WO2001066509A1 - PROCESS FOR PRODUCING α,α-DIFLUORO- β -KETOESTER - Google Patents

PROCESS FOR PRODUCING α,α-DIFLUORO- β -KETOESTER Download PDF

Info

Publication number
WO2001066509A1
WO2001066509A1 PCT/JP2001/001103 JP0101103W WO0166509A1 WO 2001066509 A1 WO2001066509 A1 WO 2001066509A1 JP 0101103 W JP0101103 W JP 0101103W WO 0166509 A1 WO0166509 A1 WO 0166509A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
difluoro
represented
ketoester
Prior art date
Application number
PCT/JP2001/001103
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Iseki
Yoshichika Kuroki
Yuko Sakamaki
Original Assignee
Daikin Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd. filed Critical Daikin Industries Ltd.
Publication of WO2001066509A1 publication Critical patent/WO2001066509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/46Preparation of carboxylic acid esters from ketenes or polyketenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters

Definitions

  • the present invention relates to a method for producing a difluoro /?-Ketoester useful as a physiologically active substance such as a medicine or a pesticide, and a method for producing difluoroketene silyl acetal useful as a synthetic intermediate thereof. Also, the present invention relates to a method for producing optically active aniline, difluoro-5-hydroxy ester.
  • a compound obtained by replacing a hydrogen atom with a fluorine atom from a known compound having a function or a physiological activity has a function or a physiological activity enhanced by a specific electronic effect of the fluorine atom, Alternatively, it is known to exhibit new functions and physiological activities.
  • fluorinated building blocks having a structure similar to the raw materials of known compounds have been designed [“Fluorine Physiologically Active Substances in the 1990s”, supervised by Nobuo Ishikawa, published by CMC (1991), Latest Trends in Materials ”edited by Masaaki Yamabe and Hitoshi Matsuo, published by CMC (1994)].
  • H H-difluoro /?-Ketoester. It is known primarily as an important synthetic intermediate for making pharmaceuticals and pesticides.
  • a method of oxidizing a di-difluoro /?-Hydroxy ester corresponding to a target product, a method of fluorinating a keto ester, and the like are known.
  • the present invention has been made in order to improve the above circumstances, and its object is to collect a thiophene, a thiofluoride mono /?-Ketoester and a derivative thereof, and a synthetic intermediate thereof by a general method.
  • An object is to provide a method for efficiently synthesizing.
  • the method of the present invention for producing a monodifluoro-5-ketoester comprises an acid halide represented by the following general formula [1] and a difluoroketene silyl acetal represented by the following general formula [2]. And non-catalytic conditions or metal-based The reaction is carried out in the presence of a catalyst to obtain a fluorinated / fluoroketoester represented by the following general formula [3].
  • R 1 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkyloxy group, an aryloxy group, an alkenyloxy group
  • R 2 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group or an alkynyl group
  • R 3 , R 4 and R 5 are the same or different groups
  • an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkenyloxy group, an alkynyloxy group or an aralkyloxy group which may form a cyclic group together with each other.
  • the present invention is characterized in that a difluoroketene silyl acetal represented by the following general formula [2] is produced using a difluoroacetic acid ester represented by the general formula [4], zinc and trialkyl halosilane.
  • R 2 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group or an alkynyl group
  • R 3 , R 4 and R 5 are the same as each other.
  • X 2 represents a chlorine atom, a bromine atom or an iodine atom (the same applies hereinafter).
  • the method for producing the mono- or mono-difluoro-hydroxy ester of the present invention is as follows.
  • An acid halide represented by the formula [1] and a difluoroketene silyl acetal represented by the following general formula [2] are reacted under non-catalytic conditions or with a metal.
  • the reaction is carried out in the presence of a catalyst to obtain a difluoro /?-Ketoester represented by the following general formula [3].
  • the di-difluoro- ⁇ -ketoester is subjected to asymmetric reaction using a hydrogenation catalyst. It is characterized in that it is converted into an optically active compound represented by the following general formula [5] by hydrogenation reaction.
  • R 1 is an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkyloxy group, an aryloxy group, an alkenyl
  • R 2 represents an alkyl group, an aralkyl group, an aralkyl group, an alkenyl group or an alkynyl group
  • R 3 , R 4 and R 5 represent the same or different groups
  • An alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkenyloxy group, an alkynyloxy group or an aralkyloxy group which may form a cyclic group together with each other.
  • X 1 Represents a halogen atom
  • * C represents a chiral carbon atom.
  • the acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [2] are reacted under non-catalytic conditions or in the presence of a metal-based catalyst. Because of the reaction, it is possible to mass-produce para-difluoro-5-ketoester, which is useful, for example, as an intermediate for pharmaceuticals and agricultural chemicals in higher yields than in the case of conventional techniques, and to broaden the selection range of substrates to be used. can do.
  • difluoroketene silyl acetate can serve as an intermediate for the synthesis of di-difluoro-/-keto-esters. It can be produced efficiently using the difluoroacetate represented by the formula [4], zinc and trialkylhalosilane.
  • difluoroketene silyl acetal produced in this way can be reacted with the acid halide to form the dihydroketene silyl acetal in situ without isolation and purification.
  • difluoroketene silyl acetal can be used in the system without isolation in the process of obtaining the desired product without isolation, and not only does not cause any problem, but also greatly contributes to the efficiency of the process.
  • an optically active substance can be further produced from the above-mentioned difluoro- / di-ketoester.
  • an asymmetric hydrogenation reaction is carried out in the presence of a hydrogenated catalyst using the above-mentioned difluoro-/?-Ketoester to obtain optically-enriched difluoro-/?-Hydroxyester. It can be mass-produced efficiently.
  • the alkyl group (or alkyl) represented by the general formula [1], [2], [3] or [4] has a linear, branched or cyclic structure.
  • An alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may have a heteroatom or a halogen atom and may have a substituent and has 1 to 30 carbon atoms; Or a cycloalkyl group having an equivalent number of carbon atoms.
  • Examples of the aryl group (or aryl) shown in each of the above general formulas include a phenyl group which may have a substituent, a naphthyl group, an anthryl group, a heterocyclic aromatic group having a hetero atom or a halogen atom, and the like. Can be exemplified.
  • Examples of the substituent include an alkyl group having 1 to 10 carbon atoms which may be branched, an alkoxy group, an amino group and the like.
  • Examples of the aralkyl group (or aralkyl) include a benzyl group, a p-methylbenzyl group, a naphthylmethyl group, a furfuryl group, and a polyphenyl group.
  • alkenyl group examples include a vinyl group,? -Styryl group, 1-probenyl group, 1-butenyl group, 1-hexenyl group, 1-decenyl group, cyclohexenyl group, aryl group, Examples thereof include a cinnamyl group, a 2-butenyl group and a 2-decenyl group.
  • alkynyl group examples include an ethynyl group, a phenylethynyl group, and a 2-propyl group.
  • the solvent used in each of the production methods of the present invention is not particularly limited, but preferred are 1,3-dimethyl-2-imidazolidinone (DMI), acetonitrile, tetrahydrofuran (THF), dimethylformamid Non-protonic solvents such as amide (DMF) and dimethoxetane (DME).
  • DMI 1,3-dimethyl-2-imidazolidinone
  • THF tetrahydrofuran
  • DME dimethylformamid Non-protonic solvents
  • the reaction proceeds even under non-catalytic conditions, but the reaction rate is extremely slow.
  • a metal catalyst it is preferable to use a metal catalyst.
  • the term “metal-based catalyst” as used herein means not only a metal catalyst but also a metal compound catalyst.
  • a transition metal catalyst is preferable.
  • Specific examples include, for example, cuprous chloride, cupric chloride, tetrakis (triphenylphosphine) palladium (0), and among them, cuprous chloride is preferable.
  • the amount of the metal-based catalyst used in the present invention can be appropriately selected from the range of 0.0001 to 100 equivalents to the acid halide, and among them, 0.1 to 2.0 equivalents. A range is preferred.
  • the reaction temperature in the production method of the present invention can be appropriately selected from the range of —100X; to 200 ° C., and is preferably in the range of 0 ° C. to 100 ° C.
  • difluoroketene silyl acetal produced by this method can be isolated and purified alone, but as described above, in the step of producing a-difluoro-/-ketoester, It is preferable to use it as is without purification.
  • the present invention it is possible to efficiently and efficiently produce not only H, H-difluoro-/-ketoester but also H, H-difluoro-/-H-hydroxy ester which is particularly rich in optical activity. That is, the acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [2] are reacted under non-catalytic conditions, preferably in the presence of the metal-based catalyst. The reaction is carried out below to synthesize the di- and di-fluoro-ketoesters represented by the general formula [3], and the 5-ketoester is subjected to an asymmetric hydrogenation reaction using a hydrogenation catalyst. Then, the target substance can be efficiently obtained in a large amount.
  • the acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [2] are reacted under non-catalytic conditions, preferably in the presence of the metal-based catalyst
  • the hydrogenation catalyst is replaced by Even if 0.001 to 10 mol% is used, the reaction proceeds.
  • the amount of the hydrogenation catalyst used is more preferably 0.01 to 1 mol%, for example, 0.1 mol% or around 0.1 mol%.
  • a metal complex represented by the general formula [6] is preferably used.
  • M represents a metal atom
  • L represents an optically active phosphine ligand
  • the metal atom is Ru, Rh, Pd, Ir or Ni
  • the ligand (optically active phosphine ligand) combined therewith is (R) or (S) —BI NAP, (R) or (S) —T ol—BI NAP, (R) or (S) —Xy l—BI NAP, (R, R) or (S, S) —Me—D uphos, (R , R) or (S, S) —Me—BPE, (R, R) or
  • the ketoester of the general formula [3] can be efficiently synthesized, and the hydroxyester of the general formula [5] can be synthesized from the ketoester in a large amount even with a small amount of a catalyst. It is possible to obtain highly selective difluoro-1-hydroxy ester.
  • the hydroxy ester of the general formula [5] obtained by the production method of the present invention is useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals and the like.
  • the reaction solvent is not particularly limited, but alcohols, particularly Me OH (methyl alcohol), Et 0 H (Ethyl alcohol) is preferred.
  • the reaction temperature may be between 0 ° C. and 200 ° C., with around 100 ° C. being particularly preferred.
  • the pressure may be from 1 to: L 50 atm, but is especially preferred around lOOatm.
  • the fjij nil-acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [1] are used under non-catalytic conditions or in the presence of a gold-based catalyst. Therefore, it is possible to produce a large amount of Nakawa Takahi, a difluoro-5-ketoester at a high yield, for example, as a cross-linking agent for pharmaceuticals.
  • the difluoroketene silyl acetate represented by the general formula [2] can be produced from difluoro w steep ester represented by the general formula [4], lead and trialkylhalosilane. Further, the acetal can be supplied in a form that is efficiently preferable for the production process of the above-mentioned di-difluoro-/-ketoester and does not require separation and purification.
  • Method 1 The target compound was obtained in the same manner as in Example 1 except that benzoyl-cuff light was used instead of dodecanoic acid-cure light (369 mg, 90% yield) .
  • Method 2 In a suspension of zinc dust (654 mg, 10 mmo1) in acetonitrile (2.5 ml), add 1,2-promoen (0.06 ml) and trimethylsilyl chloride (0.06 ml) at 40 ° C and stirred for 10 minutes. At the same temperature, trimethylsilyl chloride (1.27 ml, 10 mmo1) was further added, and ethyl bromodifluoroacetate (0.64 ml) was added. 1, 5. Ommol) was added dropwise. After stirring at the same temperature for 20 minutes, the supernatant of the suspension was added to a previously prepared suspension of cuprous chloride (495 ml, 5.0 mmol) in DMI (5 ml).
  • the desired compound was obtained in the same manner as in Example 1 except that cyclohexanecarbonyl chloride was used instead of dodecanoic acid chloride [341 mg, 81% yield].
  • the desired compound was obtained in the same manner as in Example 1 except that acetyl chloride was used instead of dodecanoic acid chloride [161 mg, 54% yield].
  • the analytical data of this target compound is shown below.
  • the desired compound was obtained in the same manner as in Example 1 except that tert-butylacetylacetyl chloride was used instead of dodecanoic acid octalide [272 mg, 68% yield].
  • the desired compound was obtained in the same manner as in Example 1 except that 2-furoyl chloride was used instead of dodecanoic acid chloride [23 mg, 59% yield].
  • the desired compound was obtained in the same manner as in Example 1 except that benzyloxyacetyl chloride was used instead of dodecanoic acid cuprate [3 13 mg, 64% yield].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

An acid halide represented by general formula [1] is reacted with a difluoroketene silyl acetal represented by general formula [2] preferably in the presence of a transition metal catalyst to obtain an α, α -difluoro- β -ketoester represented by general formula [3]. According to need, the β - ketoester is subjected to an asymmetric hydrogenation reaction with the aid of a hydrogenation catalyst to induce the corresponding optically active α, α - difluoro- β -hydroxyester. (In general formulae, R?1, R2, R3, R4, and R5¿ each represents, e.g., alkyl; and X1 represents halogeno.) The process enables the α, α - difluoro- β -ketoester to be mass-produced in high yield. Also provided are: a process for producing the difluoroketene silyl acetal usable as an intermediate in that process; and a process for efficiently mass-producing an optically active α,αdifluoro-β-hydroxyester from the β-ketoester.

Description

明細 : Details :
—ジフルオロー β—ケトエステルの製造方法 -Difluoro-β-ketoester production method
i¾ 卜の禾 ll fflノ i¾ の
本発明は、 たとえば医薬や農薬等の生理活性物質として有用なひ, a ージフルオロー/?—ケトエステルの製造方法、 及びその合成中間体等と して有用なジフルォロケテンシリルァセタールの製造方法、 並びに光学 活性なひ, ひージフルオロー /5—ヒ ドロキシエステルの製造方法に関す る。  The present invention relates to a method for producing a difluoro /?-Ketoester useful as a physiologically active substance such as a medicine or a pesticide, and a method for producing difluoroketene silyl acetal useful as a synthetic intermediate thereof. Also, the present invention relates to a method for producing optically active aniline, difluoro-5-hydroxy ester.
 of
一般に、 機能性や生理活性を有する既知化合物から、 その水素原子を フッ素原子に置き換えることによって得られる化合物は、 そのフッ素原 子の特異的な電子効果によって、 その機能や生理活性が強化されたり、 或いは新しい機能や生理活性を発揮することが知られている。  In general, a compound obtained by replacing a hydrogen atom with a fluorine atom from a known compound having a function or a physiological activity has a function or a physiological activity enhanced by a specific electronic effect of the fluorine atom, Alternatively, it is known to exhibit new functions and physiological activities.
そのため、 既知化合物の原料と類似の構造を持つ含フッ素ビルディン グプロックが設計されている 〔「 9 0年代のフッ素生理活性物質」石川延 男監修 C M C社刊 ( 1 9 9 1 )〕、 「フッ素系材料の最新動向」 山辺正顕、 松尾仁編集 C M C社刊 ( 1 9 9 4 )〕。  For this reason, fluorinated building blocks having a structure similar to the raw materials of known compounds have been designed [“Fluorine Physiologically Active Substances in the 1990s”, supervised by Nobuo Ishikawa, published by CMC (1991), Latest Trends in Materials ”edited by Masaaki Yamabe and Hitoshi Matsuo, published by CMC (1994)].
その典型例の一つとして、 ひ, ひ 一ジフルオロー/? —ケトエステルを 挙げることができる。 これは主に医薬や農薬をつくるための重要な合成 中間体として知られているものである。  One typical example is H, H-difluoro /?-Ketoester. It is known primarily as an important synthetic intermediate for making pharmaceuticals and pesticides.
発明の曰的 しかしながら、 この化合物の製造方法は、 以下に述べるように改善す べき問題点を有している。 Insistence of invention However, the production method of this compound has problems to be improved as described below.
たとえば、 目的生成物に対応するひ , ひ一ジフルオロー/?ーヒ ドロキ シエステルを酸化する方法とか、 ケトエステルをフッ素化する方法 などが公知である。  For example, a method of oxidizing a di-difluoro /?-Hydroxy ester corresponding to a target product, a method of fluorinating a keto ester, and the like are known.
しかしながら、 これらの方法では使用の欠かせない酸化剤ゃフッ素化 剤などの試薬が高価につくこと、 しかも反応収率が低いと言う問題があ る (J.0rg, Chem. 1989, 54, 661; J. Am. Chem. Soc.1990, 112,8563)。 また、 本出願人は既に、 特顧平 1 1 — 3 3 9 3 3 2号において、 ジフ ルォロケテンシリルァセ夕一ルと酸クロリ ドとを、 トリエチルアミンな どの塩基の存在下に反応させる方法を提供した。  However, these methods have a problem that reagents such as an oxidizing agent and a fluorinating agent, which are indispensable for use, are expensive and the reaction yield is low (J. 0rg, Chem. 1989, 54, 661). J. Am. Chem. Soc. 1990, 112,8563). Also, the applicant has already disclosed in Japanese Patent Application No. 11-333932 that difluoroketene silyl acetate is reacted with acid chloride in the presence of a base such as triethylamine. Provided a method.
この製造方法は、 量産性等の点において改良がなされているが、 反応 収率を更に向上させることが望まれており、 また反応基質の一般性にお いて問題を残している。  Although this production method has been improved in terms of mass productivity and the like, it is desired to further improve the reaction yield, and there remains a problem in the generality of the reaction substrate.
そのほか、 ひー トリメチルシリル一ひ, ひージフルォロアセテートを 用いる合成法もあるが、 反応収率が低く、 その一般性については不明で ある (J. Org. Chem.1994, 64, 6717)o  In addition, there is a synthetic method using mono-trimethylsilyl mono- or di-fluoroacetate, but the reaction yield is low and its generality is unknown (J. Org. Chem. 1994, 64, 6717).
本発明は上記事情を改善するためになされたものであって、 その目的 は、 ひ, ひージフルォ口 一 /? —ケトエステルとその誘導体、 更にはその 合成中間体を一般性に富んだ方法で収率良く合成する方法を提供するこ とにある。  The present invention has been made in order to improve the above circumstances, and its object is to collect a thiophene, a thiofluoride mono /?-Ketoester and a derivative thereof, and a synthetic intermediate thereof by a general method. An object is to provide a method for efficiently synthesizing.
発明の構成 Structure of the invention
即ち、本発明のひ, ひ一ジフルオロー 5—ケトエステルの製造方法は、 下記一般式 〔 1〕 で表わされる酸ハライ ドと、 下記一般式 〔2〕 で表わ されるジフルォロケテンシリルァセタールとを無触媒条件下又は金属系 、、、 触媒の存在下に反応させて、 下記一般式 〔3〕 で表わされるひ, ひーン フルオロー/?ーケトエステルを得ることを特徴とする。 That is, the method of the present invention for producing a monodifluoro-5-ketoester comprises an acid halide represented by the following general formula [1] and a difluoroketene silyl acetal represented by the following general formula [2]. And non-catalytic conditions or metal-based The reaction is carried out in the presence of a catalyst to obtain a fluorinated / fluoroketoester represented by the following general formula [3].
一般式 〔 1〕 :  General formula [1]:
0  0
Figure imgf000005_0001
一般式 (: 3〕
Figure imgf000005_0002
Figure imgf000005_0001
General formula (: 3)
Figure imgf000005_0002
(但し、 前記一般式 〔 1 〕、 〔 2〕 及び 〔3〕 において、 R 1は、 アルキル 基、 ァリール基、 ァラルキル基、 アルケニル基、 アルキニル基、 アルキ ルォキシ基、 ァリールォキシ基、 アルケニルォキシ基、 アルキニルォキ シ基又はァラルキルォキシ基を示し、 R 2は、 アルキル基、 ァリ一ル基、 ァラルキル基、 アルケニル基又はアルキニル基を示し、 R 3、 R 4及び R 5 は、 互いに同一の若しくは異なる基であって、 互いに共同して環状の基 を形成してもよいアルキル基、 ァリール基、 ァラルキル基、 アルケニル 基、 アルキニル基、 アルコキシ基、 ァリ一ルォキシ基、 アルケニルォキ シ基、 アルキニルォキシ基又はァラルキルォキシ基を示し、 また X 1はフ ッ素原子、 塩素原子、 臭素原子等(以下、 同様)のハロゲン原子を示す。) また、 本発明のジフルォロケテンシリルァセ夕一ルの製造方法は、 下 /JPO 1/ 1103 (However, in the general formulas (1), (2) and (3), R 1 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkyloxy group, an aryloxy group, an alkenyloxy group, R 2 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group or an alkynyl group; R 3 , R 4 and R 5 are the same or different groups; And an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkenyloxy group, an alkynyloxy group or an aralkyloxy group which may form a cyclic group together with each other. represents a group, also X 1 is off Tsu atom, a chlorine atom, a bromine atom (hereinafter the same) a halogen atom shown .) The manufacturing method of difluoromethane O Roque Ten silyl § Se evening Ichiru of the present invention will / JPO 1/1103
記一般式 〔 4〕 で表わされるジフルォロ酢酸エステルと亜鉛と トリアル キルハロシランとを用いて、 下記一般式 〔2〕 で表わされるジフルォロ ケテンシリルァセタールを製造することを特徴とする。 The present invention is characterized in that a difluoroketene silyl acetal represented by the following general formula [2] is produced using a difluoroacetic acid ester represented by the general formula [4], zinc and trialkyl halosilane.
一般式 〔2〕 :
Figure imgf000006_0001
General formula [2]:
Figure imgf000006_0001
一般式 〔4〕: X2C F2C02R2 General formula [4]: X 2 CF 2 C0 2 R 2
(但し、 前記一般式 〔2〕 及び 〔4〕 において、 R2は、 アルキル基、 ァ リール基、 ァラルキル基、 アルケニル基又はアルキニル基を示し、 R3、 R4及び R5は、 互いに同一の若しくは異なる基であって、 互いに共同し て環状の基を形成してもよいアルキル基、 ァリール基、 ァラルキル基、 アルケニル基、 アルキニル基、 アルコキシ基、 ァリールォキシ基、 アル ケニルォキシ基、 アルキニルォキシ基又はァラルキルォキシ基を示し、 また X2は塩素原子、 臭素原子又はヨウ素原子 (以下、 同様) を示す。) また、 本発明のひ, ひ一ジフルオロー/?ーヒ ドロキシエステルの製造 方法は、 下記一般式 〔 1〕 で表わされる酸ハライ ドと、 下記一般式 〔2〕 で表わされるジフルォロケテンシリルァセタールとを無触媒条件下又は 金属系触媒の存在下に反応させて、 下記一般式 〔3〕 で表わされるひ, ひージフルオロー/?—ケトエステルを得、 更にこのひ, ひ 一ジフルォロ —^一ケトエステルを、 水添触媒を用いた不斉水素化反応により、 下記 一般式 〔5〕 で表わされる光学活性なひ, ひージフルオロー/?ーヒ ドロ キシエステルへ導くことを特徴とする。 (However, in the general formulas (2) and (4), R 2 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group or an alkynyl group, and R 3 , R 4 and R 5 are the same as each other. Or an alkyl group, aryl group, aralkyl group, alkenyl group, alkynyl group, alkoxy group, aryloxy group, alkenyloxy group, alkynyloxy group or And X 2 represents a chlorine atom, a bromine atom or an iodine atom (the same applies hereinafter). In addition, the method for producing the mono- or mono-difluoro-hydroxy ester of the present invention is as follows. An acid halide represented by the formula [1] and a difluoroketene silyl acetal represented by the following general formula [2] are reacted under non-catalytic conditions or with a metal. The reaction is carried out in the presence of a catalyst to obtain a difluoro /?-Ketoester represented by the following general formula [3]. Further, the di-difluoro-^-ketoester is subjected to asymmetric reaction using a hydrogenation catalyst. It is characterized in that it is converted into an optically active compound represented by the following general formula [5] by hydrogenation reaction.
一般式 〔 1〕 General formula (1)
c o n c o n
一般式 〔2〕 X  General formula (2) X
F  F
2 \ R'  2 \ R '
F OR 一般式 〔3〕  F OR General formula (3)
CF 2 — C 一 OR' 一般式 〔 5〕 : CF 2 — C-OR 'General formula [5]:
OH OH
CH CF 2 一 C — OR' CH CF 2 one C — OR '
(但し、 前記一般式 〔 1〕、 〔2〕、 〔3〕 及び 〔5〕 において、 R1はアル キル基、 ァリール基、 ァラルキル基、 アルケニル基、 アルキニル基、 ァ ルキルォキシ基、 ァリールォキシ基、 アルケニルォキシ基、 アルキニル ォキシ基又はァラルキルォキシ基を示し、 R2は、 アルキル基、 ァリール 基、 ァラルキル基、 アルケニル基又はアルキニル基を示し、 R3 、 R4 及び R5 は、 互いに同一の若しくは異なる基であって、 互いに共同して 環状の基を形成してもよいアルキル基、 ァリール基、 ァラルキル基、 ァ ルケニル基、 アルキニル基、 アルコキシ基、 ァリールォキシ基、 ァルケ ニルォキシ基、 アルキニルォキシ基又はァラルキルォキシ基を示し、 X1 はハロゲン原子を示し、 また * Cはキラルな炭素原子を示す。) 本発明によると、 前記一般式 〔 1〕 で表わされる酸ハライ ドと前記一 般式 〔2〕 で表わされるジフルォロケテンシリルァセタールを、 無触媒 条件下又は金属系触媒の存在下に反応させるので、 たとえば医薬や農薬 の中間体として有用なひ, ひ—ジフルオロー 5—ケトエステルを従来技 術による場合に比べて高い収率で量産することができ、 しかも使用する 基質の選択範囲を広くすることができる。 (However, in the above general formulas (1), (2), (3) and (5), R 1 is an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkyloxy group, an aryloxy group, an alkenyl R 2 represents an alkyl group, an aralkyl group, an aralkyl group, an alkenyl group or an alkynyl group; R 3 , R 4 and R 5 represent the same or different groups; An alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkenyloxy group, an alkynyloxy group or an aralkyloxy group which may form a cyclic group together with each other. X 1 Represents a halogen atom, and * C represents a chiral carbon atom. According to the present invention, the acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [2] are reacted under non-catalytic conditions or in the presence of a metal-based catalyst. Because of the reaction, it is possible to mass-produce para-difluoro-5-ketoester, which is useful, for example, as an intermediate for pharmaceuticals and agricultural chemicals in higher yields than in the case of conventional techniques, and to broaden the selection range of substrates to be used. can do.
また、 上記反応において、 ジフルォロケテンシリルァセ夕一ルはひ, ひ一ジフルォ口— /?ーケトエステルの合成中間体の役割を果たせるもの であるが、 本発明はこの中間体を、 前記一般式 〔4〕 で表わされるジフ ルォロ酢酸エステルと亜鉛と トリアルキルハロシランを用いて効率良く 製造することができる。  In the above reaction, difluoroketene silyl acetate can serve as an intermediate for the synthesis of di-difluoro-/-keto-esters. It can be produced efficiently using the difluoroacetate represented by the formula [4], zinc and trialkylhalosilane.
こうして製造されるジフルォロケテンシリルァセタールは、 単離精製 することなくそのままの状態で( i n s i t u ), 前記酸ハライ ドと反 応させて前記ひ, ひ一ジフルオロー/?ーケトエステルをすることができ る。 つまり、 ジフルォロケテンシリルァセタールは、 目的物を得る過程 において単離を要することなしにそのまま系内で用いても何ら支障が生 じないばかりか、 工程の効率に大きく貢献することが見出された。 一方、 本発明によると、 前記ひ, ひージフルオロー/?ーケトエステル から、 更に光学活性物質を製造することができる。  The difluoroketene silyl acetal produced in this way can be reacted with the acid halide to form the dihydroketene silyl acetal in situ without isolation and purification. You. In other words, difluoroketene silyl acetal can be used in the system without isolation in the process of obtaining the desired product without isolation, and not only does not cause any problem, but also greatly contributes to the efficiency of the process. Was issued. On the other hand, according to the present invention, an optically active substance can be further produced from the above-mentioned difluoro- / di-ketoester.
即ち、 前記ひ, ひージフルオロー/?—ケトエステルを用いて、 水添触 媒の存在下に不斉水素化反応を行うことによって、 光学活性に富むひ, ひージフルオロー/? -ヒ ドロキシエステルを収率よく大量に製造するこ とができる。  That is, an asymmetric hydrogenation reaction is carried out in the presence of a hydrogenated catalyst using the above-mentioned difluoro-/?-Ketoester to obtain optically-enriched difluoro-/?-Hydroxyester. It can be mass-produced efficiently.
以下、 本発明を実施の形態に基づいて更に具体的に説明する。 本発明において、 前記一般式 〔 1〕、 〔2〕、 〔3〕 又は 〔4〕 に示され るアルキル基 (又はアルキル) は、 直鎖状、 分枝鎖状又は環状構造を持 つものであり、 その内部にヘテロ原子又はハロゲン原子の置換基を有し てもよい炭素数 1 〜 3 0の、枝分れがあってもよいメチル基、ェチル基、 プロピル基、 ブチル基等のアルキル基、 又はこれと同等の炭素数からな るシク口アルキル基である。 Hereinafter, the present invention will be described more specifically based on embodiments. In the present invention, the alkyl group (or alkyl) represented by the general formula [1], [2], [3] or [4] has a linear, branched or cyclic structure. An alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may have a heteroatom or a halogen atom and may have a substituent and has 1 to 30 carbon atoms; Or a cycloalkyl group having an equivalent number of carbon atoms.
また、 前記各一般式中に示されるァリール基 (又はァリール) として は、 置換基を有してもよいフエニル基、 ナフチル基、 アンスリル基、 へ テロ原子又はハロゲン原子を有する複素環芳香族基等が例示できる。 そ の置換基としては、 枝分れがあってもよい炭素数 1 〜 1 0個のアルキル 基、 アルコキシ基、 アミノ基等が例示できる。 ァラルキル基 (又はァラ ルキル) としては、 ベンジル基、 p—メチルベンジル基、 ナフチルメチ ル基、 フルフ リル基、 ひ—フヱネチル基等が例示できる。  Examples of the aryl group (or aryl) shown in each of the above general formulas include a phenyl group which may have a substituent, a naphthyl group, an anthryl group, a heterocyclic aromatic group having a hetero atom or a halogen atom, and the like. Can be exemplified. Examples of the substituent include an alkyl group having 1 to 10 carbon atoms which may be branched, an alkoxy group, an amino group and the like. Examples of the aralkyl group (or aralkyl) include a benzyl group, a p-methylbenzyl group, a naphthylmethyl group, a furfuryl group, and a polyphenyl group.
アルケニル基 (又はアルケニル) としては、 ビニル基、 ?—スチリル 基、 1—プロべニル基、 1—ブテニル基、 1—へキセニル基、 1—デセ ニル基、 シクロへキセニル基、 ァリル基、 シンナミル基、 2—ブテニル 基、 2 _デセニル基等を例示することができる。 アルキニル基 (又はァ ルキニル) としては、 ェチニル基、 フエニルェチニル基、 2—プロビニ ル基等が例示できる。  Examples of the alkenyl group (or alkenyl) include a vinyl group,? -Styryl group, 1-probenyl group, 1-butenyl group, 1-hexenyl group, 1-decenyl group, cyclohexenyl group, aryl group, Examples thereof include a cinnamyl group, a 2-butenyl group and a 2-decenyl group. Examples of the alkynyl group (or alkynyl) include an ethynyl group, a phenylethynyl group, and a 2-propyl group.
本発明の各製造方法に用いる溶媒は、特に限定されるものではないが、 好ましいのは、 1 , 3—ジメチルー 2 —イ ミダゾリジノン (D M I )、 ァ セ トニトリル、テトラヒ ドロフラン(T H F )、ジメチルホルムアミ ド(D M F )、 ジメ トキシェタン (D M E ) 等の非プロ トン性溶媒である。 本発明のひ, ひ—ジフルオロー/?ーケトエステルの製造方法では、 無 触媒の条件下でも反応が進行するが、 反応速度が著しく遅くなるので、 一般的には金属系触媒を用いた方が好ましい。 ただし、 ここに言う金属 系触媒とは、 金属触媒に限らず金属化合物触媒も意味する。 The solvent used in each of the production methods of the present invention is not particularly limited, but preferred are 1,3-dimethyl-2-imidazolidinone (DMI), acetonitrile, tetrahydrofuran (THF), dimethylformamid Non-protonic solvents such as amide (DMF) and dimethoxetane (DME). In the method of the present invention, the reaction proceeds even under non-catalytic conditions, but the reaction rate is extremely slow. Generally, it is preferable to use a metal catalyst. However, the term “metal-based catalyst” as used herein means not only a metal catalyst but also a metal compound catalyst.
その金属系触媒としては遷移金属系触媒が好ましい。具体例としては、 たとえば塩化第一銅、 塩化第二銅、 テトラキス (トリフエニルホスフィ ン) パラジウム ( 0 ) などを挙げることができるが、 中でも塩化第一銅 が好ましい。  As the metal catalyst, a transition metal catalyst is preferable. Specific examples include, for example, cuprous chloride, cupric chloride, tetrakis (triphenylphosphine) palladium (0), and among them, cuprous chloride is preferable.
本発明における前記金属系触媒の使用量は、前記酸ハライ ドに対して、 0 . 0 0 0 1 〜 1 0 0当量の範囲から適宜、 選択でき、 その中でも 0 . 1 〜 2 . 0当量の範囲が好ましい。  The amount of the metal-based catalyst used in the present invention can be appropriately selected from the range of 0.0001 to 100 equivalents to the acid halide, and among them, 0.1 to 2.0 equivalents. A range is preferred.
本発明の製造方法における反応温度は、 — 1 0 0 X;〜 2 0 0 °Cの範囲 を適宜、 選択でき、 0 °C〜 1 0 o °cの範囲が好ましい。  The reaction temperature in the production method of the present invention can be appropriately selected from the range of —100X; to 200 ° C., and is preferably in the range of 0 ° C. to 100 ° C.
また、 この方法で製造されるジフルォロケテンシリルァセタールは、 これを単独に単離精製することができるが、 前述したように前記ひ, a —ジフルオロー/?ーケトエステルの製造工程において、 単離精製せずに そのまま使用することが好ましい。  Further, the difluoroketene silyl acetal produced by this method can be isolated and purified alone, but as described above, in the step of producing a-difluoro-/-ketoester, It is preferable to use it as is without purification.
次に、 本発明によると、 ひ, ひージフルオロー/?—ケトエステルだけ ではなく、 これから特に光学活性に富むひ, ひ一ジフルオロー/?ーヒ ド ロキシエステルを大量に効率よく製造することができる。 即ち、 前記一 般式 〔 1〕 で表わされる酸ハライ ドと、 前記一般式 〔2〕 で表わされる ジフルォロケテンシリルァセタールとを、 無触媒条件下、 好ましくは前 記金属系触媒の存在下に反応させて、前記一般式〔3〕で表わされるひ, ひージフルオロー/?ーケトエステルを合成し、 更にこの 5—ケトエステ ルを、 水添触媒を用いて不斉水素化反応させる。 そうすると、 上記目的 物質を効率よく大量に得ることができる。  Next, according to the present invention, it is possible to efficiently and efficiently produce not only H, H-difluoro-/-ketoester but also H, H-difluoro-/-H-hydroxy ester which is particularly rich in optical activity. That is, the acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [2] are reacted under non-catalytic conditions, preferably in the presence of the metal-based catalyst. The reaction is carried out below to synthesize the di- and di-fluoro-ketoesters represented by the general formula [3], and the 5-ketoester is subjected to an asymmetric hydrogenation reaction using a hydrogenation catalyst. Then, the target substance can be efficiently obtained in a large amount.
ここで、 前記水添触媒を前記ひ, ひージフルォ口一/? —ケトエステル に対して 0. 0 0 0 1〜 1 0モル%使用しても、 反応が進行する。 この 水添触媒の使用量は、 0. 0 1〜 1モル%が更によく、 例えば 0. 1モ ル%又はその前後とする。 Here, the hydrogenation catalyst is replaced by Even if 0.001 to 10 mol% is used, the reaction proceeds. The amount of the hydrogenation catalyst used is more preferably 0.01 to 1 mol%, for example, 0.1 mol% or around 0.1 mol%.
こうした水添触媒として、 前記一般式 〔 6〕 で表される金属錯体を用 いるのがよい。  As such a hydrogenation catalyst, a metal complex represented by the general formula [6] is preferably used.
一般式 〔6〕:  General formula [6]:
M 〔L〕  M (L)
(但し、 前記一般式 〔6〕 において、 Mは金属原子、 Lは光学活性なホ スフィン配位子を示す。)  (However, in the general formula [6], M represents a metal atom, and L represents an optically active phosphine ligand.)
ここで、 前記金属原子が、 Ru、 Rh、 P d、 I r又は N iであり、 これと組み合わせる前記配位子(光学活性なホスフィン配位子)が、 (R) 又は (S) — B I NAP、 (R) 又は (S) —T o l— B I NAP、 (R) 又は (S) — Xy l—B I NAP、 (R, R) 又は (S, S ) — Me— D upho s、 (R, R) 又は (S, S ) —Me— B P E、 (R, R) 又は Here, the metal atom is Ru, Rh, Pd, Ir or Ni, and the ligand (optically active phosphine ligand) combined therewith is (R) or (S) —BI NAP, (R) or (S) —T ol—BI NAP, (R) or (S) —Xy l—BI NAP, (R, R) or (S, S) —Me—D uphos, (R , R) or (S, S) —Me—BPE, (R, R) or
(S, S ) — D i PAMP、 (R, R) 又は (S, S ) — CH I RAPH 0 S、 (R, R) 又は (S, S ) — B PPM、 (R, R) 又は (S, S ) -NORPHO S, 又は (R, R) 又は ( S, S ) —D I OPなどが例 示され、 例えば、 下記の (R) — B I N APを配位子とする Ru C 12 (S, S) — Di PAMP, (R, R) or (S, S) — CH I RAPH 0 S, (R, R) or (S, S) — B PPM, (R, R) or ( (S, S) -NORPHO S, or (R, R) or (S, S) —DIOP, etc. For example, the following (R) —BIN AP as a ligand Ru C 12
〔(R) — B I NAP〕、 R u B r ? 〔(R) _B I NAP〕 等がある。 [(R) — BI NAP], RuBr ? [(R) _BINAP], and the like.
Figure imgf000011_0001
Figure imgf000011_0001
(R)-BINAP EuCl2[(E)-BINAP〕 RuBr2 C(R)-BINAP〕 本発明の製造方法によって、 前記一般式 〔3〕 のケ 卜エステルを効率 良く合成でき、 更にケトエステルから一般式 〔5〕 のヒ ドロキシエステ ルを少ない触媒使用量でも大量合成が可能となり、 光学活性なひ, ひ一 ジフルォロ一 5—ヒ ドロキシエステルを高選択的に得ることができる。 なお、 本発明の製造方法によって得られる一般式 〔5〕 のヒ ドロキシ エステルは、 医薬、 農薬等の合成中間体として有用である。 (R) -BINAP EuCl 2 [(E) -BINAP] RuBr 2 C (R) -BINAP] According to the production method of the present invention, the ketoester of the general formula [3] can be efficiently synthesized, and the hydroxyester of the general formula [5] can be synthesized from the ketoester in a large amount even with a small amount of a catalyst. It is possible to obtain highly selective difluoro-1-hydroxy ester. Incidentally, the hydroxy ester of the general formula [5] obtained by the production method of the present invention is useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals and the like.
即ち、 例えば一般式 〔5〕 の化合物のような  That is, for example, a compound of the general formula (5)
0H 0H
R1 CFr,C02Et が医薬品の中間体として使用できることに関しては、米国特許第 4,857, 507号において次のような化合物が Renin inhibitorとして活性のある ことが報告されている。 With respect to R 1 CF r, C0 2 Et can be used as intermediates for pharmaceuticals, U.S. Patent No. 4,857, the following compounds in the 507 Patent has been reported to be active as Renin Inhibitor.
OH  OH
Boc-Phe-Leu-HN CF 人  Boc-Phe-Leu-HN CF people
バニ °2 Bani ° 2
IC50=10nM 次に、 一般式 〔5〕 のヒ ドロキシエステルを合成する反応において、 反応溶媒は特に限定されるものではないが、 アルコール系、 特に Me O H (メチルアルコール)、 E t 0 H (エチルアルコール) が好ましい。 反応温度は 0°C〜 2 00 °Cであってよいが、 1 00°C近辺が特に好ま しい。 IC 50 = 10 nM Next, in the reaction for synthesizing the hydroxy ester of the general formula [5], the reaction solvent is not particularly limited, but alcohols, particularly Me OH (methyl alcohol), Et 0 H (Ethyl alcohol) is preferred. The reaction temperature may be between 0 ° C. and 200 ° C., with around 100 ° C. being particularly preferred.
圧力は 1〜: L 50 a t mであってよいが、 l O O a t m近辺が特に好 ましい。  The pressure may be from 1 to: L 50 atm, but is especially preferred around lOOatm.
纏卜の利用可能件 % "刀では fjij nil -般式 〔 1〕 で表わされる酸 ハライ ドと、 前記一般^ 〔 2〕 で表わされるジフルォロケテンシリルァ セタールとを、無触媒条件下又は金厲系触媒の 在下に反応させるので、 たとえば医薬ゃ農粱の Γ成屮問休として 'ίί川なひ , ひ一ジフルオロー 5 —ケトエステルを高い収率で大量に製造することができる。 Available items % "In a sword, the fjij nil-acid halide represented by the general formula [1] and the difluoroketene silyl acetal represented by the general formula [1] are used under non-catalytic conditions or in the presence of a gold-based catalyst. Therefore, it is possible to produce a large amount of Nakawa Takahi, a difluoro-5-ketoester at a high yield, for example, as a cross-linking agent for pharmaceuticals.
そして、 一般式 〔2〕 で ¾わされるジフルォロケテンシリルァセ夕一 ルは一般式 〔4〕 で¾わされるジフルォロ W峻エステルと亚鉛と 卜 リア ルキルハロシランとから製造することができ、 しかもこのァセタールは 前記ひ , ひ一ジフルオロー/?ーケ 卜エステルの製造工程にとって効率的 に好ましい、 離精製の必要のない形で川いることができる。  The difluoroketene silyl acetate represented by the general formula [2] can be produced from difluoro w steep ester represented by the general formula [4], lead and trialkylhalosilane. Further, the acetal can be supplied in a form that is efficiently preferable for the production process of the above-mentioned di-difluoro-/-ketoester and does not require separation and purification.
rnmm rnmm
以下、 本発明を^施例によりさらに詐細に説明するが、 本発明はそれ に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
実施例 1 Example 1
( 2 , 2—ジフルォロ一 3 _ォキソ ドデカン酸ェチルの合成) 塩化第一銅 ( 1 98mg、 2. Ommo l ) の DM I ( 2ml ) のけ ん濁液に、 ドデカン酸クロリ ド ( 374 mg、 1. 8mmo 1 )を 50°C で加え、 さらに、 ジフルォロケテンェチル卜 リメチルシリルァセタール ( 3 9 2 m g、 2. 0mg、 1. 8 mmo l ) を滴下し、 5 0°Cで 30 分攪拌した後、 室温にもどし、 ^化メチレン ( 1 5 ml ) を加え、 沈殿 物をセライ 卜ろ過した。 溶媒を減圧蒸 iiし、 シリカゲルクロマトグラフ ィ一で精製することにより、 的化合物を 4 3 6 mg ( 87 %収率) 得 た。  (Synthesis of 2,2-difluoro-13-oxododecanoic acid ethyl ester) To a suspension of cuprous chloride (198 mg, 2.Ommol) in DMI (2 ml) was added dodecanoic chloride (374 mg, 1.8 mmo 1) at 50 ° C, difluoroketenethyl trimethylsilyl acetal (392 mg, 2.0 mg, 1.8 mmol) was added dropwise at 50 ° C. After stirring for 30 minutes, the temperature was returned to room temperature, methylene chloride (15 ml) was added, and the precipitate was filtered through celite. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel chromatography to obtain 436 mg of the target compound (87% yield).
この Ξ的化合物の分析デ一夕を下記に示す。 1H-NMR (CDC13) (5(ppm): 0.88(t,J=6.6Hz,3H), 1.22-1.38(m, 12H), An analysis of the target compound is shown below. 1H-NMR (CDC13) (5 (ppm): 0.88 (t, J = 6.6 Hz, 3H), 1.22-1.38 (m, 12H),
1.35(t,J=7.1Hz,3H),1.55-1.73(m,2H), 2.68-2.78(m,2H),4.37(q,J=7.1Hz,2H). 19F-NMR (CDC13) (5 (ppm): - 114.17(s,2F).  1.35 (t, J = 7.1Hz, 3H), 1.55-1.73 (m, 2H), 2.68-2.78 (m, 2H), 4.37 (q, J = 7.1Hz, 2H) .19F-NMR (CDC13) (5 (ppm):-114.17 (s, 2F).
IR (neat) c m - 1: 2927,2856,1781,1748,1314,1140.  IR (neat) cm-1: 2927,2856,1781,1748,1314,1140.
実施例 2 Example 2
( 2, 2—ジフルオロー 3—ォキソ一 3—フエニルプロピオン酸ェチ ルの合成)  (Synthesis of 2,2-difluoro-3-oxo-1-3-phenylpropionate)
方法 1 ) ドデカン酸ク口リ ドの代わりにべンゾイルク口ライ ドを用い たことを除いて、 前記実施例 1と同様にして目的化合物を得た 〔3 6 9 mg、 9 0 %収率〕。  Method 1) The target compound was obtained in the same manner as in Example 1 except that benzoyl-cuff light was used instead of dodecanoic acid-cure light (369 mg, 90% yield) .
方法 2 )亜鉛末( 6 54 mg、 1 0 mm o 1 )のァセ トニト リル( 2. 5ml ) けん濁液に、 1、 2—プロモェ夕ン ( 0. 06ml) と トリメ チルシリルクロライ ド ( 0. 0 6 ml) を 40°Cで加え 1 0分間攪拌し た後、 同温度でトリメチルシリルクロライ ド ( 1. 27ml、 1 0 mm o 1 ) をさらに加え、 ブロモジフルォロ酢酸ェチル( 0. 64m 1、 5. Ommo l) を滴下した。 同温度で 20分攪拌した後、 そのけん濁液の 上澄みを、 あらかじめ用意しておいた塩化第一銅 (49 5 ml、 5. 0 mmo l) の DM I ( 5 m 1 ) けん濁液に室温で加え、 さらにべンゾィ ルクロライ ド ( 0. 5 8 m 1、 5. 0 mmo 1 ) を加え 80 °Cで 2時間 攪拌した。 反応液を室温にもどし、 溶媒を減圧で留去し、 シリカゲルク 口マトグラフィ一で精製することにより、 目的化合物を 6 8 1. 2 mg ( 60 %収率) 得た。 なお、 上記けん濁液には、 中間体であるジフルォ ロケテンシリルァセタールが生成されているが、 その同定データを下記 に示す。 19F-NMR (THF) ( (ppm) : -126.76(d,J=106Hz),-128.19(d,J=106Hz). 方法 3 ) ベンゾイルク口ライ ド ( 0. 2 ml、 1. 8mmo l ) の D M I ( 2 m l ) 溶液に 50 °Cでジフルォロケテンェェチルトリメチルシ リルァセ夕一ル ( 3 9 2mg、 2. Ommo l ) を加え、 30分攪拌し た。 反応液を 0. 5 NHC 1水溶液にあけ抽出し、 乾燥後、 溶媒を減圧 留去し、 しかるのちシリカゲルクロマトグラフィ一で精製することによ り、 目的の化合物 1 1 9 mg ( 2 9 %収率) を得た。 Method 2) In a suspension of zinc dust (654 mg, 10 mmo1) in acetonitrile (2.5 ml), add 1,2-promoen (0.06 ml) and trimethylsilyl chloride (0.06 ml) at 40 ° C and stirred for 10 minutes. At the same temperature, trimethylsilyl chloride (1.27 ml, 10 mmo1) was further added, and ethyl bromodifluoroacetate (0.64 ml) was added. 1, 5. Ommol) was added dropwise. After stirring at the same temperature for 20 minutes, the supernatant of the suspension was added to a previously prepared suspension of cuprous chloride (495 ml, 5.0 mmol) in DMI (5 ml). Benzoyl chloride (0.58 m1, 5.0 mmo 1) was added at room temperature, and the mixture was stirred at 80 ° C. for 2 hours. The reaction solution was returned to room temperature, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography to obtain 681.2 mg (60% yield) of the target compound. In the above suspension, difluoroketene silyl acetal, which is an intermediate, is generated. The identification data is shown below. 19F-NMR (THF) ((ppm): -126.76 (d, J = 106 Hz), -128.19 (d, J = 106 Hz). Method 3) Benzoyl-capped mouth (0.2 ml, 1.8 mmol) To a DMI (2 ml) solution at 50 ° C. was added difluoroketenethyl trimethylsilyl acetate (392 mg, 2.Ommol) and stirred for 30 minutes. The reaction mixture was poured into an aqueous solution of 0.5 NHC 1 and extracted. After drying, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel chromatography to obtain 119 mg of the desired compound (29% yield). ) Got.
上記目的化合物の分析データを下記に示す。  The analytical data of the target compound are shown below.
1H-NMR (CDC13) δ (ppm) : 1.32(t,J=7. lHz,3H),4.39(q,J=7.1Hz,2H),  1H-NMR (CDC13) δ (ppm): 1.32 (t, J = 7.lHz, 3H), 4.39 (q, J = 7.1Hz, 2H),
7.48-7.73(m,2H),8.02-8.12(m,2H).  7.48-7.73 (m, 2H), 8.02-8.12 (m, 2H).
19F-NMR (CDC13) δ (ppm) : -108.15(s,2F).  19F-NMR (CDC13) δ (ppm): -108.15 (s, 2F).
IR (neat) c m - 1 : 1776,1716,1701,1316,1159.  IR (neat) cm-1: 1776,1716,1701,1316,1159.
Import
( 2 , 2—ジフルオロー 3—ォキソ— 5—フエ二ル吉草酸ェチルの合成) ドデカン酸クロリ ドの代りにヒ ドロシンナモイルク口リ ドを用いたこ とを除いて、前記実施例 1と同様にして目的化合物を得た〔3 6 9 mg、 80%収率〕。  (Synthesis of 2,2-difluoro-3-oxo-5-phenylethyl valerate) Same as Example 1 except that dodecanoic acid chloride was used instead of hydrodecynamoyl oxalate. To give the desired compound [369 mg, 80% yield].
この目的化合物の分析データを下記に示す。  The analytical data of this target compound is shown below.
1H-NMR (CDC13) δ (ppm) : 1.32(t,
Figure imgf000015_0001
1H-NMR (CDC13) δ (ppm): 1.32 (t,
Figure imgf000015_0001
4.33(q,J=7.1Hz,2H),7.10-7.36(m,5H). 4.33 (q, J = 7.1Hz, 2H), 7.10-7.36 (m, 5H).
19F-NMR (CDC13) δ (ppm) : -114.42(s,2F). 19F-NMR (CDC13) δ (ppm): -114.42 (s, 2F).
IR (neat) c m- 1 : 1779,1749,1315,1122.  IR (neat) cm-1: 1779,1749,1315,1122.
実施例 4 Example 4
( 2 , 2—ジフルオロー 3—ォキソ一 4一酪酸ェチルの合成)  (Synthesis of 2,2-difluoro-3-oxo-14-ethyl monobutyrate)
ドデカン酸ク口リ ドの代りにフェニルァセチルク口リ ドを用いたこと を除いて、 前記実施例 1と同様にして目的化合物を得た 〔 3 0 5 mg、 70 %収率〕。 Use of phenylacetyl-cuff instead of dodecanoic-cuff Except for above, the target compound was obtained in the same manner as in Example 1 [305 mg, 70% yield].
この目的化合物の分析データを下記に示す。  The analytical data of this target compound is shown below.
1H-麵 R (CDC13) δ (ppm) : 1.31(t, J=7. lHz,3H),4.05(s,2H),  1H- 麵 R (CDC13) δ (ppm): 1.31 (t, J = 7.lHz, 3H), 4.05 (s, 2H),
4.31(q,J=7.1Hz,2H),7.17-7.42(m,5H). 4.31 (q, J = 7.1Hz, 2H), 7.17-7.42 (m, 5H).
19F-NMR (CDC13) δ (ppm) : - 133.80(s,2F). 19F-NMR (CDC13) δ (ppm): -133.80 (s, 2F).
IR (neat) c m-1 : 1779, 1752, 1315, 1143.  IR (neat) cm-1: 1779, 1752, 1315, 1143.
卖施例 5 卖 Example 5
( 2 , 2—ジフルォロ一 3—ォキソ一 3—シク口へキシルプロピオン酸 ェチルの合成)  (Synthesis of 2,2-difluoro-3-oxo-13-cyclohexyl hexylpropionate)
ドデカン酸クロリ ドの代りにシクロへキサンカルボニルクロリ ドを用 いたことを除いて、 前記実施例 1と同様にして目的化合物を得た 〔34 1 mg、 8 1 %収率〕。  The desired compound was obtained in the same manner as in Example 1 except that cyclohexanecarbonyl chloride was used instead of dodecanoic acid chloride [341 mg, 81% yield].
この目的化合物の分析データを下記に示す。  The analytical data of this target compound is shown below.
1H-NMR (CDC13) δ (ppm) : 1.10- 2.00(m, 10H), 1.35(t, J二 7.1Ηζ, 3H),  1H-NMR (CDC13) δ (ppm): 1.10-2.00 (m, 10H), 1.35 (t, J-7.1Ηζ, 3H),
2.82-2.99(m,lH),4.87(q,J=7.1Hz,2H). 19F-NMR (CDC13) δ (ppm) : - 113.63(s,2F).  2.82-2.99 (m, lH), 4.87 (q, J = 7.1 Hz, 2H). 19F-NMR (CDC13) δ (ppm):-113.63 (s, 2F).
IR (neat) c m-1: 1781, 1738, 1315, 1144.  IR (neat) cm-1: 1781, 1738, 1315, 1144.
( 2 , 2—ジフルオロー 3—ォキソ酪酸ェチルの合成) (Synthesis of 2,2-difluoro-3-oxobutyrate)
ドデカン酸クロリ ドの代りにァセチルクロリ ドを用いたことを除いて、 前記実施例 1と同様にして目的化合物を得た〔 1 6 1 mg、 54%収率〕。 この目的化合物の分析データを下記に示す。  The desired compound was obtained in the same manner as in Example 1 except that acetyl chloride was used instead of dodecanoic acid chloride [161 mg, 54% yield]. The analytical data of this target compound is shown below.
1H-NMR (CDC13) δ (ppm) : 1.36(t, J=7.2Hz,3H),2.41(t, J=1.6Hz,3H),  1H-NMR (CDC13) δ (ppm): 1.36 (t, J = 7.2 Hz, 3H), 2.41 (t, J = 1.6 Hz, 3H),
4.38(q,J=7.2Hz,2H). W 1/665 1/ 11 3 4.38 (q, J = 7.2Hz, 2H). W 1/665 1/11 3
19F-NMR (CDC13) δ (ppm) : -114.20(s,ZF) . 19F-NMR (CDC13) δ (ppm): -114.20 (s, ZF).
IR (neat) c m - 1 : 1779,1760,1315,1135. IR (neat) cm-1: 1779,1760,1315,1135.
mrn i  mrn i
( 2, 2—ジフルオロー 3—ォキソ _ 4—ペンテン酸ェチルの合成) ドデカン酸クロリ ドの代りにシンナモイルク口リ ドを用いたことを除 いて、前記実施例 1と同様にして目的化合物を得た〔334 mg、 73 % 収率〕。  (Synthesis of 2,2-difluoro-3-oxo_4-ethylpentenoate) The target compound was obtained in the same manner as in Example 1 except that cinnamoyl oxalate was used in place of dodecanoic acid chloride. [334 mg, 73% yield].
この目的化合物の分析データを下記に示す。  The analytical data of this target compound is shown below.
1H-NMR (CDC13) d(ppm) : 1.35(t, J=7.2Hz,3H),4.39(q,J=7.2Hz,2H),  1H-NMR (CDC13) d (ppm): 1.35 (t, J = 7.2 Hz, 3H), 4.39 (q, J = 7.2 Hz, 2H),
7.04-7.17(m,lH), 7.38-7.69(m,5H), 7.88-7.99(m,lH).  7.04-7.17 (m, lH), 7.38-7.69 (m, 5H), 7.88-7.99 (m, lH).
19F-NMR (CDC13) δ (ppm) : -114.15(s,2F).  19F-NMR (CDC13) δ (ppm): -114.15 (s, 2F).
IR (neat) c m - 1 : 1776, 1706, 1609, 1305, 1127·  IR (neat) cm-1: 1776, 1706, 1609, 1305, 1127
実施例 8  Example 8
( 2, 2—ジフルオロー 5, 5—ジメチル一 3—ォキソへキサン酸ェチ ルの合成)  (Synthesis of 2,2-difluoro-5,5-dimethyl-1-oxohexanoate)
ドデカン酸ク口リ ドの代りに t e r t—プチルァセチルクロリ ドを用 いたことを除いて、 前記実施例 1と同様にして目的化合物を得た 〔27 2 mg、 6 8 %収率〕。  The desired compound was obtained in the same manner as in Example 1 except that tert-butylacetylacetyl chloride was used instead of dodecanoic acid octalide [272 mg, 68% yield].
この目的化合物の分析デ一夕を下記に示す。  An analysis of the target compound is shown below.
1H-丽 R (CDC13) δ (ppm) : 1.08(s,9H), 1.37(t, J=7.2Hz,3H),  1H- 丽 R (CDC13) δ (ppm): 1.08 (s, 9H), 1.37 (t, J = 7.2Hz, 3H),
2.61-2.66(m,2H),4.38(q,J=7.2Hz,2H). 2.61-2.66 (m, 2H), 4.38 (q, J = 7.2Hz, 2H).
19F-NMR (CDC13) δ (ppm) : -114.10(s,2F). 19F-NMR (CDC13) δ (ppm): -114.10 (s, 2F).
IR (neat) c m-1 : 1781,1760,1314,1122. IR (neat) cm-1: 1781,1760,1314,1122.
mrn 8 ( 2, 2—ジフルォロ一 3— ( 2—フリル) 一 3—ォキソプロピオン酸 ェチルの合成) mrn 8 (Synthesis of 2,2-difluoro-1- (2-furyl) -13-oxopropionate)
ドデカン酸クロリ ドの代りに 2—フロイルクロリ ドを用いたことを除 いて、前記実施例 1 と同様にして目的化合物を得た〔2 3 2 mg、 5 9 % 収率〕。  The desired compound was obtained in the same manner as in Example 1 except that 2-furoyl chloride was used instead of dodecanoic acid chloride [23 mg, 59% yield].
この目的化合物の分析データを下記に示す。  The analytical data of this target compound is shown below.
1H-匪 R (CDC13) δ (ppm) : 1.32(t,J=7.2Hz,3H),4.38(q, J=7.2Hz,2H),  1H-band R (CDC13) δ (ppm): 1.32 (t, J = 7.2Hz, 3H), 4.38 (q, J = 7.2Hz, 2H),
6.62-6.68(m,lH),7.52-7.58(m,lH), 7.52-7.58(m,lH),7.76-7.80(m,lH).  6.62-6.68 (m, lH), 7.52-7.58 (m, lH), 7.52-7.58 (m, lH), 7.76-7.80 (m, lH).
19F-NMR (CDC13) δ (ppm) : -111.00(s,2F).  19F-NMR (CDC13) δ (ppm): -111.00 (s, 2F).
IR (neat) c m- 1 : 1778, 1690, 1462, 1159, 1032.  IR (neat) cm-1: 1778, 1690, 1462, 1159, 1032.
宰施例 1 0 Presidency 1 0
( 2 , 2—ジフルオロー 4—ベンジルォキシ— 3—ォキソ酪酸ェチルの 合成)  (Synthesis of 2,2-difluoro-4-benzyloxy-3-oxobutyrate)
ドデカン酸ク口リ ドの代りにベンジルォキシァセチルクロリ ドを用い たことを除いて、 前記実施例 1 と同様にして目的化合物を得た 〔3 1 3 mg、 6 4 %収率〕。  The desired compound was obtained in the same manner as in Example 1 except that benzyloxyacetyl chloride was used instead of dodecanoic acid cuprate [3 13 mg, 64% yield].
この目的化合物の分析データを下記に示す。  The analytical data of this target compound is shown below.
1H -丽 R (CDC13) δ (ppm) : 1.31(t,J=7. lHz,3H),4.32(q,J=7.2Hz,2H),  1H-丽 R (CDC13) δ (ppm): 1.31 (t, J = 7.lHz, 3H), 4.32 (q, J = 7.2Hz, 2H),
4.50(s,2H),4.62(s,ZH),7.29-7.42(m,5H). 19F-NMR (CDC13) δ (ppm) : -115.52(s,2F).  4.50 (s, 2H), 4.62 (s, ZH), 7.29-7.42 (m, 5H) .19F-NMR (CDC13) δ (ppm): -115.52 (s, 2F).
IR (neat) c m- 1 : 1782, 1765, 1315, 1147, 1124.  IR (neat) cm-1: 1782, 1765, 1315, 1147, 1124.
ま 1 1 M 1 1
実施例 1で得た 2 , 2ージフルオロー 3—ォキソ ドデカン酸ェチル 2 7 8mg、 ( 1 mmo l )、RuB r2〔(R)— B I NAP〕 l 0 mg ( 0. 1 mmo 1 )および脱気エタノール( 3m l ) を入れ、 水素を導入し ( 1 00 a t m)、 1 00°Cで 24時間攪拌した。反応容器を冷やした後、 水 素を開放し、 反応液を取り出した。 溶媒留去後、 シリカゲルクロマトグ ラフィ一で単離精製し (酢酸ェチル:へキサン = 1 : 7 ), 対応する/?一 ヒ ドロキシエステルを得た ( 2 80 mg、 収率 1 00 %)。 ダイセル 0 D —Hカラムにより、 光学純度を測定したところ (エタノール :へキサン = 1 : 1 00)、 78 %e eであった。 2,78 mg of ethyl 2,2 difluoro-3-oxododecanoate obtained in Example 1, (1 mmol), RuBr2 [(R) -BI NAP] l 0 mg (0. 1 mmo 1) and degassed ethanol (3 ml) were added, hydrogen was introduced (100 atm), and the mixture was stirred at 100 ° C for 24 hours. After cooling the reaction vessel, hydrogen was released and the reaction solution was taken out. After evaporating the solvent, the residue was isolated and purified by silica gel chromatography (ethyl acetate: hexane = 1: 7) to obtain the corresponding hydroxy ester (280 mg, yield 100%). The optical purity was measured using a Daicel 0D-H column (ethanol: hexane = 1: 1100), and it was 78% ee.
この生成物の分析データを下記に示す。  The analytical data for this product is shown below.
1H-NMR (CDC13) ^ (ppm): 0.81-0.94(m, 3H) , 1.12-2.04(m, 17H) ,  1H-NMR (CDC13) ^ (ppm): 0.81-0.94 (m, 3H), 1.12-2.04 (m, 17H),
1.37(t,J=7.1Hz,3H),3.90-4.12(m,lH), 4.36(q,J=7.1Hz,2H).  1.37 (t, J = 7.1Hz, 3H), 3.90-4.12 (m, lH), 4.36 (q, J = 7.1Hz, 2H).
19F-NMR (CDC13) 5 (ppm): -115.45(dd, J=264.1,7.5Hz, IF),  19F-NMR (CDC13) 5 (ppm): -115.45 (dd, J = 264.1,7.5Hz, IF),
-123.01(dd,J=264.1, 15.0Hz, IF).  -123.01 (dd, J = 264.1, 15.0Hz, IF).
IR (neat) c m - 1: 3466,2926, 1760, 1316, 1094.  IR (neat) cm-1: 3466,2926, 1760, 1316, 1094.

Claims

請求の範囲 The scope of the claims
1 . 下記一般式 〔 1〕 で表わされる酸ハライ ドと、 下記一般式 〔 2〕 で表わされるジフルォロケテンシリルァセタールとを無触媒条件 下又は金属系触媒の存在下に反応させて、 下記一般式 〔3〕 で表わされ るひ, ひージフルオロー/?—ケトエステルを得ることを特徴とする、 ひ, ひージフルオロー 5—ケ トエステルの製造方法。 1. An acid halide represented by the following general formula [1] and a difluoroketene silyl acetal represented by the following general formula [2] are reacted under non-catalytic conditions or in the presence of a metal-based catalyst, A method for producing poly (5-difluoro-5-ketoester), characterized by obtaining poly (difluoro-/?-Ketoester) represented by the following general formula (3).
一般式 〔 1〕 :  General formula [1]:
0  0
-般
Figure imgf000020_0001
一般式 〔 3 J
Figure imgf000020_0002
-General
Figure imgf000020_0001
General formula (3 J
Figure imgf000020_0002
(但し、 前記一般式 〔 1〕、 〔2〕 及び 〔 3〕 において、 R 1は、 アルキル 基、 ァリール基、 ァラルキル基、 アルケニル基、 アルキニル基、 アルキ ルォキシ基、 ァリールォキシ基、 アルケニルォキシ基、 アルキニルォキ シ基又はァラルキルォキシ基を示し、 R 2は、 アルキル基、 ァリール基、 ァラルキル基、 アルケニル基又はアルキニル基を示し、 R :i、 R 4及び R 5 は、 互いに同一の若しくは異なる基であって、 互いに共同して環状の基 を形成してもよいアルキル基、 ァリール基、 ァラルキル基、 アルケニル 基、 アルキニル基、 アルコキシ基、 ァリールォキシ基、 アルケニルォキ シ基、 アルキニルォキシ基又はァラルキルォキシ基を示し、 また X1はハ ロゲン原子を示す。) (However, in the general formulas (1), (2) and (3), R 1 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkyloxy group, an aryloxy group, an alkenyloxy group, R 2 represents an alkyl group, an aralkyl group, an aralkyl group, an alkenyl group or an alkynyl group, and R : i , R 4 and R 5 are the same or different groups. An alkyl group, an aryl group, an aralkyl group, and an alkenyl group which may form a cyclic group together with each other. A alkynyl group, an alkoxy group, an aryloxy group, an alkenyloxy group, an alkynyloxy group or an aralkyloxy group, and X 1 represents a halogen atom. )
2. 前記金属系触媒として遷移金属系触媒を用いる、 請求の範 囲の第 1項に記載したひ, ひ一ジフルオロー ?—ケトエステルの製造方 法。  2. The method for producing a mono-difluoro-ketoester according to claim 1, wherein a transition metal-based catalyst is used as the metal-based catalyst.
3. 前記金属系触媒を前記酸ハライ ドに対して 0. 000 1〜 1 00当量用いる、 請求の範囲の第 1項に記載したひ, ひージフルォロ 一/?—ケトエステルの製造方法。  3. The method for producing mono-, he-fluoro-1 /?-Ketoesters according to claim 1, wherein the metal-based catalyst is used in an amount of 0.001 to 100 equivalents to the acid halide.
4. 下記一般式 〔4〕 で表わされるジフルォロハ口酢酸エステ ルと亜鉛と ト リアルキルハロシランとを用いて、 前記ジフルォロケテン シリルァセ夕一ルを製造し、 このジフルォロケテンシリルァセタールを 前記酸ハライ ドと反応させる、 請求の範囲の第 1項に記載したひ, ひ一 ジフルオロー —ケトエステルの製造方法。  4. The difluoroketene silyl acetate is manufactured using difluorochloroacetic acid ester represented by the following general formula [4], zinc and trialkylhalosilane, and the difluoroketene silyl acetate is converted to the acid The method for producing a difluoro-ketoester according to claim 1, which is reacted with a halide.
一般式 〔4〕: X2CF2C02R2 General formula [4]: X 2 CF 2 C0 2 R 2
(但し、 前記一般式 〔4〕 において、 R2は前記したものと同じであり、 X2は塩素原子、 臭素原子又はヨウ素原子を示す。) (However, in the general formula [4], R 2 is the same as described above, and X 2 represents a chlorine atom, a bromine atom or an iodine atom.)
5. 下記一般式 〔4〕 で表わされるジフルォロ酢酸エステルと 亜鉛と ト リアルキルハロシランとを用いて、 下記一般式 〔2〕 で表わさ れるジフルォロケテンシリルァセタールを製造することを特徴とする、 ジフルォロケテンシリルァセタールの製造方法。  5. The use of difluoroacetate represented by the following general formula [4], zinc and trialkylhalosilane to produce difluoroketene silyl acetal represented by the following general formula [2]. A method for producing difluoroketene silyl acetal.
一般式 〔2〕 :
Figure imgf000021_0001
General formula [2]:
Figure imgf000021_0001
一般式 〔4〕: X2CF2C02R: (但し、 前記一般式 〔 2〕 及び 〔4〕 において、 R 2は、 アルキル基、 ァ リール基、 ァラルキル基、 アルケニル基又はアルキニル基を示し、 R 3、 R 4及び R 5は、 互いに同一の若しくは異なる基であって、 互いに共同し て環状の基を形成してもよいアルキル基、 ァリール基、 ァラルキル基、 アルケニル基、 アルキニル基、 アルコキシ基、 ァリールォキシ基、 アル ケニルォキシ基、 アルキニルォキシ基又はァラルキルォキシ基を示し、 また X 2は塩素原子、 臭素原子又はヨウ素原子を示す。) General formula [4]: X 2 CF 2 C0 2 R : (However, in the general formulas (2) and (4), R 2 represents an alkyl group, an aryl group, an aralkyl group, an alkenyl group or an alkynyl group, and R 3 , R 4 and R 5 are the same as each other. Or an alkyl group, aryl group, aralkyl group, alkenyl group, alkynyl group, alkoxy group, aryloxy group, alkenyloxy group, alkynyloxy group or Represents an aralkyloxy group, and X 2 represents a chlorine atom, a bromine atom or an iodine atom.)
6 . 下記一般式 〔 1〕 で表わされる酸ハライ ドと、 下記一般式 6. Acid halide represented by the following general formula [1] and the following general formula
〔 2〕 で表わされるジフルォロケテンシリルァセ夕一ルとを無触媒条件 下又は金属系触媒の存在下に反応させて、 下記一般式 〔3〕 で表わされ るひ, ひ一ジフルオロー/?ーケトエステルを得、 更にこのひ, ひージフ ルオロー 5—ケトエステルを、水添触媒を用いた不斉水素化反応により、 下記一般式 〔5〕 で表わされる光学活性なひ, ひ—ジフルオロー/?—ヒ ドロキシエステルへ導く、 光学活性なひ, ひージフルオロー/?—ヒ ドロ キシエステルの製造方法。 The difluoroketene silyl acetate represented by [2] is reacted under non-catalytic conditions or in the presence of a metal-based catalyst to give a difluoroketensilyl acetate represented by the following general formula [3]. /?-Ketoester is obtained, and furthermore, this difluoro-ketofluoro-5-ketoester is subjected to an asymmetric hydrogenation reaction using a hydrogenation catalyst to obtain an optically active fly, difluoro-? —Optically active hydroxyl, difluoro /? — Leading to hydroxyesters.
一般式 〔 1〕 c - X C o= = General formula (1) c-X C o = =
一般式 〔2〕  General formula (2)
F F
Figure imgf000023_0001
一般式 〔3〕
Figure imgf000023_0001
General formula (3)
0  0
II II
CF, OR' 一般式 〔5〕 : CF, OR 'General formula [5]:
0H 0  0H 0
K 一 CH - CF2 -c - OR2 K one CH-CF 2 - c -OR 2
(但し、 前記一般式 〔 1〕、 〔2〕、 〔3〕 及び 〔5〕 において、 R1は、 ァ ルキル基、 ァリール基、 ァラルキル基、 アルケニル基、 アルキニル基、 アルキルォキシ基、 ァリールォキシ基、 アルケニルォキシ基、 アルキニ ルォキシ基又はァラルキルォキシ基を示し、 R2は、 アルキル基、 ァリー ル基、 ァラルキル基、 アルケニル基又はアルキニル基を示し、 R3、 R4 及び R5 は、 互いに同一の若しくは異なる基であって、 互いに共同して 環状の基を形成してもよいアルキル基、 ァリール基、 ァラルキル基、 ァ ルケニル基、 アルキニル基、 アルコキシ基、 ァリールォキシ基、 ァルケ ニルォキシ基、 アルキニルォキシ基、 又はァラルキルォキシ基を示し、 X'はハロゲン原子を示し、 また' Cはキラルな炭素原子を示す。) (However, in the general formulas (1), (2), (3) and (5), R 1 represents an alkenyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkyloxy group, an aryloxy group, an alkenyl group. R 2 represents an alkyl group, an aralkyl group, an aralkyl group, an alkenyl group or an alkynyl group; R 3 , R 4 and R 5 are the same or different from each other An alkyl group, an aryl group, an aralkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkenyloxy group, an alkynyloxy group, which may be combined with each other to form a cyclic group. X 'represents a halogen atom, and' C represents a chiral carbon atom.)
7. 前記水添触媒を前記ひ, ひ —ジフルオロー 5—ケトエステ ルに対して 0. 0 0 0 1〜 1 0モル%使用する、 請求の範囲の第ら項に 記載した光学活性なひ, ひ—ジフルオロー ーヒ ドロキシエステルの製 造方法。 7. The optically active catalyst according to claim 7, wherein the hydrogenation catalyst is used in an amount of 0.001 to 10 mol% based on the phosphoric acid-difluoro-5-ketoester. —Difluoro-hydroxy ester production method.
8 . 前記水添触媒として、 下記一般式 〔 6〕 で表される金属錯 体を用いる、 請求の範囲の第 6項に記載した光学活性なひ, ひージフル オロー/?ーヒ ドロキシエステルの製造方法。  8. A metal complex represented by the following general formula [6] is used as the hydrogenation catalyst, wherein the optically active iron, heijifluore /?-Hydroxylester according to claim 6 is used. Production method.
一般式 〔 6〕:  General formula [6]:
M 〔L〕  M (L)
(但し、 前記一般式 〔6〕 において、 Mは金属原子、 Lは光学活性なホ スフィン配位子を示す。)  (However, in the general formula [6], M represents a metal atom, and L represents an optically active phosphine ligand.)
9. 前記金属原子が、 R u、 R h、 P d、 I r又は N iであり、 前記配位子が、 (R) 又は ( S ) _ B I NA P、 (R) 又は ( S ) - T o 1— B I NAP、 (R) 又は ( S ) — X y l— B I NAP、 (R, R) 又 は ( S, S ) —M e— D u p h o s、 (R, R) 又は ( S, S ) —M e— B P E、 (R, R) 又は ( S , S ) — D i P AMP、 (R, R) 又は ( S , S ) — C H I RAP H〇 S、 (R, ; ) 又は ( S , S ) — B P PM、 (R , R) 又は (S , S) _N 0R P H 0 S、 又は (R, R) 又は (S, S ) 一 D I O Pである、 請求の範囲の第 8項に記載した光学活性なひ, ひ一 ジフルオロー/?ーヒ ドロキシエステルの製造方法。  9. The metal atom is Ru, Rh, Pd, Ir or Ni, and the ligand is (R) or (S) _BINAP, (R) or (S)-. T o 1—BI NAP, (R) or (S) —Xyl—BI NAP, (R, R) or (S, S) —Me—D uphos, (R, R) or (S, S ) —Me—BPE, (R, R) or (S, S) —DiPAMP, (R, R) or (S, S) —CHI RAP H〇S, (R,) or (S , S) — BP PM, (R, R) or (S, S) _N0R PH0 S, or (R, R) or (S, S) one DIOP, as claimed in claim 8 Method for producing optically active difluoro /?-Hydroxy esters.
PCT/JP2001/001103 2000-03-07 2001-02-15 PROCESS FOR PRODUCING α,α-DIFLUORO- β -KETOESTER WO2001066509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-62046 2000-03-07
JP2000062046A JP2001247514A (en) 2000-03-07 2000-03-07 Production of alpha, alpha-difluoro-beta-ketoester, production of difuruoroketenesilylacetal and production of optically active alpha, alpha-difuluoro- beta-hydroxy ester

Publications (1)

Publication Number Publication Date
WO2001066509A1 true WO2001066509A1 (en) 2001-09-13

Family

ID=18582107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001103 WO2001066509A1 (en) 2000-03-07 2001-02-15 PROCESS FOR PRODUCING α,α-DIFLUORO- β -KETOESTER

Country Status (2)

Country Link
JP (1) JP2001247514A (en)
WO (1) WO2001066509A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960679B2 (en) 2003-04-25 2005-11-01 Shin-Etsu Chemical Co., Ltd. Preparation of silyl ketene acetal and disilyl ketene acetal
JP4781678B2 (en) * 2005-01-06 2011-09-28 関東電化工業株式会社 Process for producing β-ketoester using fluorine-containing ketene silyl acetal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120368A2 (en) * 1983-03-09 1984-10-03 Daikin Kogyo Co., Ltd. Alpha-fluoroalkyl carboxylic acid esters and process for preparing the same
JPH0267250A (en) * 1988-09-02 1990-03-07 Asahi Glass Co Ltd Production of 2,2-difluoro-3-hydroxycarboxylic acid derivative
JPH11302226A (en) * 1998-04-15 1999-11-02 Takasago Internatl Corp Production of optically active alcohol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120368A2 (en) * 1983-03-09 1984-10-03 Daikin Kogyo Co., Ltd. Alpha-fluoroalkyl carboxylic acid esters and process for preparing the same
JPH0267250A (en) * 1988-09-02 1990-03-07 Asahi Glass Co Ltd Production of 2,2-difluoro-3-hydroxycarboxylic acid derivative
JPH11302226A (en) * 1998-04-15 1999-11-02 Takasago Internatl Corp Production of optically active alcohol

Also Published As

Publication number Publication date
JP2001247514A (en) 2001-09-11

Similar Documents

Publication Publication Date Title
Keck et al. Total synthesis of (-)-colletol
Fourgeaud et al. Oxaphospholene and oxaphosphinene heterocycles via RCM using unsymmetrical phosphonates or functional phosphinates
US20070021610A1 (en) 2, 3-Bis(dialkylphosphino)pyrazine derivative, process of producing the same, and metal complex having the same as ligand
EP0385733B1 (en) Process for preparing optically active 6-t-butoxy-3,5-dihydroxyhexanoic esters
JPH0623150B2 (en) Process for producing optically active 3-hydroxybutanoic acids
WO2001066509A1 (en) PROCESS FOR PRODUCING α,α-DIFLUORO- β -KETOESTER
JPH09328498A (en) Production of 24,25-dihydroxycholesterol and its synthetic intermediate
JPH08245664A (en) Optically active asymmetric diphosphine and method for obtaining optically active substance in the presence of the same compound
JP3830180B2 (en) Novel phosphine-phosphinite compound and method for producing 4-[(R) -1'-formylethyl] azetidin-2-one derivative using the same
US5434289A (en) Process for producing optically active β-hydroxyketone
JP3277065B2 (en) Phosphine compounds, complexes using the same as ligands, methods for producing optically active aldehydes using them, and 4-[(R) -1'-formylethyl] azetidin-2-one derivatives
KR20130110017A (en) Production method of sanshool
JP3431749B2 (en) Novel 1-substituted-2-diphenylphosphinonaphthalene and transition metal complex having the same as ligand
JPH0959290A (en) Ferroceny diphenylphosphine derivative and hydrosilylation method using the ligand metal complex
JP3157262B2 (en) New oxazolidinone derivatives
JP2001151727A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE alpha,alpha-DIFLUORO-beta- HYDROXYEXSTER AND alpha,alpha-DIFLUORO-beta-KETOESTER
JP3619275B2 (en) Ascorbic acid phosphoramide derivative and method for producing the same
JPH0334954A (en) Production of alkoxycarbonyl compound
US6313353B1 (en) Method for producing an optically active acyloin
JP2002506874A (en) 1-phosphanol norbornadienes
JP3450386B2 (en) Method for producing optically active γ-hydroxy ketones
JP2005510486A (en) Process for producing β-ketoester compound
JPH04270244A (en) Production of beta-ketoester
JP2002128759A (en) 4-[(r)-1'-formylethyl]azetidin-2-one derivative
JPS60224656A (en) Production of cyclopentanone derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase