 に よ る 電気エネ ル ギー を 表す。 電気エネル ギーは、 △ £ > () で あれば n が E と 平行 と な る と き に最小 と な り 、 Δ <s < 0 で あ れば n が E に 直交 す る と き に最小 と な る 。 従 っ て 、 あ る 特定の強 さ を超え る 電場 E が印加 さ れ る と 、 液 晶分子は、 △ £ > 0 で あ れば分子長軸が電場方 向 に 平行 に な る よ う に配向 し、 厶 £ < 0 で あ れば分子長軸が電場方 向 に直交す る よ う に 配向 す る 。  In [Equation 2], the first, second, and third terms respectively represent the elastic energy due to the spreading, twisting, and bending of the liquid crystal. The fourth term represents the electric energy due to the electric interaction between the external electric field and the liquid crystal. The electric energy is minimum when n is parallel to E if Δ £> (), and minimum when n is orthogonal to E if Δ <s <0. Become . Thus, when an electric field E exceeding a certain strength is applied, the liquid crystal molecules are oriented such that if Δ £> 0, the long axis of the molecule is parallel to the direction of the electric field. Orientation, and if £ <0, the molecule is oriented so that the long axis of the molecule is orthogonal to the direction of the electric field.
初期状態の分子配向 が外部電場 に よ る 変形を 受 け た と き の液晶 の 全 自 由'エ ネ ル ギー F は、 f の体積積分 と し て 表す こ と がで き る 。 F= 5 f(n(x))dx The total free energy F of a liquid crystal when its initial molecular orientation is deformed by an external electric field can be expressed as the volume integral of f. F = 5 f (n (x)) dx
··· [数 3 ] ···· [Number 3]
[数 3 ] に示す よ う に 、 全 自 由 エネ ル ギー F は、 デ ィ レ ク タ ー を 表す未知関数 n (x )を 変数 と して定義 さ れ る 関数 ( すな わ ち 、 汎関 数) で あ る 。 外部電場印加下 にお いて 出現す る 液晶 の配向状態は、 適当 な 境界条件の も と で、 全 自 由 エネ ル ギー F を 最小 と す る n (x ) で記述 さ れ る 。 すな わ ち 、 F を最小 と す る n ( X )が決 ま れば、 液 晶 の配 向状態を 予測す る こ と がで き る 。 更 に、 適当 な境界条件の も と で F を 最小 と す る よ う な 、時間変化 を も 考慮 し たデ ィ レ ク タ一 n ( X , t ) を 決め る こ と がで き れば、 光学定数な どの デバイ ス の あ ら ゆ る 挙動 を 予測す る こ と がで き る 。 こ れは、 物理的 に い え ば典型的 な 最 小作用 の原理で あ り 、 数学的 に い え ば境界値付 き の 変分極小 問題で あ る 。  As shown in [Equation 3], the total free energy F is a function defined by using an unknown function n (x) representing a director as a variable (ie, a general function). Function). The liquid crystal orientation state that appears under the application of an external electric field is described by n (x) that minimizes the total free energy F under appropriate boundary conditions. That is, if n (X) that minimizes F is determined, the orientation state of the liquid crystal can be predicted. Furthermore, if it is possible to determine a director n (X, t) that takes into account the time variation such that F is minimized under appropriate boundary conditions. It can predict any behavior of devices such as optical constants. This is the principle of the minimum action that is typical in the physical sense, and is the mathematically small polarization problem with the boundary value in the mathematical sense.
そ こ で、 [数 3 ] を原理的 に解 く 。 し か し、 例 え ば、 Euler の 方程 式 を 用 い る よ う な解析的方法で は、 複雑な非線形方程式が現れ る た め、 デ ィ レ ク 夕一 n (x )の 関数形 を簡単 に 決定す る こ と は 困難で あ る 。  Then, [Equation 3] is solved in principle. However, for example, analytic methods such as those using Euler's equation introduce complicated nonlinear equations, so that the function form of the directory Yuichi n (x) can be simplified. It is difficult to make a decision.
そ こ で 、 [数 3 ] を 容易 に解 く た め に、 次の よ う な 方法 を採用 す る c ま ず、 積分空間 を有限要素法 と 同様の手法 に よ り 離散化 す る 。 す な わ ち 、 全積分空間 を n p個の要素 に分割 し、 [数 3 ] を各要素 の積分 の和 と して 表わ す。 In its this, in order to Ku easily bought a [number 3], c or not a you adopt the following Yo I Do method, you discretization Ri by the same method as the finite element method the integration space. That is, the entire integration space is divided into np elements, and [Equation 3] is expressed as the sum of the integration of each element.
F= Suf(n(x))dx=∑ 5 f(n(x))dx F = S u f (n (x)) dx = ∑ 5 f (n (x)) dx
' f=o Δν 'f = o Δν
… [数 4 ] … [Number 4]
こ こ で、部分積分空間 A V に お け る デ ィ レ ク タ 一 η(χ )に 対 し て 、 以下の よ う な近似 を 行 う 。 n x 、 n y、 n z は、 [数 2 ] 式 に 示す よ う に 本来な ら ば X、 y、 z の 関数で あ る が、 厶 V に お いて は一定で あ る と 仮定す る 。 ま た 、 d n x,j/ d x = ( n x,j + l- d n x,j) / Δ x と 近似 する 。 な お、 η X , j は、 第 j 番 目 の要素 中 に おける η X で あ り 、 前述 し た よ う に Δ V におい て は一定で は あ る が、 未知数で あ る 。 こ の部分積分空間 △ V に お け る η ( X )の 近似 は粗い も ので あ る が、 こ れ を積分空間 の 分割 を 細 か く す る こ と に よ っ て カ バー し、 近似 を 高め る こ と がで き る 。 Here, for a director η (χ) in the partial integration space AV, The following approximation is performed. Although nx, ny, and nz are originally functions of X, y, and z as shown in [Equation 2], it is assumed that they are constant in mmV. Also, it is approximated as dnx, j / dx = (nx, j + l-dnx, j) / Δx. Note that η X, j is η X in the j-th element, and as described above, is constant at ΔV but unknown. The approximation of η (X) in this partial integration space △ V is coarse, but it is covered by making the division of the integration space finer, and the approximation is made. Can be enhanced.
上記近似に よ れば、 [数 4 ] に おいて 、 η X, j、 n y , j、 n z , j は 1 つ の要素 中で は定数で あ る た め、 積分 自 体は容易 に計算で き る 。 し か し、 こ の段階で も 、 全 自 由 エネ ルギー F を 表す式は、 分割数に 比 例 す る 多数の未知数 n X, j、 n ,
Figure imgf000089_0001
n z , j の高次項お よ び非線型項が 存在 し、 依然 と し て複雑で あ る 。 但 し、 n x,0、 n y,0、 n z,0 な どの 値は、 境界条件 と し て 容易 に与え る こ と がで き る 。
According to the above approximation, in [Equation 4], since ηX, j, ny, j, nz, j is a constant in one element, the integral itself can be easily calculated. Wear . However, even at this stage, the equation representing the total free energy F is a large number of unknowns n X, j, n, which are proportional to the number of divisions.
Figure imgf000089_0001
There are higher-order and non-linear terms of nz and j, which are still complicated. However, values such as nx, 0, ny, 0, nz, 0 can be easily given as boundary conditions.
上記近似 に よ れば、 全 自 由 エネ ルギー F は、  According to the above approximation, the total free energy F is
F=F(r¾, ny , ) (0≤j≤np-l) F = F (r¾, ny,) (0≤j≤np-l)
··· [数 5 ] ···· [Number 5]
と い う 形 に変換 さ れ る 。 す な わ ち 、 全 自 由 エ ネ ル ギー F は、 未知 関 数 n (x )を 変数 と し て定義 さ れ る 汎関数か ら 、 未知数 n x,j、 n y,j、 n z , j の 関数 に 変換 さ れ る 。 未知数 n X, j、 n y , j、 n z , j は、 多次元 のパ ラ メ ータ ー空間 内で、 関数 F を最小 と す る 値で あ る 。 Is converted to the form That is, the total free energy F is a function of unknowns nx, j, ny, j, nz, j from a functional defined with unknowns n (x) as variables. Is converted to The unknowns nx, j, ny, j, nz, j are values that minimize the function F in a multidimensional parameter space.
液晶 の ベ ン ド 配向 は、 前述 し た よ う に、 捻 じ れを 実質的 に有 し な い構造で あ る 。 デ ィ レ ク タ ー n は、 前述 し た よ う に本来は x、 y、 z の 関数で あ る が、 配 向角 の 関数 と し て 表す こ と が可能で あ る 。 こ の場合、 ベ ン ド 配向 に お け る デ ィ レ ク タ ー n は、 n = (cos θ , 0, sin As described above, the bend alignment of the liquid crystal has a structure having substantially no twist. Although the director n is originally a function of x, y, and z as described above, it can be expressed as a function of the directional angle. In this case, the director n in the bend orientation is n = (cos θ, 0, sin
… [数 6 ]  … [Number 6]
で表 さ れ る 。 但 し、 0 は、 基板 に 平行な 平面 に対す る 液晶分子の傾 き 、 すな わ ち 配向角 で あ る 。 ま た、 Θ は、 液晶分子の基板か ら の 距 離 z のみ に依存す る も の と す る 。 図 4 2 は、 こ の デ ィ レ ク 夕 一 を 示 し た模式 図で あ る 。 It is represented by Here, 0 is the tilt of the liquid crystal molecules with respect to a plane parallel to the substrate, that is, the orientation angle. Θ depends only on the distance z of the liquid crystal molecules from the substrate. Fig. 42 is a schematic diagram showing this directory.
[数 6 ] を [数 4 ] に代入 し、 n p個の要素 に分割 し て 離散化 を 行い、 各要素 につ いて 、 F を最小化す る よ う な Θ j を 求め る 。 す な わ ち 、 各要素 に つ い て、
Figure imgf000090_0001
Substitute [Equation 6] into [Equation 4], divide it into np elements, perform discretization, and find Θ j that minimizes F for each element. That is, for each element,
Figure imgf000090_0001
+ (^+1-^)(οο52^-¾ ^) + (^ + 1-^) (οο52 ^ -¾ ^)
+ ( 0 0j)(cos2 - 1- ) - ^ £ ( E sin2 θ + (0 0j) (cos2 - 1 -) - ^ £ (E sin2 θ
J J J k33-k11 (k33-kn) J J JJ k 33 -k 11 (k 33 -k n ) J
··· [数 7 ] ···· [Number 7]
な る 方程式 を 満足す る 0 j を 求め る 。 な お、 d は L / n p で あ り 、 L は基板間距離で あ る 。 Find 0 j that satisfies the following equation. Note that d is L / n p and L is the distance between the substrates.
し か し、 [数 7 ] の よ う な複雑な非線型方程式 を 、 n p個連立 さ せ て解 く の は容易で は な い 。 そ こ で 、 以下の よ う な 回路類推 を行 う こ と に よ り 、 [数 7 ] を解 く 。 デ ィ レ ク タ ーの運動方程式は、 1  However, it is not easy to solve a complex nonlinear equation such as [Equation 7] by combining n p simultaneous equations. Therefore, [Equation 7] is solved by performing the following circuit analogy. The equation of motion of the director is 1
dt άθ)  dt άθ)
··· [数 8 ] ···· [Number 8]
で表 さ れ る 。 な お、 ?? は、 液晶 の粘性率で あ る 。 [数 8 ]に つ い て 、 以下の よ う な 回路類推を 行 う 。 7? →C It is represented by What? ? Is the viscosity of the liquid crystal. With regard to [Equation 8], the following circuit analogy is performed. 7? → C
[数 9 ] [Number 9]
[数 8 ]は
Figure imgf000091_0001
[Equation 8] is
Figure imgf000091_0001
… [数 1 0 ]  … [Number 1 0]
に 変換 さ れ る 。 [数 1 0 ]に対応す る 回路は、 図 4 3 に示す よ う に 、 n p個の C R 回路で構成 さ れて い る 。 [数 1 0 ]の 第二項は、 C R 回 路 を 流れ る 電流 を表す。 なお、 R j は放電緩和の た めの抵抗で あ つ て 、 C R 回路 を 流れ る 電流 ( i ) を、 i = 3 F ( V j^ Z S V j と し て規定す る 電圧制御抵抗で あ る 。 Is converted to As shown in FIG. 43, the circuit corresponding to [Equation 10] is composed of np CR circuits. The second term in [Equation 10] represents the current flowing through the CR circuit. R j is a resistor for relaxing the discharge, and is a voltage control resistor that defines the current (i) flowing through the CR circuit as i = 3 F (V j ^ ZSV j) .
電流 i ( = 3 F Z 3 V j) は、 特定の V j で ゼ ロ に 収束す る 。 すな わ ち 、 V j は、 回路 シ ミ ュ レ ー タ ーで C R 回路 を 流れ る 電流がゼ ロ と な る と き の電圧 を 求めれば、 自 動的 に 求め る こ と がで き る 。  The current i (= 3FZ3Vj) converges to zero at a particular Vj. In other words, V j can be automatically obtained by obtaining the voltage at which the current flowing through the CR circuit becomes zero by using a circuit simulator. .
こ の よ う に、 デ ィ レ ク タ 一の運動方程式 を 等価回路に置 き換え る こ と に よ り 、 液晶の配向現象 を 表現す る 非線型連立方程式 を 回路 シ ミ ュ レ一タ ー上で解析 し、 外部電場 E と 配向状態 (配向角 S j) と の 関係 を 求め る こ と がで き る 。  In this way, by replacing the equation of motion of the director with an equivalent circuit, the nonlinear simultaneous equations expressing the liquid crystal alignment phenomenon can be converted to a circuit simulator. By analyzing above, the relationship between the external electric field E and the orientation state (orientation angle S j) can be obtained.
上記手法 に お い て は、 配向現象を表現 す る 非線型連立方程式 を 、 電気回路的な類推 に よ っ て 回路 に置 き換 え て 回路 シ ミ ュ レ ー タ ー上 で解析す る た め、 プ ロ グ ラ ム 中 に は等価 回路が設定 さ れ る だ けで 、 方程式 自 身 を解 く た め の 計算 プ ロ セ ス は含 ま れ な い 。 よ っ て 、 プ ロ グ ラ ム の単純化お よ び縮小 を実現する こ と がで き る 。  In the above method, nonlinear equations expressing orientation phenomena are analyzed on a circuit simulator by replacing them with circuits by analogy with electric circuits. Therefore, only the equivalent circuit is set in the program, and the calculation process for solving the equation itself is not included. Thus, the program can be simplified and reduced.
更 に 、 上記手法 に 基づ い て 、 外部電場 E の増加 に 伴 う 配 向 角 Θ j の 変化を 計算す れば、 配 向角 Θ «ΐ が突然変化す る と き の外部電場 Ε と し て、 液晶転移の 臨界電場 E c を求め る こ と がで き る 。 Furthermore, based on the above method, if the change of the directional angle Θ j with the increase of the external electric field E is calculated, the external electric field Ε «ΐ when the directional angle Θ« ΐ suddenly changes can be calculated. As a result, the critical electric field E c of the liquid crystal transition can be obtained.
図 4 4 は、 上記手法 に基づ く 計算結果の一例で あ り 、 外部電場 E を 時間 と と も に增加 さ せ た と き の、 S j の 時間 変化 を 表す。 な お、 図 4 4 の結果は、 境界条件 を 00= + 0 . 1 rad、 Θ np-1 = - 0 . 1 rad と し て 固定,し、. k ll= 6 x l 0 ― 7 dyn、 k 33= 1 2 x 1 0 ― 7 dyn、 Δ ε = 1 0 と して 計算 し た結果で あ る 。 図 4 4 に 示す よ う に、 電場 印加初期 に おい て は、 配向角 Θ j がい ずれ も 比較的 小 さ く 、 液 晶の配向状態がホモ ジ ニ ァ ス 配向で あ る こ と がわ か る 。 し か し、 一 定時間経過後、 すな わ ち 外部電場 E が一定値を超え る と ( E > E c ) 配向角 が突然変化 し て転移が生 じ る 。 転移後の配向角 は、 両 基板近傍か ら 液晶層 の 中 心部 に向 か っ て そ の絶対値 が大 き く な っ て お り 、 転移後の液晶 の配向状態がベ ン ド 配向で あ る こ と がわ か る 。 FIG. 44 shows an example of a calculation result based on the above method, and shows a change with time of S j when an external electric field E is added with time. Contact name results in FIG. 4. 4, the boundary condition 00 = + 0 1 rad, Θ np-1 = -.. 0 1 rad and to fixed, and, k ll = 6 xl 0 - . 7 dyn, k 33 = 1 2 x 1 0 - 7 dyn, Ru Ah with results calculated by the Δ ε = 1 0. As shown in Fig. 44, in the initial stage of the application of the electric field, the orientation angles Θj are all relatively small, and it can be seen that the orientation state of the liquid crystal is homogenous. . However, after a certain period of time, that is, when the external electric field E exceeds a certain value (E> Ec), the orientation angle suddenly changes and a transition occurs. The absolute value of the orientation angle after the transition increases from the vicinity of both substrates to the center of the liquid crystal layer, and the orientation state of the liquid crystal after the transition is a bend orientation. I understand that there is something.
臨界電場 E c が小 さ い ほ ど、 液晶の配向状態 を ホモ ジ ニ ァ ス 配向 か ら ベ ン ド 配向 へ と 速や か に転移 さ せ る こ と がで き る 。 そ こ で 、 上 記手法 に基づ い て、 液晶の配向 を 決め る 条件 を種々 変化 さ せて 、 各 条件下で の 臨界電場 E c を 計算 し た。 そ の結果、 臨界電場 E c は、 特 に、 液晶 の弾性定数 (ス プ レ イ 弾性定数)、 プ レ チ ル ト 角 の非対称 性に影響 さ れ る こ と が見 出 さ れた 。  The smaller the critical electric field E c, the faster the liquid crystal can be changed from a homogeneous orientation to a bend orientation. Therefore, based on the above method, the conditions for determining the orientation of the liquid crystal were variously changed, and the critical electric field E c under each condition was calculated. As a result, it was found that the critical electric field E c is affected by the elastic constant of the liquid crystal (Spray elastic constant) and the asymmetry of the tilt angle.
図 4 5 は、 ス プ レ イ 弾性定数 k ll と 臨界電場 E c と の 関係 を 求め た結果 を 示 し た も の で あ る 。 なお、 図 4 5 は、 境界条件 を S 0= + 0 . l rad、 θ ηρ-1 = - 0 . l rad と し、 k 33= 1 2 x l 0 一 7 dyn、 厶 ε = 1 0 と して 計算 し た結果で あ る 。 図 4 5 に 示す よ う に、 ス プ レ ィ 弹性定数 k 11 が大き い ほ ど、 臨界電場 E c が増大す る 。 特に 、 k 11 > 1 0 X 1 0 - 7 dyn の 範囲で は、 k ll の増大に伴っ て 、 E c が 急激 に増大 す る 。 Figure 45 shows the result of determining the relationship between the Spray elastic constant k ll and the critical electric field E c. Incidentally, FIG. 4 5, the boundary conditions S 0 = + 0 l rad, θ ηρ-1 = -.. 0 and l rad, k 33 = 1 2 xl 0 one 7 dyn, and厶epsilon = 1 0 This is the result of the calculation. As shown in FIG. 45, the larger the spray property constant k11, the larger the critical electric field Ec. In particular, k 11> 1 0 X 1 0 - The 7 range dyn, with increasing k ll, E c is you increase sharply.
従 っ て 、 速や か な液晶転移 を 実現す る た め に は、 ス プ レ イ 弾性定 数 k 11 を 、 1 0 x 1 0 — 7 dyn 未満、 好ま し く は、 8 x 1 0 — 7 dyn 以下 と す る こ と が有効で あ る 。 ま た、 ス プ レ イ 弾性定数 k il の下限 につ いて は、 特 に限定す る も の で はな い が、 6 x 1 0 — dyn 以上 と す る こ と が好 ま し い 。 k 11 < 6 X 1 0 — 7 dyn の液晶材料を合成 ま た は調製す る こ と は、 通常、 困難で あ る か ら で あ る 。 Therefore, to achieve a fast liquid crystal transition, the spray elasticity The number k 11, 1 0 x 1 0 - 7 less than dyn, is favored by rather, 8 x 1 0 - 7 and is Ru Oh effective this shall be the dyn below. Also, the lower limit of the Spray elastic constant k il is not particularly limited, but is preferably 6 x 10 — dyn or more. It is usually difficult to synthesize or prepare a liquid crystal material with k 11 <6 X 10 — 7 dyn.
上記の よ う な ス プ レ イ 弾性定数 k ll を有 す る 液晶材料 と し て は、 特 に 限定す る も の で は な い が、 例 え ば、 ピ リ ミ ジ ン 系液晶、 ジ ォ キ サ ン 系液晶、 ビ フ エ ニル系液晶な どを挙げ る こ と がで き る 。  Although the liquid crystal material having the above-mentioned Spray elastic constant k ll is not particularly limited, for example, a pyrimidine liquid crystal, Oxan-based liquid crystals, biphenyl-based liquid crystals and the like can be mentioned.
プ レ チ ル ト 角 の 非対称性は、 上下基板間で の プ レ チ ル ト 角 の絶対 値の 差 で表す こ と がで き る 。 ま た、 前述 し た よ う に、 プ レ チル ト 角 0 0 お よ び 0 ηρ-1 は互い に異符号 と さ れ る た め、 プ レ チル ト 角 の絶対値 の差 は、 △ 0 = I S O+ 0 np- 1 | で表す こ と が で き る 。  The asymmetry of the tilt angle can be expressed by the difference between the absolute values of the tilt angle between the upper and lower substrates. Also, as described above, since the pretilt angles 0 0 and 0 ηρ-1 have different signs, the difference between the absolute values of the pretilt angles is Δ0 = IS O + 0 np-1 |.
図 4 6 は、 上下基板間で の プ レ チル ト 角 の絶対値の差 ( Δ 0 ) と 臨界電場 E c と の 関係 を 求め た結果を 示す も の で あ る 。図 6 の a は、 k 11 = '6 x l 0 ― 7 dyn、 k 33 = 1 2 x 1 0 一 dyn, A e = 1 0 と して計算 し た結果で あ る 。 図 4 6 に示す よ う に、 プ レ チ ル ト 角 の差 Δ 0 が大 き い ほ ど、 臨界電場 E c が低下す る 。 特 に、 厶 Θ 0 . 0 0 0 2 rad の 範囲で は、 Δ Θ の増大に伴 っ て、 E c が急激に低下 す る 。 FIG. 46 shows the result of determining the relationship between the difference (Δ 0) of the absolute value of the pretilt angle between the upper and lower substrates and the critical electric field E c. A in FIG. 6, k 11 = '6 xl 0 - 7 dyn, k 33 = 1 2 x 1 0 one dyn, Ru Ah result of calculation as A e = 1 0. As shown in FIG. 46, the larger the difference Δ0 between the pretilt angles, the lower the critical electric field Ec. In particular, in the range of 0.0000 rad, E c sharply decreases as Δ 増 大 increases.
従 っ て 、 速や かな液晶転移 を 実現す る た め に は、 プ レ チル ト 角 の 差 を 、 0 . 0 0 0 2 rad 以上、 好 ま し く は 0 . 0 3 5 rad 以上 と す る こ と が有効で あ る 。 ま た 、 プ レ チ ル ト 角 の 差 の上限 に つ い て は、 特 に 限定す る も の で は な い が、 通常、 1 . 5 7 rad 未満、 好 ま し く は 0 . 7 8 5 rad 以下 と す る 。  Therefore, in order to realize a fast liquid crystal transition, the difference in the pretilt angle should be 0.02 rad or more, preferably 0.035 rad or more. Is effective. The upper limit of the difference in the pretilt angles is not particularly limited, but is usually less than 1.57 rad, preferably 0.78 rad. 5 rad or less.
な お、 プ レ チル ト 角 0 0 お よ び 0 np - 1 は、 そ の絶対値 が、 通常、 O r ad を超え且つ 1 . 5 7 r ad未満、 好 ま し く は 0 . 0 1 7 rad以上 0 . 7 8 5 rad 以下 と な る よ う に調整 さ れる 。 プ レ チル ト 角 の調整 は、 基板表面 に、 斜方蒸着法お よ びラ ン グ ミ ュ ア ー ブロ ジ ェ ッ ト ( L B ) 法 な どの方法 に よ り 、 適当 な液晶配向膜を形成す る こ と に よ つ て 制御 す る こ と がで き る 。 液晶配向膜 と して は、 特 に限定す る も の で は な い が、 例 え ば、 ポ リ イ ミ ド樹脂、 ポ リ ビ ニル アル コ ール、 ポ リ ス チ レ ン樹脂、 ポ リ シ ン ナ メ 一 ト 樹脂、 カ ル コ ン系樹脂、 ポ リ べ プチ ド 樹脂お よ び高分子液晶な ど を挙げ る こ と がで き る 。 ま た、 液 晶配 向膜の材料選択の ほか、 斜方蒸着法 を採用 す る 場合は蒸着方 向 の基板表面 に対す る 傾 き を調製す る こ と に よ っ て 、 L B 法 を採用 す る 場合は基板の 引 き上 げ速度な どの条件 を調整す る こ と に よ っ て、 プ レ チル ト 角 を 制御 す る こ と がで き る 。 The absolute values of the pretilt angles 0 0 and 0 np-1 are usually It is adjusted so as to be greater than Orad and less than 1.57 Rad, and preferably not less than 0.17 rad and not more than 0.785 rad. Adjustment of the pre-tilt angle is achieved by forming an appropriate liquid crystal alignment film on the substrate surface by a method such as the oblique evaporation method or the Langmuir-Blodgett (LB) method. Can be controlled by The liquid crystal alignment film is not particularly limited, but examples thereof include a polyimide resin, a polyvinyl alcohol, a polystyrene resin, and a polystyrene resin. Examples of the resin include cinnamate resin, polycarbonate resin, polypeptide resin, and high-molecular liquid crystal. In addition to selecting the material for the liquid crystal oriented film, if the oblique deposition method is used, the LB method is adopted by adjusting the inclination of the film to the substrate surface in the direction of deposition. In this case, the pre-tilt angle can be controlled by adjusting conditions such as the substrate pull-up speed.
ま た 、 臨界電場 E c は、 液晶層 内の電場の不均一性 に影響 さ れ る 。 液晶層 に発生す る 電場の歪みが、 液晶分子の配 向状態の 安定性 に影 響す る か ら で あ る 。 な お、 電場の不均一性は、 液晶層 に 実質的 に均 一 に 印加 さ れ る 主電場 E 0 と 、不均一 に 印加 さ れ る 副電場 E 1 と の比 ( E 1/ E 0) で表す こ と がで き る 。 なお、 E 1 は 、 印加 さ れ る 副電 場の最大値 と す る 。  In addition, the critical electric field E c is affected by the non-uniformity of the electric field in the liquid crystal layer. This is because the electric field distortion generated in the liquid crystal layer affects the stability of the orientation state of the liquid crystal molecules. The non-uniformity of the electric field is determined by the ratio (E 1 / E 0) between the main electric field E 0 applied substantially uniformly to the liquid crystal layer and the auxiliary electric field E 1 applied non-uniformly. Can be represented by E 1 is the maximum value of the applied sub-field.
電場の不均一性 E 1/ E 0 と 臨界電場 E c と の 関係 は、 前述 し た手 法 に基づ い て、 以下の よ う に し て調べ る こ と がで き る 。 す な わ ち 、 液晶層 に、 外部電場 E と し て 均一電場で あ る 主電場 E 0 を 印加す る と と も に、 不均一電場で あ る 副電場 E 1 を 重畳 さ せ て 印加 す る と い う 条件で 、 主電場 E 0 の増加 に伴 う 配向角 の 変化 を計算す る 。 こ の と き 、 副電場 E 1 は、 主電場 E 0 の増加 に伴 っ て 、 E 1 / E 0 が所 定の値で 一定 と な る よ う に増加 さ せる 。 得 ら れた 計算結果 よ り 、 配 向角 0 ;) ' が突然変化す る と き の 主電場 E 0 と して 、液晶転移の 臨界電 場 E c が求 め ら れ る 。 The relationship between the inhomogeneity E 1 / E 0 of the electric field and the critical electric field E c can be examined as follows based on the above-mentioned method. In other words, the main electric field E 0, which is a uniform electric field, and the sub electric field E 1, which is a non-uniform electric field, are applied to the liquid crystal layer in a superimposed manner. Under these conditions, the change in the orientation angle with the increase in the main electric field E 0 is calculated. At this time, the auxiliary electric field E 1 is increased so that E 1 / E 0 becomes constant at a predetermined value as the main electric field E 0 increases. From the obtained calculation results, the critical electric field of the liquid crystal transition is defined as the main electric field E 0 when the orientation angle 0;) ′ suddenly changes. A field E c is required.
図 4 7 は、 上記手法に基づいて 、 E 1/ E 0 の値 を種々 変化 さ せて 各条件下で の 臨界電場 E c を計算 した計算結果の 一例で あ る 。な お、 図 4 7 の結果は、 境界条件 を 00= + 0 . 2 6 rad, θ np-1 = - 0 . 2 5 r ad と し て 固定 し、 k ll= 6 x l 0 ― 7 dyn、 k 33 = 1 2 x 1 0 ― 7 dyn、 Δ £ = 1 0 と して 計算 し た結果で あ る 。 図 4 7 に 示す よ う に 、 Ε 1 / Ε 0 が大 きい ほ ど、 すなわ ち 電場の不均一性が大 き い ほ ど、 臨界電場 E c が減少 し、 Ε 1 / Ε 0 = 1 付近で は E c は無限小 と な る 。 こ れは、 液晶層 の電場 に歪みが存在す る と 、 電場が一様で あ る 場合に 比べて ホ モ ジ ニァ ス 配向 が不安定 と な り 、 そ の結果、 ベ ン ド 配向へ の転移 が速や か に発現す る か ら で あ る と 考 え ら れ る 。 FIG. 47 is an example of a calculation result obtained by calculating the critical electric field E c under various conditions by varying the value of E 1 / E 0 based on the above method. Na us, the results of FIG. 4 7, the boundary conditions 00 = + 0 2 6 rad, θ np-1 = -.. 0 2 5 as a r ad fixed, k ll = 6 xl 0 - 7 dyn, k 33 = 1 2 x 1 0 - 7 dyn, Ru Ah with results calculated by the delta £ = 1 0. As shown in FIG. 47, as Ε 1 / Ε 0 is larger, that is, as the electric field is more inhomogeneous, the critical electric field E c is reduced, and Ε 1 / Ε 0 = 1 In the vicinity, E c becomes infinitesimal. This is because when the electric field of the liquid crystal layer has a distortion, the homogeneous orientation becomes unstable as compared with the case where the electric field is uniform, and as a result, the orientation to the bend orientation is reduced. This is thought to be due to the rapid onset of metastasis.
従 っ て 、 速や か な液晶転移 を実現す る た め に は、 液晶層 に、 実質 的 に均一 な主電場 Ε 0 と と も に 、空間的 に不均一 な電場 E 1 を 印加す る こ と が有効で あ る 。 特に 、 0 . 0 1 く E 1/ E 0く 1 と す る こ と が 有効で あ る 。 E lZ E O^ O . 0 1 の範囲で は、 不均一電場印加 に よ る 液晶転移 を促進す る 効果 を 十分 に得 る こ と は 困難で あ り 、 E 1/ E 0≥ 1 の範囲で は、印加電圧 が大 き く な り 過 ぎ る た め実際の使用 に適 当 で な い と い う 問題があ る ら で あ る 。 更 に は、 0 . 5 ^ E 1Z E 0 ≤ 1 と す る こ と が好 ま し い 。  Accordingly, in order to achieve a rapid liquid crystal transition, a spatially non-uniform electric field E 1 is applied to the liquid crystal layer together with a substantially uniform main electric field Ε0. This is effective. In particular, it is effective to set 0.01 to E1 / E0 to 1. In the range of E lZ EO ^ O .01, it is difficult to sufficiently obtain the effect of promoting the liquid crystal transition by applying a non-uniform electric field, and in the range of E 1 / E 0≥1. This is because there is a problem that the applied voltage becomes too large to be suitable for actual use. Furthermore, it is preferred that 0.5 ^ E 1Z E 0 ≤ 1.
不均一電場 E 1 は、 薄膜 ト ラ ン ジス タ の ソ ース 電極 ( ま た は ゲ一 ト 電極) と 透明電極 と の 間 に 印加 し た電圧 を利用 す る こ と に よ り 、 液晶層 に 対 し て基板に垂直 な 方 向 に 印加す る こ と がで き る 。 ま た 、 不均一電場 E 1 は、 周波数 1 0 0 k H z 以下 の交流電場 と す る こ と が好 ま し く 、 更 に は、 振幅 を 時間的 に 減衰 さ せ る こ と が好 ま し い 。  The non-uniform electric field E 1 is obtained by using the voltage applied between the source electrode (or gate electrode) of the thin-film transistor and the transparent electrode, and the liquid crystal layer is formed. Can be applied in a direction perpendicular to the substrate. In addition, it is preferable that the non-uniform electric field E 1 is an AC electric field having a frequency of 100 kHz or lower, and more preferably, the amplitude is attenuated over time. Yes.
臨界電場 E c を 低下 さ せ る 条件で あ る 、 ス プ レ イ 弾性定数 ( k ll)、 プ レ チ ル ト 角 の非対称性 ( △ Θ ) お よ び電場の不均一性 ( E 1/ E 0 ) と い う 3 条件の う ち 、 2 条件な い し 3 条件を組み合わせて満足 さ せ る こ と が好 ま しい 。 こ れ ら の条件 を組み合わ せ る こ と に よ り 、 各条 件 を 1 つ の み満足 さ せ る 場合に 比べ、 更 に 確実 に 臨界電場 E c を よ り 確実 に低下 さ せ る こ と がで き る か ら で あ る 。 The conditions that lower the critical electric field E c are the spray elastic constant (k ll), the asymmetry of the tilt angle ((Θ), and the non-uniformity of the electric field (E 1 / E 0) Of the three conditions, it is preferable to satisfy by combining two or three conditions. By combining these conditions, the critical electric field E c can be further reduced more reliably than when only one of the conditions is satisfied. This is because it is possible.
例 え ば、 図 4 7 は、 実質的 に均一な外部電場 E 0 と と も に、 不均 一な 電場 E 1 を 印加す る こ と 以外は、 図 4 6 と 同条件で計算 し た 結 果で あ る 。 な お、 図 4 7 は、 E 1 / E O - 0 . 0 3 と した場合の結果 で あ る 。 図 4 6 お よ び図 4 7 の比較か ら わ か る よ う に、 プ レ チル ト 角 の非対称性お よ び電場の不均一性の 2 条件を 組み合わせて満足 さ せ る こ と に よ り 、 臨界電場 E c を よ り 低下 さ せ、 更 に速や か な液 晶 転移 を 実現す る こ と がで き る 。  For example, FIG. 47 shows the results calculated under the same conditions as in FIG. 46 except that a non-uniform electric field E 1 is applied together with a substantially uniform external electric field E 0. It is a fruit. FIG. 47 shows the result obtained when E 1 / E O −0.03. As can be seen from the comparison between Fig. 46 and Fig. 47, it can be seen that the asymmetry of the pretilt angle and the non-uniformity of the electric field can be satisfied in combination. As a result, the critical electric field Ec can be further reduced, and a more rapid liquid crystal transition can be realized.
(実施の形態 2 0 )  (Embodiment 20)
本実施の形態 2 0 は上記実施の形態 7 と 同様 に第 1 の液晶セ ル領 域 と 第 2 の液晶セ ル領域を形成 し、 そ の境界部のデ ィ ス ク リ ネ ー シ ヨ ン 線 を核 に し て ベ ン ド 転移 を容易 に発生 さ せ る こ と を 特徴 と す る も の で あ る 。 但 し、 実施の形態 7 で は、 上下一対の基板そ れそれ に 紫外線 を 照射 し、局所的 に プ レ チル ト 角 を 変化 さ せ る 手法 を 用 い た 。 しか し、 本発明は こ れ に 限 る も の で は な い 。 処理す る 基板は両方 の 基板で あ っ て も 一方 の基板で あ っ て も 、 第 1 と 第 2 の液晶セ ル領域 を形成す る こ と は可能で あ り 、 ま た、 プ レ チル ト 角 を 変化 さ せ る 手 法 と し て は紫外線 を 照射 に 限 ら な い。 以下 に 、 具体的 な 内容を 実施 の形態 2 0 — 1 〜実施の形態 2 0 — 5 を 例示 して 説明す る こ と に す る 。  In the present embodiment 20, a first liquid crystal cell region and a second liquid crystal cell region are formed in the same manner as in the seventh embodiment, and a discretion region at the boundary is formed. The feature is that the bend transition is easily generated with the line as the nucleus. However, in the seventh embodiment, a method is used in which a pair of upper and lower substrates are irradiated with ultraviolet rays to locally change the pretilt angle. However, the present invention is not limited to this. Whether the substrate to be processed is both substrates or one substrate, it is possible to form the first and second liquid crystal cell regions, and the The method of changing the angle is not limited to UV irradiation. Hereinafter, specific contents will be described with reference to Embodiment 20-1 to Embodiment 20-5.
(実施の形態 2 0 — 1 )  (Embodiment 20-1)
図 4 8 は実施の形態 2 0 — 1 の係 る 液晶表示装置の配向状態 を 示 す概念図で あ る 。 本実施の形態 2 0 — 1 は、 上下一対の基板の う ち の 一方だ け ϋ V 照射を 行 っ た例で あ る 。 具体的 に は、 実施の形態 7 と 同様な方法で ア レ イ 基板 5 0 0 だ け に ϋ V照射 を 行 っ た 。 こ れ に よ り 、 ア レ イ 基板 5 0 0 に は実施の形態 7 と 同様に 、 5 度 と 2 度の プ レ チ ル ト 領域が形成 さ れた 。 プ レ チル ト 角 5 度 は 図 1 6 の Β 2 に 相 当 し、 プ レ チ ル ト 角 2 度は 図 1 6 の Α 2 に相 当 す る 。 対向基板 5 0 1 の 内側面及びア レ イ 側基板 5 0 0 の 内側面 に は、 そ れぞれ 同一 材料か ら な る 配向膜が形成 さ れて い る が、 ア レ イ 基板 5 0 0 側 よ り も 対向基板 5 0 1 側で の ラ ビ ン グ強度 を上げる こ と に よ り 、 対向基 板 5 0 1 に は ア レ イ 基板 5 0 0 の 2 種の プ レ チル ト 角 の 中 間 的 な プ レ チル ト 角 を 実現 し た 。 本実施の形態で は 3 度で あ っ た。 こ の よ う に対向基板 5 0 1 の プ レ チ ル ト 角 がア レ イ 側基板 5 0 0 の 2 種の プ レ チ ル ト 角 の 間 に あ る こ と が本実施の形態 2 0 - 1 の特徴で あ る 。 電界 を 印加 し な い状態で は、 液晶層 5 0 2 に は 図 4 8 ( a ) の よ う に 2 つ の領域 H I , H 2 が発現す る 。 こ こ で ア レ イ 側基板 5 0 0 の プ レ チル ト が、 右側領域 H 2 で 2 度、 左側領域 H 1 で 5 度で あ り 、 対向基板 5 0 0 の プ レ チ ル ト が右側領域 H 2 及び左側領域 H. 1 共 に 3 度で あ る 。 FIG. 48 is a conceptual diagram showing an alignment state of the liquid crystal display device according to Embodiment 20-1. The present embodiment 20 — 1 is one of a pair of upper and lower substrates. Only one of them is an example of V irradiation. Specifically, ϋV irradiation was performed only on array substrate 500 in the same manner as in the seventh embodiment. As a result, the fifth and second degree tilt regions were formed on the array substrate 500 as in the seventh embodiment. A pretilt angle of 5 degrees corresponds to Β2 in Fig. 16, and a pretilt angle of 2 degrees corresponds to Α2 in Fig. 16. On the inner surface of the counter substrate 501 and the inner surface of the array-side substrate 500, an alignment film made of the same material is formed, respectively. By increasing the rubbing strength on the opposing substrate 501 side rather than the 0 side, the opposing substrate 501 has two types of pretilt angles of the array substrate 500. With a neutral pre-tilt angle. In this embodiment, it was three times. As described above, in the present embodiment, the opposite substrate 501 has a pleated angle between the two types of array substrate 509. -It is a feature of 1. When no electric field is applied, two regions HI and H 2 appear in the liquid crystal layer 502 as shown in FIG. 48 (a). Here, the pretilt of the array side substrate 500 is 2 degrees in the right region H2 and 5 degrees in the left region H1, and the pretilt of the opposing substrate 500 is the right side. The region H2 and the left region H.1 both have a third degree.
一般 に 電界 を 印加 し な い状態 に おけ る 、液晶パ ネ ルの厚み方向(セ ル厚方 向 ) 中央付近の液晶分子の配列 方 向 は、 上下 の プ レ チル ト 角 の平均的 な値 に な る 。 な お、 図 4 8 に おい て 、 液晶分子は参照符号 5 0 3 で 示 さ れて い る 。 よ っ て 、 図 4 8 ( a ) の よ う に ア レ イ 側基 板 5 0 0 の プ レ チル ト が対向基板 5 0 1 の プ レ チル ト よ り も 高い左 側領域 H 1 で は、 上記 中央付近の液晶 5 0 3 は 図 中右上 が り の状態 に な る 。 逆 に レ イ 側基板 5 0 ◦ の プレ チル ト が対 向基板 5 0 1 の プ レ チル ト よ り も 小 さ い右側領域 H 2 で は、 上記 中 央付近の液晶 5 0 3 は 図 中 右下 が り の状態 に な る 。 こ の よ う に ア レ イ 基板 5 0 0 に プ レ チル ト の分布 を 持たせ、 対向基板 5 0 1 側 に はそ の 中 間 的な プ レ チル ト を持た せ る こ と で、 液晶パ ネ ルの厚み方向 中央部の液晶 に は 2 種類の配列 を 実現で き る 。 な お、 対向基板 5 0 1 に プ レ チ ル ト の 分布 を持 たせ、 ア レ イ 基板 5 0 0 側 に は そ の 中 間的 な プ レ チル ト を 持た せ る よ う に して も よ い。、 In general, when no electric field is applied, the direction of the liquid crystal molecules near the center of the liquid crystal panel in the thickness direction (cell thickness direction) is the average value of the upper and lower pre-tilt angles. become . Note that, in FIG. 48, the liquid crystal molecules are indicated by reference numeral 503. Therefore, as shown in FIG. 48 (a), in the left region H1 where the pretilt of the array side substrate 500 is higher than the pretilt of the counter substrate 501, as shown in FIG. On the other hand, the liquid crystal 503 near the center is in an upper right corner in the figure. Conversely, in the right side region H2 where the pretilt of the layer side substrate 50 ° is smaller than the pretilt of the opposing substrate 501, the liquid crystal 503 near the center is shown in the figure. The state will be lower right. In this way, the array substrate 500 By providing a distribution of tilt, the counter substrate 501 side has an intermediate pre-tilt, so that there are two types of liquid crystal at the center in the thickness direction of the liquid crystal panel. Can be realized. It should be noted that even if the counter substrate 501 has a distribution of the pretilt, the array substrate 500 side may have an intermediate pretilt. Good. ,
次い で、 液晶パ ネ ル にベ ン ド 配向 に転移す る 電界以下 の 電界 を 印 加 す る と 、 図 4 8 ( b ) の よ う な配向 に な る 。 本来の転移電圧 は非 常 に高電圧で あ る た め、 かか る 高電圧 を 印加す る と 1 秒以下 の 時間 で ベ ン ド 配向 に転移す る 。 図 4 8 ( b ) の よ う な配向 は、 本来 の 転 移電圧 を 印加 し た と き に、 転移の初期 に確認 さ れた が、 こ れは 0 . 1 秒以下の時間で あ っ た 。  Next, when an electric field equal to or less than the electric field that transfers to the bend alignment is applied to the liquid crystal panel, the alignment becomes as shown in Fig. 48 (b). Since the original transition voltage is extremely high, the transition to bend orientation takes less than 1 second when such a high voltage is applied. The orientation as shown in Fig. 48 (b) was confirmed at the beginning of the transition when the original transition voltage was applied, but it took less than 0.1 second. .
そ こ で、 こ の 配向状態 を詳細 に観察す る た め、 転移電圧以下 の 電 圧 を 印加 し た 。 電圧印加時の配向状態は、 電圧無印加時 に お け る 液 晶パ ネ ルの厚み方 向 中央部の液晶 の配向状態が影響 す る 。 即 ち 、 電 圧無印加時 に お い て 当 該 中央部の液晶分子が右上が り 状態で あ る 左 側領域 H I で は、 対向基板 5 0 1 付近 に ス プ レ イ 変形部位を 有 す る t ー ス プ レ イ 配向 が形成 さ れ、 電圧無印加時 にお い て 当 該 中央部 の 液晶分子が左上が り の右側領域 H 2 で は、 ア レ イ 側基板 5 0 0 付近 に ス プ レ イ 変形部位を 有す る b — ス プ レ イ 配向 が形成さ れ る 。 こ の t — ス プ レ イ 配 向 と b — ス プ レ イ 配向 の境界部では デ ィ ス ク リ ネ 一 シ ヨ ン が発生 し、 こ のデ ィ ス ク リ ネ 一 シ ヨ ン線を核 に して ベ ン ド 転 移が発生す る こ と を 見出 し た 。 こ の現象 に つ い て は両側 を U V 照射 し た実施の形態 7 と 同 じで あ る 。  Therefore, in order to observe the orientation state in detail, a voltage lower than the transition voltage was applied. The alignment state when a voltage is applied is affected by the alignment state of the liquid crystal at the center in the thickness direction of the liquid crystal panel when no voltage is applied. That is, in the left region HI where the liquid crystal molecules in the center are in the upper right state when no voltage is applied, there is a spray deformation portion near the counter substrate 501. When no voltage is applied, the liquid crystal molecules in the central portion of the liquid crystal molecules in the right upper region H2 near the array substrate 500 near the array substrate 500 when no voltage is applied. B—Spray orientation with a spray deformed part is formed. At the boundary between the t-spray orientation and the b-spray orientation, a discrimination occurs, and this discrimination line is drawn. It was found that a bend transition occurs in the nucleus. This phenomenon is the same as in Embodiment 7 in which both sides are irradiated with UV.
本実施の形態で は、 図 4 8 ( b ) に 示す よ う に、 ラ ビ ン グ方 向上 流側か ら 観察 ( 図 4 8 ( b ) の 右側か ら 観察) す る と左側領域 H 1 . が比較的黒 っ ぽ く 、 右側領域 H 2 が 白 っ ぽ く 見え 、 前記観察方 向 と は逆方 向 か ら 観察 ( 図 4 8 ( b ) の左側か ら 観察) す る と 左側領域 H 1 が比較的 白 っ ぽ く 右側領域 H 2 が比較的黒 っ ぽ く 見え た。 こ の こ と か ら 左側領域 H 1 で は t — ス プ レ イ 状態で あ り 、 右側領域 H 2 で は b — ス プ レ イ 状態で あ る と 判 断 し た。 こ れは液晶層のセ ル厚方 向 中央部の液晶分子の立 ち 方 が、 左側領域 H 1 と 右側領域 H 2 と で は非対称で あ り 、 例 え ば左側か ら 観察 し た場合、 右側領域 H 2 で は 液晶分子の長軸方 向か ら 観察す る こ と に な る た め、 液晶 の複屈折性 は少 な く 、 比較的黒 っ ぽ く 見え た と 考え る 。 In the present embodiment, as shown in FIG. 48 (b), the left side area H1 is observed when observation is made from the rafting side (from the right side of FIG. 48 (b)). Is relatively dark, the right side area H 2 looks whitish, and When observed from the opposite direction (observed from the left side of Fig. 48 (b)), the left area H1 appeared relatively whitish and the right area H2 appeared relatively black. From this, it was determined that the left region H1 was in the t-spray state, and the right region H2 was in the b-spray state. This is because the orientation of the liquid crystal molecules in the central part of the liquid crystal layer in the cell thickness direction is asymmetric in the left region H1 and the right region H2, for example, when observed from the left side, In the right region H 2, the liquid crystal molecules are observed from the long axis direction, so the liquid crystal has little birefringence and seems to be relatively dark.
こ の液晶パ ネ ル に上記実施の形態 1 か ら 6 で述べ た転移波形を 印 加す る と 、 デ ィ ス ク リ ネ 一 シ ヨ ン線を核 に し てベ ン ド 配向 が成長す る こ と が確認さ れた。  When the transition waveforms described in Embodiments 1 to 6 are applied to this liquid crystal panel, the bend alignment grows with the disc-line lines as nuclei. Was confirmed.
転移 を高速化 す る た め に は、 ベ ン ド 転移の核 を確実 に形成す る こ と が重要で あ り 、 本実施の形態で は各画素 ご と に U V 照射す る こ と で 、 各画素 に t ー ス プ レ イ 配向 と b — ス プ レ イ 配向 を形成 し、 デ ィ ス ク リ ネ 一 シ ョ ン線 を 発生 さ せ る こ と で転移の高速化 を 実現で き た < 上述 し た例で は、 ア レ イ 基板側 に紫外線 を 照射 し プ レ チル ト の 違 う 領域を形成 し た が、 本発明は こ れに 限 る も の で は な い。 対向基板 に紫外線 を 照射 し、 プ レ チル 卜 の異な る 領域 を形成 して も 良い 。  In order to speed up the transition, it is important to reliably form the nucleus of the bend transition. In the present embodiment, the UV irradiation is performed for each pixel. By forming a t-spray orientation and a b-spray orientation in each pixel and generating a discretion line, the transition speed can be increased. <In the example described above, the array substrate side was irradiated with ultraviolet rays to form a region having a different pretilt, but the present invention is not limited to this. The opposite substrate may be irradiated with ultraviolet rays to form regions having different pre-tilts.
ま た本実施の形態で は プ レ チル ト の異な る 2 つ の領域に分割 し た が、 本発明は こ れ に限 る も の で は な く 、 少な く と も 上下基板で プ レ チル ト の大小 関係 が逆転 し て い る 領域 を有 し て い れば よ い 。 ま た 本 発明 は、 各画素 ご と に プ レ チ ル ト の違 う 領域 を形成 し た が、 複数の 画素 ご と に 当 該領域を形成す る よ う な して も よ い。、 ま た'、 画素内 に 多数の領域が あ っ て も か ま わ な い 。 た だ し、 ゲー ト ラ イ ン な ど画素 電極がつ な が つ て い な い領域で は、 各画素 ご と に転移核 を形成 し て い る こ と が望 ま し い 。 ま た 本実施の形態で は、 プ レ チル ト は 5 度、 3 度、 2 度 の も の を 用 い た が、 本発明は こ れ に限 る も ので はな い 。 た だ し、 安定 して デ イ ス ク リ ネ 一 シ ョ ン を 発生 さ せ る た め に は基板内 の プ レ チ ル ト の 最 犬 と 最小 の差 を 1 度以上 に す る 必要が有 り 、 よ り 望ま し く は 2 度以 上に す る こ と が望 ま し い 。 ま た 安定に ベ ン ド 配向 す る た め に は、 プ レ チ ル ト の 最小値が 1 度以上が理想的で あ り 、 望 ま し く は 2 度以上 が望 ま し い 。 Although the present embodiment is divided into two regions having different pre-tilts, the present invention is not limited to this, and at least the pre-tilt is formed by the upper and lower substrates. It suffices if there is an area in which the magnitude relation of g is reversed. Further, in the present invention, a region having a different plot is formed for each pixel, but the region may be formed for a plurality of pixels. Also, there may be many areas in the pixel. However, in regions where pixel electrodes are not connected, such as gate lines, it is desirable that a transition nucleus be formed for each pixel. Further, in the present embodiment, the pretilt of 5, 5, and 2 degrees is used, but the present invention is not limited to this. However, in order to generate stable disk screening, it is necessary to make the difference between the smallest dog and the smallest dog on the board at least 1 degree. Yes, and more preferably more than once. For stable bend alignment, the minimum value of the plot is ideally 1 degree or more, and more preferably 2 degrees or more.
(実施の形態 2 0 — 2 )  (Embodiment 20-2)
本実施の形態 2 0 — 2 で は、 ラ ビ ン グ強度 に 面内分布 を 持た せ る こ と で、 プ レ チル ト 角 に 分布 を持たせた 。  In Embodiment 20-2, the pre-tilt angle has a distribution by giving the in-plane distribution to the rubbing intensity.
一般 に液晶 の配向処理 に は ラ ビ ン グ処理が行われて い る 。 こ れは 均一 な 長 さ の繊維 を 用 い て基板表面を擦る こ と で液晶の配 向性 を 制 御 して い る 。 一般 に ラ ビ ン グ強度 が強い と プ レ チル ト が低 い こ と が 知 ら れて い る 。 本実施の形態 2 0 — 2 で は、 ラ ビ ン グに用 い る 繊維 の長 さ を 不均一 に す る こ と で ラ ビ ン グ強度 に 分布 を持た せ、 プ レ チ ル ト を 意図 的 に不均一 に し た 。  Generally, a rubbing process is performed for the alignment process of the liquid crystal. In this method, the orientation of the liquid crystal is controlled by rubbing the substrate surface with a fiber of uniform length. It is generally known that the higher the rubbing strength, the lower the pretilt. In Embodiment 20-2, the length of the fiber used for rubbing is made non-uniform, so that the distribution of the rubbing strength is distributed, and the pleiling is intended. The target was made uneven.
繊維の長さ を 変 え る た め、 本実施の形態で は、 図 4 9 に 示 す横幅 5 0 m高 さ 1 0 0 mの微小な段差 5 1 0 を 有 す る 基板 5 1 1 を 用 い て 、 均一 な長さ の繊維 を 有 す る ラ ビ ン グ布 5 1 2 で、 基板 5 1 1 上 を 1 0 0 回 以上 ラ ビ ン グ を 行 っ た 。 段差 5 1 0 の高い 部分で は ラ ビ ン グ布 5 1 2 の損耗が激 し く 、 こ れ に よ り 、 図 5 0 に 示 す よ う に ラ ビ ン グ繊維の長さ に分布 を持 っ た ラ ビ ン グ布 5 1 1 a を 得 た 。  In order to change the length of the fiber, in the present embodiment, a substrate 511 having a small step 510 having a width of 50 m and a height of 100 m shown in FIG. 49 is used. For example, rubbing was performed 100 times or more on the substrate 511 with a rubbing cloth 511 having fibers of a uniform length. The rubbing cloth 5 12 is heavily worn in the high part of the step 5 10, and as a result, as shown in Fig. 50, the distribution of the rubbing fiber length is distributed. The loving cloth 511 a held was obtained.
こ の ラ ビ ン グ布 5 1 l a を 用 い る と プ レ チル ト 角 に分布 が発生 し、 プ レ チル ト が 2 か ら 5 度 ま で の領域が ラ ン ダム に発生 し た 。 上下基 板 も プ レ チル ト に分布 を 持たせ る 処理 を 行 っ た 。 こ の 2 枚の基板 を組み合わ せ る と 、 さ ま ざ ま な プ レ チル ト の組み合わ せ領域が形成  When this rubbing cloth 51a was used, a distribution was generated in the pretilt angle, and a region where the pretilt was from 2 to 5 degrees occurred randomly. The upper and lower substrates were also processed to have a pretilt distribution. When these two substrates are combined, various pretilt combination areas are formed.
9S さ れ る 。 し か し、 こ れ ら の領域は、 大別 す る と 電圧無印加状態 に お いて 、 セ ル厚方 向 中央部で の液晶分子が斜め上方 に 向 い て い る b — ス プ レ イ 配 向 に近似 し た 配向領域 と、 セ ル厚方 向 中央部で の液晶分 子が斜め下方 に 向 い て い る t ー ス プ レ イ 配向 に近似 し た配向領域の 2 種の領域 に分け ら れ る 。 本実施の形態で は、 こ の プ レ チル ト の 分 布は画素 よ り も 小 さ い領域で発生 し た た め、 こ の 2 種の領域 を 各画 素 に形成す る こ と がで き た 。 9S It is done. However, these regions are roughly divided in the absence of voltage application, in which the liquid crystal molecules in the central part in the cell thickness direction face diagonally upward. There are two types of regions: an orientation region similar to the orientation, and an orientation region similar to the t-spray orientation, in which the liquid crystal molecules at the center in the cell thickness direction face diagonally downward. Divided. In this embodiment, since the distribution of the pretilt occurred in a region smaller than the pixel, it is possible to form these two types of regions in each pixel. Came .
こ の よ う な構成の液晶表示パネルに 電圧 を 印加す る と 、 b — ス プ レ イ 配向 と t ー ス プ レ イ 配向 の 2 種の配向領域が形成 さ れ、 2 種の 配向領域の境界部で デ ィ ス ク リ ネ 一 シ ヨ ン線が発生 し、 こ れ を核 に し てベ ン ド 転移が確認 さ れた 。  When a voltage is applied to a liquid crystal display panel having such a configuration, two types of orientation regions, b-spray orientation and t-spray orientation, are formed, and the two types of orientation regions are formed. A disk line was generated at the boundary, and bend transition was confirmed using this as a nucleus.
本実施の形態 2 0 一 2 で は ラ ビ ン グ強度の分布 を形成す る た め に 繊維の長さ に 分布 を形成 し た が、本発明は こ れ に限 る も の で は な い。 ラ ビ ン グ布 の繊維質 を コ ッ ト ン と レ 一 ヨ ン の混合に す る こ と で ラ ビ ン グ強度の分布 を形成す る こ と がで き た 。 こ こ で は柔軟な コ ッ ト ン と 剛直な レ ー ヨ ン の繊維 を独立 に編み込む ラ ビ ン グ布 を実現 し た 。 (実施の形態 2 0 - 3 )  In the present embodiment 20-12, the distribution of the fiber length is formed in order to form the distribution of the rubbing strength, but the present invention is not limited to this. . The distribution of the rubbing strength could be formed by mixing the fibers of the rubbing cloth with cotton and rayon. In this case, we have realized a loving cloth that braids flexible cotton and rigid rayon fibers independently. (Embodiment 20-3)
図 5 1 は ア レ イ 配線 に よ る ラ ビ ン グの影 を 示 し た概念図 で あ る 。 本実施の形態 2 0 — 3 で は、 ア レ イ 基板 5 0 0 上 に形成さ れて い る 金属配線 ( ソ ース 電極線 5 2 0 、 ゲ一 ト 電極線 5 2 1 ) に よ る ラ ビ ン グ の影を 用 いて 局所的 に ラ ビ ン グ強度の弱い領域を形成 し た 。 な お、 対向基板 5 0 1 側で は、 ラ ビ ン グ強度 が均一な通常の ラ ビ ン グ 処理 を行 っ た 。 ア レ イ 基板 5 0 0 での ラ ビ ン グ方 向 は ソ ース 電極線 5 2 0 の延在方 向 か ら 2 0 度傾けて行 っ た 。 こ の と き 、 ゲー ト 電極 線 5 2 1 及び ソ ース 電極線 5 2 0 は画素電極部分 よ り も 高 く な つ て い る た め、 ラ ビ ン グ処理を す る と 、 ゲー ト 電極線 5 2 1 及び ソ ー ス 電極線 5 2 0 の エ ッ ジ部分 5 2 2 で ラ ビ ン グ強度が弱 く な り 、 画素 領域の そ の他の領域 5 2 3 に比べ プ レ チル ト が高 く な つ た。 な お、 上記の例で は、 ラ ビ ン グ方向 は ソ ース 電極線 5 2 0 の延在方 向 か ら 2 0 度傾けて 行 っ た が、 1 0 度以上傾けて行え ば局所的 に ラ ビ ン グ 強度の弱い領域を形成す る の に十分で あ っ た 。 Figure 51 is a conceptual diagram showing the shadow of the rubbing due to the array wiring. In the present embodiment 20-3, the metal wiring (source electrode line 520, gate electrode line 521) formed on the array substrate 500 is used. Using the shadow of the rubbing, a region with a weak rubbing intensity was formed locally. On the counter substrate 501 side, a normal rubbing process having a uniform rubbing strength was performed. The rubbing direction on the array substrate 500 was inclined by 20 degrees from the direction in which the source electrode wire 52 0 extended. At this time, since the gate electrode line 52 1 and the source electrode line 52 0 are higher than the pixel electrode portion, the gate electrode line 5 21 and the source electrode line 5 20 Electrode wire 5 2 1 and source The edge portion 52 of the electrode wire 52 has a weaker rubbing intensity at the edge portion 522, and the pretilt has become higher than the other portions 523 of the pixel region. In the above example, the rubbing direction was tilted 20 degrees from the direction in which the source electrode wire 52 0 extends. It was enough to form a region with low rubbing intensity.
こ こ で、 対向基板 5 0 1 の プ レ チル ト 角は、 前記 し た 2 つ の プ レ チル ト の 中 間的 な値 に し た 。 こ の よ う な ラ ビ ン グ処理に よ り 、 電圧 無印加時にお い て、 領域 5 2 2 にはセ ル厚方 向 中央部で の液晶分子 が斜め上方 に 向 い て い る b — ス プ レ イ 配向 に近似 し た配向が形成 さ れ、 領域 5 2 3 に は セ ル厚方 向 中央部で の液晶分子が斜め下方 に 向 いて い る t ー ス プ レ イ 配向 に近似 し た 配向 が形成 さ れた 。 こ れ に よ り 、 上記実施の形態 と 同様に電圧を 印加す る と 、 領域 5 2 2 に b — ス プ レ イ 配向 が形成さ れ、 領域 5 2 3 に t ー ス プ レ イ 配向が形成 さ れ、 こ の 2 種の配向領域の境界部でデ ィ ス ク リ ネー シ ヨ ン線が発生 し、 こ れ を核 に し て ベ ン ド 転移が確認 さ れた。  Here, the pre-tilt angle of the counter substrate 501 was set to a neutral value between the above-mentioned two pre-tilts. By such a rubbing treatment, the liquid crystal molecules in the central part in the cell thickness direction are directed obliquely upward in the region 522 when no voltage is applied. An alignment similar to the spray alignment is formed, and in the region 523, the liquid crystal molecules at the central part in the cell thickness direction are similar to the t-spray alignment in which the liquid crystal molecules face obliquely downward. An orientation was formed. Thus, when a voltage is applied in the same manner as in the above embodiment, a b-spray orientation is formed in the region 522 and a t-spray orientation is formed in the region 522. It was formed, and a discrimination line was generated at the boundary between these two types of orientation regions. Using this as a nucleus, a bend transition was confirmed.
と こ ろ で、 本実施の形態 2 0 — 3 で の画素電極は縦長の形状で あ つ た 。 こ の よ う な縦長形状の画素電極の場合、 上下方向 に ラ ビ ン グ す る と 、 プ レ チ ル ト の高い領域の面積は各画素で は 少な い 。 む し ろ 左右方 向 に ラ ビ ン グす る と プ レ チル ト の高い領域の 面積は広 く 得 ら れた 。 ま た上述 し た例 の よ う に 、 斜め方向 に ラ ビ ン グ し た と き に プ レ チル ト の高い領域の 面積は最大に得 ら れた。 こ の 結果か ら 、 ラ ビ ン グ方向 は ソ ース 電極線 5 2 0 に対 して 角度 を持 っ て ラ ビ ン グ を 行 う 方式が プ レ チ ル 卜 の異 な る 領域 を 十分に形成で き 、 ベ ン ド 転移 を 効率 よ く 実現す る こ と がで き る 。  In this case, the pixel electrodes in Embodiments 20 to 3 have a vertically long shape. In the case of such a vertically long pixel electrode, when the pixel is vertically rubbed, the area of the region with a high pitch is small in each pixel. On the other hand, when rubbing left and right, the area of the region with high pretilt was widened. Also, as in the example described above, the area of the region with high pretilt was obtained to the maximum when rubbing diagonally. From this result, it was found that the method of performing rubbing at an angle with respect to the source electrode wire 520 is sufficient for the region where the pellets are different from each other. Thus, the bend transition can be efficiently realized.
ま た、 ソ ース 電極線 と 画素電極間、 並び に、 ゲー ト 電極線 と 画素 電極間の そ れそ れ に横電界が発生 して い る 場合 に は、 以下 に述べ る よ う に横電界の 発生方 向 と ラ ビ ン グ方 向 と が転移容易性 に 影響 を 与 え る 。 即 ち 、 上下方 向 に ラ ビ ン グす る と 、. デ ィ ス ク リ ネ ー シ ヨ ン線 は横方向 に発生 す る 。 こ の と き、 ソ ース 電極線 と 画素電極間 に横電 界が発生 して い る と 、こ の横電界効果 に よ っ て 転移が良好で あ っ た 。 ま た、' 左右方 向 に ラ ビ ン グす る と 、 デ ィ ス ク リ ネ 一 シ ヨ ン線は縦方 向 に発生 す る 。 こ の と き 、 ゲー ト 電極線 と 画素電極間 に横電界が発 生 して い る と 転移が良好で あ っ た 。 ま た、 斜め方 向 に ラ ビ ン グす る と 、デ ィ ス ク リ ネ ー シ ヨ ン線は 図 中 の 画素の左上か ら 右下 ま で走 り 、 こ の と き に は ソ ース 電極線 と 画素電極間の横電界、 並びに 、 ゲー ト 電極線 と 画素電極間の横電界の双方が効果的で あ っ た 。 In the case where a horizontal electric field is generated between the source electrode line and the pixel electrode, and between the gate electrode line and the pixel electrode, the following will be described. Thus, the direction in which the lateral electric field is generated and the direction in which rubbing affects the ease of transition. Immediately, when rubbing upwards and downwards, the discretion line is generated in the horizontal direction. At this time, if a lateral electric field was generated between the source electrode line and the pixel electrode, the transition was good due to the lateral electric field effect. In addition, when rubbing left and right, the discon- sion line is generated in the vertical direction. At this time, the transition was good if a lateral electric field was generated between the gate electrode line and the pixel electrode. Also, if you are rubbing diagonally, the disk line will run from the upper left to the lower right of the pixel in the figure, and in this case the source Both the horizontal electric field between the gate electrode line and the pixel electrode and the horizontal electric field between the gate electrode line and the pixel electrode were effective.
こ の よ う に、 上下方向 の ラ ビ ン グで は ソ ース 電極線 と 画素電極間 の横電界 が効果が有 り 、 左右方 向 の ラ ビ ン グで はゲー ト 電極線 と 画 素電極間 の横電界が効果が有 り 、 斜め方 向 ラ ビ ン グで は ソ ース 一画 素、 ゲー ト 一画素間の双方の横電界が効果的で あ る 。 従 っ て 、 横電 界 に よ る 効果的 を希望す る 場合に は、 横電界の方向 を 考慮 し て ラ ビ ン グ方 向 を 決定 して お く 必要があ る 。  As described above, the horizontal electric field between the source electrode line and the pixel electrode has an effect in the vertical rubbing, and the gate electrode line and the pixel in the horizontal rubbing. The horizontal electric field between the electrodes is effective, and in oblique rubbing, the horizontal electric field between the source and the pixel is effective. Therefore, if it is desired to be effective by the transverse electric field, it is necessary to determine the rubbing direction in consideration of the direction of the transverse electric field.
なお、 本実施の形態 2 0 — 3 で は金属電極配線の影 を 用 い た が、 本発明は こ れ に 限 る も の で は な い。 後述す る 実施の形態 2 4 に 述べ る よ う な柱状ス ぺーサゃ実施の形態 1 3 、 1 4 に述べ た よ う な 突起 物で あ っ て も か ま わ な い 。  In Embodiments 20-3, the shadow of the metal electrode wiring is used, but the present invention is not limited to this. A columnar spacer as described in an embodiment 24 described later may be a projection as described in the embodiments 13 and 14.
(実施 の形態 2 0 - 4 )  (Embodiment 20-4)
本実施の形態 2 0 — 4 で は、 配向膜の膜厚 に分布 を持たせ る こ と で プ レ チ ル ト に分布 を も たせ た 。 一般 に配向膜の 印刷は、 図 5 2 に 示す印刷版 5 3 0 を用 い て行 っ て い る 。 こ こ で、 一般的 な 配向膜の 印刷方法 を 図 5 2 を参照 して 簡単 に説明す る と 、配向膜の 塗布液は、 デ イ ス ペ ン ザ 5 3 1 か ら 、 回転 し て い る ド ク タ ー ロ ール 5 3 2 と ァ 二 口 ヅ ク ス ロ ール 5 3 3 間 に滴下供給さ れ る 。 こ の塗布液は、 2 つ の ロ ール 5 3 2 , 5 3 3 間で 練 ら れて ァ ニ ロ ヅ ク ス ロ ール 5 3 3 の 表面に液薄膜 と な っ て保持 さ れ、 ァ ニ ロ ッ ク ス ロ ール 5 3 3 か ら 版 胴 5 3 4 上の 印刷版 5 3 0 に移 さ れる 。 そ して 、 テー ブル 5 3 5 上 に 固定 さ れた基板 5 3 6 が版胴 5 3 4 の 直下 を通過す る と き に、 塗 布液が印刷版 5 3 0 か ら 基板 5 3 6 に転写塗布 さ れ る 。 と こ ろ で 、 こ の よ う な配 向膜の塗布工程 に おいて使用 さ れ る 印刷版 5 3 0 は 、 配向膜の膜厚 を 一定 に す る 要請か ら 一般的 に は均一な細か い メ ッ シ ュ が形成 さ れて い る 。 本実施の形態で は、 上記要請 と は逆 に配向膜 の膜厚 に分布 を持た せ る こ と が要請 さ れて い る た め、 図 5 3 及び図 5 4 に 示す よ う に メ ッ シ ュ サ イ ズ L を 大 き く し た 印刷版 5 3 0 を 使 用 し た 。 こ れ に よ り 、 印刷の不均一が生みだ さ れ、 膜厚 に分布 を 持 つ た配 向膜が形成 さ れた 。 こ の よ う に して形成 さ れた配向膜は、 膜 厚 が薄い領域で は プ レ チル ト の値が低 く 、 こ の領域で は b — ヅ イ ス ト 配向 が発現 しやすい傾向 が あ っ た 。 配向膜の膜厚が厚い領域で は プ レ チ ル ト の値 が高 く 、 t ー ヅ イ ス ト 配向 が発現 しやすい傾向 が あ つ た 。 こ の よ う に して 、 本実施の形態 2 0 — 4 で も 、 比較的 ラ ン ダ ム に配向膜の薄い領域、 厚い領域が形成 さ れ る た め、 実施の形態 2 0 - 2 と 同様 に 2 領域を形成す る こ と がで き 、 ベ ン ド 転移核 を 有効 に形成す る こ と がで き た 。 In the present Embodiment 20-4, the distribution is given to the film by giving the distribution to the film thickness of the alignment film. Generally, printing of an alignment film is performed using a printing plate 530 shown in FIG. Here, a general method for printing an alignment film will be briefly described with reference to FIG. 52.The coating liquid for the alignment film is rotated from the dispenser 531. Doctor roll 5 3 2 It is supplied dropwise between the two ports ヅ X-roll 533. This coating solution is kneaded between the two rolls 532, 533, and is held as a liquid thin film on the surface of the anilox roll 533. It is transferred from the anirock roll 533 to the printing plate 5330 on the plate cylinder 534. Then, when the substrate 536 fixed on the table 535 passes just below the plate cylinder 534, the coating liquid is transferred from the printing plate 5300 to the substrate 536. It is transferred and applied to At this point, the printing plate 530 used in such a coating process of the orientation film generally has a uniform fineness due to a demand for keeping the thickness of the orientation film constant. New mesh is formed. In the present embodiment, contrary to the above requirement, it is required to have a distribution in the thickness of the alignment film, and therefore, as shown in FIG. 53 and FIG. A printing plate 530 with a larger size L was used. As a result, non-uniform printing was produced, and a directionally oriented film having a distribution in film thickness was formed. The orientation film formed in this manner has a low pre-tilt value in a region where the film thickness is small, and tends to develop b-distal orientation in this region. there were . In the region where the thickness of the alignment film was large, the value of the tilt was high, and there was a tendency that the t-dist orientation was easily developed. As described above, even in the present embodiment 20-4, a thin region and a thick region of the alignment film are formed relatively randomly, so that the embodiment 20-2 is different from the embodiment 20-2. Similarly, two regions could be formed, and a bend transition nucleus could be effectively formed.
メ ッ シ ュ サイ ズ L と し て は、 1 0 0 m以上 と し た場合に、 配 向 膜に十分な膜厚分布 を 持た せ る こ と がで き た 。 なお、 参考 ま で に 述 ベ る と 、 通常の メ ッ シ ュ サイ ズ L は 5 0 m程度で あ る 。  When the mesh size L was set to 100 m or more, it was possible to provide the oriented film with a sufficient film thickness distribution. Incidentally, for reference, the normal mesh size L is about 50 m.
ま た、 上記の例で は、 配向膜 に膜厚分布 を 持たせ る た め に、 メ ッ シ ュ サ イ ズ L を 大 き く し た 印刷版を 用 い た けれ ど も 、 メ ッ シ ュ サ イ ズ L を 不均一 に し た 印刷版を 用 い て も よ く 、 ま た、 表面 に 凹 凸 を つ け る よ う に し た 印刷版を 用 い て も よ い 。 Further, in the above example, a printing plate having a large mesh size L was used in order to provide the alignment film with a film thickness distribution. It is possible to use a printing plate with a non-uniform size L. Also, make sure that the surface has You can also use a printed version of the printer.
(実施の形態 2 0 — 5 )  (Embodiment 20-5)
本実施の形態 2 0 — 5 で は、 基板の表面処理等 に よ っ て プ レ チ ル ト 角 に分布 を持たせ た 。 具体的 に説明す る と 、 基板上 に配 向膜を 均 — に 印刷 し、硬化 さ せた後、かか る 配向膜が形成さ れた基板 を 4 5 °C 9 0 % の高湿度雰囲気 中 に放置 し た 。 こ の と き湿度 に よ る 表面処理 に よ っ て 配 向膜の本来的 に付与 さ れた プ レ チル ト 角 が局所 的 に低下 し た 。 次い で、 従来 と 同様 に配向膜表面を ラ ビ ン グ処理す る こ と で、 基板 に 3 度 か ら 5 度の プ レ チル ト 角の 分布 を 実現す る こ と がで き た 上記の例 で は、 配向膜が形成 さ れた基板を高湿度雰囲気 中 に放置 し て プ レ チル ト 角 に分布 を持た せた けれ ど も 、 溶媒噴霧蒸気 中 を 通 す こ と や、 溶媒を配向膜に 噴霧吹 き付け処理 を す る こ と で も 実現で ぎ る 。  In the present Embodiment 20-5, the distribution of the tilt angle is provided by the surface treatment of the substrate or the like. Specifically, after the orientation film is uniformly printed on the substrate and cured, the substrate on which the orientation film is formed is placed in a high humidity atmosphere at 45 ° C and 90%. Left inside. At this time, the inherently imparted pretilt angle of the orientation film was locally reduced by the surface treatment with humidity. Next, by performing the rubbing treatment on the surface of the alignment film in the same manner as before, it was possible to realize a distribution of the pretilt angle of 3 to 5 degrees on the substrate. In the above example, the substrate on which the alignment film was formed was left in a high-humidity atmosphere to have a distribution of the pretilt angle, but the substrate was passed through the solvent spray vapor and the solvent was removed. This can also be achieved by spraying the alignment film.
さ ら に、 配向膜上 に別種の配向膜を 噴霧処理す る こ と で も 実現で き る 。 例 え ば プ レ チ ル ト 角 5 度の配向膜上に プ レ チ ル ト 角 3 度の配 向膜を 噴霧吹 き付 け す る こ と で実現 し た 。  Further, it can also be realized by spraying another type of alignment film on the alignment film. For example, this has been achieved by spraying an orientation film with a pretilt angle of 3 degrees on an orientation film with a pretilt angle of 5 degrees.
(実施の形態 2 1 )  (Embodiment 21)
本実施の形態 2 1 は、基板表面 を 凹 凸状 に形成に す る こ と に よ り 、 ベ ン ド 転移 を効率 よ く 実現す る こ と を 特徴 と す る も の で あ る 。即 ち 、 基板表面 を 凹 凸状 に形成 し て局所的 に強い電界 を 印加 す る こ と で t — ス プ レ イ 配向 と b — ス プ レ イ 配向 の領域の形成 に よ る 効果 と 、 凸 部で強い電界が印加 さ れ る こ と に よ る 効果の 両者 に よ り 、 ベ ン ド 転 移核 を 良好 に 発生 さ せ る こ と を特徴 と す る も ので あ る 。 具体的 な構 成は、 以下 の実施の形態 2 1 — 1 〜実施の形態 2 1 — 4 に お い て 説 明す る こ と に す る 。  The present embodiment 21 is characterized in that the substrate surface is formed in a concave-convex shape, so that the bend transition is efficiently realized. That is, by forming a concave-convex surface on the substrate and applying a strong electric field locally, the effect of the formation of the t-spray orientation and b-spray orientation regions is improved. The feature is that the bend transfer nuclei are favorably generated due to both the effect of the application of a strong electric field at the projections. The specific configuration will be described in the following Embodiment 21-1 to Embodiment 21-4.
(実施の形態 2 1 — 1 ) 前述 し た実施の形態 1 3 は、 凸部を形成 し こ の 凸部 に 電界の強い 領域を形成す る こ と に よ り 、 こ の電界の強い領域を転移の核 に す る 方式で あ っ た 。 こ の方式 を用 い て も 、 実施の形態 2 0 と 同様 に t — ス プ レ イ 配向 と b — ス プ レ イ 配向が形成 さ れ、、こ の異な る 配 向 の境 界部で発生 す る デ ィ ス ク リ ネ ー シ ヨ ン を核 に転移が発生 す る 。以下、 図 5 5 を参照 して 、 詳細 に説明す る 。 なお、 図 5 5 に おいて 、 5 3 5 は電気力線で あ り 、 5 3 6 は 凸部あ り 、 5 3 7 は画素電極、 5 3 8 は対向電極で あ る 。 実施の形態 1 3 の場合の電気力線 5 3 5 は、 図 5 5 ( a ) の よ う に な る 。 凸部 5 3 6 で の電界が強 く 、 こ の電界 は対向電極側 5 3 8 で さ ら に広がる 。 こ の た め、 図 5 5 ( b ) に 示 す よ う に、 凸部 5 3 6 の両側 に は横電界成分が発生す る 。 こ の結果、 図 中左側で は電界は左上方 向 に 電気力線が向 き 、 こ の方 向 に液晶分 子が 向 こ う と す る た め 図 の よ う に b — ス プ レ イ 配向 が形成 さ れ る 。 図 の右側で は、 電気力 線が右上方 向 に 向 く た め、 t ー ス プ レ イ 配 向 が形成さ れ る 。 従 っ て 、 b — ス プ レ イ 配向 と t — ス プ レ イ 配向 の 境 界部 に発生す る デ ィ ス ク リ ネ ー シ ヨ ン を核 にベ ン ド 転移が発生 す る , 図 5 6 は本実施の形態 2 1 ― 1 に係 る 液晶表示装 置の駆動波形図 で あ る 。 こ の駆動波形は、 ベ ン ド 転移への初期化処理期間 に お い て 、 低い電圧 ( 0 V ) と 高い電圧 ( 一 2 5 V ) を交互 に 印加 す る こ と を 特徴 と す る も の で あ る 。 こ の よ う な電圧波形を 有 す る 駆動電圧 の 印 加 に よ り 、 転移 を確実 に実現す る こ と がで き る 。 (Embodiment 2 1 — 1) Embodiment 13 described above is a method in which a convex portion is formed and a region with a strong electric field is formed on the convex portion, and the region with a strong electric field is used as a nucleus of the transition. It was. Even when this method is used, the t-spray orientation and the b-spray orientation are formed as in the case of Embodiment 20, and are generated at the boundary between these different orientations. Metastasis takes place in the nucleus of the discretion. Hereinafter, the details will be described with reference to FIGS. In FIG. 55, reference numeral 535 denotes a line of electric force, 536 denotes a projection, 537 denotes a pixel electrode, and 538 denotes a counter electrode. The electric lines of force 5 35 in the case of Embodiment 13 are as shown in FIG. 55 (a). The electric field at the convex portion 536 is strong, and this electric field further spreads at the counter electrode side 538. For this reason, as shown in FIG. 55 (b), a lateral electric field component is generated on both sides of the convex portion 536. As a result, on the left side of the figure, the electric field is directed to the upper left, and the liquid crystal molecules are directed to this direction. Therefore, as shown in the figure, b-spray An orientation is formed. On the right side of the figure, the t-spray configuration is formed because the lines of electric force are directed upward and to the right. Therefore, the bend transition occurs at the nucleus of the disk displacement generated at the boundary between the b-spray orientation and the t-spray orientation. 56 is a driving waveform diagram of the liquid crystal display device according to the present embodiment 21-1. This drive waveform is characterized in that a low voltage (0 V) and a high voltage (125 V) are alternately applied during the initialization process to bend transition. It is. By applying the driving voltage having such a voltage waveform, the transition can be surely realized.
なぜな ら 、 転移が不確実な場合は、 以下 の プ ロ セ ス が発生 して い る と 考え ら れ る 。 即 ち 、 電圧印加 に よ り 、 t ー ス プ レ イ 配向 と b — ス プ レ イ 配向 の 2 つ の ス プ レ イ 配向状態が発生 し、 殆 ど の画素領域 で は こ の 2 つ の 配向 の境界部か ら ベ ン ド 配 向 が発生す る 。 し か し な が ら 、 何 ら かの 理 由 に よ り ベ ン ド 配向 す る 前に 、 1 つ の ス プ レ イ 配 向状態 に に っ て し ま っ た場合、 転移は発生 し に く く 、 こ の 画素で は 転移が起 こ ら な い。 If the metastasis is uncertain, the following process is considered to have occurred. Immediately, the voltage application causes two spray orientation states, t-spray orientation and b-spray orientation, and these two orientations occur in most pixel regions. Bend orientation occurs from the boundary of orientation. However, before aligning the bend for any reason, one spray alignment is required. If the pixel is in the orientation state, the transition is unlikely to occur, and no transition occurs in this pixel.
そ こ で、 低い電圧 を 印加す る こ と で、 液晶の配向 を 一旦初期状態 に戻 し、 再度転移波形を 印加す る こ と で 次回 の転移 を確実化す る の が、 こ の波形の特徴で あ る 。 よ っ て、 こ の低い電圧はス プ レ イ 配 向 に戻る 電圧で あ る こ と が最低条件で あ り 、 望 ま し く は絶対値で 1 V 以下、 更 に望 ま し く は 0 V に す る の が よ い 。  The characteristic of this waveform is that by applying a low voltage, the orientation of the liquid crystal is returned to the initial state once, and by applying a transition waveform again, the next transition is ensured. It is. Therefore, the minimum requirement is that this low voltage be the voltage returning to the spray configuration, preferably 1 V or less in absolute value, and more preferably 0. V is good.
こ の低い 電圧期間 を、 初期 に 印加す る こ と が望 ま し く 、 こ れ に よ つ て初期 に どの よ う な ノ イ ズが入 っ て も 確実な転移が実現す る 。 な お、 ノ、'ルス 幅は、 0 . 1 秒〜 1 0 秒が望 ま しか っ た 。  It is desirable to apply this low voltage period early, so that a reliable transition is realized no matter what noise comes in at the beginning. By the way, I wanted the lus width to be between 0.1 and 10 seconds.
(実施の形態 2 1 — 2 )  (Embodiment 2 1-2)
本実施の形態 2 1 — 2 で は各画素 に 凹 凸形状 を形成 し た 。 図 5 7 は 凹凸形状の形成 を概念的 に 説明 し た 図 で あ り 、 図 5 7 ( a ) は従 来の画素構造を 表わ し、 こ こ で は各画素は金属配線 5 4 0 ( ゲー ト 電極線又は ソ ー ス 電極線) に挟 ま れた領域で あ る 。 こ の金属配線 5 4 0 上 に は窒化 シ リ コ ン等 に よ る 絶縁膜 5 4 1 が形成 さ れて い る 。 た だ し、 画素電極 5 4 2 上 に は、 絶縁膜 5 1 は一般に形成 さ れて い な い 。  In the present Embodiment 21-2, a concave-convex shape is formed in each pixel. FIG. 57 is a diagram conceptually illustrating the formation of the uneven shape, and FIG. 57 (a) shows a conventional pixel structure. In this case, each pixel has a metal wiring 540 ( Gate electrode wire or source electrode wire). On this metal wiring 540, an insulating film 541 made of silicon nitride or the like is formed. However, the insulating film 51 is not generally formed on the pixel electrode 542.
図 5 7 ( b ) は本実施の形態 2 1 — 2 を 示す断面図で あ り 、 画素 電極 5 4 2 の 中 央部で 画素電極 5 4 2 上 に 島状 に フ ォ ト レ ジ ス ト 樹 脂か ら な る 凸部 5 4 3 を形成 さ れて い る 。 こ の 凸部 5 4 3 は、 画素 電極 5 4 2 上 に塗布 さ れた フ ォ ト レ ジ ス ト 樹脂膜を フ ォ ト リ ソ グ ラ フ ィ 一 に よ っ て 部分的 に残す こ と に よ り 形成さ れた も ので あ る 。 凸 部 5 4 3 の高 さ は l 〃 m、 幅が 2 0 m と し た 。 こ の と き 画素 の 幅 は 5 0 m で あ っ た 。 こ の よ う に 凹凸形状 を形成す る と 、 凸部 (又 は凹部)の左右両側 で b — ヅ イ ス ト と t ー ヅ イ ス ト 領域が形成 さ れ、 良好な ベ ン ド 転移が実現で き た。 FIG. 57 (b) is a cross-sectional view showing the present embodiment 21-2, in which an island-shaped photo resist is formed on the pixel electrode 542 at the center of the pixel electrode 542. Convex portions 543 made of resin are formed. The convex portions 543 are to leave the photoresist resin film applied on the pixel electrodes 542 partially by the photolithography. It was formed by The height of the convex portion 543 was l〃m, and the width was 20 m. At this time, the width of the pixel was 50 m. When the uneven shape is formed in this way, b- ヅ and t ー-ヅ areas are formed on both the left and right sides of the convex portion (or concave portion). Good bend transition was realized.
凸部 5 4 3 の 変形例 と し て 、 図 5 7 ( b ) で は 凸部 5 4 3 は画素 電極 5 4 2 の上 に形成 し て い る が、 画素電極 5 4 2 の下 に形成 し て も 良い。 ま た 、 凸部 5 4 3 の他の 変形例 と して 、 画素電極 5 4 2 の 対角方 向 に延在す る 長手状 に形成さ れた 凸部で あ っ て も よ い 。  As a modified example of the convex portion 543, the convex portion 543 is formed above the pixel electrode 542 in FIG. 572 (b), but is formed below the pixel electrode 542. You may do it. Further, as another modified example of the convex portion 543, it may be a longitudinally formed convex portion extending diagonally of the pixel electrode 542.
ま た、 凸部 5 4 3 の形状は、 図 5 7 ( b ) に示す形状 に限 ら ず、 図 5 7 ( c ) に示す 山形状で あ っ て も よ い 。 図 5 7 ( c ) に示 す 山 形状の 凸部 5 4 3 は、 例 え ば フ ォ ト リ ソ グ ラ フ ィ 一 に よ つ て 部分的 に残さ れた樹脂部分 を 熱処理に よ り 溶融さ せて形状を な だ ら か に し て作製す る こ と がで き る 。 特 に、 図 5 7 ( c ) に示 す形状の 凸部 5 4 3 は、 良好 な ベ ン ド 転移が実現で き た。 こ れは断面形状がな な め に傾斜 して い る の で、こ の傾斜角 が液晶の プ レ チル ト に加算 さ れ る 。 こ の た め実施の形態 2 0 の よ う に プ レ チル ト に分布 を 持た せ る の と 同様の効果が得 ら れた も の と 考え ら れ る 。 図 5 7 ( b ) に示 し た よ う な急峻な形状で も 液晶 の 配向は連続的 に穏やか に 変化す る た め 、 図 5 7 ( c ) と 同様の効果が得 ら れた も の と 考え る 。  Further, the shape of the convex portion 543 is not limited to the shape shown in FIG. 57 (b), and may be a mountain shape shown in FIG. 57 (c). The convex portion 543 of the mountain shape shown in FIG. 57 (c) is formed by, for example, melting the resin portion partially left by photolithography by heat treatment. Then, it can be made with any shape. In particular, the convex portion 543 having the shape shown in FIG. 57 (c) was able to realize good bend transition. Since this is inclined due to the lack of its cross-sectional shape, this inclination angle is added to the liquid crystal pretilt. Therefore, it is considered that the same effect as in the case where the pretilt has a distribution as in Embodiment 20 is obtained. Even with a steep shape as shown in Fig. 57 (b), the orientation of the liquid crystal changes continuously and gently, and the same effect as in Fig. 57 (c) was obtained. I think.
さ ら に 画素 電極 5 4 2 を 凸部 5 4 3 の 上 に 形成 す る と 、 図 5 2 ( d ) の形状が形成で き た 。 こ の よ う な 変形例で は 画素電極 5 4 2 を 凸部 5 4 3 上 に形成す る こ と で、 凸部 5 4 3 の 電界強度 を強 く す る 効果が追加 さ れ る た め、 転移が更 に 良好 に実現で き た 。  Further, when the pixel electrode 542 was formed on the projection 543, the shape shown in FIG. 52 (d) could be formed. In such a modification, since the pixel electrode 542 is formed on the convex portion 543, an effect of increasing the electric field strength of the convex portion 543 is added. The transfer was even better achieved.
ま た、 凸部 の 更 に他の 変形例 と して は、 図 5 7 ( e ) に 示す よ う に、 ア レ イ 基板 5 4 5 上 に窒化 シ リ コ ン か ら な る 凸部 5 4 3 が形成 さ れて い る 。 こ の 凸部 5 4 3 は、 凹凸形状 を形成す る た め に金属配 線 5 4 0 上 に 形成 し た産化 シ リ コ ン膜を 部分的 に残す こ と に よ り 得 ら れた も の で あ る 。 本方式で は作製プ ロ セ ス が増力 Π しな い メ リ ッ ト があ る 。 なお 、 凸部 5 4 3 の段差は l m程度 を 実現で き た。 ま た、 凸部 の 更 に他の 変形例 と して は、 ア レ イ 基板 5 0 0 の表面 に透明樹脂層 5 4 6 を形成 し、 透明樹脂層 5 4 6 上 に I T O電極 を 形成す る 手法 も 用 い た 。 図 5 7 ( f ) が こ の と き の構成で あ る 。 こ の構成で は金属配線 5 4 0 上の透明樹脂層 5 4 6 は盛 り 上が つ て い る た め、 こ の 透明樹脂層 5 4 6 上 に形成 さ れた 画素電極 5 4 2 は 凹 構造 に な る 。 こ の 凹構造部の傾斜に よ っ て 2 つ の ヅ イ ス ト 領域が形 成で き た 。 さ ら に こ の透明樹脂層 5 4 6 を ノ、 ' タ ーニ ン グ して 、 こ の 層 に 凹凸構造 を形成 して も 良い 。 Further, as another modified example of the convex portion, as shown in FIG. 57 (e), the convex portion 5 made of silicon nitride is provided on the array substrate 545. 4 3 has been formed. The projections 543 were obtained by partially leaving the produced silicon film formed on the metal wiring 540 to form the uneven shape. It is a thing. In this method, there is a merit that the production process does not increase. In addition, the step of the convex portion 543 can be realized at about lm. Further, as another modified example of the projection, a transparent resin layer 546 is formed on the surface of the array substrate 500, and an ITO electrode is formed on the transparent resin layer 546. We also used the technique of Fig. 57 (f) shows the configuration in this case. In this configuration, since the transparent resin layer 546 on the metal wiring 540 is raised, the pixel electrode 542 formed on the transparent resin layer 546 is not formed. It has a concave structure. The two paste regions were formed by the inclination of the concave structure. Further, the transparent resin layer 546 may be turned, and an uneven structure may be formed in this layer.
(実施の形態 2 1 — 3 )  (Embodiment 2 1 — 3)
本実施の形態 2 1 一 3 で は、 基板上 に 凹 凸 を 密 に形成 し た 。  In Embodiments 21 to 13, concaves and convexes are densely formed on the substrate.
本発明は基板上 に 凹凸形状 を形成 し、 こ れ に よ つ て b —ス プ レ イ と ΐ ー ス プ レ イ の領域を形成す る こ と に あ る 。 よ っ て 凹凸形状は実施 の形態 1 3 の よ う に各画素 に点在 さ せて も 、 ま た画素 に複数形成 し て も 、 さ ら に 画素 内 に密に形成 して も 良い 。 According to the present invention, an uneven shape is formed on a substrate, thereby forming a b-spray and a pea-spray region. Thus, the uneven shape may be scattered in each pixel as in Embodiment Mode 13, may be formed in plural in the pixel, or may be formed densely in the pixel.
本実施の形態で は基板上 に密 に形成す る た め に、 基板表面上 を 荒 ら す処理 を 行 っ た 。 基板の透明電極 ( Ι Τ Ο ) 表面 を 0 2 ア ツ シ ャ 一で処理 し、 凹 凸形状 を最大 0 . 2 ; mの 深 さ と し た 。 基板の 凹 凸 の深 さ は 0 . 1 m以上あ れば転移の 向上 に効果があ っ た 。  In the present embodiment, a process of roughening the surface of the substrate is performed in order to form the substrate densely on the substrate. The surface of the transparent electrode (aluminum layer) of the substrate was treated with a 0.22 atm to make the concave / convex shape a maximum of 0.2 m deep. When the depth of the concavities and convexities of the substrate was 0.1 m or more, it was effective in improving the transition.
ま た本発明 は こ の手法 に 限 る も ので はな く 、 凹 凸形状を形成で き れぱ良い 。 例 え ば I T O の蒸着条件 を 速 く す る 、 膜厚 を厚 く す る 等 の処理 に よ っ て I T O表面 の 凹 凸 を形成す る こ と がで き た 。 な お、 こ の と き 、 I T O の結晶粒界は 5 O n mで あ り 、 通常の I T O の 結 晶粒界が 1 0 n m以下で あ る の に 比べて 十分な 凹凸状が得 ら れて い る こ と が理解 さ れ る 。  Further, the present invention is not limited to this method, and it is preferable that a concave-convex shape can be formed. For example, it was possible to form concaves and convexes on the surface of the ITO by increasing the deposition conditions of the ITO and increasing the film thickness. In this case, the crystal grain boundary of ITO is 5 O nm, and a sufficient unevenness is obtained as compared with the case where the crystal grain boundary of normal ITO is 10 nm or less. Is understood.
ま た 凹 凸パ タ ー ン は、 網点 に よ る 階調 を も っ た 印刷版を 用 い て形 成 し て も よ く 、 ま た基板を プ レ ス 成形 して形成す る よ う に し て も よ い o The concave-convex pattern may be formed by using a printing plate having a gradation by halftone dots, or by press-forming the substrate. You can do it O
(実施の形態 2 1 — 4 )  (Embodiment 2 1 — 4)
そ の他簡易 な手法 と し て、 通常の配向膜の 中 あ る い は上 に セ ル厚 以下 の大 き さ の 小粒子 を分散 さ せ る こ と で 、 基板表面 に 凹凸構造 を 形成 して も よ い 。  Another simple method is to disperse small particles with a size less than the cell thickness in or on a normal alignment film to form an uneven structure on the substrate surface. You may.
(実施の形態 2 2 )  (Embodiment 22)
図 5 8 は実施の形態 2 2 に係 る 液晶表示装置 の要部断面図で あ り 図 5 9 は実施の形態 2 2 に係 る 液晶表示装置の 画素電極付近の 平 面 図で あ る 。 本実施の形態は、 上記実施の形態 1 1 と 同様に画素電極 及び対向電極の 少 な く と も 一方の電極に、 電極欠落部 を形成す る こ と を 特徴 と す る も の で あ る 。 但 し、 本実施の形態で は、 ラ ビ ン グ方 向 を 考慮 し て 電極欠落部の形成方 向 を 决定す る こ と を特徴 と す る 。 こ こ で、 図 5 8 お い て 、 5 5 0 は画素電極 を 示 し、 5 5 1 は対向電 極を 示 し、 5 5 2 は ア レ イ 基板を 示 し、 5 5 3 は対 向基板を 示 し、 5 5 4 は電極欠落部 を 示 し、 5 5 5 は電気力線 を 示 し、 5 5 6 は液 晶分子 を 示 す。 本実施の形態 2 2 にお け る 電極欠落部 5 5 2 の作用 効果 に つ い て、 上記の実施の形態 1 1 と 重複説明 と な る が、 こ こ で 再度説明 して お く こ と に す る 。 電極欠落部 5 5 4 を 有 す る 箇所 の電 気力線分布は図 5 8 ( a ) の よ う に な り 、 こ の と き 液晶 の配列は 図 5 8 ( b ) の よ う に t — ス プ レ イ 配向 と b — ス プ レ イ 配 向 t が形成 さ れ、 そ の境界部の デ ィ ス ク リ ネ ー シ ョ ン線か ら ベ ン ド 転移が発生 す る 。 よ っ て 、 各画素 に電極欠落部 5 5 4 を形成す る こ と で ベ ン ド 転移 を容易 に す る こ と がで き る 。 こ の 欠落部 5 5 4 は、 画素電極の み な ら ず、 対向電極 に形成 して も よ く 、 ま た画素電極及び対向電極 の 両者 に形成す る よ う に して も よ い。 横電界の形成の状態は 同様で め る 。 こ こ で 、 電極欠落部 5 5 4 の形成方 向 と ラ ビ ン グ方 向 と の関係 に つ い て 考察す る 。 電極欠落部 5 5 4 の形成方向は、 デス ク リ ネ ー シ ヨ ン ラ イ ン の発生方 向 と 一致す る 。 そ こ で、 欠落部がな い と き に 発 生す る デ ィ ス ク リ ネ ー シ ョ ン線の箇所 に欠落部 を形成す る こ と が安 定 し て 転移 を 行 う た め に は重要で あ っ た 。 FIG. 58 is a cross-sectional view of a principal part of the liquid crystal display device according to Embodiment 22. FIG. 59 is a plan view of the vicinity of the pixel electrode of the liquid crystal display device according to Embodiment 22. This embodiment is characterized in that at least one of the pixel electrode and the counter electrode is provided with an electrode missing portion as in the case of Embodiment 11 described above. . However, the present embodiment is characterized in that the direction of forming the electrode missing portion is determined in consideration of the rubbing direction. Here, in FIG. 58, 550 indicates a pixel electrode, 551 indicates a counter electrode, 552 indicates an array substrate, and 553 indicates a counter electrode. The substrate is shown, 55 4 indicates an electrode missing portion, 55 5 indicates electric lines of force, and 55 6 indicates liquid crystal molecules. The operation and effect of the electrode missing portion 55 2 in the present embodiment 22 are the same as those in the above-described embodiment 11; however, they will be described again here. To The distribution of electric lines of force at the location with the electrode missing part 5 5 4 is as shown in Fig. 58 (a), and the liquid crystal array at this time is t-as shown in Fig. 58 (b). A spray orientation and a b-spray orientation t are formed, and a bend transition occurs from the discrimination line at the boundary. Therefore, by forming the electrode missing portion 554 in each pixel, the bend transition can be facilitated. The missing portion 554 may be formed not only in the pixel electrode but also in the counter electrode, or may be formed in both the pixel electrode and the counter electrode. The state of formation of the transverse electric field can be similarly obtained. Here, the relationship between the forming direction of the electrode missing portion 5554 and the rubbing direction will be considered. The direction in which the electrode missing portions 5 5 4 are formed matches the direction in which the desk line lines are generated. Therefore, it is necessary to form a notch at the location of the discretion line that occurs when there is no notch. Was important.
換言すれば、 電極欠落部が存在す る と 、 電極欠 ¾部の延在方 向 に デ ィ ス ク リ ネ 一 シ ヨ ン線が発生 す る 。 そ こ で、 電極欠落部が存在 し な い場合で の複数の配向 の異な る 領域の存在 に よ っ て のみ発生す る デ ィ ス ク リ ネ 一 シ ヨ ン線 と 、 電極欠落部の存在 に起因 し た デ ィ ス ク リ ネ 一 シ ヨ ン線 と の発生方向 を 一致 さ せれば、 よ り 安定 し たデ イ ス ク リ ネ 一 シ ヨ ン 線が発生す る こ と に な り 、 安定 し た ベ ン ド 配向転移 が達成 さ れ る 。 そ の た め、 電極欠落部の延在方 向 を 、 複数の配向 の 異な る 領域の境界 に発生 す る デ ィ ス ク リ ネ 一 シ ヨ ン線 と 一致 さ せ る こ と に し た も の で あ る 。  In other words, if there is an electrode missing portion, a disk line is generated in the extending direction of the electrode missing portion. Therefore, the disc line lines generated only by the presence of a plurality of regions having different orientations in the absence of the electrode missing portion, and the presence of the electrode missing portion If the direction of generation is the same as that of the disc line, the more stable disc line will be generated. As a result, stable bend orientation transition is achieved. For this reason, the extending direction of the electrode missing portion is made to coincide with the disk line which occurs at the boundary between the regions having different orientations. It is.
例 え ば実施の形態 2 0 — 3 で述べた よ う に、 ラ ビ ン グ方 向 に よ つ て発生 す る デ ィ ス ク リ ネ ー シ ヨ ン線の方向 が異 な る 場合があ る 。 よ つ て ラ ビ ン グ方 向 と 最適な欠落部 5 5 4 の形成方 向 に は相 関関係 が 存在す る 。  For example, as described in Embodiment 20-3, the direction of the discretion line generated by the rubbing direction may be different. . Thus, there is a correlation between the rubbing direction and the direction of forming the optimal notch 5554.
上下方 向 に ラ ビ ン グす る 場合に はデ ィ ス ク リ ネ ー シ ョ ン線は左右 方 向 に形成さ れ る た め、 欠落部 5 5 4 は画素の左右方向 に形成す る こ と が望 ま し い 。 左右方 向 の ラ ビ ン グで はデ ィ ス ク リ ネ ー シ ヨ ン 線 は上下方 向 に形成 さ れ る た め、 欠落部 5 5 4 は 画素の上下方向 に形 成す る の が望 ま し い 。 斜め方 向 に ラ ビ ン グす る 場合に は、 欠落部 5 5 4 は画素の斜め 方 向 に形成す る こ と が望 ま しか っ た 。  When rubbing upwards and downwards, the discretion line is formed in the left and right direction, so the missing portion 554 is formed in the left and right direction of the pixel. This is what you want. In the left-right rubbing, the discretion line is formed upward and downward, so it is desirable to form the missing portion 554 in the vertical direction of the pixel. It is better. In the case of rubbing in an oblique direction, it was desired that the missing portion 554 be formed in an oblique direction of the pixel.
本実施の形態で は欠落部は 1 本 と し た が、 複数本 を形成 して も 良 い 。 ま た、 欠落部 は図 5 9 ( a ) の よ う に矩形の ス リ ッ ト を 空け て も 良 く 、 ま た画素周辺に 図 5 9 ( b ) の よ う に切 り 込みを 入れて も 良い。 なお、 5 9 ( a ) 及び図 5 9 ( b ) に おい て、 5 5 8 は ゲー ト 電極線で あ り 、 5 5 9 は ソ ース電極線で あ る 。 In the present embodiment, the number of missing portions is one, but a plurality of missing portions may be formed. In addition, the missing part is made by opening a rectangular slit as shown in Fig. 59 (a). Also, a notch may be formed around the pixel as shown in Fig. 59 (b). In FIG. 59 (a) and FIG. 59 (b), reference numeral 558 denotes a gate electrode line, and reference numeral 559 denotes a source electrode line.
(実施の形態 2 3 )  (Embodiment 23)
本実施の形態は横電界 を形成す る こ と で、 b — ス プ レ イ と t ー ス プ レ イ を形成 しベ ン ド 転移 を確実化す る こ と を 実現 し た。 図 6 0 を 参照 して 説明 す る と 、 画素電極 5 6 0 は金属電極線 5 6 1 ( ソ ー ス 電極線 ま た は ゲー ト 電極線) に 挟 ま れた状態 に な っ て い る 。 こ こ で 画素電極 5 6 0 の 電位が金属電極線 5 6 1 の電位 よ り も 低い場合、 矢印 5 6 2 の よ う に横電界が発生す る 。 こ の影響で液晶 5 '6 3 の配 向 に異方性が発生 し、 図 6 0 の よ う に b —ス プ レ イ 配向 と t ー ス プ レ イ 配向 が発生 す る 。  In the present embodiment, by forming a transverse electric field, a b-spray and a t-spray are formed, and the bend transition is ensured. Referring to FIG. 60, the pixel electrode 560 is sandwiched between metal electrode wires 561 (source electrode wire or gate electrode wire). . Here, when the potential of the pixel electrode 560 is lower than the potential of the metal electrode line 561, a horizontal electric field is generated as shown by an arrow 562. Due to this effect, anisotropy occurs in the orientation of the liquid crystal 5'63, and b-spray orientation and t-spray orientation occur as shown in FIG.
こ こ で、 こ の横電界が画素電極 5 6 0 の両側 か ら 印加 さ れ る こ と が特徴で あ り 、 方 向性が逆に な る た め非対称な ス プ レ イ 配向 が発生 す る 。 な お、 ラ ビ ン グ方 向 と 横電界方向 と が略一致す る こ と が、 転 移の促進の観点か ら 望 ま しい 。 ま た、 画素電極 と金属電極線 5 6 1 ( ソ ース 電極線 ま た は ゲ ー ト 電極線) と の距離が 5 m以下で あ る こ と が望 ま し い 。 5 〃 m よ り も 大 き い と 、 液晶 の配向 に影響 を与 え る に十分な大 き さ の横電界.が発生 しな い か ら で あ る 。  Here, the characteristic is that this lateral electric field is applied from both sides of the pixel electrode 560, and since the direction is reversed, an asymmetric spray orientation is generated. . It is desirable that the direction of the rubbing and the direction of the transverse electric field are substantially the same from the viewpoint of promoting the transfer. In addition, it is desirable that the distance between the pixel electrode and the metal electrode wire 561 (source electrode wire or gate electrode wire) be 5 m or less. If it is larger than 5 μm, a transverse electric field large enough to affect the orientation of the liquid crystal is not generated.
以下 に、 横電界 を形成 さ せ る た めの具体的な駆動 につ いて 実施の 形態 2 3 ― 1 〜実施の形態 2 3 一 3 を例示 し て 説明 す る こ と に す る , (実施の形態 2 3 一 1 )  Hereinafter, specific driving for forming a horizontal electric field will be described with reference to Embodiments 23-1 to 23-13. Form 2 3 1 1)
本実施の形態 2 3 — 1 で は、 ラ ビ ン グ方 向 を 上下方 向 (図 6 0 の 左右方向) に し、 横電界はゲー ト 電極線 一 画素電極間に 印加す る よ う に し た 。 図 6 1 に そ の 駆動波形の概念図 を 示 す。 電位 レ ベル に は ゲー ト レ ベ ル の高い レ ベ ル ( G H )、 ゲー ト レ ベ ル の低い レ ベル ( G L )、 ソ ース レ ベルの高い レ ベル ( S H ) と ソ ース の低い レ ベル ( S L ) を有 して い る 。 ゲー ト レ ベルは前記 し た レ ベルか ら 2 種選択、 ソ ー ス レ ベル は S H レ ベル と S L レ ベルの 間の電位 を と る こ と がで き る 。 転移波形を 印加す る た め の対向電位 も 別 に 有 して い る 。 対向 電極 に は ソ ース レ ベル よ り も 低い電圧 を 印加 し、 こ れで画素電極 と 対向電極間 に 転移波形を 印加す る 。 こ の転移波形は実施の形態 1 か ら 6 に記載 し た も の な どで あ る 。 In Embodiment 23-1, the rubbing direction is set to be upward and downward (the left-right direction in FIG. 60), and the horizontal electric field is applied between the gate electrode line and one pixel electrode. did . Figure 61 shows a conceptual diagram of the driving waveform. The potential level includes a high gate level (GH) and a low gate level (G L), a high source level (SH) and a low source level (SL). The gate level can be selected from two types from the above-mentioned levels, and the source level can be a potential between the SH level and the SL level. There is another counter potential for applying the transition waveform. A voltage lower than the source level is applied to the opposing electrode, thereby applying a transition waveform between the pixel electrode and the opposing electrode. This transition waveform is the same as that described in Embodiments 1 to 6.
こ こ で、 本実施の形態で は、 ソ ース 電極線の電圧 を低い レ ベル ( S L ) と し、 ま た、 ゲー ト 電極線の電圧 を高い レ ベル G H と し た 。 ゲ — ト 電極線が レ ベル G H で あ る た め、 画素 ト ラ ン ジス タ は 導通状態 と な る 。 こ れ に よ り 、 画素電極は ソ ース 電極線 と 同電位に な る 。 こ の と き、 画素電極 よ り も ゲー ト 電極線の電圧が高い た め、 画素電極 一 ゲー ト 電極線間 に電圧 V 1 に対応す る 横電界が印加 さ れ る 。 そ し て 、 画素 の上方の ゲー ト 電極線 (図 6 0 の右側 の金属電極線) 及び 下方 の ゲー ト 電極線 (図 6 0 の右側の金属電極線 ) と の 間で電界方 向が相互 に逆方 向 と な る 横電界が発生 す る た め、本実施の形態で は、 上方部 (図 6 0 の右側部分) で b — ス プ レ イ 配 向 が下方部で t — ス プ レ イ 配向 が形成 さ れた 。 こ れに よ つ て ベ ン ド 転移が良好 に行わ れ た 。  Here, in the present embodiment, the voltage of the source electrode line is set to a low level (SL), and the voltage of the gate electrode line is set to a high level G H. Since the gate electrode line is at the level GH, the pixel transistor becomes conductive. As a result, the pixel electrode has the same potential as the source electrode line. At this time, since the voltage of the gate electrode line is higher than that of the pixel electrode, a lateral electric field corresponding to the voltage V1 is applied between the pixel electrode and the gate electrode line. The direction of the electric field between the gate electrode line above the pixel (the right metal electrode line in FIG. 60) and the lower gate electrode line (the right metal electrode line in FIG. 60) is mutually different. In this embodiment, a horizontal electric field is generated in the opposite direction, so that in the present embodiment, the b-spray direction is in the upper part (the right part in FIG. 60) and the t-spray is in the lower part. Ray orientation was formed. As a result, the bend transfer was successfully performed.
ま た、 補助電極層 を 有 す る 構造の場合は、 横電界の効果 を 向上 す る た め、 図 6 2 又は図 6 3 に示す構成 と す る の が よ い。 通常、 図 6 2 に 示す よ う に ゲー ト 電極線 5 7 0 上 に は補助電極層 5 7 1 が設 け ら れ、 こ の補助電極層 5 7 1 は補助容量 を 形成 し て い る 。 こ の構成 で は補助電極層 5 7 1 はゲー ト 電界を遮蔽 す る 効果があ る た め、 ゲ — ト 電極線 5 7 0 と 画素電極 5 8 0 の 間 に横電界 を 有効 に 発生 さ せ る た め に は、 こ の補助電極層 5 7 1 を仮想線で示 す従来例 の大 き さ か ら 破線で示 す大 き さ の よ う に 小 さ く す る か、 又は、 図 6 3 に 示 す よ う に 画素 中央部 に形成す る と よ り 横電界の効果 が高か っ た。 In the case of a structure having an auxiliary electrode layer, the structure shown in FIG. 62 or FIG. 63 is better to improve the effect of the lateral electric field. Normally, as shown in FIG. 62, an auxiliary electrode layer 571 is provided on the gate electrode line 570, and this auxiliary electrode layer 571 forms an auxiliary capacitance. In this configuration, since the auxiliary electrode layer 571 has an effect of shielding the gate electric field, a horizontal electric field is effectively generated between the gate electrode line 570 and the pixel electrode 580. In order to achieve this, the size of the conventional example in which the auxiliary electrode layer 571 is shown by a virtual line is Therefore, the effect of the transverse electric field was higher when the size was reduced as shown by the broken line, or when it was formed in the center of the pixel as shown in Fig. 63. .
(実施の形態 2 3 — 2 )  (Embodiment 2 3 — 2)
本実施の形態 2 3 — 2 は、 上記実施の形態 2 3 — 1 と 同様に ゲー ト 一画素間 に横電界 を 印加 し た が、ゲー ト レ ベル を 下げて実現 し た 。 図 6 4 に そ の駆動波形の概念図 を 示す。 電位 レ ベル は、 基本的 に は 実施の形態 2 3 ― 1 と 同様で あ る 。 但 し、 上記実施の形態 2 3 一 1 で は ゲー ト 電極線の電圧は高い レ ベル G H の ま ま で あ っ た けれ ど も , 本実施の形態 2 3 — 2 で は、 ゲー ト 電極線の電圧は画素 の充電期 間 中 は高い レ ベル G H と し、 画素の充電期間以外の期間 (画素電位 を 保持 し て い る 期間) は低い レ ベ ル G L と し た 。 即 ち 、 対向電極 に 電 圧 を 印加 し充電が十分 に な さ れ る 期間 は、 ソ ース 電極線 を レ ベ ル S H と す る が、 充電期間後は ソ ース 電極線 を レ ベル S L と し た 。 こ れ に よ り 、 電圧 V 2 ( > V 1 ) に 対応す る 横電界を 画素電極 と ゲー ト 電極間 に 印加す る こ と がで き た 。 な お、 本実施の形態で は、 画素電 極 よ り も ゲー ト 電極電圧 が低い た め、 上記実施の形態 2 3 ― 1 と は 逆の配向状態、 即 ち 、 上方部 (図 6 0 の右側部分) で t —ス プ レ イ が下方部 (図 6 0 の左側部分) で b—ス プ レ イ が形成さ れた。  In the present Embodiment 23-2, a horizontal electric field is applied between one pixel of the gate similarly to the above-mentioned Embodiment 23-1, but realized by lowering the gate level. Figure 64 shows a conceptual diagram of the drive waveform. The potential level is basically the same as that of the embodiment 23-1. However, although the voltage of the gate electrode line remains at the high level GH in the above-described embodiment 23-11, in the embodiment 23-2, the gate electrode line is kept. The voltage was set to a high level GH during the pixel charging period, and set to a low level GL during periods other than the pixel charging period (period during which the pixel potential was held). In other words, the source electrode line is set to the level SH during a period in which the voltage is applied to the counter electrode and charging is sufficient, but after the charging period, the source electrode line is set to the level SL. And. As a result, a lateral electric field corresponding to the voltage V 2 (> V 1) could be applied between the pixel electrode and the gate electrode. In this embodiment, since the gate electrode voltage is lower than that of the pixel electrode, the alignment state is opposite to that of Embodiment 23-1, ie, the upper part (see FIG. 60). The t-spray was formed at the lower part (left part in Fig. 60), and the b-spray was formed at the lower part (left part in Fig. 60).
(実施の形態 2 3 — 3 )  (Embodiment 2 3 — 3)
本実施の形態 2 3 — 3 で は ソ ース 一 画素間 に横電界を 印加 し た こ と を 特徴 と す る も の で あ る 。図 6 5 に そ の駆動波形の概念図 を 示す。 本実施の形態で は、 対向電極の電位が変化 し充電が完 了 す る ま で の 画素 の充電期 間 は画素 ト ラ ン ジ ス 夕 を 導通状態 に す る た め ゲー ト 電 極線を高い レ ベ ル G H と し、 そ れ以外の期間 (画素電位 を 保持 し て い る 期間) は ゲー ト 電極線 を低い レ ベル G L に す る 。 ゲー ト 電極線 が レ ベ ル G L の と き は ソ ース 電極線 と 画素電極は導通 して い な い た め、 ソ ース 電極線 と 画素電極 と は異な る 電位 に保つ こ と がで き る 。 そ こ で、 画素電極は電位の高い状態に保ち な が ら 、 ゲー ト 電極線が レ ベル G L と な っ た段階で ソ ース 電極線 を レ ベル S L と す る こ と に よ り 、 ソ ース 電極線 と 画素電極間 に電圧 V 3 に対応す る 横電界 を 印 加 し た 。 こ れに よ つ て 画素一ソ ース 間 に横電界を 印加 して 2 つ の ス プ レ イ 配向状態 を形成 し、 ベ ン ド 転移 を 良好 に行 う こ と がで き た 。 本実施の形態 2 3 — 3 で は ラ ビ ン グ方 向 を横方 向 ( 図 6 0 の紙面 に垂直方 向) に す る と よ り 効果的であ っ た 。 ま た、 上記の例で は、 画素電位 を保持 し て い る期間 の全て の期間 中、 ソ ース 電極線 を レ べ ノレ S L と し た けれ ど も 、 画素電位を保持 し て い る 期間の一部の期間 のみ ソ ース 電極線 を レ ベル S L と して も よ い 。 Embodiment 23-3 is characterized in that a horizontal electric field is applied between one source and one pixel. Figure 65 shows a conceptual diagram of the drive waveform. In this embodiment, the gate electrode wire is connected to the pixel transistor during the charging period of the pixel until the potential of the counter electrode changes and the charging is completed. The high level GH is set, and the gate electrode line is set to the low level GL during the other periods (period during which the pixel potential is held). When the gate electrode line was at level GL, the source electrode line and the pixel electrode were not conducting. Therefore, the source electrode line and the pixel electrode can be maintained at different potentials. Therefore, while maintaining the pixel electrode at a high potential, the source electrode line is set to level SL when the gate electrode line reaches level GL, so that the A lateral electric field corresponding to the voltage V 3 was applied between the source electrode line and the pixel electrode. As a result, a lateral electric field was applied between the pixel and the source to form two spray alignment states, and the bend transition was successfully performed. In Embodiment 23-3, it was more effective to set the rubbing direction to the horizontal direction (the direction perpendicular to the paper of FIG. 60). Further, in the above example, the source electrode line is set to the level SL during the entire period in which the pixel potential is held, but the period in which the pixel potential is held The source electrode line may be set to level SL only during a part of the period.
な お、 本発明 は、 2 つ の ス プ レ イ 配向状態を形成す る こ と が発明 の本質で あ る 。 こ れ を実現す る た め に は、 ( 1 ) プ レ チル ト の異な る 領域 を形成す る 、 ( 2 ) 凹 凸形状を形成す る 、 ( 3 ) 横電界 を 発生 さ せ る 、 3 つ の手法 を例示 し た 。 本発明は こ れ に限 る も ので は な い 。  The essence of the present invention is to form two spray orientation states. In order to achieve this, (1) forming a region with different pretilt, (2) forming a concave-convex shape, (3) generating a transverse electric field, One method was exemplified. The present invention is not limited to this.
例 え ば、 こ の ( 1 ) ~ ( 3 ) の機構 を薄膜 ト ラ ン ジ ス タ ( T F T ) 部 に形成 し て も よ い 。 こ の と き に は T F T部 に段差 を 設け、 さ ら に 横電界が T F T部で 発生す る 機構を設け、 そ れ に適 し た駆動方式 を 用 い れば よ い 。  For example, the mechanisms (1) to (3) may be formed in a thin film transistor (TFT) portion. In this case, a step may be provided in the TFT section, a mechanism for generating a transverse electric field in the TFT section may be provided, and a drive method suitable for the mechanism may be used.
ま た、 凹 凸形状は段差があ る だ けで も 効果があ る 。 階段状 に段差 があ っ て も そ の傾斜に よ っ て t ー ス プ レ イ な い し b — ス プ レ イ が形 成さ れ る 。 本発明で は、 段差構造 も 含めて 凹 凸形状 と 表記 して い る 。  In addition, the concave-convex shape is effective even if there is only a step. Even if there is a step-like step, the slope will form a t-spray or b-spray. In the present invention, it is described as a concave-convex shape including a step structure.
(実施の形態 2 4 )  (Embodiment 24)
本実施の形態 2 4 は、 画素領域に ス ぺーサ を形成 し な い こ と で ベ ン ド 転移 を 良好 に行 う こ と を 特徴 と す る も の で あ る 。 従来は、 図 6 6 ( a ) に示す よ う に 画素領域 5 9 1 内 に球状の ビ ーズ 5 9 0 を 分 散さ せて基板間 の距離を保 っ て い た。 The twenty-fourth embodiment is characterized in that good bend transition is achieved by forming no spacer in the pixel region. Conventionally, as shown in FIG. 66 (a), a spherical bead 590 is divided into a pixel area 591, as shown in FIG. The distance between the substrates was maintained by scattering.
ベ ン ド転移の挙動に お い て、 こ の ビーズ 5 9 0 に よ っ て ベ ン ド 転 移が阻害 さ れ る 現象を 我々 は見出 し た 。 そ こ で本実施の形態で は、 表示部で あ る 画素領域 5 9 1 にお いて こ の ビーズ 5 9 0 を な く す こ と で転移 を 良好 に行 う こ と を 実現 し た 。  In the behavior of the bend transition, we have found that the bead 590 inhibits the bend transition. Therefore, in the present embodiment, good transition is realized by eliminating the beads 590 in the pixel area 591 which is a display section.
具体的 に は、 図 6 6 ( b ) 及び図 6 7 に示す よ う に、 表示部以外 の非表示領域 5 9 2 に フ ォ ト リ ソ グ ラ フ ィ 一工程 を用 い て厚み 5 mの ス ぺーサ柱 5 9 3 を形成 し、 こ れを ス ぺーサ ビ ーズの代わ り に 用 い た 。 こ の よ う な構成に よ り 、 ベ ン ド 転移が阻害さ れる こ と な く 、 良好 に転移 が行われた 。 な お、 図 6 6 に おいて、 5 9 4 は ゲー ト 電 極線 を 示 し 、 5 9 5 は ソ ース 電極線を 示す。 ま た、 ス ぺ一サ柱 5 9 3 の配置は、 図 6 6 ( b ) に 限定さ れ る も の で はな く 、 非表示領域 に形成 さ れて い れば よ い。  Specifically, as shown in FIGS. 66 (b) and 67, a non-display area 592 other than the display section is formed to a thickness of 5 m using a photolithography process. A spacer pillar 593 was formed and used in place of the spacer bead. With such a configuration, the metastasis was successfully performed without inhibiting the metastasis of the bend. In FIG. 66, reference numeral 594 denotes a gate electrode wire, and reference numeral 595 denotes a source electrode wire. Further, the arrangement of the spacer pillars 593 is not limited to that shown in FIG. 66 (b), but may be formed in a non-display area.
• 産業上の利用 可能性 • Industrial applicability
以上の よ う に本発明の構成 に よ れば、 初期化期間 中 に 配 向状態が 異な る 複数の液晶領域を発現 さ せ る こ と に よ り 、 そ の液晶領域の 境 界部で デ ィ ス ク リ ネ 一 シ ョ ン線 を形成す る こ と がで き る 。こ の結果、 迅速且つ確実 に ベ ン ド 配向への転移 を達成で き る 。 ま た、 こ の よ う に確実に ベ ン ド 配向への転移が達成で き る こ と か ら 、 表示欠陥 の な い し か も 高速応答で広視野高画質の 0 C B 表示モ ー ド の液晶表示装 置 を提供 す る こ と が可能 と な る 。  As described above, according to the configuration of the present invention, a plurality of liquid crystal regions having different alignment states are developed during the initialization period. A screen line can be formed. As a result, the transition to the bend orientation can be achieved quickly and reliably. In addition, since the transition to the bend alignment can be reliably achieved as described above, the display quality of the 0 CB display mode with high speed response and wide field of view and high image quality can be improved even if there are no display defects. It is possible to provide a liquid crystal display device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液 晶表示駆動に先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 の初期配向 を ベ ン ド 配 向 に転移 さ せ る 初期化処理を 行な い、 こ の初 期化 さ れたベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に お いて 、 1. Includes a pair of upper and lower substrates, and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, the initial alignment of the liquid crystal layer is bent by applying a voltage between the substrates. In a liquid crystal display device that performs an initialization process for transitioning to a liquid crystal orientation and drives a liquid crystal display in this initialized bend orientation state,
前記ベ ン ド 配向状態 に転移 さ せ る 初期化処理過程 中 に 、 配向状態 が異な る 複数の液晶領域を液晶層 内 に発現 さ せ る 手段を 備え た こ と を特徴 と す る 液晶表示装置。  A liquid crystal display device comprising: means for causing a plurality of liquid crystal regions having different alignment states to appear in a liquid crystal layer during an initialization process for transitioning to the bend alignment state. .
2 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 電 圧無印加時に は前記液晶層 は ス プ レ イ 配 向 と な っ て お り 、 液晶表示 駆動 に先立 っ て 、 前記基板間への電圧 印加 に よ り 前記液晶層 の配 向 状態を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動を 行 う 液晶表 示装置 に おい て 、 2. Includes a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and when no voltage is applied, the liquid crystal layer is in a spray orientation, and prior to driving the liquid crystal display. Accordingly, an initialization process for changing the orientation state of the liquid crystal layer from the spray orientation to the bend orientation by applying a voltage between the substrates is performed, and this initialization is performed. In a liquid crystal display device that drives the liquid crystal display in the bent alignment state,
前記ペ ン ド 配向状態 に 転移 さ せ る 初期化処理過程 中 に 、 2 種類 の ス プ レ イ 配向状態 を 有 す る 液晶領域を 液晶層 内 に発現さ せ る 手段 を 備え た こ と を 特徴 と す る 液晶表示装置。  Means for causing a liquid crystal region having two types of spray alignment states to be expressed in the liquid crystal layer during the initialization process for transitioning to the pen alignment state. A liquid crystal display device.
3 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 電 圧無印加時に は前記液晶層 は ス プ レ イ 配向 と な っ て お り 、 液晶表示 駆動 に先立 っ て 、 前記基板間への電圧 印加 に よ り 前記液晶層 の配 向 状態 を ス プ レ イ 配向 か ら ベ ン ド 配向 に 転移 さ せ る 初期化処理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動を行 う 液晶表 示装置 に お い て、 3. Includes a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and when no voltage is applied, the liquid crystal layer is in a spray orientation and is driven prior to driving the liquid crystal display. Then, an initialization process for changing the orientation state of the liquid crystal layer from the spray orientation to the bend orientation by applying a voltage between the substrates is performed, and the initialization is performed. LCD drive in bend alignment state In the display device,
電圧 を 印加 し な い状態にお い て 、 上下一対の基板間 中央部で の液 晶分子の傾斜角度が正負逆 と な る 配向状態の 2 つ の液晶領域が少 な く と も 形成さ れて い る こ と を 特徴 と す る液晶表示装置。  In the state where no voltage is applied, at least two liquid crystal regions in an alignment state where the tilt angle of the liquid crystal molecules at the center between the pair of upper and lower substrates is opposite to each other are formed. A liquid crystal display device characterized by the following features.
4 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液 晶表示駆動 に先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 の配向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行な い、 こ の初 期化 さ れた ベ ン ド 配向状態で液晶表示駆動を行 う 液晶表示装置 に お いて 、 4. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to driving the liquid crystal display, the alignment state of the liquid crystal layer is adjusted by applying a voltage between the substrates. In the liquid crystal display device that performs an initialization process for transitioning to a liquid crystal display orientation and drives the liquid crystal display in this initialized bend orientation state,
前記ペ ン ド 配向状態 に転移 さ せ る初期化処理過程 中 に、 前記液晶 層 に デ ィ ス ク リ ネ 一 シ ヨ ン線 を形成さ せ る デ ィ ス ク リ ネ一 シ ヨ ン線 形成手段 を 備 え 、  During the initialization process for transitioning to the pen-aligned state, a disk-line forming line for forming a disk-line in the liquid crystal layer is formed. With the means,
前記デ ィ ス ク リ ネ ー シ ョ ン線か ら ベ ン ド の転移核が発生 な い し拡 大す る よ う に し た こ と を 特徴 と す る 液晶表示装置。  A liquid crystal display device characterized in that a bend transition nucleus does not occur or expands from the discretion line.
5 . 上下一対の基板 と、 基板間 に挟持 さ れ る 液晶層 と を含み、 液 晶表示駆動 に先立 っ て 、 前記基板間へ の電圧印加 に よ り 前記液晶層 の配 向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処理を 行な い、 こ の初 期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に お い て 、 5. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to driving the liquid crystal display, the orientation of the liquid crystal layer is determined by applying a voltage between the substrates. In the liquid crystal display device which performs an initialization process for transitioning to a liquid crystal orientation and drives the liquid crystal display in this initialized bend orientation state,
前記ス プ レ イ 配向状態の液晶層 に ベ ン ド 配向状態 に転移す る 電圧 よ り 低い 電圧 を 印加 し た場合、 液晶層 内 に b — ス プ レ イ 配向領域 と t ー ス プ レ イ 配向領域 と が発現 さ れる こ と を 特徴 と す る 液晶表示装 置。 When a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the spray alignment state, the b-spray alignment region and the t-spray alignment are formed in the liquid crystal layer. A liquid crystal display device characterized in that an alignment region is expressed.
6 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液 晶表示駆動 に 先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 の配向状態を ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行な い、 こ の初 期化 さ れたベ ン ド 配向状態で液晶表示駆動を 行 う 液晶表示装置 に お いて 、 6. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to the liquid crystal display driving, the orientation state of the liquid crystal layer is bent by applying a voltage between the substrates. In a liquid crystal display device that performs an initialization process for transitioning to a liquid crystal orientation and drives a liquid crystal display in this initialized bend orientation state,
前記ス プ レ イ 配向状態の液晶層 にベ ン ド 配向状態 に転移す る 電圧 よ り 低い電圧 を 印加 し た場合、少な く も 2 種の配向領域が発現 し、 配向方向 に対 し て 異な る 方位か ら 観察 し た場合、 前記配向領域の 透 過率の大小 関係 が異な る 方位が存在す る こ と を 特徴 と し た液晶表示 装置。  When a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the splay alignment state, at least two types of alignment regions are developed and different in the alignment direction. A liquid crystal display device characterized in that, when observed from different directions, there are directions in which the magnitude relationship of the transmittance of the alignment region is different.
7 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液 晶表示駆動 に 先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 の配向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行な い、 こ の 初 期化 さ れた ベ ン ド 配 向状態で液晶表示駆動 を行 う 液晶表示装置 に お い て 、 7. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to the liquid crystal display driving, the alignment state of the liquid crystal layer is bent by applying a voltage between the substrates. In a liquid crystal display device that performs an initialization process for transitioning to a liquid crystal orientation and drives a liquid crystal display in this initialized orientation of the bend,
前記ス プ レ イ 配向状態の液晶層 にベ ン ド 配 向状態 に転移す る 電圧 よ り 低い電圧 を 印加 し た場合、少な く と も 2 種の配向領域が発現 し、 前記配向領域の 透過率の大小関係 が、 配向方 向 か ら 観察 した場合 と 配向方 向 か ら 1 8 0 度な す方 向か ら 観察 し た場合で反対で あ る こ と を 特徴 と し た 液晶表示装置。  When a voltage lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the spray alignment state, at least two types of alignment regions are developed, and the transmission of the alignment region is performed. A liquid crystal display device characterized in that the magnitude relationship between the ratios is opposite between when observed from the orientation direction and when observed from a direction 180 degrees from the orientation direction.
8 . 上下一対 の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液 晶表示駆動 に先 立 っ て 、 前記基板間へ の 電圧印加 に よ り 前記液晶層 の配向状態 を ベ ン ド 配向 に転移 さ せ る 初期化処理を 行な い、 こ の初 期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装置 に お い て 、 8. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to driving the liquid crystal display, the orientation of the liquid crystal layer is bent by applying a voltage between the substrates. The liquid crystal display device performs an initialization process for transitioning to a liquid crystal display and drives the liquid crystal display in this initialized bend alignment state. And
電圧未印加時に お い て、 前記液晶層 に は、 前記一対の基板の う ち 一方 の基板付近の液晶分子の長軸 と基板法線 と の な す角度 を 第 1 の 角度 と し、 他方の基板付近の液晶分子の長軸 と基板法線 と の な す角 度 を第 2 の角度 と し た場合、 前記第 1 の角度 と 前記第 2 の角度 と を 絶対値で 比較 し た と き に第 1 の角度が第 2 の角度 よ り も 大 き い領域 と 、 第 2 の角度が第 1 の角度 よ り も大 き い領域が と も に形成 さ れ て い る こ と を 特徴 と す る 液晶表示装置。 9 . 上下一対の基板 と 、 基板間 に挟持 さ れる 液晶層 と を含み、 液 晶表示駆動に先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 の配 向状態を ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行な い、 こ の初 期化 さ れたベ ン ド 配向状態で液晶表示駆動を行 う 液晶表示装置 に お いて 、  When no voltage is applied, the first liquid crystal layer has an angle formed by a long axis of liquid crystal molecules near one of the pair of substrates and a normal to the substrate, and the other of the pair of substrates. When the angle between the long axis of the liquid crystal molecules near the substrate and the substrate normal is defined as the second angle, when the first angle and the second angle are compared in absolute value. A region in which the first angle is larger than the second angle and a region in which the second angle is larger than the first angle are both formed. Liquid crystal display device. 9. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to driving the liquid crystal display, the orientation of the liquid crystal layer is adjusted by applying a voltage between the substrates. In a liquid crystal display device that performs an initialization process for transitioning to a liquid crystal orientation and drives a liquid crystal display in this initialized bend orientation state,
電圧未印加時に おい て 、 前記液晶層 に は、 セ ル厚方 向 中央部の液 晶分子の傾斜角が異 な る 領域が複数形成 さ れて い る こ と を特徴 と す る 液晶液晶表示装置。  When no voltage is applied, the liquid crystal layer is characterized in that a plurality of regions having different inclination angles of liquid crystal molecules in the central part in the cell thickness direction are formed in the liquid crystal layer. apparatus.
1 0 . 上下一対の基板 と 、 基板間に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶 層 の配向状態 を ベ ン ド 配向 に 転移 さ せ る 初期化処理 を行な い、 こ の 初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を行 う 液晶表示装置 に おい て、 10. A pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving the liquid crystal display, the alignment state of the liquid crystal layer is adjusted by applying a voltage between the substrates. In the liquid crystal display device, which performs an initialization process for transitioning to a liquid crystal orientation, and drives the liquid crystal display in this initialized bend orientation state,
前記ス プ レ イ 配向状態の液晶層 にベ ン ド 配向状態に転移す る 電圧 以下の電圧 を 印加 し た場合、 セ ル厚方向 中央部の液晶分子の傾斜角 が異な る 領域が複数形成さ れ る こ と を 特徴 と す る 液晶表示装置。 When a voltage equal to or lower than the voltage at which transition to the bend alignment state is applied to the liquid crystal layer in the spray alignment state, a plurality of regions having different tilt angles of liquid crystal molecules in the center in the cell thickness direction are formed. A liquid crystal display device characterized by this.
1 1 . 前記複数の領域が各画素内 に形成 さ れる こ と を特徴.と す る 請求項 1 記載の液晶表示装置 1 2 . 前記複数の領域が複数の 画素単位で形成 さ れる こ と を特徴 と す る 請求項 1 記載の液晶表示装置。 11. The liquid crystal display device according to claim 1, wherein the plurality of regions are formed in each pixel.12. The liquid crystal display device according to claim 1, wherein the plurality of regions are formed in units of a plurality of pixels. The liquid crystal display device according to claim 1, which is a feature.
1 3 . 前記デ ィ ス ク リ ネ ー シ ヨ ン線形成手段が各画素 内 に形成 さ れ る こ と を特徴 と す る 請求項 4 記載の液晶表示装置。 13. The liquid crystal display device according to claim 4, wherein said disk-shaped line forming means is formed in each pixel.
1 4 . 前記デ ィ ス ク リ ネ ー シ ヨ ン線形成手段が複数の 画素単位で 形成 さ れ る こ と を 特徴 と す る 請求項 4 記載の液晶表示装置。 14. The liquid crystal display device according to claim 4, wherein said disk line forming means is formed in a plurality of pixel units.
1 5 . ベ ン ド 転移 を 生 じ さ せ る 所定波形の転移電圧を 印加す る こ と を 特徴 と す る 請求項 1 記載の液晶表示装置。 15. The liquid crystal display device according to claim 1, wherein a transition voltage having a predetermined waveform that causes a bend transition is applied.
1 6 . 前記一対の基板の う ち 少 な く と も 一方の基板に お け る 液晶 の プ レ チル ト 角 が複数種存在 す る こ と を 特徴 と す る 請求項 1 記載 の 液晶表示装置。 16. The liquid crystal display device according to claim 1, wherein at least one of the pair of substrates has a plurality of liquid crystal pretilt angles on one substrate. .
1 7 . 前記 プ レ チル ト 角 の最大値 と 最小値の差が 1 度以上で あ る こ と を 特徴 と す る 請求項 1 6 記載の液晶表示装置。 17. The liquid crystal display device according to claim 16, wherein a difference between a maximum value and a minimum value of the pretilt angle is 1 degree or more.
1 8 . 前記 プ レ チル ト 角 の最大値 と 最小値の差が 2 度以上で あ る こ と を特徴 と す る 請求項 1 6 記載の液晶表示装置。 18. The liquid crystal display device according to claim 16, wherein a difference between a maximum value and a minimum value of the pretilt angle is 2 degrees or more.
1 9 . 前記 プ レ チル ト 角 の最小値が 1 度以上で あ る こ と を特徴 と す る 請求項 1 6 記載の液晶表示装置。 19. The liquid crystal display device according to claim 16, wherein a minimum value of the pretilt angle is 1 degree or more.
2 0 . 前記 プ レ チル ト 角 の最小値が 3 度以上で あ る こ と を特徴 と す る 請求項 1 6 記載の液晶表示装置。 20. The liquid crystal display device according to claim 16, wherein a minimum value of the pretilt angle is 3 degrees or more.
2 1 . 前記複数種の プ レ チル ト 角 が紫外線照射に よ り 得 ら れた も の で あ る こ と を特徴 と す る 請求項 1 6 記載の液晶表示装置。 2 2 . 前記複数種の プ レ チル ト 角が光配向処理に よ り 得 ら れた も の で あ る こ と を 特徴 と す る 請求項 1 6 記載の液晶表示装置。 21. The liquid crystal display device according to claim 16, wherein the plurality of pretilt angles are obtained by irradiation with ultraviolet rays. 22. The liquid crystal display device according to claim 16, wherein the plurality of types of pretilt angles are obtained by optical alignment treatment.
2 3 . 前記一対の基板の う ち 一方の基板に お け る 液晶 の プ レ チ ル ト 角 が複数種存在 し、 前記一対の基板の う ち 他方 の基板 に は、 前記 一方 の基板にお け る プ レ チル ト 角 の最小値以上、 最大値以下の プ レ チル ト 角 が存在す る こ と を 特徴 と す る 請求項 1 6 記載の液晶表示装 23. There are a plurality of types of liquid crystal pretilt angles on one of the pair of substrates, and the other of the pair of substrates has 17. The liquid crystal display device according to claim 16, wherein there is a pretilt angle that is greater than or equal to a minimum value and less than or equal to a maximum value of the pretilt angle.
2 4 . 前記一対の基板 に は そ れそれ プ レ チル ト 角 が複数種存在 す る こ と を 特徴 と す る 請求項 1 6 記載の液晶表示装置。 24. The liquid crystal display device according to claim 16, wherein each of the pair of substrates has a plurality of pretilt angles.
2 5 . 前記一対の基板の 各内側面に は、 配向強度 が基板面内 に 分 布 を 有す る よ う に配 向処理が行わ れて い る こ と を 特徴 と す る 請求項 1 6 記載の液晶表示装置。 25. The inner surface of each of the pair of substrates is subjected to a distribution process so that an orientation strength has distribution in the substrate surfaces. The liquid crystal display device as described in the above.
2 6 . 前記配向処理が ラ ビ ン グ処理で あ る こ と を 特徴 と す る 請求 項 2 5 記載の液晶表示装置。 26. The claim characterized in that the alignment treatment is a rubbing treatment. Item 25. A liquid crystal display device according to item 25.
2 7 . 前記 ラ ビ ン グ処理が、 剛性の異な る 植毛が な さ れた ラ ビ ン グ布 を用 い て行 う こ と を 特徴 と す る 請求項 2 6 記載の液晶表示装置 27. The liquid crystal display device according to claim 26, wherein the rubbing treatment is performed using a rubbing cloth on which hairs of different stiffness are planted.
2 8 . 前記 ラ ビ ン グ処理が、 毛足の長さ に分布 を 有 す る ラ ビ ン グ 布 を 用 い て行 う こ と を特徴 と す る 請求項 2 6 記載の液晶表示装置。 28. The liquid crystal display device according to claim 26, wherein the rubbing treatment is performed using a rubbing cloth having a distribution of hair length.
2 9 . 前記 ラ ビ ン グ処理 に よ り 、 基板上 に 設け ら れた立体物の周 辺領域の う ち の ラ ビ ン グ方 向下流側の領域 と 、 そ れ以外の領域 と で ラ ビ ン グ強度 が異な る よ う な分布状態 と な っ て い る こ と を 特徴 と す る 請求項 2 6 記載の液晶表示装置。 29. By the above-described rubbing process, the area on the downstream side in the rubbing direction of the peripheral area of the three-dimensional object provided on the substrate and the other area are separated. 27. The liquid crystal display device according to claim 26, wherein the liquid crystal display device is in a distribution state in which the intensity of the ring is different.
3 0 . 前記立体物が電極線で あ る こ と を特徴 と す る 請求項 2 9 記 載の液晶表示装置。 30. The liquid crystal display device according to claim 29, wherein the three-dimensional object is an electrode wire.
3 1 . ラ ビ ン グ方 向 が電極線の延在方 向 よ り 傾い て い る こ と を 特 徴 と す る 請求項 3 0 記載の液晶表示装置。 3 2 . ラ ビ ン グ方向が電極線の延在方向 よ り 1 0 度以上傾い て い る こ と を 特徴 と す る 請求項 3 1 記載の液晶表示装置。 31. The liquid crystal display device according to claim 30, wherein the rubbing direction is more inclined than the extending direction of the electrode wire. 32. The liquid crystal display device according to claim 31, wherein the rubbing direction is inclined at least 10 degrees from the extending direction of the electrode wire.
3 3 . 前記立体物が柱状ス ぺーサで あ る こ と を 特徴 と す る 請求項 2 9 記載の液 晶表示装置。 33. The liquid crystal display device according to claim 29, wherein the three-dimensional object is a columnar spacer.
3 4 . 前記柱状ス ぺーザが各画素 に形成 さ れて い る こ と を 特徴 と す る 請求項 3 3 記載の液晶表示装置。 34. The above-mentioned column-shaped laser is formed in each pixel. The liquid crystal display device according to claim 33.
3 5 . 前記複数の領域の境界に発生 す る デ ィ ス ク リ ネ ー シ ヨ ン線 に近接 して 、 転移励起用 の横電界形成手段が設け ら れて い る こ と を 特徴 と す る 請求項 1 記載の液晶表示装置。 35. A transverse electric field forming means for transfer excitation is provided in the vicinity of the discretion line generated at the boundary of the plurality of regions. The liquid crystal display device according to claim 1.
3 6 . 前記デ ィ ス ク リ ネ ー シ ヨ ン形成手段に よ り 形成 さ れた デ ィ ス ク リ ネ ー シ ヨ ン線 に 近接 して 、 転移励起用 の横電界形成手段が設 け ら れて い る こ と を 特徴 と す る 請求項 4 記載の液晶表示装置。 36. A transverse electric field forming means for transfer excitation is provided in the vicinity of the discrimination line formed by the discrimination formation means. 5. The liquid crystal display device according to claim 4, wherein the liquid crystal display device is provided.
3 7 . 前記横電界形成手段に よ り 発生す る 横電界の電界方 向 が、 配向方 向 と 略直交 す る こ と を 特徴 と す る 請求項 3 5 記載の液晶表示 装置。 37. The liquid crystal display device according to claim 35, wherein an electric field direction of the horizontal electric field generated by the horizontal electric field forming means is substantially orthogonal to the alignment direction.
3 8 . 前記一対の基板の う ち 一方の基板がァ ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記横電界形成手段に よ り 、 ア ク テ ィ ブマ ト リ ク ス 基 板 に配線 さ れ た ソ ース 電極線 と 画素電極間 に横電界が発生 し、 ソ ー ス 電極線の配線方 向 と 配向方 向 が略平行で あ る こ と を 特徴 と す る 請 求項 3 5 記載の液晶表示装置。 38. One of the pair of substrates is an active matrix substrate, and the active matrix substrate is formed by the lateral electric field forming means. A lateral electric field is generated between the source electrode line and the pixel electrode, and the wiring direction and the orientation direction of the source electrode line are substantially parallel. 35. The liquid crystal display device according to item 5.
3 9 . 前記一対の基板の う ち 一方の基板がア ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記横電界形成手段 に よ り 、 ア ク テ ィ ブマ ト リ ク ス 基 板 に配線 さ れた ゲー ト 電極線 と 画素電極間 に横電界が発生 し、 ゲー ト 電極線の配線方 向 と 配向方 向 が略平行で あ る こ と を特徴 と す る 請 求項 3 5 記載の液晶表示装置。 39. One of the pair of substrates is an active matrix substrate, and the active matrix substrate is formed by the lateral electric field forming means. 35. A lateral electric field is generated between the gate electrode line and the pixel electrode, and the wiring direction and the orientation direction of the gate electrode line are substantially parallel. The liquid crystal display device as described in the above.
4 0 . 前記一対の基板の う ち 一方の基板がァ ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記横電界形成手段に よ り 、 ア ク テ ィ ブマ ト リ ク ス 基 板 に 配線 さ れた ゲー ト 電極線 と 画素電極間、 並びに 、 ア ク テ ィ ブマ ト リ ク ス 基板 に配線 さ れた ソ ース 電極線 と 画素電極間 に それそれ横 電界が発生 し、 配向方 向 がゲ ー ト 電極線の配線方 向 と ソ ース 電極線 の配線方向 の 間 に あ る こ と を 特徴 と す る 請求項 3 5 記載の液晶表示 装置。 40. One of the pair of substrates is an active matrix substrate, and the active matrix substrate is provided by the lateral electric field forming means. A horizontal electric field is generated between the gate electrode line and the pixel electrode wired to the active matrix substrate and between the source electrode line and the pixel electrode wired to the active matrix substrate. 36. The liquid crystal display device according to claim 35, wherein the orientation direction is between the wiring direction of the gate electrode line and the wiring direction of the source electrode line.
4 1 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶 層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行 な い . こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装 置の製造方法で あ っ て 、 4 1. Includes a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving a liquid crystal display, applying a voltage between the substrates causes the liquid crystal layer to be spray-aligned. The liquid crystal display device is driven to perform a liquid crystal display drive in the initialized bend alignment state.
前記初期化処理 に お いて ベ ン ド 配向への転移の促進 を 図 る ベ く 、 前記一対の基板 に それそれ形成さ れた配向膜の少 な く と も 一方 の配 向膜の一部領域の プ レ チル ト を 変化 さ せ る 処理を 行 う プ レ チル ト 変 化処理工程 を含む こ と を 特徴 と す る 液晶表示装置 の製造方法。  In order to promote the transition to the bend orientation in the initialization treatment, at least a part of at least one of the orientation films formed on the pair of substrates is formed. A method of manufacturing a liquid crystal display device, comprising: a pretilt change processing step of performing a process of changing the pretilt of the liquid crystal display device.
4 2 . 前記 プ レ チル ト 変化処理工程が、 基板に形成 さ れ た配向膜 と 異 な る プ レ チ ル ト を 有 す る 配向膜材料 を 前記一部領域 に 噴霧す る こ と で あ る 請求項 4 1 記載の液晶表示装置の製造方法。 42. The pretilt change processing step is to spray an alignment film material having a pretrite different from the alignment film formed on the substrate onto the partial region. A method for manufacturing a liquid crystal display device according to claim 41.
4 3 . 前記 プ レ チル ト 変化処理工程が、 配向膜が形成さ れた基板 を 高湿度条件下で放置す る こ と で あ る 請求項 4 1 記載の液晶表示装 置の製造方法。 43. The method for manufacturing a liquid crystal display device according to claim 41, wherein the pretilt change processing step comprises leaving the substrate on which the alignment film is formed under high humidity conditions.
4 4 . 前記 プ レ チ ル ト 変化処理工程が、 前記基板 に形成 さ れた配 向膜に、 プ レ チ ル ト を 変化 さ せ る 処理液 を 噴霧す る こ と で あ る 請求 項 4 1 記載の液晶表示装置の製造方法。 4 5 . 前記 プ レ チ ル ト 変化処理工程が、 配向膜が形成さ れた基板 を溶媒蒸気雰囲気下で放置す る こ と で あ る 請求項 4 1 記載の液晶表 示装置の製造方法。 44. The pretilt change processing step is to spray a processing liquid for changing the pretilt onto the orientation film formed on the substrate. 2. The method for manufacturing a liquid crystal display device according to 1. 45. The method for manufacturing a liquid crystal display device according to claim 41, wherein the pretilt change processing step is to leave the substrate on which the alignment film is formed in a solvent vapor atmosphere.
4 6 . 前記一対の基板 に は それぞれ配 向膜が形成 さ れ、 前記配 向 膜の う ち 少 な く も 一方 の配向膜の膜厚 に 分布があ る こ と を 特徴 と す る 請求項 1 6 記載の液晶表示装置。 46. A direction film is formed on each of the pair of substrates, and at least one of the direction films has a distribution in the film thickness. 16. The liquid crystal display device according to item 16.
4 7 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て 、 前記基板間への電圧 印加 に よ り 前記液晶 を ス プ レ イ 配向 か ら ベ ン ド 配 向 に 転移 さ せ る 初期化処理 を 行 な い 、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動を行 う 液晶表示装 置の製造方法で あ っ て、 47. Including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, prior to driving the liquid crystal display, the liquid crystal is aligned in a spray orientation by applying a voltage between the substrates. A method of manufacturing a liquid crystal display device, which performs an initialization process for transferring the liquid crystal display to a bend orientation and drives the liquid crystal display in the initialized bend orientation state.
前記初期化処理 に お いて ベ ン ド 配向へ の転移 の促進を 図 る ベ く 、 印刷面が凹 凸状 に形成さ れた 印刷版を 用 い て 前記一対の基板に形成 さ れて い る 配向膜の う ち 少な く も 一方の配向膜を 印刷す る 印刷工程 を含む こ と を 特徴 と す る 液晶表示装置 の製造方法。  In order to promote the transition to the bend orientation in the initialization process, the pair of substrates are formed on a pair of substrates using a printing plate having a printing surface having a concave-convex shape. A method for manufacturing a liquid crystal display device, comprising a printing step of printing at least one of the alignment films.
4 8 . 請求項 4 7 記載の液晶表示装置の製造方法で あ っ て 、 メ ッ シ ュ サイ ズが 1 0 0 m以上で あ る 印刷版を 用 い て 配向膜 を 印刷す る 印刷工程 を 含む こ と を 特徴 と す る 液晶表示装置の製造方法。 48. The method for manufacturing a liquid crystal display device according to claim 47, wherein the printing step of printing the alignment film using a printing plate having a mesh size of 100 m or more. A method for manufacturing a liquid crystal display device characterized by including:
4 9 . 請求項 4 7 記載の液晶表示装置の製造方法で あ っ て、 前記印刷工程が複数回行わ れ る こ と を 特徴 と す る 液晶表示装置 の 製造方法。 5 0 . 前記一対の基板の 少 な く と も 一方 の基板表面が凹 凸状 に が 形成 さ れて い る こ と を 特徴 と す る 請求項 1 記載の液晶表示装置。 49. The method for manufacturing a liquid crystal display device according to claim 47, wherein the printing step is performed a plurality of times. 50. The liquid crystal display device according to claim 1, wherein at least one surface of at least one of the pair of substrates is formed in a concave and convex shape.
5 1 . 上下一対の基板 と 、 基板間 に挟持 さ れ る 液晶層 と を含み、 液晶表示駆動 に先立 っ て、 前記基板間へ の電圧印加 に よ り 前記液晶 層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を行 な い こ の初期化 さ れたベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装 置の製造方法で あ っ て 、 5 1. A pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and prior to driving the liquid crystal display, the liquid crystal layer is spray-aligned by applying a voltage between the substrates. This is a method for manufacturing a liquid crystal display device that performs an initialization process for transferring the liquid crystal display to a bend alignment and drives the liquid crystal display in the initialized bend alignment state.
前記初期化処理に おい て ベ ン ド 配向への転移の促進を 図 る ベ く 、 前記一対 の基板の 少な く と も 一方 の基板表面 を 、 凹 凸状に形成す る 凹 凸形状形成工程を含む こ と を 特徴 と す る 液晶表示装置の製造方法  In order to promote the transition to the bend orientation in the initialization process, a concave / convex shape forming step of forming at least one of the pair of substrates in a concave / convex shape is performed. Manufacturing method of liquid crystal display device characterized by including
5 2 . 前記凹 凸形状が フ ォ ト レ ジス ト で形成 さ れて い る こ と を 特 徴 と す る 請求項 5 0 記載の液晶表示装置。 5 3 . 凹凸形状形成工程 に形成 された 凹 凸形状 を な だ ら か に す る 熱処理工程を 有 す る こ と を 特徴 と す る 請求項 5 1 記載の液晶表示装 置の製造方法。 52. The liquid crystal display device according to claim 50, wherein the concave-convex shape is formed of a photo resist. 53. The method for manufacturing a liquid crystal display device according to claim 51, further comprising a heat treatment step for smoothing the concave and convex shapes formed in the concave and convex shape forming step.
5 4 . 前記凹 凸形状形成工程が印刷方法 を 用 いて 凹凸形状 を形成 す る 工程で あ る こ と を 特徴 と す る 請求項 5 1 記載の液晶表示装置 の 製造方法。 54. The method for manufacturing a liquid crystal display device according to claim 51, wherein the concave-convex shape forming step is a step of forming a concave-convex shape using a printing method.
5 5 . 前記凹 凸形状が窒化 シ リ コ ン膜 よ り な る こ と を 特徴 と す る 請求項 5 0 記載の液晶表示装置。 5 6 . 前記凹 凸形状形成工程が基板の表面 を 荒 ら す こ と で 凹 凸形 状 を形成す る 工程で あ る こ と を 特徴 と す る 請求項 5 1 記載の液晶表 示装置の製造方法。 55. The liquid crystal display device according to claim 50, wherein the concave-convex shape is made of a silicon nitride film. 56. The liquid crystal display device according to claim 51, wherein the concave-convex shape forming step is a step of forming a concave-convex shape by roughening the surface of the substrate. Production method.
5 7 . 前記凹 凸形状形成工程が酸素 プラ ズマ処理を 行 う こ と に よ り 凹 凸形状 を形成す る 工程で あ る こ と を 特徴 と す る 請求項 5 6 記載 の液晶表示装置 の製造方法。 57. The liquid crystal display device according to claim 56, wherein the concave / convex shape forming step is a step of forming a concave / convex shape by performing an oxygen plasma treatment. Production method.
5 8 . 前記一対の基板の少 な く と も 一方 の基板の 内側面 に 、 透明 電極が形成 さ れて お り 、 こ の透明電極の結晶径が 5 O n m 以上で あ る こ と を 特徴 と し た 請求項 5 0 記載の液晶表示装置。 58. A transparent electrode is formed on the inner surface of at least one of the pair of substrates, and the crystal diameter of the transparent electrode is 5 O nm or more. The liquid crystal display device according to claim 50, wherein:
5 9 . 前記凹 凸形状が、 基板上 に 小粒子 を分散 し て形成 さ れ た も ので あ る こ と を 特徴 と す る 請求項 5 0 記載の液晶表示装置。 59. The liquid crystal display device according to claim 50, wherein the concave-convex shape is formed by dispersing small particles on a substrate.
6 0 . 前記凹 凸形状が、 プ レ ス 成形に よ り 形成さ れた も ので あ る こ と を特徴 と す る 請求項 5 0 記載の液晶表示装置。 60. The liquid crystal display device according to claim 50, wherein the concave and convex shapes are formed by press molding.
6 1 . 前記凹 凸形状が、 画素電極の形状が周 囲で持ち 上が っ た 凹 面形状で あ る こ と を 特徴 と し た請求項 5 0 記載の液晶表示装置。 61. The liquid crystal display device according to claim 50, wherein the concave-convex shape is a concave shape in which a shape of a pixel electrode is raised around.
6 2 . 前記凹 凸形状形成工程が、 前記一対の基板の少 な く と も 一 方の基板に樹脂層 を形成す る 工程 と、 こ の樹脂層 を 処理 し て 凹 凸形 状を形成す る 工程 と を 有 す る こ と を特徴 と す る 請求項 5 1 記載の液 晶表示装置の製造方法。 6 3 . 前記凹 凸形状が、 画素電極の 中央部 に 凸部 を形成す る こ と に よ り 得 ら れた も の で あ る こ と を特徴 と す る 請求項 5 0 記載の液 晶 表示装置。 6 2. The step of forming the concave and convex shapes includes the step of forming at least one of the pair of substrates. 52. The liquid crystal according to claim 51, further comprising: a step of forming a resin layer on one of the substrates; and a step of processing the resin layer to form a concave-convex shape. A method for manufacturing a display device. 63. The liquid crystal according to claim 50, wherein the concave-convex shape is obtained by forming a convex portion at a central portion of a pixel electrode. Display device.
6 4 . 前記凹 凸形状が、 画素電極の対角線方 向 に延在す る 凸部 を 形成す る こ と に よ り 得 ら れた も ので あ る こ と を 特徴 と す る 請求項 5 0 記載の液晶表示装置。 64. The concave and convex shape is obtained by forming a convex portion extending in a diagonal direction of the pixel electrode. The liquid crystal display device as described in the above.
6 5 . 所定方向 に 電界 を 印加す る こ と に よ り 、 そ れ に応 じ た 配 向 の異な る 複数の領域が形成 さ れ る こ と を 特徴 と す る 請求項 1 記載 の 液晶表示装置。 65. The liquid crystal display according to claim 1, wherein by applying an electric field in a predetermined direction, a plurality of regions having different orientations are formed according to the applied electric field. apparatus.
6 6 . 前記一対の基板 に形成 さ れて い る 電極の少 な く と も 一方 の 電極 に は、 電極が欠落 し た電極欠落部が存在す る こ と を 特徴 と す る 請求項 1 記載の液晶表示装置。 6 6. The electrode according to claim 1, wherein at least one of the electrodes formed on the pair of substrates has an electrode missing portion in which the electrode is missing. Liquid crystal display device.
6 7 . 前記一対の基板 に形成 さ れて い る 電極の う ち 、 対向基板側 の電極に は、 電極が欠落 し た電極欠落部が存在す る こ と を 特徴 と す る 請求項 1 記載の 液晶表示装置。 67. The electrode according to claim 1, wherein, of the electrodes formed on the pair of substrates, the electrode on the counter substrate side has an electrode missing portion where the electrode is missing. Liquid crystal display device.
6 8 . 前記一対の基板 に形成 さ れて い る 電極の う ち 、 ア レ イ 基板 側 の電極 に は、 電極が欠落 し た電極欠落部が存在 す る こ と を 特徴 と す る 請求項 1 記載の 液晶表示装置。 6 8. Among the electrodes formed on the pair of substrates, the electrode on the array substrate side has an electrode missing portion where the electrode is missing. The liquid crystal display device according to claim 1.
6 9 . 前記電極欠落部 の延在方向が前記複数の領域の境界に 発生 す る デ ィ ス ク リ ネ ー シ ヨ ン線 と 一致す る こ と を 特徴 と す る 請求項 6 6 記載の液晶表示装置。 69. The method according to claim 66, wherein the extending direction of the electrode missing portion coincides with a discretion line generated at a boundary between the plurality of regions. Liquid crystal display.
7 0 . 配向 方 向 と 電極欠落部の 方 向 が交差す る こ と を 特徴 と す る 請求項 6 7 記載の液晶表示装置。 7 1 . 前記一対の基板の う ち 一方 の基板 に形成 さ れた 画素電極 と の 間 に横電界 を形成す る 横電界形成手段を 有 す る こ と を 特徴 と す る 請求項 1 記載の液晶表示装置。 70. The liquid crystal display device according to claim 67, wherein the alignment direction and the direction of the electrode missing portion intersect. 71. The method according to claim 1, further comprising a horizontal electric field forming means for forming a horizontal electric field between a pixel electrode formed on one of the pair of substrates. Liquid crystal display.
7 2 . 画素電極の 両端で横電界 を発生 し、 そ の横電界の方向 が対 向 して い る こ と を特徴 と す る 請求項 7 1 記載の液晶表示装置。 72. The liquid crystal display device according to claim 71, wherein a horizontal electric field is generated at both ends of the pixel electrode, and the directions of the horizontal electric field are opposite to each other.
7 3 . 前記一対の基板 う ち 一方 の基板がァ ク テ ィ ブマ ト リ ク ス 基 板で あ り 、 前記ァ ク テ ィ ブマ ト リ ク ス 基板は ソ ー ス 電極線及び画素 電極を 有 し、 ソ ース 電極線 と 画素電極間 に横電界 を 印加す る こ と を 特徴 と す る 請求項 7 2 記載の液晶表示装置。 7 3. One of the pair of substrates is an active matrix substrate, and the active matrix substrate is a source electrode line and a pixel electrode. The liquid crystal display device according to claim 72, wherein a horizontal electric field is applied between the source electrode line and the pixel electrode.
7 4 . 前記画素電極 と ソ ース 電極線 と の 距離が 5 m以下で あ る こ と を 特徴 と す る 請求項 7 3 記載の液晶表示装置。 7 5 . 画素電極 と 対向電極間 に 挟持さ れ る 液晶層 と を含み、 液 晶 表示駆動に先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 を ス プ レ イ 配 向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理を行な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う ァ ク テ ィ ブマ ト リ ク ス 型 の液晶表示装置 におけ る 前記ス プ レ イ 配向 か ら ベ ン ド 配 向 に転移 さ せ る た め の駆動方法 において 、 74. The liquid crystal display device according to claim 73, wherein a distance between the pixel electrode and the source electrode line is 5 m or less. 75. A liquid crystal layer sandwiched between a pixel electrode and a counter electrode, and prior to liquid crystal display driving, the liquid crystal layer is formed by applying a voltage between the substrates. An active matrix that performs an initialization process to make a transition from the spray orientation to the bend orientation and drives the liquid crystal display in this initialized bend orientation state. In a driving method for making a transition from the spray orientation to the bend orientation in a liquid crystal display device of a trix type,
画素電位 を保持 し て い る 期間あ る い は そ の 一部の期間に、 ソ ース 電圧 を 変化 さ せ、 画素電極 と ソ ース 電極線間 に横電界 を印加 す る こ と を 特徴 と す る 液晶表示装置の駆動方法。  The source voltage is changed during the period during which the pixel potential is held or a part of the period, and a horizontal electric field is applied between the pixel electrode and the source electrode line. The driving method of the liquid crystal display device.
7 6 . 前記基板の 一方がア ク テ ィ ブマ ト リ ク ス 基板で あ り 、 前記 ア ク テ ィ ブマ ト リ ク ス a板はゲー ト 電極線 と 画素電極を有 し、 ゲー ト 電極.線 と 画素電極間 に横電界 を 印加す る こ と を 特徴 と す る 請求項7 6. One of the substrates is an active matrix substrate, and the active matrix a plate has a gate electrode line and a pixel electrode. Claims: A lateral electric field is applied between an electrode line and a pixel electrode.
7 2 記載の液晶表示装置。 7. The liquid crystal display device according to 2.
7 7 . 前記画素電極 と ゲー ト 電極線 と の 距離が 5 m以下で あ る こ と を特徴 と す る 請求項 7 6 記載の液晶表示装置。 77. The liquid crystal display device according to claim 76, wherein the distance between the pixel electrode and the gate electrode line is 5 m or less.
7 8 . 請求項 7 2 記載の液晶表示装置の駆動方法で あ っ て、 画素電位 を 保持 し て い る 期間 に、 ゲー ト 電圧 を低い レ ベル に し、 画素電極 と ゲー ト 電極線間 に横電界を 印加 す る こ と を特徴 と す る 液 晶表示装置 の駆動方法。 78. The driving method of a liquid crystal display device according to claim 72, wherein the gate voltage is set to a low level during a period in which the pixel potential is held, and the pixel electrode and the gate electrode line are connected to each other. A method for driving a liquid crystal display device, characterized by applying a lateral electric field.
7 9 . 画素電極 と 対向電極間 に挟持 さ れ る 液晶層 と を含み、 液 晶 表示駆動 に 先立 っ て 、 前記基板間への電圧印加 に よ り 前記液晶層 を ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理 を 行 な い、 こ の初期化 さ れた ベ ン ド 配向状態で液晶表示駆動 を 行 う ァ ク テ ィ ブマ ト リ ク ス 型 の液晶表示装置 に お け る 前記ス プ レ イ 配向 か ら ベ ン ド 配 向 に転移 さ せ る た め の駆動方法 に おい て、 79. Including a liquid crystal layer sandwiched between a pixel electrode and a counter electrode, prior to liquid crystal display driving, whether the liquid crystal layer is spray-aligned by applying a voltage between the substrates. The liquid crystal of the active matrix type performs an initialization process for transferring the liquid crystal display to the bend alignment, and drives the liquid crystal display in the initialized bend alignment state. From the spray orientation to the bend arrangement in the display device In the driving method for causing the transfer in the
画素電位 よ り も 高い電位 に ゲー ト 電位を設定 して 、 画素電極 と ゲ ― ト 電極線間 に横電界 を 印加 す る こ と を特徴 と す る 液晶表示装置の 駆動方法。  A method of driving a liquid crystal display device, characterized by setting a gate potential higher than a pixel potential and applying a horizontal electric field between a pixel electrode and a gate electrode line.
8 0 . 前記ア ク テ ィ ブマ ト リ ク ス基板は補助容量電極を 有 し、 前 記補助容量電極は ゲー ト 電極線上 に存在 し な い こ と を 特徴 と し た 請 求項 7 6 記載の液晶表示装置。 8 1 . 横電界形成手段が、 電極側部 に形成 さ れた 突起形状で あ る こ と を 特徴 と し た請求項 7 2 記載の液晶表示装置。 80. The claim 76, wherein the active matrix substrate has an auxiliary capacitance electrode, and the auxiliary capacitance electrode does not exist on the gate electrode line. The liquid crystal display device as described in the above. 81. The liquid crystal display device according to claim 72, wherein the horizontal electric field forming means has a projection shape formed on the side of the electrode.
8 2 . 前記突起形状が画素電極 に形成さ れた こ と を特徴 と す る 請 求項 8 1 記載の液晶表示装置。 82. The liquid crystal display device according to claim 81, wherein the protrusion shape is formed on a pixel electrode.
8 3 . 前記突起形状がゲー ト 電極線 に形成さ れた こ と を 特徴 と す る 請求項 8 1 記載の液晶表示装置。 83. The liquid crystal display device according to claim 81, wherein the protrusion shape is formed on a gate electrode wire.
8 4 . 前記突起形状が ソ ース 電極線 に形成 さ れ た こ と を 特徴 と す る 請求項 8 1 記載の液晶表示装置。 84. The liquid crystal display device according to claim 81, wherein the protrusion shape is formed on a source electrode wire.
8 5 . 横電界発生方 向 と 配向方 と が略一致 し て い る こ と を 特徴 と し た請求項 7 2 記載の液晶表示装置。 8 6 . 上下一対の基板 と 、 基板間 に挟持さ れ る 液晶層 と を 含み、 液晶表示駆動に 先立 っ て、 前記基板間への電圧印加 に よ り 前記液晶 層 の初期配向 を ベ ン ド 配向 に 転移 さ せ る 初期化処理 を行な い、 こ の 初期化 さ れた ベ ン ド 配向状態で液晶表示駆動を行 う 液晶表示装置 に お い て 、 85. The liquid crystal display device according to claim 72, wherein a direction in which the lateral electric field is generated and an orientation direction substantially match. 8 6. A liquid crystal layer including a pair of upper and lower substrates and a liquid crystal layer sandwiched between the substrates, and by applying a voltage between the substrates before driving the liquid crystal display, In a liquid crystal display device which performs an initialization process for transferring an initial orientation of a layer to a bend orientation and drives a liquid crystal display in the initialized bend orientation state,
前記基板面 内 に お け る 表示領域には、 スぺーザが存在 し な い こ と を 特徴 と す る 液晶表示装置。  A liquid crystal display device characterized in that the display area in the surface of the substrate has no spacer.
8 7 . 前記表示領域以外の非表示領域 に、 ス ぺーサが形成 さ れて い る こ と を 特徴 と す る 請求項 8 6 記載の液晶表示装置。 8 8 . 前記ス ぺーサが柱状ス ぺーサで あ る こ と を 特徴 と し た 請求 項 8 7 記載の液晶表示装置。 87. The liquid crystal display device according to claim 86, wherein a spacer is formed in a non-display area other than the display area. 88. The liquid crystal display device according to claim 87, wherein said spacer is a columnar spacer.
8 9 . 画素電極 を 有す る ア レ ー基板 と 共通電極 を 有す る 対向基板 の 間 に配置 さ れた液晶層上下界面 の液晶 の プ レ チル ト 角 が正負逆で . 互い に 平行 に配 向処理さ れた ス プ レ イ 配向 の液晶セ ルで、 電圧無 印 加時 に はス プ レ イ 配向 と な っ て お り 、 液晶表示駆動 に先立 っ て 、 電 圧印加 に よ り ス プ レ イ 配向 か ら ベ ン ド 配 向 に転移 さ せ る 初期化処理 が行われ、 こ の初期化 さ れた ベ ン ド 配 向状態で液晶表示駆動を行 う ァ ク テ ィ ブマ ト リ ッ ク ス 型 の液晶表示装置 に おい て 、 8 9. The pretilt angles of the liquid crystal at the upper and lower interfaces of the liquid crystal layer arranged between the array substrate having the pixel electrode and the counter substrate having the common electrode are opposite to each other and parallel to each other. This is a liquid crystal cell with a spray orientation that has been subjected to orientation processing. When no voltage is applied, the liquid crystal cell is in a spray orientation.Before driving the liquid crystal display, the voltage is applied by applying a voltage. The liquid crystal display is driven in an initialized state in which the transition from the liquid crystal orientation to the bend orientation is performed, and the liquid crystal display is driven in the initialized bend orientation state. In a matrix type liquid crystal display device,
前記ァ レ 一基板の 内面側 に形成 さ れ た配向膜に お け る 液晶 の プ レ チル ト 角 が第 1 の プ レ チル ト 角 を 示す と 共 に 、 対向基板の 内面側 に 形成 さ れた 配向膜に お け る 液晶 の プ レ チル ト 角 が第 1 の プ レ チル ト 角 よ り も 大 き い第 2 の プ レ チル ト 角 を 示 す第 1 の液晶セ ル領域 と 、 前記第 1 の液晶 セ ル領域に 隣接 して配置 さ れ、 ア レ ー基板の 内面側 に形成 さ れ た配向膜に お け る 液晶 の プ レ チル ト 角 が第 3 の プ レ チ ル ト 角 を 示 す と 共 に、 対向 す る 対向基板の 内 面側 に形成さ れ た配向膜 にお け る 液晶 の プ レ チ ル ト 角 が第 3 の プ レ チル ト 角 よ り も 小 さ い 第 4 の プ レ チル ト 角 を 示 す第 2 の液晶セ ル領域 と 、 を 同一画素内 に 少 な く と も 有 して お り 、 前記上下配向膜が、 第 1 の液晶セ ル領域か ら 第 2 の液晶セ ル領域 に 向 けて 配向処理 さ れて い る 液晶セ ル と 、 The pretilt angle of the liquid crystal in the alignment film formed on the inner surface side of the array substrate indicates the first pretilt angle, and the liquid crystal is formed on the inner surface side of the counter substrate. A first liquid crystal cell region having a second pretilt angle in which the liquid crystal pretilt angle in the alignment film is larger than the first pretilt angle; The pretilt angle of the liquid crystal in the alignment film disposed adjacent to the first liquid crystal cell region and formed on the inner surface of the array substrate is the third pretilt angle. And the alignment film formed on the inner surface of the opposing substrate. The second liquid crystal cell region showing the fourth pretilt angle where the liquid crystal pretilt angle is smaller than the third pretilt angle is the same pixel. A liquid crystal cell which has been subjected to an alignment treatment from the first liquid crystal cell region to the second liquid crystal cell region. ,
前記画素電極 と 前記共通電極 と の 間 に、 デ ィ ス ク リ ネ ー シ ヨ ン 線 を形成す る た め の第 1 の電圧 を 印加 し、 前記第 1 の液晶セ ル領域 と 前記第 2 の液晶セ ル領域 と の境界付近 に お い て デ ィ ス ク リ ネ ー シ ョ ン線 を形成す る 第 1 の電圧印加手段 と 、  A first voltage for forming a disk line is applied between the pixel electrode and the common electrode, and the first liquid crystal cell region and the second liquid crystal region are applied. First voltage applying means for forming a discrimination line near the boundary with the liquid crystal cell region of
前記画素電極 と 前記共通電極 と の 間 に前記第 1 の 電圧 よ り も 高い 第 2 の電圧 を 印加す る こ と に よ り 、 デ ィ ス ク リ ネ ー シ ヨ ン線 に お い て転移核 を 発生 さ せ、 ス プ レ イ 配向か ら ベ ン ド 配 向へ転移 さ せ る 第 2 の電圧印加手段 と 、  By applying a second voltage higher than the first voltage between the pixel electrode and the common electrode, a transition occurs on the disk line. Second voltage applying means for generating a nucleus and causing a transition from a spray orientation to a bend orientation;
を備 え る こ と を 特徴 と す る 液晶表示装置。 9 0 . 前記第 1 お よ び第 4 の プ レ チル ト 角 は 3 度 以下で あ り 、 前 記第 2 お よ び第 3 の プ レ チ ル ト 角 は 4 度以上で あ る こ と を 特徴 と す る 請求項 8 9 記載の液晶表示装置。 A liquid crystal display device characterized by having a liquid crystal display. 90. The first and fourth pretilt angles are not more than 3 degrees, and the second and third pretilt angles are not less than 4 degrees. The liquid crystal display device according to claim 89, wherein:
9 1 . 前記上下配 向膜の 配 向処理 さ れ る 方向 は、 前記画素電極 に 沿 う 信号電極線 ま た は ゲー ト 電極線に対 して 直角 で あ る こ と を 特徴 と す る 請求項 8 9 記載の液晶表示装置。 9 1. The direction in which the upper and lower alignment films are oriented is perpendicular to a signal electrode line or a gate electrode line along the pixel electrode. Item 89. The liquid crystal display device according to Item 89.
9 2 . 前記配向膜の配 向処理 さ れ る 方向は、 前記画素電極 に 沿 う 信号電極線 ま た は ゲー ト 電極線に対 して 直角 方 向 か ら 若干ずれて い る こ と を 特徴 と す る 請求項 8 9 記載の液晶表示装置。 9 2. The direction in which the alignment film is oriented is slightly deviated from a direction perpendicular to a signal electrode line or a gate electrode line along the pixel electrode. The liquid crystal display device according to claim 89, wherein:
9 3 . 前記第 2 の電圧は、 そ の周波数が 0 . 1 H z か ら 1 0 0 H z の範囲で あ り 、 且つ第 2 の電圧のデ ュ ーテ ィ 一比は 1 : 1 か ら 19 3. The second voltage has a frequency in the range of 0.1 Hz to 100 Hz, and the duty ratio of the second voltage is 1: 1. 1
0 0 0 : 1 の範囲で あ る 、 ノ、'ルス 状の電圧であ る こ と を特徴 と す る 請求項 8 9 記載の液晶表示装置。 129. The liquid crystal display device according to claim 89, wherein the voltage is in the form of a positive, negative voltage in the range of 00: 0: 1.
9 4 . 前記ア レ ー基板に形成 さ れて い る ゲー ト 電極線は、 前記初 期化処理の期間 中 の少な く と も 大部分にお い てハ イ 状態で あ る こ と を 特徴 と す る 請求項 8 9 記載の液晶表示装置。 9 4. The gate electrode wire formed on the array substrate is in a high state for at least most of the time during the initialization process. The liquid crystal display device according to claim 89, wherein:
9 5 . 前記画素電極お よ び前記共通電極の 内面側 に形成 さ れた 配 向膜の う ち 、 少 な く と も 一方の 配向膜の一部の領域に紫外線 を 照射 して 、 該配向膜に お け る 液晶 の プ レ チ ル ト 角 を 変化 さ せて 配向分割 さ れた液晶セ ル を 有 す る こ と を 特徴 と す る 請求項 8 9 記載の液晶表 示装置。 95. At least a part of one of the alignment films formed on the inner surface side of the pixel electrode and the common electrode is irradiated with ultraviolet light to perform the alignment. 90. The liquid crystal display device according to claim 89, characterized in that the liquid crystal display device has a liquid crystal cell which is divided by changing the tilt angle of the liquid crystal in the film.
9 6 . 前記画素電極お よ び前記共通電極の一部の領域に オ ゾ ン雰 囲気下で紫外線 を 照射 して 、 該画素電極お よ び共通電極の う ち 、 少 な く と も 一方 の電極の一部の領域を平坦化処理 し た後、 前記画素電 極お よ び共通電極上 に 配向膜 を 塗布焼成 し て、 前記配向膜に お け る 液晶 の プ レ チ ル ト 角 を 変化 さ せて 配向分割 さ れた液晶セ ル を 有 す る こ と を 特徴 と す る 請求項 8 9 記載の液晶表示装置。 9 6. Irradiate ultraviolet rays to the pixel electrode and a part of the common electrode under an ozone atmosphere, and at least one of the pixel electrode and the common electrode is irradiated with ultraviolet light. After flattening a part of the electrode, an alignment film is applied and baked on the pixel electrode and the common electrode to change the reticle angle of the liquid crystal in the alignment film. The liquid crystal display device according to claim 89, characterized in that the liquid crystal display device has a liquid crystal cell that has undergone orientation division.
9 7 . 画素電極 を 有す る ア レ ー基板 と 共通電極 を 有 す る 対 向基板 と の 間 に配置 さ れた液晶層上下界面の液晶の プ レ チル ト 角 が正負逆 で 、 互い に平行 に配向処理 さ れた ス プ レ イ 配向 の液晶セ ル を 有 し て お り 、 前記液晶セ ルは 同一画素内 に互 い に 隣接す る 第 1 の液晶セ ル 領域 と 第 2 の液晶セ ル領域 と を 有 し、 前記第 1 の液晶セ ル領域は、 前記ア レ ー基板の液晶層側 の界面 にお け る 液晶の第 1 プ レ チル ト 角 が、 前記対向基板 の液晶層側 の界面 に お け る 液晶の第 2 プ レ チル ト 角 よ り も 小 さ く な る よ う に配向処理さ れ、 前記第 2 の液晶セ ル領域 は、 前記対向基板の液晶層側の界面に お け る 液晶 の第 4 の プ レ チ ル ト 角 が、 前記第 2 の プ レ チル ト 角 よ り も 小 さ く 、 かつ前記ア レ ー基 板の液晶層側 の界面 に お け る 液晶 の第 3 の プ レ チル ト 角 よ り も 小 さ く な る よ う に配向処理さ れて お り 、 電圧無印加時 に は前記液晶層 は ス プ レ イ 配向 と な っ て お り 、 液晶表示駆動 に先立 っ て 、 電圧印加 に よ り ス プ レ イ 配向 か ら ベ ン ド 配向 に転移 さ せ る 初期化処理が行わ れ こ の初期化 さ れ た ベ ン ド 配向状態で液晶表示駆動 を 行 う 液晶表示装 置 に お け る 前記ス プ レ イ 配向 か ら ベ ン ド 配 向 に配 向転移 さ せ る た め の駆動方法で あ っ て、 9 7. The pretilt angles of the liquid crystals at the upper and lower interfaces of the liquid crystal layer arranged between the array substrate having the pixel electrodes and the opposite substrate having the common electrode are opposite to each other. The liquid crystal cell has a liquid crystal cell of a spray orientation which is aligned in parallel, and the liquid crystal cell is a first liquid crystal cell adjacent to each other in the same pixel. And a second liquid crystal cell region. The first liquid crystal cell region has a first pretilt angle of the liquid crystal at an interface on the liquid crystal layer side of the array substrate. The liquid crystal at the interface of the opposing substrate on the liquid crystal layer side is subjected to an alignment treatment so as to be smaller than a second pretilt angle of the liquid crystal. The fourth pretilt angle of the liquid crystal at the interface on the liquid crystal layer side of the substrate is smaller than the second pretilt angle, and the liquid crystal layer of the array substrate The liquid crystal is aligned so as to be smaller than the third pretilt angle of the liquid crystal at the interface on the side, and the liquid crystal layer is sprayed when no voltage is applied. Prior to driving the liquid crystal display, the liquid crystal is oriented from spray orientation to bend orientation by applying voltage. The liquid crystal display is driven in the initialized bend alignment state by performing an initialization process for transition. In the liquid crystal display device, the bend orientation is changed from the spray orientation. This is a driving method for changing the orientation to
前記画素電極 と 前記共通電極 と の 間 に第 1 の電圧 を 印加す る こ と に よ り 、 第 1 の液晶セ ル領域で は液晶分子 を b—ス プ レ イ 配向 さ せ る と と も に、 第 2 の液晶セ ル領域で は液晶分子 を t —ス プ レ イ 配向 さ せて 、 前記第 1 の液晶セ ル領域 と 前記第 2 の液晶セ ル領域 と の 境 界付近 に おい て デ ィ ス ク リ ネ 一 シ ヨ ン線 を形成 し、  By applying a first voltage between the pixel electrode and the common electrode, the liquid crystal molecules are b-spray aligned in the first liquid crystal cell region. Then, in the second liquid crystal cell region, the liquid crystal molecules are aligned in a t-spray orientation, and the liquid crystal molecules are positioned near the boundary between the first liquid crystal cell region and the second liquid crystal cell region. Forming a disk line,
前記画素電極 と 前記共通電極 と の 間 に第 1 の電圧 よ り も 高い第 2 の 電圧 を 印加 し、 前記第 1 の液晶セ ル領域 と 前記第 2 の液晶セ ル領 域 と の境界付近のデ ィ ス ク リ ネ 一 シ ョ ン 線 に お い て 転移核 を 発生 さ せ、 ス プ レ イ 配向 か ら ベ ン ド 配向へ転移 さ せ る こ と を特徴 と す る 液 晶表示装置の駆動方法。 9 8 . 画素電極 を 有 す る ア レ ー基板 と 共通電極 を 有す る 対向基板 の 間 に配置 さ れた液晶層上下界面 の液晶 の プ レ チル ト 角 が正負逆で、 互い に 平行 に 配 向処理 さ れた ス プ レ イ 配 向 の液晶セ ルを 有 し、 電圧 無印加時 に は前記液晶層 は ス プ レ イ 配向 と な っ て お り 、 液晶表示駆 動に先立 っ て 、 電圧 印加 に よ り ス プ レ イ 配向か ら ベ ン ド 配 向 に転移 さ せ る 初期化処理が行わ れ、 こ の初期化 さ れた ベ ン ド 配向状態で液 晶表示駆動 を 行 う ァ ク テ ィ ブマ ト リ ッ ク ス 型の液晶表示装置の製造 方法 に お いて 、 A second voltage higher than the first voltage is applied between the pixel electrode and the common electrode, and a second voltage near the boundary between the first liquid crystal cell region and the second liquid crystal cell region is applied. A liquid crystal display device characterized in that a transition nucleus is generated in a disc line and the transition from a spray orientation to a bend orientation occurs. Drive method. 9 8. The pre-tilt angle of the liquid crystal at the upper and lower interfaces of the liquid crystal layer arranged between the array substrate having the pixel electrode and the opposing substrate having the common electrode is opposite. It has a liquid crystal cell in a spray orientation oriented parallel to each other, and when no voltage is applied, the liquid crystal layer is in a spray orientation, and the liquid crystal display is driven. Prior to this, an initialization process is performed to change the state from the spray orientation to the bend orientation by applying a voltage, and the liquid crystal is maintained in the initialized bend orientation state. In a method of manufacturing an active matrix type liquid crystal display device for performing display driving,
前記液晶セ ル の 一画素 内 の 一部の領域 に おい て、 前記ァ レ 一基板 の液晶層側の界面 に お け る 液晶の第 1 の プ レ チル ト 角 が、 前記対向 基板の液晶層側 の界面 に お け る 液晶の第 2 の プ レ チル ト 角 よ り も 小 さ く な る よ う に 配向処理 を行 っ て第 1 の液晶セ ル領域を形成 し、 前記一画素 内 の他の領域 におい て 、 前記対向基板の液晶層側 の界 面 に お け る 液晶 の第 4 の プ レ チル ト 角 が、 前記第 2 の プ レ チル ト 角 よ り も 小 さ く 、かつ前記ァ レ -基板の液晶層側の界面 にお け る 液晶の 第 3 の プ レ チル ト 角 よ り も 小 さ く な る よ う に配向処理を 行 っ て第 2 の液晶セ ル領域 を形成す る 、 配向処理工程 を含む こ と を 特徴 と す る 液晶表示装置の製造方法。  In a partial area of one pixel of the liquid crystal cell, the first pretilt angle of the liquid crystal at the interface on the liquid crystal layer side of the array substrate is equal to the liquid crystal layer of the counter substrate. The first liquid crystal cell region is formed by performing an alignment treatment so as to be smaller than the second pretilt angle of the liquid crystal at the interface on the side, and the first liquid crystal cell region is formed. In another region, the fourth pretilt angle of the liquid crystal at the interface on the liquid crystal layer side of the counter substrate is smaller than the second pretilt angle, and The second liquid crystal cell region is formed by performing an alignment process so that the liquid crystal at the interface between the liquid crystal layer side of the substrate and the liquid crystal layer becomes smaller than the third pretilt angle of the liquid crystal. A method for manufacturing a liquid crystal display device, characterized by including an alignment treatment step.
9 . 9 . 前記配 向処理工程は、 前記ア レ ー基板上 に形成 さ れた 画素 電極お よ び前記対向基板上 に形成 さ れた共通電極の 内面側 に形成 さ れた配向膜の、 一画素 内 の一部 の領域に紫外線 を照射 し て 、 液晶 の プ レ チル ト 角 を 変化 さ せて、 前記第 1 の液晶 セ ル領域 と 前記第 2 の 液晶セ ル領域 と を形成す る 工程で あ る こ と を特徴 と す る 請求項 9 8 記載の液晶表示装置の製造方法。 1 0 0 . 前記配 向処理工程は、 9. 9. The alignment processing step includes the steps of: aligning the pixel electrode formed on the array substrate and the alignment film formed on the inner surface of the common electrode formed on the counter substrate; By irradiating a partial region within one pixel with ultraviolet light to change the pre-tilt angle of the liquid crystal, the first liquid crystal cell region and the second liquid crystal cell region are formed. The method for producing a liquid crystal display device according to claim 98, wherein the method is a step. 100. The direction processing step includes:
前記 ア レ ー基板上 に形成さ れた 画素電極お よ び前記対 向電極上 に 形成 さ れた共通電極の、 一画素 内 の一部の領域 に オ ゾ ン雰 囲気下 で 紫外線を 照射 し て 、 前記画素電極お よ び前記共通電極の 一部の領域 を平坦化処理 し、 A pixel electrode formed on the array substrate and the counter electrode. By irradiating a part of the formed common electrode within one pixel with ultraviolet light under an ozone atmosphere, the pixel electrode and a part of the common electrode are flattened,
前記画素電極お よ び前記共通電極上 に配向膜 を塗布焼成 して 、 該 配向膜に お け る 液晶の プ レ チル ト 角 を 変化 さ せて 、 前記第 1 の液晶 セ ル領域 と 前記第 2 の液晶セ ル領域 と を形成す る 工程で あ る こ と を 特徴 と す る 請求項 9 8 記載の液晶表示装置の製造方法。  An alignment film is applied and baked on the pixel electrode and the common electrode to change a pre-tilt angle of the liquid crystal in the alignment film, so that the first liquid crystal cell region and the The method for producing a liquid crystal display device according to claim 98, wherein the step is a step of forming the liquid crystal cell region of (2).
1 0 1 . 前記複数の液晶領域を液晶層 内 に発現さ せ る 手段が薄膜 ト ラ ン ジ ス タ 部 に形成 さ れ る こ と を特徴 と し た請求項 1 記載の液晶 表示装置。 10. The liquid crystal display device according to claim 1, wherein the means for developing the plurality of liquid crystal regions in a liquid crystal layer is formed in a thin film transistor portion.
PCT/JP2001/001748 2000-03-13 2001-03-06 Liquid crystal display and method for manufacturing the same, and method for driving liquid crystal display WO2001069311A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000069501A JP2001083552A (en) 1999-03-15 2000-03-13 Liquid crystal display device, its production and driving method of liquid crystal display device
JP2000-069501 2000-03-13

Publications (1)

Publication Number Publication Date
WO2001069311A1 true WO2001069311A1 (en) 2001-09-20

Family

ID=18588362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001748 WO2001069311A1 (en) 2000-03-13 2001-03-06 Liquid crystal display and method for manufacturing the same, and method for driving liquid crystal display

Country Status (1)

Country Link
WO (1) WO2001069311A1 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267220A (en) * 1991-02-22 1992-09-22 Seiko Epson Corp Electro-optical device and manufacture thereof
JPH07311383A (en) * 1994-05-18 1995-11-28 Sanyo Electric Co Ltd Liquid crystal display device
JPH0876107A (en) * 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd Liquid crystal display panel
JPH08146424A (en) * 1994-11-24 1996-06-07 Casio Comput Co Ltd Production of liquid crystal display element and apparatus therefor
JPH08194224A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Transfer plate for oriented film solution
JPH08328045A (en) * 1995-05-31 1996-12-13 Toshiba Corp Liquid crystal display element
JPH0996817A (en) * 1995-10-02 1997-04-08 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
US5654780A (en) * 1994-06-30 1997-08-05 Kabushiki Kaisha Toshiba Method of manufacturing a liquid crystal display including performing orientation relaxation treatment on a portion of the orientation film.
JPH1012998A (en) * 1996-06-27 1998-01-16 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film
JPH1020284A (en) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd Liquid crystal display panel
JPH117018A (en) * 1996-09-04 1999-01-12 Matsushita Electric Ind Co Ltd Liquid crystal display device and its manufacture
JPH11174456A (en) * 1997-12-11 1999-07-02 Omron Corp Substrate for alignment division and its production as well as liquid crystal display element
US5946065A (en) * 1995-10-31 1999-08-31 Sharp Kabushiki Kaisha Transmission type LCD with an organic interlayer insulating film having a plurality of microscopic hollows
JPH11295739A (en) * 1998-04-15 1999-10-29 Nec Corp Liquid crystal display device, manufacture and driving method thereof
JP2000066208A (en) * 1998-06-09 2000-03-03 Matsushita Electric Ind Co Ltd Parallel aligned liquid crystal display element and its production

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267220A (en) * 1991-02-22 1992-09-22 Seiko Epson Corp Electro-optical device and manufacture thereof
JPH07311383A (en) * 1994-05-18 1995-11-28 Sanyo Electric Co Ltd Liquid crystal display device
US5654780A (en) * 1994-06-30 1997-08-05 Kabushiki Kaisha Toshiba Method of manufacturing a liquid crystal display including performing orientation relaxation treatment on a portion of the orientation film.
JPH0876107A (en) * 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd Liquid crystal display panel
JPH08146424A (en) * 1994-11-24 1996-06-07 Casio Comput Co Ltd Production of liquid crystal display element and apparatus therefor
JPH08194224A (en) * 1995-01-18 1996-07-30 Matsushita Electric Ind Co Ltd Transfer plate for oriented film solution
JPH08328045A (en) * 1995-05-31 1996-12-13 Toshiba Corp Liquid crystal display element
JPH0996817A (en) * 1995-10-02 1997-04-08 Matsushita Electric Ind Co Ltd Liquid crystal display panel and its production
US5946065A (en) * 1995-10-31 1999-08-31 Sharp Kabushiki Kaisha Transmission type LCD with an organic interlayer insulating film having a plurality of microscopic hollows
JPH1012998A (en) * 1996-06-27 1998-01-16 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film
JPH1020284A (en) * 1996-07-03 1998-01-23 Matsushita Electric Ind Co Ltd Liquid crystal display panel
JPH117018A (en) * 1996-09-04 1999-01-12 Matsushita Electric Ind Co Ltd Liquid crystal display device and its manufacture
JPH11174456A (en) * 1997-12-11 1999-07-02 Omron Corp Substrate for alignment division and its production as well as liquid crystal display element
JPH11295739A (en) * 1998-04-15 1999-10-29 Nec Corp Liquid crystal display device, manufacture and driving method thereof
JP2000066208A (en) * 1998-06-09 2000-03-03 Matsushita Electric Ind Co Ltd Parallel aligned liquid crystal display element and its production

Similar Documents

Publication Publication Date Title
KR100573296B1 (en) Liquid crystal display, method of manufacturing the same, method of driving liquid crystal display
US9201275B2 (en) Liquid crystal display device and method for fabricating the same
US7683998B2 (en) Liquid crystal display device with slits in the pixel electrode having a curvilinear shape
US7982836B2 (en) Liquid crystal display device
JP2002023199A (en) Liquid crystal display device and manufacturing method therefor
JP3183654B2 (en) Liquid crystal display device and driving method thereof
JP2001083552A (en) Liquid crystal display device, its production and driving method of liquid crystal display device
CN108845463B (en) Display panel and display method thereof
JP4528455B2 (en) Liquid crystal display
JP2003029283A (en) Liquid crystal display device
JP2001296519A (en) Liquid crystal display device, manufacturing method therefor, and driving method therefor
WO2001069311A1 (en) Liquid crystal display and method for manufacturing the same, and method for driving liquid crystal display
JP2002250942A (en) Liquid crystal display device
JP2007334372A (en) Liquid crystal display device
JP2003057684A (en) Liquid crystal display device having stairs type driving signal
JP2001330862A (en) Liquid crystal display device, method for manufacturing the same and method for driving liquid crystal display device
JPH11142854A (en) Liquid crystal display device and its production
JP2003161947A (en) Liquid crystal display device
JP2007323096A (en) Liquid crystal display device
Sun et al. 52.4: Fast Response LCD with Alternate Vertical and Fringe Field Switching
JP2002169161A (en) Liquid crystal display
JPH09258186A (en) Liquid crystal display device
KR20040015528A (en) Liquid crystal display device and method for manufacturing the same
JP2003315799A (en) Liquid crystal display

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase