WO2001064763A2 - Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process - Google Patents
Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process Download PDFInfo
- Publication number
- WO2001064763A2 WO2001064763A2 PCT/US2001/006687 US0106687W WO0164763A2 WO 2001064763 A2 WO2001064763 A2 WO 2001064763A2 US 0106687 W US0106687 W US 0106687W WO 0164763 A2 WO0164763 A2 WO 0164763A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zone
- catalyst
- olefins
- products
- propylene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G57/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
- C10G57/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process with polymerisation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G51/00—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only
- C10G51/02—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only
- C10G51/026—Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more cracking processes only plural serial stages only only catalytic cracking steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Definitions
- the present invention relates to a process for producing polypropylene from C 3 olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream.
- a problem inherent in producing olefins products using FCC units is that the process depends on a specific catalyst balance to maximize production of light olefins while also achieving high conversion of the 650°F + ( ⁇ 340°C) feed components.
- olefin selectivity is generally low because of undesirable side reactions, such as extensive cracking, isomerization, aromatization and hydrogen transfer reactions. Light saturated gases produced from undesirable side reactions result in increased costs to recover the desirable light olefins. Therefore, it is desirable to maximize olefin production in a process that allows a high degree of control over the selectivity of C 3 and C 4 olefins.
- One embodiment of the present invention is a process for producing polypropylene comprising the steps of (a) feeding a naphtha stream comprising less than about 40 wt.% paraffins and between about 15 to 70 wt.% olefins to a process unit comprising a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone; (b) contacting the naphtha stream with a fluidized bed of catalyst in the reaction zone to form a cracked product, the catalyst comprising a zeolite having an average pore diameter of less than about 0.7 nm and wherein the reaction zone is operated at a temperature from about 500° to 650°C, a hydrocarbon partial pressure of 10 to 40 psia (about 70- about 280 kPa), a hydrocarbon residence time of 1 to 10 seconds, and a catalyst to feed weight ratio between about 4 and about 10, thereby producing a reaction product wherein no more than about 20 wt.
- % of paraffins are converted to olefins and wherein propylene comprises at least about 90 mol.% of the total C3 products; (c) passing the catalyst through said stripping zone; (d) passing the stripped catalyst from the stripping zone to the catalyst regeneration zone where the catalyst is regenerated in the presence of an oxygen-containing gas; (e) recycling the regenerated catalyst to the reaction zone; (f) fractionating the cracked product to produce a C 3 fraction, a C 4 fraction rich in olefins, and optionally a C 5 fraction rich in olefins; (g) passing at least a portion of the C fraction to the reaction zone or the stripping zone, or both; and, (h) separating propylene from the C 3 fraction and polymerizing the propylene to form polypropylene.
- the catalyst is a ZSM-5 type catalyst.
- a C 5 fraction rich in olefins is also recycled.
- the feedstock contains about 5 to 35 wt. % paraffins, and from about 20 to 70 wt. % olefins.
- reaction zone is operated at a temperature from about 525°C to about 600°C.
- Feedstreams that are suitable for producing the relatively high C 2 , C 3 , and C 4 olefin yields are those streams boiling in the naphtha range containing less than about 40 wt.%, preferably from about 5 wt. % to about 35 wt. %, more preferably from about 10 wt. % to about 30 wt. %, and most preferably from about 10 to 25 wt. % paraffins, and from about 15 wt. %, preferably from about 20 wt. % to about 70 wt. % olefins.
- the feed may also contain naphthenes and aromatics.
- Naphtha boiling range streams are typically those having a boiling range from about 65°F to about 430°F (about 18°C to about 225°C), preferably from about 65°F to about 300°F (about 18°C to about 150°C).
- the naphtha can be a thermally cracked or a catalytically-cracked naphtha.
- the naphtha streams can be derived from the fluid catalytic cracking (FCC) of gas oils and resids, or they can be derived from delayed or fluid coking of resids.
- the naphtha streams used in the practice of the present invention derive from the fluid catalytic cracking of gas oils and resids.
- FCC naphthas are typically rich in olefins and/or diolefins and relatively lean in paraffins.
- the process of the present invention is performed in a process unit comprising a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone.
- the naphtha feed is fed into the reaction zone where it contacts a source of hot, regenerated catalyst.
- the hot catalyst vaporizes and cracks the feed at a temperature from about 500°C to about 650°C, preferably from about 525°C to about 600°C.
- the cracking reaction deposits coke on the catalyst, thereby deactivating the catalyst.
- the cracked products are separated from the coked catalyst and sent to a fractionator.
- the coked catalyst passes through the stripping zone where a stripping medium, such as steam, strips volatiles from the catalyst particles.
- the stripping can be preformed under low- severity conditions to retain a greater fraction of adsorbed hydrocarbons for heat balance.
- the stripped catalyst is then passed to the regeneration zone where it is regenerated by burning coke on the catalyst in the presence of an oxygen containing gas, preferably air. Decoking restores catalyst activity and simultaneously heats the catalyst to a temperature from about 650°C to about
- the hot regenerated catalyst is then recycled to the reaction zone to react with fresh naphtha feed. Flue gas formed by burning coke in the regenerator may be treated for removal of particulates and for conversion of carbon monoxide.
- the cracked products from the reaction zone are sent to a fractionation zone where various products are recovered, particularly a C 3 fraction, a C 4 fraction, and optionally a C 5 fraction.
- the C 4 fraction and the C 5 fraction will typically be rich in olefins. At least a portion of one or both of these fractions can be recycled to the reactor. They can be recycled to either the main section of the reactor, or a riser section, or a stripping section. It is preferred that they be recycled to the upper part of the stripping section, or stripping zone. Recycling at least a portion of one or both of these fractions will convert at least a portion of these olefins to propylene.
- Suitable catalysts used with the present invention contain a crystalline zeolite having an average pore diameter less than about 0.7 nanometers (nm), said crystalline zeolite comprising from about 10 wt. % to about 50 wt. % of the total fluidized catalyst composition.
- the crystalline zeolite be selected from the family of medium-pore size ( ⁇ 0.7 nm) crystalline aluminosilicates, otherwise referred to as zeolites.
- zeolites are the medium-pore zeolites with a silica to alumina molar ratio of less than about 75: 1, preferably less than about 50: 1, and more preferably less than about 40: 1, although some embodiments may incorporate a silica to alumina ratio greater than 40: 1.
- the pore diameter also referred to as effective pore diameter, is measured using standard adsorption techniques and hydrocarbonaceous compounds of known minimum kinetic diameters. See Breck, Zeolite Molecular Sieves, 1974 and Anderson et al., J. Catalysis 58, 114 (1979), both of which are incorporated herein by reference.
- Medium-pore size zeolites that can be used in the practice of the present invention are described in "Atlas of Zeolite Structure Types", eds. W. H. Meier and D. H. Olson, Butterworth-Heineman, Third Edition, 1992, which is hereby incorporated by reference.
- the medium-pore size zeolites generally have a pore size from about 5A, to about 7A and include for example, MFI, MFS, MEL, MTW, EUO, MTT, HEU, FER, and TON structure type zeolites (IUPAC Commission of Zeolite Nomenclature) .
- Non-limiting examples of such medium-pore size zeolites include ZSM-5, ZSM-12, ZSM-22, ZSM-23, ZSM-34, ZSM- 35, ZSM-38, ZSM-48, ZSM-50, silicalite, and silicalite 2.
- ZSM-5 which is described in U.S. Patent Nos. 3,702,886 and 3,770,614.
- ZSM-11 is described in U.S. Patent No. 3,709,979; ZSM-12 in U.S. Patent No. 3,832,449; ZSM-21 and ZSM-38 in U.S. Patent No. 3,948,758; ZSM- 23 in U.S. Patent No. 4,076,842; and ZSM-35 in U.S. Patent No.
- Suitable medium-pore size zeolites include the silicoaluminophosphates (SAPO), such as SAPO-4 and SAPO-11 which is described in U.S. Patent No. 4,440,871 ; chromosilicates; gallium silicates; iron silicates; aluminum phosphates (ALPO), such as ALPO-1 1 described in U.S. Patent No. 4,310,440; titanium aluminosilicates (TASO), such as TASO-45 described in EP-A No. 229,295; boron silicates, described in U.S. Patent No. 4,254,297; titanium aluminophosphates (TAPO), such as TAPO-11 described in U.S. Patent No. 4,500,651; and iron aluminosilicates.
- SAPO silicoaluminophosphates
- SAPO-4 and SAPO-11 which is described in U.S. Patent No. 4,440,871
- chromosilicates such as SAPO-4 and SAP
- the medium-pore-size zeolites can include "crystalline admixtures" which are thought to be the result of faults occurring within the crystal or crystalline area during the synthesis of the zeolites.
- Examples of crystalline admixtures of ZSM-5 and ZSM-11 are disclosed in U.S. Patent No. 4,229,424, which is incorporated herein by reference.
- the crystalline admixtures are themselves medium-pore-size zeolites and are not to be confused with physical admixtures of zeolites in which distinct crystals of crystallites of different zeolites are physically present in the same catalyst composite or hydrothermal reaction mixtures.
- the catalysts of the present invention may be held together with an inorganic oxide matrix material component.
- the inorganic oxide matrix component binds the catalyst components together so that the catalyst product is hard enough to survive interparticle and reactor wall collisions.
- the inorganic oxide matrix can be made from an inorganic oxide sol or gel which is dried to "bind" the catalyst components together.
- the inorganic oxide matrix is not catalytically active and will be comprised of oxides of silicon and aluminum. It is also preferred that separate alumina phases be incorporated into the inorganic oxide matrix.
- Species of aluminum oxyhydroxides-g-alumina, boehmite, diaspore, and transitional aluminas such as a-alumina, b-alumina, g-alumina, d-alumina, e- alumina, k-alumina, and r-alumina can be employed.
- the alumina species is an aluminum trihydroxide such as gibbsite, bayerite, nordstrandite, or doyelite.
- the matrix material may also contain phosphorous or aluminum phosphate.
- Process conditions include temperatures from about 500°C to about
- 650°C preferably from about 500°C to 600°C; hydrocarbon partial pressures from about 10 to 40 psia (about 70-about 280 kPa) to about, preferably from about 20 to 35 psia (about 140- about 245 kPa); and a catalyst to naphtha (wt/wt) ratio from about 3 to 12, preferably from about 4 to 10, where catalyst weight is total weight of the catalyst composite.
- Steam may be concurrently introduced with the naphtha stream into the reaction zone, with the steam comprising up to about 50 wt. % of the naphtha feed.
- the naphtha residence time in the reaction zone is less than about 10 seconds, for example from about 1 to 10 seconds.
- the reaction conditions will be such that at least about 60 wt. % of the C 5 + olefins in the naphtha stream are converted to C 4 - products and less than about 25 wt. %, preferably less than about 20 wt. % of the paraffins are converted to C - products, and that propylene comprises at least about 90 mol.%, preferably greater than about 95 mol % of the total C 3 reaction products with the weight ratio of propylene/total C 2 - products greater than about 3.5.
- ethylene comprises at least about 90 mol.% of the C 2 products, with the weight ratio of propylene:ethylene being greater than about 4, and that the "full range" C 5 + naphtha product is enhanced in both motor and research octanes relative to the naphtha feed. It is within the scope of this invention to pre-coke the catalysts before introducing the feed to further improve the selectivity to propylene. It is also within the scope of this invention to feed an effective amount of single-ring aromatics to the reaction zone to also improve the selectivity of propylene versus ethylene.
- the aromatics may be from an external source such as a reforming process unit or they may consist of heavy naphtha recycle product from the instant process.
- Example 1 illustrates the criticality of process operating conditions for maintaining chemical grade propylene purity with samples of cat naphtha cracked over ZCAT-40 (a catalyst that contains ZSM-5) which had been steamed at 1500°F ( ⁇ 815°C) for 16 hrs to simulate commercial equilibrium.
- Comparison of Examples 1 and 2 show that increasing Cat/Oil ratio improves propylene yield, but sacrifices propylene purity.
- Comparison of Examples 3 and 4 and 5 and 6 shows reducing oil partial pressure greatly improves propylene purity without compromising propylene yield.
- Comparison of Examples 7 and 8 and 9 and 10 shows increasing temperature improves both propylene yield and purity.
- Comparison of Examples 11 and 12 shows decreasing cat residence time improves propylene yield and purity.
- Example 13 shows an example where both high propylene yield and purity are obtained at a reactor temperature and cat/oil ratio that can be achieved using a conventional FCC reactor/regenerator design for the second stage.
- Example Wt,% 2 Wt.% C-T t ⁇ 2 ° to 2 " wt.% c
- the cracking of olefins and paraffins contained in naphtha streams can produce significant amounts of ethylene and propylene.
- the selectivity to ethylene or propylene and selectivity of propylene to propane varies as a function of catalyst and process operating conditions. It has been found that propylene yield can be increased by co-feeding steam along with cat naphtha to the reactor.
- the catalyst may be ZSM-5 or other small or medium-pore zeolites. Table 2 below illustrates the increase in propylene yield when 5 wt. % steam is co-fed with an FCC naphtha containing 38.8 wt. % olefins. Although propylene yield increased, the propylene purity is diminished. Thus, other operating conditions may need to be adjusted to maintain the targeted propylene selectivity.
- ZCAT-40 was used to crack cat cracker naphtha as described for the above examples.
- the coked catalyst was then used to crack a C stream composed of 6 wt.% n-butane, 9 wt.% i-butane, 47 wt.% 1-butene, and 38 wt.% i-butene in a reactor at the temperatures and space velocities indicated in the table below.
- a significant fraction of the feed stream was converted to propylene.
- Light olefins resulting from the preferred process may be used as feeds for processes such as oligimerization, polymerization, co-polymerization, ter- polymerization, and related processes (hereinafter "polymerization") to form macromolecules.
- Such light olefins may be polymerized both alone and in combination with other species, in accordance with polymerization methods known in the art. In some cases it may be desirable to separate, concentrate, purify, upgrade, or otherwise process the light olefins prior to polymerization.
- Propylene and ethylene are preferred polymerization feeds. Polypropylene and polyethylene are preferred polymerization products made therefrom.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Polymerization Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002400598A CA2400598A1 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process |
AU2001241916A AU2001241916A1 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process |
EP01913235A EP1261648A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process |
MXPA02008552A MXPA02008552A (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3. |
JP2001564255A JP2003525323A (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from C3 olefins selectively produced from naphtha / steam feed in a fluid catalytic cracking process |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/517,554 | 2000-03-02 | ||
US09/517,497 | 2000-03-02 | ||
US09/517,497 US6258990B1 (en) | 1998-05-05 | 2000-03-02 | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process from a naphtha/steam feed |
US09/517,503 | 2000-03-02 | ||
US09/517,503 US6339180B1 (en) | 1998-05-05 | 2000-03-02 | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process |
US09/517,554 US6388152B1 (en) | 1998-05-05 | 2000-03-02 | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process |
US09/517,551 US6258257B1 (en) | 1998-05-05 | 2000-03-02 | Process for producing polypropylene from C3 olefins selectively produced by a two stage fluid catalytic cracking process |
US09/517,551 | 2000-03-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001064763A2 true WO2001064763A2 (en) | 2001-09-07 |
WO2001064763A3 WO2001064763A3 (en) | 2002-01-31 |
Family
ID=27504537
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/006684 WO2001064760A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process |
PCT/US2001/006686 WO2001064762A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced by a two stage fluid catalytic cracking process |
PCT/US2001/006685 WO2001064761A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process from a naphtha/steam feed |
PCT/US2001/006687 WO2001064763A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/006684 WO2001064760A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process |
PCT/US2001/006686 WO2001064762A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced by a two stage fluid catalytic cracking process |
PCT/US2001/006685 WO2001064761A2 (en) | 2000-03-02 | 2001-03-01 | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process from a naphtha/steam feed |
Country Status (7)
Country | Link |
---|---|
EP (3) | EP1261649A2 (en) |
JP (3) | JP2004516335A (en) |
CN (3) | CN1406254A (en) |
AU (4) | AU2001239990A1 (en) |
CA (3) | CA2400524A1 (en) |
MX (3) | MXPA02008554A (en) |
WO (4) | WO2001064760A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7267759B2 (en) | 2003-02-28 | 2007-09-11 | Exxonmobil Research And Engineering Company | Fractionating and further cracking a C6 fraction from a naphtha feed for propylene generation |
US7425258B2 (en) | 2003-02-28 | 2008-09-16 | Exxonmobil Research And Engineering Company | C6 recycle for propylene generation in a fluid catalytic cracking unit |
WO2009070484A1 (en) * | 2007-11-29 | 2009-06-04 | Shell Oil Company | Systems and methods for making a middle distillate product and lower olefins from a hydrocarbon feedstock |
RU2474606C2 (en) * | 2007-10-10 | 2013-02-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Systems and methods for obtaining middle distillates and low molecular weight olefins from hydrocarbon raw material |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101679880B (en) | 2007-04-13 | 2013-05-22 | 国际壳牌研究有限公司 | Systems and methods for making a middle distillate product and lower olefins from a hydrocarbon feedstock |
CN101747129B (en) * | 2008-11-28 | 2013-09-04 | 中国石油化工股份有限公司 | Method for producing light olefins through catalytic conversion |
CN102531821B (en) | 2010-12-28 | 2015-03-25 | 中国科学院大连化学物理研究所 | Method for catalyzing catalytic cracking reaction of methanol coupled with naphtha using modified ZSM-5 molecular sieve based catalyst |
CN103121894A (en) * | 2011-11-18 | 2013-05-29 | 中国石油化工股份有限公司 | Combined method for producing low-carbon olefin |
CN105582997B (en) * | 2014-10-21 | 2018-05-18 | 中国石油化工股份有限公司 | The method of catalyst of naphtha catalytic cracking production propylene and preparation method thereof and naphtha catalytic cracking production propylene |
CA3130846A1 (en) * | 2019-03-18 | 2020-09-24 | Exxonmobil Research And Engineering Company | Mesoporous catalyst compounds and uses thereof |
KR20220117899A (en) * | 2019-12-23 | 2022-08-24 | 셰브런 유.에스.에이.인크. | Circular Economy of Plastic Waste to Polypropylene Through Refining FCC Units |
CN114846117B (en) * | 2019-12-23 | 2023-12-12 | 雪佛龙美国公司 | Recycling economy for converting plastic waste into polypropylene and lube oils by refinery FCC and isomerization dewaxing units |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999057225A1 (en) * | 1998-05-05 | 1999-11-11 | Exxon Research And Engineering Company | Process for selectively producing c3 olefins in a fluid catalytic cracking process |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6106697A (en) * | 1998-05-05 | 2000-08-22 | Exxon Research And Engineering Company | Two stage fluid catalytic cracking process for selectively producing b. C.su2 to C4 olefins |
US6118035A (en) * | 1998-05-05 | 2000-09-12 | Exxon Research And Engineering Co. | Process for selectively producing light olefins in a fluid catalytic cracking process from a naphtha/steam feed |
US6069287A (en) * | 1998-05-05 | 2000-05-30 | Exxon Research And Engineering Co. | Process for selectively producing light olefins in a fluid catalytic cracking process |
-
2001
- 2001-03-01 AU AU2001239990A patent/AU2001239990A1/en not_active Abandoned
- 2001-03-01 EP EP01914623A patent/EP1261649A2/en not_active Withdrawn
- 2001-03-01 CN CN 01805874 patent/CN1406254A/en active Pending
- 2001-03-01 AU AU2001239991A patent/AU2001239991A1/en not_active Abandoned
- 2001-03-01 WO PCT/US2001/006684 patent/WO2001064760A2/en not_active Application Discontinuation
- 2001-03-01 CA CA002400524A patent/CA2400524A1/en not_active Abandoned
- 2001-03-01 WO PCT/US2001/006686 patent/WO2001064762A2/en active Application Filing
- 2001-03-01 AU AU2001241916A patent/AU2001241916A1/en not_active Abandoned
- 2001-03-01 AU AU2001243379A patent/AU2001243379A1/en not_active Abandoned
- 2001-03-01 MX MXPA02008554A patent/MXPA02008554A/en unknown
- 2001-03-01 WO PCT/US2001/006685 patent/WO2001064761A2/en not_active Application Discontinuation
- 2001-03-01 CN CN 01805862 patent/CN1406253A/en active Pending
- 2001-03-01 CA CA002400598A patent/CA2400598A1/en not_active Abandoned
- 2001-03-01 CA CA002400382A patent/CA2400382A1/en not_active Abandoned
- 2001-03-01 CN CN 01805858 patent/CN1406252A/en active Pending
- 2001-03-01 JP JP2001564253A patent/JP2004516335A/en not_active Withdrawn
- 2001-03-01 EP EP01913235A patent/EP1261648A2/en not_active Withdrawn
- 2001-03-01 EP EP01916344A patent/EP1259555A2/en not_active Withdrawn
- 2001-03-01 JP JP2001564252A patent/JP2004516334A/en not_active Withdrawn
- 2001-03-01 JP JP2001564255A patent/JP2003525323A/en not_active Withdrawn
- 2001-03-01 MX MXPA02008553A patent/MXPA02008553A/en unknown
- 2001-03-01 MX MXPA02008552A patent/MXPA02008552A/en unknown
- 2001-03-01 WO PCT/US2001/006687 patent/WO2001064763A2/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999057225A1 (en) * | 1998-05-05 | 1999-11-11 | Exxon Research And Engineering Company | Process for selectively producing c3 olefins in a fluid catalytic cracking process |
Non-Patent Citations (2)
Title |
---|
ELVERS B. ET AL.: "ULLMANN'S ENCYCLOPEDIA OF INDUSTRIAL CHEMISTRY" 1992 , VCH VERLAG. , WEINHEIM, DE XP002174091 volume A21, pages 518-519, paragraph 2.1.1 * |
MOORE E.P.: "Polypropylene handbook" 1996 , HANSER PUBL. , MUNICH, DE XP002174092 pages 262-264, paragraph 7.1.4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7267759B2 (en) | 2003-02-28 | 2007-09-11 | Exxonmobil Research And Engineering Company | Fractionating and further cracking a C6 fraction from a naphtha feed for propylene generation |
US7270739B2 (en) | 2003-02-28 | 2007-09-18 | Exxonmobil Research And Engineering Company | Fractionating and further cracking a C6 fraction from a naphtha feed for propylene generation |
US7425258B2 (en) | 2003-02-28 | 2008-09-16 | Exxonmobil Research And Engineering Company | C6 recycle for propylene generation in a fluid catalytic cracking unit |
RU2474606C2 (en) * | 2007-10-10 | 2013-02-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Systems and methods for obtaining middle distillates and low molecular weight olefins from hydrocarbon raw material |
WO2009070484A1 (en) * | 2007-11-29 | 2009-06-04 | Shell Oil Company | Systems and methods for making a middle distillate product and lower olefins from a hydrocarbon feedstock |
RU2474605C2 (en) * | 2007-11-29 | 2013-02-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Plants and methods for obtaining middle-distillate product and low molecular weight olefins from initial hydrocarbon raw material |
Also Published As
Publication number | Publication date |
---|---|
EP1261649A2 (en) | 2002-12-04 |
MXPA02008554A (en) | 2003-04-22 |
CA2400524A1 (en) | 2001-09-07 |
WO2001064760A3 (en) | 2002-01-03 |
AU2001239990A1 (en) | 2001-09-12 |
WO2001064760A2 (en) | 2001-09-07 |
EP1259555A2 (en) | 2002-11-27 |
JP2003525323A (en) | 2003-08-26 |
MXPA02008553A (en) | 2003-03-12 |
CA2400598A1 (en) | 2001-09-07 |
AU2001241916A1 (en) | 2001-09-12 |
WO2001064761A3 (en) | 2002-01-03 |
CN1406254A (en) | 2003-03-26 |
AU2001243379A1 (en) | 2001-09-12 |
CN1406253A (en) | 2003-03-26 |
AU2001239991A1 (en) | 2001-09-12 |
EP1261648A2 (en) | 2002-12-04 |
CN1406252A (en) | 2003-03-26 |
WO2001064761A2 (en) | 2001-09-07 |
WO2001064762A3 (en) | 2002-01-24 |
JP2004516334A (en) | 2004-06-03 |
JP2004516335A (en) | 2004-06-03 |
WO2001064762A2 (en) | 2001-09-07 |
CA2400382A1 (en) | 2001-09-07 |
MXPA02008552A (en) | 2003-03-12 |
WO2001064763A3 (en) | 2002-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6093867A (en) | Process for selectively producing C3 olefins in a fluid catalytic cracking process | |
US6258990B1 (en) | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process from a naphtha/steam feed | |
US7374660B2 (en) | Process for selectively producing C3 olefins in a fluid catalytic cracking process with recycle of a C4 fraction to a secondary reaction zone separate from a dense bed stripping zone | |
AU3765199A (en) | Process for selectively producing light olefins in a fluid catalytic cracking process | |
US6313366B1 (en) | Process for selectively producing C3 olefins in a fluid catalytic cracking process | |
US6803494B1 (en) | Process for selectively producing propylene in a fluid catalytic cracking process | |
WO2001064763A2 (en) | Process for producing polypropylene from c3 olefins selectively produced in a fluid catalytic cracking process | |
US6388152B1 (en) | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process | |
US6339180B1 (en) | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process | |
WO2002026628A1 (en) | Process for selectively producing c3 olefins in a fluid catalytic cracking process | |
ZA200206889B (en) | Process for producing polypropylene from C3 olefins selectively produced in a fluid catalytic cracking process. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001241916 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: IN/PCT/2002/01091/MU Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2400598 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200206889 Country of ref document: ZA Ref document number: 2002/06889 Country of ref document: ZA |
|
ENP | Entry into the national phase in: |
Ref document number: 2001 564255 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 018058620 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/008552 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001913235 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001913235 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001913235 Country of ref document: EP |