WO2001068947A1 - Electrolyte and diaphragm for fused salt electrolysis - Google Patents

Electrolyte and diaphragm for fused salt electrolysis Download PDF

Info

Publication number
WO2001068947A1
WO2001068947A1 PCT/US2000/007265 US0007265W WO0168947A1 WO 2001068947 A1 WO2001068947 A1 WO 2001068947A1 US 0007265 W US0007265 W US 0007265W WO 0168947 A1 WO0168947 A1 WO 0168947A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
cell
sodium
electrolyte
cathode
Prior art date
Application number
PCT/US2000/007265
Other languages
French (fr)
Inventor
Oswald Robert Bergman
Howard M. Blank
Russell Bertrum Diemer, Jr.
David Jain
Thomas A. Messing
Walter John Simmons
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to DE60013331T priority Critical patent/DE60013331T2/en
Priority to MXPA02009013A priority patent/MXPA02009013A/en
Priority to EP00915009A priority patent/EP1272690B1/en
Priority to CA002398069A priority patent/CA2398069A1/en
Priority to JP2001567822A priority patent/JP2003527487A/en
Priority to PCT/US2000/007265 priority patent/WO2001068947A1/en
Publication of WO2001068947A1 publication Critical patent/WO2001068947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/005Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells of cells for the electrolysis of melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals

Definitions

  • This invention relates to an electrolytic cell for the electrolysis of fused alkali chloride salts to produce alkali metals such as sodium and lithium.
  • Electrolytic cells for the electrolysis of fused alkali chloride salts are used widely in industry to produce alkali metals, such as sodium and lithium, that are difficult to reduce to a metallic state.
  • alkali metals such as sodium and lithium
  • a major cost for operating these cells is the cost of electric power. Since the early 1970's, the cost of electric power has increased sharply. Development of more energy-efficient electrolysis processes, therefore, has become increasingly important.
  • the electrolytic recovery of sodium metal is commercially carried out via non-aqueous molten chloride salt electrolysis. While the discussion below concentrates on sodium manufacture, the features relating to cell design and mechanical operation also apply to manufacture of lithium and other alkali metals.
  • the electrolyte typically used is a mixture of sodium chloride with other salts to lower the melt temperature.
  • a cell operating temperature of about 600 degrees C is ordinarily employed.
  • Ullmann lists a suitable mixture as 28 wt% NaCl, 25 wt% CaC12 and 47 t% BaC12.
  • US Patent No. 2,850,442 discloses a mixture of about 26 wt% NaCl, 60 wt% SrC12, and 14 wt% BaC12. Adaev et al, Zh. Prikl. Khim.
  • a modern Downs cell typically contains four graphite carbon rods that serve as anodes. Each anode is surrounded by a concentric steel cylinder that serves as a cathode. In operation, sodium is deposited on the inside surface of the steel cathodes and chlorine gas is liberated at the graphite anodes. Typically, in a cell with four pairs of electrodes, the chlorine is collected in four shafts from the anodes while the sodium is collected in a single compartment covering all four cathodes.
  • a hydraulically permeable diaphragm is used to separate the cathode and anode compartments to prevent back-mixing and reaction of the sodium and chlorine. It typically is made of steel mesh, and has a relatively short life of about two months because it corrodes and plugs with debris. When the diaphragm develops any major holes, it must be replaced because the holes lead to back- mixing and reaction of the sodium and chlorine, in turn reducing current efficiency and energy efficiency. Replacement of the diaphragm is a labor- intensive and costly step.
  • any new electrolyte composition must not increase the melting temperature of the mixture or the tendency of associated metal salts to precipitate out of solution, and must produce a sodium metal of acceptable purity.
  • a new electrolyte composition also should improve the operability and "health" of the cell.
  • the present invention provides an electrolytic cell for the production of chlorine and an alkali metal from a fused chloride electrolyte having at least one graphite rod anode, a concentric cylindrical cathode surrounding each anode, a rigid cylindrical diaphragm positioned between said anode and cathode, and insulated aligning means that engage the diaphragm and the anode or cathode to concentrically align said diaphragm as it is placed in position (i.e., the diaphragm is self-aligning).
  • the aligning means are sets of insulating rollers, conveniently mounted on the outer surface of the diaphragm to engage the inner surface of the cathode as the diaphragm is inserted into position.
  • the self-aligning diaphragm has a buoyancy chamber that causes the diaphragm assembly to float in the electrolyte.
  • the self-aligning diaphragm mechanically locks into position by a locking mechanism mounted on top of the diaphragm that engages a sodium collector structure mounted above the cathode.
  • the invention also provides the following electrolytic compositions for the production of chlorine and sodium:
  • Figure 1A and IB are vertical and horizontal cross-sections, respectively, of a typical Downs cell having four sets of electrodes.
  • Figure 2 illustrates one embodiment of the self-aligning diaphragm of this invention.
  • Figure 3 illustrates a second embodiment of the self-aligning diaphragm of this invention.
  • This invention provides several substantial improvements to the mechanical and electrolytic elements of an electrolytic cell for the production of molten alkali metal and gaseous chlorine by the electrolysis of fused chloride salts. While the mechanical and electrolytic improvements are discussed separately one or more of these improvements may be incorporated in a single design of an improved electrolysis cell. While the description is given in terms of electrolyzing sodium chloride, the mechanical improvements of the improved cell may also be used for the electrolysis of lithium and other alkali metals.
  • Figures 1A and IB respectively, illustrate vertical and horizontal cross- sections of a typical Downs-type cell having four sets of electrodes.
  • the cell has a cylindrical brick-lined, steel casing 1.
  • Cylindrical graphite anodes 2 project upwardly through the bottom of the steel casing.
  • the cathodes 3 are steel cylinders having two diametrically opposed steel arms 4 that project outside the cell casing to serve as electric terminals.
  • Cylindrical steel screen mesh diaphragms 5 are suspended about midway in the annular space between the anodes and the cathodes.
  • Annular collector ring 6 collects molten metal that rises in the fused electrolyte 7 from the cathodes.
  • Outlet tube 8 carries the metal collected in the collector ring to the outside of the cell.
  • Gas dome 9 carries gaseous anodic products formed by the electrolysis. Elements 5, 6, 8 and 9 are supported in the cell by means not shown, typically by rigid means such as conventional bolts, fasteners or welding.
  • a steel-mesh screen currently is employed as a diaphragm to separate the cathode and anode compartments.
  • the diaphragm prevents back-mixing and reaction of the cathodically produced alkali metal and anodically produced chlorine.
  • the relatively short life of the diaphragm combined with the labor- intensive method of replacing and aligning them, is a major cost factor in the operation of the Downs cell.
  • such diaphragms are of limited effectiveness, in part due to alignment deficiencies, with groups of cells typically only achieving overall current efficiencies in the range of 80% to 90%.
  • the diaphragm designs of the current invention overcome these limitations of the prior art by providing a self-aligning diaphragm.
  • self-aligning it is meant that the diaphragm aligns itself concentric with, and at a predetermined distance from, the cathode and anode as the diaphragm is inserted into place.
  • Figure 2 illustrates one embodiment of the self-aligning diaphragm provided by this invention.
  • the diaphragm K) is made of conventional screening or slotted materials such as disclosed in prior art, but has the following features that make it self-aligning. Instead of a rigid, bolted connection between the diaphragm and the sodium collector U .
  • the diaphragm floats in the electrolyte and rests against the bottom of the sodium collector, separated from it electrically by a number of mechanically rugged electrical insulator supports 12, such as a modified spark plug, fastened at intervals around the top of the diaphragm. These insulator supports are so fastened that their bottoms will rest on the cathode 14 when the floating diaphragm is in its lowest position. Also fastened to the top of the diaphragm is a buoyancy chamber 3 , a hat-like device containing small bleed holes in the top. The volume of the buoyancy chamber is sized so that the diaphragm will rest against the sodium collector in normal operation, buoyed up by the upflowing chlorine gas collected in the chamber.
  • This movable diaphragm has at least two sets of insulating roller-spacers 15, one near the bottom of the diaphragm and one set higher up on the diaphragm, to provide the self-aligning feature. Only the upper set is shown.
  • the clearance between the roller-spacers and the cathode wall is sufficient to allow the diaphragm assembly to freely move up and down, but not so large as to allow mis-alignment that would unnecessary increase in the path for current flow, which would increase the cell voltage required for operation.
  • the buoyancy chamber fills with chlorine gas evolved at the anode, the remaining amount of chlorine bypassing the buoyancy chamber and going to the collection system.
  • the chlorine in the buoyancy chamber floats the entire diaphragm assembly upwards until the upper part of the insulator supports rests against the sodium collector.
  • need for a bolted or rigid connection to the collector is avoided, eliminating the costly "pit" operation required for repair and replacement by the conventional design.
  • chlorine evolution at the anode stops and the chlorine in the buoyancy chamber slowly escapes through the small bleed holes.
  • the chamber gradually fills with molten electrolyte and loses its buoyancy, causing the diaphragm assembly to sink until the insulator supports rest on the top surface of the cathode.
  • This up-and-down motion can be deliberately achieved by turning the cell current on and off.
  • the up-and-down motion is very useful in breaking and shearing off calcium dendrites that often form during cell operation, causing partial shorts, arcing and loss of current efficiency.
  • the sets of insulating roller-spacers keep the diaphragm centered and prevent it from shorting against the electrodes during this operation.
  • Means other than insulated rollers may be employed to self-align the diaphragm, and the means may be mounted on the diaphragm, cathode, anode, or other structural element of the cell.
  • FIG. 3 illustrates a second embodiment of the self-aligning diaphragm of this invention.
  • the diaphragm 20 is made of conventional screening or slotted materials.
  • the diaphragm has a metal piece 21 rigidly fastened to its top portion that contains a number of L-shaped slots, of which slot 22 is shown in side view. Fitted into each slot is a rod, of which rod 23 is shown in end view. These rods are rigidly fastened to the sodium collector, but are not fastened to the diaphragm.
  • the slots and rods are positioned such that the diaphragm assembly can be inserted from below the sodium collector, with the vertical portion of each slot in line with each matching rod, then moved upward and rotated (as if screwing a glass jar onto its lid) to the end of the slot's travel.
  • a small upward widening of the slot at its end locks the diaphragm in position within the cathode 24.
  • the clearance between the widened slot locks and the rods is sufficient for a slight sidewards free movement of the diaphragm.
  • this slightly moveable diaphragm In order for this slightly moveable diaphragm to be self-aligning, it has at least two sets of insulating roller-spacers 25, one near the bottom of the diaphragm and one set higher up on the diaphragm to provide the self-aligning feature of this design. Only the upper set is shown in this Figure.
  • the clearance between the roller- spacers and the cathode wall is sufficient to allow the diaphragm to be rotated into position, but not so large as to allow mis-alignment that would unnecessary increase the path for current flow, which would increase cell voltage required for operation.
  • Means other than insulated rollers may be employed to self-align the diaphragm, and the means may be mounted on the diaphragm, cathode, anode, or other structural element of the cell.
  • the insulator supports and the insulating roller spacers for the above diaphragms can be made of any insulating materials which have adequate strength and mechanical properties at bath temperatures and are insoluble in the molten electrolyte, such as silicon nitride (S N ⁇ alumina (ALO 3 ) and other materials known to those skilled in the art.
  • the axles on the rollers can be any rigid material which is suitable for the bath environment, preferably a metal such as steel.
  • the electrolyte composition used in a sodium cell influences operability of the cell in several ways. Not only is the melting temperature of the overall composition important, but also the variation in melting temperature as the ratio of ingredient changes. Due to poor cell circulation, both electrolyte composition and temperature vary in different parts of the cell. Typically, the bottom of the cell is cooler than the rest, creating problems due to deposition of electrolyte ingredients and impurities. These depositions cause productivity and current efficiency of the cell to deteriorate, requiring the cell to be shut down for repair and/or replacement of the diaphragm. Other problems may occur, causing a phenomenon referred to in the trade as "smoking.” The smoothness of operation of a cell, while maintaining good productivity, is referred to as the "health" of the cell.
  • cells with poor operability are referred to as “sick" cells.
  • the electrolyte For the health of a cell, it is important that the electrolyte have a wide ratio of compositions that remain entirely molten over a wide range of temperatures.
  • the ability of a substance to promote free movement of the fused electrolyte salts over a range of temperatures is referred to herein as its "fluxing" ability.
  • the strongest effect on lowering melting temperature is between 0.2% to 10% LiCl addition.
  • the rise in temperature between 20% and 40% LiCl indicates the presence of a eutectic within this composition range for this quaternary mixture.
  • a range of 0.2 to 15 wt% addition of LiCl is preferred for reasons of economy, corresponding to a composition of about 20 to 40 wt% NaCl; 30 to 50 wt% BaCl 2 ; 15 to 30 wt% CaCl 2 ; and 0.2 to 13.0 wt% LiCl.
  • the EMF gap increases from about 0.1 volts based on the standard EMFs between Na and Li at 600°C to about 0.2 volts. This is a big increase in the EMF gap, and means that at low LiCl concentrations the driving force is for Na deposition without Li deposition, a favorable result. Similar results were obtained for the strontium- based bath.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

An electrolytic cell for the production of chlorine and an alkali metal from a fused chloride electrolyte comprising at least one graphite rod anode, a concentric cylindrical cathode (14) surrounding each anode, a rigid cylindrical diaphragm (10) positioned between said anode and cathode, and self-aligning means (15) that align said diaphragm concentric with, and at a predetermined distance from, said anode and cathode.

Description

TITLE
ELECTROLYTE AND DIAPHRAGM FOR USED SALT ELECTROLYSIS
FIELD OF THE INVENTION
This invention relates to an electrolytic cell for the electrolysis of fused alkali chloride salts to produce alkali metals such as sodium and lithium.
DESCRIPTION OF THE RELATED ART
Electrolytic cells for the electrolysis of fused alkali chloride salts are used widely in industry to produce alkali metals, such as sodium and lithium, that are difficult to reduce to a metallic state. A major cost for operating these cells is the cost of electric power. Since the early 1970's, the cost of electric power has increased sharply. Development of more energy-efficient electrolysis processes, therefore, has become increasingly important.
The electrolytic recovery of sodium metal is commercially carried out via non-aqueous molten chloride salt electrolysis. While the discussion below concentrates on sodium manufacture, the features relating to cell design and mechanical operation also apply to manufacture of lithium and other alkali metals.
Most industrial installations for molten salt electrolysis of sodium employ the Downs cell design to carry out the process, originally disclosed in U.S. Patent No. 1,501,756. A detailed description of this cell is given in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A24, VCH Verlagsgesellschaft, Germany, pp. 284-288 (1993). A typical industrial cell of this type is shown in Figure 1.
The electrolyte typically used is a mixture of sodium chloride with other salts to lower the melt temperature. A cell operating temperature of about 600 degrees C is ordinarily employed. Ullmann lists a suitable mixture as 28 wt% NaCl, 25 wt% CaC12 and 47 t% BaC12. US Patent No. 2,850,442 discloses a mixture of about 26 wt% NaCl, 60 wt% SrC12, and 14 wt% BaC12. Adaev et al, Zh. Prikl. Khim. (Leningrad) (1973), Vol.46, No.l, pp 191-2 disclose the electrolysis of mixtures of 27 to 29 wt% NaCl, 64 to 67 wt% BaC12 and 9 to 4 wt% LiCl at temperatures above 650°C. The literature discloses numerous other ternary mixtures. The choice of mixture depends on such factors as the melting temperature of the mixture, its electrical conductivity, the desired purity of the resulting sodium, and the possible deposition of the salts at various points in the apparatus due to differences in solubility at the lower temperatures encountered in some parts of the sodium cell. These factors affect operability of the cell, how often the cell must be shut down for repairs, current efficiency and productivity of the cell, and in general what is referred to in the trade as the "health" of the cell.
A modern Downs cell typically contains four graphite carbon rods that serve as anodes. Each anode is surrounded by a concentric steel cylinder that serves as a cathode. In operation, sodium is deposited on the inside surface of the steel cathodes and chlorine gas is liberated at the graphite anodes. Typically, in a cell with four pairs of electrodes, the chlorine is collected in four shafts from the anodes while the sodium is collected in a single compartment covering all four cathodes.
A hydraulically permeable diaphragm is used to separate the cathode and anode compartments to prevent back-mixing and reaction of the sodium and chlorine. It typically is made of steel mesh, and has a relatively short life of about two months because it corrodes and plugs with debris. When the diaphragm develops any major holes, it must be replaced because the holes lead to back- mixing and reaction of the sodium and chlorine, in turn reducing current efficiency and energy efficiency. Replacement of the diaphragm is a labor- intensive and costly step.
Current diaphragm designs have a number of shortcomings. One shortcoming is that the diaphragms typically are rigidly attached to the sodium collector by a steel ring bolted to the collector. Attachment of the diaphragm to the sodium collector is accomplished by a laborious operation in a specially designed "pit." Following the attachment step, the diaphragm is transported to the cell and lowered into place. Because the bolted design is rigid, and because there are slight mechanical variations from cell-to-cell, this procedure rarely achieves perfect alignment between the new diaphragm and the electrodes in the cell along the entire cell length. Imperfect alignment causes partial shorting between anodes and cathodes, reducing current efficiency of the cell.
Improved current efficiency is a major area for potential power savings. While the efficiency of an electrolytic process theoretically could be above 99%, most commercial molten salt sodium cells operate at relatively low current efficiencies. Ullmann's Encyclopedia, for example, lists a typical current efficiency of 80 to 90% (p. 287).
Another important area for power savings is to decrease the voltage drop across the cell. Typically the voltage drop across the electrolyte-filled space between the cathode and the anode accounts for about 40% of the electric energy required to run a sodium cell. Reduction of the electrical resistivity of the molten electrolyte would result in important energy savings for cell operation. However, to maintain smooth operation, any new electrolyte composition must not increase the melting temperature of the mixture or the tendency of associated metal salts to precipitate out of solution, and must produce a sodium metal of acceptable purity. Preferably, a new electrolyte composition also should improve the operability and "health" of the cell.
SUMMARY OF THE INVENTION
The present invention provides an electrolytic cell for the production of chlorine and an alkali metal from a fused chloride electrolyte having at least one graphite rod anode, a concentric cylindrical cathode surrounding each anode, a rigid cylindrical diaphragm positioned between said anode and cathode, and insulated aligning means that engage the diaphragm and the anode or cathode to concentrically align said diaphragm as it is placed in position (i.e., the diaphragm is self-aligning). In a preferred diaphragm the aligning means are sets of insulating rollers, conveniently mounted on the outer surface of the diaphragm to engage the inner surface of the cathode as the diaphragm is inserted into position. In one embodiment, the self-aligning diaphragm has a buoyancy chamber that causes the diaphragm assembly to float in the electrolyte. In another embodiment, the self-aligning diaphragm mechanically locks into position by a locking mechanism mounted on top of the diaphragm that engages a sodium collector structure mounted above the cathode.
The invention also provides the following electrolytic compositions for the production of chlorine and sodium:
(a) about 20 to 40 wt% NaCl, 30 to 50 wt% BaCl2, 15 to 30 wt% CaCl2 and 0.2 to 13.0 wt% LiCl, (b) about 20 to 40 wt% NaCl, 5 to 15 wt% BaCl2, 50 to 70 wt% SrCl2 and 1.0 to 13.0 wt% LiCl, and,
(c) about 20 to 40 wt% NaCl, 50 to 80 wt% SrCl2 and 0.2 to 13.0 wt% LiCl.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1A and IB are vertical and horizontal cross-sections, respectively, of a typical Downs cell having four sets of electrodes.
Figure 2 illustrates one embodiment of the self-aligning diaphragm of this invention.
Figure 3 illustrates a second embodiment of the self-aligning diaphragm of this invention.
DETAILED DESCRIPTION OF THE INVENTION
This invention provides several substantial improvements to the mechanical and electrolytic elements of an electrolytic cell for the production of molten alkali metal and gaseous chlorine by the electrolysis of fused chloride salts. While the mechanical and electrolytic improvements are discussed separately one or more of these improvements may be incorporated in a single design of an improved electrolysis cell. While the description is given in terms of electrolyzing sodium chloride, the mechanical improvements of the improved cell may also be used for the electrolysis of lithium and other alkali metals.
Downs Cell
Figures 1A and IB, respectively, illustrate vertical and horizontal cross- sections of a typical Downs-type cell having four sets of electrodes. The cell has a cylindrical brick-lined, steel casing 1. Cylindrical graphite anodes 2 project upwardly through the bottom of the steel casing. The cathodes 3 are steel cylinders having two diametrically opposed steel arms 4 that project outside the cell casing to serve as electric terminals. Cylindrical steel screen mesh diaphragms 5 are suspended about midway in the annular space between the anodes and the cathodes. Annular collector ring 6 collects molten metal that rises in the fused electrolyte 7 from the cathodes. Outlet tube 8 carries the metal collected in the collector ring to the outside of the cell. Gas dome 9 carries gaseous anodic products formed by the electrolysis. Elements 5, 6, 8 and 9 are supported in the cell by means not shown, typically by rigid means such as conventional bolts, fasteners or welding.
A steel-mesh screen currently is employed as a diaphragm to separate the cathode and anode compartments. The diaphragm prevents back-mixing and reaction of the cathodically produced alkali metal and anodically produced chlorine. The relatively short life of the diaphragm, combined with the labor- intensive method of replacing and aligning them, is a major cost factor in the operation of the Downs cell. In addition, such diaphragms are of limited effectiveness, in part due to alignment deficiencies, with groups of cells typically only achieving overall current efficiencies in the range of 80% to 90%.
Self-Aligning Diaphragm
The diaphragm designs of the current invention overcome these limitations of the prior art by providing a self-aligning diaphragm. By "self-aligning" it is meant that the diaphragm aligns itself concentric with, and at a predetermined distance from, the cathode and anode as the diaphragm is inserted into place. Figure 2 illustrates one embodiment of the self-aligning diaphragm provided by this invention. The diaphragm K) is made of conventional screening or slotted materials such as disclosed in prior art, but has the following features that make it self-aligning. Instead of a rigid, bolted connection between the diaphragm and the sodium collector U. , the diaphragm floats in the electrolyte and rests against the bottom of the sodium collector, separated from it electrically by a number of mechanically rugged electrical insulator supports 12, such as a modified spark plug, fastened at intervals around the top of the diaphragm. These insulator supports are so fastened that their bottoms will rest on the cathode 14 when the floating diaphragm is in its lowest position. Also fastened to the top of the diaphragm is a buoyancy chamber 3 , a hat-like device containing small bleed holes in the top. The volume of the buoyancy chamber is sized so that the diaphragm will rest against the sodium collector in normal operation, buoyed up by the upflowing chlorine gas collected in the chamber. When the electricity to the cell is reduced or shut off completely, chlorine slowly escapes through the bleed holes, causing the floating diaphragm to move downward or sink to the point that the insulator supports rest on the top surface of the cathode. This movable diaphragm has at least two sets of insulating roller-spacers 15, one near the bottom of the diaphragm and one set higher up on the diaphragm, to provide the self-aligning feature. Only the upper set is shown. The clearance between the roller-spacers and the cathode wall is sufficient to allow the diaphragm assembly to freely move up and down, but not so large as to allow mis-alignment that would unnecessary increase in the path for current flow, which would increase the cell voltage required for operation.
In operation, the buoyancy chamber fills with chlorine gas evolved at the anode, the remaining amount of chlorine bypassing the buoyancy chamber and going to the collection system. The chlorine in the buoyancy chamber floats the entire diaphragm assembly upwards until the upper part of the insulator supports rests against the sodium collector. Thus, need for a bolted or rigid connection to the collector is avoided, eliminating the costly "pit" operation required for repair and replacement by the conventional design. When the cell current is turned off, chlorine evolution at the anode stops and the chlorine in the buoyancy chamber slowly escapes through the small bleed holes. The chamber gradually fills with molten electrolyte and loses its buoyancy, causing the diaphragm assembly to sink until the insulator supports rest on the top surface of the cathode. This up-and-down motion can be deliberately achieved by turning the cell current on and off. The up-and-down motion is very useful in breaking and shearing off calcium dendrites that often form during cell operation, causing partial shorts, arcing and loss of current efficiency. The sets of insulating roller-spacers keep the diaphragm centered and prevent it from shorting against the electrodes during this operation. Means other than insulated rollers may be employed to self-align the diaphragm, and the means may be mounted on the diaphragm, cathode, anode, or other structural element of the cell.
Figure 3 illustrates a second embodiment of the self-aligning diaphragm of this invention. As in the first embodiment, the diaphragm 20 is made of conventional screening or slotted materials. The diaphragm has a metal piece 21 rigidly fastened to its top portion that contains a number of L-shaped slots, of which slot 22 is shown in side view. Fitted into each slot is a rod, of which rod 23 is shown in end view. These rods are rigidly fastened to the sodium collector, but are not fastened to the diaphragm. The slots and rods are positioned such that the diaphragm assembly can be inserted from below the sodium collector, with the vertical portion of each slot in line with each matching rod, then moved upward and rotated (as if screwing a glass jar onto its lid) to the end of the slot's travel. A small upward widening of the slot at its end locks the diaphragm in position within the cathode 24. The clearance between the widened slot locks and the rods is sufficient for a slight sidewards free movement of the diaphragm. In order for this slightly moveable diaphragm to be self-aligning, it has at least two sets of insulating roller-spacers 25, one near the bottom of the diaphragm and one set higher up on the diaphragm to provide the self-aligning feature of this design. Only the upper set is shown in this Figure. The clearance between the roller- spacers and the cathode wall is sufficient to allow the diaphragm to be rotated into position, but not so large as to allow mis-alignment that would unnecessary increase the path for current flow, which would increase cell voltage required for operation. Means other than insulated rollers may be employed to self-align the diaphragm, and the means may be mounted on the diaphragm, cathode, anode, or other structural element of the cell.
As in the previous diaphragm embodiment, there is no need for a bolted or rigid connection between the diaphragm and the sodium collector, thus eliminating the costly "pit" operation required for repair and replacement by the conventional design.
The insulator supports and the insulating roller spacers for the above diaphragms can be made of any insulating materials which have adequate strength and mechanical properties at bath temperatures and are insoluble in the molten electrolyte, such as silicon nitride (S NΛ alumina (ALO3) and other materials known to those skilled in the art. The axles on the rollers can be any rigid material which is suitable for the bath environment, preferably a metal such as steel.
While the invention has been described in detail with respect to a preferred embodiment wherein insulated rollers are employed as the aligning means, it will be appreciated that equivalent means may be selected to space the diaphragm concentrically with the anode and cathode. For example, rigid spacing means could be mounted on the inner surface of the cathode. Likewise, means other than the buoyancy chamber illustrated in Figure 2 may be employed to cause the membrane to float in the electrolyte, and means other than the locking slots and pins illustrated in Figure 3 may be employed to lock the membrane in position.
Electrolyte Composition
The electrolyte composition used in a sodium cell influences operability of the cell in several ways. Not only is the melting temperature of the overall composition important, but also the variation in melting temperature as the ratio of ingredient changes. Due to poor cell circulation, both electrolyte composition and temperature vary in different parts of the cell. Typically, the bottom of the cell is cooler than the rest, creating problems due to deposition of electrolyte ingredients and impurities. These depositions cause productivity and current efficiency of the cell to deteriorate, requiring the cell to be shut down for repair and/or replacement of the diaphragm. Other problems may occur, causing a phenomenon referred to in the trade as "smoking." The smoothness of operation of a cell, while maintaining good productivity, is referred to as the "health" of the cell.
Correspondingly, cells with poor operability are referred to as "sick" cells. For the health of a cell, it is important that the electrolyte have a wide ratio of compositions that remain entirely molten over a wide range of temperatures. The ability of a substance to promote free movement of the fused electrolyte salts over a range of temperatures is referred to herein as its "fluxing" ability.
Another important character of the electrolyte is its conductivity. The voltage drop across the electrolyte-filled space between cathode and anode for a typical NaCl-CaCl2-BaCl2 electrolyte composition is almost 3 volts, accounting for about 40% of the electric energy required to run a sodium cell. Other typical electrolytes have similar voltage drops. Any reduction in the electrical resistivity of the molten electrolyte would result in important energy savings for cell operation. It is known that lithium chloride (LiCl) has substantially lower electrical resistivity than the ingredients in the above typical mixtures. Previous attempts to use lithium chloride as an electrolyte component were unacceptable, however, because of the high lithium content of the sodium produced or various other operating problems. These attempts did not include the specific combination of ingredients of this invention, in which small amounts of lithium chloride are added as an extra ingredient to existing commercially useful binary and ternary electrolyte mixtures, converting them to ternary and quaternary mixtures, respectively.
In accordance with the invention, it has been found that the presence less than 1%, and as little as 0.2%, of LiCl in the ternary and quaternary electrolyte mixtures is advantageous. Not only is current efficiency improved, but general health of the cell as well. The cell operates smoother, with less smoking and spurious electrolyte freeze-ups. In addition, the presence of even small quantities of lithium chloride can result in 30% to 100% longer diaphragm useful life, reducing the amount of cell down-time for costly replacement of the diaphragm.
A series of experiments were conducted on the effect of LiCl addition on melting temperature of a typical calcium chloride-based electrolyte (26 wt% NaCl, 48 wt% BaC12, 26 wt% CaC12). The effect of small LiCl additions to the bath was studied. Addition of LiCl transforms this ternary system into a quaternary system for which no published data is available. These compositions were subjected to thermal analysis tests (DSC/Differential Scanning Calorimetry) to determine their melting temperatures, by which we mean the temperature at which all the material is molten. The results were as follows.
Table 1
Figure imgf000011_0001
The experimental results obtained for this system showed that LiCl additions, even in quite small amounts, will significantly lower the melting temperature of electrolyte compositions and thereby improve operability of the sodium cells.
The strongest effect on lowering melting temperature is between 0.2% to 10% LiCl addition. The rise in temperature between 20% and 40% LiCl indicates the presence of a eutectic within this composition range for this quaternary mixture. A range of 0.2 to 15 wt% addition of LiCl is preferred for reasons of economy, corresponding to a composition of about 20 to 40 wt% NaCl; 30 to 50 wt% BaCl2; 15 to 30 wt% CaCl2; and 0.2 to 13.0 wt% LiCl. A similar series of experiments addressed the effect of relatively small LiCl additions on the melting temperature of a ternary strontium chloride-based electrolyte for sodium manufacture (26 wt% NaCl, 12 wt% BaCl2, 62 wt% SrCl2). Addition of LiCl transforms this ternary system into a quaternary system for which no published data is available. Electrolyte compositions were prepared containing 5 wt% and 10 wt% of LiCl added to the above strontium-based bath. These compositions were subjected to thermal analysis tests as before to determine their melting temperatures. The results were as follows.
Table 2
Figure imgf000012_0001
It is seen from the above data that even small additions of LiCl will significantly lower the melting temperature of the strontium bath, and thereby substantially broaden the operability of such a bath by preventing freeze-ups and similar problems. A range of 0.2 to 15 wt% addition of LiCl is preferred for reasons of economy, corresponding to a composition of about 20 to 40 wt% NaCl; 5 to 15 wt% BaCl2; 50 to 70 wt% SrCl2; and 0.2 to 13.0 wt% LiCl.
Similar experiments were conducted on the binary system of NaCl and SrCL. Published data show a eutectic composition of 30 wt% NaCl and 70 wt% SrCl2 with a eutectic melting temperature of about 570°C. The melting temperature rises sharply with small changes in composition, allowing only a 15% wide range of compositions before the melting temperature would exceed a typical cell operating temperature of 600°C. By adding 11 wt% of LiCl to the above eutectic composition, the following results were obtained. Table 3
Figure imgf000013_0001
The above results show that even small additions of LiCl have a powerful fluxing effect on the NaCl/SrCL binary system. That is, small additions of LiCl give a much broader range of melting temperatures, thereby improving operability at the typical 600°C operating temperature of the sodium cells. A range of 0.2 to 15 wt% addition of LiCl is preferred for reasons of economy, corresponding to a composition of about 20 to 40 wt% NaCl; 50 to 80 wt% SrCl2; and 0.2 to 13.0 wt% LiCl2.
To determine if relatively small percentages of lithium chloride would yield a sodium cell product with acceptable purity, laboratory experiments were designed and carried out to determine the degree of lithium pick-up by sodium metal in contact with lithium chloride-containing electrolyte at 600°C under non- equilibrium conditions (that is, with no stirring). The conditions chosen approximately various simulated conditions in the electrolytic cell and covered a wide range of exposure times, ranging from the few seconds time required for sodium droplets to rise through the electrolyte bath to the several hours when a thick layer of sodium metal inside the collector is in quiet contact with, and floats on, molten electrolyte. The electrolyte in these experiments contained (by weight) 4.8% LiCl; 24.7% NaCl; 24.7% CaCl2; and 45.7% BaCl2- Results of this preliminary study are shown in Table 4.
Table 4 Lithium Pick-up by Sodium Metal
Figure imgf000014_0001
These tests show that, although there is considerable scatter in these data, the absolute level of lithium pick-up by sodium metal under these conditions is minimal.
It is also important to know if Li will co-deposit with Na at the electrode. Such co-deposition would be highly undesirable and negate use of Li-containing electrolytes. In order to estimate the thermo-dynamic driving force for co-deposition of Li with Na for small LiCl additions, the EMF gaps at 600°C between Na and Li was calculated for the above strontium-based and calcium- based electrolyte compositions. The larger the EMF gap between the Na and the less noble Li, the less will be the tendency for the Li to co-deposit.
For a 5% addition of LiCl to the calcium-based electrolyte, the EMF gap increases from about 0.1 volts based on the standard EMFs between Na and Li at 600°C to about 0.2 volts. This is a big increase in the EMF gap, and means that at low LiCl concentrations the driving force is for Na deposition without Li deposition, a favorable result. Similar results were obtained for the strontium- based bath.
Using literature data on the electrical conductance for LiCl, NaCl, BaCL and CaCL, it is estimated that the cell voltage change for a 10% LiCl-containing bath based on the above typical calcium chloride-based electrolyte would be about a 0.5 volts to 0.8 volts reduction, corresponding to about 7% to 11% power savings. Plant tests confirmed the above preliminary information. Even at amounts of LiCl addition as low as 0.2 to 5 wt% resulted in noticeable increases in current efficiency. In the calcium chloride based electrolyte, a 0.2 to 3 wt% addition of LiCl showed about 2% higher current efficiency. In addition, a more uniform temperature distribution was noted throughout the cell, a 10°C variation from top to bottom versus about a 30°C variation without LiCl addition, and therefore more trouble-free operation of the cell, i.e., fewer upsets, "sickness" or "smoking" of the cell and less spurious freezeups near the bottom of the cell and in other locations. Over time, this will result in higher average energy efficiency and less maintenance and operating labor requirements. That is, the addition of LiCl to typical sodium electrolyte compositions surprisingly gives better cell operability.

Claims

WHAT IS CLAIMED IS:
1. An electrolytic cell for the production of chlorine and an alkali metal from a fused chloride electrolyte comprising at least one graphite rod anode, a concentric cylindrical cathode surrounding each anode, a rigid cylindrical diaphragm positioned between said anode and cathode, and self-aligning means that align said diaphragm concentric with, and at a predetermined distance from, said anode and cathode.
2. The electrolytic cell of claim 1 wherein said aligning means are insulated rollers.
3. The electrolytic cell of claim 2 wherein said insulated rollers are mounted on the outer surface of said diaphragm and engage the inner surface of said cathode.
4. The electrolytic cell of claim 1 , 2 or 3 wherein a buoyancy chamber is present at the top of the diaphragm, said buoyancy chamber causing the diaphragm assembly to float in cell electrolyte while the cell is in operation.
5. The electrolytic cell of claim 4 wherein insulating separators are present on the top of said buoyancy chamber to electrically separate said buoyancy chamber from a sodium collector positioned above said chamber.
6. The electrolytic cell of claim 1, 2 or 3 wherein said diaphragm has a metal piece fastened to its top portion, said metal piece having a plurality of slots, and said electrolytic cell has a sodium collector mounted above said diaphragm and having a number of rods projecting therefrom that fit into said slots to position said diaphragm concentrically with the cell anode and cathode when said diaphragm is rotated to lock said rods in said slots.
7. An electrolyte composition for the production of chlorine and sodium from fused chloride electrolytes consisting essentially of about 20 to 40 wt% NaCl; 30 to 50 wt% BaCl2; 15 to 30 wt% CaCl2; and 0.2 to 13 wt% LiCl.
8. An electrolyte composition for the production of chlorine and sodium from fused chloride electrolytes consisting essentially of about 20 to 40 wt% NaCl; 5 to 15 wt% BaCl2; 50 to 70 wt% SrCl2; and 0.2 to 13.0 wt% LiCl.
9. An electrolyte composition for the production of chlorine and sodium from fused chloride electrolytes consisting essentially of about 20 to 40 wt%
NaCl; 50 to 80 wt% SrCl2; and 0.2 to 13.0 wt% LiCl.
PCT/US2000/007265 2000-03-15 2000-03-15 Electrolyte and diaphragm for fused salt electrolysis WO2001068947A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60013331T DE60013331T2 (en) 2000-03-15 2000-03-15 ELECTROLYTE AND DIAFRAGMA FOR MELT FLUOR ELECTROLYSIS
MXPA02009013A MXPA02009013A (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for fused salt electrolysis.
EP00915009A EP1272690B1 (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for fused salt electrolysis
CA002398069A CA2398069A1 (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for used salt electrolysis
JP2001567822A JP2003527487A (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for electrolysis of molten salt
PCT/US2000/007265 WO2001068947A1 (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for fused salt electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/007265 WO2001068947A1 (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for fused salt electrolysis

Publications (1)

Publication Number Publication Date
WO2001068947A1 true WO2001068947A1 (en) 2001-09-20

Family

ID=21741165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/007265 WO2001068947A1 (en) 2000-03-15 2000-03-15 Electrolyte and diaphragm for fused salt electrolysis

Country Status (6)

Country Link
EP (1) EP1272690B1 (en)
JP (1) JP2003527487A (en)
CA (1) CA2398069A1 (en)
DE (1) DE60013331T2 (en)
MX (1) MXPA02009013A (en)
WO (1) WO2001068947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019250A (en) * 2007-07-13 2009-01-29 Osaka Titanium Technologies Co Ltd Method and apparatus for producing metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1259880A (en) * 1960-06-16 1961-04-28 Solvay Process for the production of sodium by electrolysis of molten salt baths
DE1162575B (en) * 1959-12-21 1964-02-06 Ethyl Corp Process for the production of pure sodium by fused salt electrolysis
US3257297A (en) * 1961-02-17 1966-06-21 Ici Ltd Production of sodium
GB1151654A (en) * 1966-04-08 1969-05-14 Du Pont Electrolytic Cells
FR2066836A1 (en) * 1969-09-03 1971-08-13 Blinov Alexandr
WO1999005343A1 (en) * 1997-07-25 1999-02-04 E.I. Du Pont De Nemours And Company Fused chloride salt electrolysis cell
US6063247A (en) * 1998-08-07 2000-05-16 E.I. Du Pont De Nemours And Company Modified electrolyte and diaphragm for fused salt electrolysis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1162575B (en) * 1959-12-21 1964-02-06 Ethyl Corp Process for the production of pure sodium by fused salt electrolysis
FR1259880A (en) * 1960-06-16 1961-04-28 Solvay Process for the production of sodium by electrolysis of molten salt baths
US3257297A (en) * 1961-02-17 1966-06-21 Ici Ltd Production of sodium
GB1151654A (en) * 1966-04-08 1969-05-14 Du Pont Electrolytic Cells
FR2066836A1 (en) * 1969-09-03 1971-08-13 Blinov Alexandr
WO1999005343A1 (en) * 1997-07-25 1999-02-04 E.I. Du Pont De Nemours And Company Fused chloride salt electrolysis cell
US6063247A (en) * 1998-08-07 2000-05-16 E.I. Du Pont De Nemours And Company Modified electrolyte and diaphragm for fused salt electrolysis

Also Published As

Publication number Publication date
DE60013331D1 (en) 2004-09-30
EP1272690A1 (en) 2003-01-08
MXPA02009013A (en) 2003-04-25
EP1272690B1 (en) 2004-08-25
JP2003527487A (en) 2003-09-16
DE60013331T2 (en) 2005-09-08
CA2398069A1 (en) 2001-09-20

Similar Documents

Publication Publication Date Title
US5024737A (en) Process for producing a reactive metal-magnesium alloy
US5254232A (en) Apparatus for the electrolytic production of metals
EP0638133B1 (en) Anode-cathode arrangement for aluminum production cells
CA1043732A (en) Electrochemical cell
US2760930A (en) Electrolytic cell of the diaphragm type
RU2680039C1 (en) Systems and methods for purifying aluminum
EP0998595B1 (en) Fused chloride salt electrolysis cell
WO2006007863A1 (en) Electrolysis apparatus with solid electrolyte electrodes
US3254010A (en) Refining of silicon and germanium
US4737247A (en) Inert anode stable cathode assembly
US6811676B2 (en) Electrolytic cell for production of aluminum from alumina
US2919234A (en) Electrolytic production of aluminum
US6063247A (en) Modified electrolyte and diaphragm for fused salt electrolysis
US2848397A (en) Electrolytic production of metallic titanium
WO2006046800A1 (en) Method for manufacturing high purity indium and apparatus therefor
US4440610A (en) Molten salt bath for electrolytic production of aluminum
EP1272690B1 (en) Electrolyte and diaphragm for fused salt electrolysis
AU659247B2 (en) Cell for the electrolysis of alumina preferably at low temperatures
US2507096A (en) Process for the electrolytic refining or lead or lead alloys containing bismuth
US4108741A (en) Process for production of aluminum
US4597839A (en) Method and apparatus for production of a metal from metallic oxide ore
US4495037A (en) Method for electrolytically obtaining magnesium metal
JP4557565B2 (en) Electrolyzer
US4547272A (en) Method and apparatus for production of a metal from metallic oxide ore using a composite anode
US2898276A (en) Production of titanium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP MX ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2398069

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2000915009

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567822

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/009013

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2000915009

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000915009

Country of ref document: EP